WO2020261446A1 - 電界発光素子及び表示装置 - Google Patents

電界発光素子及び表示装置 Download PDF

Info

Publication number
WO2020261446A1
WO2020261446A1 PCT/JP2019/025465 JP2019025465W WO2020261446A1 WO 2020261446 A1 WO2020261446 A1 WO 2020261446A1 JP 2019025465 W JP2019025465 W JP 2019025465W WO 2020261446 A1 WO2020261446 A1 WO 2020261446A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
cathode
anode
layer
Prior art date
Application number
PCT/JP2019/025465
Other languages
English (en)
French (fr)
Inventor
山本 真樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2019/025465 priority Critical patent/WO2020261446A1/ja
Publication of WO2020261446A1 publication Critical patent/WO2020261446A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • H05B33/24Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers of metallic reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode

Definitions

  • the present disclosure relates to an electroluminescent element and a display device.
  • a display device using an electroluminescent element provided with a light emitting layer containing quantum dots (QD) is expected to be applied to a display device such as a portable terminal.
  • QD quantum dots
  • one aspect of the present disclosure is to provide an electroluminescent element and a display device capable of improving the brightness while suppressing the increase in power consumption in a bright place such as under sunlight. To do.
  • the electroluminescent device includes a first electrode, a light emitting layer containing quantum dots, and a second electrode in this order, and the first electrode and the above. At least one of the second electrodes contains selenium.
  • the display device includes the above electroluminescent element according to one aspect of the present disclosure.
  • an electrode containing selenium having a photoconducting effect as at least one of the first electrode and the second electrode, in a bright place such as under sunlight.
  • the value of the current flowing through the electrodes can be increased by the photoconducting effect without increasing the value of the current supplied from the external power source. Therefore, according to one aspect of the present disclosure, there is provided an electroluminescent element and a display device capable of improving the brightness while suppressing the increase in power consumption in a bright place such as under sunlight. Can be done.
  • FIG. It is sectional drawing which shows typically an example of the schematic structure of the light emitting element which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows typically an example of the schematic structure of the display device which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows typically an example of the schematic structure of the light emitting element which concerns on Embodiment 2.
  • FIG. It is sectional drawing which shows typically an example of the schematic structure of the light emitting element which concerns on Embodiment 3.
  • FIG. 1 is a cross-sectional view schematically showing an example of a schematic configuration of a light emitting element 10 according to the present embodiment.
  • the layer formed in the process before the layer to be compared is referred to as the "lower layer”
  • the layer formed in the process after the layer to be compared is referred to as the "upper layer”.
  • the direction from the light emitting layer 4 to the substrate 1 is defined as “downward”
  • the direction from the substrate 1 toward the light emitting layer 4 is defined as "upward”.
  • the light emitting element 10 is an electroluminescent element in which a light emitting layer 4 is provided between the anode 2 and the cathode 6.
  • the anode 2 and the cathode 6 are connected to a power source (not shown) so that a voltage is applied between them.
  • the light emitting element 10 includes an anode 2, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5, and a cathode 6 in this order.
  • the light emitting element 10 may include a substrate 1 as a support. In FIG.
  • the light emitting element 10 includes a substrate 1, an anode 2, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5, and a cathode 6, and is provided on the substrate 1.
  • An example is shown in which the anode 2, the hole transport layer 3, the light emitting layer 4, the electron transport layer 5, and the cathode 6 are provided in this order from the substrate 1 side.
  • the electroluminescent element when manufacturing an electroluminescent element, it is possible to manufacture the electroluminescent element more stably by laminating from the anode side. Therefore, when the substrate 1 is under the anode 2 as shown in FIG. 1, the yield can be improved. As shown in the second embodiment described later, the stacking order from the anode 2 to the cathode 6 can be reversed.
  • the light emitting element 10 can be suitably used as, for example, a light emitting element in a display device.
  • FIG. 2 is a cross-sectional view schematically showing an example of a schematic configuration of the display device 100 according to the present embodiment.
  • the display device 100 has a configuration in which the light emitting element layer 11 is provided on the substrate 101 as a support.
  • the light emitting element layer 11 has, for example, a configuration in which the first electrode, the first carrier transport layer, the light emitting layer, the second carrier transport layer, and the second electrode are laminated in this order from the substrate 101 side on the substrate 101. ing.
  • the first electrode, the first carrier transport layer, the second carrier transport layer, and the second electrode are the anode 2, the hole transport layer 3, the electron transport layer 5, and the cathode 6 in this order, and are on the substrate 101.
  • the case where the anode 2, the hole transport layer 3, the light emitting layer 4, the electron transport layer 5, and the cathode 6 are provided in this order from the substrate 101 side is shown as an example.
  • Each of the anode 2, the hole transport layer 3, the light emitting layer 4, and the electron transport layer 5 is separated into islands for each pixel (light emitting pixel) by the bank BK.
  • the cathode 6 is not separated into islands by the bank BK, and is formed in common with each pixel.
  • the display device 100 has red pixel RP, green pixel GP, and blue pixel BP as pixels.
  • the light emitting element 10 is formed for each pixel corresponding to the pixel.
  • the red pixel RP is provided with a red light emitting element 10R having a light emitting layer 4 having a red light emitting peak as the light emitting element 10.
  • the green pixel GP is provided with a green light emitting element 10G having a light emitting layer 4 having a green light emitting peak as the light emitting element 10.
  • the blue pixel BP is provided with a blue light emitting element 10B having a light emitting layer 4 having a blue light emitting peak as the light emitting element 10.
  • having a red emission peak means “having an emission peak wavelength in a wavelength band of 600 nm or more and 780 nm or less”.
  • having a green emission peak means “having an emission peak wavelength in a wavelength band of 500 nm or more and 600 nm or less”.
  • having a blue emission peak means “having an emission peak wavelength in a wavelength band of 400 nm or more and 500 nm or less”.
  • the pixel RP (in other words, the red light emitting element 10 used for the pixel RP) preferably has an emission peak wavelength in a wavelength band of 620 nm or more and 650 nm or less.
  • the pixel GP (in other words, the green light emitting element 10 used for the pixel GP) preferably has an emission peak wavelength in a wavelength band of 520 nm or more and 540 nm or less.
  • the pixel BP (in other words, the blue light emitting element 10 used for the pixel BP) preferably has an emission peak wavelength in a wavelength band of 440 nm or more and 460 nm or less. This makes it possible to realize a wide color reproduction range in the display device 100 provided with the light emitting element 10.
  • the case where the anode 2, the hole transport layer 3, the light emitting layer 4, and the electron transport layer 5 excluding the cathode 6 are formed in an island shape for each pixel will be described as an example. However, it is not limited to this.
  • the hole transport layer 3, the electron transport layer 5, and the cathode 6 excluding the anode 2 and the light emitting layer 4 may be formed as a solid common layer. In this case, it is not necessary to provide the bank BK. Further, as will be described later, the stacking order from the anode 2 to the cathode 6 can be reversed.
  • the hole transport layer 3 and the electron transport layer 5 may be formed of a material common to the light emitting elements 10R, 10G, and 10B regardless of whether or not they are island-shaped as described above, or emit light.
  • the elements 10R, 10G, and 10B may be made of different materials.
  • the light emitting element 10 is usually formed on a substrate 1 that supports the light emitting element 10.
  • the substrate 1 is a base substrate for forming the light emitting element 10, and functions as a support for supporting the anode 2 to the cathode 6 as described above.
  • the light emitting element 10 may be used as a light source of a light emitting device (electronic device) such as a display device 100, for example.
  • the substrate 101 of the light emitting device such as the display device 100 is used as the substrate 1.
  • the light emitting element 10 may be referred to as a light emitting element 10 including the substrate 1, or may be referred to as a light emitting element 10 without including the substrate 1. Therefore, the light emitting element 10 may include the substrate 1, and the substrate 1 provided by the light emitting element 10 may be the substrate 101 of the display device 100 provided with the light emitting element 10. Therefore, the substrate 1 can be read as the substrate 101, and the substrate 101 can be read as the substrate 1.
  • the substrate 1 may be, for example, a glass substrate or a flexible substrate such as a resin substrate. Further, when the light emitting element 10 is a part of a light emitting device such as a display device 100, for example, an array substrate on which a plurality of thin film transistors are formed may be used for the substrate 1 (in other words, the substrate 101). .. In this case, the anode 2 which is the first electrode provided on the substrate 1 may be electrically connected to the thin film transistor of the array substrate.
  • the substrate 1 may be made of a translucent material or a light-reflecting material.
  • a translucent substrate made of a translucent material is used for the substrate 1.
  • the hole transport layer 3 is a layer that transports holes from the anode 2 to the light emitting layer 4.
  • the material of the hole transport layer 3 may be any hole transport material capable of stabilizing the transport of holes into the light emitting layer 4, but among them, those having high hole mobility are used. preferable.
  • the hole transport layer 3 may have a function of inhibiting the transport of electrons.
  • the hole transporting material is preferably an electron blocking material that prevents the penetration of electrons that have moved from the cathode. As a result, the recombination efficiency of holes and electrons in the light emitting layer 4 can be increased.
  • the hole transport layer 3 may also have a function as a hole injection layer that promotes the injection of holes from the anode 2 into the light emitting layer 4.
  • the hole transporting material examples include arylamine derivatives, anthracene derivatives, carbazole derivatives, thiophene derivatives, fluorene derivatives, distyrylbenzene derivatives, spiro compounds and the like.
  • the materials used for the hole transport layer 3 are polyvinylcarbazole (PVK) and poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (4,4'-(N). -(4-sec-Butylphenyl)) diphenylamine)] (TFB) is more preferably contained.
  • PVK and TFB have the effect of improving the light emitting characteristics of the light emitting element 10 in order to improve the light emitting efficiency due to the recombination of electrons and holes in the light emitting layer 4. Only one kind of these hole transporting materials may be used, or two or more kinds may be mixed and used as appropriate.
  • the light emitting element 10 may have a layer other than the hole transport layer 3 between the anode 2 and the light emitting layer 4.
  • a hole injection layer (not shown) may be formed between the anode 2 and the hole transport layer 3.
  • the material used for the hole injection layer may be any hole injectable material capable of stabilizing the injection of holes into the light emitting layer 4.
  • the hole-injectable material include conductive polymers such as arylamine derivatives, porphyrin derivatives, phthalocyanine derivatives, carbazole derivatives, polyaniline derivatives, polythiophene derivatives, and polyphenylene vinylene derivatives.
  • the hole-injectable material is more preferably poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid (PEDOT-PSS).
  • PEDOT-PSS has the effect of improving the light emitting characteristics of the light emitting element 10 in order to improve the light emitting efficiency due to the recombination of electrons and holes in the light emitting layer 4. Only one kind of these hole-injectable materials may be used, or two or more kinds may be mixed and used as appropriate.
  • the thickness of the hole transport layer 3 and the hole injection layer is not particularly limited as long as the hole transport function and the hole injection function are sufficiently exhibited.
  • Examples of the method for forming the hole transport layer 3 and the hole injection layer include a vapor deposition method, a printing method, an inkjet method, a spin coating method, a casting method, a dipping method, a bar coating method, a blade coating method, and a roll coating method. , Gravure coating method, flexographic printing method, spray coating method, photolithography method, self-assembling method (alternate adsorption method, self-assembled monolayer method) and the like, but are not limited thereto. Among them, it is preferable to use a vapor deposition method, a spin coating method, an inkjet method, or a photolithography method.
  • the light emitting layer 4 is a quantum dot light emitting layer containing quantum dots (semiconductor nanoparticles) as a light emitting material and having a light emitting peak in the visible light region.
  • the light emitting layer 4 emits visible light due to recombination of holes (h + ) transported from the anode 2 and electrons (e ⁇ ) transported from the cathode 6.
  • a quantum dot has a valence band level (equal to ionization potential) and a conduction band level (equal to electron affinity), and the holes in the valence band level and the electrons in the conduction band level are recombined. It is a luminescent material that emits light by bonding. Since the light emitted from the light emitting layer 4 has a narrow spectrum due to the quantum confinement effect, it is possible to obtain light emission having a relatively deep chromaticity.
  • the light emitting layer 4 in the light emitting element 10R includes a quantum dot QR having a red light emitting peak as a quantum dot.
  • the light emitting layer 4 in the light emitting element 10G includes quantum dots QG having a green light emitting peak as quantum dots.
  • the light emitting layer 4 in the light emitting element 10B includes quantum dots QB having a blue light emitting peak as quantum dots.
  • quantum dots QR / QG / QB are, for example, Cd (cadmium), S (sulfur), Te (tellurium), Se (selenium), Zn (zinc), In (indium), N (nitrogen), P (phosphorus). ), As (arsenic), Sb (antimony), aluminum (Al), Ga (gallium), Pb (lead), Si (silicon), Ge (germanium), Mg (magnesium), at least selected from the group. It may contain at least one semiconductor material composed of one element.
  • the quantum dots QR / QG / QB may be a two-component core type, a three-component core type, a four-component core type, a core-shell type or a core multi-shell type. Further, the quantum dots QR, QG, and QB may contain nanoparticles doped with at least one of the above elements, and may have a structure with an inclined composition. However, it is preferable that the quantum dots QR, QG, and QB include Se. Specifically, it is preferable that the core material of the quantum dots QR / QG / QB is a material containing Se.
  • Examples of the material containing Se include CdSe (cadmium selenide), ZnSe (zinc selenide), and a material containing these as a main component.
  • CdSe cadmium selenide
  • ZnSe zinc selenide
  • a material containing these as a main component As a result, most of the core materials of quantum dots QR, QG, and QB are composed of binary compounds (two kinds of elements), and one of the two kinds of elements will be described later. Since Se is contained in the electrode, the material required for manufacturing the light emitting element 10 is reduced as compared with the case where quantum dots made of two types of materials other than Se are used, so that cost reduction is possible. The fact that the electrodes contain selenium will be described later.
  • the particle size of the core of the quantum dots QR / QG / QB is, for example, 1 to 30 nm, and the outermost particle size of the quantum dots QR / QG / QB including the shell is, for example, 1 to 50 nm.
  • the number of overlapping layers of the quantum dot QR, the quantum dot QG, or the quantum dot QB in each of the light emitting elements 10R, 10G, and 10B is, for example, 1 to 20 layers.
  • the layer thickness of the light emitting layer 4 is not particularly limited as long as it can provide a field for recombination of electrons and holes and exhibit a function of emitting light, and can be, for example, about 1 nm to 200 nm. ..
  • the layer thickness of the light emitting layer 4 in each of the light emitting elements 10R, 10G, and 10B is preferably about several times the outermost particle size of the quantum dots in each light emitting layer 4.
  • the method for forming the light emitting layer 4 is not particularly limited as long as it is a method capable of forming a fine pattern required for the light emitting element 10.
  • thin-film deposition method, printing method, inkjet method, spin coating method, casting method, dipping method, bar coating method, blade coating method, roll coating method, gravure coating method, flexographic printing method, spray coating method, photolithography method, or self examples thereof include an organizing method (alternate adsorption method, self-assembling monolayer method).
  • Examples of the vapor deposition method include a vacuum vapor deposition method, a sputtering method, an ion plating method, and the like.
  • Specific examples of the vacuum vapor deposition method include a resistance heating vapor deposition method, a flash vapor deposition method, an arc vapor deposition method, a laser vapor deposition method, a high frequency heat vapor deposition method, an electron beam vapor deposition method, and the like.
  • the solvent of the coating liquid is not particularly limited as long as each constituent material of the light emitting layer 4 can be dissolved or dispersed.
  • the solvent include toluene, xylene, cyclohexanone, cyclohexanol, tetralin, mesitylene, methylene chloride, tetrahydrofuran, dichloroethane, chloroform and the like.
  • the electron transport layer 5 is a layer that transports electrons from the cathode 6 to the light emitting layer 4.
  • the material of the electron transport layer 5 may be any electron transportable material capable of transporting electrons injected from the cathode 6 into the light emitting layer 4, and among them, a material having high electron mobility is preferable. ..
  • the electron transport layer 5 may have a function of inhibiting the transport of holes.
  • the electron transporting material is preferably a hole blocking material that prevents the penetration of holes that have moved from the anode. As a result, the recombination efficiency of holes and electrons in the light emitting layer 4 can be increased.
  • the electron transport layer 5 may not be provided.
  • the electron transport layer 5 may also have a function as an electron injection layer that promotes the injection of electrons from the cathode 6 into the light emitting layer 4.
  • Examples of the electron-transporting material include oxadiazoles, triazoles, phenanthrolines, silol derivatives, cyclopentadiene derivatives, aluminum complexes, metal oxides and the like.
  • examples of the oxadiazole derivative include (2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole) (PBD).
  • phenanthrolines include vasocuproin (BCP) and vasofenanthroline (BPhen).
  • Examples of the aluminum complex include a tris (8-quinolinol) aluminum complex (Alq3), a bis (2-methyl-8-quinolilato) (p-phenylphenolate) aluminum complex (BAlq), and the like.
  • Examples of the metal oxide include zinc oxide such as ZnO (zinc oxide), TiO 2 (titanium oxide), Ta 2 O 3 (tantal oxide), SrTIO 3 (strontium oxide titanium), Mg Zn O or Mg x Zn 1-x O. And so on. Only one kind of these hole-injectable materials may be used, or two or more kinds may be mixed and used as appropriate.
  • Mg x Zn 1-x O indicates a structure in which a part of ZnO Zn is replaced with Mg, and x indicates a ratio of ZnO Zn replaced with Mg.
  • the electron-transporting material is preferably Mg x Zn 1-x O, and the range of x is more preferably in the range of 0 to 0.7. Since the ionization potential and electron affinity of Mg x Zn 1-x O can be adjusted by adjusting the range of x, it is possible to easily prepare the electron transport layer 5 suitable for the emission wavelength of the light emitting layer 4. .. It should be noted that ZnO has a property that the higher the ratio of Zn replaced with Mg, the smaller the ionization potential and electron affinity.
  • the light emitting element 10 may have a layer other than the electron transport layer 5 between the cathode 6 and the light emitting layer 4.
  • an electron injection layer (not shown) may be formed between the cathode 6 and the electron transport layer 5.
  • the material used for the electron injection layer may be any electron injectable material capable of stabilizing the injection of electrons into the light emitting layer 4.
  • the electron injecting material e.g., Li (lithium), Cs alkali metal (cesium) or the like; alkali metal oxides such as Li 2 O (lithium oxide); Sr (strontium), alkali such as Ca (calcium) Earth metal; Oxide of alkaline earth metal such as MgO (magnesium oxide), SrO (strontium oxide); Fluoride of alkali metal such as LiF (lithium fluoride), CsF (cesium fluoride); MgF 2 (huh) Fluoride of alkaline earth metals such as magnesium oxide), SrF 2 (strontium fluoride), CaF 2 (calcium fluoride), BaF 2 (barium fluoride); organic complexes of alkali metals; others such as Al (aluminum) Metals; oxides of metals such as Al 2 O 3 (aluminum oxide
  • the thickness of the electron transport layer 5 and the electron injection layer is not particularly limited as long as the electron transport function and the electron injection function are sufficiently exhibited.
  • Examples of the method for forming the electron transport layer 5 and the electron injection layer include a vapor deposition method, a printing method, an inkjet method, a spin coating method, a casting method, a dipping method, a bar coating method, a blade coating method, a roll coating method, and a gravure coating method.
  • the method, flexographic printing method, spray coating method, photolithography method, self-assembling method (alternate adsorption method, self-assembling monomolecular film method) and the like can be mentioned, but the method is not limited thereto. Among them, it is preferable to use a vapor deposition method, a spin coating method, an inkjet method, or a photolithography method.
  • the anode 2 and the cathode 6 contain a conductive material and are electrically connected to the hole transport layer 3 and the electron transport layer 5, respectively.
  • the anode 2 has a function of injecting holes into the hole transport layer 3.
  • the cathode 6 has a function of injecting electrons into the electron transport layer 5.
  • the anode 2 and the cathode 6 have low resistance.
  • any of a metal material, an organic compound, and an inorganic compound may be used, but it is preferable that at least one of the anode 2 and the cathode 6 contains a metal material. Electrodes made of metal material have high conductivity.
  • a conductive material having a large work function for the anode 2 so that holes can be easily injected.
  • conductive materials include Au (gold), Ta (tantal), W (tungsten), Pt (platinum), Ni (nickel), Pd (palladium), Cr (chromium), and Cu (copper).
  • Mo mobdenum
  • oxides of these metals AlLi (aluminum-lithium alloy), AlCa (aluminum-calcium alloy), AlMg (aluminum-magnesium alloy), etc.
  • Mg alloys such as MgAg (magnesium / silver alloy), Ni alloys, Cr alloys, alkali metal alloys, alkaline earth metal alloys, etc.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • conductive polymers such as metal-doped polythiophene, polyaniline, polyacetylene, polyalkylthiophene derivatives, polysilane derivatives; ⁇ -Si (amorphous silicon), ⁇ -SiC ( Amorphous silicon carbide); etc. These conductive materials may be used alone or in combination of two or more as appropriate.
  • ITO Indium Tin Oxide
  • a conductive material having a small work function for the cathode 6 so that electrons can be easily injected.
  • magnesium alloys such as MgAg; Al alloys such as AlLi, AlCa and AlMg; alloys of alkali metals such as Li, Cs and Ba (barium); alloys of alkaline earth metals such as Sr and Ca; and the like. Be done.
  • Al or Al alloy is highly versatile as an electrode and is relatively inexpensive. Therefore, by using Al or an Al alloy as the conductive material used for the cathode 6, the manufacturing cost can be suppressed.
  • the electrode on the light extraction surface side needs to be transparent.
  • the electrode on the side opposite to the light extraction surface may or may not be transparent.
  • the light emitting element 10 may have a bottom emission structure in which the lower anode 2 is a translucent electrode and the upper cathode 6 is a light reflecting electrode.
  • the anode 2 on the light extraction surface side is formed of a light-transmitting material
  • the cathode 6 is formed of a light-reflecting material.
  • the light emitting element 10 may have a top emission structure in which the anode 2 which is the lower layer is a light reflecting electrode and the cathode 6 which is the upper layer is a translucent electrode.
  • the cathode 6 on the light extraction surface side is formed of a light-transmitting material
  • the anode 2 is formed of a light-reflecting material.
  • Se is contained in at least one of the electrodes of the anode 2 and the cathode 6.
  • Se has a photoconducting effect.
  • the photoconducting effect indicates an effect of improving the conductivity by irradiating white light.
  • the proportion of Se contained in the electrode containing Se is preferably 0.1 atomic% or more and 90 atomic% or less in terms of molars. More preferably, it is 1 atomic% or more and 50 atomic% or less. Se has the benefit of the photoconducting effect even if it is present in the electrode as much as possible. However, if the proportion of Se in the electrode is less than 0.1 atomic%, it becomes difficult to confirm the effect. On the contrary, if the ratio of Se in the electrode exceeds 90 atomic%, the performance as the original electrode material may not be maintained. When the proportion of Se in the electrode is 1 atomic% or more and 50 atomic% or less in terms of molars, it is possible to more effectively achieve both the original performance of the electrode material and the photoconducting effect of Se. it can.
  • Se is contained in the entire electrode including Se.
  • Se is preferably contained in at least one of the electrodes of the anode 2 and the cathode 6.
  • a current due to the photoconducting effect of Se flows through the entire electrode including Se, so that power consumption can be suppressed more effectively.
  • Whether or not Se is contained in the electrode and the ratio of Se in the electrode are measured by, for example, an energy dispersive X-ray (EDX) analyzer (TEM-EDX) attached to a transmission electron microscope (TEM). can do.
  • EDX energy dispersive X-ray
  • TEM-EDX transmission electron microscope
  • the fact that Se is contained in the entire electrode containing Se is confirmed, for example, by detecting the Se peak at any point of the electrode by EDX measurement.
  • FIG. 1 a case where the light emitting element 10 is a bottom emission type light emitting element having a bottom emission structure and the cathode 6 contains Se is shown as an example.
  • Se is uniformly diffused (distributed) over the entire cathode 6. Therefore, in the example shown in FIG. 1, a current due to the photoconducting effect of Se flows through the entire cathode 6, so that power consumption can be suppressed more effectively.
  • Se is contained in the cathode 6 as described above.
  • a transparent electrode such as ITO is adopted on the anode side, and the anode side is often the light extraction surface.
  • the electrode on the light extraction surface side must have translucency. Therefore, the range of selection of the material used for the cathode is generally wider than that of the anode. Therefore, when Se is contained in the cathode 6, as compared with the case where an electrode containing Se is used for the anode 2, the electrode containing Se has the characteristics of increasing the current value due to the photoconducting effect, as well as durability and the like. It is possible to select the characteristics as a comprehensive electrode, and it is possible to improve the characteristics of the light emitting element 10.
  • the cathode 6 contains a metal material as the conductive material.
  • Se is a chalcogen element and a non-metallic element. Therefore, it is preferable that the cathode 6 further contains a metal element in addition to Se.
  • the metal material is preferably, for example, Al or an Al alloy. Therefore, the metal element preferably contains Al.
  • the cathode 6 may have, for example, a structure in which Se is diffused in the Al electrode.
  • the film forming method of the electrode containing Se is not particularly limited as long as the electrode material containing Se can be formed.
  • a film forming method for the anode 2 and the cathode 6 a general electrode forming method can be used.
  • the film forming method of the anode 2 and the cathode 6 include a physical vapor deposition method (PVD method) such as a vacuum vapor deposition method, a sputtering method, an electron beam (EB) vapor deposition method, and an ion plating method, or a chemical vapor deposition method.
  • PVD method physical vapor deposition method
  • EB electron beam
  • ion plating method a chemical vapor deposition method
  • CVD method chemical vapor deposition method
  • the patterning method of the anode 2 and the cathode 6 is not particularly limited as long as it can be formed in a desired pattern with high accuracy.
  • Specific examples of the patterning method of the anode 2 and the cathode 6 include a photolithography method, an ink jot method, and the like.
  • the display device 100 includes three types of light emitting elements 10 that emit red, green, and blue light, respectively, has been described as an example.
  • the display device 100 is not limited to this, and may include four or more types of light emitting elements that emit light of different colors.
  • FIG. 3 is a cross-sectional view schematically showing an example of a schematic configuration of the light emitting element 10 according to the present embodiment.
  • the stacking order from the anode 2 to the cathode 6 can be reversed.
  • the case where the substrate 1 is under the anode 2 is illustrated as an example.
  • the substrate 1 may be below the cathode 6 (above the cathode 6 in FIG. 1).
  • the first electrode, the first carrier transport layer, the second carrier transport layer, and the second electrode are, in that order, a cathode 6, an electron transport layer 5, a hole transport layer 3, and an anode 2, and are substrates as supports. 1 is provided, and the case where the electrode 6, the electron transport layer 5, the light emitting layer 4, the hole transport layer 3, and the anode 2 are provided on the substrate 1 in this order from the substrate 1 side is shown as an example. There is.
  • a transparent electrode such as ITO is generally used as the translucent electrode on the anode side of the display device.
  • the anode side serves as the light extraction surface.
  • the stacking order from the anode 2 to the cathode 6 in the display device 100 is FIG. It is the opposite of the example shown in.
  • the cathode 6, the electron transport layer 5, the light emitting layer 4, and the hole transport layer 3 excluding the anode 2 may be formed in an island shape for each pixel. Further, the electron transport layer 5, the hole transport layer 3, and the anode 2 excluding the cathode 6 and the light emitting layer 4 may be formed as a solid common layer. In this case, it is not necessary to provide the bank BK. Further, the hole transport layer 3 and the electron transport layer 5 may be formed of a material common to the light emitting elements 10R, 10G, and 10B regardless of whether or not they are island-shaped as described above, or emit light. The elements 10R, 10G, and 10B may be made of different materials.
  • FIG. 3 as an example, a case where the light emitting element 10 is a top emission type light emitting element having a top emission structure and the cathode 6 contains Se is shown as an example.
  • Se is uniformly diffused (distributed) over the entire cathode 6. Therefore, in the example shown in FIG. 3, a current due to the photoconducting effect of Se flows through the entire cathode 6, so that power consumption can be suppressed more effectively.
  • a transparent electrode such as ITO is adopted on the anode side, and the anode side is often the light extraction surface. Also in the example shown in FIG. 3, the anode 2 side is the light extraction surface. Therefore, even in the example shown in FIG. 3, since Se is contained in the cathode 6, the current value increases due to the photoconducting effect as the electrode containing Se as compared with the case where the electrode containing Se is used for the anode 2. In addition to the characteristics, it is possible to select the characteristics as a comprehensive electrode such as durability, and it is possible to improve the characteristics of the light emitting element 10.
  • FIG. 4 is a cross-sectional view schematically showing an example of a schematic configuration of the light emitting element 10 according to the present embodiment.
  • the cathode 6 contains Se is illustrated as an example, but as described in the first embodiment, Se is contained in at least one electrode of the anode 2 and the cathode 6. It suffices if it is. Therefore, Se may be contained only in either the anode 2 or the cathode 6, or may be contained in both the anode 2 and the cathode 6.
  • FIG. 4 as an example, a case where the light emitting element 10 is a bottom top emission type light emitting element and the anode 2 and the cathode 6 each contain Se is shown as an example.
  • Se is uniformly diffused (distributed) over the entire anode 2 and cathode 6. Therefore, in the example shown in FIG. 4, since the current due to the photoconducting effect of Se flows through the anode 2 and the cathode 6, the power consumption can be suppressed more effectively.
  • Se is contained in the electrode on the light extraction surface side and the electrode on the side opposite to the light extraction surface side, respectively, so that the effects described in the first and second embodiments can be obtained. Play at the same time.
  • the anode 2 side is the light extraction surface and the range of selection of the material of the cathode 6 is widened, the current value increases due to the photoconductive effect as the electrode containing Se in the cathode 6.
  • Se may be contained only in the anode 2, and the light emitting element 10 may be a top emission type.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

発光素子(10)は、陽極(2)と、量子ドットを含む発光層(4)と、陰極(6)と、をこの順に備え、上記陽極及び上記陰極のうち少なくとも一方の電極がセレンを含む。

Description

電界発光素子及び表示装置
 本開示は、電界発光素子及び表示装置に関する。
 例えば特許文献1に示すように、量子ドット(QD)を含む発光層を備えた電界発光素子を用いた表示装置は、携帯型端末等の表示装置への応用が期待されている。
日本国公開特許公報「特開2017-168420号」
 本願発明者らは、量子ドットを含む発光層を備えた電界発光素子の携帯型端末等の表示装置への応用について検討を重ねた結果、このような表示装置を太陽光の下等の明るい場所で利用する場合、屋内等の暗い場所で利用する場合と比べて、表示装置の輝度を上げる必要があり、消費電力が上がってしまうという新たな課題を見出した。
 この理由としては、以下の通りである。このような表示装置を太陽光の下等の明るい場所で利用する場合、屋内等の暗い場所で利用する場合と比べて、外光の影響で画面が見づらくなる。そのため、このような場合、表示装置の輝度を上げる必要があるが、そのためには、外部電源から供給する電流値を上げる必要がある。そのため、このような表示装置を太陽光の下等の明るい場所で利用する場合、屋内等の暗い場所で利用する場合と比べて、消費電力が上がってしまう。
 そこで、本開示の一態様は、太陽光の下等の明るい場所で、消費電力を上げることを抑制した上で輝度を向上させることができる、電界発光素子及び表示装置を提供することを目的とする。
 上記の課題を解決するために、本開示の一態様に係る電界発光素子は、第1電極と、量子ドットを含む発光層と、第2電極と、をこの順に備え、前記第1電極及び前記第2電極のうち少なくとも一方の電極がセレンを含む。
 上記の課題を解決するために、本開示の一態様に係る表示装置は、本開示の一態様に係る上記電界発光素子を備えている。
 本開示の一態様によれば、前記第1電極及び前記第2電極のうち少なくとも一方の電極に、光導電効果を有するセレンを含む電極を用いることで、太陽光の下等の明るい場所で、外部電源から供給する電流値を上げることなく、光導電効果により、上記電極を流れる電流の値を増加させることができる。このため、本開示の一態様によれば、太陽光の下等の明るい場所で、消費電力を上げることを抑制した上で輝度を向上させることができる、電界発光素子及び表示装置を提供することができる。
実施形態1に係る発光素子の概略構成の一例を模式的に示す断面図である。 実施形態1に係る表示装置の概略構成の一例を模式的に示す断面図である。 実施形態2に係る発光素子の概略構成の一例を模式的に示す断面図である。 実施形態3に係る発光素子の概略構成の一例を模式的に示す断面図である。
 〔実施形態1〕
 <発光素子の概略構成>
 図1は、本実施形態に係る発光素子10の概略構成の一例を模式的に示す断面図である。以下では、比較対象の層よりも先のプロセスで形成されている層を「下層」とし、比較対象の層よりも後のプロセスで形成されている層を「上層」とする。また、発光層4から基板1に向かう方向を「下方向」とし、基板1から発光層4に向かう方向を「上方向」とする。
 図1に示すように、発光素子10は、陽極2と陰極6との間に発光層4が設けられた電界発光素子である。陽極2および陰極6は、図示しない電源と接続されることで、それらの間に電圧が印加されるようになっている。一例として、発光素子10は、陽極2と、正孔輸送層3と、発光層4と、電子輸送層5と、陰極6と、をこの順に備える。なお、発光素子10は、支持体として基板1を備えていてもよい。図1では、一例として、発光素子10が、基板1と、陽極2と、正孔輸送層3と、発光層4と、電子輸送層5と、陰極6と、を備え、基板1上に、陽極2と、正孔輸送層3と、発光層4と、電子輸送層5と、陰極6と、が基板1側からこの順に設けられている場合を例に挙げて示している。
 一般的に、電界発光素子を作製する際には、陽極側から積層する方が安定して電界発光素子を作製できる。したがって、図1のように基板1が陽極2の下にある場合、歩留まりを向上させることができる。なお、後述する実施形態2に示すように、陽極2から陰極6までの積層順は、逆にすることもできる。発光素子10は、例えば、表示装置における発光素子として好適に用いることができる。
 <表示装置の概略構成>
 図2は、本実施形態に係る表示装置100の概略構成の一例を模式的に示す断面図である。
 本実施形態に係る表示装置100は、支持体としての基板101上に、発光素子層11が設けられた構成を有している。発光素子層11は、例えば、基板101上に、第1電極、第1キャリア輸送層、発光層、第2キャリア輸送層、第2電極が、基板101側からこの順に積層された構成を有している。図2では、第1電極、第1キャリア輸送層、第2キャリア輸送層、第2電極が、順に、陽極2、正孔輸送層3、電子輸送層5、陰極6であり、基板101上に、陽極2、正孔輸送層3、発光層4、電子輸送層5、陰極6、が、基板101側からこの順に設けられている場合を例に挙げて示している。
 陽極2、正孔輸送層3、発光層4、電子輸送層5のそれぞれは、バンクBKによって画素(発光画素)毎に島状に分離されている。陰極6は、バンクBKによって島状に分離されず、各画素に共通して形成されている。表示装置100は、画素として、赤色の画素RP、緑色の画素GP、青色の画素BPを有している。発光素子10は、画素に対応して、画素毎に形成されている。
 赤色の画素RPには、発光素子10として、赤色発光ピークを有する発光層4を備えた、赤色発光の発光素子10Rが設けられている。緑色の画素GPには、発光素子10として、緑色発光ピークを有する発光層4を備えた、緑色発光の発光素子10Gが設けられている。青色の画素BPには、発光素子10として、青色発光ピークを有する発光層4を備えた、青色発光の発光素子10Bが設けられている。
 なお、本実施形態において、「赤色発光ピークを有する」とは、「600nm以上、780nm以下の波長帯域に発光ピーク波長を有する」ことを意味する。また、「緑色発光ピークを有する」とは、「500nm以上、600nm以下の波長帯域に発光ピーク波長を有する」ことを意味する。「青色発光ピークを有する」とは、「400nm以上、500nm以下の波長帯域に発光ピーク波長を有する」ことを意味する。なお、画素RP(言い換えれば、画素RPに用いられる赤色発光の発光素子10)は、620nm以上、650nm以下の波長帯域に発光ピーク波長を有することが好ましい。また、画素GP(言い換えれば、画素GPに用いられる緑色発光の発光素子10)は、520nm以上、540nm以下の波長帯域に発光ピーク波長を有することが好ましい。画素BP(言い換えれば、画素BPに用いられる青色発光の発光素子10)は、440nm以上、460nm以下の波長帯域に発光ピーク波長を有することが好ましい。これにより、発光素子10を備えた表示装置100において、広い色再現域を実現することが可能となる。
 なお、図2では、陰極6を除いた、陽極2と、正孔輸送層3と、発光層4と、電子輸送層5とを、画素毎に島状に形成した場合を一例に挙げて説明したが、これに限定されることはない。例えば、陽極2と発光層4とを除いた、正孔輸送層3と、電子輸送層5と、陰極6とは、ベタ状の共通層として形成してもよい。なお、この場合には、バンクBKを設けなくてもよい。また、後述するように、陽極2から陰極6までの積層順は、逆にすることもできる。また、正孔輸送層3及び電子輸送層5は、上述したように島状であるか否かに拘らず、発光素子10R・10G・10Bに共通の材料で形成されていてもよいし、発光素子10R・10G・10B毎に、異なる材料で形成されていてもよい。
 以下に、発光素子10及び表示装置100における上記各層について、より詳細に説明する。
 <基板1・101>
 図1に示すように、通常、発光素子10は、該発光素子10を支持する基板1上に形成される。基板1は、発光素子10を形成するためのベース基板であり、上述したように陽極2~陰極6を支持する支持体として機能する。発光素子10は、例えば、表示装置100等の発光装置(電子機器)の光源として用いられてよい。発光素子10が、これら表示装置100等の発光装置の一部である場合、基板1には、これら表示装置100等の発光装置の基板101が用いられる。このため、発光素子10は、基板1を含めて発光素子10と称される場合もあれば、基板1を含めずに発光素子10と称される場合もある。したがって、発光素子10は、基板1を備えていてもよく、発光素子10が備えている基板1は、当該発光素子10を備えた表示装置100の基板101であってもよい。したがって、基板1は、基板101と読み替えることができるし、基板101は、基板1と読み替えることができる。
 基板1は、例えば、ガラス基板、あるいは、樹脂基板等のフレキシブル基板であってもよい。また、発光素子10が例えば表示装置100等の発光装置の一部である場合、基板1(言い換えれば、基板101)には、例えば、複数の薄膜トランジスタが形成されたアレイ基板が用いられてもよい。この場合、基板1上に設けられた第1電極である陽極2は、アレイ基板の薄膜トランジスタと電気的に接続されていてもよい。
 また、基板1は、透光性材料によって構成されてもよいし、光反射性材料によって構成されてもよい。但し、発光素子10が、ボトムエミッション構造もしくは両面発光構造を有する場合、基板1には、透光性材料からなる透光性基板が用いられる。
 <正孔輸送層3>
 正孔輸送層3は、陽極2から発光層4に正孔を輸送する層である。正孔輸送層3の材料としては、発光層4内への正孔の輸送を安定化させることができる正孔輸送性材料であればよいが、そのなかでも、正孔移動度が高いものが好ましい。
 また、正孔輸送層3は、電子の輸送を阻害する機能を有していてもよい。この場合、正孔輸送性材料は、陰極から移動してきた電子の突き抜けを防止する電子ブロック性材料であることが好ましい。これにより、発光層4内での正孔及び電子の再結合効率を高めることができる。また、正孔輸送層3は、陽極2から発光層4への正孔の注入を促進する正孔注入層としての機能を併有していてもよい。
 上記正孔輸送性材料としては、例えば、アリールアミン誘導体、アントラセン誘導体、カルバゾール誘導体、チオフェン誘導体、フルオレン誘導体、ジスチリルベンゼン誘導体、スピロ化合物等を挙げることができる。そのなかでも、正孔輸送層3に用いられる材料は、ポリビニルカルバゾール(PVK)及びポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-(4-sec-ブチルフェニル))ジフェニルアミン)](TFB)のうち、少なくとも一方を含んでいることがより好ましい。PVK及びTFBは、発光層4で電子と正孔とが再結合することによる発光の効率を向上するため、発光素子10の発光特性を改善するという効果を奏する。これら正孔輸送性材料は、一種類のみを用いてもよく、適宜、二種類以上を混合して用いてもよい。
 なお、発光素子10は、陽極2と発光層4との間に、正孔輸送層3以外の層を有していてもよい。例えば、陽極2と正孔輸送層3との間には、図示しない正孔注入層が形成されていてもよい。
 正孔注入層に用いられる材料としては、発光層4内への正孔の注入を安定化させることができる正孔注入性材料であればよい。正孔注入性材料としては、例えば、アリールアミン誘導体、ポルフィリン誘導体、フタロシアニン誘導体、カルバゾール誘導体、さらにはポリアニリン誘導体、ポリチオフェン誘導体、ポリフェニレンビニレン誘導体等の導電性高分子等が挙げられる。なお、上記正孔注入性材料は、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホン酸(PEDOT-PSS)であることがより好ましい。PEDOT-PSSは、発光層4で電子と正孔とが再結合することによる発光の効率を向上するため、発光素子10の発光特性を改善するという効果を奏する。これら正孔注入性材料は、一種類のみを用いてもよく、適宜、二種類以上を混合して用いてもよい。
 正孔輸送層3及び正孔注入層の厚みとしては、正孔輸送機能及び正孔注入機能がそれぞれ十分に発揮される厚みであれば、特に限定されるものではない。
 また、正孔輸送層3及び正孔注入層の形成方法としては、例えば、蒸着法、印刷法、インクジェット法、スピンコート法、キャスティング法、ディッピング法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、フォトリソグラフィー法、もしくは自己組織化法(交互吸着法、自己組織化単分子膜法)等を挙げることができるが、これに限定されない。そのなかでも、蒸着法、スピンコート法、インクジェット法、もしくは、フォトリソグラフィー法を用いることが好ましい。
 <発光層4>
 発光層4は、発光材料として量子ドット(半導体ナノ粒子)を含み、可視光域に発光ピークを有する量子ドット発光層である。発光層4は、陽極2から輸送された正孔(h)と、陰極6から輸送された電子(e)と、の再結合が発生することにより、可視光を発する。
 量子ドットは、価電子帯準位(イオン化ポテンシャルに等しい)と、伝導帯準位(電子親和力に等しい)とを有し、価電子帯準位の正孔と伝導帯準位の電子との再結合によって発光する発光材料である。発光層4からの発光は、量子閉じ込め効果により狭いスペクトルを有するため、比較的深い色度の発光を得ることが可能である。
 発光素子10Rにおける発光層4は、量子ドットとして、赤色発光ピークを有する量子ドットQRを備えている。発光素子10Gにおける発光層4は、量子ドットとして、緑色発光ピークを有する量子ドットQGを備えている。発光素子10Bにおける発光層4は、量子ドットとして、青色発光ピークを有する量子ドットQBを備えている。
 これら量子ドットQR・QG・QBは、例えば、Cd(カドミウム)、S(硫黄)、Te(テルル)、Se(セレン)、Zn(亜鉛)、In(インジウム)、N(窒素)、P(リン)、As(ヒ素)、Sb(アンチモン)、アルミニウム(Al)、Ga(ガリウム)、Pb(鉛)、Si(ケイ素)、Ge(ゲルマニウム)、Mg(マグネシウム)、からなる群より選択される少なくとも一種の元素で構成されている少なくとも一種の半導体材料を含んでもよい。また、量子ドットQR・QG・QBは、二成分コア型、三成分コア型、四成分コア型、コアシェル型またはコアマルチシェル型であってもよい。また、量子ドットQR・QG・QBは、上記元素の少なくとも一種がドープされたナノ粒子を含んでいてもよく、組成傾斜した構造を備えていてもよい。但し、量子ドットQR・QG・QBは、Seを含むことが好ましい。具体的には、量子ドットQR・QG・QBのコア材料がSeを含む材料であることが好ましい。Seを含む材料としては、例えばCdSe(セレン化カドミウム)、ZnSe(セレン化亜鉛)、または、これらを主成分とする材料が挙げられる。これにより、量子ドットQR・QG・QBのコア材料は、その多くが二元型化合物(二種類の元素)で構成されるが、その二種類の元素のうちの一種類が、後述するように電極に含まれるSeであるため、Se以外の二種類の材料からなる量子ドットを用いる場合に比べて発光素子10の作製に必要な材料が減るため、コスト削減が可能となる。なお、電極にセレンが含まれることについては、後述する。
 量子ドットQR・QG・QBのコアの粒径は、例えば1~30nmであり、シェルを含めた量子ドットQR・QG・QBの最外粒径は、例えば、1~50nmである。各発光素子10R・10G・10Bにおける、量子ドットQR、量子ドットQG、または量子ドットQBの重なり層数は、例えば、1~20層である。発光層4の層厚は、電子と正孔との再結合の場を提供して発光する機能を発現することができる厚みであれば特に限定されず、例えば1nm~200nm程度とすることができる。なお、各発光素子10R・10G・10Bにおける発光層4の層厚は、各発光層4における量子ドットの最外粒径の数倍程度であることが好ましい。
 発光層4を形成する方法としては、発光素子10に要求される微細なパターンの形成が可能な方法であれば特に限定されるものではない。例えば蒸着法、印刷法、インクジェット法、スピンコート法、キャスティング法、ディッピング法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、フォトリソグラフィー法、もしくは自己組織化法(交互吸着法、自己組織化単分子膜法)等を挙げることができる。そのなかでも、蒸着法、スピンコート法、インクジェット法、もしくは、フォトリソグラフィー法を用いることが好ましい。
 蒸着法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等が挙げられる。真空蒸着法の具体例としては、抵抗加熱蒸着法、フラッシュ蒸着法、アーク蒸着法、レーザー蒸着法、高周波加熱蒸着法、電子ビーム蒸着法等が挙げられる。
 スピンコート法あるいはインクジェット法等の塗工液の塗布により発光層4を形成する場合、塗工液の溶媒としては、発光層4の各構成材料を溶解または分散させることができれば特に限定されない。上記溶媒としては、例えば、トルエン、キシレン、シクロヘキサノン、シクロヘキサノール、テトラリン、メシチレン、塩化メチレン、テトラヒドロフラン、ジクロロエタン、クロロホルム等を挙げることができる。
 <電子輸送層5>
 電子輸送層5は、陰極6から発光層4に電子を輸送する層である。電子輸送層5の材料としては、陰極6から注入された電子を発光層4内へ輸送することが可能な電子輸送性材料であればよいが、そのなかでも、電子移動度が高いものが好ましい。
 また、電子輸送層5は、正孔の輸送を阻害する機能を有していてもよい。この場合、電子輸送性材料は、陽極から移動してきた正孔の突き抜けを防止する正孔ブロック性材料であることが好ましい。これにより、発光層4内での正孔及び電子の再結合効率を高めることができる。なお、電子輸送層5は、設けられていなくてもよい。また、電子輸送層5は、陰極6から発光層4への電子の注入を促進する電子注入層としての機能を併有していてもよい。
 上記電子輸送性材料としては、例えば、オキサジアゾール類、トリアゾール類、フェナントロリン類、シロール誘導体、シクロペンタジエン誘導体、アルミニウム錯体、金属酸化物等を挙げることができる。具体的には、オキサジアゾール誘導体としては、(2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール)(PBD)等が挙げられる。フェナントロリン類としては、バソキュプロイン(BCP)、バソフェナントロリン(BPhen)等が挙げられる。アルミニウム錯体としては、トリス(8-キノリノール)アルミニウム錯体(Alq3)、ビス(2-メチル-8-キノリラト)(p-フェニルフェノラート)アルミニウム錯体(BAlq)等が挙げられる。金属酸化物としては、ZnO(酸化亜鉛)、TiO(酸化チタン)、Ta(酸化タンタル)、SrTiO(酸化ストロンチウムチタン)、MgZnOあるいはMgZn1-xO等の酸化マグネシウム亜鉛等が挙げられる。これら正孔注入性材料は、一種類のみを用いてもよく、適宜、二種類以上を混合して用いてもよい。
 なお、ここで、MgZn1-xOは、ZnOの一部のZnがMgに置き換わった構造を示し、xは、ZnOのZnがMgに置き換わった割合を示す。上記電子輸送性材料としては、MgZn1-xOであることが好ましく、xの範囲は、0~0.7の範囲内がより好ましい。MgZn1-xOは、xの範囲を調整することでイオン化ポテンシャル及び電子親和力を調整できるため、発光層4の発光波長に適した電子輸送層5を容易に準備することが可能となる。なお、ZnOは、ZnがMgに置き換わる割合が高いほど、イオン化ポテンシャル及び電子親和力が小さくなる性質を有する。
 なお、発光素子10は、陰極6と発光層4との間に、電子輸送層5以外の層を有していてもよい。例えば、陰極6と電子輸送層5との間には、図示しない電子注入層が形成されていてもよい。
 電子注入層に用いられる材料としては、発光層4内への電子の注入を安定化させることができる電子注入性材料であればよい。電子注入性材料としては、例えば、Li(リチウム)、Cs(セシウム)等のアルカリ金属;LiO(酸化リチウム)等のアルカリ金属の酸化物;Sr(ストロンチウム)、Ca(カルシウム)等のアルカリ土類金属;MgO(酸化マグネシウム)、SrO(酸化ストロンチウム)等のアルカリ土類金属の酸化物;LiF(フッ化リチウム)、CsF(フッ化セシウム)等のアルカリ金属のフッ化物;MgF(フッ化マグネシウム)、SrF(フッ化ストロンチウム)、CaF(フッ化カルシウム)、BaF(フッ化バリウム)等のアルカリ土類金属のフッ化物;アルカリ金属の有機錯体;Al(アルミニウム)等のその他の金属;Al(酸化アルミニウム)等の金属の酸化物;ポリメチルメタクリレートポリスチレンスルホン酸ナトリウム;等が挙げられる。これら電子注入性材料は、一種類のみを用いてもよく、適宜、二種類以上を混合して用いてもよい。
 電子輸送層5及び電子注入層の厚みとしては、電子輸送機能及び電子注入機能がそれぞれ十分に発揮される厚みであれば、特に限定されるものではない。
 また、電子輸送層5及び電子注入層の形成方法としては、例えば蒸着法、印刷法、インクジェット法、スピンコート法、キャスティング法、ディッピング法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、フォトリソグラフィー法、もしくは自己組織化法(交互吸着法、自己組織化単分子膜法)等を挙げることができるが、これに限定されない。そのなかでも、蒸着法、スピンコート法、インクジェット法、もしくは、フォトリソグラフィー法を用いることが好ましい。
 <陽極2及び陰極6>
 陽極2及び陰極6は、導電性材料を含み、それぞれ、正孔輸送層3及び電子輸送層5と電気的に接続されている。陽極2は、正孔輸送層3に正孔を注入する機能を有する。陰極6は、電子輸送層5に電子を注入する機能を有する。
 陽極2及び陰極6は、抵抗が小さいことが好ましい。陽極2及び陰極6の材料としては、金属材料、有機化合物、無機化合物、の何れを用いてもよいが、陽極2及び陰極6のうち、少なくとも一方の材料は、金属材料を含むことが好ましい。金属材料からなる電極は、高い導電性を有する。
 陽極2には、正孔を注入し易いように、仕事関数の大きい導電性材料を用いることが好ましい。そのような導電性材料としては、例えば、Au(金)、Ta(タンタル)、W(タングステン)、Pt(白金)、Ni(ニッケル)、Pd(パラジウム)、Cr(クロム)、Cu(銅)、Mo(モリブデン)、アルカリ金属、アルカリ土類金属、等の金属;これら金属の酸化物;AlLi(アルミニウム・リチウム合金)、AlCa(アルミニウム・カルシウム合金)、AlMg(アルミニウム・マグネシウム合金)等のAl合金、MgAg(マグネシウム・銀合金)等のMg合金、Ni合金、Cr合金、アルカリ金属の合金、アルカリ土類金属の合金、等の合金;酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)、酸化インジウム等の無機酸化物;金属ドープされたポリチオフェン、ポリアニリン、ポリアセチレン、ポリアルキルチオフェン誘導体、ポリシラン誘導体等の導電性高分子;α-Si(アモルファスシリコン)、α-SiC(アモルファス炭化ケイ素);等が挙げられる。これらの導電性材料は、単独で用いてもよく、適宜、二種類以上を組み合わせて用いてもよい。これらの導電性材料のうち二種類以上を用いる場合には、各導電性材料からなる層を積層してもよい。これらの導電性材料のなかでも、ITOを用いることがより好ましい。ITOは、透明電極として多くの表示装置に採用されている実績があり、製造装置の転用が可能なため、製造コストを抑えることが可能となる。
 陰極6には、電子を注入し易いように、仕事関数の小さい導電性材料を用いることが好ましい。例えば、MgAg等のマグネシウム合金;AlLi、AlCa、AlMg等のAl合金;Li、Cs、Ba(バリウム)等のアルカリ金属類の合金;Sr、Ca等のアルカリ土類金属類の合金;等が挙げられる。これら導電性材料のなかでも、AlまたはAl合金を用いることがより好ましい。AlまたはAl合金は、電極として汎用性が高く、比較的安価である。このため、陰極6に用いられる導電性材料として、AlまたはAl合金を用いることで、製造コストを抑えることが可能となる。
 なお、陽極2及び陰極6のうち、光の取出し面側となる電極は透明である必要がある。一方、光の取出し面と反対側の電極は、透明であってもなくてもよい。一例として、発光素子10は、下層である陽極2が透光性電極であり、上層である陰極6が光反射電極である、ボトムエミッション構造を有していてもよい。この場合、光の取出し面側となる陽極2を透光性材料で形成し、陰極6を光反射性材料で形成する。また、発光素子10は、下層である陽極2が光反射電極であり、上層である陰極6が透光性電極である、トップエミッション構造を有していてもよい。この場合、光の取出し面側となる陰極6を透光性材料で形成し、陽極2を光反射性材料で形成する。
 陽極2及び陰極6のうち少なくとも一方の電極には、Seが含まれている。Seは、光導電効果を有する。このように、電極に、光導電効果を有するSeを含む材料を採用することにより、太陽光の下等の明るい場所で、外部電源から供給する電流値を上げることなく、光導電効果により、発光素子10の電極を流れる電流の値が増加する。このため、消費電力を上げることを抑制した上で、輝度を向上することが可能になる。なお、ここで、光導電効果とは、白色光の照射により導電率が向上する効果を示す。
 Seを含む電極中に含まれるSeの割合(言い換えれば、Seを含む電極を構成する材料におけるSeの割合)は、モル換算で、0.1原子%以上、90原子%以下であることが好ましく、1原子%以上、50原子%以下であることがより好ましい。Seは電極中に少しでも存在するだけで光導電効果の恩恵がある。しかしながら、電極中のSeの割合が0.1原子%未満では、その効果を確認することが困難になる。逆に、電極中のSeの割合が90原子%を超えると、本来の電極材料としての性能を維持できなくなるおそれがある。電極中のSeの割合が、モル換算で、1原子%以上、50原子%以下であれば、電極材料の本来の性能と、Seによる光導電効果との両立を、より効果的に行うことができる。
 また、Seは、Seを含む電極全体に含まれていることが好ましい。言い換えれば、Seは、陽極2及び陰極6のうち少なくとも一方の電極全体に含まれていることが好ましい。これにより、Seを含む電極全体に、Seの光導電効果による電流が流れるため、より効果的に消費電力抑制が可能となる。
 電極中にSeが含まれるか否か、並びに、電極中のSeの割合は、例えば、透過型電子顕微鏡(TEM)に付属したエネルギー分散型X線(EDX)分析装置(TEM-EDX)によって測定することができる。Seが、Seを含む電極全体に含まれていることは、例えば、電極の何れの点でEDX測定してもSeピークが検出されることで確認される。
 図1では、一例として、発光素子10が、ボトムエミッション構造を有するボトムエミッション型の発光素子であり、陰極6がSeを含んでいる場合を例に挙げて図示している。図1に示すように、Seは、陰極6全体に均一に拡散(分布)している。このため、図1に示す例では、陰極6全体に、Seの光導電効果による電流が流れるため、より効果的に消費電力抑制が可能となる。
 また、図1に示すように、Seが、光の取出し面側と反対側の電極に含まれている場合、発光層4で発光した可視光を取り出す際に、Seにより、その光の一部が吸収されて取出し効率が落ちることが無いため、発光層4から発光した可視光の取出し効率を悪化させない、という利点がある。
 また、Seは、上述したように陰極6に含まれていることが好ましい。一般的に、表示装置では、陽極側に、ITO等の透明電極が採用され、陽極側が光の取出し面となることが多い。光の取出し面側となる電極は透光性を有している必要がある。このため、陽極に比べて陰極に用いられる材料の選択の幅が一般的に広い。したがって、陰極6にSeが含まれている場合、陽極2にSeを含む電極を用いる場合と比較して、Seを含む電極として、光導電効果による電流値増加の特性以外に、耐久性等の総合的な電極としての特性を選択することが可能となり、発光素子10の特性を向上させることができる。
 なお、前述したように、陽極2及び陰極6のうち、少なくとも一方の材料は、導電性材料として金属材料を含むことが好ましい。Seは、カルコゲン元素であり、非金属元素である。したがって、陰極6は、Seに加え、さらに金属元素を含んでいることが好ましい。また、前述したように、上記金属材料は、例えば、AlまたはAl合金であることが好ましい。したがって、上記金属元素は、Alを含むことが好ましい。陰極6は、例えば、Al電極にSeが拡散している構造を有していてもよい。
 Seを含む電極の成膜方法は、Seを含む電極材料を形成可能であれば、特に限定されるものではない。陽極2及び陰極6の成膜方法としては、一般的な電極の形成方法を用いることができる。陽極2及び陰極6の成膜方法としては、例えば、真空蒸着法、スパッタリング法、電子線(EB)蒸着法、イオンプレーティング法等の物理気相蒸着法(PVD法)、あるいは、化学気相蒸着法(CVD法)等を挙げることができる。
 また、陽極2及び陰極6のパターニング方法としては、所望のパターンに精度よく形成することができる方法であれば、特に限定されるものではない。陽極2及び陰極6のパターニング方法としては、具体的には、フォトリソグラフィー法、インクジョット法、等を挙げることができる。
 <変形例>
 なお、本実施形態では、表示装置100が、赤色、緑色、及び青色の光をそれぞれ発光する3種類の発光素子10を備えている場合を例に挙げて説明した。しかしながら、表示装置100は、これに限定されることはなく、それぞれ異なる色の光を発光する4種類以上の発光素子を備えていてもよい。
 〔実施形態2〕
 本実施形態では、実施形態1との相異点について説明する。なお、説明の便宜上、実施形態1で説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その詳細な説明を省略する。
 図3は、本実施形態に係る発光素子10の概略構成の一例を模式的に示す断面図である。実施形態1で説明したように、陽極2から陰極6までの積層順は、逆にすることもできる。図1では、基板1が、陽極2の下にある場合を例に挙げて図示した。しかしながら、図3に示すように、基板1は、陰極6の下(図1で言えば陰極6の上)にあってもよい。
 図3では、第1電極、第1キャリア輸送層、第2キャリア輸送層、第2電極が、順に、陰極6、電子輸送層5、正孔輸送層3、陽極2であり、支持体として基板1を備え、基板1上に、陰極6、電子輸送層5、発光層4、正孔輸送層3、陽極2、が、基板1側からこの順に設けられている場合を例に挙げて示している。
 図3に示す発光素子10のように基板が陰極の下にある発光素子を表示装置に用いる場合、一般的に、表示装置の陽極側に、透光性電極として、ITO等の透明電極が採用され、陽極側が光の取出し面となることが多い。このように発光素子10がトップエミッション構造を有する場合、基板1が透明である必要がなくなり、基板1の選択の自由度が広がるため、製造コストを抑えることができる。
 なお、図3に示すように基板1が陰極6の下にある発光素子10を、図2に示す表示装置100に用いる場合、表示装置100における陽極2から陰極6までの積層順が、図2に示す例とは逆になる。
 この場合、表示装置100では、陽極2を除いた、陰極6と、電子輸送層5と、発光層4と、正孔輸送層3とが、画素毎に島状に形成されていてもよい。また、陰極6と発光層4とを除いた、電子輸送層5と、正孔輸送層3と、陽極2とは、ベタ状の共通層として形成してもよい。なお、この場合には、バンクBKを設けなくてもよい。また、正孔輸送層3及び電子輸送層5は、上述したように島状であるか否かに拘らず、発光素子10R・10G・10Bに共通の材料で形成されていてもよいし、発光素子10R・10G・10B毎に、異なる材料で形成されていてもよい。
 図3では、一例として、発光素子10が、トップエミッション構造を有するトップエミッション型の発光素子であり、陰極6がSeを含んでいる場合を例に挙げて図示している。図3に示す例でも、Seは、陰極6全体に均一に拡散(分布)している。このため、図3に示す例では、陰極6全体に、Seの光導電効果による電流が流れるため、より効果的に消費電力抑制が可能となる。
 また、図3に示すように、Seが、光の取出し面側となる電極に含まれている場合、太陽光等の外光の光量がほぼロスなく照射されるため、外光のエネルギーの多くを光導電効果に利用できる。このため、消費電力の抑制の効果が高くなる。
 また、実施形態1で説明したように、一般的に、表示装置では、陽極側に、ITO等の透明電極が採用され、陽極側が光の取出し面となることが多い。図3に示す例でも、陽極2側が光の取出し面となっている。したがって、図3に示す例でも、Seが陰極6に含まれていることで、陽極2にSeを含む電極を用いる場合と比較して、Seを含む電極として、光導電効果による電流値増加の特性以外に、耐久性等の総合的な電極としての特性を選択することが可能となり、発光素子10の特性を向上させることができる。
 〔実施形態3〕
 本実施形態では、実施形態1、2との相異点について説明する。なお、説明の便宜上、実施形態1、2で説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その詳細な説明を省略する。
 図4は、本実施形態に係る発光素子10の概略構成の一例を模式的に示す断面図である。図1及び図3では、陰極6がSeを含んでいる場合を例に挙げて図示したが、実施形態1で説明したように、Seは、陽極2及び陰極6のうち少なくとも一方の電極に含まれていればよい。したがって、Seは、陽極2または陰極6の何れか一方にのみ含まれていてもよいし、陽極2及び陰極6の両方に含まれていてもよい。
 図4では、一例として、発光素子10が、ボトムトップエミッション型の発光素子であり、陽極2及び陰極6がそれぞれSeを含んでいる場合を例に挙げて図示している。図4に示す例では、Seは、陽極2及び陰極6全体に均一に拡散(分布)している。このため、図4に示す例では、陽極2及び陰極6全体に、Seの光導電効果による電流が流れるため、より効果的に消費電力抑制が可能となる。
 図4に示す例では、Seが、光の取出し面側となる電極及び光の取出し面側と反対側の電極にそれぞれ含まれていることで、実施形態1及び実施形態2で説明した効果を併せて奏する。また、図4に示す例でも、陽極2側が光の取出し面であり、陰極6の材料の選択の幅が広がることから、陰極6において、Seを含む電極として、光導電効果による電流値増加の特性以外に、耐久性等の総合的な電極としての特性を選択することが可能となり、発光素子10の特性を向上させることができる。
 但し、上述したように、Seは、陽極2にのみ含まれていてもよく、発光素子10は、トップエミッション型であってもよい。
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
   1、101  基板
   2  陽極
   4  発光層
   6 陰極
  10、10R、10G、10B 発光素子
 100  表示装置

Claims (11)

  1.  第1電極と、量子ドットを含む発光層と、第2電極と、をこの順に備え、
     前記第1電極及び前記第2電極のうち少なくとも一方の電極がセレンを含むことを特徴とする電界発光素子。
  2.  前記セレンを含む電極が、さらに金属元素を含むことを特徴とする請求項1に記載の電界発光素子。
  3.  前記金属元素がアルミニウムを含むことを特徴とする請求項2に記載の電界発光素子。
  4.  前記セレンを含む電極の全体にセレンが含まれていることを特徴とする請求項1~3の何れか1項に記載の電界発光素子。
  5.  基板をさらに備え、
     前記第1電極と、前記発光層と、前記第2電極とは、前記基板上に、前記基板側からこの順に積層されており、
     前記第1電極が透光性電極であり、前記第2電極が光反射電極である、ボトムエミッション構造を有し、
     前記第2電極がセレンを含むことを特徴とする請求項1~4の何れか1項に記載の電界発光素子。
  6.  基板をさらに備え、
     前記第1電極と、前記発光層と、前記第2電極とは、前記基板上に、前記基板側からこの順に積層されており、
     前記第1電極が光反射電極であり、前記第2電極が透光性電極である、トップエミッション構造を有し、
     前記第1電極がセレンを含むことを特徴とする請求項1~4の何れか1項に記載の電界発光素子。
  7.  前記セレンを含む電極が陰極であることを特徴とする請求項1~6の何れか1項に記載の電界発光素子。
  8.  前記セレンを含む電極中のセレンの割合が、0.1原子%以上、90原子%以下であることを特徴とする請求項1~7の何れか1項に記載の電界発光素子。
  9.  前記セレンを含む電極中のセレンの割合が、1原子%以上、50原子%以下であることを特徴とする請求項1~8の何れか1項に記載の電界発光素子。
  10.  前記発光層中の量子ドットがセレンを含むことを特徴とする請求項1~9の何れか1項に記載の電界発光素子。
  11.  請求項1~10の何れか1項に記載の電界発光素子を備えていることを特徴とする表示装置。
PCT/JP2019/025465 2019-06-26 2019-06-26 電界発光素子及び表示装置 WO2020261446A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025465 WO2020261446A1 (ja) 2019-06-26 2019-06-26 電界発光素子及び表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025465 WO2020261446A1 (ja) 2019-06-26 2019-06-26 電界発光素子及び表示装置

Publications (1)

Publication Number Publication Date
WO2020261446A1 true WO2020261446A1 (ja) 2020-12-30

Family

ID=74061095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025465 WO2020261446A1 (ja) 2019-06-26 2019-06-26 電界発光素子及び表示装置

Country Status (1)

Country Link
WO (1) WO2020261446A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223377A (ja) * 1997-02-04 1998-08-21 Internatl Business Mach Corp <Ibm> 発光ダイオード
JP2000048966A (ja) * 1998-07-27 2000-02-18 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2016076484A (ja) * 2014-10-02 2016-05-12 三星電子株式会社Samsung Electronics Co.,Ltd. ストレッチャブル/フォールダブル光電子素子及びその製造方法、並びに該光電子素子を含む装置
JP2017135179A (ja) * 2016-01-26 2017-08-03 株式会社ジャパンディスプレイ フレキシブル表示装置及びフレキシブル表示装置の製造方法
JP2018060787A (ja) * 2016-09-30 2018-04-12 エルジー ディスプレイ カンパニー リミテッド 電極及びこれを含む有機発光素子、液晶表示装置及び有機発光表示装置
JP2019052302A (ja) * 2017-09-12 2019-04-04 エルジー ディスプレイ カンパニー リミテッド 量子ドット発光ダイオードおよびこれを含む量子ドット発光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223377A (ja) * 1997-02-04 1998-08-21 Internatl Business Mach Corp <Ibm> 発光ダイオード
JP2000048966A (ja) * 1998-07-27 2000-02-18 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2016076484A (ja) * 2014-10-02 2016-05-12 三星電子株式会社Samsung Electronics Co.,Ltd. ストレッチャブル/フォールダブル光電子素子及びその製造方法、並びに該光電子素子を含む装置
JP2017135179A (ja) * 2016-01-26 2017-08-03 株式会社ジャパンディスプレイ フレキシブル表示装置及びフレキシブル表示装置の製造方法
JP2018060787A (ja) * 2016-09-30 2018-04-12 エルジー ディスプレイ カンパニー リミテッド 電極及びこれを含む有機発光素子、液晶表示装置及び有機発光表示装置
JP2019052302A (ja) * 2017-09-12 2019-04-04 エルジー ディスプレイ カンパニー リミテッド 量子ドット発光ダイオードおよびこれを含む量子ドット発光装置

Similar Documents

Publication Publication Date Title
CN106935717B (zh) 包括量子点的发光设备
US7687987B2 (en) Organic electroluminescent having a transparent electroconductive layer formed on a light emitting layer
KR100332186B1 (ko) 유기전자발광소자를향상시키기위하여사용된유기/무기합금
JP4711424B2 (ja) 積層型oled用中間電極
US5834894A (en) Carrier injection type organic electro-luminescent device which emits light in response to an application of a voltage
US8497497B2 (en) Organic electroluminescent element, method for manufacturing the organic electroluminescent element, and light emitting display device
GB2426380A (en) Reduced reflectance display device with metal-organic mixed layer
WO2004003104A1 (ja) 有機電界発光素子、及びそれを用いた発光装置又は表示装置
US20080003455A1 (en) Organic El Device
JP2012204110A (ja) 表示素子および表示装置ならびに電子機器
WO2009142030A1 (ja) 有機エレクトロルミネセンス素子、表示装置及び照明装置
CN111903189B (zh) 发光元件以及发光元件的制造方法
JP2008300270A (ja) 発光素子
JP5791129B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス照明装置
WO2020261446A1 (ja) 電界発光素子及び表示装置
CN112369123A (zh) 光电子元件、使用该元件的平面显示器及光电子元件的制造方法
WO2021189288A1 (en) Display device and display equipment
CN114079012A (zh) 复合材料、电荷产生材料、发光二极管、显示器件及应用
KR100595928B1 (ko) 혼합 호스트 재료를 채용한 점선 도핑 구조의 발광층을갖는 유기발광소자
CN114631200A (zh) 发光元件
CN115298721B (zh) 发光元件以及显示装置
WO2022054223A1 (ja) 発光素子
WO2024004515A1 (ja) 有機発光素子
WO2022233145A1 (zh) 一种量子点电致发光器件
WO2023062839A1 (ja) 発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP