WO2020259239A1 - 一种带有标准光接口的小型化三端口光环形器件 - Google Patents

一种带有标准光接口的小型化三端口光环形器件 Download PDF

Info

Publication number
WO2020259239A1
WO2020259239A1 PCT/CN2020/094171 CN2020094171W WO2020259239A1 WO 2020259239 A1 WO2020259239 A1 WO 2020259239A1 CN 2020094171 W CN2020094171 W CN 2020094171W WO 2020259239 A1 WO2020259239 A1 WO 2020259239A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
splitting mechanism
polarization splitting
degree
miniaturized
Prior art date
Application number
PCT/CN2020/094171
Other languages
English (en)
French (fr)
Inventor
贾旭
于光龙
陈海峰
郑熙
任策
Original Assignee
福州高意光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州高意光学有限公司 filed Critical 福州高意光学有限公司
Publication of WO2020259239A1 publication Critical patent/WO2020259239A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2746Optical coupling means with polarisation selective and adjusting means comprising non-reciprocal devices, e.g. isolators, FRM, circulators, quasi-isolators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2773Polarisation splitting or combining

Definitions

  • the invention relates to the field of optical communication technology, in particular to a miniaturized three-port optical ring device with a standard optical interface.
  • Optical circulator is a non-reciprocal optical passive device with multi-port input and output. Its function is to enable optical signals to be transmitted sequentially along the specified ports. When the transmission sequence of optical signals is changed, its loss is very large. Therefore, signal isolation can be achieved.
  • a typical structure has N (N is greater than or equal to 3) ports. As shown in Figure 1 of the specification, when light is input from port 1, light is output from port 2. When light is input from port 2, light is output from port 3. And so on.
  • the nonreciprocal characteristic of the optical circulator is realized by the Faraday effect of magneto-optical materials.
  • the Faraday effect refers to the phenomenon that the polarization plane of the electromagnetic wave (light wave) in the dielectric material rotates under the action of a magnetic field parallel to the light propagation direction, and its rotation direction is independent of the light propagation direction, that is, polarization is independent.
  • the light wave becomes polarized light after passing through the first polarizing element.
  • the polarization direction is rotated 45°, parallel to the light passing direction of the second polarizing element, and allowed to pass; when the light is transmitted in the opposite direction, it passes through the Faraday After the optical rotator, the polarization direction of the light is perpendicular to the light passing direction of the first polarizer and cannot pass.
  • optical circulator Due to the nonreciprocal and sequential transmission characteristics of the optical circulator, it can be used to separate the forward and reverse transmission optical signals in the same optical fiber. It is widely used in optical fiber communications, optical fiber sensing and optical fiber testing systems. Simplify the system structure and improve performance.
  • the main related specific applications include: single-wave and single-fiber two-way communication, fiber Bragg grating (FBG) combined application, erbium-doped fiber amplifier (EDFA), wavelength division multiplexing (WDM), dispersion compensation, optical signal upload/download, also available Used as a coupler in optical time domain reflectometer (OTDR) and fiber optic gyroscope.
  • the structure of the optical circulator in the prior art is usually a structure of fiber input and fiber output, as shown in FIG. 2.
  • the principle of this structure is based on a series of discrete optical components including birefringent crystal beam splitter thick film, birefringent crystal wedge plate, Faraday rotator, wave plate, optical compensation film, single fiber collimator and dual fiber collimator
  • the devices are assembled together and finally encapsulated in a cylindrical metal casing.
  • the optical circulator of the current technology on the one hand, has a complex structure, high assembly cost, and high material cost, which leads to a high market price of the circulator; on the other hand, the size of this structure is long, and all three ports are optical fibers , It is not suitable for directly docking with standard optical fiber connectors. If you want to achieve docking, you must use fiber fusion splicing to splice the required optical interface. Splicing requires a certain length of optical fiber, which will inevitably make the device unable to be small ⁇ .
  • the purpose of the present invention is to provide a miniaturized, low-cost, plug-and-play miniaturized three-port optical ring device with a standard optical interface;
  • the function of the optical circulator is realized by a miniature integrated free space circulator, and the main performance indicators such as isolation, differential loss and return loss of the present invention fully meet the industry standards.
  • a miniaturized three-port optical ring device with a standard optical interface which includes:
  • the circulator core includes a first polarization splitting mechanism, a 45-degree Faraday rotating plate, a 22.5-degree half-wave plate, and a second polarization splitting mechanism arranged in sequence.
  • the end surface of the first polarization splitting mechanism away from the second polarization splitting mechanism forms a common
  • the end surface of the second polarization splitting mechanism away from the first polarization splitting mechanism forms a transmitting end
  • the end surface of the second polarization splitting mechanism adjacent to the 22.5 degree half-wave plate forms a receiving end;
  • the metal shell has a accommodating cavity and encapsulates the annular core.
  • the outer surface of the metal shell is provided with a common end interface and a transmitting terminal which are connected to the accommodating cavity and are respectively opposite to the common end of the annular core, the transmitting end and the receiving end. End interface and receiving end interface.
  • the said common end interface, the receiving end interface and the transmitting end interface are all provided with a coupling lens directly opposite to the common end, the transmitting end or the receiving end of the circulator core.
  • the public end interface, the receiving end interface and the transmitting end interface are LC standard interface, SC standard interface, FC standard interface or ST standard interface, which are usually assembled from metal parts, ceramic ferrules and ceramic sleeves.
  • the standard interface can realize the interconnection with the corresponding connector.
  • the common terminal interface, the receiving terminal interface and the transmitting terminal interface are glued or welded and fixed on the metal shell, wherein the welding at least includes laser welding or tin welding.
  • the metal shell is made of stainless steel material or alloy material.
  • first polarization splitting mechanism, the 45-degree Faraday rotating plate, the 22.5-degree half-wave plate, and the second polarization splitting mechanism are sequentially glued or optically glued into an integrated structure, and there is a light path between the optical components and components.
  • the glued surface or the deepened photoresist surface is coated with an antireflection film or no coating, but the interface refractive index matches that of the glue, or a photoresist dielectric film is plated.
  • the first polarization splitting mechanism includes a first 45° rhombic prism and a first 45° right-angle prism, and the inclined surface of the first 45° right-angle prism is opposite to the upper or lower end surface of the first 45° rhombic prism.
  • the right-angle surface of the first 45° right-angle prism is attached to the end surface of the 45-degree Faraday rotator that is away from the 22.5-degree half-wave plate, wherein the first 45° rhombic prism is plated away from the end surface of the first 45-degree right-angle prism
  • There is a high-reflection film or no film and the end surface attached to the inclined surface of the first 45° right-angle prism is plated with a polarization splitting film and fixed as a whole.
  • the second polarization beam splitting mechanism includes a second 45° rhombic prism and a second 45° right-angle prism.
  • the inclined surface of the second 45° right-angle prism is opposite to the upper or lower end surface of the second 45° rhombic prism.
  • the right-angle surface of the second 45° right-angle prism is attached to the end surface of the 22.5-degree half-wave plate away from the 45-degree Faraday rotator, and the end surface of the second 45-degree rhombic prism away from the second 45-degree right-angle prism is plated with high Reflective film or no film, the end surface attached to the inclined surface of the second 45° right-angle prism is coated with a polarization splitting film and fixed as a whole, wherein the other right-angle surface of the second 45° right-angle prism is set as the receiving end, The end surface of the two 45° rhombic prisms away from the 22.5-degree half-wave plate is set as the transmitting end.
  • the 45° Faraday rotator is a self-contained magnetic Faraday rotator or an external magnetic Faraday rotator.
  • a magnetic field generating device is provided on its outer peripheral side.
  • the half-wave plate has a single half-wave plate or a combined half-wave plate structure.
  • a miniaturized three-port optical ring device with a standard optical interface which is characterized in that it includes:
  • the circulator core includes a first polarization splitting mechanism, a 45-degree Faraday rotating plate, a 22.5-degree half-wave plate, and a second polarization splitting mechanism arranged in sequence.
  • the end surface of the first polarization splitting mechanism away from the second polarization splitting mechanism forms a common
  • the end surface of the second polarization splitting mechanism away from the first polarization splitting mechanism forms a transmitting end
  • the end surface of the second polarization splitting mechanism adjacent to the 22.5 degree half-wave plate forms a receiving end;
  • the 45-degree reflector is arranged on the receiving end side of the circulator core and deflects the optical signal emitted from the receiving end by 45 degrees to make it parallel to the optical signal input from the transmitting end;
  • the metal shell has a containing cavity and encapsulates the circulator core and the 45-degree reflector.
  • the outer surface of the metal shell is provided with a common end interface, a receiving end interface and a transmitting end interface connected to the containing cavity.
  • the end interface and the transmitting end interface are respectively opposite to the common end and the transmitting end of the circulator core, and the receiving end interface is opposite to the 45-degree reflector and is used to receive the optical signal emitted from the receiving end of the circulator core and deflected by the 45-degree reflector.
  • the transmitting end and the receiving end have a fiber collimator structure with pigtails.
  • the present invention has the following beneficial effects compared with the prior art: the present invention has the advantages of miniaturization, low cost, standard optical interface, plug and play; more importantly, The main performance indicators such as isolation, differential loss, sensitivity, etc. of the present invention fully meet industry standards, and especially can meet the performance indicator requirements of high-speed optical signal ( ⁇ 25Gps) transmission for optical circulators.
  • Figure 1 is a schematic diagram of an optical circulator, which includes a three-port circulator and a four-port circulator;
  • Figure 2 is a schematic diagram of the prior art optical circulator after packaging
  • FIG. 3 is a perspective schematic view of Embodiment 1 of the present invention.
  • Embodiment 4 is a schematic side view of the structure of Embodiment 1 of the present invention.
  • Fig. 5 is a schematic sectional view of the structure of the first embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of the circulator core of embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of the optical path of the circulator core in Embodiment 1 of the present invention, showing the optical path from the common end to the receiving end;
  • Fig. 8 is a schematic diagram of the optical path of the circulator core in embodiment 1 of the present invention, showing the optical path from the transmitting end to the common end;
  • Figure 9 is a three-dimensional schematic diagram of Embodiment 2 of the present invention.
  • Embodiment 2 of the present invention is a schematic side view of the structure of Embodiment 2 of the present invention.
  • FIG. 11 is a schematic view of the cut-away structure of Embodiment 2 of the present invention.
  • Figure 12 is a three-dimensional schematic diagram of Embodiment 3 of the present invention.
  • Embodiment 3 of the present invention is a schematic side view of the structure of Embodiment 3 of the present invention.
  • Fig. 14 is a schematic cross-sectional structure diagram of Embodiment 3 of the present invention.
  • a miniaturized three-port optical ring device with a standard optical interface includes:
  • the circulator core 2 includes a first polarization splitting mechanism 21, a 45-degree Faraday rotator 22, a 22.5-degree half-wave plate 23, and a second polarization splitting mechanism 24 arranged in sequence.
  • the first polarization splitting mechanism 21 is far from the second polarization
  • the end face of the light splitting mechanism 24 forms a common end
  • the end face of the second polarization light splitting mechanism 24 away from the first polarization light splitting mechanism 21 forms a transmitting end
  • the end face of the second polarization light splitting mechanism 24 adjacent to the 22.5 degree half-wave plate 23 forms a receiving end;
  • the metal shell 1 has a accommodating cavity and encapsulates the circulator core 2 therein.
  • the outer surface of the metal shell 1 is provided with a common terminal connected to the accommodating cavity and opposite to the common end, the transmitting end and the receiving end of the circulator core 2 respectively.
  • the end interface 3, the transmitting end interface 5 and the receiving end interface 4, the three interfaces are perpendicular to each other in the same plane.
  • the common end interface 3, the receiving end interface 4, and the transmitting end interface 5 are all provided with a coupling lens 6 directly opposite to the common end, the transmitting end or the receiving end of the circulator core 2.
  • the public end interface 3, the receiving end interface 4, and the transmitting end interface 5 are LC standard interfaces, SC standard interfaces, FC standard interfaces or ST standard interfaces, which are usually assembled from metal parts, ceramic ferrules and ceramic sleeves. As a result, these standard interfaces can be interconnected with corresponding connectors.
  • the common end interface 3, the receiving end interface 4, and the transmitting end interface 5 are glued or welded and fixed on the metal shell 1, wherein the welding includes at least laser welding or tin welding.
  • the metal shell 1 is made of stainless steel material or alloy material.
  • the first polarization splitting mechanism 21, the 45-degree Faraday rotator 22, the 22.5-degree half-wave plate 23, and the second polarization splitting mechanism 24 are sequentially glued or photo-glue integrated.
  • the glued surface or the deepened photoresist surface through which the light path passes between the optical components and elements are all coated with an antireflection film or no coating but the interface refractive index matches the refractive index of the glue or is coated with a photoglue medium film.
  • the first polarization beam splitting mechanism 21 includes a first 45° rhomboid prism 211 and a first 45° right-angle prism 212, the first 45° right-angle prism 212
  • the inclined surface is attached to the upper or lower end surface of the first 45° rhombic prism 211 (the structure of this embodiment is attached to the upper end surface), and the right angle surface of the first 45° right-angle prism 212 is far away from the 45-degree Faraday rotator 22
  • the end faces of the 22.5-degree half-wave plate 23 are attached to each other, wherein the end face of the first 45° rhombic prism 211 away from the first 45° right-angle prism 212 (the lower end face in this embodiment) is plated with a high-reflection film or no film.
  • the end surface attached to the inclined surface of the first 45° right-angle prism 212 is plated with a polarization splitting film and fixed as a whole, which can realize
  • the second polarization splitting mechanism 24 includes a second 45° rhomboid prism 241 and a second 45° right-angle prism 242.
  • the second 45° right-angle prism 242 The oblique surface is attached to the upper or lower end surface of the second 45° rhombic prism 241 (the structure of this embodiment is attached to the lower end surface), and the right angle surface of the second 45° right angle prism 242 is far away from the 22.5 degree half-wave plate 23
  • the end surface of the 45-degree Faraday rotator 22 is attached, and the end surface of the second 45-degree rhombic prism 241 away from the second 45-degree right-angle prism 242 is coated with a high-reflective film or no coating, which is the inclined surface of the second 45-degree right-angle prism 242
  • the bonded end surface is plated with a polarization splitting film and fixed as a whole, which can realize the functions of polarization splitting and light combining
  • the other right angle surface of the second 45° right angle prism 242 is set as the receiving end, and the second 45° rhombic prism The end surface of 241 far away from the 22.5 degree half-wave plate 23 is set as the transmitting end.
  • the 45° Faraday rotator 22 can be a self-contained magnetic Faraday rotator or an external magnetic Faraday rotator.
  • a magnetic field generating device is provided on the outer circumference.
  • the half-wave plate 23 has a single half-wave plate or a combined half-wave plate structure; the optical axis of the half-wave plate 23 and the polarization splitting component form an angle of 22.5°.
  • all glued surfaces or deepened photoresist surfaces through which the light path passes are coated with anti-reflection coating or no coating but the interface refractive index matches the refractive index of the glue or is coated with a photoresist dielectric film.
  • all three ports are plated with antireflection coating.
  • the circulator core 2 is fixed in the metal shell 1, and its three ports respectively correspond to the transmitting end, the receiving end and the common end on the three interfaces of the shell.
  • FIG. 7 is a schematic diagram of the optical path of the circulator core in Example 1 of the present invention, showing the optical path propagation from the common end to the receiving end; in the optical path, from left to right, the input optical signal enters from the common end and passes through the standard After the LC interface (that is, the common end interface 3) and the coupling lens 6, the input signal light becomes a collimated beam, which is separated into S light and P light after passing through the first polarization splitting mechanism 21 of the circulator core 2, where:
  • the light After passing through the polarization splitting film of the first polarization splitting mechanism 21, the light is reflected downward and turned 90°, and then enters the first 45° rhombic prism 211 through the first The 45° reflecting surface at the lower end of the 45° rhombic prism 211, where the reflection is total internal reflection (you can also choose to coat this surface with a high reflective film), and the reflected light enters the 45° Faraday rotator 22 to the right, along the light propagation Observed from the direction, after passing through the 45° Faraday rotator 22, the polarization state of the light rotates 45° counterclockwise, and then enters the 22.5° half-wave plate 23.
  • the optical axis of the 22.5° half-wave plate 23 is 22.5° counterclockwise with the S light
  • the polarization state of the light returns to the S light perpendicular to the surface of the paper, and then enters the second 45° rhombic prism 241, passing through the upper end of the second 45° rhombic prism 241 45° reflective surface, where the reflection is total internal reflection (you can also choose to coat this surface with high reflective film), turn 90° and transmit downward, and then enter the coupling lens 2 at the receiving end, and the collimated light is focused by the coupling lens 2 Then, it is efficiently coupled to the optical fiber ferrule of the standard optical interface of the receiving end (ie, receiving end interface 4).
  • the light After passing through the polarization splitting film of the first polarization splitting mechanism 21, the light is completely transmitted, and then enters the 45° Faraday rotator 22, along the direction of light propagation.
  • the polarization direction of the light is turned 45° counterclockwise, and then enters the 22.5° half-wave plate 23.
  • the optical axis of the 22.5° half-wave plate 23 is 22.5° counterclockwise with the S-polarized light.
  • the polarization direction It becomes P light again, and then it is incident on the upper inclined surface of the second 45° rhombic prism 241, passing through the 45° reflecting surface of the second 45° rhombic prism 241, where the reflection is total internal reflection (you can also choose here
  • the surface is plated with a high-reflection film), the reflected light enters the polarization splitting film of the second polarization splitting mechanism 24 downwards, the light is completely transmitted, and finally combined with the aforementioned S light, and then enters the coupling lens 6 of the receiving end interface 4
  • the collimated light is focused by the coupling lens 6, it is efficiently coupled to the optical fiber ferrule of the standard optical interface of the receiving end (that is, the receiving end interface 4).
  • FIG 8 is a schematic diagram of the optical path of the circulator core in Example 1 of the present invention, showing the optical path propagation from the transmitter end to the common end; in the optical path, from right to left, the input optical signal enters from the transmitter end and passes through the standard After the LC interface (i.e. the transmitter interface 5) and the coupling lens 6, the input signal light becomes a collimated beam, which is separated into S light and P light after passing through the second polarization splitting mechanism 24, where:
  • the light After passing through the second polarization splitting mechanism 24, the light is reflected upwards and turned 90°, and then enters the second 45° rhombic prism 241, and passes through the second 45° °The 45°reflecting surface of the upper end of the rhombic prism 241, where the reflection is total internal reflection (you can also choose to coat this surface with a high reflective film), and the reflected light enters the 22.5° half-wave plate 23 toward the left, along the direction of light propagation , The optical axis of the 22.5° half-wave plate 23 and the S light form a clockwise 22.5° angle.
  • the polarization direction of the light After passing through the 22.5° half-wave plate 23, the polarization direction of the light forms a clockwise 45° angle with the S light, and then enters 45°
  • the Faraday rotator 22 after passing through the 45° rotator 22, the polarization state of the light is rotated clockwise by 45° at this time, and then becomes P light whose polarization direction is parallel to the paper surface, and then enters the first polarization splitting mechanism 21
  • the polarized light splitting film is completely transparent, and then enters the coupling lens 6 of the common end interface 3. After the collimated light is focused by the coupling lens 6, it is efficiently coupled to the standard optical interface of the common end (that is, the common end In the optical fiber ferrule of interface 3).
  • the light After passing through the second polarization splitting mechanism 24, the light is completely transmitted, and then enters the 22.5° half-wave plate 23, along the direction of light propagation, 22.5°
  • the optical axis of the half-wave plate 23 forms an angle of 22.5° clockwise with the S light.
  • the polarization direction of the light After passing through the 22.5° half-wave plate 23, the polarization direction of the light forms an angle of 45° counterclockwise with the P light, and then enters the 45° Faraday rotator. 22.
  • the polarization state of the light rotates 45° clockwise, and then becomes S light whose polarization direction is perpendicular to the paper surface, and then enters the lower end 45 of the first 45° rhombic prism 211 °Reflecting surface, where the reflection is total internal reflection (you can also choose to coat this surface with a high-reflection film), the reflected light is incident on the polarization splitting film of the first polarization splitting mechanism 21, and the S light is by the first polarization splitting mechanism
  • the 45° surface of the polarization splitting film of 21 is all reflected and turned 90° to the left, and finally combined with the aforementioned S light, and then enters the coupling lens 6 of the common end interface 3, and the collimated light is focused by the coupling lens 6 Then, it is efficiently coupled to the optical fiber ferrule of the standard optical interface of the common end (ie, common end interface 3).
  • This embodiment is roughly the same as the first embodiment. The difference is that it also includes a 45-degree reflector 7, which is arranged on the receiving end side of the circulator core 2 and deflects the optical signal emitted by the receiving end by 45 degrees to make it and The optical signal input from the transmitting end is parallel;
  • the common end interface 3 and the transmitting end interface 5 of the metal shell 1 are respectively opposite to the common end and the transmitting end of the circulator core 2, and the receiving end interface 4 is opposite to the 45-degree reflector 7 and is used to receive the receiving end of the circulator core 2.
  • the light signal emitted and deflected by a 45-degree mirror.
  • Embodiment 2 Except for the above differences, the other structures and principles of Embodiment 2 are the same as those of Embodiment 1, and will not be repeated here.
  • This embodiment is roughly the same as Embodiment 2, and the difference is that the transmitting end and the receiving end are optical fiber collimators with pigtails.
  • the structure of the fiber collimator with pigtail is usually composed of fiber head, coupling lens and metal sleeve. Laser welding process or soldering process or glue bonding process can be used to firmly connect the transmitting end port 4 and the receiving end port. Fixed on the shell; the common end has the same structure as the second embodiment.
  • the end of the ceramic ferrule of the standard optical interface corresponding to the coupling lens is usually processed to have a wedge angle of 4° to 10°, which will greatly improve the return loss index of the entire device.
  • the transmitting end since the transmitting end passes through the polarization splitting film, no matter transmitted light or reflected light, it will not reach the receiving end, so it will not affect the receiving end.
  • the signal at the end can achieve high isolation and sensitivity.
  • the polarization splitting film of the first polarization splitting mechanism 21 and the polarization splitting film of the second polarization splitting mechanism 24 can be manufactured in the same batch in the same batch, they can be made into long size and very high angular accuracy.
  • the 45° Faraday rotator 22 and the 22.5° half-wave plate 23 can also be processed into strips with the best length. The strips can be aligned without complicated adjustment and alignment, and then used Gluing or deepening the photoresist or photoresist process assembly and integration, and finally cutting the strip into multiple finished products, which can greatly reduce the cost of processing and assembly.
  • the circulator core used in the present invention can be very small due to the integrated free space optical circulator, which helps to greatly reduce the material cost of the circulator.
  • the brief assembly steps of the present invention are:
  • the transmitter interface, the receiver interface, and the common interface or fiber collimator components are adjusted with the coupling lens to form a collimator structure according to the design requirements;
  • the present invention can also use the free space circulator mentioned in other aforementioned patents to realize the function of the circulator, but it can be realized by making corresponding changes in the position of the optical interface or the collimator. The specific details will not be repeated here. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种带有标准光接口的小型化三端口光环形器件,包括:环形器芯(2),包括依序设置的第一偏振分光机构(21)、45度法拉第旋转片(22)、22.5度半波片(23)和第二偏振分光机构(24),第一偏振分光机构(21)远离第二偏振分光机构(24)的端面形成公共端,第二偏振分光机构(24)远离第一偏振分光机构(21)的端面形成发射端,第二偏振分光机构(24)与22.5度半波片(23)相邻的一端面形成接收端;金属壳体(1),其将环形器芯(2)封装其中,金属壳体(1)的外表面设有连通至容置腔且分别和环形器芯(2)的公共端、发射端和接收端正对的公共端接口(3)、发射端接口(5)和接收端接口(4),该环形器具有小型化、低成本、带有标准光接口、可即插即用等优,其的隔离度、差损和回损等主要性能指标完全满足行业内标准,具有广阔的市场和商用前景。

Description

一种带有标准光接口的小型化三端口光环形器件 技术领域
本发明涉及光通讯技术领域,尤其是一种带有标准光接口的小型化三端口光环形器件。
背景技术
光环形器是一种多端口输入输出的非互易性光学无源器件,它的作用是使光信号只能沿规定的端口顺序传输,当光信号的传输顺序变更时,其损耗很大,因此可实现信号的隔离。典型结构有N(N大于等于3)个端口,如说明书附图1所示,当光由端口1输入时,光由端口2输出,当光由端口2输入时,光由端口3输出,以此类推。
光环形器的非互易特性是利用磁光材料的法拉第效应来实现的。法拉第效应是指在平行于光传播方向的磁场作用下,介质材料中的电磁波(光波)的偏振面产生旋转的现象,且其旋转方向和光的传播方向无关,也就是偏振无关。光波经第一偏振元件后成为偏振光,该偏振光通过45°法拉第旋光片后,偏振方向旋转45°,与第二偏振元件通光方向平行,允许通过;当光反方向传输时,经法拉第旋光片后,光的偏振方向与第一偏振片通光方向垂直,不能通过。
由于光环形器的非互易特性和顺序传输特性,它可用于将同一根光纤中正向传输和反向传输的光信号分开,被广泛应用于光纤通信、光纤传感以及光纤测试***之中,使***结构简化,性能提高。主要相关具体应用包括:单波和单纤双向通信、光纤布拉格光栅(FBG)组合应用、掺铒光纤放大器(EDFA)、波分复用(WDM)、色散补偿、光信号上载/下载,还可用于光学时域反射仪(OTDR)和光纤陀螺中做耦合器。
2019年已经被业界公认为5G时代的元年,随着5G时代的加速到来,在接入和承载网中,前传占用光纤资源非常巨大,因此从节约光纤成本考虑,业界的共识是采用单纤双向(BIDI)技术,该技术已经被写入5G承载网***中。在该技术中,低成本、小型化的光 环形器件将会是核心的器件,未来的市场需求量巨大,具有广阔的商用前景。
在光环形器发展中,追求小型化、低成本、带有标准光接口和可即插即用的结构是近年来主要发展趋势。
现有技术的光环形器结构,通常为光纤输入和光纤输出的结构,如图2所示。这种结构的原理是基于将一系列分立的光学元件包括双折射晶体分光厚片、双折射晶体楔角片、法拉第旋转片、波片、光学补偿片、单光纤准直器和双光纤准直器等装配在一起,最后封装在圆柱形金属外壳里面。现行技术的光环形器,一方面结构复杂、组装成本高,物料成本也很高,这导致了环形器的市场价格很高;另外一方面,这种结构的尺寸长,三个端口都是光纤,不适合直接与标准的光纤连接头对接,若想要实现对接,必须要通过光纤熔接的方法将所需光接口熔接上,熔接需要光纤具有一定的长度,这必将导致器件无法做到小型化。
发明内容
针对现有技术的情况,本发明的目的在于提供一种小型化、低成本、带有标准光接口、可即插即用的带有标准光接口的小型化三端口光环形器件;本发明的光环形器功能通过微型集成化自由空间环形器来实现,本发明的隔离度、差损和回损等主要性能指标完全满足行业内标准。
为了实现上述的技术目的,本发明采用的技术方案为:
一种带有标准光接口的小型化三端口光环形器件,其包括:
环形器芯,包括依序设置的第一偏振分光机构、45度法拉第旋转片、22.5度半波片和第二偏振分光机构,所述第一偏振分光机构远离第二偏振分光机构的端面形成公共端,第二偏振分光机构远离第一偏振分光机构的端面形成发射端,第二偏振分光机构与22.5度半波片相邻的一端面形成接收端;
金属壳体,具有容置腔且将环形器芯封装其中,金属壳体的外表面设有连通至容置腔且分别环形器芯的公共端、发射端和接收端正对的公共端接口、发射端接口和接收端接口。
进一步,所述的公共端接口、接收端接口和发射端接口内均设有与环形器芯的公共端、发射端或接收端正对的耦合透镜。
进一步,所述的公共端接口、接收端接口和发射端接口为LC标准接口、SC标准接口、FC标准接口或ST标准接口,通常由金属件、陶瓷插芯和陶瓷套管组装而成,这些标准接口可以实现与相应的连接器互联。
进一步,所述的公共端接口、接收端接口和发射端接口为胶粘或焊接固定在金属壳体上,其中,所述的焊接至少包括激光焊接或锡焊焊接。
进一步,所述的金属壳体为不锈钢材料或合金材料制成。
进一步,所述的第一偏振分光机构、45度法拉第旋转片、22.5度半波片和第二偏振分光机构为依序胶合或光胶成一体结构,各光学组件及元件之间有光路经过的胶合面或深化光胶面上均镀设有增透膜或不镀膜但界面折射率与胶水折射率相匹配或镀设有光胶介质膜。
进一步,所述的第一偏振分光机构包括第一45°斜方棱镜和第一45°直角棱镜,所述第一45°直角棱镜的斜面与第一45°斜方棱镜的上端面或下端面相贴合,第一45°直角棱镜的一直角面与45度法拉第旋转片远离22.5度半波片的端面相贴,其中,第一45°斜方棱镜远离第一45°直角棱镜的端面镀设有高反膜或不镀膜,其与第一45°直角棱镜的斜面贴合的端面镀设有偏振分光膜且固定为一体。
进一步,所述的第二偏振分光机构包括第二45°斜方棱镜和第二45°直角棱镜,所述第二45°直角棱镜的斜面与第二45°斜方棱镜的上端面或下端面相贴合,第二45°直角棱镜的一直角面与22.5度半波片远离45度法拉第旋转片的端面相贴,第二45°斜方棱镜远离第二45°直角棱镜的端面镀设有高反膜或不镀膜,其与第二45°直角棱镜的斜面贴合的端面镀设有偏振分光膜且固定为一体,其中,第二45°直角棱镜的另一直角面设为接收端,第二45°斜方棱镜远离22.5度半波片的端面设为发射端。
进一步,所述45°法拉第旋转片为自带磁法拉第旋转片或外加磁场法拉第旋转片,当 为外加磁场法拉第体旋转片时,其外周侧上设有磁场发生装置。
进一步,所述半波片为单半波片或组合半波片结构。
作为与本发明方案思路下的另一种实施结构。
一种带有标准光接口的小型化三端口光环形器件,其特征在于:其包括:
环形器芯,包括依序设置的第一偏振分光机构、45度法拉第旋转片、22.5度半波片和第二偏振分光机构,所述第一偏振分光机构远离第二偏振分光机构的端面形成公共端,第二偏振分光机构远离第一偏振分光机构的端面形成发射端,第二偏振分光机构与22.5度半波片相邻的一端面形成接收端;
45度反射镜,设于环形器芯的接收端一侧且将接收端射出的光信号偏转45度,使其与发射端输入的光信号平行;
金属壳体,具有容置腔且将环形器芯和45度反射镜封装其中,金属壳体的外表面设有连通至容置腔的公共端接口、接收端接口和发射端接口,其中,公共端接口和发射端接口分别环形器芯的公共端、发射端正对,接收端接口与45度反射镜相对且用于接收由环形器芯接收端射出且经45度反射镜偏转的光信号。
进一步,所述的发射端和接收端为带有尾纤的光纤准直器结构。
采用上述的技术方案,本发明与现有技术相比,其具有的有益效果为:本发明具有小型化、低成本、带有标准光接口、可即插即用等优点;更重要的是,本发明的隔离度、差损、灵敏度等主要性能指标完全满足行业内标准,尤其能满足高速光信号(≥25Gps)传输对光环形器的性能指标要求。
附图说明
下面结合附图和具体实施方式对本发明方案做进一步的阐述:
图1是光环形器原理图,其中包括三端口环形器和四端口环形器;
图2是现有技术光环形器封装后的示意图;
图3是本发明实施例1的立体示意图;
图4是本发明实施例1侧面结构示意图;
图5是本发明实施例1剖切结构示意图;
图6是本发明实施例1的环形器芯的简要结构示意图;
图7是本发明实施例1环形器芯的光路示意图,示出了公共端到接收端的光路;
图8是本发明实施例1环形器芯的光路示意图,示出了发射端到公共端的光路;
图9是本发明实施例2的立体示意图;
图10是本发明实施例2的侧面结构示意图;
图11是本发明实施例2的剖切结构示意图;
图12是本发明实施例3的立体示意图;
图13是本发明实施例3的侧面结构示意图;
图14是本发明实施例3的剖切结构示意图。
具体实施方式
实施例1
如图3至8之一所示,本发明一种带有标准光接口的小型化三端口光环形器件,其包括:
环形器芯2,包括依序设置的第一偏振分光机构21、45度法拉第旋转片22、22.5度半波片23和第二偏振分光机构24,所述第一偏振分光机构21远离第二偏振分光机构24的端面形成公共端,第二偏振分光机构24远离第一偏振分光机构21的端面形成发射端,第二偏振分光机构24与22.5度半波片相邻23的一端面形成接收端;
金属壳体1,具有容置腔且将环形器芯2封装其中,金属壳体1的外表面设有连通至容置腔且分别环形器芯2的公共端、发射端和接收端正对的公共端接口3、发射端接口5和接收端接口4,三个接口在同一平面内两两相互垂直。
其中,所述的公共端接口3、接收端接口4和发射端接口5内均设有与环形器芯2的 公共端、发射端或接收端正对的耦合透镜6。
另外,所述的公共端接口3、接收端接口4和发射端接口5为LC标准接口、SC标准接口、FC标准接口或ST标准接口,通常由金属件、陶瓷插芯和陶瓷套管组装而成,这些标准接口可以实现与相应的连接器互联。
进一步,所述的公共端接口3、接收端接口4和发射端接口5为胶粘或焊接固定在金属壳体1上,其中,所述的焊接至少包括激光焊接或锡焊焊接。
进一步,所述的金属壳体1为不锈钢材料或合金材料制成。
作为环形器芯2的实施结构之一,所述的第一偏振分光机构21、45度法拉第旋转片22、22.5度半波片23和第二偏振分光机构24为依序胶合或光胶成一体结构,各光学组件及元件之间有光路经过的胶合面或深化光胶面上均镀设有增透膜或不镀膜但界面折射率与胶水折射率相匹配或镀设有光胶介质膜。
作为第一偏振分光机构21的实施结构之一,所述的第一偏振分光机构21包括第一45°斜方棱镜211和第一45°直角棱镜212,所述第一45°直角棱镜212的斜面与第一45°斜方棱镜211的上端面或下端面相贴合(本实施例结构为与其上端面贴合),第一45°直角棱镜212的一直角面与45度法拉第旋转片22远离22.5度半波片23的端面相贴,其中,第一45°斜方棱镜211远离第一45°直角棱镜212的端面(本实施例为下端面)镀设有高反膜或不镀膜,其与第一45°直角棱镜212的斜面贴合的端面镀设有偏振分光膜且固定为一体,可实现偏振分光、合光功能。
作为第二偏振分光机构24的实施结构之一,所述的第二偏振分光机构24包括第二45°斜方棱镜241和第二45°直角棱镜242,所述第二45°直角棱镜242的斜面与第二45°斜方棱镜241的上端面或下端面相贴合(本实施例结构为与其下端面贴合),第二45°直角棱镜242的一直角面与22.5度半波片23远离45度法拉第旋转片22的端面相贴,第二45°斜方棱镜241远离第二45°直角棱镜242的端面镀设有高反膜或不镀膜,其与第二45°直角 棱镜242的斜面贴合的端面镀设有偏振分光膜且固定为一体,可实现偏振分光、合光功能,其中,第二45°直角棱镜242的另一直角面设为接收端,第二45°斜方棱镜241远离22.5度半波片23的端面设为发射端。
进一步,所述45°法拉第旋转片22可以为自带磁法拉第旋转片或外加磁场法拉第旋转片,当为外加磁场法拉第体旋转片时,其外周侧上设有磁场发生装置。
进一步,所述半波片23为单半波片或组合半波片结构;半波片23的光轴与偏振分光组件成22.5°夹角。
为了降低损耗,所有有光路经过的胶合面或深化光胶面,均镀有对胶增透膜或不镀膜但界面折射率与胶水折射率相匹配或镀有光胶介质膜。其中,为了降低损耗,所有三个端口都镀有增透膜。该环形器芯2固定在金属壳体1里面,其三个端口分别与壳体三个接口上的发射端、接收端和公共端一一对应。
着重参见图7,其为本发明实施例1环形器芯的光路示意图,示出了公共端到接收端的光路传播;在该光路中,从左向右,输入光信号由公共端进入,经过标准的LC接口(即公共端接口3)和耦合透镜6后,输入信号光变成准直光束,经由环行器芯2的第一偏振分光机构21后分离为S光和P光,其中:
对于偏振态方向垂直于纸面的S光,其经由第一偏振分光机构21的偏振分光膜后,光被反射朝下转向90°,然后射入第一45°斜方棱镜211,经由第一45°斜方棱镜211的下端45°反射面,此处反射为内全反射(亦可以选择在此面镀高反膜),反射光朝右进入45°法拉第旋转片22,沿着光传播的方向观察,经过45°法拉第旋转片22后,光的偏振态沿逆时针旋转45°,然后进入22.5°半波片23中,22.5°半波片23的光轴与S光成逆时针22.5°夹角,经过22.5°半波片23后,光的偏振态又变回垂直于纸面的S光,然后射入第二45°斜方棱镜241,经由第二45°斜方棱镜241的上端45°反射面,此处反射为内全反射(亦可以选择在此面镀高反膜),转向90°朝下传输,然后进入到接收端的耦合透镜2中,准直光经过耦 合透镜2聚焦后,被高效率的耦合到接收端的标准光接口(即接收端接口4)的光纤插芯中。
对于偏振态方向平行于纸面的P光,其经由第一偏振分光机构21的偏振分光膜后,光被完全透过,然后入射进入45°法拉第旋转片22,沿着光传播的方向,光的偏振方向逆时针转45°,然后进入22.5°半波片23,22.5°半波片23的光轴与S偏振光逆时针成22.5°,经过22.5°半波片23后,光的偏振方向又变成P光,然后入射到第二45°斜方棱镜241的上端斜面上,经由第二45°斜方棱镜241的45°反射面,此处反射为内全反射(亦可以选择在此面镀高反膜),反射光朝下进入第二偏振分光机构24的偏振分光膜,光被完全透过,最终和前述的S光实现合束,然后进入到接收端接口4的耦合透镜6中,准直光经过耦合透镜6聚焦后,被高效率的耦合到接收端的标准光接口(即接收端接口4)的光纤插芯中。最终,实现带标准光接口的公共端和接收端与标准光纤连接头的高效互联。
着重参见图8,其为本发明实施例1环形器芯的光路示意图,示出了发射端到公共端的光路传播;在该光路中,从右至左,输入光信号由发射端进入,经过标准的LC接口(即发射端接口5)和耦合透镜6后,输入信号光变成准直光束,经由第二偏振分光机构24后分离为S光和P光,其中:
对于偏振态方向垂直于纸面的S光,其经由第二偏振分光机构24偏振分光膜后,光被反射朝上转向90°,然后射入第二45°斜方棱镜241,经由第二45°斜方棱镜241的上端45°反射面,此处反射为内全反射(亦可以选择在此面镀高反膜),反射光朝左进入22.5°半波片23,沿着光传播的方向,22.5°半波片23的光轴与S光成顺时针22.5°夹角,经过22.5°半波片23后,光的偏振态方向与S光成顺时针45°夹角,然后进入45°法拉第旋转片22,经过45°旋转片22后,光的偏振态此时沿顺时针再旋转45°,然后变成偏振态方向平行于纸面的P光,然后入射到第一偏振分光机构21的偏振分光膜上,并被完全透过,然后进入到公共端接口3的耦合透镜6中,准直光经过耦合透镜6聚焦后,被高效率的耦合到公共端的标准光接口(即公共端接口3)的光纤插芯中。
对于偏振态方向平行于纸面的P光,其经由第二偏振分光机构24偏振分光膜后,光被完全透过,然后入射进入22.5°半波片23,沿着光传播的方向,22.5°半波片23的光轴与S光成顺时针22.5°夹角,经过22.5°半波片23后,光的偏振态方向与P光成逆时针45°夹角,然后进入45°法拉第旋转片22,经过45°法拉第旋转片22后,光的偏振态沿顺时针旋转45°,然后变成偏振态方向垂直于纸面的S光,然后入射到第一45°斜方棱镜211的下端45°反射面,此处反射为内全反射(亦可以选择在此面镀高反膜),反射光朝上射入第一偏振分光机构21的偏振分光膜上,S光被第一偏振分光机构21的偏振分光膜的45°面全部反射并转向90°朝左传输,最终和前述的S光实现合束,然后进入到公共端接口3的耦合透镜6中,准直光经过耦合透镜6聚焦后,被高效率的耦合到公共端的标准光接口(即公共端接口3)的光纤插芯中。最终,实现带标准光接口的发射端和公共端与标准光纤连接头的高效互联。
实施例2
着重参见图9至11之一,作为与本发明方案思路下的另一种实施结构。本实施与实施例1大致相同,其不同之处在于:其还包括45度反射镜7,设于环形器芯2的接收端一侧且将接收端射出的光信号偏转45度,使其与发射端输入的光信号平行;
而金属壳体1的公共端接口3和发射端接口5分别环形器芯2的公共端、发射端正对,接收端接口4与45度反射镜7相对且用于接收由环形器芯2接收端射出且经45度反射镜偏转的光信号。
除了上述区别之外,实施例2其他的结构和原理与实施例1相同,在此不再赘述。
实施例3
着重参见图12至14之一,作为与本发明方案思路下的又一种实施结构。本实施与实施例2大致相同,其不同之处在于所述的发射端和接收端为带有尾纤的光纤准直器结构。而带尾纤的光纤准直器结构通常由光纤头、耦合透镜和金属套管组成,可采用激光焊接工艺或焊锡焊 接工艺或胶水粘结的工艺,将发射端接口4和接收端端口牢固的固定在壳体上;公共端与实施例2结构相同。
在以上实例中,标准光接口的陶瓷插芯与耦合透镜对应的一端,通常加工成带有4°到10°的楔角,这会大大提升整个器件的回损指标。
在以上实例中,参见图6至8之一,对于环行器芯而言,由于发射端经过偏振分光膜后,无论是透过光还是反射光,均不会到达接收端,因此不会影响接收端的信号,可以达到很高的隔离度和灵敏度。
在以上实例中,对于环行器而言,由于所有有光路经过的胶合面或深化光胶面,均镀有对胶增透膜或不镀膜但界面折射率与胶水折射率相匹配或镀有光胶介质膜,且所有三个端口都镀有增透膜,可以实现很低的***损耗。
本发明所使用的环行器芯中,由于第一偏振分光机构21的偏振分光膜、第二偏振分光机构24的偏振分光膜可以在加工时同批次做成尺寸较长且角度精度非常高的细长条,同样的,45°法拉第旋转片22和22.5°半波片23也可以加工成长度最优的长条,将各长条对准对齐,无需经过复杂的调试和对位,然后采用胶合或深化光胶或光胶工艺组装集成在一起,最后再将长条切割成多个成品,这可以大大降低加工和装配的费用。
本发明所使用的环行器芯,由于集成后的自由空间光环形器的尺寸可以做到非常小,这有助于大幅降低环形器的物料成本。
本发明的简要装配步骤为:
1)先将发射端接口、接收端接口和公共端接口或光纤准直组件,按照设计要求,与耦合透镜调节后做成准直器结构;
2)将公共端接口直接激光或焊锡焊接,或胶接在金属壳体的接口上,此时无需精密调节;
3)将环行器芯用胶水粘结固定在金属壳体里面所设计的位置上;
4)将发射端接口与标准光纤连接头连接,然后与光源连接;或者将发射端的光纤准直器尾纤与光源连接;同时,将公共端的光纤与功率计互联;
5)精密微调发射端与金属壳体对应接口之间的位置和角度,使从公共端输出的功率最高(损耗最小),然后将发射端与金属接口通过激光或焊锡焊接,或胶接,固定在金属壳体的接口上;
6)将接收端接口与标准光纤连接头连接,然后与功率计连接;或者将接收端的光纤准直器尾纤与功率计连接;同时,将公共端的光纤与光源互联;
7)精密微调接收端与金属壳体对应接口之间的位置和角度,使从接收端输出的功率最高(损耗最小),然后将接收端与金属接口通过激光或焊锡焊接,或胶接,固定在金属壳体的接口上;
8)将壳体的上盖封在壳体上。
此外,本发明也可以采用其他前述专利所提到的自由空间环形器来实现环形器的功能,只是在光接口或准直器的位置方面做相应变化就可实现,具体细节在此不再赘述。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求所限定的本发明的精神和范围内,在形式上和细节上对本发明所做出的各种变化,均为本发明的保护范围。

Claims (10)

  1. 一种带有标准光接口的小型化三端口光环形器件,其特征在于:其包括:
    环形器芯,包括依序设置的第一偏振分光机构、45度法拉第旋转片、22.5度半波片和第二偏振分光机构,所述第一偏振分光机构远离第二偏振分光机构的端面形成公共端,第二偏振分光机构远离第一偏振分光机构的端面形成发射端,第二偏振分光机构与22.5度半波片相邻的一端面形成接收端;
    金属壳体,具有容置腔且将环形器芯封装其中,金属壳体的外表面设有连通至容置腔且分别环形器芯的公共端、发射端和接收端正对的公共端接口、发射端接口和接收端接口。
  2. 根据权利要求1所述的一种带有标准光接口的小型化三端口光环形器件,其特征在于:所述的公共端接口、接收端接口和发射端接口内均设有与环形器芯的公共端、发射端或接收端正对的耦合透镜。
  3. 根据权利要求1所述的一种带有标准光接口的小型化三端口光环形器件,其特征在于:所述的公共端接口、接收端接口和发射端接口为LC标准接口、SC标准接口、FC标准接口或ST标准接口。
  4. 根据权利要求1所述的一种带有标准光接口的小型化三端口光环形器件,其特征在于:所述的公共端接口、接收端接口和发射端接口为胶粘或焊接固定在金属壳体上,其中,所述的焊接至少包括激光焊接或锡焊焊接。
  5. 根据权利要求1所述的一种带有标准光接口的小型化三端口光环形器件,其特征在于:所述的金属壳体为不锈钢材料或合金材料制成。
  6. 根据权利要求1所述的一种带有标准光接口的小型化三端口光环形器件,其特征在于:所述的第一偏振分光机构、45度法拉第旋转片、22.5度半波片和第二偏振分光机构为依序胶合或光胶成一体结构。
  7. 根据权利要求1所述的一种带有标准光接口的小型化三端口光环形器件,其特征在于:所述的第一偏振分光机构包括第一45°斜方棱镜和第一45°直角棱镜,所述第一45°直角棱 镜的斜面与第一45°斜方棱镜的上端面或下端面相贴合,第一45°直角棱镜的一直角面与45度法拉第旋转片远离22.5度半波片的端面相贴,其中,第一45°斜方棱镜远离第一45°直角棱镜的端面镀设有高反膜或不镀膜,其与第一45°直角棱镜的斜面贴合的端面镀设有偏振分光膜且固定为一体。
  8. 根据权利要求1所述的一种带有标准光接口的小型化三端口光环形器件,其特征在于:所述的第二偏振分光机构包括第二45°斜方棱镜和第二45°直角棱镜,所述第二45°直角棱镜的斜面与第二45°斜方棱镜的上端面或下端面相贴合,第二45°直角棱镜的一直角面与22.5度半波片远离45度法拉第旋转片的端面相贴,第二45°斜方棱镜远离第二45°直角棱镜的端面镀设有高反膜或不镀膜,其与第二45°直角棱镜的斜面贴合的端面镀设有偏振分光膜且固定为一体,其中,第二45°直角棱镜的另一直角面设为接收端,第二45°斜方棱镜远离22.5度半波片的端面设为发射端。
  9. 一种带有标准光接口的小型化三端口光环形器件,其特征在于:其包括:
    环形器芯,包括依序设置的第一偏振分光机构、45度法拉第旋转片、22.5度半波片和第二偏振分光机构,所述第一偏振分光机构远离第二偏振分光机构的端面形成公共端,第二偏振分光机构远离第一偏振分光机构的端面形成发射端,第二偏振分光机构与22.5度半波片相邻的一端面形成接收端;
    45度反射镜,设于环形器芯的接收端一侧且将接收端射出的光信号偏转45度,使其与发射端输入的光信号平行;
    金属壳体,具有容置腔且将环形器芯和45度反射镜封装其中,金属壳体的外表面设有连通至容置腔的公共端接口、接收端接口和发射端接口,其中,公共端接口和发射端接口分别环形器芯的公共端、发射端正对,接收端接口与45度反射镜相对且用于接收由环形器芯接收端射出且经45度反射镜偏转的光信号。
  10. 根据权利要求9所述的一种带有标准光接口的小型化三端口光环形器件,其特征在于: 所述的发射端和接收端为带有尾纤的光纤准直器结构。
PCT/CN2020/094171 2019-06-28 2020-06-03 一种带有标准光接口的小型化三端口光环形器件 WO2020259239A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910574398.2A CN112147741A (zh) 2019-06-28 2019-06-28 一种带有标准光接口的小型化三端口光环形器件
CN201910574398.2 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020259239A1 true WO2020259239A1 (zh) 2020-12-30

Family

ID=73869198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094171 WO2020259239A1 (zh) 2019-06-28 2020-06-03 一种带有标准光接口的小型化三端口光环形器件

Country Status (2)

Country Link
CN (1) CN112147741A (zh)
WO (1) WO2020259239A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015255B2 (ja) * 1980-03-28 1985-04-18 富士通株式会社 偏光分離光制御装置
JPH04366806A (ja) * 1991-06-13 1992-12-18 Fuji Elelctrochem Co Ltd 光サーキュレータ
JPH1138363A (ja) * 1997-07-17 1999-02-12 Fuji Elelctrochem Co Ltd 3ポート型光サーキュレータ
CN207051530U (zh) * 2017-05-27 2018-02-27 武汉华工正源光子技术有限公司 一种光环行器以及otdr光模块
CN108873199A (zh) * 2018-08-21 2018-11-23 福建海创光电有限公司 一种单纤双向转换器结构
CN208795949U (zh) * 2018-04-28 2019-04-26 福州高意通讯有限公司 一种光环行器
CN208984906U (zh) * 2018-04-28 2019-06-14 福州高意光学有限公司 一种集成化自由空间光环形器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040086214A1 (en) * 2002-07-10 2004-05-06 Finisar Corporation Optical circulator for bi-directional communication

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015255B2 (ja) * 1980-03-28 1985-04-18 富士通株式会社 偏光分離光制御装置
JPH04366806A (ja) * 1991-06-13 1992-12-18 Fuji Elelctrochem Co Ltd 光サーキュレータ
JPH1138363A (ja) * 1997-07-17 1999-02-12 Fuji Elelctrochem Co Ltd 3ポート型光サーキュレータ
CN207051530U (zh) * 2017-05-27 2018-02-27 武汉华工正源光子技术有限公司 一种光环行器以及otdr光模块
CN208795949U (zh) * 2018-04-28 2019-04-26 福州高意通讯有限公司 一种光环行器
CN208984906U (zh) * 2018-04-28 2019-06-14 福州高意光学有限公司 一种集成化自由空间光环形器
CN108873199A (zh) * 2018-08-21 2018-11-23 福建海创光电有限公司 一种单纤双向转换器结构

Also Published As

Publication number Publication date
CN112147741A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
US4671613A (en) Optical beam splitter prism
US9939592B2 (en) Micro single-fiber bidirectional optical transceiver module of the same wavelength
EP0725289B1 (en) Optical coupler using ferrules with four polarization maintaining optical fibres
US6907163B2 (en) Multi-port optical coupling system
CN211603625U (zh) 一种用于高速bosa器件的小型集成化光组件
CN111856655B (zh) 一种高隔离度偏振无关微型自由空间环行器
US20220121045A1 (en) Small integrated free space circulator
CN110412780A (zh) 一种集成化自由空间光环形器
CN204331200U (zh) 微型同波长单芯双向光收发模块
WO2019153181A1 (zh) 一种低串扰单芯双向光组件
WO2020259239A1 (zh) 一种带有标准光接口的小型化三端口光环形器件
US11346988B2 (en) Miniaturized optical circulator
JPH0921608A (ja) ファラデ回転ミラー
CN112014928A (zh) 光纤插芯适配器
CN208984906U (zh) 一种集成化自由空间光环形器
CN111458910B (zh) 微型集成化自由空间环行器及其应用
CN215297734U (zh) 一种光纤环形器
CN213600921U (zh) 一种环形器
CN112241077A (zh) 光环行器
CN110908150A (zh) 一种自由空间环行器
CN111694100A (zh) 一种偏振无关小型集成化自由空间隔离器
CN216670324U (zh) 一种带波分功能的光环形器组件
CN113917612B (zh) 一种光环行器与波分复用器的组合器件
JPH0784143A (ja) 光コネクタ
WO2022041340A1 (zh) 一种低成本小型光环行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831212

Country of ref document: EP

Kind code of ref document: A1