WO2020255913A1 - 有機マンガン化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法 - Google Patents

有機マンガン化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法 Download PDF

Info

Publication number
WO2020255913A1
WO2020255913A1 PCT/JP2020/023378 JP2020023378W WO2020255913A1 WO 2020255913 A1 WO2020255913 A1 WO 2020255913A1 JP 2020023378 W JP2020023378 W JP 2020023378W WO 2020255913 A1 WO2020255913 A1 WO 2020255913A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
chemical vapor
manganese
raw material
thin film
Prior art date
Application number
PCT/JP2020/023378
Other languages
English (en)
French (fr)
Inventor
了輔 原田
智広 津川
利幸 重冨
承俊 李
ケタン ババン カットカー
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to US17/615,272 priority Critical patent/US20220235455A1/en
Priority to JP2021528211A priority patent/JP7478731B2/ja
Priority to KR1020217037552A priority patent/KR20210153114A/ko
Priority to CN202080042968.4A priority patent/CN114008238A/zh
Publication of WO2020255913A1 publication Critical patent/WO2020255913A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers

Definitions

  • the present invention relates to a raw material for chemical vapor deposition composed of an organic manganese compound for producing a manganese thin film or a manganese compound thin film by a chemical vapor deposition method. More specifically, the present invention relates to a raw material for chemical vapor deposition, which is composed of an organic manganese compound that does not contain oxygen atoms in its structure and enables manganese film formation with a reducing gas such as hydrogen.
  • a barrier layer is often formed under the copper wiring layer in order to suppress electromigration.
  • a Ta film, a TaN film, or the like has been applied, but in recent years, in order to improve reliability, the application of a barrier layer using a Mn film or a Cumn alloy film has been studied.
  • CVD method chemical vapor deposition method
  • ALD method atomic layer deposition method
  • organic manganese compounds have been conventionally known as raw materials (precursors) for forming a manganese thin film or a manganese-containing thin film by a chemical vapor deposition method.
  • examples of the organic manganese compound as a raw material for chemical vapor deposition include manganese with three coordinations of 2,2,6,6-tetramethyl-3,5-heptadionate, which are ⁇ -diketonato ligands.
  • the tris (2,2,6,6-tetramethyl-3,5-heptadionat) manganese shown is known (Non-Patent Document 1 and Non-Patent Document 2).
  • Non-Patent Document 3 cyclopentadienyl ligand and carbonyl manganese coordinated, 2 of (eta 5-1-methyl - cyclopentadienyl) tricarbonyl manganese also useful as the organic manganese compound as a chemical vapor deposition raw material It is said that there is (Non-Patent Document 3).
  • the conventional raw materials for chemical vapor deposition using the above organic manganese compound as an example satisfy the basic property of being able to form a manganese thin film.
  • organic manganese compounds used as raw materials for chemical vapor deposition are also required to have various properties.
  • many conventional raw materials for chemical vapor deposition made of organic manganese compounds apply oxygen as a reaction gas, and there is a problem of oxidation of a substrate as a base. Therefore, there is a growing demand for organic manganese compounds capable of forming a film using a reducing gas such as hydrogen as a reaction gas.
  • the chemical vapor deposition method is a method in which a raw material compound is vaporized into a raw material gas, which is transported to a substrate and decomposed on the substrate to form a thin film.
  • a compound having an appropriately high vapor pressure is preferable.
  • a compound having appropriate thermal stability and having excellent handleability that does not easily decompose except on the surface of the substrate is preferable.
  • the present invention provides a raw material for chemical vapor deposition, which comprises an organic manganese compound capable of forming a high-quality manganese thin film using a reducing gas such as hydrogen as a reaction gas while having basic characteristics as a raw material for chemical vapor deposition.
  • the present invention which solves the above-mentioned problems, is a raw material for chemical vapor deposition for producing a manganese thin film or a manganese compound thin film by a chemical vapor deposition method.
  • substituents R 1 to R 5 of the cyclopentadienyl ligand (L1) are hydrogen or linear, branched, or cyclic alkyl groups having 1 to 4 carbon atoms, respectively.
  • substituents R 6 isocyanide ligand (L2) is a linear, branched, or cyclic having 1 to 4 alkyl groups of carbon atoms in.
  • the organic manganese compound constituting the raw material for chemical vapor deposition according to the present invention is characterized in that an isocyanide ligand and a cyclopentadienyl ligand are applied as ligands.
  • the isocyanide ligand is a ligand composed of carbon, hydrogen and nitrogen.
  • the cyclopentadienyl ligand is a ligand composed of carbon and hydrogen. Neither ligand contains an oxygen atom.
  • ligands other than the isocyanide ligand and the cyclopentadienyl ligand are not coordinated with manganese. Therefore, the organic manganese compound of the present invention does not contain oxygen atoms in its structure. Therefore, the organic manganese compound of the present invention enables the formation of a pure manganese thin film without forming an oxide (manganese oxide).
  • organic manganese compound of the present invention ligands having a relatively low carbon number (isocyanide ligand and cyclopentadienyl ligand) are applied, and the carbon number of their substituents is also limited. Has been made. From this point as well, according to the organic manganese compound of the present invention, a high-quality manganese thin film can be formed.
  • the organic manganese compound according to the present invention to which the isocyanide ligand is applied has appropriate thermal stability and is highly reactive with hydrogen to conventional compounds. Therefore, hydrogen can be applied as the reaction gas, and a manganese thin film can be formed in a reducing atmosphere.
  • the organic manganese compound according to the present invention can highly suppress the oxidation of the substrate and the manganese thin film due to the structural advantages of the complex containing no oxygen atom and the advantages of reactivity in a reducing atmosphere.
  • a cyclopentadienyl ligand (L1) is coordinated as a ligand together with an isocyanide ligand.
  • the cyclopentadienyl ligand is a well-known ligand in conventional organic manganese compounds and stably binds to manganese. Then, in cooperation with the isocyanide ligand, it contributes to the optimization of the thermal stability of the compound.
  • Substituents R 1 to R 5 of the cyclopentadienyl ligand (L1) are hydrogen or linear, branched, or cyclic alkyl groups having 1 or more and 4 or less carbon atoms, respectively.
  • the carbon number of the substituent is limited in order to make the vaporization property of the organic manganese compound suitable.
  • Examples of the alkyl group having 1 or more and 4 or less carbon atoms include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a sec-butyl group and a tert-butyl group.
  • R 1 to R 5 may all be the same substituent or may be different substituents.
  • a particularly preferred embodiment of the cyclopentadienyl ligand in the present invention is a cyclopentadienyl ligand in which all of R 1 to R 5 are hydrogen, or R 1 is a methyl group or an ethyl group, and R all 2 ⁇ R 5 is cyclopentadienyl ligand is hydrogen.
  • the organic manganese compound of the present invention is characterized by applying an isocyanide ligand (L2) as a ligand to manganese.
  • L2 isocyanide ligand
  • the isocyanide ligand contributes to the improvement of the reactivity of the compound and the optimization of the thermal stability.
  • R 6 is a substituent of isocyanide ligands are straight chain, branched, or cyclic alkyl group having 1 to 4 carbon atoms in the.
  • the alkyl group is used in order to make the molecular weight appropriate while limiting the composition of the ligand coordinating to manganese to carbon, hydrogen and nitrogen. Further, the carbon number is limited in order to make the molecular weight of the compound appropriate and to make the vaporization property and the decomposition property suitable. Substituents with an excessively high number of carbon atoms increase the molecular weight and may affect the vaporization properties of the organic manganese compound.
  • R 6 is a substituent isocyanide ligands (L2) include a methyl group, an ethyl group, n- propyl group, iso- propyl, sec- butyl group, n- butyl group, tert- butyl It is one of the groups (2-methylpropyl group).
  • the organic manganese compound constituting the raw material for chemical vapor deposition according to the present invention is a manganese metallocene (manganosen: Mn (manganosen: Mn) having the same cyclopentadienyl ligand as the cyclopentadienyl ligand (L1) of the compound to be produced. It can be manufactured by using L1) and 2 ) as raw materials.
  • the organic manganese compound of the present invention is synthesized by reacting the manganosen with isocyanide (L2), which is the same as isocyanide (L2) of the compound to be produced, in a stoichiometric amount.
  • the organic manganese compound constituting the raw material for chemical vapor deposition according to the invention is a monovalent manganese complex (organic compound).
  • This synthesis reaction is a reaction for synthesizing a monovalent manganese complex from manganese, which is a divalent manganese complex.
  • no additive such as a catalyst or a reducing agent is required in the reaction system. That is, the synthetic reaction can proceed in a reaction system consisting of only manganosen and an equivalent amount of isocyanide.
  • the synthesis reaction proceeds by mixing manganosen and an equivalent amount of isocyanide while using a solvent as needed. This synthetic reaction proceeds at room temperature.
  • the solvent is preferably ether (diethyl ether or the like), tetrahydrofuran or alkane (n-hexane, n-pentane or the like).
  • the raw material composed of the organic manganese compound described above is vaporized by heating to generate a raw material gas, and the raw material gas is transported onto the surface of the substrate to heat the organic manganese compound. It is decomposed to form a manganese thin film.
  • the organic manganese compound applied in the present invention is in a solid state or a liquid state at room temperature depending on its substituent.
  • the raw material for chemical vapor deposition composed of the organic manganese compound of the present invention can be easily vaporized by a distillation or sublimation method. Therefore, the organic manganese compound as a raw material can be heated and used as it is. Alternatively, it can be dissolved in an appropriate solvent to form a solution, and the solution can be heated to obtain a raw material gas.
  • the heating temperature for vaporizing the raw material is preferably 50 ° C. or higher and 120 ° C. or lower.
  • the vaporized raw material merges with an appropriate carrier gas and is transported onto the substrate.
  • the organic manganese compound of the present invention uses an inert gas (argon, nitrogen, etc.) as a carrier gas, and manganese can be formed only by heating without using a reaction gas. Since the organic manganese compound of the present invention does not contain oxygen in its structure, it is difficult for oxides to be formed even if it is decomposed by heating, and a manganese thin film can be formed only by heating.
  • the above-mentioned raw material gas is preferably transported on the substrate together with the reaction gas.
  • the raw material gas is heated on the surface of the substrate together with the reaction gas to form a manganese thin film.
  • a reducing gas such as hydrogen can be used as a reaction gas for manganese film formation using the raw material for chemical vapor deposition according to the present invention.
  • a reducing gas such as ammonia, hydrazine, and formic acid may be applied as the reaction gas. Since these reaction gases can also serve as carrier gases, the application of the carrier gas composed of the above-mentioned inert gas or the like is not essential.
  • the decomposition reaction itself of the organic manganese compound of the present invention can also proceed with oxygen as a reaction gas.
  • oxygen gas can be applied as a reaction gas.
  • a manganese oxide thin film may be applied.
  • the raw material for chemical vapor deposition according to the present invention can also meet such a request.
  • the film formation temperature at the time of film formation is preferably 150 ° C. or higher and 400 ° C. or lower. If the temperature is lower than 150 ° C., the decomposition reaction of the organic manganese compound is difficult to proceed, and efficient film formation cannot be performed. On the other hand, if the film formation temperature exceeds 400 ° C., it becomes difficult to form a uniform film, and there is a concern that the substrate may be damaged.
  • the film formation temperature is usually adjusted by the heating temperature of the substrate.
  • the film formation temperature is more preferably 200 ° C. or higher and 400 ° C. or lower, and further preferably 200 ° C. or higher and 300 ° C. or lower.
  • the organic manganese compound constituting the raw material for chemical vapor deposition according to the present invention has improved reactivity with hydrogen or the like due to the optimization of the ligand that coordinates with manganese. Therefore, the reactivity of hydrogen or the like is reduced.
  • a manganese thin film can be formed using the gas as a reaction gas. According to the present invention, oxidation of the substrate and oxygen mixing in the thin film can be suppressed at a high level. Then, it becomes possible to form a high-quality manganese thin film in which the oxygen and oxide contents are extremely reduced.
  • the organic manganese compound of the present invention also has good vaporization characteristics and decomposition characteristics conventionally required for a raw material for chemical vapor deposition. From the above, the raw material for chemical vapor deposition according to the present invention is useful for forming a barrier layer and a seed layer of a highly miniaturized semiconductor device in recent years.
  • TG-DTA curve of the organic manganese compound of Example 1 of the first embodiment TG-DTA curve of the organic manganese compound of Example 2 of the first embodiment.
  • TG-DTA curve of the organic manganese compound of Example 3 of the first embodiment TG-DTA curve of the organic manganese compound of Example 4 of the first embodiment.
  • Example 1 (eta 5 - cyclopentadienyl) - tris (2-isocyano-2-methylpropane) Synthesis of manganese bis - of (eta 5 cyclopentadienyl) manganese 0.185 g (1.0 mmol) To 10 mL of the diethyl ether solution, 10 mL of the diethyl ether solution of 0.263 g (3.0 mmol) of 2-isocyano-2-methylpropane was added, and the mixture was stirred at 25 ° C. for 30 minutes.
  • Example 2 (eta 5 - cyclopentadienyl) - tris (2-isocyanoacetate propane) Synthesis of manganese bis - diethyl ether (eta 5 cyclopentadienyl) manganese 0.185 g (1.0 mmol) solution To 10 mL, 0.207 g (3.0 mmol of diethyl ether solution) of 0.207 g (3.0 mmol) was added, and the mixture was stirred at 25 ° C. for 30 minutes.
  • Example 3 (eta 5-1-ethyl-cyclopentadienyl) - tris (2-isocyano-2-methylpropane) Synthesis of bis (eta 5-1-ethyl-cyclopentadienyl) manganese Manganese 7.24 g ( To 70 mL of a diethyl ether solution of 30.0 mmol) was added 30 mL of a diethyl ether solution of 7.48 g (90.0 mmol) of 2-isocyano-2-methylpropane, and the mixture was stirred at 25 ° C. for 30 minutes.
  • Example 4 (eta 5-1-ethyl-cyclopentadienyl) - tris (2-isocyanoacetate propane) Synthesis of bis (eta 5-1-ethyl-cyclopentadienyl) manganese Manganese 0.241 g (1.0 To 10 mL of a diethyl ether solution of (mmol), 10 mL of a diethyl ether solution of 0.207 g (3.0 mmol) of 2-isocyanatepropane was added, and the mixture was stirred at 25 ° C. for 30 minutes.
  • TG-DTA Thermogravimetric analysis
  • an endothermic peak or an exothermic peak due to decomposition of the compound is observed near 200 ° C. on the DTA curve.
  • the endothermic peak near 65 ° C. in Example 1 is presumed to be due to melting of the solid compound.
  • the decomposition temperatures of the organic manganese compounds of Examples 1 to 4 were 187 ° C. (Example 1), 195 ° C. (Example 2), 187 ° C. (Example 3), and 209 ° C. (Example 4).
  • the organic manganese compounds of each example proceed smoothly after the decomposition starts.
  • About 15% by mass of metallic manganese was generated as a residue after this decomposition.
  • the organic manganese compound produced in this embodiment can be decomposed at a temperature near 200 ° C., and manganese can be smoothly decomposed after decomposition. It was confirmed that it could be precipitated.
  • Substrate Si or SiO 2 Film formation temperature: 200 ° C or 300 ° C Sample temperature (vaporization temperature): 80 ° C Carrier gas: Nitrogen (50 sccm) Reaction gas: none (0 sccm) or hydrogen (50 sccm) Chamber pressure: 5 torr, 15 torr, 50 torr Film formation time: 15 min
  • a film formation test using tris (2,2,6,6-tetramethyl-3,5-heptadionat) manganese which is a conventional organic manganese compound for chemical vapor deposition. It was.
  • This organic manganese compound is prepared by mixing a commercially available reagent manganese nitrate (II) with a 50% ethanol aqueous solution of 2,2,6,6-tetramethyl-3,5-heptadione and adjusting the pH with an aqueous sodium hydroxide solution. Synthesized with.
  • the conditions for the film formation test were the same as above, and hydrogen gas was used as the reaction gas.
  • the film thickness of the manganese thin film at a plurality of locations was measured by the observation result by SEM (scanning electron microscope) or XRF (X-ray reflection fluorescence method), and the average value was calculated.
  • the results of the film formation test are shown in Table 1.
  • the organic manganese compound of Example 3 of the present embodiment - by material consisting of ((eta 5-1-ethyl-cyclopentadienyl) tris (2-isocyano-2-methylpropane) manganese), manganese thin It was confirmed that a film can be formed. According to the organic manganese compound of this embodiment, a manganese film can be formed using hydrogen gas as a reaction gas. It was also confirmed that a manganese thin film can be formed only by heating without using hydrogen gas (reaction gas).
  • the purity of the manganese thin film formed in the present embodiment was examined by XPS (X-ray photoelectron spectroscopy).
  • XPS X-ray photoelectron spectroscopy
  • the atomic concentrations of various elements (Mn, O, C, N, Si) in the thickness direction were measured while etching the formed manganese thin film. The etching was performed because it was taken into consideration that the manganese thin film was surface-oxidized by the atmosphere when the substrate was transferred from the CVD apparatus to the XPS analyzer.
  • FIG. 6 shows No. 1 in Table 1 obtained from the results of XPS. 3 and No. 5 is a graph comparing the manganese concentration (atomic concentration) and the oxygen concentration (atomic concentration) inside the thin film after etching for 1500 seconds in XPS for the manganese thin film of 5. From FIG. 6, it can be seen that these manganese thin films are composed of pure manganese.
  • the raw material composed of the conventional organic manganese compound (tris (2,2,6,6-tetramethyl-3,5-heptadionat) manganese) which is a comparative example
  • the manganese thin film could not be formed by hydrogen gas.
  • Second Embodiment In this embodiment, to set the substituents R 1 ⁇ R 5 cyclopentadienyl ligand (L1) hydrogen, methyl, n- butyl, the tert- butyl, isocyanide ligands (L2 methyl substituents R 6 in), an iso-propyl, combining a plurality of organic manganese compound to tert- butyl, to evaluate its degradation properties. In addition, a film formation test using some compounds was also carried out.
  • the organic manganese compounds of each example produced in the second embodiment can also be decomposed at a temperature of 180 ° C. to 220 ° C. It was also confirmed that manganese was smoothly precipitated after decomposition and manganese was generated as a residue.
  • the film formation test was performed on Examples 9 and 11.
  • the film formation conditions of the film formation test were the same as those of the first embodiment, and the film thickness (average value) was measured from SEM and XRF. As a result, it was confirmed that a high-purity manganese thin film can be formed even with the organic manganese compound of this embodiment.
  • the film thickness of the formed manganese thin film had a sufficient thickness in the range of 10 to 40 nm.
  • the organic manganese compound constituting the raw material for chemical vapor deposition according to the present invention has high thermal stability and can form manganese under a reducing reaction gas such as hydrogen. In addition, it has vaporization characteristics suitable as a raw material for chemical vapor deposition.
  • the present invention is useful for forming seed layers and barrier layers for various semiconductor devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本発明は、化学蒸着法によりマンガン薄膜又はマンガン化合物薄膜を製造するための化学蒸着用原料において、マンガンに、シクロペンタジエニル配位子(L1)とイソシアニド配位子(L2)が配位した、下記化1の式AAで示される有機マンガン化合物からなる化学蒸着用原料に関する。本発明は、化学蒸着用原料としての基本特性を有すると共に、水素等の還元性ガスを反応ガスとしてマンガン薄膜の成膜を可能とする。(上記の式中、シクロペンタジエニル配位子(L1)の置換基R~Rは、それぞれ、水素又は直鎖、分岐、若しくは環状の炭素数1以上4以下のアルキル基である。イソシアニド配位子(L2)の置換基Rは、直鎖、分岐、若しくは環状の炭素数1以上4以下のアルキル基である。

Description

有機マンガン化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
 本発明は化学蒸着法によりマンガン薄膜又はマンガン化合物薄膜を製造するための有機マンガン化合物からなる化学蒸着用原料に関する。詳しくは、構造中に酸素原子を含まず、水素等の還元性ガスによってマンガン成膜を可能とする有機マンガン化合物からなる化学蒸着用原料に関する。
 銅配線が適用される各種半導体デバイスの製造プロセスにおいては、エレクトロマイグレーション抑制のために銅配線層の下地にバリア層が形成されることが多い。バリア層としては、Ta膜やTaN膜等が適用されてきたが、近年では信頼性向上のため、Mn膜やCuMn合金膜によるバリア層の適用が検討されている。そして、近年のMn膜の成膜方法もスパッタリングから、CVD法(化学気相蒸着法)、ALD法(原子層蒸着法)といった化学蒸着法の適用例が増加しつつある。近年の半導体デバイスの小型化や高集積化による、配線幅やホール径の更なる微細化に対応するためには、ステップカバレッジに優れる化学蒸着法が有利だからである。
 マンガン薄膜又はマンガン含有薄膜を化学蒸着法で成膜するための原料(プリカーサー)としては、いくつかの有機マンガン化合物が従来から知られている。化学蒸着用原料としての有機マンガン化合物としては、例えば、マンガンにβ-ジケトナト配位子である、2,2,6,6-テトラメチル-3,5-ヘプタジオナトが3つ配位した化1に示すトリス(2,2,6,6-テトラメチル-3,5-ヘプタジオナト)マンガンが知られている(非特許文献1及び非特許文献2)。また、マンガンにシクロペンタジエニル配位子とカルボニルが配位した、化2の(η-1-メチル-シクロペンタジエニル)トリカルボニルマンガンも化学蒸着用原料としての有機マンガン化合物として有用であるとされている(非特許文献3)。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Ruiqiang Yan, Weiya Huang, Qingfeng Wang, Yinzhu Jiang. Ionics. 2009, 15, 627-633. Toshihiro Nakamura, Ryusuke Tai, Takuro Nishimura, Kunihide Tachibana. J. Electrochem. Soc. 2005, 152, C584-C587. Huaxing Sun, Francisco Zaera. J. Phys. Chem. C 2012, 116, 23585-23595.
 上記の有機マンガン化合物を例とする従来の化学蒸着用原料は、マンガン薄膜形成の可否という基本的特性に関しては充足している。しかし、半導体デバイスにおける更なる高密度化を見据えて、化学蒸着用原料となる有機マンガン化合物にも多様な特性が要求されるようになっている。例えば、従来の有機マンガン化合物からなる化学蒸着用原料は、反応ガスとして酸素を適用するものが多く、下地である基板の酸化の問題があった。そのため、水素等の還元性ガスを反応ガスとして成膜できる有機マンガン化合物が求められつつある。
 また、マンガン薄膜の純度や品質に対する要求も高くなっており、この観点からも化学蒸着用原料の改善が検討される。この点に関し、従来の化学蒸着用原料を構成する有機マンガン化合物には、構造中に酸素原子を含むものが多い。上記した化1及び化2の有機マンガン化合物は、構造中に酸素原子を含む。これらの酸素原子を含む有機マンガン化合物は、成膜時にマンガン酸化物を生成させることがある。高純度のマンガン薄膜成膜のためには、上述の反応ガスの問題を含めて、構成元素の観点からの改良も必要である。
 そして、新たな有機マンガン化合物を見出すとしても、化学蒸着用原料に本来要求される特性を有することが前提となる。化学蒸着法では、原料化合物を気化して原料ガスとし、これを基板に輸送して基板上で分解して薄膜を形成する方法である。この成膜プロセスにおいては、原料化合物の速やかな気化が必要であるので、適度に蒸気圧が高い化合物が好適である。また、適度な熱的安定性を有し、基板表面以外では容易に分解しない取扱い性に優れた化合物が好ましい。こうした基本的特性が前提として要求される。
 以上のように、これまで化学蒸着用原料として適用可能な有機マンガン化合物は、多様化する要求特性に対して必ずしも対応できるものではない。そこで本発明は、化学蒸着用原料としての基本特性を具備しつつ、水素等の還元性ガスを反応ガスとして高品位のマンガン薄膜を成膜できる有機マンガン化合物からなる化学蒸着用原料を提供する。
 上記課題を解決する本発明は、化学蒸着法によりマンガン薄膜又はマンガン化合物薄膜を製造するための化学蒸着用原料において、マンガンに、シクロペンタジエニル配位子(L1)とイソシアニド配位子(L2)が配位した、下記化3の式で示される有機マンガン化合物からなる化学蒸着用原料である。
Figure JPOXMLDOC01-appb-C000004
(上記の式中、シクロペンタジエニル配位子(L1)の置換基R~Rは、それぞれ、水素又は直鎖、分岐、若しくは環状の炭素数1以上4以下のアルキル基である。イソシアニド配位子(L2)の置換基Rは、直鎖、分岐、若しくは環状の炭素数1以上4以下のアルキル基である。)
 本発明に係る化学蒸着用原料を構成する有機マンガン化合物は、配位子としてイソシアニド配位子とシクロペンタジエニル配位子が適用されている点において特徴を有する。
 上記式からわかるように、イソシアニド配位子は、炭素と水素と窒素から構成される配位子である。また、シクロペンタジエニル配位子は炭素と水素から構成される配位子である。いずれの配位子も酸素原子を含んでいない。そして、本発明では、イソシアニド配位子及びシクロペンタジエニル配位子以外の配位子がマンガンに配位していない。従って、本発明の有機マンガン化合物は、構造中に酸素原子を含まない。そのため、本発明の有機マンガン化合物は、酸化物(酸化マンガン)を生成することなく、純マンガン薄膜の成膜を可能とする。また、本発明の有機マンガン化合物にいては、比較的低炭素数の配位子(イソシアニド配位子及びシクロペンタジエニル配位子)を適用すると共に、それらの置換基の炭素数についても制限がなされている。この点からも本発明の有機マンガン化合物によれば、高品位のマンガン薄膜の成膜が可能となる。
 そして、本発明者等によれば、イソシアニド配位子を適用する本発明に係る有機マンガン化合物は、適度な熱安定性を有し、従来化合物に対して水素に対する反応性が高い。よって、反応ガスとして水素を適用することができ、還元性雰囲気のもとでマンガン薄膜を生成できる。本発明に係る有機マンガン化合物は、上記した酸素原子を含まない錯体の構造的利点と、還元性雰囲気での反応性の利点とから、基板及びマンガン薄膜の酸化を高度に抑制することができる。
 上記のような利点を有する本発明に係る化学蒸着用原料となる有機マンガン化合物に構成について、以下のとおり、詳細に説明する。
 本発明の有機マンガン化合物は、配位子としてイソシアニド配位子と共にシクロペンタジエニル配位子(L1)が配位する。シクロペンタジエニル配位子は、従来の有機マンガン化合物においても良く知られた配位子であり、マンガンに安定して結合する。そして、イソシアニド配位子と協同して、化合物の熱安定性の好適化に寄与する。
 シクロペンタジエニル配位子(L1)の置換基R~Rは、それぞれ、水素、又は直鎖、分岐、若しくは環状の炭素数1以上4以下のアルキル基である。置換基の炭素数を制限するのは、有機マンガン化合物の気化特性を好適にするためである。炭素数1以上4以下のアルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基が挙げられる。置換基R~Rは、全てが同じ置換基であっても良いし、異なる置換基にしても良い。本発明におけるシクロペンタジエニル配位子の特に好ましい態様は、R~Rの全てが水素であるシクロペンタジエニル配位子、若しくは、Rがメチル基又はエチル基であって、R~Rの全てが水素であるシクロペンタジエニル配位子である。
 そして、本発明の有機マンガン化合物は、マンガンへの配位子としてイソシアニド配位子(L2)を適用することを特徴とする。本発明において、イソシアニド配位子は、化合物の反応性向上と熱安定性の適正化に寄与する。
 本発明の有機マンガン化合物において、イソシアニド配位子の置換基であるRは、直鎖、分岐、若しくは環状の炭素数1以上4以下のアルキル基である。アルキル基とするのは、マンガンに配位する配位子の構成を炭素、水素および窒素に限定しつつ分子量を適切にするためである。また、炭素数を制限するのは、化合物の分子量を適切にし、気化特性及び分解特性を好適にするためである。過度に炭素数の多い置換基は分子量を増大させ、有機マンガン化合物の気化特性に影響を及ぼす恐れがある。
 イソシアニド配位子(L2)の置換基であるRの好ましい具体的態様は、メチル基、エチル基、n-プロピル基、iso-プロピル基、sec-ブチル基、n-ブチル基、tert-ブチル基(2-メチルプロピル基)のいずれかである。
 以上説明した本発明に係る化学蒸着用原料を構成する有機マンガン化合物について、好ましい具体例の構造式を下記に示す。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 発明に係る化学蒸着用原料を構成する有機マンガン化合物は、製造目的となる化合物のシクロペンタジエニル配位子(L1)と同じシクロペンタジエニル配位子を有するマンガンのメタロセン(マンガノセン:Mn(L1))を原料とすることで製造可能である。当該マンガノセンに、製造目的となる化合物のイソシアニド(L2)と同じイソシアニド(L2)を化学量論量で反応させることで、本発明の有機マンガン化合物が合成される。
 発明に係る化学蒸着用原料を構成する有機マンガン化合物は、1価のマンガンの錯体(有機化合物)である。この合成反応は、2価のマンガンの錯体であるマンガノセンから、1価のマンガンの錯体を合成する反応である。但し、この合成反応においては、反応系に触媒や還元剤等の添加剤は不要である。つまり、マンガノセンと当量のイソシアニドのみからなる反応系で合成反応を進行させることができる。具体的な方法としては、必要に応じて溶媒を使用しつつ、マンガノセンと当量のイソシアニドとを混合することで合成反応が進行する。この合成反応は常温で進行する。溶媒を使用する場合、溶媒はエーテル(ジエチルエーテル等)、テトラヒドロフラン、アルカン(n-ヘキサン、n-ペンタン等)が好ましい。
 次に、本発明に係る化学蒸着用原料を適用した、マンガン薄膜又はマンガン化合物薄膜の化学蒸着法について説明する。本発明に係る化学蒸着法では、これまで説明した有機マンガン化合物からなる原料を、加熱することにより気化させて原料ガスを発生させ、この原料ガスを基板表面上に輸送して有機マンガン化合物を熱分解させてマンガン薄膜を形成させるものである。
 この化学蒸着法における原料の形態に関し、本発明で適用される有機マンガン化合物は、その置換基に応じて常温で固体状態又は液体状態となる。本発明の有機マンガン化合物からなる化学蒸着用原料は、蒸留あるいは昇華法にて容易に気化することができる。従って、原料である有機マンガン化合物をそのまま加熱して使用することができる。また、適宜の溶媒に溶解して溶液化して、溶液を加熱して原料ガスを得ることもできる。原料を気化する際の加熱温度としては、50℃以上120℃以下とするのが好ましい。
 気化した原料は、適宜のキャリアガスと合流して基板上に輸送される。本発明の有機マンガン化合物は、不活性ガス(アルゴン、窒素等)をキャリアガスとし、反応ガスを使用せず加熱のみでもマンガンの成膜が可能である。本発明の有機マンガン化合物は、構造中に酸素を含んでいないことから、加熱分解しても酸化物が生成し難く、加熱のみでもマンガン薄膜が生成できる。
 但し、マンガン薄膜の効率的な成膜のためには、反応ガスの適用が必要である。そのため、上記した原料ガスは、反応ガスと共に基板上に輸送されることが好ましい。原料ガスは、反応ガスと共に基板表面で加熱されマンガン薄膜を形成する。本発明に係る化学蒸着用原料によるマンガンの製膜については、水素等の還元性ガスが反応ガスとして使用可能である。反応ガスは、水素の他、アンモニア、ヒドラジン、ギ酸等の還元性ガスが適用の可能性がある。これらの反応ガスは、キャリアガスを兼ねることもできるので、上記した不活性ガス等からなるキャリアガスの適用は必須ではない。
 尚、本発明の有機マンガン化合物の分解反応自体は、酸素を反応ガスとしても進行させることができる。また、本発明の有機マンガン化合物によりマンガン酸化物の生成することを禁じる理由は一切ない。従って、本発明に係る化学蒸着用原料を用いて酸化マンガン等のマンガン化合物薄膜を製造する要求があるときには、酸素ガスを反応ガスとして適用できる。半導体デバイスの分野等においては、酸化マンガン薄膜が適用される場合がある。そのような要請にも、本発明に係る化学蒸着用原料は応えることができる。
 成膜時の成膜温度は、150℃以上400℃以下とするのが好ましい。150℃未満では、有機マンガン化合物の分解反応が進行し難く、効率的な成膜ができなくなる。一方、成膜温度が400℃を超えて高温となると均一な成膜が困難となると共に、基板へのダメージが懸念される等の問題がある。尚、この成膜温度は、通常、基板の加熱温度により調節される。成膜温度は、200℃以上400℃以下がより好ましく、200℃以上300℃以下が更に好ましい。
 以上の通り、本発明に係る化学蒸着用原料を構成する有機マンガン化合物は、マンガンに配位する配位子の好適化により水素等に対する反応性が向上している、そのため、水素等の還元性ガスを反応ガスとして、マンガン薄膜を成膜可能である。本発明によれば、基板の酸化と薄膜への酸素混入を高次元で抑制することができる。そして、酸素及び酸化物含有量が極めて低減された高品位のマンガン薄膜の成膜が可能となる。
 本発明の有機マンガン化合物は、化学蒸着用原料に対して従来から要求されている気化特性及び分解特性も良好である。以上から、本発明に係る化学蒸着用原料は、近年の高度に微細化された半導体デバイスのバリア層やシード層の形成に有用である。
第1実施形態の実施例1の有機マンガン化合物のTG-DTA曲線。 第1実施形態の実施例2の有機マンガン化合物のTG-DTA曲線。 第1実施形態の実施例3の有機マンガン化合物のTG-DTA曲線。 第1実施形態の実施例4の有機マンガン化合物のTG-DTA曲線。 第1実施形態で成膜したマンガン薄膜(No.5)のXPSによる分析結果を示す図。 第1実施形態で成膜したマンガン薄膜(No.3、No.5)のXPSのマンガン原子濃度と酸素原子濃度を示す図。
第1実施形態:以下、本発明における最良の実施形態について説明する。本実施形態では、シクロペンタジエニル配位子(L1)の置換基R~Rを水素又は一つのみエチル基に設定し、イソシアニド配位子(L2)の置換基Rをiso-プロピル基又はtert-ブチル基とする4種の有機マンガン化合物を合成し、その分解特性を評価すると共に、水素ガスによるマンガン成膜の可否を検討した。
実施例1:(η-シクロペンタジエニル)-トリス(2-イソシアノ-2-メチルプロパン)マンガンの合成
 ビス(η-シクロペンタジエニル)マンガン0.185 g(1.0 mmol)のジエチルエーテル溶液 10 mLに、2-イソシアノ-2-メチルプロパン0.263 g(3.0 mmol)のジエチルエーテル溶液 10 mLを加え、25℃で30分撹拌した。
 その後、溶媒を減圧留去し、n-ヘキサン/ジエチルエーテル(v/v,15:1)を展開溶媒とするシリカゲルカラムで精製を行なった。得られた溶液の溶媒を減圧留去すると、目的物である(η-シクロペンタジエニル)-トリス(2-イソシアノ-2-メチルプロパン)マンガン(R~R=水素、R=tert-ブチル基)を橙黄色固体として0.28 g(0.76 mmol)得た(収率76%)。この実施例における合成反応は、下記のとおりである。
Figure JPOXMLDOC01-appb-C000013
実施例2:(η-シクロペンタジエニル)-トリス(2-イソシアノプロパン)マンガンの合成
 ビス(η-シクロペンタジエニル)マンガン0.185 g(1.0 mmol)のジエチルエーテル溶液 10 mLに、2-イソシアノプロパン)0.207 g(3.0 mmolのジエチルエーテル溶液 10 mLを加え、25℃で30分撹拌した。
 その後、溶媒を減圧留去し、n-ヘキサン/ジエチルエーテル(v/v,15:1)を展開溶媒とするシリカゲルカラムで精製を行なった。得られた溶液の溶媒を減圧留去すると、目的物である(η-シクロペンタジエニル)-トリス(2-イソシアノプロパン)マンガン(R~R=水素、R=iso-プロピル基)を橙黄色液体として0.18 g(0.55 mmol)得た(収率55%)。この実施例における合成反応は、下記のとおりである。
Figure JPOXMLDOC01-appb-C000014
実施例3:(η-1-エチルシクロペンタジエニル)-トリス(2-イソシアノ-2-メチルプロパン)マンガンの合成
 ビス(η-1-エチルシクロペンタジエニル)マンガン7.24 g(30.0 mmol)のジエチルエーテル溶液 70 mLに、2-イソシアノ-2-メチルプロパン7.48 g(90.0 mmol)のジエチルエーテル溶液 30 mLを加え、25℃で30分撹拌した。
 その後、溶媒を減圧留去し、n-ヘキサン/ジエチルエーテル(v/v,15:1)を展開溶媒とするシリカゲルカラムで精製を行なった。得られた溶液の溶媒を減圧留去すると、目的物である(η-1-エチルシクロペンタジエニル)-トリス(2-イソシアノ-2-メチルプロパン)マンガン(R=エチル基、R~R=水素、R=tert-ブチル基)を橙黄色液体として10.8 g(29.2 mmol)得た(収率97%)。この実施例における合成反応は、下記のとおりである。
Figure JPOXMLDOC01-appb-C000015
実施例4:(η-1-エチルシクロペンタジエニル)-トリス(2-イソシアノプロパン)マンガンの合成
 ビス(η-1-エチルシクロペンタジエニル)マンガン0.241 g(1.0 mmol)のジエチルエーテル溶液 10 mLに、2-イソシアノプロパン0.207 g(3.0 mmol)のジエチルエーテル溶液 10 mLを加え、25℃で30分撹拌した。
 その後、溶媒を減圧留去し、n-ヘキサン/ジエチルエーテル(v/v,15:1)を展開溶媒とするシリカゲルカラムで精製を行なった。得られた溶液の溶媒を減圧留去すると、目的物である(η-1-エチルシクロペンタジエニル)-トリス(2-イソシアノプロパン)マンガン(R=エチル基、R~R=水素、R=iso-プロピル基)を橙黄色液体として0.19 g(0.54 mmol)得た(収率54%)。この実施例における合成反応は、下記のとおりである。
Figure JPOXMLDOC01-appb-C000016
気化特性及び分解特性の検討:上記の各実施例で製造した有機マンガン化合物について、気化特性と分解特性を検討するため、熱重量-示唆熱分析(TG-DTA)を行った。TG-DTAは、BRUKER社製TG-DTA2000SAにて、サンプル重量10mgをアルミニウム製セルに充填し、昇温速度5℃/min、測定温度範囲室温~500℃、窒素雰囲気(大気圧下)として、熱量変化及び重量変化を観察した。図1~図4は、各実施例の有機マンガン化合物のTG-DTA曲線を示す。
 図1~図4より、本実施形態で製造した実施例1~4の有機マンガン化合物は、DTA曲線において200℃度近傍に化合物の分解による吸熱ピーク又は発熱ピークが観測される。尚、実施例1の65℃近傍の吸熱ピークは、固体化合物の融解によるものと推定される。実施例1~4の有機マンガン化合物の分解温度は、187℃(実施例1)、195℃(実施例2)、187℃(実施例3)、209℃(実施例4)であった。
 そして、図1~図4のTG曲線によれば、各実施例の有機マンガン化合物は、分解が開始してからスムーズに分解が進行することが確認される。この分解後の残渣として15質量%前後の金属マンガンが生じていた。以上のTG-DTAによる分解温度の測定結果を分解後の質量変化の検討から、本実施形態で製造した有機マンガン化合物は、200℃近傍の温度で分解可能であり、分解後はスムーズにマンガンを析出し得ることが確認できた。
成膜試験:本実施形態で製造した実施例3の有機マンガン化合物((η-1-エチルシクロペンタジエニル)-トリス(2-イソシアノ-2-メチルプロパン)マンガン)を原料として、CVD装置(ホットウォール式CVD成膜装置)によりマンガン薄膜を形成させた。成膜試験は、下記の成膜条件を組み合わせて実施した。
基板:Si又はSiO
成膜温度:200℃又は300℃
試料温度(気化温度):80℃
キャリアガス:窒素(50sccm)
反応ガス:なし(0sccm)又は水素(50sccm)
チャンバー圧力:5torr、15torr、50torr
成膜時間:15min
 尚、この成膜試験では比較例として、従来の化学蒸着用の有機マンガン化合物であるトリス(2,2,6,6-テトラメチル-3,5-ヘプタジオナト)マンガンを使用した成膜試験も行った。この有機マンガン化合物は、市販試薬の硝酸マンガン(II)と2,2,6,6-テトラメチル-3,5-ヘプタジオンの50%エタノール水溶液を混合し、水酸化ナトリウム水溶液でpHを調整することで合成した。成膜試験の条件は上記と同様として水素ガスを反応ガスとした。
 成膜試験後、SEM(走査型電子顕微鏡)による観察結果若しくはXRF(X線反射蛍光法)により、複数箇所のマンガン薄膜の膜厚を測定し、その平均値を算出した。成膜試験の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000017
 表1のとおり、本実施形態の実施例3の有機マンガン化合物((η-1-エチルシクロペンタジエニル)-トリス(2-イソシアノ-2-メチルプロパン)マンガン)からなる原料によって、マンガン薄膜を成膜できることが確認された。この本実施形態の有機マンガン化合物によれば、水素ガスを反応ガスとしてマンガン膜の成膜が可能である。また、水素ガス(反応ガス)を使用せず、加熱のみでもマンガン薄膜を成膜できることも確認できた。
 ここで、本実施形態で成膜したマンガン薄膜について、その純度をXPS(X線光電子分光分析)により検討した。XPSでは、成膜されたマンガン薄膜をエッチングしながら、厚さ方向における各種元素(Mn、O、C、N,Si)の原子濃度を測定した。エッチングを行ったのは、CVD装置からXPS分析装置へ基板を移送する際、大気によりマンガン薄膜が表面酸化することを考慮したからである。
 このXPSによる分析結果の一例として、表1のNo.5のマンガン薄膜の分析結果を図5に示す。図5からわかるように、No.3のマンガン薄膜は、極表面は酸化しているが、薄膜内部は純マンガンで構成されていることがわかる。図6は、XPSの結果より得られた表1のNo.3とNo.5のマンガン薄膜についてのXPSにおいて、1500秒のエッチングを行った後の薄膜内部のマンガン濃度(原子濃度)と酸素濃度(原子濃度)を対比したグラフである。図6からも、これらのマンガン薄膜が純マンガンで構成されていることがわかる。これらの分析結果は、他のマンガン薄膜でも同様に見られた。以上のXPSの結果から、本発明に係る有機マンガン化合物によれば、純マンガン薄膜の成膜が可能であることが確認された。また、純マンガン薄膜の成膜においては、水素を反応ガスとして成膜した場合(No.3)及び反応ガスを使用せず加熱のみで成膜した場合(No.5)のいずれでも可能であることが確認された。
 以上の本実施形態に係る有機マンガン化合物の結果に対し、比較例である従来の有機マンガン化合物(トリス(2,2,6,6-テトラメチル-3,5-ヘプタジオナト)マンガン)からなる原料では、水素ガスによってマンガン薄膜を成膜できなかった。また、窒素ガス中の加熱のみでも成膜不可であった。この比較例との対比から、水素ガスによる成膜が可能な本実施形態の有機マンガン化合物の効果がより明確となる。
第2実施形態:この実施形態では、シクロペンタジエニル配位子(L1)の置換基R~Rを水素、メチル、n-ブチル、tert-ブチルに設定し、イソシアニド配位子(L2)の置換基Rをメチル、iso-プロピル、tert-ブチルとする複数の有機マンガン化合物を合成し、その分解特性を評価した。また、一部の化合物による成膜試験も実施した。
 第1実施形態と同様に、ジエチルエーテルを溶媒として、対応する置換基を有するマンガノセンの溶液を製造し、これにイソシアニド溶液を添加し、25℃で30分間攪拌して有機マンガン化合物を合成した。そして、第1実施形態と同様にしてTG-DTAを行って、各化合物の分解温度を測定した。この結果を表2に示す。
Figure JPOXMLDOC01-appb-T000018
 表2から、第2実施形態で製造した各実施例の有機マンガン化合物も、180℃~220℃の温度で分解可能である。また、分解後はスムーズにマンガンを析出し、残渣としてマンガンが発生することが確認された。
 そして、上記実施例のうち、実施例9、実施例11について成膜試験を行った。成膜試験の成膜条件は、第1実施形態と同様とし、SEM及びXRFから膜厚(平均値)測定した。その結果、この実施形態の有機マンガン化合物においても、高純度のマンガン薄膜を成膜できることが確認された。成膜されたマンガン薄膜の膜厚は、いずれも10~40nmの範囲内の十分な厚さを有していた。
 本発明に係る化学蒸着用の原料を構成する有機マンガン化合物は、熱安定性が高く、水素等を還元性反応ガスのもとでマンガンの成膜が可能である。また、化学蒸着用の原料として好適な気化特性を有する。本発明は、各種半導体デバイスのシード層やバリア層の形成に有用である。

Claims (7)

  1.  化学蒸着法によりマンガン薄膜又はマンガン化合物薄膜を製造するための化学蒸着用原料において、
     マンガンに、シクロペンタジエニル配位子(L1)とイソシアニド配位子(L2)が配位した、下記化1の式で示される有機マンガン化合物からなる化学蒸着用原料。
    Figure JPOXMLDOC01-appb-C000001
    (上記の式中、シクロペンタジエニル配位子(L1)の置換基R~Rは、それぞれ、水素又は直鎖、分岐、若しくは環状の炭素数1以上4以下のアルキル基である。イソシアニド配位子(L2)の置換基Rは、直鎖、分岐、若しくは環状の炭素数1以上4以下のアルキル基である。)
  2.  シクロペンタジエニル配位子(L1)の置換基R~Rの全てが水素である請求項1記載の化学蒸着用原料。
  3.  シクロペンタジエニル配位子(L1)の置換基Rがメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基のいずれかであって、R~Rの全てが水素である請求項1記載の化学蒸着用原料。
  4.  イソシアニド配位子(L2)の置換基Rが、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基のいずれかである請求項1~請求項3のいずれかに記載の化学蒸着用原料。
  5.  有機マンガン化合物からなる原料を気化して原料ガスとし、前記原料ガスを基板表面に導入しつつ加熱するマンガン薄膜又はマンガン化合物薄膜の化学蒸着法において、
     前記原料として請求項1~請求項3のいずれかに記載の化学蒸着用原料を用い、前記反応ガスとして水素を用いる化学蒸着法。
  6.  反応ガスとして還元性ガスを適用し、
    原料ガスを前記反応ガスと共に基板表面に導入して加熱する請求項5記載の化学蒸着法。
  7.  成膜温度を150℃以上400℃以下とする請求項5又は請求項6記載の化学蒸着法。
PCT/JP2020/023378 2019-06-17 2020-06-15 有機マンガン化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法 WO2020255913A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/615,272 US20220235455A1 (en) 2019-06-17 2020-06-15 Starting material for chemical vapor deposition composed of organomanganese compound, and chemical vapor deposition method using said starting material for chemical vapor deposition
JP2021528211A JP7478731B2 (ja) 2019-06-17 2020-06-15 有機マンガン化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
KR1020217037552A KR20210153114A (ko) 2019-06-17 2020-06-15 유기 망간 화합물을 포함하는 화학 증착용 원료 및 해당 화학 증착용 원료를 사용한 화학 증착법
CN202080042968.4A CN114008238A (zh) 2019-06-17 2020-06-15 由有机锰化合物构成的化学蒸镀用原料和使用该化学蒸镀用原料的化学蒸镀法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-111737 2019-06-17
JP2019111737 2019-06-17

Publications (1)

Publication Number Publication Date
WO2020255913A1 true WO2020255913A1 (ja) 2020-12-24

Family

ID=74040196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023378 WO2020255913A1 (ja) 2019-06-17 2020-06-15 有機マンガン化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法

Country Status (6)

Country Link
US (1) US20220235455A1 (ja)
JP (1) JP7478731B2 (ja)
KR (1) KR20210153114A (ja)
CN (1) CN114008238A (ja)
TW (1) TWI740541B (ja)
WO (1) WO2020255913A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508979A (ja) * 2009-10-23 2013-03-07 プレジデント アンド フェロウズ オブ ハーバード カレッジ 相互接続用自己整合バリアおよびキャッピング層
WO2013191065A1 (ja) * 2012-06-18 2013-12-27 東京エレクトロン株式会社 マンガン含有膜の形成方法
JP2019031508A (ja) * 2013-06-28 2019-02-28 ウェイン ステイト ユニバーシティー 基板上に層を形成するための還元剤としてのビス(トリメチルシリル)6員環系および類縁化合物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130172A (en) * 1988-10-21 1992-07-14 The Regents Of The University Of California Low temperature organometallic deposition of metals
KR20120118060A (ko) * 2006-11-02 2012-10-25 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 금속 박막의 cvd/ald용으로 유용한 안티몬 및 게르마늄 착체
GB0700534D0 (en) * 2007-01-11 2007-02-21 Innospec Ltd Composition
CN101680085B (zh) * 2007-05-21 2012-12-05 乔治洛德方法研究和开发液化空气有限公司 用于半导体领域的钴前体
US9660205B2 (en) * 2007-06-22 2017-05-23 Regents Of The University Of Colorado Protective coatings for organic electronic devices made using atomic layer deposition and molecular layer deposition techniques
JP5507909B2 (ja) * 2009-07-14 2014-05-28 東京エレクトロン株式会社 成膜方法
JP2014141739A (ja) * 2012-12-27 2014-08-07 Tokyo Electron Ltd 金属マンガン膜の成膜方法、処理システム、電子デバイスの製造方法および電子デバイス
JP5374779B1 (ja) * 2013-02-12 2013-12-25 国立大学法人東北大学 太陽電池及び、この太陽電池における酸化物層の形成方法、積層酸化物層の形成方法
JP5770806B2 (ja) * 2013-10-02 2015-08-26 田中貴金属工業株式会社 化学蒸着法によるSi基板上へのニッケル薄膜、及び、Si基板上へのNiシリサイド薄膜の製造方法
JP6548896B2 (ja) * 2014-12-26 2019-07-24 株式会社マテリアル・コンセプト 太陽電池モジュールおよびその製造方法
JP6043835B1 (ja) * 2015-05-12 2016-12-14 田中貴金属工業株式会社 異種複核錯体からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
US10787738B2 (en) * 2016-01-27 2020-09-29 Basf Se Process for the generation of thin inorganic films
ITUA20164757A1 (it) * 2016-06-29 2017-12-29 Indena Spa Composizioni utili nella prevenzione e/o nel trattamento dell’infiammazione e del dolore osteoarticolare e del danno cartilagineo

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508979A (ja) * 2009-10-23 2013-03-07 プレジデント アンド フェロウズ オブ ハーバード カレッジ 相互接続用自己整合バリアおよびキャッピング層
WO2013191065A1 (ja) * 2012-06-18 2013-12-27 東京エレクトロン株式会社 マンガン含有膜の形成方法
JP2019031508A (ja) * 2013-06-28 2019-02-28 ウェイン ステイト ユニバーシティー 基板上に層を形成するための還元剤としてのビス(トリメチルシリル)6員環系および類縁化合物

Also Published As

Publication number Publication date
JP7478731B2 (ja) 2024-05-07
CN114008238A (zh) 2022-02-01
US20220235455A1 (en) 2022-07-28
KR20210153114A (ko) 2021-12-16
JPWO2020255913A1 (ja) 2020-12-24
TW202111145A (zh) 2021-03-16
TWI740541B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
JP6596737B2 (ja) アミドイミン配位子を含む金属複合体
JP5181292B2 (ja) 非対称配位子源、低対称性金属含有化合物、およびそれらを含むシステムと方法
JP2015042781A (ja) 揮発性ジヒドロピラジニル及びジヒドロピラジン金属錯体
JP2009503247A (ja) β‐ジケチミナート配位子源およびその金属含有化合物、およびそれらを含むシステムと方法
JP7148377B2 (ja) ルテニウム錯体からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
WO2021153639A1 (ja) 有機ルテニウム化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
WO2017043620A1 (ja) 有機ルテニウム化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
JP7372353B2 (ja) 有機ルテニウム化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
KR20130049020A (ko) 탄탈륨 전구체 화합물 및 이의 제조방법
JP5424715B2 (ja) チタン錯体、その製造方法、チタン含有薄膜及びその製法
WO2020255913A1 (ja) 有機マンガン化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
JP2000169966A (ja) 化学蒸着からの銅膜堆積のための銅化合物の溶液およびその合成方法
JP6321252B1 (ja) イリジウム錯体からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
KR20220014227A (ko) 코발트 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
WO2023238808A1 (ja) 化学蒸着法によるルテニウム薄膜又はルテニウム化合物薄膜の製造方法及びルテニウム薄膜又はルテニウム化合物薄膜
KR102557282B1 (ko) 신규 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
US20240060177A1 (en) Indium compound, thin-film forming raw material, thin film, and method of producing same
KR100756388B1 (ko) 알루미늄증착 전구체 및 그의 제조방법
WO2022243274A1 (en) Selective deposition of ruthenium film by utilizing ru(i) precursors
TW202413684A (zh) 以化學蒸鍍法進行的釕薄膜或釕化合物薄膜之製造方法及釕薄膜或釕化合物薄膜
KR20230050655A (ko) 할로겐을 포함하지 않는 텅스텐 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
CN114746573A (zh) 用于选择性形成含金属膜的化合物及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217037552

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021528211

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826161

Country of ref document: EP

Kind code of ref document: A1