WO2020255824A1 - 車載赤外線照明装置 - Google Patents

車載赤外線照明装置 Download PDF

Info

Publication number
WO2020255824A1
WO2020255824A1 PCT/JP2020/022852 JP2020022852W WO2020255824A1 WO 2020255824 A1 WO2020255824 A1 WO 2020255824A1 JP 2020022852 W JP2020022852 W JP 2020022852W WO 2020255824 A1 WO2020255824 A1 WO 2020255824A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
light source
irradiation
vehicle
camera
Prior art date
Application number
PCT/JP2020/022852
Other languages
English (en)
French (fr)
Inventor
光之 望月
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2021528139A priority Critical patent/JP7442522B2/ja
Priority to CN202080044016.6A priority patent/CN114026843B/zh
Publication of WO2020255824A1 publication Critical patent/WO2020255824A1/ja
Priority to US17/643,428 priority patent/US20220103737A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/72Combination of two or more compensation controls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/12Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of emitted light
    • F21S41/13Ultraviolet light; Infrared light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/0017Devices integrating an element dedicated to another function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/0017Devices integrating an element dedicated to another function
    • B60Q1/0023Devices integrating an element dedicated to another function the element being a sensor, e.g. distance sensor, camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • B60Q1/1415Dimming circuits
    • B60Q1/1423Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic
    • B60Q1/143Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic combined with another condition, e.g. using vehicle recognition from camera images or activation of wipers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/05Combinations of cameras with electronic flash apparatus; Electronic flash units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/40Indexing codes relating to other road users or special conditions
    • B60Q2300/45Special conditions, e.g. pedestrians, road signs or potential dangers

Definitions

  • the present invention relates to an in-vehicle infrared lighting device, for example, an in-vehicle infrared lighting device used in a vehicle such as an automobile.
  • a night vision system for automobiles using infrared rays includes an LED lamp as an infrared light source provided at the front of the automobile and an infrared camera.
  • the shutter of the camera is opened at the timing of lighting the LED lamp, and an image is taken by infrared rays (see, for example, Patent Document 1).
  • the imaging range of an infrared camera often includes objects with high reflectance such as road signs and delineators while the vehicle is running.
  • the illumination light from the infrared light source is reflected by such a reflector and incident on the infrared camera, flare or halation may occur in the infrared camera image.
  • the camera settings are changed, such as lowering the gain of the infrared camera.
  • the resulting camera image tends to be dark overall, which can affect the visibility of the camera.
  • the present invention has been made in view of such a situation, and one of an exemplary purpose of the embodiment is to provide an in-vehicle infrared lighting device that suppresses deterioration of image quality of an in-vehicle infrared camera.
  • the in-vehicle infrared illumination device irradiates a plurality of irradiation areas included in the imaging range of the in-vehicle infrared camera with infrared rays within the exposure time of the in-vehicle infrared camera.
  • the infrared light source that provides the infrared illumination for the camera and the infrared light source are controlled so as to form a plurality of irradiation patterns at different timings from the infrared illumination for the camera, and each of the plurality of irradiation patterns has a plurality of irradiation areas.
  • a light source control unit formed by selectively irradiating a part of the irradiation area with infrared rays is arranged so as to receive infrared rays reflected from the imaging range, and a sensor signal based on the intensity of the received infrared rays is output. It is equipped with an infrared sensor.
  • the light source control unit controls the infrared light source so as to individually adjust the illuminance of each irradiation area in the infrared illumination for a camera based on the sensor signals output from the infrared sensor for each of the plurality of irradiation patterns.
  • the illuminance of each irradiation area in the infrared illumination for the camera is individually adjusted based on the sensor signal. For example, when the reflected infrared rays from a certain irradiation area are excessively strong, the irradiation area can be relatively darkened. Therefore, flare and halation that may occur if no illuminance adjustment is performed can be reduced or prevented, and deterioration of the image quality of the in-vehicle infrared camera can be suppressed.
  • the timing different from the infrared illumination for the camera may be a timing outside the exposure time.
  • the plurality of irradiation areas may be arranged so that two adjacent irradiation areas partially overlap each other.
  • the infrared light source is the first infrared light source which is one of the pair of infrared light sources arranged on the left and right sides of the vehicle, and the in-vehicle infrared illumination device is the second of the pair of infrared light sources.
  • An infrared light source may be further provided.
  • the first infrared light source may irradiate one of the two adjacent irradiation areas with infrared rays
  • the second infrared light source may irradiate the other of the two adjacent irradiation areas with infrared rays.
  • some irradiation areas may be randomly selected from a plurality of irradiation areas.
  • the plurality of irradiation patterns may include a group of irradiation patterns formed by irradiating the same irradiation area with infrared rays at a plurality of different illuminances.
  • the in-vehicle infrared lighting device may further include an in-vehicle infrared camera.
  • an in-vehicle infrared lighting device that suppresses deterioration in image quality of an in-vehicle infrared camera.
  • FIG. 1 is a block diagram showing an in-vehicle infrared lighting device 100 according to an embodiment.
  • a part of the components of the in-vehicle infrared lighting device 100 is drawn as a functional block.
  • These functional blocks are realized by elements and circuits such as a computer CPU and memory as a hardware configuration, and are realized by a computer program or the like as a software configuration. Those skilled in the art will understand that these functional blocks can be realized in various ways by combining hardware and software.
  • the in-vehicle infrared illumination device 100 includes an infrared light source 110, a light source control unit 120, and an infrared sensor 130.
  • the in-vehicle infrared illumination device 100 constitutes an in-vehicle image pickup device together with the in-vehicle infrared camera 140.
  • the vehicle-mounted infrared camera 140 can also be regarded as a component of the vehicle-mounted infrared lighting device 100.
  • the in-vehicle infrared illumination device 100 uses, for example, near infrared rays as infrared rays.
  • the infrared light source 110 provides infrared illumination for a camera by irradiating a plurality of irradiation areas 152 included in the imaging range 142 of the in-vehicle infrared camera 140 with infrared L1 within the exposure time of the in-vehicle infrared camera 140.
  • a plurality of irradiation areas 152 are defined in the imaging range 142 of the in-vehicle infrared camera 140, and are arranged adjacent to each other.
  • the imaging range 142 is divided into five areas, but the number of areas is arbitrary and may be larger or smaller.
  • the irradiation areas 152 are arranged in a row on the left and right, but there may be various arrangements such as arrangement in the vertical and horizontal directions.
  • the infrared light source 110 includes a plurality of light emitting elements 112.
  • the light emitting element 112 is an infrared LED in this embodiment, but is not particularly limited, and may be another semiconductor light emitting element or any other light emitting element.
  • the infrared light source 110 constitutes an optical unit 116 together with the optical system 114.
  • each light emitting element 112 is irradiated to the corresponding irradiation area 152 through the optical system 114.
  • One light emitting element 112 is associated with each irradiation area 152. Therefore, in this example, the infrared light source 110 has five light emitting elements 112.
  • the light emitting element 112 can be individually turned on and off, and the infrared light source 110 can individually irradiate light for each irradiation area 152.
  • a plurality of light emitting elements 112 may be associated with each irradiation area 152, and one irradiation area 152 may be irradiated by the plurality of light emitting elements 112.
  • the infrared light source 110 may include an array of light emitting elements in which a plurality of light emitting elements 112 are arranged one-dimensionally or two-dimensionally.
  • the number of light emitting elements 112 is arbitrary, and may be, for example, 10 or more.
  • the number of light emitting elements 112 may be, for example, 100 or less.
  • the light source control unit 120 operates the infrared light source 110 so as to irradiate a plurality of irradiation areas 152 with infrared rays L1 in order to provide infrared illumination for a camera.
  • a plurality of irradiation areas 152 may be irradiated at the same time.
  • a plurality of irradiation areas 152 may be sequentially irradiated while switching the irradiation area 152.
  • the light source control unit 120 controls the infrared light source 110 so as to form a plurality of irradiation patterns 150 at a timing different from that of the infrared illumination for a camera.
  • Each of the plurality of irradiation patterns 150 is formed by selectively irradiating a part of the irradiation areas 152 among the plurality of irradiation areas 152 with infrared rays.
  • the plurality of irradiation patterns 150 are set so that different irradiation areas 152 are irradiated.
  • the light source control unit 120 operates the infrared light source 110 so as to sequentially irradiate a plurality of irradiation areas 152 while switching the irradiation area 152 at a timing outside the exposure time of the in-vehicle infrared camera 140.
  • the plurality of irradiation patterns 150 are used as infrared illumination for the sensor.
  • the timing different from the infrared illumination for a camera is a timing deviating from the exposure time of the in-vehicle infrared camera 140, for example, a non-exposure time that is between continuous exposure times and exposure times. In this way, the infrared illumination for the camera and the infrared illumination for the sensor are set at different timings.
  • the light source control unit 120 is infrared so as to individually adjust the illuminance of each irradiation area 152 in the infrared illumination for a camera based on the sensor signal S1 output from the infrared sensor 130 for each of the plurality of irradiation patterns 150. Controls the light source 110.
  • the light source control unit 120 can individually dimming and lighting each light emitting element 112 of the infrared light source 110.
  • the light source control unit 120 includes a control circuit 122 and a lighting circuit 124.
  • the control circuit 122 generates a dimming signal S2 based on the sensor signal S1.
  • the dimming signal S2 is set so that each light emitting element 112 emits pulses at the same time or at different timings.
  • the dimming signal S2 may be a PWM (Pulse Width Modulation) signal.
  • the lighting circuit 124 supplies a pulsed drive current I to each light emitting element 112 according to the dimming signal S2.
  • the magnitude of the drive current I is controlled by the dimming signal S2, and the intensity of each pulse emission of each light emitting element 112 is controlled.
  • Each light emitting element 112 emits light with a brightness corresponding to the drive current I, and as a result, each irradiation area 152 is illuminated with an appropriate illuminance.
  • the irradiation area 152 is irradiated with infrared rays L1, and the imaging range 142 is illuminated with infrared rays L1.
  • the infrared L1 from the infrared light source 110 can be reflected in each irradiation area 152.
  • the infrared rays reflected from each irradiation area 152 (hereinafter, also simply referred to as reflected light L2) are incident on the infrared sensor 130 and the in-vehicle infrared camera 140.
  • the infrared sensor 130 is arranged so as to receive the reflected light L2 from the imaging range 142, and outputs a sensor signal S1 based on the intensity of the reflected light L2.
  • the infrared sensor 130 is sensitive to the wavelength of infrared rays emitted by the infrared light source 110.
  • the infrared sensor 130 may be, for example, a single pixel photodetector.
  • the sensor signal S1 is input to the light source control unit 120.
  • the infrared sensor 130 receives the reflected light L2 from the infrared light source 110 for each of the plurality of irradiation patterns 150 and receives the sensor signal S1. Is output sequentially.
  • the sensor signal S1 indicates the intensity of the reflected light L2 for each irradiation pattern 150.
  • the sensor signal S1 may be a spatial integral value of the intensity distribution of the reflected light L2 received by the infrared sensor 130.
  • the in-vehicle infrared camera 140 outputs a timing signal S3 indicating the exposure timing of the in-vehicle infrared camera 140 to the light source control unit 120.
  • the timing signal S3 is output from the in-vehicle infrared camera 140 at a frame rate according to the exposure time of the in-vehicle infrared camera 140.
  • the light source control unit 120 grasps the start and end of the exposure time of the in-vehicle infrared camera 140 based on the timing signal S3.
  • the light source control unit 120 synchronizes with the exposure timing of the in-vehicle infrared camera 140 so as to provide infrared illumination for the camera during the exposure time of the in-vehicle infrared camera 140 and provide infrared illumination for the sensor during the non-exposure time. Controls the infrared light source 110.
  • the infrared L1 is irradiated to the fourth irradiation area 152 from the right when viewed from the vehicle, and the other irradiation areas 152 are not irradiated with the infrared L1. It is shown.
  • the imaging range 142 often includes objects having high reflectance (hereinafter, referred to as reflector 160) such as road signs and delineators while the vehicle is traveling.
  • FIG. 1 shows, as an example, a situation in which the reflector 160 is located in the fourth irradiation area 152 where the infrared ray L1 is irradiated. Therefore, the reflector 160 receives the infrared ray L1 and shines brightly, and emits the reflected light L2 strongly.
  • FIG. 2 is a diagram illustrating time changes of the sensor signal S1, the drive currents I1 to I5 of each light emitting element 112, and the timing signal S3.
  • the drive currents I1 to I5 correspond to the five irradiation areas 152 shown in FIG. 1, respectively.
  • the exposure time Te is indicated by the timing signal S3, and the non-exposure time Ts is between the continuous exposure time Te and the exposure time Te.
  • the frame rate of the in-vehicle infrared camera 140 is, for example, 30 fps (that is, one frame is about 33 milliseconds), and the exposure time per frame is, for example, 30 milliseconds.
  • each irradiation area 152 is simultaneously irradiated with infrared rays L1 from the corresponding light emitting element 112.
  • the drive currents I1 to I5 of each light emitting element 112 each include a plurality of (12 in the illustrated example) pulses within one exposure time Te. In this example, the pulse period and pulse width are kept at their default values, but may be changed as needed.
  • the pulse waveforms of the drive currents I1 to I5 of each light emitting element 112 are out of phase with each other. Therefore, the light emitting element 112 sequentially emits pulses, and the corresponding irradiation area 152 is sequentially irradiated.
  • the sensor signal S1 falls within the permissible range 170 determined by the upper limit threshold value B1 and the lower limit threshold value B2.
  • the upper limit threshold value B1 and the lower limit threshold value B2 can be appropriately set based on the empirical knowledge of the designer or an experiment or simulation by the designer.
  • the upper limit threshold value B1 and the lower limit threshold value B2 may be stored in advance in the memory inside the light source control unit 120.
  • the sensor signal S1 may exceed the upper limit threshold value B1 and deviate from the allowable range 170, as will be described later.
  • the light source control unit 120 controls the drive currents I1 to I5 of the light emitting element 112 so that the sensor signal S1 falls within the permissible range 170 again.
  • FIG. 3 is a flowchart showing an example of dimming control according to the embodiment.
  • This dimming control process is executed by the control circuit 122 of the light source control unit 120.
  • the dimming control process is executed in parallel for the plurality of irradiation areas 152.
  • the control circuit 122 receives the timing signal S3 and executes dimming control processing for each irradiation area 152 during the non-exposure time Ts following one exposure time Te corresponding to the timing signal S3.
  • the control circuit 122 receives the sensor signal S1 from the infrared sensor 130 (S10). As described above, since the plurality of irradiation areas 152 are sequentially irradiated by the infrared light source 110 while switching the irradiation area 152, the sensor signals S1 for each irradiation area 152 are sequentially input to the control circuit 122.
  • the control circuit 122 compares the sensor signal S1 with the upper limit threshold value B1 (S12). When the sensor signal S1 exceeds the upper limit threshold value B1 (Y in S12), the control circuit 122 reduces the illuminance of the irradiation area 152 (S14). That is, the control circuit 122 generates a dimming signal S2 so as to reduce the drive current I of the light emitting element 112 that irradiates the irradiation area 152 with the infrared ray L1. In this way, the overly bright irradiation area 152 due to the reflector 160 can be selectively darkened to reduce or prevent halation.
  • the control circuit 122 increases or restores the illuminance of the irradiation area 152. (S18).
  • the control circuit 122 generates a dimming signal S2 so as to increase the drive current I of the light emitting element 112 that irradiates the irradiation area 152 with the infrared ray L1. By doing so, the brightness of the irradiation area 152 that is too dark is restored, and a good field of view can be secured for the in-vehicle infrared camera 140.
  • the control circuit 122 maintains the illuminance of the irradiation area 152. In this way, the brightness of the irradiation area 152 having an appropriate brightness is maintained, and a good field of view can be ensured for the in-vehicle infrared camera 140.
  • the amount of decrease in the drive current I may be constant regardless of the value of the sensor signal S1.
  • the amount of decrease in the drive current I may be different depending on the value of the sensor signal S1.
  • the larger the difference between the sensor signal S1 and the upper limit threshold value B1 the greater the amount of decrease in the drive current I. May be good.
  • the amount of increase in the drive current I may be constant regardless of the value of the sensor signal S1.
  • the amount of increase in the drive current I may be different depending on the value of the sensor signal S1. For example, the larger the difference between the sensor signal S1 and the lower limit threshold value B2, the larger the amount of increase in the drive current I. May be good.
  • the sensor signal S1 that has exceeded the upper limit threshold value B1 should also return to the allowable range 170. That is, it is a temporary phenomenon that the sensor signal S1 exceeds the upper limit threshold value B1. Therefore, instead of comparing the sensor signal S1 and the lower limit threshold value B2, when the illuminance of a certain irradiation area 152 is reduced, the control circuit 122 sets the irradiation area 152 to the initial value (that is, the illuminance before the reduction) after a lapse of a predetermined time. ) May be restored or gradually increased to the initial value.
  • FIG. 4 is a diagram illustrating a plurality of irradiation patterns 150.
  • a circle indicates lighting and no mark indicates extinguishing.
  • nine irradiation patterns 150 are shown.
  • the irradiation pattern 150 shown in FIG. 1 is No. 4 in FIG. It corresponds to 7.
  • FIG. 2 exemplifies the time change of the sensor signal S1 of three consecutive frames, the drive currents I1 to I5 of each light emitting element 112, and the timing signal S3.
  • the sensor signal S1 of three consecutive frames
  • the drive currents I1 to I5 of each light emitting element 112 of each light emitting element 112
  • the timing signal S3 As an example, consider the case where there is no reflector 160 in the imaging range 142 in the first frame of the three frames, and the reflector 160 appears in the fourth irradiation area 152 in the second frame as shown in FIG. ..
  • Infrared illumination for cameras is provided at the exposure time Te of the first frame.
  • Synchronized pulse-shaped drive currents I1 to I5 are supplied to the five light emitting elements 112, and infrared rays L1 are simultaneously pulse-irradiated to the five irradiation areas 152.
  • the light source control unit 120 switches the infrared light source 110 from the infrared illumination for the camera to the infrared illumination for the sensor.
  • Infrared illumination for the sensor is provided at the non-exposure time Ts.
  • Pulse-shaped drive currents I1 to I5 are sequentially supplied to each light emitting element 112, and infrared rays L1 are sequentially irradiated to each irradiation area 152.
  • the in-vehicle infrared camera 140 receives the reflected light L2 from each irradiation area 152, and the sensor signal S1_1 corresponding to the intensity of the reflected light L2 is output to the light source control unit 120.
  • the sensor signal S1_1 is constant for each irradiation area 152 and falls within the permissible range 170. Therefore, the illuminance of each irradiation area 152 at the exposure time Te of the second frame is maintained at the same magnitude as that of the first frame.
  • the light source control unit 120 switches the infrared light source 110 from the infrared illumination for the sensor to the infrared illumination for the camera.
  • Infrared L1 is irradiated to each irradiation area 152 as in the first frame.
  • infrared illumination for the sensor is provided.
  • the sensor signal S1-2 is set to the upper limit threshold value in synchronization with the drive current pulse (I4) supplied to the corresponding fourth light emitting element 112. It exceeds B1. For the other irradiation area 152, the sensor signal S1-2 is within the permissible range 170.
  • the light source control unit 120 controls the dimming signal S2, whereby the drive current I4 of the fourth light emitting element 112 is reduced in the camera lighting of the third frame, and the other light emitting elements 112 are driven.
  • the currents I1 to I3 and I5 are retained.
  • the illuminance of the fourth irradiation area 152 including the reflector 160 is reduced.
  • the sensor illumination is provided in the same manner at the non-exposure time Ts of the third frame, and the sensor signal S1_3 is acquired. Since the illuminance of the fourth irradiation area 152 is reduced, the reflected light L2 by the reflector 160 is reduced. Therefore, the sensor signal S1_3 is within the permissible range 170 for each irradiation area 152 including the fourth irradiation area 152.
  • the in-vehicle infrared illumination device 100 can individually adjust the illuminance of each irradiation area 152 based on the sensor signal S1 to make the irradiation area 152 including the reflector 160 relatively dark. .. Therefore, flare and halation that may occur if dimming is not performed can be reduced or prevented, and deterioration in image quality of the in-vehicle infrared camera 140 due to the reflected light L2 from the infrared light source 110 can be suppressed.
  • a so-called self-sensing type in-vehicle infrared illumination device 100 that detects the reflected light L2 from the infrared light source 110 by the apparatus itself and creates a light distribution that is easy for the in-vehicle infrared camera 140 to see. Can be done. Changing the camera settings, such as lowering the gain to prevent halation, tends to darken the entire image, but the in-vehicle infrared illumination device 100 selectively darkens the dazzling irradiation area 152, which alleviates this problem. It will be resolved.
  • image processing is typically used to identify a dazzling local region, there is an advantage that it can be realized with a simple configuration without using such a complicated method.
  • the infrared illumination for the sensor is provided at a timing deviating from the exposure time Te of the in-vehicle infrared camera 140. Therefore, the infrared illumination for the sensor does not affect the imaging of the in-vehicle infrared camera 140. Further, the infrared illumination for the sensor can be set to the irradiation pattern 150 suitable for the infrared sensor 130.
  • Ghost imaging By the way, recently, a method called ghost imaging has been proposed. Instead of using an image sensor arranged in two dimensions as in general imaging, a point-type photodetector having no spatial resolution is used. Illumination with a number of spatially modulated (typically randomly) spatially modulated illumination patterns is used in combination with pointed photodetectors. An image of the irradiated object can be generated by measuring the reflected light from the irradiated object for each irradiation pattern with a point-type photodetector and correlating the intensity of the reflected light with the irradiation pattern.
  • a part of the irradiation area 152 to be irradiated may be randomly selected from a plurality of irradiation areas 152.
  • the light source control unit 120 may control the infrared light source 110 so that the irradiation area 152 forms a plurality of randomly selected irradiation patterns 150.
  • the in-vehicle infrared illumination device 100 can provide infrared illumination for a sensor suitable for ghost imaging.
  • FIG. 5 is a schematic diagram illustrating the arrangement of the irradiation area 152.
  • the plurality of irradiation areas 152 may be arranged so that two adjacent irradiation areas 152 partially overlap each other. By doing so, the number of irradiation areas 152 included in the imaging range 142 increases, so that the in-vehicle infrared illumination device 100 can form a larger number of irradiation patterns 150.
  • the plurality of irradiation patterns 150 may include a group of irradiation patterns 150 formed by irradiating the same irradiation area 152 with infrared rays at a plurality of different illuminances. In this way, the in-vehicle infrared illumination device 100 can form a larger number of irradiation patterns 150 by combining not only the on / off of the individual irradiation areas 152 but also the illuminance.
  • the light source control unit 120 may control the infrared light source 110 so that all the irradiation patterns 150 are irradiated in one infrared illumination for the sensor (for example, one non-exposure time Ts).
  • Ts one non-exposure time
  • the light source control unit 120 selectively assigns a part of the irradiation patterns 150 to one infrared illumination for the sensor, and red so that all the irradiation patterns 150 are irradiated by the infrared illumination for the sensor a plurality of times.
  • the external light source 110 may be controlled. When the number of irradiation patterns 150 is relatively large, such an irradiation method is suitable.
  • FIG. 6 is a diagram showing an automobile equipped with an in-vehicle infrared lighting device 100.
  • the automobile 200 includes headlights 202L and 202R.
  • the in-vehicle infrared lighting device 100 is built in each of the headlights 202L and 202R. Therefore, one headlight 202L is equipped with a first infrared light source 110L, and the other headlight 202 is equipped with a second infrared light source 110R.
  • FIG. 7 is a schematic view showing another example of the arrangement of the irradiation area 152.
  • a part of the irradiation area 152L may be irradiated by the first infrared light source 110L shown in FIG. 6, and the remaining irradiation area 152R may be irradiated by the second infrared light source 110R.
  • the first infrared light source 110L irradiates one irradiation area 152L of two adjacent irradiation areas with infrared rays
  • the second infrared light source 110R irradiates the other irradiation area 152R of the two adjacent irradiation areas with infrared rays. May be irradiated.
  • the number of irradiation areas 152 included in the imaging range 142 increases, so that the in-vehicle infrared illumination device 100 can form a larger number of irradiation patterns 150.
  • FIG. 8 is a schematic view showing the optical unit 116.
  • the optical unit 116 includes an infrared light source 110 having a plurality of light emitting elements 112, for example, an optical system 114 which is a projection lens, and a holder 118 for fixing the infrared light source 110 and the optical system 114 to each other.
  • the infrared sensor 130 may be fixed to the optical unit 116.
  • the infrared sensor 130 may be attached to the holder 118 so as to be arranged near the optical system 114, for example.
  • Light distribution control such as ADB (Adaptive Driving Beam) control may be executed in a lighting fixture mounted on a vehicle such as a headlight.
  • Vehicle lighting fixtures are arranged on the left and right sides of the front of the vehicle, whereas front vehicle detection devices (for example, cameras) for light distribution control are often arranged at the center position in the vehicle width direction. Due to the difference in the arrangement location, there is an angle deviation called a parallax angle between the angle at which the vehicle in front is viewed from the detection device and the angle of the optical axis of the lamp.
  • the infrared sensor 130 When the optical unit 116 is built in the headlights 202L and 202R, the infrared sensor 130 is located near the optical axis of the lamp. Therefore, in order to correct the parallax angle in the light distribution control of the vehicle lighting equipment, the position information of the vehicle in front acquired by the infrared sensor 130 may be used.
  • the present invention is not limited to the above-described embodiments and modifications, and it is possible to combine the embodiments and modifications, and to make further modifications such as various design changes based on the knowledge of those skilled in the art.
  • the present invention also includes embodiments and modifications in which such combinations or further modifications are added.
  • the infrared illumination for the sensor is provided for the non-exposure time Ts of the in-vehicle infrared camera 140, but the light source control unit 120 provides the infrared illumination for the sensor for the exposure time Te.
  • the light source 110 may be controlled.
  • the light source control unit 120 operates the infrared light source 110 so as to sequentially irradiate a plurality of irradiation areas 152 while switching the irradiation area 152 in the first period of the exposure time Te, and for each of the plurality of irradiation areas 152.
  • the sensor signal S1 may be acquired.
  • the light source control unit 120 emits the infrared light source 110 so as to irradiate a part or all of the irradiation areas 152 of the plurality of irradiation areas 152 at the same time in the second period of the exposure time Te following the first period of the exposure time Te.
  • the infrared light source 110 may be controlled so as to individually adjust the illuminance of each irradiation area 152 based on the sensor signal S1 acquired in the first period.
  • the present invention can be used for an in-vehicle infrared lighting device, for example, an in-vehicle infrared lighting device used in a vehicle such as an automobile.
  • 100 in-vehicle infrared lighting device 110 infrared light source, 120 light source control unit, 130 infrared sensor, 140 in-vehicle infrared camera, 142 imaging range, 150 irradiation pattern, 152 irradiation area, L1 infrared, L2 reflected light, Te exposure time, Ts non Exposure time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Studio Devices (AREA)

Abstract

車載赤外線照明装置(100)は、車載赤外線カメラ(140)の露光時間内に、撮像範囲(142)に含まれる複数の照射エリア(152)に赤外線(L1)を照射することによりカメラ用赤外照明を提供する赤外光源(110)と、カメラ用赤外照明とは異なるタイミングで複数の照射パターン(150)を形成するように赤外光源(110)を制御する光源制御部(120)と、赤外線センサ(130)とを備える。複数の照射パターン(150)のそれぞれが複数の照射エリア(152)のうち一部の照射エリア(152)に選択的に赤外線(L1)を照射することによって形成される。光源制御部(120)は、赤外線センサ(130)から複数の照射パターン(150)それぞれについて出力されるセンサ信号(S1)に基づいて、カメラ用赤外照明での各照射エリア(152)の照度を個別的に調整するように赤外光源(110)を制御する。

Description

車載赤外線照明装置
 本発明は、車載赤外線照明装置、例えば、自動車などの車両に使用される車載赤外線照明装置に関する。
 従来、赤外線を利用した自動車用暗視システムが知られている。このシステムは、自動車の前部に設けられた赤外光源としてのLEDランプと、赤外線カメラとを備える。LEDランプの点灯タイミングでカメラのシャッタが開かれ、赤外線による撮像が行われる(例えば、特許文献1参照。)。
特開2002-274258号公報
 本発明者らは、上記の自動車用暗視システムについて検討したところ、以下の課題を認識するに至った。赤外線カメラの撮像範囲には、車両の走行中、道路標識やデリニエータなどの高い反射率をもつ物体がしばしば含まれる。赤外光源からの照明光がこうした反射体で反射されて赤外線カメラに入射すると、赤外線カメラ画像にフレアやハレーションが発生しうる。これによる画質低下を抑える典型的な手法によれば、赤外線カメラのゲインを下げる等、カメラの設定が変更される。しかし、その結果得られるカメラ画像は全体的に暗くなりがちであり、カメラの視認性に影響が生じうる。
 本発明はこうした状況に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、車載赤外線カメラの画質低下を抑制する車載赤外線照明装置を提供することにある。
 上記課題を解決するために、本発明のある態様の車載赤外線照明装置は、車載赤外線カメラの露光時間内に、車載赤外線カメラの撮像範囲に含まれる複数の照射エリアに赤外線を照射することによりカメラ用赤外照明を提供する赤外光源と、カメラ用赤外照明とは異なるタイミングで複数の照射パターンを形成するように赤外光源を制御し、複数の照射パターンのそれぞれが複数の照射エリアのうち一部の照射エリアに選択的に赤外線を照射することによって形成される、光源制御部と、撮像範囲から反射した赤外線を受光するように配置され、受光した赤外線の強度に基づくセンサ信号を出力する赤外線センサと、を備える。光源制御部は、赤外線センサから複数の照射パターンそれぞれについて出力されるセンサ信号に基づいて、カメラ用赤外照明での各照射エリアの照度を個別的に調整するように赤外光源を制御する。
 この態様によると、センサ信号に基づいて、カメラ用赤外照明での各照射エリアの照度が個別的に調整される。例えば、ある照射エリアからの反射赤外線が過剰に強い場合に、その照射エリアを相対的に暗くすることができる。したがって、何ら照度調整が行われなかったとしたら起こりうるフレアやハレーションを軽減または防止することができ、車載赤外線カメラの画質低下を抑制することができる。
 カメラ用赤外照明とは異なるタイミングは、露光時間から外れたタイミングであってもよい。
 複数の照射エリアは、隣り合う2つの照射エリアが部分的に重なるようにして並んでいてもよい。
 赤外光源は、車両の左右に配置された一対の赤外光源のうち一方である第1の赤外光源であり、車載赤外線照明装置は、一対の赤外光源のうち他方である第2の赤外光源をさらに備えてもよい。第1の赤外光源が隣り合う2つの照射エリアのうち一方に赤外線を照射し、第2の赤外光源が隣り合う2つの照射エリアのうち他方に赤外線を照射してもよい。
 各照射パターンについて、一部の照射エリアは、複数の照射エリアからランダムに選択されてもよい。
 複数の照射パターンは、同一の照射エリアに異なる複数の照度で赤外線を照射することによって形成される一群の照射パターンを含んでもよい。
 車載赤外線照明装置は、車載赤外線カメラをさらに備えてもよい。
 本発明によれば、車載赤外線カメラの画質低下を抑制する車載赤外線照明装置を提供することができる。
実施の形態に係る車載赤外線照明装置を示すブロック図である。 光検出信号、各発光素子の駆動電流、タイミング信号の時間変化を例示する図である。 実施の形態に係る調光制御の一例を示すフローチャートである。 複数の照射パターンを例示する図である。 照射エリアの配列を例示する模式図である。 車載赤外線照明装置を備える自動車を示す図である。 照射エリアの配列の他の一例を示す模式図である。 光学ユニットを示す模式図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に用いられる「第1」、「第2」等の用語は、いかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。
 図1は、実施の形態に係る車載赤外線照明装置100を示すブロック図である。図1では、車載赤外線照明装置100の構成要素の一部を機能ブロックとして描いている。これらの機能ブロックは、ハードウェア構成としてはコンピュータのCPUやメモリをはじめとする素子や回路で実現され、ソフトウェア構成としてはコンピュータプログラム等によって実現される。これらの機能ブロックがハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。
 車載赤外線照明装置100は、赤外光源110、光源制御部120、赤外線センサ130を備える。車載赤外線照明装置100は、車載赤外線カメラ140とともに車載撮像装置を構成する。車載赤外線カメラ140は、車載赤外線照明装置100の構成要素であるともみなされうる。この例では、車載赤外線照明装置100は、赤外線として、例えば近赤外線を利用する。
 赤外光源110は、車載赤外線カメラ140の露光時間内に、車載赤外線カメラ140の撮像範囲142に含まれる複数の照射エリア152に赤外線L1を照射することによりカメラ用赤外照明を提供する。車載赤外線カメラ140の撮像範囲142には、複数の照射エリア152が区画され、互いに隣接して並んでいる。この例では、撮像範囲142が5つのエリアに分割されているが、エリア数は任意であり、これより多数または少数であってもよい。照射エリア152の配列についても、この例では照射エリア152が左右に一列に並んでいるが、例えば縦横に並ぶ等、種々ありうる。
 赤外光源110は、複数の発光素子112を備える。発光素子112は、この実施の形態では、赤外線LEDであるが、とくに限定されず、他の半導体発光素子またはそのほか任意の発光素子でもよい。赤外光源110は、光学系114とともに光学ユニット116を構成する。
 各発光素子112が発する赤外線L1は、光学系114を通じて、対応する照射エリア152に照射される。照射エリア152ごとに1つの発光素子112が対応づけられている。よって、この例では、赤外光源110は、5個の発光素子112を有する。発光素子112は、個別に点消灯可能であり、赤外光源110は、照射エリア152ごとに個別に光を照射可能である。なお、照射エリア152ごとに複数の発光素子112が対応づけられ、1つの照射エリア152がそれら複数の発光素子112により照射されてもよい。
 赤外光源110は、複数の発光素子112が一次元または二次元に配列された発光素子のアレイを備えてもよい。発光素子112の数は任意であり、例えば、10以上であってもよい。発光素子112の数は、例えば、100以下であってもよい。
 光源制御部120は、カメラ用赤外照明を提供すべく、複数の照射エリア152に赤外線L1を照射するように赤外光源110を動作させる。複数の照射エリア152が同時に照射されてもよい。照射エリア152を切り替えながら複数の照射エリア152が順次照射されてもよい。
 光源制御部120は、カメラ用赤外照明とは異なるタイミングで複数の照射パターン150を形成するように赤外光源110を制御する。複数の照射パターン150のそれぞれが複数の照射エリア152のうち一部の照射エリア152に選択的に赤外線を照射することによって形成される。複数の照射パターン150はそれぞれ、互いに異なる照射エリア152が照射されるように設定される。例えば、光源制御部120は、車載赤外線カメラ140の露光時間から外れたタイミングで、照射エリア152を切り替えながら複数の照射エリア152に順次照射するように赤外光源110を動作させる。このようにして、複数の照射パターン150は、センサ用赤外照明として利用される。
 カメラ用赤外照明とは異なるタイミングは、車載赤外線カメラ140の露光時間から外れたタイミング、たとえば、連続する露光時間と露光時間の合間となる非露光時間である。このようにして、カメラ用赤外照明とセンサ用赤外照明が互いに異なるタイミングに設定される。
 光源制御部120は、赤外線センサ130から複数の照射パターン150それぞれについて出力されるセンサ信号S1に基づいて、カメラ用赤外照明での各照射エリア152の照度を個別的に調整するように赤外光源110を制御する。光源制御部120は、赤外光源110の各発光素子112を個別に調光点灯可能である。
 光源制御部120は、制御回路122と点灯回路124を備える。制御回路122は、センサ信号S1に基づいて調光信号S2を生成する。調光信号S2は、各発光素子112を同時に、または異なるタイミングでパルス発光させるように設定されている。調光信号S2は、PWM(Pulse Width Modulation)信号であってもよい。点灯回路124は、調光信号S2に従って各発光素子112にパルス状の駆動電流Iを供給する。調光信号S2によって、駆動電流Iの大きさが制御され、各発光素子112の毎回のパルス発光の強度が制御される。
 各発光素子112は、駆動電流Iに応じた輝度で発光し、その結果、各照射エリア152が相応の照度で照明される。調光信号S2に従って発光素子112がパルス発光することにより、照射エリア152に赤外線L1が照射され、撮像範囲142が赤外線L1で照明される。赤外光源110からの赤外線L1は各照射エリア152で反射されうる。各照射エリア152から反射した赤外線(以下では単に、反射光L2ともいう)は、赤外線センサ130および車載赤外線カメラ140に入射する。
 赤外線センサ130は、撮像範囲142から反射光L2を受光するように配置され、反射光L2の強度に基づくセンサ信号S1を出力する。赤外線センサ130は、赤外光源110が発する赤外線の波長に感度をもつ。赤外線センサ130は、例えばシングルピクセルのフォトディテクタであってもよい。センサ信号S1は、光源制御部120に入力される。
 センサ用赤外照明として複数の照射パターン150が撮像範囲142に順次照射されるとき、赤外線センサ130は、複数の照射パターン150それぞれについて赤外光源110からの反射光L2を受光してセンサ信号S1を順次出力する。センサ信号S1は、各照射パターン150について反射光L2の強度を示す。センサ信号S1は、赤外線センサ130が受光する反射光L2の強度分布の空間的な積分値であってもよい。
 また、車載赤外線カメラ140は、車載赤外線カメラ140の露光タイミングを示すタイミング信号S3を光源制御部120に出力する。タイミング信号S3は、車載赤外線カメラ140の露光時間に合わせてフレームレートで車載赤外線カメラ140から出力される。光源制御部120においては、タイミング信号S3に基づいて車載赤外線カメラ140の露光時間の開始と終了が把握される。光源制御部120は、車載赤外線カメラ140の露光時間にカメラ用赤外照明を提供し、非露光時間にはセンサ用赤外照明を提供するように、車載赤外線カメラ140の露光タイミングに同期させて赤外光源110を制御する。
 図1には、照射パターン150の一例として、車両から見て向かって右から4番目の照射エリア152に赤外線L1が照射されるとともに、他の照射エリア152には赤外線L1が照射されていない状態が示されている。
 撮像範囲142には、車両の走行中、道路標識やデリニエータなどの高い反射率をもつ物体(以下、反射体160という)がしばしば含まれる。図1では、一例として、赤外線L1が照射されている4番目の照射エリア152に反射体160が位置する状況が示されている。そのため、反射体160は、赤外線L1を受けて明るく光り、反射光L2を強く放っている。
 図2は、センサ信号S1、各発光素子112の駆動電流I1~I5、タイミング信号S3の時間変化を例示する図である。駆動電流I1~I5はそれぞれ、図1に示される5つの照射エリア152に対応する。露光時間Teがタイミング信号S3によって示され、連続する露光時間Teと露光時間Teの合間は非露光時間Tsとなる。車載赤外線カメラ140のフレームレートは例えば30fps(すなわち1フレームが約33ミリ秒)であり、1フレームあたりの露光時間は例えば30ミリ秒である。
 露光時間Teに提供されるカメラ用赤外照明においては、各発光素子112の駆動電流I1~I5のパルス波形は、位相がそろっている。よって、各照射エリア152には対応する発光素子112から同時に赤外線L1が照射される。各発光素子112の駆動電流I1~I5はそれぞれ、1回の露光時間Te内に複数個(図示の例では12個)のパルスを含んでいる。この例では、パルス周期およびパルス幅については既定値に保持されるが、必要に応じて変更されてもよい。
 非露光時間Tsに提供されるセンサ用赤外照明においては、各発光素子112の駆動電流I1~I5のパルス波形は、互いに位相がずれている。そのため、発光素子112は順番にパルス発光し、対応する照射エリア152が順次照射される。
 センサ信号S1は、車載赤外線カメラ140の撮像範囲142に反射体160が含まれない場合には、上限閾値B1と下限閾値B2によって定められた許容範囲170に収まる。上限閾値B1および下限閾値B2は、設計者の経験的知見または設計者による実験やシミュレーション等に基づき適宜設定することが可能である。上限閾値B1および下限閾値B2は、光源制御部120の内部のメモリに予め保持されていてもよい。
 撮像範囲142に反射体160が含まれる場合には、後述するように、センサ信号S1が上限閾値B1を超え、許容範囲170から外れうる。センサ信号S1が許容範囲170から外れるとき、光源制御部120は、センサ信号S1が許容範囲170に再び収まるように発光素子112の駆動電流I1~I5を制御する。
 図3は、実施の形態に係る調光制御の一例を示すフローチャートである。この調光制御処理は、光源制御部120の制御回路122により実行される。調光制御処理は、複数の照射エリア152について並行して実行される。制御回路122は、タイミング信号S3を受信し、当該タイミング信号S3に対応する1回の露光時間Teに続く非露光時間Tsの間、各照射エリア152について調光制御処理を実行する。
 まず、制御回路122は、赤外線センサ130からセンサ信号S1を受信する(S10)。上述のように、照射エリア152を切り替えながら複数の照射エリア152が赤外光源110によって順次照射されるので、各照射エリア152についてのセンサ信号S1が制御回路122に順次入力される。
 制御回路122は、センサ信号S1を上限閾値B1と比較する(S12)。センサ信号S1が上限閾値B1を超える場合(S12のY)、制御回路122は、当該照射エリア152の照度を低下させる(S14)。すなわち、制御回路122は、当該照射エリア152に赤外線L1を照射する発光素子112の駆動電流Iを減少させるように、調光信号S2を生成する。このようにすれば、反射体160に起因して過剰に明るい照射エリア152を選択的に暗くして、ハレーションを軽減または防止することができる。
 一方、センサ信号S1が上限閾値B1を超えない場合(S12のN)、センサ信号S1が下限閾値B2を下回る場合(S16のY)、制御回路122は、当該照射エリア152の照度を増大または回復させる(S18)。制御回路122は、当該照射エリア152に赤外線L1を照射する発光素子112の駆動電流Iを増加させるように、調光信号S2を生成する。このようにすれば、暗すぎる照射エリア152については明るさが回復され、車載赤外線カメラ140にとって良好な視界を確保することができる。
 センサ信号S1が下限閾値B2を下回らない場合(S16のN)、制御回路122は、当該照射エリア152の照度を保持する。このようにすれば、適正な明るさの照射エリア152については明るさが保持され、車載赤外線カメラ140にとって良好な視界を確保することができる。
 駆動電流Iの減少量は、センサ信号S1の値によらず一定であってもよい。あるいは、駆動電流Iの減少量は、センサ信号S1の値に応じて異なる大きさであってもよく、例えば、センサ信号S1と上限閾値B1の差が大きいほど駆動電流Iの減少量が大きくてもよい。同様に、駆動電流Iの増加量は、センサ信号S1の値によらず一定であってもよい。あるいは、駆動電流Iの増加量は、センサ信号S1の値に応じて異なる大きさであってもよく、例えば、センサ信号S1と下限閾値B2の差が大きいほど駆動電流Iの増加量が大きくてもよい。
 車両が反射体160を通過すれば、上限閾値B1を超えていたセンサ信号S1も許容範囲170に戻るはずである。つまり、センサ信号S1が上限閾値B1を超えるのは一時的な現象である。したがって、センサ信号S1と下限閾値B2の比較に代えて、制御回路122は、ある照射エリア152の照度を低下させた場合、所定時間経過後に、その照射エリア152を初期値(すなわち低下前の照度)に回復させ又は初期値へと徐々に増加させてもよい。
 図4は、複数の照射パターン150を例示する図である。5つの発光素子112-1~112-5について、○印は点灯を示し、無印は消灯を示す。これはあくまで例示にすぎないが、9つの照射パターン150が示されている。図1に示される照射パターン150は、図4のNo.7にあたる。
 再び図2を参照して、車載赤外線照明装置100の動作例を説明する。図2には、連続する3フレームのセンサ信号S1、各発光素子112の駆動電流I1~I5、タイミング信号S3の時間変化が例示されている。一例として、3フレームのうち最初のフレームでは撮像範囲142に反射体160が無く、2番目のフレームで、図1に示されるように4番目の照射エリア152に反射体160が現れた場合を考える。
 最初のフレームの露光時間Teではカメラ用赤外照明が提供される。5つの発光素子112には同期したパルス状の駆動電流I1~I5が供給され、5つの照射エリア152に赤外線L1が同時にパルス照射される。
 タイミング信号S3に基づいて最初のフレームの露光時間Teの終了が把握されると、光源制御部120は、赤外光源110をカメラ用赤外照明からセンサ用赤外照明に切り替える。非露光時間Tsではセンサ用赤外照明が提供される。各発光素子112にパルス状の駆動電流I1~I5が順番に供給され、赤外線L1が各照射エリア152に順次照射される。各照射エリア152から車載赤外線カメラ140が反射光L2を受光し、反射光L2の強度に応じたセンサ信号S1_1が光源制御部120に出力される。
 このとき、どの照射エリア152にも反射体160が無いので、各照射エリア152についてはセンサ信号S1_1は一定であり、許容範囲170に収まっている。よって、2番目のフレームの露光時間Teでの各照射エリア152の照度は、最初のフレームと等しい大きさに保持される。
 タイミング信号S3に基づいて2番目のフレームの露光時間Teの開始が把握されると、光源制御部120は、赤外光源110をセンサ用赤外照明からカメラ用赤外照明に切り替える。最初のフレームと同様に各照射エリア152に赤外線L1が照射される。露光時間Teが終了すると、センサ用赤外照明が提供される。
 このとき、本例では反射体160が4番目の照射エリア152に位置するので、対応する4番目の発光素子112に供給される駆動電流パルス(I4)と同期して、センサ信号S1_2が上限閾値B1を超えている。他の照射エリア152についてはセンサ信号S1_2は許容範囲170に収まっている。
 したがって、光源制御部120によって調光信号S2が制御され、それにより、3番目のフレームのカメラ用照明では4番目の発光素子112の駆動電流I4が減少されるとともに、他の発光素子112の駆動電流I1~I3、I5は保持される。こうして、3番目のフレームの露光時間Teでは、反射体160が含まれる4番目の照射エリア152の照度が低下される。
 続いて、3番目のフレームの非露光時間Tsでも同様にしてセンサ用照明が提供され、センサ信号S1_3が取得される。4番目の照射エリア152の照度が低下されているので、反射体160による反射光L2は低減される。そのため、4番目の照射エリア152を含めて各照射エリア152についてセンサ信号S1_3は許容範囲170に収まっている。
 このようにして、車載赤外線照明装置100は、センサ信号S1に基づいて、各照射エリア152の照度を個別的に調整し、反射体160が含まれる照射エリア152を相対的に暗くすることができる。したがって、調光されなかったとしたら起こりうるフレアやハレーションを軽減または防止することができ、赤外光源110からの反射光L2に起因する車載赤外線カメラ140の画質低下を抑制することができる。
 実施の形態によれば、赤外光源110からの反射光L2をこの装置自身で検出し、車載赤外線カメラ140にとって見やすい配光を作るという、いわばセルフセンシング式の車載赤外線照明装置100を提供することができる。ハレーションを防ぐために、ゲインを下げる等、カメラ設定を変更すると、画像全体が暗くなりがちであるが、車載赤外線照明装置100では、眩しい照射エリア152を選択的に暗くするので、こうした問題は緩和または解消される。また、典型的には眩しい局所領域の特定には画像処理が用いられるが、そうした複雑な手法によらず、単純な構成で実現できるという利点もある。
 センサ用赤外照明は、車載赤外線カメラ140の露光時間Teから外れたタイミングで提供される。そのため、センサ用赤外照明は、車載赤外線カメラ140の撮像に影響を及ぼさない。また、センサ用赤外照明を赤外線センサ130に適する照射パターン150に設定することができる。
 ところで、最近では、ゴーストイメージングと呼ばれる手法が提案されている。一般的な撮像のように二次元に配列された撮像素子が用いられるのではなく、空間的に分解能を持たない点型光検出器が使用される。点型光検出器と組み合わせて、(典型的にはランダムに)空間的に変調された多数の照射パターンによる照明が用いられる。照射パターンごとに被照射物からの反射光を点型光検出器で測定し、反射光の強度と照射パターンの相関をとることにより、被照射物の画像を生成することができる。
 そこで、各照射パターン150について、照射される一部の照射エリア152は、複数の照射エリア152からランダムに選択されてもよい。光源制御部120は、照射エリア152がランダムに選択された複数の照射パターン150を形成するように赤外光源110を制御してもよい。このようにして、車載赤外線照明装置100は、ゴーストイメージングに適するセンサ用赤外照明を提供することができる。
 より多数の照射パターン150を照射可能とすることによって、ゴーストイメージングの解像度を高めることができる。こうした観点から、照射エリア152の配列に関する変形例をいくつか述べる。
 図5は、照射エリア152の配列を例示する模式図である。図5に示されるように、複数の照射エリア152は、隣り合う2つの照射エリア152が部分的に重なるようにして並んでいてもよい。このようにすれば、撮像範囲142に含まれる照射エリア152の数が増えるので、車載赤外線照明装置100は、より多数の照射パターン150を形成することができる。
 複数の照射パターン150は、同一の照射エリア152に異なる複数の照度で赤外線を照射することによって形成される一群の照射パターン150を含んでもよい。このようにすれば、個々の照射エリア152のオンオフだけでなく、照度も組み合わせて、車載赤外線照明装置100は、より多数の照射パターン150を形成することができる。
 光源制御部120は、1回のセンサ用赤外照明(例えば、1回の非露光時間Ts)においてすべての照射パターン150が照射されるように赤外光源110を制御してもよい。照射パターン150の数が比較的少ない場合には、こうした照射方式が適当である。
 あるいは、光源制御部120は、1回のセンサ用赤外照明に一部の照射パターン150を選択的に割り当て、複数回のセンサ用赤外照明によりすべての照射パターン150が照射されるように赤外光源110を制御してもよい。照射パターン150の数が比較的多い場合には、こうした照射方式が適当である。
 図6は、車載赤外線照明装置100を備える自動車を示す図である。自動車200は、前照灯202L,202Rを備える。車載赤外線照明装置100は、前照灯202L,202Rのそれぞれに内蔵される。よって、一方の前照灯202Lには、第1の赤外光源110Lが搭載され、他方の前照灯202には、第2の赤外光源110Rが搭載されている。
 図7は、照射エリア152の配列の他の一例を示す模式図である。一部の照射エリア152Lが、図6に示される第1の赤外光源110Lによって照射され、残りの照射エリア152Rが、第2の赤外光源110Rによって照射されてもよい。第1の赤外光源110Lが隣り合う2つの照射エリアのうち一方の照射エリア152Lに赤外線を照射し、第2の赤外光源110Rが隣り合う2つの照射エリアのうち他方の照射エリア152Rに赤外線を照射してもよい。このようにすれば、撮像範囲142に含まれる照射エリア152の数が増えるので、車載赤外線照明装置100は、より多数の照射パターン150を形成することができる。
 図8は、光学ユニット116を示す模式図である。光学ユニット116は、複数の発光素子112を有する赤外光源110と、例えば投影レンズである光学系114と、赤外光源110と光学系114とを互いに固定するホルダ118とを備える。
 赤外線センサ130が光学ユニット116に固定されていてもよい。赤外線センサ130は、例えば光学系114の近傍に配置されるようにホルダ118に取り付けられていてもよい。
 前照灯など車両に搭載された灯具においては、例えばADB(Adaptive Driving Beam)制御などの配光制御が実行される場合がある。車両用灯具は車両の前部左右に配置されるのに対し、配光制御のための前方車両検出装置(例えばカメラ)は車幅方向中央位置に配置されることが多い。配置場所の差異に伴い、検出装置から前方車両を見た角度と灯具光軸の角度との間に視差角度と称する角度ずれが存在する。
 光学ユニット116が前照灯202L,202Rに内蔵されている場合、赤外線センサ130は、灯具光軸の近くに位置する。そこで、車両用灯具の配光制御において視差角度を補正するために、赤外線センサ130により取得された前方車両の位置情報が使用されてもよい。
 本発明は、上述した実施の形態及び変形例に限定されるものではなく、実施の形態及び変形例を組み合わせたり、当業者の知識に基づいて各種の設計変更などのさらなる変形を加えることも可能であり、そのような組み合わせられ、もしくはさらなる変形が加えられた実施の形態や変形例も本発明の範囲に含まれる。上述した実施の形態や変形例、及び上述した実施の形態や変形例と以下の変形との組合せによって生じる新たな実施の形態は、組み合わされる実施の形態、変形例及びさらなる変形それぞれの効果をあわせもつ。
 上述の実施の形態では、車載赤外線カメラ140の非露光時間Tsにセンサ用赤外照明が提供されるが、光源制御部120は、露光時間Teにセンサ用赤外照明を提供するように赤外光源110を制御してもよい。例えば、光源制御部120は、露光時間Teの第1期間において、照射エリア152を切り替えながら複数の照射エリア152に順次照射するように赤外光源110を動作させるとともに、複数の照射エリア152それぞれについてセンサ信号S1を取得してもよい。光源制御部120は、露光時間Teの第1期間に続く当該露光時間Teの第2期間において、同時に複数の照射エリア152のうち一部または全部の照射エリア152に照射するように赤外光源110を動作させるとともに、第1期間に取得されたセンサ信号S1に基づいて、各照射エリア152の照度を個別的に調整するように赤外光源110を制御してもよい。
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用の一側面を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
 本発明は、車載赤外線照明装置、例えば、自動車などの車両に使用される車載赤外線照明装置に利用できる。
 100 車載赤外線照明装置、 110 赤外光源、 120 光源制御部、 130 赤外線センサ、 140 車載赤外線カメラ、 142 撮像範囲、 150 照射パターン、 152 照射エリア、 L1 赤外線、 L2 反射光、 Te 露光時間、 Ts 非露光時間。

Claims (7)

  1.  車載赤外線カメラの露光時間内に、前記車載赤外線カメラの撮像範囲に含まれる複数の照射エリアに赤外線を照射することによりカメラ用赤外照明を提供する赤外光源と、
     前記カメラ用赤外照明とは異なるタイミングで複数の照射パターンを形成するように前記赤外光源を制御し、前記複数の照射パターンのそれぞれが前記複数の照射エリアのうち一部の照射エリアに選択的に赤外線を照射することによって形成される、光源制御部と、
     前記撮像範囲から反射した赤外線を受光するように配置され、受光した赤外線の強度に基づくセンサ信号を出力する赤外線センサと、を備え、
     前記光源制御部は、前記赤外線センサから前記複数の照射パターンそれぞれについて出力されるセンサ信号に基づいて、前記カメラ用赤外照明での各照射エリアの照度を個別的に調整するように前記赤外光源を制御することを特徴とする車載赤外線照明装置。
  2.  前記カメラ用赤外照明とは異なるタイミングは、前記露光時間から外れたタイミングであることを特徴とする請求項1に記載の車載赤外線照明装置。
  3.  前記複数の照射エリアは、隣り合う2つの照射エリアが部分的に重なるようにして並んでいることを特徴とする請求項1または2に記載の車載赤外線照明装置。
  4.  前記赤外光源は、車両の左右に配置された一対の赤外光源のうち一方である第1の赤外光源であり、前記車載赤外線照明装置は、前記一対の赤外光源のうち他方である第2の赤外光源をさらに備え、
     前記第1の赤外光源が前記隣り合う2つの照射エリアのうち一方に赤外線を照射し、前記第2の赤外光源が前記隣り合う2つの照射エリアのうち他方に赤外線を照射することを特徴とする請求項3に記載の車載赤外線照明装置。
  5.  各照射パターンについて、前記一部の照射エリアは、前記複数の照射エリアからランダムに選択されることを特徴とする請求項1から4のいずれかに記載の車載赤外線照明装置。
  6.  前記複数の照射パターンは、同一の照射エリアに異なる複数の照度で赤外線を照射することによって形成される一群の照射パターンを含むことを特徴とする請求項1から5のいずれかに記載の車載赤外線照明装置。
  7.  前記車載赤外線カメラをさらに備えることを特徴とする請求項1から6のいずれかに記載の車載赤外線照明装置。
PCT/JP2020/022852 2019-06-17 2020-06-10 車載赤外線照明装置 WO2020255824A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021528139A JP7442522B2 (ja) 2019-06-17 2020-06-10 車載赤外線照明装置
CN202080044016.6A CN114026843B (zh) 2019-06-17 2020-06-10 车载红外线照明装置
US17/643,428 US20220103737A1 (en) 2019-06-17 2021-12-09 On-board infrared illumination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-112223 2019-06-17
JP2019112223 2019-06-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/643,428 Continuation US20220103737A1 (en) 2019-06-17 2021-12-09 On-board infrared illumination device

Publications (1)

Publication Number Publication Date
WO2020255824A1 true WO2020255824A1 (ja) 2020-12-24

Family

ID=74040062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022852 WO2020255824A1 (ja) 2019-06-17 2020-06-10 車載赤外線照明装置

Country Status (4)

Country Link
US (1) US20220103737A1 (ja)
JP (1) JP7442522B2 (ja)
CN (1) CN114026843B (ja)
WO (1) WO2020255824A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021193646A1 (ja) * 2020-03-26 2021-09-30

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002827A (ja) * 2006-06-20 2008-01-10 Honda Motor Co Ltd 乗員検知装置
JP2008252784A (ja) * 2007-03-30 2008-10-16 Toyota Motor Corp 夜間視界支援装置
JP2017105431A (ja) * 2015-11-27 2017-06-15 矢崎エナジーシステム株式会社 車両用撮影装置、及び、車両用撮影システム
JP2019055756A (ja) * 2017-09-22 2019-04-11 トヨタ自動車株式会社 車両用認知支援装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4033008B2 (ja) * 2003-03-17 2008-01-16 日産自動車株式会社 車両用暗視装置
US7387414B2 (en) * 2006-03-22 2008-06-17 Ibis Tek, Llc Light bar for mounting to a vehicle
JP4791262B2 (ja) * 2006-06-14 2011-10-12 本田技研工業株式会社 運転支援装置
CN104520146B (zh) * 2012-08-08 2017-06-06 株式会社小糸制作所 车辆用灯具
CN105917638B (zh) * 2014-02-06 2018-02-16 Jvc 建伍株式会社 摄像装置和摄像装置的控制方法、以及摄像***和摄像***的控制方法
JP2016076807A (ja) * 2014-10-06 2016-05-12 ソニー株式会社 画像処理装置、撮像装置および撮像方法
JP2016083987A (ja) * 2014-10-24 2016-05-19 スタンレー電気株式会社 車両用照明装置、車載システム
JP2017108211A (ja) * 2015-12-07 2017-06-15 ソニー株式会社 撮像装置、撮像制御方法、および、プログラム
CN108696694B (zh) * 2017-03-31 2023-04-07 钰立微电子股份有限公司 有关深度信息/全景图像的图像装置及其相关图像***
KR20190068355A (ko) * 2017-12-08 2019-06-18 현대자동차주식회사 차량용 램프 장치
CN108095701B (zh) * 2018-04-25 2018-07-20 上海凯利泰医疗科技股份有限公司 图像处理***、荧光内窥镜照明成像装置及成像方法
US10715738B1 (en) * 2019-04-30 2020-07-14 Axon Enterprise, Inc. Asymmetrical license plate reading (ALPR) camera system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002827A (ja) * 2006-06-20 2008-01-10 Honda Motor Co Ltd 乗員検知装置
JP2008252784A (ja) * 2007-03-30 2008-10-16 Toyota Motor Corp 夜間視界支援装置
JP2017105431A (ja) * 2015-11-27 2017-06-15 矢崎エナジーシステム株式会社 車両用撮影装置、及び、車両用撮影システム
JP2019055756A (ja) * 2017-09-22 2019-04-11 トヨタ自動車株式会社 車両用認知支援装置

Also Published As

Publication number Publication date
US20220103737A1 (en) 2022-03-31
JPWO2020255824A1 (ja) 2020-12-24
CN114026843B (zh) 2024-02-09
JP7442522B2 (ja) 2024-03-04
CN114026843A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
US10473284B2 (en) Apparatus for spatially and spectrally adaptable dichromatic white light source using spatial light modulator
US9732926B2 (en) Illumination system for generating a boundary between a shaded area and an irradiated area
JP4204558B2 (ja) 画像形成装置および画像形成方法
JP7031063B2 (ja) 車両のための適応型ヘッドランプシステム
US10801689B2 (en) Method for controlling a motor vehicle headlight
JP2009055107A (ja) 撮像装置および撮像制御方法
US20180259156A1 (en) Lighting system and a lighting method
US11192493B2 (en) Auto-regulated vehicle headlamp, automatic regulation method, and vehicle
JP2019057797A (ja) 暗視撮像装置
CN109309996B (zh) 车辆用灯具
JP4751443B2 (ja) 撮影装置、及び撮影方法
WO2020255824A1 (ja) 車載赤外線照明装置
US11066006B2 (en) Vehicle lamp
JP7267694B2 (ja) 車両用灯具
WO2020262445A1 (ja) 灯具システム
JP6840550B2 (ja) 車両用前照灯システム
JP7084392B2 (ja) 車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法
WO2020250932A1 (ja) 車載照明装置
US20180010759A1 (en) Light-emitting arrangement and vehicle headlight
JP7092516B2 (ja) 車両用前照灯ユニットの出射光色の調整方法
KR102601798B1 (ko) 차량용 헤드램프 제어 장치 및 방법
WO2018173726A1 (ja) 照明撮像装置
US8643630B2 (en) Method and system for generating a display
WO2021010485A1 (ja) 車両用灯具システム、車両用灯具の制御装置および車両用灯具の制御方法
WO2021002450A1 (ja) 車両用灯具システム、車両用灯具の制御装置および車両用灯具の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528139

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826860

Country of ref document: EP

Kind code of ref document: A1