WO2020255796A1 - Receiver terminal, positioning method, and program - Google Patents

Receiver terminal, positioning method, and program Download PDF

Info

Publication number
WO2020255796A1
WO2020255796A1 PCT/JP2020/022689 JP2020022689W WO2020255796A1 WO 2020255796 A1 WO2020255796 A1 WO 2020255796A1 JP 2020022689 W JP2020022689 W JP 2020022689W WO 2020255796 A1 WO2020255796 A1 WO 2020255796A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
positioning result
correction
unit
receiving terminal
Prior art date
Application number
PCT/JP2020/022689
Other languages
French (fr)
Japanese (ja)
Inventor
誠 藤波
耕介 野上
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2021528117A priority Critical patent/JPWO2020255796A1/ja
Publication of WO2020255796A1 publication Critical patent/WO2020255796A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement

Definitions

  • the present invention relates to a receiving terminal, a positioning method and a program.
  • Non-Patent Document 1 An example of a satellite positioning system called GNSS (Global Navigation Satellite System) is disclosed in Non-Patent Document 1 and Patent Document 1.
  • GNSS Global Navigation Satellite System
  • a terminal compatible with a satellite positioning system has a GNSS radio wave receiving unit that receives radio waves transmitted by satellites, a GNSS correction information receiving unit that receives GNSS correction information, and positioning that uses GNSS radio waves and correction information for positioning. It is composed of a part and.
  • a terminal (GNSS receiver) having the above configuration operates as follows.
  • the GNSS radio wave receiving unit receives radio waves from the GNSS satellite and decodes the received radio waves.
  • the GNSS radio wave receiving unit delivers the satellite orbit information and time information obtained as a result of decoding to the positioning unit.
  • the positioning unit calculates the approximate position of other GNSS satellites based on the acquired orbit information and time information. After that, the positioning unit acquires the detailed position of each GNSS satellite by using the approximate position of the GNSS satellite.
  • the positioning unit receives radio waves from each GNSS satellite and measures the reception time with the clock of its own device (GNSS receiver). The positioning unit subtracts the measured reception time from the transmission time included in the reception signal from the GNSS satellite to reach the radio wave (the time required for the radio wave to reach the GNSS receiver from the GNSS satellite). To calculate. The positioning unit calculates the distance from the GNSS satellite to the GNSS receiver by multiplying the radio wave arrival time by the speed of light.
  • the positioning unit calculates the distance (called a pseudo distance) between four or more GNSS satellites and the GNSS receiver by repeating the above distance calculation process.
  • the pseudo distance calculated by the above process includes the influence of various types of errors such as the clock error of the GNSS satellite, the orbit error of the GNSS satellite, and the ionospheric error. Therefore, the GNSS satellite also transmits information on the orbital error and the clock error among the above-mentioned various errors.
  • the GNSS correction information receiving unit receives the information related to the above error as GNSS correction information and delivers it to the positioning unit.
  • the GNSS receiver (positioning unit) corrects the pseudo distance using the acquired GNSS correction information.
  • the positioning unit identifies the position (latitude, longitude, altitude) of the GNSS receiver on the earth by using four or more of the corrected pseudo distances obtained as described above.
  • the positioning unit refers to the DOP (Dilution Of Precision) value and performs triangulation by combining satellites with as much variation in satellite arrangement as possible.
  • the DOP value is an index showing the degree of variation in satellite arrangement, and the larger the DOP value, the larger the variation in satellite arrangement.
  • the GNSS receiver calculates the pseudo distance using the reflected wave and performs the positioning calculation. Therefore, an error may occur in the calculated position.
  • the error caused by such reflected waves is referred to as "multipath error".
  • the GNSS receiver cannot correct the multipath error by using an error correction technique for clock error, ionospheric error, and the like.
  • Patent Document 1 describes a correction method different from the correction using GNSS correction information. Specifically, Patent Document 1 further includes a post-positioning correction unit, an estimated position calculation unit, and a positioning result storage unit in addition to the GNSS radio wave receiving unit, the GNSS correction information receiving unit, and the positioning unit.
  • positioning position calculation of the GNSS receiver
  • the estimated position calculation unit inside the post-positioning correction unit calculates the position independently of the positioning result by the GNSS system by using the information such as speed and acceleration calculated at the time of positioning.
  • the dead reckoning unit performs a time integration process of velocity and acceleration called dead reckoning, and calculates the position of the GNSS receiver.
  • the calculated position corrects the pseudo distance before the positioning calculation is performed.
  • the above existing positioning result correction method is not an effective correction for multipath error.
  • the DOP value is used as an index for error correction in the GNSS system, but the index only indicates the degree of variation in satellite arrangement and is not an index suitable for a multipath environment. The reason is that in an environment where there are skyscrapers in the vicinity, the number of visible satellites may decrease even if the combination of satellites has a large variation in arrangement (combination with a large DOP value).
  • the correction using speed and acceleration as disclosed in Patent Document 1 is a correction for the pseudo distance before the positioning calculation, and is not effective for the positioning error caused by multipath.
  • the reason is that the influence of multipath depends on both the position of the GNSS receiver and the arrangement pattern of the satellite, and the degree of reflection also depends on the surface condition such as a building. Therefore, regarding the influence of multipath, it is difficult to create a model before positioning calculation, and it is difficult to distribute the correction information in advance in the form of pseudo-distance correction information.
  • a main object of the present invention is to provide a receiving terminal, a positioning method, and a program capable of making corrections in consideration of multipath error after GNSS positioning.
  • positioning is performed based on radio waves transmitted from a plurality of satellites, and when positioning is started, positioning calculation is repeated to generate a positioning result vector having a plurality of positioning results as elements.
  • a positioning result correction unit that corrects the positioning result at the start of positioning by using the positioning unit and the first positioning result vector obtained in the normal mode.
  • the positioning result correction unit is in the learning mode.
  • the satellite position information regarding the positions of the plurality of satellites, the second positioning result vector, and the correct answer data regarding the position of the own device acquired by a method different from the positioning by radio waves from the plurality of satellites.
  • the positioning result correction unit is provided with a receiving terminal that generates correction information based on the above and corrects the positioning result in the normal mode by using the generated correction information.
  • positioning is performed based on radio waves transmitted from a plurality of satellites, and when positioning is started, positioning calculation is repeated to generate a positioning result vector having a plurality of positioning results as elements.
  • a positioning method including generating correction information and using the generated correction information to correct the positioning result in the normal mode is provided.
  • positioning is performed based on radio waves transmitted from a plurality of satellites, and when positioning is started, positioning calculation is repeated to generate a positioning result vector having a plurality of positioning results as elements.
  • Correct answers regarding the satellite position information regarding the positions of the plurality of satellites, the second positioning result vector, and the position of the own device obtained by a method different from the positioning by radio waves from the plurality of satellites, which were obtained at times.
  • a program for executing a process of generating correction information based on the data and a process of correcting the positioning result in the normal mode by using the generated correction information is provided.
  • a receiving terminal, a positioning method, and a program capable of making corrections in consideration of multipath error after GNSS positioning are provided.
  • other effects may be produced in place of or in combination with the effect.
  • FIG. 1 is a diagram for explaining an outline of one embodiment.
  • FIG. 2 is a diagram showing an example of a processing configuration of a receiving terminal according to the first embodiment.
  • FIG. 3 is a diagram showing an example of the internal configuration of the positioning result correction unit according to the first embodiment.
  • FIG. 4 is a diagram showing an example of correction information (correction data table) generated by the generation unit.
  • FIG. 5 is a diagram showing an example of a learning operation of the receiving terminal according to the first embodiment.
  • FIG. 6 is a diagram showing an example of normal operation of the receiving terminal according to the first embodiment.
  • FIG. 7 is a diagram for explaining the operation of the receiving terminal according to the first embodiment.
  • FIG. 8 is a diagram for explaining the operation of the receiving terminal according to the first embodiment.
  • FIG. 1 is a diagram for explaining an outline of one embodiment.
  • FIG. 2 is a diagram showing an example of a processing configuration of a receiving terminal according to the first embodiment.
  • FIG. 3 is a diagram showing an example
  • FIG. 9 is a diagram showing an example of the internal configuration of the positioning result correction unit according to the second embodiment.
  • FIG. 10 is a diagram for explaining the operation of the receiving terminal according to the second embodiment.
  • FIG. 11 is a diagram showing an example of the hardware configuration of the receiving terminal.
  • the receiving terminal 100 includes a positioning unit 101 and a positioning result correction unit 102 (see FIG. 1).
  • the positioning unit 101 performs positioning based on radio waves transmitted from a plurality of satellites, and when positioning is started, the positioning calculation is repeated to generate a positioning result vector having a plurality of positioning results as elements.
  • the positioning result correction unit 102 corrects the positioning result at the start of positioning by using the first positioning result vector obtained in the normal mode.
  • the positioning result correction unit 102 has acquired satellite position information regarding the positions of each of the plurality of satellites, a second positioning result vector, and positioning by radio waves from the plurality of satellites, which are obtained in the learning mode. Corrected information is generated based on the correct answer data regarding the position of the own device.
  • the positioning result correction unit 102 corrects the positioning result in the normal mode by using the generated correction information.
  • the receiving terminal 100 stores (associates) the position information of the satellite (arrangement pattern of the satellite) with the trajectory of the positioning result (positioning result vector) at that time. Further, the receiving terminal 100 also stores the position information calculated by a means different from the radio wave from the GNSS satellite in relation to the positioning result vector and the like to generate the correction information.
  • the correction information is information in which the positioning result affected by the multipath and the position information (correct answer data) not affected by the multipath are associated with each other.
  • the influence of multipath can be assumed to be constant regardless of the time zone or the like because the position of the building or the like does not change.
  • the positioning result in the normal mode is also affected by the multipath and deviates from the true position (correct answer position).
  • the correction information stores the relationship between the deviation due to the influence of the multipath and the true position
  • the receiving terminal 100 is similar to the one collected in the past using the current positioning result (positioning result vector) as a clue. Search for positioning results. If a similar positioning result is obtained, the receiving terminal 100 can correct the positioning result with the corresponding correct answer data or the like. In this way, the receiving terminal 100 can perform correction in consideration of the multipath error after GNSS positioning.
  • Examples of the receiving terminal 10 according to the first embodiment are mobile terminal devices such as smartphones, mobile phones, game consoles, and tablets.
  • the purpose is not to limit the receiving terminal 10 to a mobile terminal device, and the receiving terminal 10 can be any device or device that requires positioning.
  • FIG. 2 is a diagram showing an example of a processing configuration (processing module) of the receiving terminal 10 according to the first embodiment.
  • the receiving terminal 10 includes a GNSS radio wave receiving unit 201, a GNSS correction information acquisition unit 202, a positioning unit 203, a positioning result correction unit 204, and a final result storage unit 205.
  • GNSS radio wave receiving unit 201 receives GNSS signals from the receiving terminal 10 and a GNSS correction information acquisition unit 202
  • a positioning unit 203 receives a positioning unit 203
  • a positioning result correction unit 204 receives a final result storage unit 205.
  • the GNSS radio wave receiving unit 201 receives radio waves from the GNSS satellite.
  • the GNSS radio wave receiving unit 201 decodes the received radio wave and extracts information such as satellite position information (satellite orbit information), transmission time, and clock correction information.
  • the GNSS radio wave receiving unit 201 delivers the extracted information to various modules such as the positioning unit 203.
  • the GNSS correction information acquisition unit 202 acquires correction information. Specifically, the GNSS correction information acquisition unit 202 acquires clock correction information and the like from the GNSS radio wave reception unit 201. Alternatively, the GNSS correction information acquisition unit 202 may acquire correction information from a server or the like on the Internet.
  • the positioning unit 203 performs positioning of its own device (reception terminal 10) based on radio waves transmitted from a plurality of satellites. Specifically, the positioning unit 203 calculates pseudo distances related to four or more satellites as described above. After that, the positioning unit 203 corrects the calculated pseudo distance with the GNSS correction information. Since the existing technique can be used for the calculation of the pseudo distance by the positioning unit 203 and the correction using the GNSS correction information, detailed description thereof will be omitted.
  • the positioning unit 203 repeats the positioning calculation for a predetermined period from the positioning start time. For example, when positioning is started, the positioning unit 203 repeats the positioning calculation at a predetermined sampling cycle to generate a positioning result vector having a plurality of positioning results as elements. It should be noted that the fact that the positioning unit 203 repeats the positioning calculation at a predetermined sampling cycle is an example, and does not mean that the positioning calculation by the positioning unit 203 is limited.
  • the positioning unit 203 may generate a positioning result vector by positioning the position a plurality of times in time.
  • the positioning unit 203 delivers the positioning start time, the calculated positioning result (positioning result vector), and the positioning time in each positioning to the positioning result correction unit 204.
  • the "vector" does not indicate a physical quantity having a direction, but indicates a set of a plurality of elements. Therefore, the positioning result vector is simply a set containing a plurality of measurement results, and the positioning result vector does not include information regarding the direction. In other words, if each element (positioning result) included in the positioning result vector is connected, the locus may be a straight line or a curved line. Since the positioning result includes at least two or more coordinate information (for example, X and Y coordinates), the positioning result itself can be regarded as a vector. In this case, the positioning result vector can be regarded as a vector group including a plurality of vectors. However, even in this case, if the positioning result including a plurality of coordinates is expanded, it can be said that the positioning result vector is a vector including a plurality of coordinates.
  • the positioning unit 203 When the positioning unit 203 starts positioning, the positioning unit 203 notifies the positioning result correction unit 204 to that effect (positioning start time). Further, the positioning unit 203 notifies the positioning result correction unit 204 to that effect when the positioning is completed.
  • the notified positioning start time and positioning end fact are shared by the internal module of the positioning result correction unit 204.
  • the positioning result correction unit 204 corrects the positioning result at the start of positioning by using the positioning result vector (positioning result vector in the normal mode described later) obtained during normal operation.
  • the positioning result correction unit 204 corrects the positioning result (positioning result at the start of positioning) calculated by the positioning unit 203, and stores the corrected result as the final result in the final result storage unit 205.
  • the positioning result correction unit 204 At the time of the correction, the positioning result correction unit 204 generates "correction information" prior to the normal operation. Specifically, the positioning result correction unit 204 generates correction information based on satellite position information regarding the positions of each of the plurality of satellites, the positioning result vector, and correct answer data including the correct coordinate position of the own device. The details will be described later, but the positioning result correction unit 204 acquires satellite orbit information, time information, etc. from the GNSS radio wave receiving unit 201, and uses the acquired orbit information, time information, etc. to position the position after positioning. Generates correction information for correcting. After that, the positioning result correction unit 204 corrects the positioning result by the positioning unit 203 using the correction information generated in advance during normal operation.
  • the operation mode of the receiving terminal 10 includes two modes.
  • the first mode is the "learning mode”.
  • the second mode is the "normal mode”.
  • the operation of the positioning result correction unit 204 is mainly different between the learning mode and the normal mode.
  • the user of the receiving terminal 10 may input the operation mode of the receiving terminal 10 by using a GUI (Graphical User Interface) or the like.
  • the learning mode may be executed at the time of initial setting of the receiving terminal 10.
  • FIG. 3 is a diagram showing an example of the internal configuration of the positioning result correction unit 204 according to the first embodiment.
  • the positioning result correction unit 204 includes the positioning result storage unit 211, the satellite information acquisition unit 212, the correct answer data acquisition unit 213, the correction information generation unit 214, the correction information storage unit 215, and similar data. It is configured to include a search unit 216 and a position correction unit 217.
  • the positioning result storage unit 211 stores the positioning result acquired from the positioning unit 203.
  • the positioning result storage unit 211 stores the positioning start time and the positioning result (positioning result vector acquired from the positioning start time) in association with each other.
  • the satellite information acquisition unit 212 is a processing module that operates in the learning mode.
  • the satellite information acquisition unit 212 acquires information related to the satellite such as satellite orbit information and transmission time from the GNSS radio wave reception unit 201.
  • the satellite information acquisition unit 212 calculates the position of each satellite based on the acquired information about the satellites.
  • the satellite information acquisition unit 212 processes the information related to the satellite position and the like acquired from the GNSS radio wave reception unit 201 and calculates the satellite position. Specifically, the satellite information acquisition unit 212 calculates the position of the satellite at the positioning start time using the satellite orbit information. The satellite information acquisition unit 212 calculates the satellite position of all or part of the satellites (visible satellites) for which the receiving terminal 10 has been able to receive radio waves. For example, if the two satellites are close to each other, the satellite information acquisition unit 212 may calculate the position of either one of the two satellites, or may calculate the positions of both satellites. Good. That is, depending on the relative positional relationship of the satellites, the satellite information acquisition unit 212 does not have to calculate the positions of all the visible satellites. The satellite information acquisition unit 212 delivers the calculated satellite position (arrangement pattern by a plurality of satellites) to the correction information generation unit 214.
  • the correct answer data acquisition unit 213 is also a processing module that operates in the learning mode.
  • the correct answer data acquisition unit 213 sets the correct position (actual position of the receiving terminal 10) of its own device (reception terminal 10) at the time when the positioning unit 203 starts positioning (positioning start time) different from the positioning by the GNSS system. Get it with.
  • the correct answer data acquisition unit 213 acquires the position (latitude, longitude) of its own device by using the position information of the radio base station.
  • the correct answer data acquisition unit 213 delivers the acquired correct position as “correct answer data (correct answer position)” to the correction information generation unit 214.
  • the correction information generation unit 214 generates correction information using at least three pieces of information acquired in the learning mode. Specifically, the correction information generation unit 214 includes satellite position information acquired from the satellite information acquisition unit 212, a positioning result vector (second positioning result vector) obtained from the positioning calculation in the learning mode, and a correct answer data acquisition unit 213. Correction information is generated using the correct answer data obtained from.
  • the correction information generation unit 214 generates table information as shown in FIG. As shown in FIG. 4, in the first embodiment, the correction information generation unit 214 generates a correction data table including a plurality of entries as "correction information".
  • the correction information storage unit 215 stores the above-generated correction information (correction data table).
  • the correction data table includes the positioning start time, satellite position, positioning result vector, correct answer data, and correction value.
  • the positioning start time is information notified from the positioning unit 203.
  • the satellite position is information acquired from the satellite information acquisition unit 212.
  • the positioning result vector is information stored in the positioning result storage unit 211, and is a vector having a plurality of positioning results calculated within a predetermined period from the positioning start time as elements.
  • the correct answer data is information regarding the correct position of the own device (reception terminal 10) at the positioning start time.
  • the correction value is a vector (correction vector) whose elements are values for correcting the two coordinates of the latitude and longitude of the receiving terminal 10.
  • the positioning start time, satellite position, positioning result vector, correct answer data, and correction value are one entry in the correction data table. That is, the correction data table contains a plurality of entries.
  • correction data table shown in FIG. 4 is an example and does not mean to limit the configuration of the correction data table.
  • the correction value is not included in the correction data table and may be calculated sequentially as needed.
  • the correction value is information that can be calculated from the positioning result (positioning result vector) and the correct answer data.
  • the correction information generation unit 214 generates a correction value by selecting one element (positioning result) from a plurality of elements forming the positioning result vector and subtracting the selected positioning result from the correct answer data.
  • the correction value can be easily calculated from the positioning result vector and the correct answer position, so the correction value may be calculated as necessary. That is, the correction value does not necessarily have to be recorded in the correction data table (database).
  • the correction value may be sequentially calculated from the matching result of the positioning result and the positioning result acquired in real time in the normal mode.
  • the positioning result is represented in two dimensions (X, Y coordinates) in FIG. 4, the positioning may be performed in three dimensions (X, Y, Z; latitude, longitude, altitude).
  • the satellite positions at the positioning start time t1 are X (t1), Y (t1), and Z (t1). Further, the positioning result vectors calculated from the positioning start time t1 are (latA, lonA), (latB, lonB), (latC, lonC), and so on.
  • the correct answer data at the positioning start time t1 is (lat_realA, lon_realA).
  • the correction value at the positioning start time t1 is (lat_realA-latA, lon_realA-lonA).
  • the positioning result (latA, lonA) of the positioning start time is selected for calculating the correction value of the positioning start time t1.
  • another result for example, the result of the time (t1 + 1)
  • the result of the time (t1 + 1) may be selected as the positioning result in the calculation of the correction value.
  • the receiving terminal 10 receives radio waves from the GNSS satellite (step S101). Specifically, the GNSS radio wave receiving unit 201 receives radio waves from the GNSS satellite. At that time, if the GNSS correction information can also be acquired from the GNSS satellite, the GNSS radio wave receiving unit 201 outputs the GNSS correction information to the GNSS correction information acquisition unit 202. Information obtained by decoding radio waves (satellite orbit information, transmission time information, etc.) and GNSS correction information are transmitted to the positioning unit 203.
  • the receiving terminal 10 performs positioning calculation using the positioning unit 203 (step S102). Specifically, the positioning unit 203 repeats positioning at predetermined intervals to generate a positioning result vector.
  • the receiving terminal 10 generates a correction data table based on satellite information, correct answer data, and the like (step S103). Specifically, the receiving terminal 10 generates a correction data table by associating the positioning result (positioning result vector) calculated by the positioning unit 203, the satellite position, the correct answer data, and the like.
  • the operation of the positioning result correction unit 204 in the normal mode will be described.
  • the similar data search unit 216 and the position correction unit 217 mainly operate.
  • the similar data search unit 216 has a second positioning result vector (second acquired in learning mode) that is most similar to the positioning result vector (first positioning result vector) acquired in the normal mode from a plurality of entries in the correction data table. Identify the entry that contains the positioning result vector). That is, the similar data search unit 216 searches the correction data table for a past positioning result vector similar to the current positioning result (positioning result vector) by the positioning unit 203.
  • the similar data search unit 216 calculates the distance between the two positioning result vectors, and identifies the entry including the past positioning result vector most similar to the current positioning result vector based on the calculated distance. More specifically, the similar data search unit 216 calculates the similarity between the positioning result vector calculated by the positioning unit 203 and each positioning result vector included in the correction data table, and the positioning result having the highest similarity is calculated. Identify the entry with the vector. The similar data search unit 216 delivers the correction value (correction vector) of the specified entry to the position correction unit 217.
  • the position correction unit 217 corrects the positioning result (positioning result at the start of positioning) in the normal mode by using the correction value generated based on the correct answer data of the specified entry. For example, as described above, when the correction value is a value obtained by subtracting the coordinates of one positioning result selected from a plurality of elements forming the positioning result vector from the coordinates of the own device included in the correct answer data. Think. In this case, the position correction unit 217 obtains the corrected positioning result (final result) by adding the correction value to the positioning result by the positioning unit 203.
  • FIG. 6 is a diagram showing an example of normal operation of the receiving terminal 10 according to the first embodiment.
  • the GNSS radio wave receiving unit 201 receives the radio wave from the GNSS satellite (step S111). At that time, if the GNSS correction information can also be acquired from the GNSS satellite, the GNSS radio wave receiving unit 201 outputs the GNSS correction information to the GNSS correction information acquisition unit 202. Information obtained by decoding radio waves (satellite orbit information, transmission time information, etc.) and GNSS correction information are transmitted to the positioning unit 203.
  • the receiving terminal 10 performs positioning calculation using the positioning unit 203 (step S112).
  • the receiving terminal 10 stores the positioning result (time series data including a plurality of positioning results; the positioning result vector) in the positioning result storage unit 211 (step S113).
  • the similar data search unit 216 searches the correction data table and identifies an entry having the positioning result vector (past positioning result vector) having the highest similarity to the positioning result (current positioning result vector) by the positioning unit 203 (the same). Step S114).
  • the similar data search unit 216 calculates the distance (for example, the Euclidean distance) between the positioning result vector of each entry stored in the correction information storage unit 215 and the positioning result vector calculated by the positioning unit 203. .. The similar data search unit 216 determines that the positioning result vector having the shortest calculated distance is the positioning result vector most similar to the positioning result obtained by the positioning unit 203.
  • the similar data search unit 216 performs threshold processing on the specified positioning result vector, and determines whether or not the specified positioning result vector has a higher degree of similarity than a predetermined threshold value (step S115).
  • step S115 If the similarity of the specified positioning result vector is equal to or less than a predetermined threshold value (step S115, No branch), the receiving terminal 10 ends the process (the positioning result of the positioning unit 203 is not corrected).
  • the similar data search unit 216 acquires a correction value (correction vector) from the entry of the specified positioning result vector (step). S116).
  • the value of the inner product between the two positioning result vectors is the product of the absolute values of the sizes of the two positioning result vectors. Whether or not it is close to is used.
  • the receiving terminal 10 (position correction unit 217) corrects the positioning result by the positioning unit 203 based on the acquired correction value (step S117).
  • the past satellite arrangement, positioning result vector, and correct answer data are accumulated.
  • the positioning result vector having a plurality of positioning results as elements
  • the satellite arrangement are associated with each of the satellite arrangements 20-1 to 20-3.
  • the correction results are also accumulated for each satellite arrangement.
  • the position of the receiving terminal 10 is input as correct answer data by a method different from positioning using radio waves from the GNSS satellite.
  • the receiving terminal 10 stores the correct answer data and the positioning result vector in association with each other.
  • the correction value is calculated so as to correct the positioning result in each satellite arrangement to the correct position.
  • the receiving terminal 10 compares the positioning result (positioning result vector) in the current satellite arrangement (satellite arrangement 30 shown on the right side of FIG. 7) with the positioning result vector acquired in the learning mode. That is, the locus of the current positioning result (displacement value of the positioning result; drift pattern) and the locus of the past positioning result are compared. As a result of the comparison, the past positioning result closest to the current positioning result is identified. In the example of FIG. 7, since the positioning result vector acquired at the satellite arrangement 30 o'clock and the positioning result vector acquired at the satellite arrangement 20-3 o'clock are the closest (similar), the positioning result is the correction value at the satellite arrangement 20-3 o'clock. Is corrected by.
  • the positioning result vector in the correction data table stored in the correction information storage unit 215 can be regarded as a fluctuation pattern (positioning drift pattern) of the positioning result including an error.
  • the receiving terminal 10 compares the past fluctuation pattern (past positioning result vector) with the current fluctuation pattern (current positioning result vector), and identifies the past fluctuation pattern similar to the current fluctuation pattern.
  • the receiving terminal 10 corrects the positioning result to the correct answer data (correct answer position) at the specified fluctuation pattern.
  • the receiving terminal 10 has a large amount of data on the spatial arrangement of the past GNSS satellites, the positioning result including the multipath error at that time, and the correction result (correct answer data) at that time. Collect. These pieces of information are stored in the correction information storage unit 215.
  • the receiving terminal 10 acquires a positioning pattern (drift pattern) including the actual positioning result and the error at that time.
  • the receiving terminal 10 compares the positioning pattern in the past satellite arrangement stored in the correction information storage unit 215 with the current positioning pattern. As a result of the comparison, the receiving terminal 10 extracts the past positioning pattern closest to the current positioning pattern, and corrects the positioning result based on the correction value of the extracted positioning pattern.
  • the first embodiment is configured to record past positioning patterns including the arrangement of satellites and find similar patterns. As a result, even in an environment where multipath exists, it is possible to perform correction using a positioning pattern including an error that reflects the influence of multipath and a correction value for the positioning pattern. Therefore, it is possible to correct the error after the positioning calculation.
  • the first effect is that it is possible to correct multipath error regardless of indicators such as variations in existing satellite arrangements such as DOP.
  • the reason is that in an environment where multipath is likely to occur, the variation in satellite arrangement is rather small. That is, the smaller the DOP, the larger the number of visible satellites. Therefore, DOP is not always a good index from the viewpoint of positioning accuracy in a multipath environment.
  • the second effect is that it is also effective against positioning errors caused by multipath, which is not known in advance before positioning calculation.
  • the reason is that there are an infinite number of combinations of errors due to satellite variations and multipath due to the presence of surrounding buildings.
  • the shape of the surrounding buildings is fixed to some extent, and the satellites are arranged in the same order with a cycle of about 24 hours, so it is expected that similar positioning errors will occur in similar areas. it can. Therefore, as described in the disclosure of the present application, it is possible to detect the pattern and correct the error for each pattern by grasping and learning the pattern of the positioning result including the multipath error.
  • FIG. 9 is a diagram showing an example of the internal configuration of the positioning result correction unit 204 according to the second embodiment. Comparing FIGS. 3 and 9, the processing configuration of the positioning result correction unit 204 according to the second embodiment is the positioning result correction unit 204 according to the first embodiment, except that the similar data search unit 216 is not provided. Can be the same as.
  • the second embodiment is different from the first embodiment in that the correction information generation unit 214 generates a learning model and the correction information storage unit 215 stores the learning model.
  • the differences will be mainly described.
  • the correction information generation unit 214 generates a learning model based on satellite position information, a positioning result vector in the learning mode, and correct answer data. At that time, the correction information generation unit 214 converts the positioning result read from the positioning result storage unit 211 into the coordinates relative to the correct answer data (correct answer position).
  • the correction information generation unit 214 After that, the correction information generation unit 214 generates a positioning result converted into relative coordinates (hereinafter referred to as a positioning relative position) and a vector having the satellite arrangement of the GNSS satellite as an element (positioning result, the satellite arrangement is vectorized). To do).
  • the correction information generation unit 214 performs learning by a neural network using the vector. Specifically, the correction information generation unit 214 weights the neural network by comparing the result obtained by inputting the vectorized satellite arrangement and the relative positioning position into the neural network with the correct answer data which is the teacher data. To determine. The learning model obtained in this way is stored in the correction information storage unit 215.
  • the position correction unit 217 vectorizes the positioning relative position of the own device (reception terminal 10) and the GNSS satellite position, etc., and expresses the fluctuation pattern of the positioning result, as in the learning mode. Input the vector into the training model. The output of the learning model (neural network weighted by learning) is the corrected positioning result. That is, the position correction unit 217 corrects the positioning result in the normal mode by inputting the positioning result (relative position to the correct answer) obtained in the normal mode into the learning model.
  • the time, the positioning relative position, etc. are input to the neural network, and the weight is determined by comparing the output with the correct answer data (correct answer relative position).
  • the time, relative positioning position, etc. are input to the neural network, and the output result is the corrected positioning result.
  • the satellite orbit information obtained from the GNSS radio wave receiving unit 201 is converted into a satellite arrangement (satellite pattern) by preprocessing by the satellite information acquisition unit 212 during both learning and prediction.
  • the relationship between the positioning pattern including the influence of the multipath error and the correct answer data is learned by using machine learning.
  • the accurate position of the receiving terminal 10 can be obtained by inputting the positioning pattern into the learning model obtained by the learning.
  • FIG. 11 is a diagram showing an example of the hardware configuration of the receiving terminal 10.
  • the receiving terminal 10 has the configuration illustrated in FIG.
  • the receiving terminal 10 includes a processor 311, a memory 312, an input / output interface 313, a communication interface 314, and the like.
  • the components such as the processor 311 are connected by an internal bus or the like so that they can communicate with each other.
  • the configuration shown in FIG. 11 does not mean to limit the hardware configuration of the receiving terminal 10.
  • the receiving terminal 10 may include hardware (not shown), or may not include an input / output interface 313 if necessary.
  • the number of processors 311 and the like included in the receiving terminal 10 is not limited to the example of FIG. 11, and for example, a plurality of processors 311 may be included in the receiving terminal 10.
  • the processor 311 is a programmable device such as a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or a DSP (Digital Signal Processor). Alternatively, the processor 311 may be a device such as an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit). The processor 311 executes various programs including an operating system (OS; Operating System).
  • OS Operating System
  • the memory 312 is a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), an HDD (HardDiskDrive), an SSD (SolidStateDrive), or the like.
  • the memory 312 stores an OS program, an application program, and various data.
  • the input / output interface 313 is an interface of a display device or an input device (not shown).
  • the display device is, for example, a liquid crystal display or the like.
  • the input device is, for example, a device that accepts user operations such as a keyboard and a mouse.
  • the communication interface 314 is a circuit, module, or the like that communicates with another device.
  • the communication interface 314 includes an RF (Radio Frequency) circuit and the like.
  • the function of the receiving terminal 10 is realized by various processing modules.
  • the processing module is realized, for example, by the processor 311 executing a program stored in the memory 312.
  • the program can also be recorded on a computer-readable storage medium.
  • the storage medium may be a non-transitory such as a semiconductor memory, a hard disk, a magnetic recording medium, or an optical recording medium. That is, the present invention can also be embodied as a computer program product.
  • the program can be downloaded via a network or updated using a storage medium in which the program is stored.
  • the processing module may be realized by a semiconductor chip.
  • the configuration, operation, and the like of the receiving terminal 10 described in the above embodiment are examples, and are not intended to limit the configuration and the like of the receiving terminal 10.
  • the correction information storage unit 215 may be installed outside the receiving terminal 10, and the receiving terminal 10 may access the external correction information storage unit 215.
  • the storage unit (database) externally in this way, the correction information (correction data table, learning model) generated by the other receiving terminal 10 can be used by another receiving terminal 10.
  • the configuration in which the correction information generation unit 214 and the position correction unit 217 are included in one receiving terminal 10 has been described, but these functions may be separated and implemented in different receiving terminals 10. .. Specifically, the terminal for accumulating correction information and the terminal for performing positioning may be different. In this case, the terminal for accumulating the correction information performs the operation of the learning mode described above, and the terminal for performing positioning performs the operation of the normal mode described above.
  • the position correction unit 217 corrects the positioning result using the correction information, but the receiving terminal 10 may treat the correct answer data of the entry specified by the similar data search unit 216 as the positioning result as it is. ..
  • the similarity data search unit 216 calculates the similarity with respect to the positioning result vector, but a vector that integrates the satellite arrangement pattern and the positioning result vector may be used as the calculation target of the similarity.
  • the present invention provides positioning results in places where there are no roads where the map matching function cannot be used or where multipath is large in urban areas. It can be suitably applied to applications such as correction of.
  • Positioning units (101, 203) that perform positioning based on radio waves transmitted from multiple satellites and generate positioning result vectors with multiple positioning results as elements by repeating positioning calculation when positioning is started.
  • the positioning result correction unit (102, 204) that corrects the positioning result at the start of positioning, and
  • the positioning result correction units (102, 204) were obtained in the learning mode, respectively. Correction based on satellite position information regarding the positions of each of the plurality of satellites, the second positioning result vector, and correct answer data regarding the position of the own device acquired by a method different from positioning by radio waves from the plurality of satellites.
  • the positioning result correction unit (102, 204) A receiving terminal (10, 100) that corrects the positioning result in the normal mode by using the generated correction information.
  • the positioning result correction unit (102, 204) was acquired in the learning mode.
  • a generation unit (214) that generates a correction data table having the satellite position information, the second positioning result vector, and the correct answer data as one entry.
  • a storage unit (215) that stores the generated correction data table, and The receiving terminal (10, 100) according to Appendix 1.
  • the positioning result correction unit (102, 204) A similar data search unit (216) that identifies an entry including the second positioning result vector that is most similar to the first positioning result vector from a plurality of entries included in the correction data table.
  • a position correction unit (217) that corrects the positioning result in the normal mode using the correction value generated based on the correct answer data of the specified entry, and The receiving terminal (10, 100) according to Appendix 2, further comprising.
  • the correction value is a value obtained by subtracting the coordinates of one positioning result selected from a plurality of elements forming the second positioning result vector from the coordinates of the own device included in the correct answer data.
  • the similar data search unit (216) calculates the distance between the first and second positioning result vectors, and based on the calculated distance, the second positioning that is most similar to the first positioning result vector.
  • the positioning result correction unit (102, 204) was acquired in the learning mode.
  • a generation unit (214) that generates a learning model based on the satellite position information, the second positioning result vector, and the correct answer data.
  • a storage unit (215) that stores the generated learning model, The receiving terminal (10, 100) according to Appendix 1.
  • the positioning result correction unit (102, 204) The receiving terminal (10, 100) according to Appendix 6, further comprising a position correction unit (217) that corrects the positioning result in the normal mode by using the learning model.
  • [Appendix 8] The reception according to Appendix 6 or 7, wherein the generation unit (214) uses the satellite position information and the relative position of the positioning result with respect to the coordinates of the own device included in the correct answer data to generate the learning model.
  • [Appendix 9] The generator (214) vectorizes the satellite position information and the relative position of the positioning result with respect to the coordinates of the own device included in the correct answer data, and inputs the vectorized data to the neural network.
  • the receiving terminal (10, 100) according to.
  • [Appendix 10] The receiving terminal (10, 100) according to Appendix 9, wherein the generation unit (214) determines the weight of the neural network based on the correct answer data.
  • Positioning units (101, 203) that perform positioning based on radio waves transmitted from multiple satellites, and when positioning is started, generate positioning result vectors with multiple positioning results as elements by repeating positioning calculations.
  • the positioning result correction unit (102, 204) that corrects the positioning result at the start of positioning, and
  • the receiving terminal (10, 100) provided with The position of the own device acquired by a method different from the satellite position information regarding the positions of the plurality of satellites, the second positioning result vector, and the positioning by the radio waves from the plurality of satellites, which are obtained in the learning mode.
  • Positioning units (101, 203) that perform positioning based on radio waves transmitted from multiple satellites, and when positioning is started, generate positioning result vectors with multiple positioning results as elements by repeating positioning calculations.
  • the positioning result correction unit (102, 204) that corrects the positioning result at the start of positioning, and
  • On the computer (311) mounted on the receiving terminal (10, 100) provided with The position of the own device acquired by a method different from the satellite position information regarding the positions of the plurality of satellites, the second positioning result vector, and the positioning by the radio waves from the plurality of satellites, which are obtained in the learning mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

[Problem] To provide a receiver terminal capable of post-GNSS positioning correction considering multipath errors. [Solution] A receiver terminal comprises a positioning unit and a positioning result correction unit. The positioning unit performs positioning on the basis of radio waves transmitted from a plurality of satellites, and once the positioning starts, generates a positioning result vector including a plurality of positioning results by repeating positioning calculation. The positioning result correction unit corrects the positioning result at the start of the positioning using a first positioning result vector obtained during a normal mode. The positioning result correction unit generates correction information on the basis of the following obtained during a learning mode: satellite position information related to positions of the respective satellites, a second positioning result vector, and correct data related to a position of the receiver terminal obtained by a different method than the positioning using radio waves from the plurality of satellites. The positioning result correction unit corrects the positioning result from the normal mode using the generated correction information.

Description

受信端末、測位方法及びプログラムReceiving terminal, positioning method and program
 本発明は、受信端末、測位方法及びプログラムに関する。 The present invention relates to a receiving terminal, a positioning method and a program.
 GNSS(Global Navigation Satellite System)と称される、衛星測位システムの一例が非特許文献1及び特許文献1に開示されている。 An example of a satellite positioning system called GNSS (Global Navigation Satellite System) is disclosed in Non-Patent Document 1 and Patent Document 1.
 通常、衛星測位システムに対応した端末は、衛星が送信する電波を受信するGNSS電波受信部と、GNSS補正情報を受信するGNSS補正情報受信部と、GNSS電波及び補正情報を利用して測位する測位部と、を含んで構成される。 Normally, a terminal compatible with a satellite positioning system has a GNSS radio wave receiving unit that receives radio waves transmitted by satellites, a GNSS correction information receiving unit that receives GNSS correction information, and positioning that uses GNSS radio waves and correction information for positioning. It is composed of a part and.
 上記のような構成を備える端末(GNSS受信機)は、概略以下のように動作する。 A terminal (GNSS receiver) having the above configuration operates as follows.
 GNSS電波受信部は、GNSS衛星からの電波を受信し、当該受信電波をデコードする。GNSS電波受信部は、デコードの結果得られる衛星の軌道情報や時刻情報を測位部に引き渡す。 The GNSS radio wave receiving unit receives radio waves from the GNSS satellite and decodes the received radio waves. The GNSS radio wave receiving unit delivers the satellite orbit information and time information obtained as a result of decoding to the positioning unit.
 測位部は、取得した軌道情報や時刻情報に基づき、他のGNSS衛星の概略位置を計算する。その後、測位部は、当該GNSS衛星の概略位置を用いて、各GNSS衛星の詳細な位置を取得する。 The positioning unit calculates the approximate position of other GNSS satellites based on the acquired orbit information and time information. After that, the positioning unit acquires the detailed position of each GNSS satellite by using the approximate position of the GNSS satellite.
 測位部は、各GNSS衛星から電波を受信し、受信時刻を自装置(GNSS受信機)のクロックで計測する。測位部は、当該計測した受信時刻を、GNSS衛星からの受信信号に含まれる送信時刻から減算することで、電波到達時間(電波が、GNSS衛星からGNSS受信機に到達するまでに要した時間)を計算する。測位部は、電波到達時間に光速度を乗算することで、GNSS衛星からGNSS受信機までの距離を計算する。 The positioning unit receives radio waves from each GNSS satellite and measures the reception time with the clock of its own device (GNSS receiver). The positioning unit subtracts the measured reception time from the transmission time included in the reception signal from the GNSS satellite to reach the radio wave (the time required for the radio wave to reach the GNSS receiver from the GNSS satellite). To calculate. The positioning unit calculates the distance from the GNSS satellite to the GNSS receiver by multiplying the radio wave arrival time by the speed of light.
 測位部は、上記距離計算プロセスを繰り替えすることで、4つ以上のGNSS衛星とGNSS受信機との間の距離(疑似距離と称される)を計算する。 The positioning unit calculates the distance (called a pseudo distance) between four or more GNSS satellites and the GNSS receiver by repeating the above distance calculation process.
 ここで、上記プロセスにより計算された疑似距離には、GNSS衛星のクロック誤差、GNSS衛星の軌道誤差、電離層誤差等の様々な種類の誤差の影響が含まれる。そこで、GNSS衛星は、上記種々の誤差のうち、軌道誤差やクロック誤差に関する情報も送信している。  Here, the pseudo distance calculated by the above process includes the influence of various types of errors such as the clock error of the GNSS satellite, the orbit error of the GNSS satellite, and the ionospheric error. Therefore, the GNSS satellite also transmits information on the orbital error and the clock error among the above-mentioned various errors.
 GNSS補正情報受信部は、上記誤差に関する情報をGNSS補正情報として受信し、測位部に引き渡す。 The GNSS correction information receiving unit receives the information related to the above error as GNSS correction information and delivers it to the positioning unit.
 GNSS受信機(測位部)は、取得したGNSS補正情報を用いて、疑似距離を補正する。測位部は、上記のようにして求めた補正後の疑似距離を4つ以上用いることで、GNSS受信機の地球上の位置(緯度、経度、標高)を特定する。 The GNSS receiver (positioning unit) corrects the pseudo distance using the acquired GNSS correction information. The positioning unit identifies the position (latitude, longitude, altitude) of the GNSS receiver on the earth by using four or more of the corrected pseudo distances obtained as described above.
 可視衛星の数が4以上であれば、測位部は、DOP(Dilution Of Precision)値を参照し、なるべく衛星配置のばらつきが大きい衛星を組み合わせて三角測量を行う。なお、DOP値は、衛星配置のばらつき度合いを示す指標であり、DOP値が大きいほど衛星配置のばらつきが大きい。 If the number of visible satellites is 4 or more, the positioning unit refers to the DOP (Dilution Of Precision) value and performs triangulation by combining satellites with as much variation in satellite arrangement as possible. The DOP value is an index showing the degree of variation in satellite arrangement, and the larger the DOP value, the larger the variation in satellite arrangement.
 但し、上記のような疑似距離に関する補正を行っても十分ではないことがある。具体的には、衛星から送信された電波がビル等に反射し、GNSS受信機が当該反射波を受信する場合である。 However, it may not be sufficient to make the above corrections for pseudo distances. Specifically, this is a case where a radio wave transmitted from a satellite is reflected by a building or the like and the GNSS receiver receives the reflected wave.
 この場合、GNSS受信機は、反射波を使って疑似距離を計算し、測位計算を行う。そのため、計算された位置には誤差が生じることがある。このような反射波により生じる誤差は、「マルチパス誤差」と称される。GNSS受信機は、当該マルチパス誤差をクロック誤差や電離層誤差などを対象とした誤差補正技術を使って補正することはできない。 In this case, the GNSS receiver calculates the pseudo distance using the reflected wave and performs the positioning calculation. Therefore, an error may occur in the calculated position. The error caused by such reflected waves is referred to as "multipath error". The GNSS receiver cannot correct the multipath error by using an error correction technique for clock error, ionospheric error, and the like.
 特許文献1には、GNSS補正情報を使った補正とは異なる補正方法が記載されている。具体的には、特許文献1には、GNSS電波受信部、GNSS補正情報受信部、測位部に加え、測位後補正部、推測位置算出部、測位結果記憶部をさらに含む。 Patent Document 1 describes a correction method different from the correction using GNSS correction information. Specifically, Patent Document 1 further includes a post-positioning correction unit, an estimated position calculation unit, and a positioning result storage unit in addition to the GNSS radio wave receiving unit, the GNSS correction information receiving unit, and the positioning unit.
 特許文献1に開示された技術では、非特許文献1と同様に、GNSS電波受信部、GNSS補正情報受信部、測位部を用いて測位(GNSS受信機の位置計算)が行われる。特許文献1では測位の際に算出される、速度や加速度等の情報を用いて、測位後補正部内部の推測位置算出部が、GNSSシステムによる測位結果とは独立に位置を算出する。 In the technique disclosed in Patent Document 1, positioning (position calculation of the GNSS receiver) is performed using the GNSS radio wave receiving unit, the GNSS correction information receiving unit, and the positioning unit as in the non-patent document 1. In Patent Document 1, the estimated position calculation unit inside the post-positioning correction unit calculates the position independently of the positioning result by the GNSS system by using the information such as speed and acceleration calculated at the time of positioning.
 その際、推測位置算出部は、デッドレコニングと呼ばれる速度、加速度の時間積分処理を行い、上記GNSS受信機の位置を算出する。当該算出された位置により、測位計算される前の疑似距離が補正される。 At that time, the dead reckoning unit performs a time integration process of velocity and acceleration called dead reckoning, and calculates the position of the GNSS receiver. The calculated position corrects the pseudo distance before the positioning calculation is performed.
特開2000-002759号公報Japanese Unexamined Patent Publication No. 2000-002759
 上記既存の測位結果の補正方法は、マルチパス誤差に対して有効な補正ではない。 The above existing positioning result correction method is not an effective correction for multipath error.
 第1に、GNSSシステムで誤差補正の指標としてDOP値が用いられるが、当該指標は衛星配置のばらつき度合いを示すに留まり、マルチパス環境に適した指標ではない。その理由は、周辺に高層ビルがあるような環境では、大きく配置がばらつくような衛星の組み合わせ(DOP値が大きい組み合わせ)であっても、可視衛星の数が減る可能性があるためである。 First, the DOP value is used as an index for error correction in the GNSS system, but the index only indicates the degree of variation in satellite arrangement and is not an index suitable for a multipath environment. The reason is that in an environment where there are skyscrapers in the vicinity, the number of visible satellites may decrease even if the combination of satellites has a large variation in arrangement (combination with a large DOP value).
 第2に、特許文献1に開示されたような速度、加速度を用いた補正は、測位計算をする前の疑似距離に対する補正であり、マルチパスに起因する測位誤差には有効ではない。その理由は、マルチパスの影響はGNSS受信機の位置と衛星の配置パターンの両方に依存し、且つ、反射の程度はビルなどの表面の状態によっても異なる。そのため、マルチパスの影響に関し、測位計算の前にモデルを作っておくことは困難であり、疑似距離の補正情報という形式で補正情報を事前に配信することが難しいためである。 Secondly, the correction using speed and acceleration as disclosed in Patent Document 1 is a correction for the pseudo distance before the positioning calculation, and is not effective for the positioning error caused by multipath. The reason is that the influence of multipath depends on both the position of the GNSS receiver and the arrangement pattern of the satellite, and the degree of reflection also depends on the surface condition such as a building. Therefore, regarding the influence of multipath, it is difficult to create a model before positioning calculation, and it is difficult to distribute the correction information in advance in the form of pseudo-distance correction information.
 本発明は、GNSS測位後にマルチパス誤差を考慮した補正が可能な、受信端末、測位方法及びプログラムを提供することを主たる目的とする。 A main object of the present invention is to provide a receiving terminal, a positioning method, and a program capable of making corrections in consideration of multipath error after GNSS positioning.
 本発明の第1の視点によれば、複数の衛星から送信される電波に基づいて測位を行い、測位を開始すると測位計算を繰り返すことで複数の測位結果を要素とする測位結果ベクトルを生成する、測位部と、通常モード時に得られた第1の測位結果ベクトルを用いて、測位開始時の測位結果を補正する、測位結果補正部と、を備え、前記測位結果補正部は、学習モード時にそれぞれ得られた、前記複数の衛星それぞれの位置に関する衛星位置情報と、第2の測位結果ベクトルと、前記複数の衛星からの電波による測位とは異なる方法で取得された自装置の位置に関する正解データと、に基づき補正情報を生成し、前記測位結果補正部は、前記生成された補正情報を用いて前記通常モード時の測位結果を補正する、受信端末が提供される。 According to the first viewpoint of the present invention, positioning is performed based on radio waves transmitted from a plurality of satellites, and when positioning is started, positioning calculation is repeated to generate a positioning result vector having a plurality of positioning results as elements. , And a positioning result correction unit that corrects the positioning result at the start of positioning by using the positioning unit and the first positioning result vector obtained in the normal mode. The positioning result correction unit is in the learning mode. The satellite position information regarding the positions of the plurality of satellites, the second positioning result vector, and the correct answer data regarding the position of the own device acquired by a method different from the positioning by radio waves from the plurality of satellites. The positioning result correction unit is provided with a receiving terminal that generates correction information based on the above and corrects the positioning result in the normal mode by using the generated correction information.
 本発明の第2の視点によれば、複数の衛星から送信される電波に基づいて測位を行い、測位を開始すると測位計算を繰り返すことで複数の測位結果を要素とする測位結果ベクトルを生成する、測位部と、通常モード時に得られた第1の測位結果ベクトルを用いて、測位開始時の測位結果を補正する、測位結果補正部と、を備える受信端末において、学習モード時にそれぞれ得られた、前記複数の衛星それぞれの位置に関する衛星位置情報と、第2の測位結果ベクトルと、前記複数の衛星からの電波による測位とは異なる方法で取得された自装置の位置に関する正解データと、に基づき補正情報を生成し、前記生成された補正情報を用いて前記通常モード時の測位結果を補正する、ことを含む測位方法が提供される。 According to the second viewpoint of the present invention, positioning is performed based on radio waves transmitted from a plurality of satellites, and when positioning is started, positioning calculation is repeated to generate a positioning result vector having a plurality of positioning results as elements. , Obtained in the learning mode in the receiving terminal including the positioning unit and the positioning result correction unit that corrects the positioning result at the start of positioning by using the first positioning result vector obtained in the normal mode. Based on the satellite position information regarding the positions of the plurality of satellites, the second positioning result vector, and the correct answer data regarding the position of the own device acquired by a method different from the positioning by radio waves from the plurality of satellites. A positioning method including generating correction information and using the generated correction information to correct the positioning result in the normal mode is provided.
 本発明の第3の視点によれば、複数の衛星から送信される電波に基づいて測位を行い、測位を開始すると測位計算を繰り返すことで複数の測位結果を要素とする測位結果ベクトルを生成する、測位部と、通常モード時に得られた第1の測位結果ベクトルを用いて、測位開始時の測位結果を補正する、測位結果補正部と、を備える受信端末に搭載されたコンピュータに、学習モード時にそれぞれ得られた、前記複数の衛星それぞれの位置に関する衛星位置情報と、第2の測位結果ベクトルと、前記複数の衛星からの電波による測位とは異なる方法で取得された自装置の位置に関する正解データと、に基づき補正情報を生成する処理と、前記生成された補正情報を用いて前記通常モード時の測位結果を補正する処理と、を実行させるプログラムが提供される。 According to the third viewpoint of the present invention, positioning is performed based on radio waves transmitted from a plurality of satellites, and when positioning is started, positioning calculation is repeated to generate a positioning result vector having a plurality of positioning results as elements. , A learning mode in a computer mounted on a receiving terminal equipped with a positioning result correction unit that corrects the positioning result at the start of positioning by using the positioning unit and the first positioning result vector obtained in the normal mode. Correct answers regarding the satellite position information regarding the positions of the plurality of satellites, the second positioning result vector, and the position of the own device obtained by a method different from the positioning by radio waves from the plurality of satellites, which were obtained at times. A program for executing a process of generating correction information based on the data and a process of correcting the positioning result in the normal mode by using the generated correction information is provided.
 本発明の各視点によれば、GNSS測位後にマルチパス誤差を考慮した補正が可能な、受信端末、測位方法及びプログラムが提供される。なお、本発明により、当該効果の代わりに、又は当該効果と共に、他の効果が奏されてもよい。 According to each viewpoint of the present invention, a receiving terminal, a positioning method, and a program capable of making corrections in consideration of multipath error after GNSS positioning are provided. In addition, according to the present invention, other effects may be produced in place of or in combination with the effect.
図1は、一実施形態の概要を説明するための図である。FIG. 1 is a diagram for explaining an outline of one embodiment. 図2は、第1の実施形態に係る受信端末の処理構成の一例を示す図である。FIG. 2 is a diagram showing an example of a processing configuration of a receiving terminal according to the first embodiment. 図3は、第1の実施形態に係る測位結果補正部の内部構成の一例を示す図である。FIG. 3 is a diagram showing an example of the internal configuration of the positioning result correction unit according to the first embodiment. 図4は、生成部が生成する補正情報(補正データテーブル)の一例を示す図である。FIG. 4 is a diagram showing an example of correction information (correction data table) generated by the generation unit. 図5は、第1の実施形態に係る受信端末の学習動作の一例を示す図である。FIG. 5 is a diagram showing an example of a learning operation of the receiving terminal according to the first embodiment. 図6は、第1の実施形態に係る受信端末の通常動作の一例を示す図である。FIG. 6 is a diagram showing an example of normal operation of the receiving terminal according to the first embodiment. 図7は、第1の実施形態に係る受信端末の動作を説明するための図である。FIG. 7 is a diagram for explaining the operation of the receiving terminal according to the first embodiment. 図8は、第1の実施形態に係る受信端末の動作を説明するための図である。FIG. 8 is a diagram for explaining the operation of the receiving terminal according to the first embodiment. 図9は、第2の実施形態に係る測位結果補正部の内部構成の一例を示す図である。FIG. 9 is a diagram showing an example of the internal configuration of the positioning result correction unit according to the second embodiment. 図10は、第2の実施形態に係る受信端末の動作を説明するための図である。FIG. 10 is a diagram for explaining the operation of the receiving terminal according to the second embodiment. 図11は、受信端末のハードウェア構成の一例を示す図である。FIG. 11 is a diagram showing an example of the hardware configuration of the receiving terminal.
 はじめに、一実施形態の概要について説明する。なお、この概要に付記した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、この概要の記載はなんらの限定を意図するものではない。なお、本明細書及び図面において、同様に説明されることが可能な要素については、同一の符号を付することにより重複説明が省略され得る。 First, the outline of one embodiment will be explained. It should be noted that the drawing reference reference numerals added to this outline are added to each element for convenience as an example to aid understanding, and the description of this outline is not intended to limit anything. In the present specification and the drawings, elements that can be similarly described may be designated by the same reference numerals so that duplicate description may be omitted.
 一実施形態に係る受信端末100は、測位部101と測位結果補正部102を含む(図1参照)。測位部101は、複数の衛星から送信される電波に基づいて測位を行い、測位を開始すると測位計算を繰り返すことで複数の測位結果を要素とする測位結果ベクトルを生成する。測位結果補正部102は、通常モード時に得られた第1の測位結果ベクトルを用いて、測位開始時の測位結果を補正する。測位結果補正部102は、学習モード時に得られた、複数の衛星それぞれの位置に関する衛星位置情報と、第2の測位結果ベクトルと、複数の衛星からの電波による測位とは異なる方法で取得された自装置の位置に関する正解データと、に基づき補正情報を生成する。測位結果補正部102は、生成された補正情報を用いて通常モード時の測位結果を補正する。 The receiving terminal 100 according to one embodiment includes a positioning unit 101 and a positioning result correction unit 102 (see FIG. 1). The positioning unit 101 performs positioning based on radio waves transmitted from a plurality of satellites, and when positioning is started, the positioning calculation is repeated to generate a positioning result vector having a plurality of positioning results as elements. The positioning result correction unit 102 corrects the positioning result at the start of positioning by using the first positioning result vector obtained in the normal mode. The positioning result correction unit 102 has acquired satellite position information regarding the positions of each of the plurality of satellites, a second positioning result vector, and positioning by radio waves from the plurality of satellites, which are obtained in the learning mode. Corrected information is generated based on the correct answer data regarding the position of the own device. The positioning result correction unit 102 corrects the positioning result in the normal mode by using the generated correction information.
 受信端末100は、学習モード時に、衛星の位置情報(衛星の配置パターン)とその際の測位結果の軌跡(測位結果ベクトル)とを関連付けて(紐付けして)記憶する。さらに、受信端末100は、GNSS衛星からの電波とは異なる手段で算出された位置情報も上記測位結果ベクトル等に関係づけて記憶し補正情報を生成する。当該補正情報は、マルチパスの影響を受けた測位結果とマルチパスの影響を受けていない位置情報(正解データ)を関連付けた情報である。ここで、マルチパスの影響は、衛星の位置と自装置の位置が同じであれば、ビル等の位置が変化するわけではないので時間帯等によらず一定であると想定できる。そのため、通常モードにおける測位結果もマルチパスの影響を受けて真の位置(正解位置)からずれてしまう。しかし、補正情報には当該マルチパスの影響によるずれと真の位置の関係が記憶されているので、受信端末100は、現在の測位結果(測位結果ベクトル)を手がかりに過去に収集された類似の測位結果を検索する。類似の測位結果が得られれば、受信端末100は、対応する正解データ等により測位結果を補正することができる。このように、受信端末100は、GNSS測位後にマルチパス誤差を考慮した補正を行うことができる。 In the learning mode, the receiving terminal 100 stores (associates) the position information of the satellite (arrangement pattern of the satellite) with the trajectory of the positioning result (positioning result vector) at that time. Further, the receiving terminal 100 also stores the position information calculated by a means different from the radio wave from the GNSS satellite in relation to the positioning result vector and the like to generate the correction information. The correction information is information in which the positioning result affected by the multipath and the position information (correct answer data) not affected by the multipath are associated with each other. Here, if the position of the satellite and the position of the own device are the same, the influence of multipath can be assumed to be constant regardless of the time zone or the like because the position of the building or the like does not change. Therefore, the positioning result in the normal mode is also affected by the multipath and deviates from the true position (correct answer position). However, since the correction information stores the relationship between the deviation due to the influence of the multipath and the true position, the receiving terminal 100 is similar to the one collected in the past using the current positioning result (positioning result vector) as a clue. Search for positioning results. If a similar positioning result is obtained, the receiving terminal 100 can correct the positioning result with the corresponding correct answer data or the like. In this way, the receiving terminal 100 can perform correction in consideration of the multipath error after GNSS positioning.
 以下に具体的な実施形態について、図面を参照してさらに詳しく説明する。 The specific embodiment will be described in more detail below with reference to the drawings.
[第1の実施形態]
 第1の実施形態について、図面を用いてより詳細に説明する。
[First Embodiment]
The first embodiment will be described in more detail with reference to the drawings.
 第1の実施形態に係る受信端末10は、スマートフォン、携帯電話機、ゲーム機、タブレット等の携帯端末装置が例示される。但し、受信端末10を携帯端末装置に限定する趣旨ではなく、受信端末10は測位を必要とする任意の装置、デバイスとすることができる。 Examples of the receiving terminal 10 according to the first embodiment are mobile terminal devices such as smartphones, mobile phones, game consoles, and tablets. However, the purpose is not to limit the receiving terminal 10 to a mobile terminal device, and the receiving terminal 10 can be any device or device that requires positioning.
 図2は、第1の実施形態に係る受信端末10の処理構成(処理モジュール)の一例を示す図である。図2を参照すると、受信端末10は、GNSS電波受信部201と、GNSS補正情報取得部202と、測位部203と、測位結果補正部204と、最終結果記憶部205と、を含んで構成される。 FIG. 2 is a diagram showing an example of a processing configuration (processing module) of the receiving terminal 10 according to the first embodiment. Referring to FIG. 2, the receiving terminal 10 includes a GNSS radio wave receiving unit 201, a GNSS correction information acquisition unit 202, a positioning unit 203, a positioning result correction unit 204, and a final result storage unit 205. To.
 GNSS電波受信部201は、GNSS衛星からの電波を受信する。GNSS電波受信部201は、受信電波をデコードし、衛星位置情報(衛星軌道情報)、送信時刻、クロック補正情報等の情報を抽出する。GNSS電波受信部201は、当該抽出した情報を測位部203等の各種モジュールに引き渡す。 The GNSS radio wave receiving unit 201 receives radio waves from the GNSS satellite. The GNSS radio wave receiving unit 201 decodes the received radio wave and extracts information such as satellite position information (satellite orbit information), transmission time, and clock correction information. The GNSS radio wave receiving unit 201 delivers the extracted information to various modules such as the positioning unit 203.
 GNSS補正情報取得部202は、補正情報を取得する。具体的には、GNSS補正情報取得部202は、GNSS電波受信部201からクロック補正情報等を取得する。あるいは、GNSS補正情報取得部202は、インターネット上のサーバ等から補正情報を取得してもよい。 The GNSS correction information acquisition unit 202 acquires correction information. Specifically, the GNSS correction information acquisition unit 202 acquires clock correction information and the like from the GNSS radio wave reception unit 201. Alternatively, the GNSS correction information acquisition unit 202 may acquire correction information from a server or the like on the Internet.
 測位部203は、複数の衛星から送信される電波に基づいて自装置(受信端末10)の測位を行う。具体的には、測位部203は、上記説明したように、4つ以上の衛星に関する疑似距離を算出する。その後、測位部203は、算出した疑似距離をGNSS補正情報により補正する。なお、測位部203による疑似距離の算出やGNSS補正情報を用いた補正は既存の技術を使用することができるので詳細な説明を省略する。 The positioning unit 203 performs positioning of its own device (reception terminal 10) based on radio waves transmitted from a plurality of satellites. Specifically, the positioning unit 203 calculates pseudo distances related to four or more satellites as described above. After that, the positioning unit 203 corrects the calculated pseudo distance with the GNSS correction information. Since the existing technique can be used for the calculation of the pseudo distance by the positioning unit 203 and the correction using the GNSS correction information, detailed description thereof will be omitted.
 測位部203は、測位を開始すると、その測位開始時刻から所定の期間、測位計算を繰り返す。例えば、測位部203は、測位を開始すると所定のサンプリング周期で測位計算を繰り返し、複数の測位結果を要素とする測位結果ベクトルを生成する。なお、測位部203が所定のサンプリング周期で測位計算を繰り返すことは例示であって測位部203による測位計算を限定する趣旨ではない。測位部203は、時間的に複数回の位置測位により測位結果ベクトルを生成すればよい。測位部203は、測位開始時刻、計算した測位結果(測位結果ベクトル)と各測位における測位時刻を測位結果補正部204に引き渡す。 When the positioning unit 203 starts positioning, the positioning unit 203 repeats the positioning calculation for a predetermined period from the positioning start time. For example, when positioning is started, the positioning unit 203 repeats the positioning calculation at a predetermined sampling cycle to generate a positioning result vector having a plurality of positioning results as elements. It should be noted that the fact that the positioning unit 203 repeats the positioning calculation at a predetermined sampling cycle is an example, and does not mean that the positioning calculation by the positioning unit 203 is limited. The positioning unit 203 may generate a positioning result vector by positioning the position a plurality of times in time. The positioning unit 203 delivers the positioning start time, the calculated positioning result (positioning result vector), and the positioning time in each positioning to the positioning result correction unit 204.
 なお、本願開示において、「ベクトル」は方向を持った物理量を示すものではなく、複数の要素の集合を示す。従って、測位結果ベクトルは、単に複数の測定結果を含む集合であり、測位結果ベクトルは方向に関する情報を含まない。換言すれば、測位結果ベクトルに含まれる各要素(測位結果)を接続すれば、その軌跡は直線になることもあれば曲線になることもある。なお、測位結果は少なくとも2以上の座標情報(例えば、X、Y座標)を含むので、測位結果自体をベクトルと捉えることも可能である。この場合、測位結果ベクトルは、複数のベクトルを含むベクトル群と捉えることも可能である。但し、この場合であっても、複数の座標を含む測位結果を展開すれば、測位結果ベクトルは複数の座標を含むベクトルであると言える。 In the disclosure of the present application, the "vector" does not indicate a physical quantity having a direction, but indicates a set of a plurality of elements. Therefore, the positioning result vector is simply a set containing a plurality of measurement results, and the positioning result vector does not include information regarding the direction. In other words, if each element (positioning result) included in the positioning result vector is connected, the locus may be a straight line or a curved line. Since the positioning result includes at least two or more coordinate information (for example, X and Y coordinates), the positioning result itself can be regarded as a vector. In this case, the positioning result vector can be regarded as a vector group including a plurality of vectors. However, even in this case, if the positioning result including a plurality of coordinates is expanded, it can be said that the positioning result vector is a vector including a plurality of coordinates.
 測位部203は、測位を開始するとその旨(測位開始時刻)を測位結果補正部204に通知する。また、測位部203は、測位を終了するとその旨を測位結果補正部204に通知する。当該通知された測位開始時刻や測位終了の事実は、測位結果補正部204の内部モジュールで共有される。 When the positioning unit 203 starts positioning, the positioning unit 203 notifies the positioning result correction unit 204 to that effect (positioning start time). Further, the positioning unit 203 notifies the positioning result correction unit 204 to that effect when the positioning is completed. The notified positioning start time and positioning end fact are shared by the internal module of the positioning result correction unit 204.
 測位結果補正部204は、通常動作時に得られた測位結果ベクトル(後述する通常モード時の測位結果ベクトル)を用いて、測位開始時の測位結果を補正する。測位結果補正部204は、測位部203が計算した測位結果(測位開始時の測位結果)を補正し、補正後の結果を最終結果として最終結果記憶部205に格納する。 The positioning result correction unit 204 corrects the positioning result at the start of positioning by using the positioning result vector (positioning result vector in the normal mode described later) obtained during normal operation. The positioning result correction unit 204 corrects the positioning result (positioning result at the start of positioning) calculated by the positioning unit 203, and stores the corrected result as the final result in the final result storage unit 205.
 当該補正の際、測位結果補正部204は、通常動作に先立ち「補正情報」を生成する。具体的には、測位結果補正部204は、複数の衛星それぞれの位置に関する衛星位置情報と、測位結果ベクトルと、自装置の正しい座標位置を含む正解データと、に基づき補正情報を生成する。詳細については、後述するが、測位結果補正部204は、GNSS電波受信部201から衛星の軌道情報や時刻情報等を取得し、当該取得した軌道情報や時刻情報等を用いて、測位後の位置を補正するための補正情報を生成する。その後、測位結果補正部204は、通常動作時に、事前に生成された補正情報を用いて測位部203による測位結果を補正する。 At the time of the correction, the positioning result correction unit 204 generates "correction information" prior to the normal operation. Specifically, the positioning result correction unit 204 generates correction information based on satellite position information regarding the positions of each of the plurality of satellites, the positioning result vector, and correct answer data including the correct coordinate position of the own device. The details will be described later, but the positioning result correction unit 204 acquires satellite orbit information, time information, etc. from the GNSS radio wave receiving unit 201, and uses the acquired orbit information, time information, etc. to position the position after positioning. Generates correction information for correcting. After that, the positioning result correction unit 204 corrects the positioning result by the positioning unit 203 using the correction information generated in advance during normal operation.
 ここで、受信端末10の動作モードには2つのモードが含まれる。 Here, the operation mode of the receiving terminal 10 includes two modes.
 第1のモードは「学習モード」である。第2のモードは「通常モード」である。学習モードと通常モードでは、主に測位結果補正部204の動作が異なる。なお、受信端末10のユーザが、受信端末10の動作モードをGUI(Graphical User Interface)等を利用して入力してもよい。あるいは、受信端末10の初期設定時に学習モードが実行されるようにしてもよい。 The first mode is the "learning mode". The second mode is the "normal mode". The operation of the positioning result correction unit 204 is mainly different between the learning mode and the normal mode. The user of the receiving terminal 10 may input the operation mode of the receiving terminal 10 by using a GUI (Graphical User Interface) or the like. Alternatively, the learning mode may be executed at the time of initial setting of the receiving terminal 10.
 以下、2つのモードにおける測位結果補正部204の動作を中心に説明する。 Hereinafter, the operation of the positioning result correction unit 204 in the two modes will be mainly described.
 図3は、第1の実施形態に係る測位結果補正部204の内部構成の一例を示す図である。図3を参照すると、測位結果補正部204は、測位結果記憶部211と、衛星情報取得部212と、正解データ取得部213と、補正情報生成部214と、補正情報記憶部215と、類似データ検索部216と、位置補正部217と、を含んで構成される。 FIG. 3 is a diagram showing an example of the internal configuration of the positioning result correction unit 204 according to the first embodiment. Referring to FIG. 3, the positioning result correction unit 204 includes the positioning result storage unit 211, the satellite information acquisition unit 212, the correct answer data acquisition unit 213, the correction information generation unit 214, the correction information storage unit 215, and similar data. It is configured to include a search unit 216 and a position correction unit 217.
 測位結果記憶部211は、測位部203から取得した測位結果を記憶する。測位結果記憶部211は、測位開始時刻と、測位結果(測位開始時刻から取得された測位結果ベクトル)と、を関連付けて記憶する。 The positioning result storage unit 211 stores the positioning result acquired from the positioning unit 203. The positioning result storage unit 211 stores the positioning start time and the positioning result (positioning result vector acquired from the positioning start time) in association with each other.
 衛星情報取得部212は、学習モード時に動作する処理モジュールである。衛星情報取得部212は、GNSS電波受信部201から衛星軌道情報、送信時刻等の衛星に関する情報を取得する。衛星情報取得部212は、取得した衛星に関する情報に基づき、各衛星の位置を計算する。 The satellite information acquisition unit 212 is a processing module that operates in the learning mode. The satellite information acquisition unit 212 acquires information related to the satellite such as satellite orbit information and transmission time from the GNSS radio wave reception unit 201. The satellite information acquisition unit 212 calculates the position of each satellite based on the acquired information about the satellites.
 衛星情報取得部212は、GNSS電波受信部201から取得した衛星位置等に関する情報を加工し、衛星位置を計算する。具体的には、衛星情報取得部212は、衛星軌道情報を用いて測位開始時刻における衛星の位置を計算する。衛星情報取得部212は、受信端末10が電波を受信できた全部又は一部の衛星(可視衛星)に関し、衛星位置を計算する。例えば、2つの衛星が近接した位置にあれば、衛星情報取得部212は、当該2つの衛星のうちいずれか1つの衛星位置を計算してもよいし、両方の衛星の位置を計算してもよい。即ち、衛星の相対的な位置関係によっては、衛星情報取得部212は可視衛星の全てに関しその位置を計算しなくともよい。衛星情報取得部212は、計算した衛星位置(複数の衛星による配置パターン)を補正情報生成部214に引き渡す。 The satellite information acquisition unit 212 processes the information related to the satellite position and the like acquired from the GNSS radio wave reception unit 201 and calculates the satellite position. Specifically, the satellite information acquisition unit 212 calculates the position of the satellite at the positioning start time using the satellite orbit information. The satellite information acquisition unit 212 calculates the satellite position of all or part of the satellites (visible satellites) for which the receiving terminal 10 has been able to receive radio waves. For example, if the two satellites are close to each other, the satellite information acquisition unit 212 may calculate the position of either one of the two satellites, or may calculate the positions of both satellites. Good. That is, depending on the relative positional relationship of the satellites, the satellite information acquisition unit 212 does not have to calculate the positions of all the visible satellites. The satellite information acquisition unit 212 delivers the calculated satellite position (arrangement pattern by a plurality of satellites) to the correction information generation unit 214.
 正解データ取得部213も、学習モード時に動作する処理モジュールである。 The correct answer data acquisition unit 213 is also a processing module that operates in the learning mode.
 正解データ取得部213は、測位部203が測位を開始した時刻(測位開始時刻)における自装置(受信端末10)の正しい位置(受信端末10の実際の位置)をGNSSシステムによる測位とは異なる方法で取得する。 The correct answer data acquisition unit 213 sets the correct position (actual position of the receiving terminal 10) of its own device (reception terminal 10) at the time when the positioning unit 203 starts positioning (positioning start time) different from the positioning by the GNSS system. Get it with.
 例えば、正解データ取得部213は、無線基地局の位置情報を利用して自装置の位置(緯度、経度)を取得する。正解データ取得部213は、当該取得した正しい位置を「正解データ(正解位置)」として補正情報生成部214に引き渡す。 For example, the correct answer data acquisition unit 213 acquires the position (latitude, longitude) of its own device by using the position information of the radio base station. The correct answer data acquisition unit 213 delivers the acquired correct position as “correct answer data (correct answer position)” to the correction information generation unit 214.
 補正情報生成部214は、学習モード時に取得された、少なくとも3つの情報を用いて補正情報を生成する。具体的には、補正情報生成部214は、衛星情報取得部212から取得した衛星位置情報、学習モード時の測位計算から得られる測位結果ベクトル(第2の測位結果ベクトル)、正解データ取得部213から取得した正解データを用いて補正情報を生成する。 The correction information generation unit 214 generates correction information using at least three pieces of information acquired in the learning mode. Specifically, the correction information generation unit 214 includes satellite position information acquired from the satellite information acquisition unit 212, a positioning result vector (second positioning result vector) obtained from the positioning calculation in the learning mode, and a correct answer data acquisition unit 213. Correction information is generated using the correct answer data obtained from.
 例えば、補正情報生成部214は、図4に示すようなテーブル情報を生成する。図4に示すように、第1の実施形態では、補正情報生成部214は、複数のエントリを含む補正データテーブルを「補正情報」として生成する。 For example, the correction information generation unit 214 generates table information as shown in FIG. As shown in FIG. 4, in the first embodiment, the correction information generation unit 214 generates a correction data table including a plurality of entries as "correction information".
 補正情報記憶部215は、上記生成された補正情報(補正データテーブル)を記憶する。 The correction information storage unit 215 stores the above-generated correction information (correction data table).
 図4を参照すると、補正データテーブルには、測位開始時刻、衛星位置、測位結果ベクトル、正解データ、補正値が含まれる。 With reference to FIG. 4, the correction data table includes the positioning start time, satellite position, positioning result vector, correct answer data, and correction value.
 測位開始時刻は、測位部203から通知される情報である。衛星位置は、衛星情報取得部212から取得する情報である。測位結果ベクトルは、測位結果記憶部211に格納された情報であって、測位開始時刻からの所定期間内に計算された複数の測位結果を要素とするベクトルである。正解データは、測位開始時刻における自装置(受信端末10)の正しい位置に関する情報である。補正値は、受信端末10の緯度、経度の2つの座標を補正するための値を要素とするベクトル(補正ベクトル)である。 The positioning start time is information notified from the positioning unit 203. The satellite position is information acquired from the satellite information acquisition unit 212. The positioning result vector is information stored in the positioning result storage unit 211, and is a vector having a plurality of positioning results calculated within a predetermined period from the positioning start time as elements. The correct answer data is information regarding the correct position of the own device (reception terminal 10) at the positioning start time. The correction value is a vector (correction vector) whose elements are values for correcting the two coordinates of the latitude and longitude of the receiving terminal 10.
 図4に示すように、測位開始時刻、衛星位置、測位結果ベクトル、正解データ及び補正値が補正データテーブルにおける1つのエントリとなる。即ち、補正データテーブルには、複数のエントリが含まれる。 As shown in FIG. 4, the positioning start time, satellite position, positioning result vector, correct answer data, and correction value are one entry in the correction data table. That is, the correction data table contains a plurality of entries.
 なお、図4に示す補正データテーブルは例示であって補正データテーブルの構成を限定する趣旨ではない。例えば、補正値は補正データテーブルには含まれず、必要に応じて逐次計算されてもよい。 Note that the correction data table shown in FIG. 4 is an example and does not mean to limit the configuration of the correction data table. For example, the correction value is not included in the correction data table and may be calculated sequentially as needed.
 補正値は、測位結果(測位結果ベクトル)と正解データから算出できる情報である。例えば、補正情報生成部214は、測位結果ベクトルをなす複数の要素から1つの要素(測位結果)を選択し、正解データから当該選択された測位結果を減算することで、補正値を生成する。 The correction value is information that can be calculated from the positioning result (positioning result vector) and the correct answer data. For example, the correction information generation unit 214 generates a correction value by selecting one element (positioning result) from a plurality of elements forming the positioning result vector and subtracting the selected positioning result from the correct answer data.
 このように、補正値は、測位結果ベクトルと正解位置から容易に計算することができるので、補正値は必要に応じて計算されてもよい。即ち、必ずしも補正値は補正データテーブル(データベース)に記録しておく必要はない。補正値は、通常モード時にリアルタイムで取得した測位結果と測位結果のマッチング結果から逐次算出されても良い。 In this way, the correction value can be easily calculated from the positioning result vector and the correct answer position, so the correction value may be calculated as necessary. That is, the correction value does not necessarily have to be recorded in the correction data table (database). The correction value may be sequentially calculated from the matching result of the positioning result and the positioning result acquired in real time in the normal mode.
 なお、図4では、測位結果を2次元(X、Y座標)で表現しているが、測位は3次元(X、Y、Z;緯度、経度、標高)で行われてもよい。 Although the positioning result is represented in two dimensions (X, Y coordinates) in FIG. 4, the positioning may be performed in three dimensions (X, Y, Z; latitude, longitude, altitude).
 図4を参照すると、測位開始時刻t1における衛星位置は、X(t1)、Y(t1)、Z(t1)である。また、測位開始時刻t1から計算された測位結果ベクトルは、(latA、lonA)、(latB、lonB)、(latC、lonC)・・・となる。測位開始時刻t1における正解データは、(lat_realA、lon_realA)である。測位開始時刻t1における補正値は、(lat_realA-latA、lon_realA-lonA)である。 With reference to FIG. 4, the satellite positions at the positioning start time t1 are X (t1), Y (t1), and Z (t1). Further, the positioning result vectors calculated from the positioning start time t1 are (latA, lonA), (latB, lonB), (latC, lonC), and so on. The correct answer data at the positioning start time t1 is (lat_realA, lon_realA). The correction value at the positioning start time t1 is (lat_realA-latA, lon_realA-lonA).
 測位開始時刻t1の補正値算出には、測位開始時刻の測位結果(latA、lonA)が選択されている。但し、補正値の算出における測位結果は、他の結果(例えば、時刻(t1+1)の結果)が選択されてもよい。 The positioning result (latA, lonA) of the positioning start time is selected for calculating the correction value of the positioning start time t1. However, another result (for example, the result of the time (t1 + 1)) may be selected as the positioning result in the calculation of the correction value.
 学習モード時における受信端末10の動作をまとめると図5のとおりとなる。 The operation of the receiving terminal 10 in the learning mode is summarized in FIG.
 はじめに、受信端末10は、GNSS衛星から電波を受信する(ステップS101)。具体的には、GNSS電波受信部201が、GNSS衛星からの電波を受信する。その際、GNSS補正情報もGNSS衛星から取得できた場合には、GNSS電波受信部201は、GNSS補正情報取得部202にGNSS補正情報を出力する。電波をデコードして得られる情報(衛星軌道情報、送信時刻情報等)やGNSS補正情報は、測位部203に送信される。 First, the receiving terminal 10 receives radio waves from the GNSS satellite (step S101). Specifically, the GNSS radio wave receiving unit 201 receives radio waves from the GNSS satellite. At that time, if the GNSS correction information can also be acquired from the GNSS satellite, the GNSS radio wave receiving unit 201 outputs the GNSS correction information to the GNSS correction information acquisition unit 202. Information obtained by decoding radio waves (satellite orbit information, transmission time information, etc.) and GNSS correction information are transmitted to the positioning unit 203.
 受信端末10は、測位部203を用いて測位計算を行う(ステップS102)。具体的には、測位部203は、所定の間隔で測位を繰り返し、測位結果ベクトルを生成する。 The receiving terminal 10 performs positioning calculation using the positioning unit 203 (step S102). Specifically, the positioning unit 203 repeats positioning at predetermined intervals to generate a positioning result vector.
 受信端末10は、衛星情報、正解データ等に基づいて補正データテーブルを生成する(ステップS103)。具体的には、受信端末10は、測位部203で計算された測位結果(測位結果ベクトル)、衛星位置、正解データ等を対応付けることで補正データテーブルを生成する。 The receiving terminal 10 generates a correction data table based on satellite information, correct answer data, and the like (step S103). Specifically, the receiving terminal 10 generates a correction data table by associating the positioning result (positioning result vector) calculated by the positioning unit 203, the satellite position, the correct answer data, and the like.
 続いて、通常モード時の測位結果補正部204の動作を説明する。通常モード時は、主に類似データ検索部216と位置補正部217が動作する。 Next, the operation of the positioning result correction unit 204 in the normal mode will be described. In the normal mode, the similar data search unit 216 and the position correction unit 217 mainly operate.
 類似データ検索部216は、補正データテーブルの複数のエントリから、通常モード時に取得された測位結果ベクトル(第1の測位結果ベクトル)に最も類似する測位結果ベクトル(学習モード時に取得された第2の測位結果ベクトル)を含むエントリを特定する。つまり、類似データ検索部216は、測位部203による現在の測位結果(測位結果ベクトル)に類似する過去の測位結果ベクトルを補正データテーブルから検索する。 The similar data search unit 216 has a second positioning result vector (second acquired in learning mode) that is most similar to the positioning result vector (first positioning result vector) acquired in the normal mode from a plurality of entries in the correction data table. Identify the entry that contains the positioning result vector). That is, the similar data search unit 216 searches the correction data table for a past positioning result vector similar to the current positioning result (positioning result vector) by the positioning unit 203.
 類似データ検索部216は、2つの測位結果ベクトル間の距離を計算し、当該計算された距離に基づき現在の測位結果ベクトルに最も類似する過去の測位結果ベクトルを含むエントリを特定する。より具体的には、類似データ検索部216は、測位部203が計算した測位結果ベクトルと補正データテーブルに含まれる各測位結果ベクトルの間の類似度を計算し、当該類似度が最も高い測位結果ベクトルを持つエントリを特定する。類似データ検索部216は、当該特定したエントリの補正値(補正ベクトル)を位置補正部217に引き渡す。 The similar data search unit 216 calculates the distance between the two positioning result vectors, and identifies the entry including the past positioning result vector most similar to the current positioning result vector based on the calculated distance. More specifically, the similar data search unit 216 calculates the similarity between the positioning result vector calculated by the positioning unit 203 and each positioning result vector included in the correction data table, and the positioning result having the highest similarity is calculated. Identify the entry with the vector. The similar data search unit 216 delivers the correction value (correction vector) of the specified entry to the position correction unit 217.
 位置補正部217は、当該特定されたエントリの正解データに基づき生成された補正値を用いて通常モード時の測位結果(測位開始時の測位結果)を補正する。例えば、上述のように、補正値が正解データに含まれる自装置の座標から測位結果ベクトルをなす複数の要素から選択された1つの測位結果の座標を減算することで得られる値である場合を考える。この場合、位置補正部217は、測位部203による測位結果に補正値を加算することで、補正後の測位結果(最終結果)を得る。 The position correction unit 217 corrects the positioning result (positioning result at the start of positioning) in the normal mode by using the correction value generated based on the correct answer data of the specified entry. For example, as described above, when the correction value is a value obtained by subtracting the coordinates of one positioning result selected from a plurality of elements forming the positioning result vector from the coordinates of the own device included in the correct answer data. Think. In this case, the position correction unit 217 obtains the corrected positioning result (final result) by adding the correction value to the positioning result by the positioning unit 203.
 図6は、第1の実施形態に係る受信端末10の通常動作の一例を示す図である。 FIG. 6 is a diagram showing an example of normal operation of the receiving terminal 10 according to the first embodiment.
 はじめに、GNSS電波受信部201が、GNSS衛星からの電波を受信する(ステップS111)。その際、GNSS補正情報もGNSS衛星から取得できた場合には、GNSS電波受信部201は、GNSS補正情報取得部202にGNSS補正情報を出力する。電波をデコードして得られる情報(衛星軌道情報、送信時刻情報等)やGNSS補正情報は、測位部203に送信される。 First, the GNSS radio wave receiving unit 201 receives the radio wave from the GNSS satellite (step S111). At that time, if the GNSS correction information can also be acquired from the GNSS satellite, the GNSS radio wave receiving unit 201 outputs the GNSS correction information to the GNSS correction information acquisition unit 202. Information obtained by decoding radio waves (satellite orbit information, transmission time information, etc.) and GNSS correction information are transmitted to the positioning unit 203.
 受信端末10は、測位部203を用いて測位計算を行う(ステップS112)。 The receiving terminal 10 performs positioning calculation using the positioning unit 203 (step S112).
 受信端末10は、測位結果(複数の測位結果からなる時系列データ;測位結果ベクトル)を測位結果記憶部211に記憶する(ステップS113)。 The receiving terminal 10 stores the positioning result (time series data including a plurality of positioning results; the positioning result vector) in the positioning result storage unit 211 (step S113).
 類似データ検索部216は、補正データテーブルを検索し、測位部203による測位結果(現在の測位結果ベクトル)に最も類似度が高い測位結果ベクトル(過去の測位結果ベクトル)を持つエントリを特定する(ステップS114)。 The similar data search unit 216 searches the correction data table and identifies an entry having the positioning result vector (past positioning result vector) having the highest similarity to the positioning result (current positioning result vector) by the positioning unit 203 (the same). Step S114).
 具体的には、類似データ検索部216は、補正情報記憶部215に格納された各エントリの測位結果ベクトルと測位部203が計算した測位結果ベクトルの間の距離(例えば、ユークリッド距離)を計算する。類似データ検索部216は、計算した距離が最も短い測位結果ベクトルを測位部203による測位結果に最も類似する測位結果ベクトルであると判定する。 Specifically, the similar data search unit 216 calculates the distance (for example, the Euclidean distance) between the positioning result vector of each entry stored in the correction information storage unit 215 and the positioning result vector calculated by the positioning unit 203. .. The similar data search unit 216 determines that the positioning result vector having the shortest calculated distance is the positioning result vector most similar to the positioning result obtained by the positioning unit 203.
 次に、類似データ検索部216は、特定した測位結果ベクトルに対して閾値処理を施し、当該特定した測位結果ベクトルが所定の閾値よりも類似度が高いか否かを判定する(ステップS115)。 Next, the similar data search unit 216 performs threshold processing on the specified positioning result vector, and determines whether or not the specified positioning result vector has a higher degree of similarity than a predetermined threshold value (step S115).
 特定した測位結果ベクトルの類似度が所定の閾値以下であれば(ステップS115、No分岐)、受信端末10は処理を終了する(測位部203の測位結果は補正されない)。 If the similarity of the specified positioning result vector is equal to or less than a predetermined threshold value (step S115, No branch), the receiving terminal 10 ends the process (the positioning result of the positioning unit 203 is not corrected).
 特定した測位結果ベクトルの類似度が所定の閾値よりも高ければ(ステップS115、Yes分岐)、類似データ検索部216は、特定した測位結果ベクトルのエントリから補正値(補正ベクトル)を取得する(ステップS116)。なお、類似データ検索部216による2つの測位結果ベクトルの類似度判定において、ベクトルを直線近似した場合、2つの測位結果ベクトル間の内積の値が2つの測位結果ベクトルの大きさの絶対値の積に近いか否かが利用されてもよい。 If the similarity of the specified positioning result vector is higher than a predetermined threshold value (step S115, Yes branch), the similar data search unit 216 acquires a correction value (correction vector) from the entry of the specified positioning result vector (step). S116). In the similarity determination of the two positioning result vectors by the similar data search unit 216, when the vectors are linearly approximated, the value of the inner product between the two positioning result vectors is the product of the absolute values of the sizes of the two positioning result vectors. Whether or not it is close to is used.
 受信端末10(位置補正部217)は、取得した補正値により測位部203による測位結果を補正する(ステップS117)。 The receiving terminal 10 (position correction unit 217) corrects the positioning result by the positioning unit 203 based on the acquired correction value (step S117).
 続いて、受信端末10の動作を図7、図8を用いてより具体的に説明する。 Subsequently, the operation of the receiving terminal 10 will be described more specifically with reference to FIGS. 7 and 8.
 図7の左側に示すように、学習モードにおいて、過去の衛星配置、測位結果ベクトル及び正解データを蓄積する。例えば、図7の例では、衛星配置20-1~20-3のそれぞれについて、測位結果(複数の測位結果を要素とするベクトル)と衛星配置が対応付けられている。また、補正結果も各衛星配置について蓄積される。 As shown on the left side of FIG. 7, in the learning mode, the past satellite arrangement, positioning result vector, and correct answer data are accumulated. For example, in the example of FIG. 7, the positioning result (vector having a plurality of positioning results as elements) and the satellite arrangement are associated with each of the satellite arrangements 20-1 to 20-3. The correction results are also accumulated for each satellite arrangement.
 学習モードでは、GNSS衛星からの電波を用いた測位とは異なる方法で、受信端末10の位置が正解データとして入力される。受信端末10は、正解データと測位結果ベクトルを関連付けて記憶する。補正値は、各衛星配置における測位結果を正解位置に修正するように計算される。 In the learning mode, the position of the receiving terminal 10 is input as correct answer data by a method different from positioning using radio waves from the GNSS satellite. The receiving terminal 10 stores the correct answer data and the positioning result vector in association with each other. The correction value is calculated so as to correct the positioning result in each satellite arrangement to the correct position.
 受信端末10は、現在の衛星配置(図7の右側に示す衛星配置30)における測位結果(測位結果ベクトル)と学習モード時に取得された測位結果ベクトルを比較する。即ち、現在の測位結果の軌跡(測位結果の変位値;ドリフトパターン)と過去の測位結果の軌跡が比較される。比較の結果、現在の測位結果に最も近い過去の測位結果が特定される。図7の例では、衛星配置30時に取得された測位結果ベクトルと衛星配置20-3時に取得された測位結果ベクトルが最も近似(類似)するので、測位結果は衛星配置20-3時の補正値により補正される。 The receiving terminal 10 compares the positioning result (positioning result vector) in the current satellite arrangement (satellite arrangement 30 shown on the right side of FIG. 7) with the positioning result vector acquired in the learning mode. That is, the locus of the current positioning result (displacement value of the positioning result; drift pattern) and the locus of the past positioning result are compared. As a result of the comparison, the past positioning result closest to the current positioning result is identified. In the example of FIG. 7, since the positioning result vector acquired at the satellite arrangement 30 o'clock and the positioning result vector acquired at the satellite arrangement 20-3 o'clock are the closest (similar), the positioning result is the correction value at the satellite arrangement 20-3 o'clock. Is corrected by.
 図8に示すように、補正情報記憶部215に記憶された補正データテーブルのうち測位結果ベクトルは、誤差を含んだ測位結果の変動パターン(測位ドリフトパターン)であると捉えることができる。受信端末10は、過去の変動パターン(過去の測位結果ベクトル)と現在の変動パターン(現在の測位結果ベクトル)を比較し、現在の変動パターンに類似する過去の変動パターンを特定する。 As shown in FIG. 8, the positioning result vector in the correction data table stored in the correction information storage unit 215 can be regarded as a fluctuation pattern (positioning drift pattern) of the positioning result including an error. The receiving terminal 10 compares the past fluctuation pattern (past positioning result vector) with the current fluctuation pattern (current positioning result vector), and identifies the past fluctuation pattern similar to the current fluctuation pattern.
 その後、受信端末10は、特定した変動パターン時の正解データ(正解位置)に測位結果を補正する。 After that, the receiving terminal 10 corrects the positioning result to the correct answer data (correct answer position) at the specified fluctuation pattern.
 このように、第1の実施形態に係る受信端末10は、過去のGNSS衛星の空間的な配置と、その時のマルチパス誤差を含む測位結果とその時の補正結果(正解データ)についての大量のデータを集める。これらの情報は、補正情報記憶部215に格納される。 As described above, the receiving terminal 10 according to the first embodiment has a large amount of data on the spatial arrangement of the past GNSS satellites, the positioning result including the multipath error at that time, and the correction result (correct answer data) at that time. Collect. These pieces of information are stored in the correction information storage unit 215.
 その後、実際の測位を行う際には、受信端末10は、実際の測位結果とその時の誤差を含んだ測位パターン(ドリフトパターン)を取得する。受信端末10は、補正情報記憶部215に格納された過去の衛星配置における測位パターンと現在の測位パターンを比較する。比較の結果、受信端末10は、最も現在の測位パターンに最も近い過去の測位パターンを抽出し、抽出した測位パターンの補正値に基づき測位結果を補正する。 After that, when performing actual positioning, the receiving terminal 10 acquires a positioning pattern (drift pattern) including the actual positioning result and the error at that time. The receiving terminal 10 compares the positioning pattern in the past satellite arrangement stored in the correction information storage unit 215 with the current positioning pattern. As a result of the comparison, the receiving terminal 10 extracts the past positioning pattern closest to the current positioning pattern, and corrects the positioning result based on the correction value of the extracted positioning pattern.
 以上のように、第1の実施形態では、過去の測位パターンを衛星の配置を含めて記録しておき類似パターンを見つけるというように構成されている。その結果、マルチパスが存在する環境でもマルチパスの影響が反映された誤差を含んだ測位パターンとそれに対する補正値を使った補正が行える。そのため、測位計算後の誤差についても補正が可能となる。 As described above, the first embodiment is configured to record past positioning patterns including the arrangement of satellites and find similar patterns. As a result, even in an environment where multipath exists, it is possible to perform correction using a positioning pattern including an error that reflects the influence of multipath and a correction value for the positioning pattern. Therefore, it is possible to correct the error after the positioning calculation.
 第1の実施形態の効果をまとめると次のとおりとなる。 The effects of the first embodiment are summarized as follows.
 第1の効果は、DOPのような既存の衛星配置のばらつきのような指標によらず、マルチパス誤差の補正が可能であるということである。その理由は、マルチパスが生じやすい環境では、むしろ衛星の配置のばらつきが小さい。即ち、DOPが小さい方が、可視衛星数が多い場合がある。そのため、必ずしもDOPがマルチパス環境では測位精度の観点でよい指標であるとは言えない。本願開示では、マルチパスによる測位誤差も含めて測位結果のパターンと捉えて処理することにより、衛星のばらつきや周囲のビルの存在の如何に関わらず補正が可能となる。 The first effect is that it is possible to correct multipath error regardless of indicators such as variations in existing satellite arrangements such as DOP. The reason is that in an environment where multipath is likely to occur, the variation in satellite arrangement is rather small. That is, the smaller the DOP, the larger the number of visible satellites. Therefore, DOP is not always a good index from the viewpoint of positioning accuracy in a multipath environment. In the disclosure of the present application, it is possible to correct regardless of the variation of satellites and the existence of surrounding buildings by treating the pattern including the positioning error due to multipath as a pattern of the positioning result.
 第2の効果は、測位計算前に事前には判明しないマルチパスに起因する測位誤差に対しても効果があるということである。その理由は、衛星のばらつきによる誤差や周囲のビルの存在によるマルチパスは、無限の組み合わせがある。しかし、実際には周囲のビルの形状はある程度決まっており、且つ、衛星の配置は約24時間の周期で同じ配置となるため、同じような地域では、同じような測位誤差となることが期待できる。そこで、本願開示のようにマルチパスの誤差も含めて測位結果のパターンと捉え、学習させることによって、そのパターンを検知し、そのパターンごとの誤差補正を行うことが可能となる。 The second effect is that it is also effective against positioning errors caused by multipath, which is not known in advance before positioning calculation. The reason is that there are an infinite number of combinations of errors due to satellite variations and multipath due to the presence of surrounding buildings. However, in reality, the shape of the surrounding buildings is fixed to some extent, and the satellites are arranged in the same order with a cycle of about 24 hours, so it is expected that similar positioning errors will occur in similar areas. it can. Therefore, as described in the disclosure of the present application, it is possible to detect the pattern and correct the error for each pattern by grasping and learning the pattern of the positioning result including the multipath error.
[第2の実施形態]
 続いて、第2の実施形態について図面を参照して詳細に説明する。
[Second Embodiment]
Subsequently, the second embodiment will be described in detail with reference to the drawings.
 第1の実施形態では、測位結果ベクトル、正解データ等を用いて補正データテーブルを「補正情報」として生成し、測位結果を補正する場合について説明した。第2の実施形態では、ニューラルネットワーク等の機械学習を用いて「補正情報」を生成する場合について説明する。 In the first embodiment, a case where a correction data table is generated as "correction information" using a positioning result vector, correct answer data, etc., and the positioning result is corrected has been described. In the second embodiment, a case where "correction information" is generated by using machine learning such as a neural network will be described.
 図9は、第2の実施形態に係る測位結果補正部204の内部構成の一例を示す図である。図3及び図9を比較すると、類似データ検索部216を備えていない点を除き、第2の実施形態に係る測位結果補正部204の処理構成は第1の実施形態に係る測位結果補正部204と同一とすることができる。 FIG. 9 is a diagram showing an example of the internal configuration of the positioning result correction unit 204 according to the second embodiment. Comparing FIGS. 3 and 9, the processing configuration of the positioning result correction unit 204 according to the second embodiment is the positioning result correction unit 204 according to the first embodiment, except that the similar data search unit 216 is not provided. Can be the same as.
 第2の実施形態は、補正情報生成部214が学習モデルを生成し、補正情報記憶部215が当該学習モデルを記憶する点で第1の実施形態と相違する。以下、当該相違点を中心に説明する。 The second embodiment is different from the first embodiment in that the correction information generation unit 214 generates a learning model and the correction information storage unit 215 stores the learning model. Hereinafter, the differences will be mainly described.
 第2の実施形態に係る補正情報生成部214は、衛星位置情報、学習モード時の測位結果ベクトル及び正解データに基づき学習モデルを生成する。その際、補正情報生成部214は、測位結果記憶部211から読み出した測位結果を正解データ(正解位置)に対する相対座標に変換する。 The correction information generation unit 214 according to the second embodiment generates a learning model based on satellite position information, a positioning result vector in the learning mode, and correct answer data. At that time, the correction information generation unit 214 converts the positioning result read from the positioning result storage unit 211 into the coordinates relative to the correct answer data (correct answer position).
 その後、補正情報生成部214は、相対座標に変換された測位結果(以下、測位相対位置と表記する)、GNSS衛星の衛星配置を要素とするベクトルを生成する(測位結果、衛星配置をベクトル化する)。 After that, the correction information generation unit 214 generates a positioning result converted into relative coordinates (hereinafter referred to as a positioning relative position) and a vector having the satellite arrangement of the GNSS satellite as an element (positioning result, the satellite arrangement is vectorized). To do).
 補正情報生成部214は、当該ベクトルを用いてニューラルネットワークによる学習を行う。具体的には、補正情報生成部214は、上記ベクトル化された衛星配置、測位相対位置をニューラルネットワークに入力して得られる結果と教師データである正解データを比較することで、ニューラルネットワークの重みを決定する。このようにして得られた学習モデルは補正情報記憶部215に格納される。 The correction information generation unit 214 performs learning by a neural network using the vector. Specifically, the correction information generation unit 214 weights the neural network by comparing the result obtained by inputting the vectorized satellite arrangement and the relative positioning position into the neural network with the correct answer data which is the teacher data. To determine. The learning model obtained in this way is stored in the correction information storage unit 215.
 通常モード時(予測時)は、位置補正部217は、学習モード時と同様に、自装置(受信端末10)の測位相対位置とGNSS衛星位置等をベクトル化し、測位結果の変動パターンを表現するベクトルを学習モデルに入力する。学習モデル(学習により重み付けされたニューラルネットワーク)の出力が補正後の測位結果となる。即ち、位置補正部217は、学習モデルに通常モード時に得られた測位結果(正解対する相対位置)を入力することで通常モード時の測位結果を補正する。 In the normal mode (prediction time), the position correction unit 217 vectorizes the positioning relative position of the own device (reception terminal 10) and the GNSS satellite position, etc., and expresses the fluctuation pattern of the positioning result, as in the learning mode. Input the vector into the training model. The output of the learning model (neural network weighted by learning) is the corrected positioning result. That is, the position correction unit 217 corrects the positioning result in the normal mode by inputting the positioning result (relative position to the correct answer) obtained in the normal mode into the learning model.
 図10を参照しつつ、第2の実施形態に係る受信端末10の動作を説明する。 The operation of the receiving terminal 10 according to the second embodiment will be described with reference to FIG.
 図10に示すように、学習モード時には、時刻、測位相対位置等がニューラルネットワークに入力され、その出力が正解データ(正解相対位置)と比較されることで重みが決定される。通常モード時は、ニューラルネットワークに時刻、測位相対位置等が入力され、その出力結果が補正後の測位結果となる。 As shown in FIG. 10, in the learning mode, the time, the positioning relative position, etc. are input to the neural network, and the weight is determined by comparing the output with the correct answer data (correct answer relative position). In the normal mode, the time, relative positioning position, etc. are input to the neural network, and the output result is the corrected positioning result.
 なお、学習時及び予測時ともに、GNSS電波受信部201から得られる衛星軌道情報は、衛星情報取得部212による前処理により衛星配置(衛星パターン)に変換される。 Note that the satellite orbit information obtained from the GNSS radio wave receiving unit 201 is converted into a satellite arrangement (satellite pattern) by preprocessing by the satellite information acquisition unit 212 during both learning and prediction.
 以上のように、第2の実施形態では、機械学習を用いてマルチパス誤差の影響を含む測位パターンと正解データの関係を学習する。予測時(通常モード時)には、当該学習により得られた学習モデルに測位パターンを入力することで、受信端末10の正確な位置が得られる。 As described above, in the second embodiment, the relationship between the positioning pattern including the influence of the multipath error and the correct answer data is learned by using machine learning. At the time of prediction (in the normal mode), the accurate position of the receiving terminal 10 can be obtained by inputting the positioning pattern into the learning model obtained by the learning.
 続いて、受信端末10のハードウェアについて説明する。図11は、受信端末10のハードウェア構成の一例を示す図である。 Next, the hardware of the receiving terminal 10 will be described. FIG. 11 is a diagram showing an example of the hardware configuration of the receiving terminal 10.
 受信端末10は、図11に例示する構成を備える。例えば、受信端末10は、プロセッサ311、メモリ312、入出力インターフェイス313及び通信インターフェイス314等を備える。上記プロセッサ311等の構成要素は内部バス等により接続され、相互に通信可能に構成されている。 The receiving terminal 10 has the configuration illustrated in FIG. For example, the receiving terminal 10 includes a processor 311, a memory 312, an input / output interface 313, a communication interface 314, and the like. The components such as the processor 311 are connected by an internal bus or the like so that they can communicate with each other.
 但し、図11に示す構成は、受信端末10のハードウェア構成を限定する趣旨ではない。受信端末10は、図示しないハードウェアを含んでもよいし、必要に応じて入出力インターフェイス313を備えていなくともよい。また、受信端末10に含まれるプロセッサ311等の数も図11の例示に限定する趣旨ではなく、例えば、複数のプロセッサ311が受信端末10に含まれていてもよい。 However, the configuration shown in FIG. 11 does not mean to limit the hardware configuration of the receiving terminal 10. The receiving terminal 10 may include hardware (not shown), or may not include an input / output interface 313 if necessary. Further, the number of processors 311 and the like included in the receiving terminal 10 is not limited to the example of FIG. 11, and for example, a plurality of processors 311 may be included in the receiving terminal 10.
 プロセッサ311は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)等のプログラマブルなデバイスである。あるいは、プロセッサ311は、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)等のデバイスであってもよい。プロセッサ311は、オペレーティングシステム(OS;Operating System)を含む各種プログラムを実行する。 The processor 311 is a programmable device such as a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or a DSP (Digital Signal Processor). Alternatively, the processor 311 may be a device such as an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit). The processor 311 executes various programs including an operating system (OS; Operating System).
 メモリ312は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)等である。メモリ312は、OSプログラム、アプリケーションプログラム、各種データを格納する。 The memory 312 is a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), an HDD (HardDiskDrive), an SSD (SolidStateDrive), or the like. The memory 312 stores an OS program, an application program, and various data.
 入出力インターフェイス313は、図示しない表示装置や入力装置のインターフェイスである。表示装置は、例えば、液晶ディスプレイ等である。入力装置は、例えば、キーボードやマウス等のユーザ操作を受け付ける装置である。 The input / output interface 313 is an interface of a display device or an input device (not shown). The display device is, for example, a liquid crystal display or the like. The input device is, for example, a device that accepts user operations such as a keyboard and a mouse.
 通信インターフェイス314は、他の装置と通信を行う回路、モジュール等である。例えば、通信インターフェイス314は、RF(Radio Frequency)回路等を備える。 The communication interface 314 is a circuit, module, or the like that communicates with another device. For example, the communication interface 314 includes an RF (Radio Frequency) circuit and the like.
 受信端末10の機能は、各種処理モジュールにより実現される。当該処理モジュールは、例えば、メモリ312に格納されたプログラムをプロセッサ311が実行することで実現される。また、当該プログラムは、コンピュータが読み取り可能な記憶媒体に記録することができる。記憶媒体は、半導体メモリ、ハードディスク、磁気記録媒体、光記録媒体等の非トランジェント(non-transitory)なものとすることができる。即ち、本発明は、コンピュータプログラム製品として具現することも可能である。また、上記プログラムは、ネットワークを介してダウンロードするか、あるいは、プログラムを記憶した記憶媒体を用いて、更新することができる。さらに、上記処理モジュールは、半導体チップにより実現されてもよい。 The function of the receiving terminal 10 is realized by various processing modules. The processing module is realized, for example, by the processor 311 executing a program stored in the memory 312. The program can also be recorded on a computer-readable storage medium. The storage medium may be a non-transitory such as a semiconductor memory, a hard disk, a magnetic recording medium, or an optical recording medium. That is, the present invention can also be embodied as a computer program product. In addition, the program can be downloaded via a network or updated using a storage medium in which the program is stored. Further, the processing module may be realized by a semiconductor chip.
[変形例]
 なお、上記実施形態にて説明した受信端末10の構成、動作等は例示であって、受信端末10の構成等を限定する趣旨ではない。例えば、補正情報記憶部215が受信端末10の外部に設置され、受信端末10は当該外部の補正情報記憶部215にアクセスしてもよい。このように、外部に記憶部(データベース)を構築することで、他の受信端末10により生成された補正情報(補正データテーブル、学習モデル)を別の受信端末10が利用することもできる。
[Modification example]
The configuration, operation, and the like of the receiving terminal 10 described in the above embodiment are examples, and are not intended to limit the configuration and the like of the receiving terminal 10. For example, the correction information storage unit 215 may be installed outside the receiving terminal 10, and the receiving terminal 10 may access the external correction information storage unit 215. By constructing the storage unit (database) externally in this way, the correction information (correction data table, learning model) generated by the other receiving terminal 10 can be used by another receiving terminal 10.
 上記実施形態では、1つの受信端末10の内部に補正情報生成部214と位置補正部217が含まれる構成を説明したが、これらの機能は分離されて異なる受信端末10に実装されていてもよい。具体的には、補正情報を蓄積するための端末と測位を行うための端末は異なっていても良い。この場合、補正情報を蓄積するための端末が上記説明した学習モードの動作を行い、測位を行うための端末が上記通常モードの動作を行う。 In the above embodiment, the configuration in which the correction information generation unit 214 and the position correction unit 217 are included in one receiving terminal 10 has been described, but these functions may be separated and implemented in different receiving terminals 10. .. Specifically, the terminal for accumulating correction information and the terminal for performing positioning may be different. In this case, the terminal for accumulating the correction information performs the operation of the learning mode described above, and the terminal for performing positioning performs the operation of the normal mode described above.
 上記実施形態では、位置補正部217が補正情報を用いて測位結果を補正しているが、受信端末10は、類似データ検索部216が特定したエントリの正解データをそのまま測位結果として扱っても良い。 In the above embodiment, the position correction unit 217 corrects the positioning result using the correction information, but the receiving terminal 10 may treat the correct answer data of the entry specified by the similar data search unit 216 as the positioning result as it is. ..
 上記実施形態では、類似データ検索部216は、測位結果ベクトルを対象として類似度を計算しているが、衛星配置パターンと測位結果ベクトルを統合したベクトルを類似度の計算対象としても良い。 In the above embodiment, the similarity data search unit 216 calculates the similarity with respect to the positioning result vector, but a vector that integrates the satellite arrangement pattern and the positioning result vector may be used as the calculation target of the similarity.
 また、上述の説明で用いた複数のフローチャートでは、複数の工程(処理)が順番に記載されているが、各実施形態で実行される工程の実行順序は、その記載の順番に制限されない。各実施形態では、例えば各処理を並行して実行する等、図示される工程の順番を内容的に支障のない範囲で変更することができる。 Further, in the plurality of flowcharts used in the above description, a plurality of steps (processes) are described in order, but the execution order of the steps executed in each embodiment is not limited to the order of description. In each embodiment, the order of the illustrated steps can be changed within a range that does not hinder the contents, for example, each process is executed in parallel.
 上記の説明により、本発明の産業上の利用可能性は明らかであるが、本発明は、マップマッチング機能が使えないような道路がない場所や、都市部のマルチパスが大きい場所での測位結果の補正といった用途等に好適に適用可能である。 From the above description, the industrial applicability of the present invention is clear, but the present invention provides positioning results in places where there are no roads where the map matching function cannot be used or where multipath is large in urban areas. It can be suitably applied to applications such as correction of.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
[付記1]
 複数の衛星から送信される電波に基づいて測位を行い、測位を開始すると測位計算を繰り返すことで複数の測位結果を要素とする測位結果ベクトルを生成する、測位部(101、203)と、
 通常モード時に得られた第1の測位結果ベクトルを用いて、測位開始時の測位結果を補正する、測位結果補正部(102、204)と、
 を備え、
 前記測位結果補正部(102、204)は、学習モード時にそれぞれ得られた、
 前記複数の衛星それぞれの位置に関する衛星位置情報と、第2の測位結果ベクトルと、前記複数の衛星からの電波による測位とは異なる方法で取得された自装置の位置に関する正解データと、に基づき補正情報を生成し、
 前記測位結果補正部(102、204)は、
 前記生成された補正情報を用いて前記通常モード時の測位結果を補正する、受信端末(10、100)。
[付記2]
 前記測位結果補正部(102、204)は、前記学習モード時に取得された、
 前記衛星位置情報、第2の前記測位結果ベクトル、及び、前記正解データを1つのエントリとする補正データテーブルを生成する、生成部(214)と、
 前記生成された補正データテーブルを記憶する、記憶部(215)と、
 を備える、付記1に記載の受信端末(10、100)。
[付記3]
 前記測位結果補正部(102、204)は、
 前記補正データテーブルに含まれる複数のエントリから、前記第1の測位結果ベクトルに最も類似する前記第2の測位結果ベクトルを含むエントリを特定する、類似データ検索部(216)と、
 前記特定されたエントリの正解データに基づき生成された補正値を用いて前記通常モード時の測位結果を補正する、位置補正部(217)と、
 をさらに備える、付記2に記載の受信端末(10、100)。 
[付記4]
 前記補正値は、前記正解データに含まれる自装置の座標から前記第2の測位結果ベクトルをなす複数の要素から選択された1つの測位結果の座標を減算することで得られる値である、付記3に記載の受信端末(10、100)。
[付記5]
 前記類似データ検索部(216)は、前記第1及び第2の測位結果ベクトル間の距離を計算し、前記計算された距離に基づき前記第1の測位結果ベクトルに最も類似する前記第2の測位結果ベクトルを含むエントリを特定する、付記4に記載の受信端末(10、100)。
[付記6]
 前記測位結果補正部(102、204)は、前記学習モード時に取得された、
 前記衛星位置情報、第2の前記測位結果ベクトル、及び、前記正解データに基づき学習モデルを生成する、生成部(214)と、
 前記生成された学習モデルを記憶する、記憶部(215)と、
 を備える、付記1に記載の受信端末(10、100)。
[付記7]
 前記測位結果補正部(102、204)は、
 前記学習モデルを用いて、前記通常モード時の測位結果を補正する、位置補正部(217)をさらに備える、付記6に記載の受信端末(10、100)。
[付記8]
 前記生成部(214)は、前記衛星位置情報と、前記正解データに含まれる自装置の座標に対する測位結果の相対位置と、を前記学習モデルの生成に使用する、付記6又は7に記載の受信端末(10、100)。
[付記9]
 前記生成部(214)は、前記衛星位置情報と、前記正解データに含まれる自装置の座標に対する測位結果の相対位置と、をベクトル化し、前記ベクトル化したデータをニューラルネットワークに入力する、付記8に記載の受信端末(10、100)。
[付記10]
 前記生成部(214)は、前記正解データに基づき前記ニューラルネットワークの重みを決定する、付記9に記載の受信端末(10、100)。
[付記11]
 複数の衛星から送信される電波に基づいて測位を行い、測位を開始すると測位計算を繰り返すことで複数の測位結果を要素とする測位結果ベクトルを生成する、測位部(101、203)と、
 通常モード時に得られた第1の測位結果ベクトルを用いて、測位開始時の測位結果を補正する、測位結果補正部(102、204)と、
 を備える受信端末(10、100)において、
 学習モード時にそれぞれ得られた、前記複数の衛星それぞれの位置に関する衛星位置情報と、第2の測位結果ベクトルと、前記複数の衛星からの電波による測位とは異なる方法で取得された自装置の位置に関する正解データと、に基づき補正情報を生成しと、
 前記生成された補正情報を用いて前記通常モード時の測位結果を補正する、ことを含む測位方法。
[付記12]
 複数の衛星から送信される電波に基づいて測位を行い、測位を開始すると測位計算を繰り返すことで複数の測位結果を要素とする測位結果ベクトルを生成する、測位部(101、203)と、
 通常モード時に得られた第1の測位結果ベクトルを用いて、測位開始時の測位結果を補正する、測位結果補正部(102、204)と、
 を備える受信端末(10、100)に搭載されたコンピュータ(311)に、
 学習モード時にそれぞれ得られた、前記複数の衛星それぞれの位置に関する衛星位置情報と、第2の測位結果ベクトルと、前記複数の衛星からの電波による測位とは異なる方法で取得された自装置の位置に関する正解データと、に基づき補正情報を生成する処理と、
 前記生成された補正情報を用いて前記通常モード時の測位結果を補正する処理と、
 を実行させるプログラム。
 なお、付記11の形態及び付記12の形態は、付記1の形態と同様に、付記2の形態~付記10の形態に展開することが可能である。
Some or all of the above embodiments may also be described, but not limited to:
[Appendix 1]
Positioning units (101, 203) that perform positioning based on radio waves transmitted from multiple satellites and generate positioning result vectors with multiple positioning results as elements by repeating positioning calculation when positioning is started.
Using the first positioning result vector obtained in the normal mode, the positioning result correction unit (102, 204) that corrects the positioning result at the start of positioning, and
With
The positioning result correction units (102, 204) were obtained in the learning mode, respectively.
Correction based on satellite position information regarding the positions of each of the plurality of satellites, the second positioning result vector, and correct answer data regarding the position of the own device acquired by a method different from positioning by radio waves from the plurality of satellites. Generate information,
The positioning result correction unit (102, 204)
A receiving terminal (10, 100) that corrects the positioning result in the normal mode by using the generated correction information.
[Appendix 2]
The positioning result correction unit (102, 204) was acquired in the learning mode.
A generation unit (214) that generates a correction data table having the satellite position information, the second positioning result vector, and the correct answer data as one entry.
A storage unit (215) that stores the generated correction data table, and
The receiving terminal (10, 100) according to Appendix 1.
[Appendix 3]
The positioning result correction unit (102, 204)
A similar data search unit (216) that identifies an entry including the second positioning result vector that is most similar to the first positioning result vector from a plurality of entries included in the correction data table.
A position correction unit (217) that corrects the positioning result in the normal mode using the correction value generated based on the correct answer data of the specified entry, and
The receiving terminal (10, 100) according to Appendix 2, further comprising.
[Appendix 4]
The correction value is a value obtained by subtracting the coordinates of one positioning result selected from a plurality of elements forming the second positioning result vector from the coordinates of the own device included in the correct answer data. The receiving terminal (10, 100) according to 3.
[Appendix 5]
The similar data search unit (216) calculates the distance between the first and second positioning result vectors, and based on the calculated distance, the second positioning that is most similar to the first positioning result vector. The receiving terminal (10, 100) according to Appendix 4, which identifies an entry containing a result vector.
[Appendix 6]
The positioning result correction unit (102, 204) was acquired in the learning mode.
A generation unit (214) that generates a learning model based on the satellite position information, the second positioning result vector, and the correct answer data.
A storage unit (215) that stores the generated learning model,
The receiving terminal (10, 100) according to Appendix 1.
[Appendix 7]
The positioning result correction unit (102, 204)
The receiving terminal (10, 100) according to Appendix 6, further comprising a position correction unit (217) that corrects the positioning result in the normal mode by using the learning model.
[Appendix 8]
The reception according to Appendix 6 or 7, wherein the generation unit (214) uses the satellite position information and the relative position of the positioning result with respect to the coordinates of the own device included in the correct answer data to generate the learning model. Terminals (10, 100).
[Appendix 9]
The generator (214) vectorizes the satellite position information and the relative position of the positioning result with respect to the coordinates of the own device included in the correct answer data, and inputs the vectorized data to the neural network. The receiving terminal (10, 100) according to.
[Appendix 10]
The receiving terminal (10, 100) according to Appendix 9, wherein the generation unit (214) determines the weight of the neural network based on the correct answer data.
[Appendix 11]
Positioning units (101, 203) that perform positioning based on radio waves transmitted from multiple satellites, and when positioning is started, generate positioning result vectors with multiple positioning results as elements by repeating positioning calculations.
Using the first positioning result vector obtained in the normal mode, the positioning result correction unit (102, 204) that corrects the positioning result at the start of positioning, and
In the receiving terminal (10, 100) provided with
The position of the own device acquired by a method different from the satellite position information regarding the positions of the plurality of satellites, the second positioning result vector, and the positioning by the radio waves from the plurality of satellites, which are obtained in the learning mode. Correct answer data about, and generate correction information based on,
A positioning method including correcting the positioning result in the normal mode by using the generated correction information.
[Appendix 12]
Positioning units (101, 203) that perform positioning based on radio waves transmitted from multiple satellites, and when positioning is started, generate positioning result vectors with multiple positioning results as elements by repeating positioning calculations.
Using the first positioning result vector obtained in the normal mode, the positioning result correction unit (102, 204) that corrects the positioning result at the start of positioning, and
On the computer (311) mounted on the receiving terminal (10, 100) provided with
The position of the own device acquired by a method different from the satellite position information regarding the positions of the plurality of satellites, the second positioning result vector, and the positioning by the radio waves from the plurality of satellites, which are obtained in the learning mode. Correct answer data about, processing to generate correction information based on,
The process of correcting the positioning result in the normal mode using the generated correction information, and
A program that executes.
Note that the form of Appendix 11 and the form of Appendix 12 can be expanded to the forms of Appendix 2 to the form of Appendix 10 in the same manner as the form of Appendix 1.
 以上、本発明の実施形態を説明したが、本発明はこれらの実施形態に限定されるものではない。これらの実施形態は例示にすぎないということ、及び、本発明のスコープ及び精神から逸脱することなく様々な変形が可能であるということは、当業者に理解されるであろう。 Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments. It will be appreciated by those skilled in the art that these embodiments are merely exemplary and that various modifications are possible without departing from the scope and spirit of the invention.
 この出願は、2019年6月18日に出願された日本出願特願2019-112438を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese application Japanese Patent Application No. 2019-112438 filed on June 18, 2019, and incorporates all of its disclosures herein.
10、100 受信端末
20-1~20-3、30 衛星配置
101、203 測位部
102、204 測位結果補正部
201 GNSS電波受信部
202 GNSS補正情報取得部
205 最終結果記憶部
211 測位結果記憶部
212 衛星情報取得部
213 正解データ取得部
214 補正情報生成部
215 補正情報記憶部
216 類似データ検索部
217 位置補正部
218 学習部
219 学習モデル記憶部
311 プロセッサ
312 メモリ
313 入出力インターフェイス
314 通信インターフェイス
10, 100 Receiving terminals 20-1 to 20-3, 30 Satellite arrangement 101, 203 Positioning unit 102, 204 Positioning result correction unit 201 GNSS radio wave receiving unit 202 GNSS correction information acquisition unit 205 Final result storage unit 211 Positioning result storage unit 212 Satellite information acquisition unit 213 Correct answer data acquisition unit 214 Correction information generation unit 215 Correction information storage unit 216 Similar data search unit 217 Position correction unit 218 Learning unit 219 Learning model storage unit 311 Processor 312 Memory 313 Input / output interface 314 Communication interface

Claims (12)

  1.  複数の衛星から送信される電波に基づいて測位を行い、測位を開始すると測位計算を繰り返すことで複数の測位結果を要素とする測位結果ベクトルを生成する、測位部と、
     通常モード時に得られた第1の測位結果ベクトルを用いて、測位開始時の測位結果を補正する、測位結果補正部と、
     を備え、
     前記測位結果補正部は、学習モード時にそれぞれ得られた、
     前記複数の衛星それぞれの位置に関する衛星位置情報と、第2の測位結果ベクトルと、前記複数の衛星からの電波による測位とは異なる方法で取得された自装置の位置に関する正解データと、に基づき補正情報を生成し、
     前記測位結果補正部は、
     前記生成された補正情報を用いて前記通常モード時の測位結果を補正する、受信端末。
    Positioning is performed based on radio waves transmitted from multiple satellites, and when positioning is started, positioning calculation is repeated to generate a positioning result vector with multiple positioning results as elements.
    A positioning result correction unit that corrects the positioning result at the start of positioning using the first positioning result vector obtained in the normal mode, and
    With
    The positioning result correction unit was obtained in the learning mode, respectively.
    Correction based on satellite position information regarding the positions of each of the plurality of satellites, the second positioning result vector, and correct answer data regarding the position of the own device acquired by a method different from positioning by radio waves from the plurality of satellites. Generate information,
    The positioning result correction unit
    A receiving terminal that corrects the positioning result in the normal mode by using the generated correction information.
  2.  前記測位結果補正部は、前記学習モード時に取得された、
     前記衛星位置情報、第2の前記測位結果ベクトル、及び、前記正解データを1つのエントリとする補正データテーブルを生成する、生成部と、
     前記生成された補正データテーブルを記憶する、記憶部と、
     を備える、請求項1に記載の受信端末。
    The positioning result correction unit was acquired in the learning mode.
    A generator that generates a correction data table having the satellite position information, the second positioning result vector, and the correct answer data as one entry.
    A storage unit that stores the generated correction data table,
    The receiving terminal according to claim 1.
  3.  前記測位結果補正部は、
     前記補正データテーブルに含まれる複数のエントリから、前記第1の測位結果ベクトルに最も類似する前記第2の測位結果ベクトルを含むエントリを特定する、類似データ検索部と、
     前記特定されたエントリの正解データに基づき生成された補正値を用いて前記通常モード時の測位結果を補正する、位置補正部と、
     をさらに備える、請求項2に記載の受信端末。 
    The positioning result correction unit
    A similar data search unit that identifies an entry including the second positioning result vector that is most similar to the first positioning result vector from a plurality of entries included in the correction data table.
    A position correction unit that corrects the positioning result in the normal mode using the correction value generated based on the correct answer data of the specified entry, and
    2. The receiving terminal according to claim 2.
  4.  前記補正値は、前記正解データに含まれる自装置の座標から前記第2の測位結果ベクトルをなす複数の要素から選択された1つの測位結果の座標を減算することで得られる値である、請求項3に記載の受信端末。 The correction value is a value obtained by subtracting the coordinates of one positioning result selected from a plurality of elements forming the second positioning result vector from the coordinates of the own device included in the correct answer data. Item 3. The receiving terminal according to item 3.
  5.  前記類似データ検索部は、前記第1及び第2の測位結果ベクトル間の距離を計算し、前記計算された距離に基づき前記第1の測位結果ベクトルに最も類似する前記第2の測位結果ベクトルを含むエントリを特定する、請求項4に記載の受信端末。 The similar data search unit calculates the distance between the first and second positioning result vectors, and based on the calculated distance, obtains the second positioning result vector that is most similar to the first positioning result vector. The receiving terminal according to claim 4, which specifies an entry to be included.
  6.  前記測位結果補正部は、前記学習モード時に取得された、
     前記衛星位置情報、第2の前記測位結果ベクトル、及び、前記正解データに基づき学習モデルを生成する、生成部と、
     前記生成された学習モデルを記憶する、記憶部と、
     を備える、請求項1に記載の受信端末。
    The positioning result correction unit was acquired in the learning mode.
    A generation unit that generates a learning model based on the satellite position information, the second positioning result vector, and the correct answer data.
    A storage unit that stores the generated learning model,
    The receiving terminal according to claim 1.
  7.  前記測位結果補正部は、
     前記学習モデルを用いて、前記通常モード時の測位結果を補正する、位置補正部をさらに備える、請求項6に記載の受信端末。
    The positioning result correction unit
    The receiving terminal according to claim 6, further comprising a position correction unit that corrects the positioning result in the normal mode by using the learning model.
  8.  前記生成部は、前記衛星位置情報と、前記正解データに含まれる自装置の座標に対する測位結果の相対位置と、を前記学習モデルの生成に使用する、請求項6又は7に記載の受信端末。 The receiving terminal according to claim 6 or 7, wherein the generation unit uses the satellite position information and the relative position of the positioning result with respect to the coordinates of the own device included in the correct answer data to generate the learning model.
  9.  前記生成部は、前記衛星位置情報と、前記正解データに含まれる自装置の座標に対する測位結果の相対位置と、をベクトル化し、前記ベクトル化したデータをニューラルネットワークに入力する、請求項8に記載の受信端末。 The eighth aspect of the present invention, wherein the generation unit vectorizes the satellite position information and the relative position of the positioning result with respect to the coordinates of the own device included in the correct answer data, and inputs the vectorized data to the neural network. Receiving terminal.
  10.  前記生成部は、前記正解データに基づき前記ニューラルネットワークの重みを決定する、請求項9に記載の受信端末。 The receiving terminal according to claim 9, wherein the generation unit determines the weight of the neural network based on the correct answer data.
  11.  複数の衛星から送信される電波に基づいて測位を行い、測位を開始すると測位計算を繰り返すことで複数の測位結果を要素とする測位結果ベクトルを生成する、測位部と、
     通常モード時に得られた第1の測位結果ベクトルを用いて、測位開始時の測位結果を補正する、測位結果補正部と、
     を備える受信端末において、
     学習モード時にそれぞれ得られた、前記複数の衛星それぞれの位置に関する衛星位置情報と、第2の測位結果ベクトルと、前記複数の衛星からの電波による測位とは異なる方法で取得された自装置の位置に関する正解データと、に基づき補正情報を生成し、
     前記生成された補正情報を用いて前記通常モード時の測位結果を補正する、ことを含む測位方法。
    Positioning is performed based on radio waves transmitted from multiple satellites, and when positioning is started, positioning calculation is repeated to generate a positioning result vector with multiple positioning results as elements.
    A positioning result correction unit that corrects the positioning result at the start of positioning using the first positioning result vector obtained in the normal mode, and
    In the receiving terminal equipped with
    The position of the own device acquired by a method different from the satellite position information regarding the positions of the plurality of satellites, the second positioning result vector, and the positioning by the radio waves from the plurality of satellites, which are obtained in the learning mode, respectively. Generates correction information based on the correct answer data about
    A positioning method including correcting a positioning result in the normal mode by using the generated correction information.
  12.  複数の衛星から送信される電波に基づいて測位を行い、測位を開始すると測位計算を繰り返すことで複数の測位結果を要素とする測位結果ベクトルを生成する、測位部と、
     通常モード時に得られた第1の測位結果ベクトルを用いて、測位開始時の測位結果を補正する、測位結果補正部と、
     を備える受信端末に搭載されたコンピュータに、
     学習モード時にそれぞれ得られた、前記複数の衛星それぞれの位置に関する衛星位置情報と、第2の測位結果ベクトルと、前記複数の衛星からの電波による測位とは異なる方法で取得された自装置の位置に関する正解データと、に基づき補正情報を生成する処理と、
     前記生成された補正情報を用いて前記通常モード時の測位結果を補正する処理と、
     を実行させるプログラム。
     
    Positioning is performed based on radio waves transmitted from multiple satellites, and when positioning is started, positioning calculation is repeated to generate a positioning result vector with multiple positioning results as elements.
    A positioning result correction unit that corrects the positioning result at the start of positioning using the first positioning result vector obtained in the normal mode, and
    To the computer installed in the receiving terminal equipped with
    The position of the own device acquired by a method different from the satellite position information regarding the positions of the plurality of satellites, the second positioning result vector, and the positioning by the radio waves from the plurality of satellites, which are obtained in the learning mode, respectively. Correct answer data about, processing to generate correction information based on,
    The process of correcting the positioning result in the normal mode using the generated correction information, and
    A program that executes.
PCT/JP2020/022689 2019-06-18 2020-06-09 Receiver terminal, positioning method, and program WO2020255796A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021528117A JPWO2020255796A1 (en) 2019-06-18 2020-06-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-112438 2019-06-18
JP2019112438 2019-06-18

Publications (1)

Publication Number Publication Date
WO2020255796A1 true WO2020255796A1 (en) 2020-12-24

Family

ID=74037270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022689 WO2020255796A1 (en) 2019-06-18 2020-06-09 Receiver terminal, positioning method, and program

Country Status (2)

Country Link
JP (1) JPWO2020255796A1 (en)
WO (1) WO2020255796A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113324923A (en) * 2021-06-07 2021-08-31 郑州大学 Remote sensing water quality inversion method combining time-space fusion and deep learning
WO2023181349A1 (en) * 2022-03-25 2023-09-28 日本電気株式会社 Position calculation device, position calculation method, and program storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069873A (en) * 2003-08-25 2005-03-17 Sanyo Electric Co Ltd Navigation system
JP2008157705A (en) * 2006-12-22 2008-07-10 Clarion Co Ltd Navigation system and gps position accuracy determination method
WO2008099474A1 (en) * 2007-02-14 2008-08-21 Pioneer Corporation Navigation device, navigation method, and navigation program
JP2010197273A (en) * 2009-02-26 2010-09-09 Akita Univ Fastening state evaluation system of bolt using ultrasonic wave
US20120182179A1 (en) * 2009-09-29 2012-07-19 Joachim Bamberger Method for the computer-supported creation and/or updating of a reference map for a satellite-supported positioning of an object

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5051550B2 (en) * 2009-02-26 2012-10-17 アイシン・エィ・ダブリュ株式会社 Navigation device and navigation program
JP2016180694A (en) * 2015-03-24 2016-10-13 パイオニア株式会社 Server device, information processing method, and information processing program
US11573329B2 (en) * 2019-03-28 2023-02-07 Lyft, Inc. Modeling effects of structures on global-positioning system localization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069873A (en) * 2003-08-25 2005-03-17 Sanyo Electric Co Ltd Navigation system
JP2008157705A (en) * 2006-12-22 2008-07-10 Clarion Co Ltd Navigation system and gps position accuracy determination method
WO2008099474A1 (en) * 2007-02-14 2008-08-21 Pioneer Corporation Navigation device, navigation method, and navigation program
JP2010197273A (en) * 2009-02-26 2010-09-09 Akita Univ Fastening state evaluation system of bolt using ultrasonic wave
US20120182179A1 (en) * 2009-09-29 2012-07-19 Joachim Bamberger Method for the computer-supported creation and/or updating of a reference map for a satellite-supported positioning of an object

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113324923A (en) * 2021-06-07 2021-08-31 郑州大学 Remote sensing water quality inversion method combining time-space fusion and deep learning
CN113324923B (en) * 2021-06-07 2023-07-07 郑州大学 Remote sensing water quality inversion method combining space-time fusion and deep learning
WO2023181349A1 (en) * 2022-03-25 2023-09-28 日本電気株式会社 Position calculation device, position calculation method, and program storage medium

Also Published As

Publication number Publication date
JPWO2020255796A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
US11624843B2 (en) Systems and methods for reduced-outlier satellite positioning
US9681269B2 (en) Positioning accuracy using 3D building models
JP6907083B2 (en) Distributed Kalman filter architecture for ambiguity estimation of carrier propagation distance
JP4807376B2 (en) Inter-mobile interference positioning apparatus and method
US10473792B2 (en) Positioning systems
CN109477900A (en) Estimation in global navigational satellite system receiver for the frequency offset of ambiguity resolution
US20160097859A1 (en) Monitor based ambiguity verification for enhanced guidance quality
US8325086B2 (en) Methods and systems to diminish false-alarm rates in multi-hypothesis signal detection through combinatoric navigation
Faragher et al. Towards an efficient, intelligent, opportunistic smartphone indoor positioning system
CN109219762B (en) System and method for determining and adjusting out-of-range deviation of navigation satellite wide lane
CN109085619B (en) Positioning method and device of multimode GNSS system, storage medium and receiver
WO2020255796A1 (en) Receiver terminal, positioning method, and program
JP2010071686A (en) Positioning apparatus, computer program, and positioning method
US12013470B2 (en) Server, satellite positioning system, and satellite positioning method
US9720071B2 (en) Mitigating effects of multipath during position computation
JP2007033324A (en) Positioning system
US20140180580A1 (en) Module, device and method for positioning
US11047992B2 (en) Positioning method and positioning terminal
RU137394U1 (en) DEVICE FOR PROCESSING INFORMATION OF NETWORK DISTANCED IN THE SPACE OF PELENGATION POST
US11796626B2 (en) Positioning device, positioning system, mobile terminal, and positioning method
US11294072B2 (en) Method, device and server for estimation of IFB calibration value
US10816675B2 (en) Coordinate output method and coordinate output device
JP2017009561A (en) Measuring device, measuring method and measuring program
RU2517176C1 (en) Method of locating consumers of navigation information of satellite navigation systems
JP2006071370A (en) Positioning method using satellite, positioning program, and gps receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528117

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827759

Country of ref document: EP

Kind code of ref document: A1