WO2020252940A1 - 胶囊内窥镜的磁控装置以及控制胶囊内窥镜在组织腔体内移动的方法 - Google Patents

胶囊内窥镜的磁控装置以及控制胶囊内窥镜在组织腔体内移动的方法 Download PDF

Info

Publication number
WO2020252940A1
WO2020252940A1 PCT/CN2019/104815 CN2019104815W WO2020252940A1 WO 2020252940 A1 WO2020252940 A1 WO 2020252940A1 CN 2019104815 W CN2019104815 W CN 2019104815W WO 2020252940 A1 WO2020252940 A1 WO 2020252940A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsule endoscope
tissue cavity
induction coil
magnetic field
magnet
Prior art date
Application number
PCT/CN2019/104815
Other languages
English (en)
French (fr)
Inventor
彭璨
刘浏
夏然
夏斌
赵瑜
Original Assignee
深圳硅基智控科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳硅基智控科技有限公司 filed Critical 深圳硅基智控科技有限公司
Priority to US17/595,714 priority Critical patent/US20220248943A1/en
Priority to EP19934208.0A priority patent/EP3942992A4/en
Publication of WO2020252940A1 publication Critical patent/WO2020252940A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/073Intestinal transmitters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • A61B1/2736Gastroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/31Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the rectum, e.g. proctoscopes, sigmoidoscopes, colonoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4222Evaluating particular parts, e.g. particular organs
    • A61B5/4238Evaluating particular parts, e.g. particular organs stomach
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6861Capsules, e.g. for swallowing or implanting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • A61B1/2733Oesophagoscopes

Definitions

  • the present disclosure generally relates to a magnetic control device of a capsule endoscope and a method for controlling the movement of the capsule endoscope in a tissue cavity.
  • a capsule endoscope can help doctors obtain the lesion area in the digestive tract. Accurate information to assist doctors in confirming and treating patients.
  • Such a capsule endoscope usually has a magnet controlled by an external magnetic control device, a camera device, and a wireless transmission device that transmits the captured image to the outside. Specifically, doctors, nurses, or other operators control the external magnetic control device to magnetically guide the capsule endoscope in the tissue cavity, such as the stomach and small intestine, so that the capsule endoscope is in the tissue cavity.
  • a specific location such as the lesion area
  • the capsule endoscope In the process of guiding the capsule endoscope in the tissue cavity based on the above-mentioned magnetic control method and device, in order to facilitate the operation and make the capsule endoscope easy to control and can clearly capture the possible lesions in the tissue cavity, the capsule endoscope
  • the movement of the scope in the tissue cavity should be as simple and easy to implement as possible.
  • the current commonly used magnetic control method is to make the capsule endoscope roll on the fundus of the stomach or the bottom of the large intestine for shooting.
  • the camera device of the capsule endoscope is attached to the tissue wall, such as the stomach wall, to take pictures, the field of view of the image captured by the capsule endoscope is limited, and the space position of the image captured in the tissue cavity is not sufficient. There may be missed inspections.
  • the present invention aims to provide a magnetic control device capable of improving the movement path and image capturing method of the capsule endoscope in the tissue cavity so as to realize the capsule endoscope covering the tissue cavity .
  • the first aspect of the present disclosure provides a magnetic control device for a capsule endoscope, the capsule endoscope having at least a first magnet and a camera device, the capsule endoscope is located in a tissue cavity, and the magnetic control device
  • the device includes a second magnet and a first induction coil arranged around the second magnet, and the magnetron device is configured to generate a driving force on the capsule endoscope, thereby causing the capsule endoscope to move from the The first position in the tissue cavity moves to the second position toward the opposite side in the tissue cavity, and when the capsule endoscope approaches the second position, the variable magnetic field is controlled to decelerate the capsule endoscope To a predetermined speed, and the magnetron device is configured to generate the variable magnetic field to the capsule endoscope, and the variable magnetic field includes a base magnetic field generated by the second magnet and a base magnetic field generated by the first magnet.
  • the direction of the magnetic axis of the first induction coil remains fixed, and the relative position of the magnetic pole of the second magnet with respect to the first magnet and the At least one of the magnitude of current and the current direction of the first induction coil generates the variable magnetic field.
  • the magnetic control device by configuring the magnetic control device to control the movement of the capsule endoscope, the path of the capsule endoscope in the tissue cavity can be optimized, and the movement speed of the capsule endoscope can be controlled. This can improve the inspection coverage of the tissue cavity, and can prevent the capsule endoscope from damaging the tissue cavity due to excessive speed.
  • the magnetic control device is configured to move the capsule endoscope from the first position to the During the second position, when the capsule endoscope is in the first position, the variable magnetic field is controlled to accelerate the capsule endoscope, and when the capsule endoscope is close to the first position In the second position, the variable magnetic field is controlled to decelerate the capsule endoscope to the predetermined speed.
  • the movement path of the capsule endoscope in the tissue cavity can be flexibly controlled by changing the movement speed of the capsule endoscope.
  • the magnetic control device is configured to move the capsule endoscope from the first position to the In the process of the second position, when the capsule endoscope is in the first position, the variable magnetic field is controlled to accelerate the capsule endoscope to an initial speed and maintain the initial speed to move to a predetermined speed Distance, and then when the capsule endoscope approaches the second position, the variable magnetic field is controlled to decelerate the capsule endoscope to the predetermined speed.
  • the buffer speed of the capsule endoscope when decelerating, thereby further suppressing damage to the side wall of the tissue cavity and the like by the capsule endoscope.
  • the capsule endoscope when the capsule endoscope is located in the second position, the capsule endoscope faces the second position One side of a position takes a picture of the inside of the tissue cavity.
  • the imaging device when the capsule endoscope reaches a suitable position, the imaging device with a higher degree of freedom on the other side of the capsule endoscope can realize imaging of the tissue cavity, and the coverage area of the imaging device can be increased.
  • the first position is a side wall inside the tissue cavity
  • the second position is The side wall on the other side of the tissue cavity.
  • the capsule endoscope is moved from the first position in the tissue cavity to the tissue cavity
  • the process of returning to the second position in the body and returning to the third position in the tissue cavity is a shuttle motion process, wherein the first position and the third position are located on one side of the tissue cavity, The second position is located on the other side of the tissue cavity, and the magnetic control device is configured to control the variable magnetic field to shift the capsule endoscope during the shuttle movement,
  • the third position of the capsule endoscope is deviated from the first position. Therefore, through this shuttle movement, a comprehensive inspection of the tissue cavity can be realized, so that the missed inspection of the lesion of the tissue cavity can be avoided.
  • the magnetic control device is configured to be configured to be in the first aspect of the tissue cavity when the capsule endoscope is located in the tissue cavity.
  • the tissue cavity In the first position or the second position, move the tissue cavity in a direction that forms an angle with the direction of the magnetic axis to make the position of the first magnet deviate from the magnetic axis, and the second The magnet generates a magnetic force acting on the capsule endoscope along the direction of the magnetic axis.
  • the movement control of the capsule endoscope can be realized by adjusting the second magnet.
  • a second aspect of the present disclosure provides a magnetic control device for a capsule endoscope, the capsule endoscope having at least a first magnet and a camera device, the capsule endoscope is located in a tissue cavity, and the magnetic control device includes a first magnet Two magnets and a first induction coil arranged around the second magnet, the magnetron device is configured to generate a variable magnetic field for the capsule endoscope, and the variable magnetic field includes the second magnet
  • the base magnetic field generated and the induced magnetic field generated by the first induction coil, the direction of the magnetic axis of the first induction coil maintains a fixed orientation, and by changing the magnetic pole of the second magnet relative to the first magnet At least one of the relative position, the current magnitude of the first induction coil, and the current direction of the first induction coil generates the variable magnetic field.
  • the magnetic control device by configuring the magnetic control device to control the movement of the capsule endoscope, the path of the capsule endoscope in the tissue cavity can be optimized, and the movement speed of the capsule endoscope can be controlled. This can improve the inspection coverage of the tissue cavity.
  • the magnetic control device is configured to move the capsule endoscope from the first position to the During the second position, the second magnet generates a first magnetic force on the capsule endoscope, and the first induction coil generates a second magnetic force on the capsule endoscope.
  • the first magnetic force The magnetic force direction and the magnetic force direction of the second magnetic force form an angle to generate an offset movement to the capsule endoscope. Therefore, it is convenient to drive the capsule endoscope to move to a specific path through the cooperation of the base magnetic field and the induced magnetic field.
  • a liquid is contained in the tissue cavity and a liquid surface is formed in the tissue cavity
  • the magnetic control The device is configured to control the variable magnetic field so that the capsule endoscope is at the liquid level and maintains a relative position with the tissue cavity, and moves the tissue cavity to take pictures in the tissue cavity.
  • the buoyancy of the liquid, the gravity of the capsule endoscope, and the magnetic force of the variable magnetic field can be used to achieve stable imaging of the position of the capsule endoscope on the liquid surface. The movement of the can more conveniently take pictures of the tissue cavity.
  • a liquid is contained in the tissue cavity and a liquid surface is formed in the tissue cavity.
  • the height of is greater than the length of the capsule endoscope.
  • the tissue cavity is moved relative to the capsule endoscope to capture images inside the tissue cavity.
  • the first induction coil is arranged on the same side as the second magnet.
  • the magnetic field force generated by the first induction coil and the magnetic field force generated by the second magnet can be more concentrated, and the control of the capsule endoscope can be achieved more easily.
  • the magnetic control device further includes a second induction coil arranged on a side different from the first induction coil, so The second induction coil is arranged on a side different from the second magnet.
  • the capsule endoscope in the tissue cavity can be moved more stably under the action of the first induction coil and the second induction coil and the second magnet located on different sides of the tissue cavity.
  • the magnetic control device further includes a third induction coil, and the third induction coil generates and acts on the inside of the capsule.
  • the magnetic force of the endoscope so that the capsule endoscope is positioned at a predetermined position in the tissue cavity. As a result, the capsule endoscope can be more accurately positioned in the required working area.
  • the diameter of the third induction coil is smaller than the diameter of the first induction coil and the diameter of the second induction coil. diameter.
  • the third induction coil which is one order of magnitude smaller than the size of the capsule endoscope and smaller than the first induction coil and the second induction coil, can more easily realize the positioning of the capsule endoscope in the tissue cavity.
  • the third induction coil is arranged on the same side as the second induction coil.
  • imaging devices are respectively provided at both ends of the capsule endoscope.
  • the rotation angle of the capsule endoscope can be reduced, and the tissue cavity can be imaged more easily and in all directions.
  • the center of gravity of the capsule endoscope is closer to the other end than one end.
  • the capsule endoscope can more stably perform imaging at a predetermined position in the tissue cavity.
  • the magnetic control device is configured to be configured when the capsule endoscope is located on the side wall of the tissue cavity
  • the variable magnetic field By controlling the variable magnetic field, one end of the capsule endoscope located on the side wall of the tissue cavity is used as a fulcrum to adjust the orientation of the imaging device at the other end of the capsule endoscope.
  • the capsule endoscope can be made to rely on the supporting force of the side wall in the tissue cavity, and the capsule endoscope can be stably located on the side wall in the tissue cavity by changing the variable magnetic field.
  • the magnetic control device is configured to control the variable magnetic field to be positioned on the side of the tissue cavity.
  • One end of the capsule endoscope of the wall serves as a fulcrum, and the orientation of the imaging device on the other end of the capsule endoscope is adjusted to take pictures.
  • the orientation of the imaging device on the other end of the capsule endoscope is adjusted to take pictures.
  • the magnetic control device is configured to change the magnetic pole of the second magnet relative to the first magnet. Position to control the variable magnetic field. As a result, it is possible to conveniently adjust the imaging device of the capsule endoscope and photograph the tissue cavity.
  • the imaging device of the capsule endoscope automatically takes pictures in the tissue cavity at predetermined time intervals.
  • the capsule endoscope can be activated before or after entering the tissue cavity so that the capsule endoscope can automatically take pictures in the tissue cavity, so that the capsule endoscope can take more pictures of the tissue cavity.
  • the direction of the magnetic axis is a vertical direction, and the magnetic axis passes through the second magnet.
  • the second magnet is a cylinder. Therefore, the second magnet can be manipulated more conveniently.
  • the second magnet is capable of rotating around a point intersecting the magnetic axis of the first induction coil.
  • the method is arranged around the first induction coil.
  • the first magnet, the second magnet, and the first induction coil are detected by using a magnetic sensor array.
  • the position of the magnetic sensor array relative to the capsule endoscope is calculated based on the model of the magnetic dipole of the capsule endoscope, so as to obtain the position of the capsule endoscope relative to the tissue cavity Position the location.
  • the position of the capsule endoscope in the tissue cavity can be accurately positioned.
  • the imaging area of the capsule endoscope basically covers the tissue cavity.
  • the next movement path of the capsule endoscope can be reasonably optimized, and the capsule endoscope can realize all-round imaging of the tissue cavity.
  • the tissue cavity is a stomach.
  • the relatively large space of the stomach can facilitate the movement and path selection of the capsule endoscope.
  • the capsule endoscope is moved from the first position of the stomach to the position of the stomach.
  • the process of returning the second position to the third position of the stomach again is a shuttle motion process, wherein the first position and the third position are located on one side of the stomach, and the second The position is located on the other side of the stomach; during the shuttle movement, before the capsule endoscope moves to the second position of the stomach, the capsule endoscope also moves to the In a fourth position other than the first position and the second position, the fourth position is not located on a plane formed by the first position, the second position, and the third position.
  • the capsule endoscope moves to the second part of the stomach. Before the three positions, the capsule endoscope also moves to a fifth position between the second position and the third position, and the fifth position is not located between the first position and the second position. And the third position constituted a plane. As a result, it is possible to achieve comprehensive imaging of various parts of the tissue cavity.
  • the first position, the second position, the third position, the fourth position, and the The fifth positions are all located on the inner wall of the stomach.
  • the capsule endoscope can take more stable imaging with the support of the stomach inner wall, and can realize a full-scale imaging of various parts of the tissue cavity.
  • a third aspect of the present disclosure provides a method for moving a capsule endoscope in a tissue cavity, the capsule endoscope having at least a first magnet and an imaging device, including: allowing the capsule endoscope to enter the tissue cavity; The capsule endoscope generates a variable magnetic field, and generates a driving force to the capsule endoscope by controlling the variable magnetic field, so that the capsule endoscope is directed from a first position in the tissue cavity The opposite side within the tissue cavity moves to a second position; and when the capsule endoscope approaches the second position, the variable magnetic field is controlled to decelerate the capsule endoscope to a predetermined speed, wherein The variable magnetic field includes a base magnetic field generated by a second magnet and an induced magnetic field generated by a first induction coil.
  • the direction of the magnetic axis of the first induction coil is kept fixed. At least one of the relative position of the magnetic pole of the magnet with respect to the first magnet, the magnitude of the current of the first induction coil, and the direction of the current of the first induction coil are changed.
  • the movement of the capsule endoscope is controlled by a variable magnetic field, so that the path of the capsule endoscope in the tissue cavity can be optimized, and the movement speed of the capsule endoscope can be controlled.
  • the inspection coverage rate of the tissue cavity can be improved, and the damage to the tissue cavity caused by the capsule endoscope due to excessive speed can be suppressed.
  • the variable magnetic field is controlled to accelerate the capsule endoscope to an initial speed, and maintain the initial speed to move a predetermined distance, and then when When the capsule endoscope approaches the second position, the variable magnetic field is controlled to decelerate the capsule endoscope to the predetermined speed.
  • the movement path of the capsule endoscope in the tissue cavity can be flexibly controlled by changing the movement speed of the capsule endoscope.
  • the variable magnetic field is controlled to accelerate the capsule endoscope to an initial speed, and maintain the initial speed to move a predetermined distance, and then when When the capsule endoscope approaches the second position, the variable magnetic field is controlled to decelerate the capsule endoscope to the predetermined speed.
  • the capsule endoscope when the capsule endoscope is located in the second position, the capsule endoscope The inside of the tissue cavity is photographed from the side facing the first position.
  • the imaging device with a higher degree of freedom on the other side of the capsule endoscope can realize imaging of the tissue cavity, and the coverage area of the imaging device can be increased.
  • the first position is a side wall on one side of the tissue cavity
  • the first The second position is the side wall on the other side of the tissue cavity.
  • the capsule endoscope is moved from the first position in the tissue cavity to
  • the process of returning to the second position in the tissue cavity and returning to the third position in the tissue cavity is a shuttle motion process, wherein the first position and the third position are located in the tissue cavity
  • the second position is located on the other side of the tissue cavity.
  • the variable magnetic field is controlled to offset the capsule endoscope, thereby causing the The third position of the capsule endoscope deviates from the first position. Therefore, through this shuttle movement, a comprehensive inspection of the tissue cavity can be realized, so that the missed inspection of the lesion of the tissue cavity can be avoided.
  • the capsule endoscope in the method for controlling the movement of the capsule endoscope in the tissue cavity according to the third aspect of the present disclosure, optionally, when the capsule endoscope is in the first position or in the tissue cavity In the second position, move the tissue cavity in a direction that forms an angle with the direction of the magnetic axis to make the position of the first magnet deviate from the magnetic axis, and the second magnet is along the direction of the magnetic axis.
  • the direction of the magnetic axis generates a magnetic force acting on the capsule endoscope.
  • the movement control of the capsule endoscope can be realized by adjusting the second magnet.
  • a fourth aspect of the present disclosure provides a method for controlling movement of a capsule endoscope in a tissue cavity, the capsule endoscope having at least a first magnet and a camera device, including: allowing the capsule endoscope to enter the tissue cavity And generating a variable magnetic field for the capsule endoscope, and generating a driving force for the capsule endoscope by controlling the variable magnetic field, wherein the variable magnetic field includes a base magnetic field generated by a second magnet And the induction magnetic field generated by the first induction coil, the direction of the magnetic axis of the first induction coil is kept fixed, and the variable magnetic field changes the relative position of the magnetic pole of the second magnet with respect to the first magnet. At least one of the current magnitude of the first induction coil and the current direction of the first induction coil is changed.
  • the movement of the capsule endoscope is controlled by a variable magnetic field, so that the path optimization of the capsule endoscope in the tissue cavity can be realized, and the movement speed of the capsule endoscope can be controlled. It can improve the inspection coverage of the tissue cavity.
  • the base magnetic field generates a first magnetic force on the capsule endoscope
  • the induced magnetic field generates a second magnetic force on the capsule endoscope.
  • the direction of the magnetic force of the first magnetic force is the same as that of the second magnetic force.
  • the magnetic force direction of the magnetic force forms an angle to produce an offset movement to the capsule endoscope. Therefore, it is convenient to drive the capsule endoscope to move to a specific path through the cooperation of the base magnetic field and the induced magnetic field.
  • a liquid is contained in the tissue cavity and a liquid surface is formed in the tissue cavity,
  • the variable magnetic field is controlled so that the capsule endoscope is at the liquid level and maintains a relative position with the tissue cavity, and the tissue cavity is moved to take pictures in the tissue cavity.
  • the buoyancy of the liquid, the gravity of the capsule endoscope, and the magnetic force of the variable magnetic field can be used to achieve stable shooting of the position of the capsule endoscope on the liquid surface.
  • the first induction coil is arranged on the same side as the second magnet.
  • the magnetic field force generated by the first induction coil and the magnetic field force generated by the second magnet can be more concentrated, and the control of the capsule endoscope can be achieved more easily.
  • the magnetic control device further includes a second induction coil arranged on a side different from the first induction coil.
  • the induction coil, the second induction coil is arranged on a side different from the second magnet.
  • the magnetic control device further includes a third induction coil, and the third induction coil acts on The magnetic force of the capsule endoscope enables the capsule endoscope to be positioned at a predetermined position in the tissue cavity.
  • the diameter of the third induction coil is smaller than the diameter of the first induction coil and the diameter of the first induction coil. 2. The diameter of the induction coil. As a result, the capsule endoscope can be more accurately positioned in the required working area.
  • the third induction coil is arranged on the same side as the second induction coil.
  • the third induction coil which is one order of magnitude smaller than the size of the capsule endoscope and smaller than the first induction coil and the second induction coil, can more easily realize the positioning of the capsule endoscope in the tissue cavity.
  • the variable magnetic field uses one end of the capsule endoscope located on the side wall of the tissue cavity as a fulcrum to adjust the orientation of the imaging device at the other end of the capsule endoscope.
  • the capsule endoscope can be supported by the supporting force of the side wall of the tissue cavity, and the capsule endoscope can be stably positioned on the side wall of the tissue cavity by changing the variable magnetic field.
  • the direction of the magnetic axis is a vertical direction, and the magnetic axis passes through the second magnet.
  • the capsule endoscope can be stabilized on the magnetic axis.
  • the second magnet is configured to be capable of intersecting the magnetic axis of the first induction coil.
  • the dot is arranged around the first induction coil in a rotating manner.
  • the capsule endoscope is moved from the first position of the tissue cavity to The process of the second position of the tissue cavity and returning to the third position of the tissue cavity is a shuttle motion process, wherein the first position and the third position are located in the tissue cavity The second position is located on the other side of the tissue cavity.
  • the capsule endoscope before the capsule endoscope moves to the second position of the tissue cavity, The capsule endoscope also moves to a fourth position other than the first position and the second position, and the fourth position is not located between the first position, the second position, and the second position.
  • a plane composed of three positions As a result, it is possible to achieve comprehensive imaging of various parts of the tissue cavity.
  • the capsule endoscope is moved to the tissue cavity.
  • the capsule endoscope Before the third position of the body, the capsule endoscope also moves to a fifth position other than the second position and the third position, and the fifth position is not located between the first position, The second position and the third position constitute a plane. As a result, it is possible to achieve comprehensive imaging of various parts of the tissue cavity.
  • the first position, the second position, the third position, and the first position are located on the inner wall of the tissue cavity.
  • the capsule endoscope can take more stable imaging with the support of the stomach inner wall, and can realize a full-scale imaging of various parts of the tissue cavity.
  • Fig. 1 is a schematic diagram showing a capsule endoscope system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing the external configuration of the capsule endoscope according to the embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram showing the internal structure of the capsule endoscope according to the embodiment of the present disclosure.
  • FIG. 4 is a schematic flow chart showing a method for controlling movement of a capsule endoscope in a tissue cavity according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing another flow chart of a method for controlling movement of a capsule endoscope in a tissue cavity according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing a typical path of the capsule endoscope in the stomach according to the embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram showing another movement path of the capsule endoscope in the tissue cavity according to the embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram showing that the capsule endoscope according to the embodiment of the present disclosure floats on the liquid surface in the tissue cavity to perform imaging.
  • FIG. 9 is another schematic diagram showing that the capsule endoscope according to the embodiment of the present disclosure is floating on the liquid surface in the tissue cavity to perform imaging.
  • FIG. 10 is a schematic diagram showing a magnetron device related to an embodiment of the present disclosure.
  • FIG. 11 is another schematic diagram showing the magnetron device according to the embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram showing a capsule endoscope system 1 according to an embodiment of the present disclosure.
  • FIG. 2 is an external configuration diagram showing the capsule endoscope 10 according to the embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram showing the internal structure of the capsule endoscope 10 according to the embodiment of the present disclosure.
  • the capsule endoscope system 1 may include a capsule endoscope 10 located in a tissue cavity 3 of a subject 2, an examination bed 20 carrying the subject 2, and magnetically magnetically applied to the capsule endoscope 10.
  • the controlled magnetic control device 30, and the operating device 40 that controls the examination table 20 and the magnetic control device 30 (see FIG. 1).
  • the capsule endoscope system 1 may further include a communication device 50 that wirelessly communicates with the capsule endoscope 10 in the subject 2, a storage unit 60 that stores various information such as in-vivo images of the subject 2, and a display A display device 70 for various information such as an in-vivo image of the subject 2 captured by the capsule endoscope 10 (see FIG. 1).
  • the capsule endoscope 10 is a medical device formed into the tissue cavity 3 of the subject 2 and shaped like a capsule.
  • the capsule endoscope 10 may be a capsule-shaped housing (see FIG. 2).
  • the capsule-type housing of the capsule endoscope 10 may be a capsule-type housing formed into a size that can be introduced into the subject 2.
  • the openings at both ends of the capsule-shaped casing are blocked by the dome-shaped casing in a dome shape to maintain a liquid-tight state.
  • the dome-shaped housing is a transparent optical dome that transmits light (for example, visible light) in a predetermined wavelength band.
  • the cylindrical case is a substantially opaque case.
  • the tissue cavity 3 may be a digestive cavity such as stomach, esophagus, large intestine, colon, small intestine, and the like.
  • the tissue cavity 3 may also be a non-digestive cavity such as an abdominal cavity, a chest cavity, and the like.
  • the capsule endoscope 10 can be fed into the digestive cavity by eating, while for non-digestive cavities, the capsule endoscope 10 can be placed into the non-digestive cavity by opening a minimally invasive opening through clinical surgery. Digestive cavity.
  • the capsule endoscope 10 includes at least a magnet 11 (first magnet 11) and an imaging device 12 for imaging in a tissue cavity (for example, the stomach) 3.
  • the capsule endoscope 10 captures an in-vivo image of the subject 2 through the imaging device 12.
  • the capsule endoscope 10 is also provided with a transmitting antenna 13 for wireless transmission with the communication device 50, a circuit component 14, and a power supply 15 (see FIG. 3).
  • the capsule endoscope 10 may have a camera 12 on one side. In other examples, the capsule endoscope 10 may have two camera devices 12 on both sides. In this case, the capsule endoscope 10 can capture images on both sides at the same time.
  • the circuit component 14 may include an illuminating unit such as an LED, an optical system such as a condenser lens, and an imaging element realized by using CCD or CMOS.
  • the circuit assembly 14 may include a control circuit that controls various components inside the capsule endoscope 10.
  • the power supply 15 can be implemented using a switch circuit, a button battery, and the like. In some examples, when the switch circuit is switched to the on state, power may be supplied to the capsule endoscope 10 based on the control of the control circuit.
  • the magnetic control device 30 provided outside the subject 2 enables the capsule endoscope 10 to move within the tissue cavity 3 under the action of an external magnetic field, and at the same time, it can move the inner wall of the tissue cavity 3 ( For example, the stomach wall) is photographed, and the image signal of the obtained in-vivo image is wirelessly transmitted to the communication device 50 outside the subject 2 and displayed on the display device 70.
  • the magnetron device 30 may be composed of multiple coils and magnets.
  • the magnetron device 30 may include a second magnet 31 and a first induction coil (see FIG. 10) 32 arranged around the second magnet 31.
  • the magnetron device 30 can generate a three-dimensional external magnetic field such as a rotating magnetic field or a gradient magnetic field using the power provided by the power supply device.
  • the magnetron device 30 can at least generate a variable magnetic field with a gradient in the vertical direction.
  • the magnetron device 30 applies an external variable magnetic field to the capsule endoscope 10 inside the subject 2 placed on the examination bed 20, and the first magnet 11 inside the subject 2 is affected by the external variable magnetic field.
  • a magnetic attraction force is generated to guide the capsule endoscope 10 to a desired location in the tissue cavity 3.
  • the examination bed 20 may be placed on the ground or a horizontal surface, and at this time, the subject 2 may lie flat on the examination bed 20 to perform cavity wall inspection of the tissue cavity 3.
  • the operating device 40 can move the examination table 20 and the subject 2 on the examination table 20 with respect to the magnetic control device 30, for example, in the XYZ three-dimensional coordinate position, so that the examination table 20 and the examination table 20 The subject 2 moves to an appropriate position.
  • the operation device 40 can apply an external variable magnetic field generated by the magnetron device 30 to the capsule endoscope 10 inside the subject 2 to thereby change the movement of the capsule endoscope 10.
  • the capsule endoscope 10 inside the subject 2 can be positioned in a three-dimensional space in which the external magnetic field generated by the magnetron device 30 is formed.
  • the operating device 40 can be realized by using an input device such as a keyboard, a mouse, and a joystick, and various information can be input to the operating device 40 according to an input operation of a user such as a doctor or a nurse.
  • the communication device 50 may be connected to a receiving antenna (not shown) arranged outside (for example, the body surface) of the subject 2, and may be connected to the transmitting antenna of the capsule endoscope 10 inside the subject 2 13 Perform wireless communication.
  • the communication device 50 may receive the wireless signal and position information from the capsule endoscope 10 through the receiving antenna and perform demodulation processing, and extract the image signal and position information contained in the wireless signal.
  • the display device 70 may demodulate the wireless signal from the capsule endoscope 10 acquired from the communication device 50 and display the image information corresponding to the image signal, that is, the in-vivo image of the subject 2.
  • the in-vivo image group of the subject 2 generated by the display device 70 may be stored in the storage unit 60.
  • the magnetron device 30 can generate a variable magnetic field to guide and control the movement direction of the capsule endoscope 10.
  • the operating device 40 is controlled by an operator such as a doctor, so that the capsule endoscope 10 in the subject 2 is moved to an appropriate position by the magnetic control device 30, and the inside of the tissue cavity 3 is captured by the capsule endoscope 10 Image.
  • the capsule endoscope 10 is a medical device formed into the tissue cavity 3 of the subject 2 and shaped like a capsule, and the capsule endoscope 10 includes at least a magnet 11 (first magnet 11) and a It is an imaging device 12 that takes images in a tissue cavity (for example, stomach) 3.
  • the capsule endoscope 10 captures an in-vivo image of the subject 2 through the imaging device 12.
  • the magnetron device 30 can be composed of a plurality of coils and magnets, and the magnetron device 30 can generate a three-dimensional external magnetic field such as a rotating magnetic field or a gradient magnetic field using power provided by a power supply device.
  • the magnetron device 30 applies an external variable magnetic field to the capsule endoscope 10 inside the subject 2 placed on the examination bed 20, and the first magnet 11 inside the subject 2 is affected by the external variable magnetic field.
  • a magnetic attraction force is generated to guide the capsule endoscope 10 to a desired location in the tissue cavity 3.
  • the magnetic control device 30 is an important part of the capsule endoscope system 1. It mainly controls the movement of the capsule endoscope 10 in the tissue cavity 3 by applying a variable magnetic field to the capsule endoscope 10, thereby obtaining the tissue cavity.
  • the present disclosure mainly takes the stomach as an example to describe the method of controlling the movement of the capsule endoscope 10 in the tissue cavity 3.
  • tissue cavities 3 such as digestive cavities (esophagus, large intestine, colon, small intestine, etc.), etc.
  • the method for controlling the movement of the capsule endoscope 10 in the tissue cavity 3 according to the present disclosure It can also be applied, or it can be applied without creative work and slight adjustments.
  • FIG. 4 is a schematic flowchart showing a method for controlling the movement of the capsule endoscope 10 in the tissue cavity 3 according to the embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing another flow chart of the method for controlling the movement of the capsule endoscope 10 in the tissue cavity 3 according to the embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing a typical path of the capsule endoscope 10 in the stomach according to the embodiment of the present disclosure.
  • the capsule endoscope 10 can be first entered into the subject’s tissue cavity 3 through a natural orifice of the human body (such as the oral cavity, etc.), or through a small incision made by surgery. . At this time, the subject 2 can be placed on the examination table 20 on its back.
  • the capsule endoscope 10 may be set so as not to observe (image acquisition) until a prescribed time has passed or arrive at a prescribed place, and the capsule endoscope 10 may be confirmed after a prescribed time has passed or by observing an image. After reaching the tissue cavity 3 to be inspected, the power supply 15 in the capsule endoscope 10 is activated to start the capsule endoscope 10 to work.
  • the magnetic control device 30 provided outside the subject 2 can be used to generate a variable magnetic field for the capsule endoscope 10, and by controlling the variable magnetic field to generate a driving force for the capsule endoscope 10, the capsule endoscope 10 moves from the first position P1 in the tissue cavity 3 toward the opposite side in the tissue cavity 3 to the second position P2.
  • first position P1 and the second position P2 are not particularly limited, as long as they are located in the tissue cavity 3.
  • both the first position P1 and the second position P2 may be located on the cavity wall (here, the stomach wall) in the tissue cavity 3.
  • the first position P1 may be located in the cavity wall in the tissue cavity 3
  • the second position P2 may be located in the tissue cavity 3 where it does not contact the cavity wall.
  • both the first position P1 and the second position P2 may be located in the tissue cavity 3 where it does not touch the cavity wall.
  • the capsule endoscope 10 After the capsule endoscope 10 enters the tissue cavity 3 of the subject 2, it will reach the bottom of the tissue cavity (such as the stomach) 3 (such as the first position P1). At this time, the variable magnetic field is controlled to The capsule endoscope 10 is controlled to adjust its lens orientation so that it is first located at the bottom of the tissue cavity 3 for shooting, and an in-vivo image of the inner wall of the tissue cavity 3 is acquired (step S110). In addition, in some examples, it may be determined whether the first position P1 is a desired position (step S120). If the first position P1 is not the desired position, return to step S110 to redirect the capsule endoscope 10 using a variable magnetic field and position the capsule endoscope 10 by a method such as magnetic field positioning.
  • the variable magnetic field can be controlled at this time , So that the capsule endoscope 10 generates an upward force under the action of the magnetic force of the variable magnetic field, the gravity of the capsule endoscope 10 itself, and the supporting force and/or friction force at the bottom of the tissue cavity 3, so that the capsule endoscope The mirror 10 moves to the opposite side of the tissue cavity 3 (step S130).
  • the desired position may be, for example, a position where a clear image can be obtained.
  • the variable magnetic field may be controlled to decelerate the capsule endoscope 10 to a predetermined speed (step S140). In other examples, the deceleration may be lower than the predetermined speed in step S140.
  • the capsule endoscope 10 is at the second position P2 by a method such as magnetic field positioning, and the capsule endoscope 10 is caused to take an image of the cavity wall (for example, the stomach wall) of the tissue cavity 3 at the second position P2 (step S150 ). Thereby, it is possible to prevent the impact force generated in the accelerated motion state of the capsule endoscope 10 from damaging the tissue on the side wall of the tissue cavity 3.
  • step S160 it may be determined whether the second position is a desired position (step S160). If the second position P2 is not the desired position, return to step S130 to redirect the capsule endoscope 10 using a variable magnetic field and position the capsule endoscope 10 by a method such as magnetic field positioning.
  • the second position P2 is not particularly limited, and it can be any point in the tissue cavity 3 or a side wall on the opposite side with respect to the bottom of the tissue cavity 3.
  • the first position P1 may be any position in the tissue cavity 3 except the bottom.
  • the capsule endoscope 10 is controlled to reach the first position by controlling the variable magnetic field (step S210).
  • the variable magnetic field can be controlled at this time to make The capsule endoscope 10 generates an upward component force under the action of the magnetic force of the variable magnetic field and the gravity of the capsule endoscope 10 itself to move the capsule endoscope 10 to the opposite side of the tissue cavity 3 (step S230).
  • the variable magnetic field is controlled to decelerate the capsule endoscope 10 to a predetermined speed (step S240). In some other examples, the deceleration may be lower than the predetermined speed in step S140.
  • the capsule endoscope 10 is in the second position P2 by a method such as magnetic field positioning, and the capsule endoscope 10 is caused to take an image of the cavity wall (for example, the stomach wall) of the tissue cavity 3 at the second position P2 (step S250 ). Thereby, it is possible to prevent the impact force generated in the accelerated motion state of the capsule endoscope 10 from damaging the tissue on the side wall of the tissue cavity 3.
  • step S260 it may be determined whether the second position is a desired position (step S260). If the second position P2 is not the desired position, return to step S230 to redirect the capsule endoscope 10 using a variable magnetic field and position the capsule endoscope 10 by a method such as magnetic field positioning.
  • steps S110 to S160 and steps S210 to S260 shown in FIGS. 5 and 6 are repeated until the image capture in the tissue cavity 3 is completed.
  • the magnetron device 30 is configured to generate a variable magnetic field for the capsule endoscope 10, and the variable magnetic field includes a base magnetic field generated by the second magnet 31 and an induced magnetic field generated by the first induction coil 32.
  • the direction of the magnetic axis L of the induction coil is kept at a fixed orientation, so that the capsule endoscope 10 is always at the position of the magnetic axis L of the first induction coil 32 under the traction of the variable magnetic field (refer to FIG. 10).
  • the magnetic force of the variable magnetic field can be adjusted by changing the relative position of the magnetic pole of the second magnet 31 with respect to the first magnet 11 (ie, the magnet 11 in the capsule endoscope 10).
  • the second magnet 31 can be deflected to deflect the polarities of the N pole and S pole of the second magnet 31, or the second magnet 31 can be moved to make the poles of the second magnet 31 face each other.
  • the relative position of the first magnet 11 changes, thereby generating a variable magnetic field to control the movement and deflection of the capsule endoscope 10.
  • the position of the subject 2 can be moved to change the relative position of the magnetic pole of the second magnet 31 with respect to the first magnet 11, thereby generating a variable magnetic field to control the movement of the capsule endoscope 10 And deflection.
  • the first magnet 11 in the capsule endoscope 10 involved in this embodiment can be fixed in the capsule endoscope 10. Therefore, the deflection of the polarity of the first magnet 11 can drive the capsule endoscope 10 The lens is deflected.
  • the magnitude of the variable magnetic field can be controlled by changing the current of the first induction coil 32, and the direction of the variable magnetic field can be controlled by changing the relative position of the first induction coil 32 to the first magnet 11.
  • the relative position of the first induction coil 32 with respect to the first magnet 11 can be changed by moving the first induction coil 32.
  • the relative position of the first induction coil 32 relative to the first magnet 11 can also be changed by moving the position of the subject 2.
  • the polarity of the magnetic field generated by the first induction coil 32 can be changed by changing the current direction of the first induction coil 32, so that the magnetic force of the variable magnetic field can be changed.
  • the capsule endoscope 10 can be achieved
  • the path in the space of the tissue cavity 3 is optimized, and at the same time, the speed of the movement of the capsule endoscope 10 can be controlled mainly by controlling the current strength of the first induction coil 32, so that a comprehensive inspection of the tissue cavity 3 can be realized. It can also protect the walls of the tissue cavity 3.
  • the first position P1 may be the cavity bottom position of the tissue cavity 3.
  • the magnetic control device 30 is configured to control the variable magnetic field to generate an upward direction when the capsule endoscope 10 is at the first position P1 during the movement of the capsule endoscope 10 from the first position P1 to the second position P2.
  • the magnetic force causes the capsule endoscope 10 to generate upward component force under the supporting force and/or friction force at the bottom of the tissue cavity 3 and the downward gravity of the capsule endoscope 10 to make the capsule endoscope 10 generate upward force.
  • the capsule endoscope 10 performs accelerated motion; when the capsule endoscope 10 approaches the second position P2, at this time, the capsule endoscope 10 loses the supporting force and/or friction force of the stomach fundus, and the variable magnetic field is controlled to balance the capsule
  • the gravity of the endoscope 10 can thereby decelerate the capsule endoscope 10 to a predetermined speed or less than the predetermined speed.
  • the second position P2 may be any position in the space of the tissue cavity 3 relative to the first position P1, at this time, the tissue cavity 3 can be freed from obstacles such as mucosa or protrusion structures at the bottom of the tissue cavity 3 , And the capsule endoscope 10 is decelerated to a predetermined speed when it reaches this position, so that the tissue cavity 3 is photographed.
  • the second position P2 may be the other side wall of the tissue cavity 3 relative to the first position P1. At this time, since it is close to the side wall of the tissue cavity 3, it is equivalent to giving the capsule endoscope 10 is a fulcrum, which enables the capsule endoscope 10 to perform stable imaging based on the control of the variable magnetic field at this fulcrum.
  • the magnetic control device 30 is configured to control the variable magnetic field when the capsule endoscope 10 is at the first position P1 during the movement of the capsule endoscope 10 from the first position P1 to the second position P2.
  • the initial speed can be maintained to move a predetermined distance, and then when the capsule endoscope 10 approaches the second position P2, the variable magnetic field is controlled to move the capsule endoscope 10 Slow down to a predetermined speed.
  • the capsule endoscope 10 undergoes a uniform motion during the moving process, so that the buffering speed of the capsule endoscope 10 when the capsule endoscope 10 is decelerated can be reasonably controlled.
  • it is also conducive to the images taken by the capsule endoscope 10 in the uniform motion stage. The clarity.
  • the capsule endoscope 10 when the capsule endoscope 10 is located at the second position P2, the capsule endoscope 10 images the tissue cavity 3 toward the side of the first position P1.
  • the orientation of the imaging device 12 can be controlled by controlling the deflection of the second magnet 31 (see FIG. 10 described later), and the tissue cavity 3 can be photographed using the deflection of the lens of the imaging device 12.
  • the second position P2 may be any position in the space of the tissue cavity 3 relative to the first position P1.
  • the second position P2 may be a side wall of the tissue cavity 3 relative to the first position P1.
  • the first position P1 may preferably be a side wall on one side of the tissue cavity 3
  • the second position P2 may preferably be a side wall on the other side of the tissue cavity 3.
  • the process of moving the capsule endoscope 10 from the first position P1 of the stomach to the second position P2 of the stomach and returning to the third position P3 of the stomach again is a shuttle movement process.
  • the first position P1 and the third position P3 can be located on one side of the stomach, and the second position P2 can be located on the other side of the stomach.
  • the variable magnetic field can be controlled to make the capsule endoscope 10 An offset is generated, so that the third position P3 of the capsule endoscope 10 deviates from the first position P1.
  • the shuttle movement may be a shuttle movement in the gastric space. In this way, damage to the gastric sidewall tissue due to the impact force generated by the capsule endoscope 10 can be avoided.
  • the shuttle movement may be a shuttle movement between the side walls of the stomach. In this way, a more comprehensive examination of the stomach can be achieved, and the situation of missing a hidden position of the stomach can be avoided.
  • the magnetic control device 30 is configured to form an angle along the direction of the magnetic axis L when the capsule endoscope 10 is located at the first position P1 or the second position P2 of the tissue cavity 3
  • the tissue cavity 3 is moved to deviate the position of the first magnet 11 from the magnetic axis L, and the second magnet 31 generates a magnetic force acting on the capsule endoscope 10 along the direction of the magnetic axis L. Therefore, it is convenient to drive the capsule endoscope 10 to move to a specific path through the cooperation of the base magnetic field and the induced magnetic field. At this time, by moving the position of the subject 2, the control of the capsule endoscope 10 can be achieved more stably.
  • FIG. 8 is a schematic diagram showing that the capsule endoscope 10 according to the embodiment of the present disclosure floats on the liquid surface in the tissue cavity 3 to perform imaging.
  • FIG. 9 is another schematic diagram showing that the capsule endoscope 10 according to the embodiment of the present disclosure is floating on the liquid surface in the tissue cavity 3 to perform imaging.
  • the tissue cavity 3 may be filled with a liquid 4 (see FIG. 8 or FIG. 9).
  • the specific gravity value of the capsule endoscope 10 can be set to be smaller than and close to the specific gravity value of the liquid 4 provided in the tissue cavity 3.
  • the specific gravity value of the capsule endoscope 10 may be set to be less than one and close to one.
  • the center of gravity of the capsule endoscope 10 can be set to be biased toward the side of the capsule-shaped housing. In this case, the capsule endoscope 10 can be made to float in the liquid 4 more stably under the guidance of the center of gravity.
  • the capsule endoscope 10 can be conveniently used to capture images in the tissue cavity 3, which reduces the problem of unstable captured images due to the fluctuation of the liquid level.
  • the liquid 4 may be water, soda, milk, or other various liquids that are harmless to the human body.
  • the liquid 4 can form a liquid level in the tissue cavity 3.
  • the variable magnetic field of the magnetron device 30 is controlled to make the capsule endoscope 10 at the liquid level and maintain the relative position with the tissue cavity 3, and The subject 2 is moved (that is, the tissue cavity 3 is moved) to image the tissue cavity 3.
  • the capsule endoscope 10 since the capsule endoscope 10 is located at the liquid level, when the liquid level is relatively stable, the capsule endoscope 10 can be floated on the liquid level by controlling the magnetic control device 30, and the camera device 12 can be adjusted by To photograph the tissue cavity 3, the position of the tissue cavity 3 (ie, the subject 2) can also be moved to make the capsule endoscope 10 move in various directions on the horizontal plane of the liquid 4.
  • the change in the position of the liquid 4 can be used to cause the capsule endoscope 10 to move in a longitudinal direction perpendicular to the horizontal plane of the liquid 4.
  • the absorption function of the tissue cavity 3 can be used to gradually lower the liquid level.
  • the position of the liquid level of the liquid 4 can also be gradually raised by gradually filling the tissue cavity 3 with water.
  • the capsule endoscope 10 can take pictures of the tissue cavity 3 as the liquid 4 gradually changes while floating in the liquid 4, so as to basically cover the tissue cavity 3 the area to be photographed.
  • the capsule endoscope 10 can also be rotated to perform imaging, so that the imaging coverage of the tissue cavity 3 can be further improved.
  • the buoyancy of the liquid 4, the gravity of the capsule endoscope 10, and the magnetic force of the variable magnetic field can achieve stable shooting of the liquid level position of the capsule endoscope 10 through adjustment of the liquid level position and the capsule endoscope.
  • the movement of the mirror 10 on the level of the liquid surface can more conveniently take pictures of the tissue cavity 3.
  • the capsule endoscope 10 can be positioned at any spatial position in the tissue cavity 3 to perform stable rotation shooting, so that images in the body can be captured in all directions.
  • the height of the liquid surface formed by the liquid 4 in the tissue cavity 3 may not be less than 50 mm, which can ensure that the capsule endoscope 10 floats on the liquid surface.
  • the capsule endoscope 10 can be floated at a specific position in the tissue cavity 3 by changing the magnitude and direction of the magnetic force of the variable magnetic field, while changing the orientation of the imaging device 12 to take pictures of the cavity wall of the tissue cavity 3.
  • the position of the capsule endoscope 10 floating in the liquid 4 can also be adjusted by changing the magnetic force of the variable magnetic field, which is more advantageous for the capsule endoscope 10 to shoot at different positions.
  • the tissue cavity 3 can be moved relative to the capsule endoscope 10 to photograph the tissue cavity 3, that is, the position of the capsule endoscope 10 can be maintained by the magnetic control device 30. 3 Relative movement occurs with respect to the capsule endoscope 10. In some other examples, the position of the magnetic control device 30 can also be changed to change the position of the capsule endoscope 10 to take pictures of the tissue cavity 3.
  • the capsule endoscope 10 can also be suspended at any position below the liquid surface for shooting by changing the specific gravity value of the capsule endoscope 10 and the variable magnetic field.
  • FIG. 10 is a schematic diagram showing the magnetron device 30 according to the embodiment of the present disclosure.
  • FIG. 11 is another schematic diagram showing the magnetron device 30 according to the embodiment of the present disclosure.
  • the magnetron device 30 may include a magnet (second magnet) 31 and a first induction coil 32.
  • the first induction coil 32 is arranged on the same side of the second magnet 31. In this way, the magnetic field force generated by the first induction coil 32 and the magnetic field force generated by the second magnet 31 can be more concentrated, and the control of the capsule endoscope 10 can be achieved more easily.
  • the magnetron device 30 may further include a second induction coil 33 arranged on a different side from the first induction coil 32.
  • the first induction coil 32 is arranged on the same side as the second magnet 31, and the second induction coil 33 is arranged on a different side from the second magnet 31.
  • the first induction coil 32 and the second induction coil 33 arranged on different sides of the subject 2 can balance the magnetic force in the up and down directions, so that the capsule endoscope 10 can move more stably in the tissue cavity 3 .
  • the magnetron device 30 may further include a third induction coil 34.
  • the third induction coil 34 may generate a magnetic force acting on the capsule endoscope 10 to position the capsule endoscope 10 in a predetermined position in the tissue cavity 3.
  • the third induction coil 34 can function to position the capsule endoscope 10.
  • the diameter of the third induction coil 34 may be smaller than the diameter of the first induction coil 32 and the diameter of the second induction coil 33.
  • the diameter of the third induction coil 34 is usually set to 1-15 cm, and the diameters of the first induction coil 32 and the second induction coil 33 can be set to 20-45 cm.
  • the third induction coil 34 can be used to achieve a more accurate view of the capsule endoscope 10 in the tissue cavity 3. Positioning.
  • the third induction coil 34 may be arranged on the same side as the second induction coil 33.
  • the third induction coil 34 and the second induction coil 33 may be arranged on the side close to the ground. In this way, the gravity of the capsule endoscope 10 can be used to more easily balance the magnetic field forces generated by the first induction coil 32 and the second magnet 31 located on the opposite side of the second induction coil 33.
  • imaging devices 12 are provided at both ends of the capsule endoscope 10, respectively. In this way, operations such as rotation of the capsule endoscope 10 can be reduced, and thereby the tissue cavity 3 can be imaged more easily and in all directions.
  • the center of gravity of the capsule endoscope 10 may be closer to the other end than one end.
  • the position of the center of gravity of the capsule endoscope 10 can be stabilized, and the capsule endoscope 10 can be more stably photographed on the cavity wall of the tissue cavity 3 or floating on the liquid surface.
  • the variable magnetic field of the magnetron device 30 is controlled to be located at one end of the capsule endoscope 10 on the side wall of the tissue cavity 3.
  • the orientation of the imaging device 12 at the other end of the capsule endoscope 10 is adjusted to perform imaging.
  • the capsule endoscope 10 can be directed toward the other side of the tissue cavity 3 to perform stable imaging.
  • the magnetron device 30 is configured to control the variable magnetic field by changing the position of the second magnet 31 relative to the first magnet 11. At this time, by making the polarity of the second magnet 31 The deflection occurs and at the same time the relative position of the second magnet 31 relative to the first magnet 11 is changed, thereby realizing the control of the deflection and movement of the capsule endoscope 10.
  • the imaging device 12 of the capsule endoscope 10 can perform automatic imaging within the tissue cavity 3 at predetermined time intervals. For example, every 0.1 second, every 0.2 second, every 0.3 second, or every 0.5 second, etc. Thereby, the capsule endoscope 10 can be activated before the capsule endoscope 10 enters the tissue cavity 3 or after entering the tissue cavity 3 so that the capsule endoscope 10 can automatically take pictures in the tissue cavity 3, and can take pictures All the images are wirelessly transmitted to the external communication device 50 via the transmitting antenna 13, and finally, the images that may have lesions can be screened through the display device 70.
  • the camera device 12 of the capsule endoscope 10 can automatically take pictures in the tissue cavity 3 at predetermined displacement intervals. For example, shooting may be performed within a predetermined displacement interval of approximately 1 mm to 11 mm. For another example, it may be preferable to perform shooting within a displacement interval of 2 mm to 8 mm, so that the photos taken by the imaging device 12 overlap by more than 10%. In this way, the photos taken by the imaging device 12 can be made continuous, thereby helping to identify the location of the tissue cavity 3.
  • the direction of the magnetic axis L may be a vertical direction (a vertical direction), and the magnetic axis L may pass through the second magnet 31.
  • the vertical axis of the second magnet 31 can be overlapped with the magnetic axis L of the first induction coil 32, so that the capsule endoscope 10 can be held substantially in the process of controlling the movement of the capsule endoscope 10 On the magnetic axis L.
  • the first induction coil 32 may be arranged around the second magnet 31, and the diameter of the first induction coil 32 may be larger than the diameter of the sphere as the second magnet 31.
  • the geometric center of the magnet 31 and the geometric center of the first induction coil 32 can be overlapped, the generated magnetic field force can be relatively concentrated, and the space occupied by the magnetron device 30 can be saved.
  • the second magnet 31 may be a sphere. At this time, by changing the deflection of the polarity of the sphere, the deflection of the polarity of the first magnet 11 in the capsule endoscope 10 can be driven, so that the deflection of the shooting angle of the capsule endoscope 10 can be driven.
  • the second magnet 31 may also be an ellipsoid or a cylinder.
  • the second magnet 31 is arranged around the first induction coil 32 so as to be able to rotate around the point intersecting the magnetic axis of the first induction coil 32.
  • the diameter of the first induction coil 32 can be larger than the height of the cylinder, the diameter of the bottom surface, or the larger one of the diagonals of the rectangle in the front view of the cylinder, so that The cylinder can freely rotate in the space surrounded by the first induction coil 32.
  • a magnetic sensor array (not shown) can be used to detect the magnetic fields of the first magnet 11, the second magnet 31, the first induction coil 32, the second induction coil 33, etc., respectively, based on the capsule endoscope 10.
  • the magnetic dipole model calculates the position of the magnetic sensor array relative to the capsule endoscope 10 to obtain the positioning position of the capsule endoscope 10 relative to the tissue cavity 3.
  • the magnetic sensor array may be at least one three-axis magnetic sensor, two or more two-axis magnetic sensors, or three or more one-axis magnetic sensors.
  • the magnetic sensor array may be disposed on a support (not shown) that is relatively stationary with the first induction coil 32 and the second induction coil 33, and remains relatively stationary with the ground.
  • the support is configured on the examination table 20, and the subject 2 can be located on the examination table 20 during the examination and move with the movement of the examination table 20.
  • the background magnetic field (X m0 , Y m0 , Z m0 ) generated by the magnetron device 30 composed of the first induction coil 32 and the second magnet 31 can be measured in advance.
  • the magnetic sensor intensity received by the magnetic sensor at this time is (Xs, Ys, Zs)
  • the magnetic field generated by the magnetic control device 30 at this time is (X m1 , Y m2 , Z m3 ).
  • the current of the first induction coil 32 or the deflection of the second magnet 31 can be adjusted to (X m1 , Y m2 , Z m3 ) Adjust to (X m0 , Y m0 , Z m0 ).
  • the magnetic field intensity (Xc, Yc, Zc) generated by the first magnet 11 in the capsule endoscope 10 (Xs-X m0 , Ys-Y m0 , Zs-Z m0 ), and the first magnet in the capsule endoscope 10
  • a magnetic dipole model of the magnet 11 can calculate the relative position of the capsule endoscope 10 with respect to the magnetic sensor array.
  • the movement path of the capsule endoscope 10 in the tissue cavity 3 can be planned and adjusted so that the imaging area of the capsule endoscope 10 basically covers the tissue cavity 3.
  • the next movement path of the capsule endoscope 10 can be reasonably optimized, for example, the concentration of the movement path of the capsule endoscope 10 can be increased in the area where there may be lesions, so that the capsule endoscope 10 can realize the tissue cavity Full range and detailed shooting of body 3.
  • the tissue cavity 3 may be a stomach. Since the stomach has a larger space relative to other tissue cavities 3, the magnetic control method disclosed in the present disclosure can be fully utilized to plan the movement path of the capsule endoscope 10 to realize an all-round inspection of the stomach.
  • FIG. 7 is a schematic diagram showing another movement path of the capsule endoscope 10 in the tissue cavity 3 according to the embodiment of the present disclosure.
  • the structure of the tissue cavity 3 is not shown.
  • a reference XYZ coordinate system is shown next to it.
  • the process of moving the capsule endoscope 10 from the first position P1 of the stomach to the second position P2 of the stomach and returning to the third position P3 of the stomach again is a shuttle motion process.
  • the first position P1 and the third position P3 may be located on one side of the stomach, and the second position P2 may be located on the other side of the stomach.
  • the capsule endoscope 10 can also move to a fourth position P4 other than the first position P1 and the second position P2.
  • the four position P4 is not located on the plane formed by the first position P1, the second position P2, and the third position P3. In this way, it is possible to achieve a comprehensive image of each part of the tissue cavity 3.
  • the capsule endoscope 10 also moves to a fifth position other than the second position P2 and the third position P3.
  • the position P5 and the fifth position P5 are not located on the plane formed by the first position P1, the second position P2, and the third position P3. In this way, it is possible to achieve a comprehensive image of each part of the tissue cavity 3.
  • the first position P1, the second position P2, the third position P3, the fourth position P4, and the fifth position P5 are all located on the inner wall of the stomach.
  • the capsule endoscope 10 can take more stable imaging with the support of the inner wall of the stomach, and can realize a full-scale imaging of each part of the tissue cavity 3.
  • the above-mentioned first position P1 and the second position P2 on the opposite side are intended to illustrate that under the magnetic control scheme of the present disclosure, the capsule endoscope 10 can be moved to any spatial position of the tissue cavity 3 and photographed, and in this process In this case, the capsule endoscope 10 can be rotated and photographed by deflecting the second magnet 31. Therefore, its movement path in the tissue cavity 3 is a movement in any three-dimensional direction, and is preferably an optimal path that can cover the tissue cavity 3.
  • the positioning of the capsule endoscope 10 using the magnetic sensor array is described, but the magnetic sensor array may be replaced with an antenna array, and the electric field measured by the antenna array may be used for positioning.
  • an imaging device 12 and a lighting device may be arranged in the capsule endoscope 10, the imaging device 12 is dedicated to photography, and the lighting device is dedicated to lighting and the like.
  • the present disclosure is not limited to this, and the capsule endoscope 10 may also have only one imaging device 12.
  • the position of the center of gravity of the capsule endoscope 10 may be designed to be closer to the other side than one side. In this case, the shape of the capsule endoscope 10 can be easily controlled to be in the vertical direction. However, the present disclosure is not limited to this, and the position of the center of gravity of the capsule endoscope 10 may also be located at the geometric center position of the capsule endoscope 10.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Endocrinology (AREA)
  • Physiology (AREA)
  • Endoscopes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种胶囊内窥镜(10)的磁控装置(30),胶囊内窥镜(10)至少具有第一磁体(11)和摄像装置(12),胶囊内窥镜(10)位于组织腔体(3)内,磁控装置(30)包括第二磁体(31)和布置在第二磁体(31)周围的第一感应线圈(32),磁控装置(30)被配置为对胶囊内窥镜(10)产生驱动力,从而使胶囊内窥镜(10)从组织腔体(3)内的第一位置(P1)朝向组织腔体(3)内的相对侧移动到第二位置(P2),当胶囊内窥镜(10)靠近第二位置(P2)时,控制可变磁场以使胶囊内窥镜(10)减速至预定速度,并且磁控装置(30)被配置为对胶囊内窥镜(10)产生可变磁场。在这种情况下,能够合理优化胶囊内窥镜(10)在组织腔体(3)内的运动路径,既能够实现对组织腔体(3)的全面检查,也能够实现对组织腔体(3)内壁的保护。

Description

胶囊内窥镜的磁控装置以及控制胶囊内窥镜在组织腔体内移动的方法 技术领域
本公开大体涉及一种胶囊内窥镜的磁控装置以及控制胶囊内窥镜在组织腔体内移动的方法。
背景技术
随着现代医学技术的发展,对于消化道例如胃部、大肠、小肠等组织壁上的病变可以通过吞服胶囊内窥镜来进行窥探,通过胶囊内窥镜能够帮助医生获取消化道内的病灶区域的准确信息,以辅助医生对患者进行确诊和治疗。这样的胶囊内窥镜通常具有受外部磁控装置控制的磁体、摄像装置及将所捕获的图像传输到外部的无线传输装置。具体而言,医生、护士或其他操作人员通过控制外部磁控装置,对位于组织腔体例如胃、小肠等脏器内的胶囊型内窥镜进行磁引导,以便胶囊型内窥镜在组织腔内的内部移动,并且捕获组织腔内的特定位置(例如病灶区域)图像,然后将所捕获的图像通过无线传输等方式传到外部的显示装置,通过显示装置医生等能够对患者的消化道进行观察和诊断。
在基于上述的磁控方法和装置对胶囊内窥镜在组织腔体内的引导过程中,为了方便操作和使胶囊内窥镜易于控制且能够清晰拍摄组织腔体内可能出现的病变,因此胶囊内窥镜在组织腔体内的运动应尽可能简单和容易实现,例如目前常用的磁控方法是让胶囊内窥镜在胃底或大肠底部滚动来进行拍摄。然而,由于胶囊内窥镜的摄像装置贴着组织壁例如胃壁进行拍摄,因此会导致胶囊内窥镜所捕获的图像的视场角受限,使其在组织腔体内拍摄的空间位置不够充分而可能存在漏检的情况。
因此,有必要对上述传统的磁控方法和装置进行改进,以便在组织腔体特别是胃或大肠等空间较大的腔体内充分发挥胶囊内窥镜在组 织腔体内的图像捕获能力,减小漏检的可能。
发明内容
本发明有鉴于上述现有的状况,其目的在于提供一种能够改善对胶囊内窥镜在组织腔体内的移动路径和图像捕获方式以能够实现覆盖组织腔体的胶囊内窥镜的磁控装置。
为此,本公开第一方面提供一种胶囊内窥镜的磁控装置,所述胶囊内窥镜至少具有第一磁体和摄像装置,所述胶囊内窥镜位于组织腔体内,所述磁控装置包括第二磁体和布置在所述第二磁体周围的第一感应线圈,所述磁控装置被配置为对所述胶囊内窥镜产生驱动力,从而使所述胶囊内窥镜从所述组织腔体内的第一位置朝向所述组织腔体内的相对侧移动到第二位置,当所述胶囊内窥镜靠近所述第二位置时,控制可变磁场以使所述胶囊内窥镜减速至预定速度,并且所述磁控装置被配置为对所述胶囊内窥镜产生所述可变磁场,并且所述可变磁场包括由所述第二磁体产生的基底磁场和由所述第一感应线圈产生的感应磁场,所述第一感应线圈的磁轴线的方向保持固定朝向,并且通过改变所述第二磁体的磁极相对于所述第一磁体的相对位置、所述第一感应线圈的电流大小、所述第一感应线圈的电流方向中的至少一种来产生所述可变磁场。
在本公开第一方面中,通过配置磁控装置来控制胶囊内窥镜的移动,从而能够实现胶囊内窥镜在组织腔体内的路径优化,并实现对胶囊内窥镜运动速度的控制,由此能够提高对组织腔体的检查覆盖率,而且能够抑制胶囊内窥镜因速度过大而造成对组织腔体的损伤。
另外,在本公开第一方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述磁控装置被配置为在所述胶囊内窥镜从所述第一位置移动到所述第二位置的过程中,当所述胶囊内窥镜位于所述第一位置时,控制所述可变磁场以将所述胶囊内窥镜进行加速,当所述胶囊内窥镜靠近所述第二位置时,控制所述可变磁场以使所述胶囊内窥镜减速至所述预定速度。由此,能够通过改变对胶囊内窥镜运动速度,灵活控制胶囊内窥镜在组织腔体内的移动路径。
另外,在本公开第一方面所涉及的胶囊内窥镜的磁控装置中,可 选地,所述磁控装置被配置为在所述胶囊内窥镜从所述第一位置移动到所述第二位置的过程中,当所述胶囊内窥镜位于所述第一位置时,控制所述可变磁场以将所述胶囊内窥镜进行加速至初始速度,并保持所述初始速度移动预定距离,接着当所述胶囊内窥镜靠近所述第二位置时,控制所述可变磁场以将所述胶囊内窥镜减速至所述预定速度。由此,能够合理控制胶囊内窥镜减速时的缓冲速度,从而进一步抑制胶囊内窥镜对组织腔体的侧壁等的损伤。
另外,在本公开第一方面所涉及的胶囊内窥镜的磁控装置中,可选地,当所述胶囊内窥镜位于所述第二位置时,所述胶囊内窥镜朝向所述第一位置的一侧对所述组织腔体内进行拍摄。由此,能够使胶囊内窥镜到达合适位置时通过胶囊内窥镜另一侧自由度较高的摄像装置实现对组织腔体的拍摄,并且能够提高摄像装置拍摄的覆盖面积。
另外,在本公开第一方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述第一位置为所述组织腔体内的一侧的侧壁,所述第二位置为所述组织腔体内的另一侧的侧壁。由此,能够借助于组织腔体的侧壁的支持力以稳定胶囊内窥镜,从而能够使胶囊内窥镜在可变磁场的控制下更稳定地拍摄。
另外,在本公开第一方面所涉及的胶囊内窥镜的磁控装置中,可选地,令所述胶囊内窥镜从所述组织腔体内的所述第一位置移动到所述组织腔体内的所述第二位置并再次回到所述组织腔体内的第三位置的过程为穿梭运动过程,其中,所述第一位置与所述第三位置位于所述组织腔体内的一侧,所述第二位置位于所述组织腔体内的另一侧,所述磁控装置被配置为在所述穿梭运动过程中,控制所述可变磁场而使所述胶囊内窥镜产生偏移,从而使所述胶囊内窥镜的所述第三位置偏离所述第一位置。由此,通过这种穿梭运动的方式,能够实现对组织腔体的全面检查,从而能够避免组织腔体的病变的漏检。
另外,在本公开第一方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述磁控装置被配置为当所述胶囊内窥镜处于所述组织腔体内的所述第一位置或所述第二位置时,沿着与所述磁轴线的方向形成有夹角的方向移动所述组织腔体而使所述第一磁体的位置偏离所述磁轴线,所述第二磁体沿着所述磁轴线的方向产生作用于所述胶囊内窥镜 的磁力。由此,能够通过调控第二磁体实现对胶囊内窥镜的移动控制。
本公开第二方面提供一种胶囊内窥镜的磁控装置,所述胶囊内窥镜至少具有第一磁体和摄像装置,所述胶囊内窥镜位于组织腔体内,所述磁控装置包括第二磁体和布置在所述第二磁体周围的第一感应线圈,所述磁控装置被配置为对所述胶囊内窥镜产生可变磁场,并且所述可变磁场包括由所述第二磁体产生的基底磁场和由所述第一感应线圈产生的感应磁场,所述第一感应线圈的磁轴线的方向保持固定朝向,并且通过改变所述第二磁体的磁极相对于所述第一磁体的相对位置、所述第一感应线圈的电流大小、所述第一感应线圈的电流方向中的至少一种来产生所述可变磁场。
在本公开第二方面中,通过配置磁控装置来控制胶囊内窥镜的移动,从而能够实现胶囊内窥镜在组织腔体内的路径优化,并实现对胶囊内窥镜运动速度的控制,由此能够提高对组织腔体的检查覆盖率。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述磁控装置被配置为在所述胶囊内窥镜从所述第一位置移动到所述第二位置的过程中,所述第二磁体对所述胶囊内窥镜产生第一磁力,所述第一感应线圈对所述胶囊内窥镜产生第二磁力,通过使所述第一磁力的磁力方向与所述第二磁力的磁力方向形成夹角而对所述胶囊内窥镜产生偏移运动。由此,能够方便通过基底磁场和感应磁场的配合能够驱动胶囊内窥镜向特定的路径移动。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,在所述组织腔体内装有液体并在所述组织腔体内形成有液面,所述磁控装置被配置为控制所述可变磁场以使所述胶囊内窥镜处于液面并保持与所述组织腔体的相对位置,并且移动所述组织腔体对所述组织腔体内进行拍摄。由此,利用液体的浮力、胶囊内窥镜的重力以及可变磁场的磁力能够实现对胶囊内窥镜在液面位置的稳定拍摄,通过液面位置的调整以及胶囊内窥镜在液面水平面的移动能够更方便的对组织腔体进行拍摄。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,在所述组织腔体内装有液体并在所述组织腔体内形成有液面,所述液面的高度大于所述胶囊内窥镜的长度。由此,利用液体的浮力 能够更方便的对胶囊内窥镜进行控制。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,使所述组织腔体相对于所述胶囊内窥镜移动来对所述组织腔体内进行拍摄。由此,能够实现对胶囊内窥镜更稳定地控制。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述第一感应线圈布置于与所述第二磁体相同的一侧。由此,能够使第一感应线圈产生的磁场力和第二磁体产生的磁场力更集中,能够更容易实现对胶囊内窥镜的控制。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述磁控装置还包括布置在与所述第一感应线圈不同侧的第二感应线圈,所述第二感应线圈布置在与所述第二磁体不同的一侧。由此,能够使组织腔体内的胶囊内窥镜在位于组织腔体不同侧的第一感应线圈和第二感应线圈以及第二磁体的作用下更稳定地移动。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述磁控装置还包括第三感应线圈,所述第三感应线圈产生作用于所述胶囊内窥镜的磁力,以使所述胶囊内窥镜定位于所述组织腔体内的预定位置。由此,能够使胶囊内窥镜更准确地定位在所需的工作区域。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述第三感应线圈的直径小于所述第一感应线圈的直径和所述第二感应线圈的直径。由此,能够使与胶囊内窥镜尺寸在一个数量级且小于第一感应线圈和第二感应线圈的第三感应线圈更容易实现对胶囊内窥镜在组织腔体的定位。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述第三感应线圈设置在与所述第二感应线圈相同的一侧。由此,能够更容易实现对胶囊内窥镜在组织腔体的定位。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,在所述胶囊内窥镜的两端分别设置有摄像装置。由此,能够减少胶囊内窥镜的旋转角度,能够更容易且可以全方位的对组织腔体进行拍摄。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可 选地,所述胶囊内窥镜的重心相对于一端更靠近另一端。由此,能够使胶囊内窥镜更稳定地在组织腔体内的预定位置进行拍摄。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述磁控装置被配置为当所述胶囊内窥镜位于所述组织腔体内的侧壁时,通过控制所述可变磁场,以位于所述组织腔体内的侧壁的所述胶囊内窥镜的一端为支点,调整所述胶囊内窥镜的另一端的所述摄像装置的朝向。由此,能够使胶囊内窥镜借助于组织腔体内侧壁的支持力,并能够通过改变可变磁场使胶囊内窥镜稳定地位于组织腔体内的侧壁。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述磁控装置被配置为通过控制所述可变磁场,以位于所述组织腔体内的侧壁的所述胶囊内窥镜的一端为支点,调整所述胶囊内窥镜的另一端的摄像装置的朝向并进行拍摄。由此,能够通过改变可变磁场调整胶囊内窥镜摄像装置的朝向对组织腔体内另一侧进行稳定地拍摄。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述磁控装置被配置为通过改变所述第二磁体的磁极相对于所述第一磁体的位置来控制所述可变磁场。由此,能够方便的对胶囊内窥镜的摄像装置进行调整,并拍摄组织腔体。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述胶囊内窥镜的摄像装置在所述组织腔体内按规定时间间隔进行自动拍摄。由此,可在胶囊内窥镜进入组织腔体前或进入组织腔体后激活胶囊内窥镜以使胶囊内窥镜在组织腔体内自动拍摄,能够使胶囊内窥镜拍摄到组织腔体更全面的图像。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述磁轴线的方向为竖直方向,所述磁轴线穿过所述第二磁体。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述第二磁体为圆柱体。由此,能够更方便的操控第二磁体。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,将所述第二磁体以能够以与所述第一感应线圈的磁轴线相交的点为中心旋转的方式布置在所述第一感应线圈的周围。由此,能够通 过调整第一感应线圈磁力的方向和大小并辅助第二磁体实现对胶囊内窥镜运动方向和镜头偏转的控制,能够实现胶囊内窥镜的路径优化。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,通过利用磁传感器阵列分别检测所述第一磁体、所述第二磁体、所述第一感应线圈的磁场,并基于所述胶囊内窥镜磁偶极子的模型计算所述磁传感器阵列相对于所述胶囊内窥镜的位置,从而获得所述胶囊内窥镜相对于所述组织腔体的定位位置。由此,能够准确定位胶囊内窥镜在组织腔体内的位置。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,基于所述定位位置,规划和调整所述胶囊内窥镜在所述组织腔体内的移动路径,使所述胶囊内窥镜的拍摄区域基本覆盖所述组织腔体。由此,能够合理的优化胶囊内窥镜下一步的运动路径,能够使胶囊内窥镜实现对组织腔体的全方位拍摄。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述组织腔体为胃部。由此,胃部的相对大空间能够有利于胶囊内窥镜的运动及路径的选择。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,令所述胶囊内窥镜从所述胃部的所述第一位置移动到所述胃部的所述第二位置并再次回到所述胃部的第三位置的过程为穿梭运动过程,其中,所述第一位置与所述第三位置位于所述胃部的一侧,所述第二位置位于所述胃部的另一侧;在所述穿梭运动过程中,在所述胶囊内窥镜移动到所述胃部的所述第二位置之前,所述胶囊内窥镜还移动到所述第一位置与所述第二位置之外的第四位置,所述第四位置不位于由所述第一位置、所述第二位置和所述第三位置构成的平面。由此,能够实现对组织腔体各个部位的全面拍摄。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,在所述穿梭运动过程中,在所述胶囊内窥镜移动到所述胃部的所述第三位置之前,所述胶囊内窥镜还移动到所述第二位置与所述第三位置之间的第五位置,所述第五位置不位于由所述第一位置、所述第二位置和所述第三位置构成的平面。由此,能够实现对组织腔体各个部位的全面拍摄。
另外,在本公开第二方面所涉及的胶囊内窥镜的磁控装置中,可选地,所述第一位置、所述第二位置、所述第三位置、所述第四位置和所述第五位置均位于所述胃部的内壁上。由此,能够借助胃内壁的支持力使胶囊内窥镜更稳定地拍摄,并能够实现对组织腔体各个部位的全面拍摄。
本公开第三方面提供一种胶囊内窥镜在组织腔体内移动的方法,所述胶囊内窥镜至少具有第一磁体和摄像装置,包括:使所述胶囊内窥镜进入组织腔体内;对所述胶囊内窥镜产生可变磁场,并且通过控制所述可变磁场而对所述胶囊内窥镜产生驱动力,从而使所述胶囊内窥镜从所述组织腔体内的第一位置朝向所述组织腔体内的相对侧移动到第二位置;并且当所述胶囊内窥镜靠近所述第二位置时,控制所述可变磁场以使所述胶囊内窥镜减速至预定速度,其中,所述可变磁场包括由第二磁体产生的基底磁场和由第一感应线圈产生的感应磁场,所述第一感应线圈的磁轴线的方向保持固定朝向,所述可变磁场通过改变第二磁体的磁极相对于所述第一磁体的相对位置、所述第一感应线圈的电流大小、所述第一感应线圈的电流方向中的至少一种来产生变化。
在本公开第三方面中,通过可变磁场来控制胶囊内窥镜的移动,从而能够实现胶囊内窥镜在组织腔体内的路径优化,并实现对胶囊内窥镜运动速度的控制,由此能够提高对组织腔体的检查覆盖率,而且能够抑制胶囊内窥镜因速度过大而造成对组织腔体的损伤。
另外,在本公开第三方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,在所述胶囊内窥镜从所述第一位置移动到所述第二位置的过程中,当所述胶囊内窥镜位于所述第一位置时,控制所述可变磁场以将所述胶囊内窥镜进行加速至初始速度,并保持所述初始速度移动预定距离,接着当所述胶囊内窥镜靠近所述第二位置时,控制所述可变磁场以将所述胶囊内窥镜减速至所述预定速度。由此,能够通过改变对胶囊内窥镜运动速度,灵活控制胶囊内窥镜在组织腔体内的移动路径。
另外,在本公开第三方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,在所述胶囊内窥镜从所述第一位置移动到所 述第二位置的过程中,当所述胶囊内窥镜位于所述第一位置时,控制所述可变磁场以将所述胶囊内窥镜进行加速至初始速度,并保持所述初始速度移动预定距离,接着当所述胶囊内窥镜靠近所述第二位置时,控制所述可变磁场以将所述胶囊内窥镜减速至所述预定速度。由此,能够合理控制胶囊内窥镜减速时的缓冲速度,从而进一步抑制胶囊内窥镜对组织腔体的侧壁等的损伤。
另外,在本公开第三方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,当所述胶囊内窥镜位于所述第二位置时,所述胶囊内窥镜朝向所述第一位置的一侧对所述组织腔体内进行拍摄。由此,能够使胶囊内窥镜到达合适位置时通过胶囊内窥镜另一侧自由度较高的摄像装置实现对组织腔体的拍摄,并且能够提高摄像装置拍摄的覆盖面积。
另外,在本公开第三方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,所述第一位置为所述组织腔体内的一侧的侧壁,所述第二位置为所述组织腔体内的另一侧的侧壁。由此,能够借助于组织腔体的侧壁的支持力以稳定胶囊内窥镜,从而能够使胶囊内窥镜在可变磁场的控制下更稳定地拍摄。
另外,在本公开第三方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,令所述胶囊内窥镜从所述组织腔体内的所述第一位置移动到所述组织腔体内的所述第二位置并再次回到所述组织腔体内的第三位置的过程为穿梭运动过程,其中,所述第一位置与所述第三位置位于所述组织腔体内的一侧,所述第二位置位于所述组织腔体内的另一侧,在所述穿梭运动过程中,控制所述可变磁场而使所述胶囊内窥镜产生偏移,从而使所述胶囊内窥镜的所述第三位置偏离所述第一位置。由此,通过这种穿梭运动的方式,能够实现对组织腔体的全面检查,从而能够避免组织腔体的病变的漏检。
另外,在本公开第三方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,当所述胶囊内窥镜处于所述组织腔体内的所述第一位置或所述第二位置时,沿着与所述磁轴线的方向形成有夹角的方向移动所述组织腔体而使所述第一磁体的位置偏离所述磁轴线,所述第二磁体沿着所述磁轴线的方向产生作用于所述胶囊内窥镜的磁 力。由此,能够通过调控第二磁体实现对胶囊内窥镜的移动控制。
本公开第四方面提供了一种控制胶囊内窥镜在组织腔体内移动的方法,所述胶囊内窥镜至少具有第一磁体和摄像装置,包括:使所述胶囊内窥镜进入组织腔体内;并且对所述胶囊内窥镜产生可变磁场,并且通过控制所述可变磁场而对所述胶囊内窥镜产生驱动力,其中,所述可变磁场包括由第二磁体产生的基底磁场和由第一感应线圈产生的感应磁场,所述第一感应线圈的磁轴线的方向保持固定朝向,所述可变磁场通过改变第二磁体的磁极相对于所述第一磁体的相对位置、所述第一感应线圈的电流大小、所述第一感应线圈的电流方向中的至少一种来产生变化。
在本公开第四方面中,通过可变磁场来控制胶囊内窥镜的移动,从而能够实现胶囊内窥镜在组织腔体内的路径优化,并实现对胶囊内窥镜运动速度的控制,由此能够提高对组织腔体的检查覆盖率。
另外,在本公开第四方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,在所述胶囊内窥镜从所述第一位置移动到所述第二位置的过程中,所述基底磁场对所述胶囊内窥镜产生第一磁力,所述感应磁场对所述胶囊内窥镜产生第二磁力,通过使所述第一磁力的磁力方向与所述第二磁力的磁力方向形成夹角而对所述胶囊内窥镜产生偏移运动。由此,能够方便通过基底磁场和感应磁场的配合能够驱动胶囊内窥镜向特定的路径移动。
另外,在本公开第四方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,在所述组织腔体内装有液体并在所述组织腔体内形成有液面,控制所述可变磁场以使所述胶囊内窥镜处于液面并保持与所述组织腔体的相对位置,并且移动所述组织腔体对所述组织腔体内进行拍摄。由此,利用液体的浮力、胶囊内窥镜的重力以及可变磁场的磁力能够实现对胶囊内窥镜在液面位置的稳定拍摄,通过液面位置的调整以及胶囊内窥镜在液面水平面的移动能够更方便的对组织腔体进行拍摄。
另外,在本公开第四方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,所述第一感应线圈布置于与所述第二磁体相同的一侧。由此,能够使第一感应线圈产生的磁场力和第二磁体产生 的磁场力更集中,能够更容易实现对胶囊内窥镜的控制。
另外,在本公开第四方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,所述磁控装置还包括布置在与所述第一感应线圈不同侧的第二感应线圈,所述第二感应线圈布置在与所述第二磁体不同的一侧。由此,能够使组织腔体内的胶囊内窥镜在位于组织腔体不同侧的第一感应线圈和第二感应线圈以及第二磁体的作用下更稳定地移动。
另外,在本公开第四方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,所述磁控装置还包括第三感应线圈,所述第三感应线圈产生作用于所述胶囊内窥镜的磁力,以使所述胶囊内窥镜定位于所述组织腔体内的预定位置。
另外,在本公开第四方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,所述第三感应线圈的直径小于所述第一感应线圈的直径和所述第二感应线圈的直径。由此,能够使胶囊内窥镜更准确地定位在所需的工作区域。
另外,在本公开第四方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,所述第三感应线圈设置在与所述第二感应线圈相同的一侧。由此,能够使与胶囊内窥镜尺寸在一个数量级且小于第一感应线圈和第二感应线圈的第三感应线圈更容易实现对胶囊内窥镜在组织腔体的定位。
另外,在本公开第四方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,当所述胶囊内窥镜位于所述组织腔体的侧壁时,通过控制所述可变磁场,以位于所述组织腔体的侧壁的所述胶囊内窥镜的一端为支点,调整所述胶囊内窥镜的另一端的摄像装置的朝向。由此,能够使胶囊内窥镜借助于组织腔体侧壁的支持力,并能够通过改变可变磁场使胶囊内窥镜稳定地位于组织腔体的侧壁。
另外,在本公开第四方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,所述磁轴线的方向为竖直方向,所述磁轴线穿过所述第二磁体。由此,能够使胶囊内窥镜稳定在磁轴线上。
另外,在本公开第四方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,将所述第二磁体以能够以与所述第一感应线 圈的磁轴线相交的点为中心旋转的方式布置在所述第一感应线圈的周围。由此,能够通过调整感应线圈磁力的方向和大小并辅助第二磁体实现对胶囊内窥镜运动方向和镜头偏转的控制,能够实现胶囊内窥镜的路径优化。
另外,在本公开第四方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,令所述胶囊内窥镜从所述组织腔体的所述第一位置移动到所述组织腔体的所述第二位置并再次回到所述组织腔体的第三位置的过程为穿梭运动过程,其中,所述第一位置与所述第三位置位于所述组织腔体的一侧,所述第二位置位于所述组织腔体的另一侧,在所述穿梭运动过程中,在所述胶囊内窥镜移动到所述组织腔体的所述第二位置之前,所述胶囊内窥镜还移动到所述第一位置与所述第二位置之外的第四位置,所述第四位置不位于由所述第一位置、所述第二位置和所述第三位置构成的平面。由此,能够实现对组织腔体各个部位的全面拍摄。
另外,在本公开第四方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,在所述穿梭运动过程中,在所述胶囊内窥镜移动到所述组织腔体的所述第三位置之前,所述胶囊内窥镜还移动到所述第二位置与所述第三位置之外的第五位置,所述第五位置不位于由所述第一位置、所述第二位置和所述第三位置构成的平面。由此,能够实现对组织腔体各个部位的全面拍摄。
另外,在本公开第四方面所涉及的控制胶囊内窥镜在组织腔体内移动的方法中,可选地,所述第一位置、所述第二位置、所述第三位置、所述第四位置和所述第五位置均位于组织腔体的内壁上。由此,能够借助胃内壁的支持力使胶囊内窥镜更稳定地拍摄,并能够实现对组织腔体各个部位的全面拍摄。
根据本公开,能够提供一种能够改善对胶囊内窥镜在组织腔体内的移动路径和图像捕获方式以能够实现覆盖组织腔体的控制胶囊内窥镜在组织腔体内运动的方法。
附图说明
现在将仅通过参考附图的例子进一步详细地解释本公开的实施例,其中:
图1是示出了本公开的实施方式所涉及胶囊内窥镜***的示意图。
图2是示出了本公开的实施方式所涉及的胶囊内窥镜的外观结构图。
图3是示出了本公开的实施方式所涉及的胶囊内窥镜的内部结构示意图。
图4是示出了本公开的实施方式所涉及的控制胶囊内窥镜在组织腔体内运动的方法的一种流程示意图。
图5是示出了本公开的实施方式所涉及的控制胶囊内窥镜在组织腔体内运动的方法的另一种流程示意图。
图6是示出了本公开的实施方式所涉及的胶囊内窥镜在胃内运动的一种典型的路径示意图。
图7是示出了本公开的实施方式所涉及的胶囊内窥镜在组织腔体内运动的另一种移动路径的示意图。
图8是示出了本公开的实施方式所涉及的胶囊内窥镜漂浮于组织腔体内的液面进行拍摄的示意图。
图9是示出了本公开的实施方式所涉及的胶囊内窥镜漂浮于组织腔体内的液面进行拍摄的另一种示意图。
图10是示出了本公开的实施方式所涉及的磁控装置的一种示意图。
图11是示出了本公开的实施方式所涉及的磁控装置的另一种示意图。
符号说明:
1…胶囊内窥镜***,2…被检体,3…组织腔体,4…液体,10…胶囊内窥镜,11…第一磁体,12…摄像装置,13…发射天线,14…电路组件,15…供电电源,20…检查床,30…磁控装置,31…第二磁体,32…第一感应线圈,33…第二感应线圈,34…第三感应线圈,40…操作装置,50…通信装置,60…存储单元,70…显示装置。
具体实施方式
以下,参考附图,详细地说明本公开的优选实施方式。在下面的说明中,对于相同的部件赋予相同的符号,省略重复的说明。另外,附图只是示意性的图,部件相互之间的尺寸的比例或者部件的形状等可以与实际的不同。
图1是示出了本公开的实施方式所涉及胶囊内窥镜***1的示意图。图2是示出了本公开的实施方式所涉及的胶囊内窥镜10的外观结构图。图3是示出了本公开的实施方式所涉及的胶囊内窥镜10的内部结构示意图。
本实施方式所涉及的胶囊内窥镜***1可以包括位于被检体2的组织腔体3内的胶囊内窥镜10、承载被检体2的检查床20、对胶囊内窥镜10进行磁控的磁控装置30、以及操控检查床20和磁控装置30的操作装置40(参见图1)。此外,胶囊内窥镜***1还可以包括与被检体2体内的胶囊内窥镜10进行无线通信的通信装置50、存储被检体2的体内图像等各种信息的存储单元60、以及显示由胶囊内窥镜10所拍摄到的被检体2的体内图像等各种信息的显示装置70(参见图1)。
本实施方式所涉及的胶囊内窥镜10是形成为能够导入被检体2的组织腔体3内且形状如胶囊的医疗装置。从外观上看,胶囊内窥镜10可以呈胶囊型壳体(参见图2)。对于胶囊内窥镜10的胶囊型壳体,其可以是形成为能够导入到被检体2内部的大小的胶囊型壳体。其中,胶囊型壳体的两端开口被呈圆顶形状的圆顶形状壳体塞住,从而维持液密状态。圆顶形状壳体是透射规定的波长频带的光(例如可见光)的透明的光学圆顶。另一方面,筒状壳体是大致不透明的壳体。
在本实施方式中,组织腔体3可以是消化腔例如胃部、食道、大肠、结肠、小肠等。另外,在一些示例中,组织腔体3也可以是非消化腔例如腹腔、胸腔等。对于消化腔例如胃部、食道、大肠等,胶囊内窥镜10可以通过食用而进入消化腔,而对于非消化腔,可以通过临床手术开具微创的开口而将胶囊内窥镜10置入非消化腔。
在本实施方式中,胶囊内窥镜10至少包括磁体11(第一磁体11)和用于在组织腔体(例如胃部)3内进行拍摄的摄像装置12。胶囊内窥镜10通过摄像装置12来对被检体2的体内图像进行拍摄。另外, 在胶囊内窥镜10的内部还布置有与通信装置50进行无线传输的发射天线13、电路组件14和供电电源15等(参见图3)。
在一些示例中,胶囊内窥镜10可以在一侧具有摄像装置12。在另一些示例中,胶囊内窥镜10可以在两侧具有两个摄像装置12,此时胶囊内窥镜10能够同时捕获两侧的图像。
另外,如上所述,在胶囊内窥镜10内还设置有配合摄像装置12的组件(电路组件14)。在一些示例中,电路组件14可以包括照明部例如LED等、光学***例如聚光透镜等、以及利用CCD或CMOS等实现的摄像元件。
在一些示例中,电路组件14可以包括对胶囊内窥镜10内部的各个部件进行控制的控制电路。供电电源15可以使用开关电路和纽扣型电池等实现。在一些示例中,在通过开关电路切换为接通状态时,可以基于控制电路的控制对上述胶囊内窥镜10提供电力。
在一些示例中,通过设置在被检体2外的磁控装置30,使胶囊内窥镜10在外部磁场的作用下能够在组织腔体3内移动,同时能够对组织腔体3的内壁(例如胃壁)的进行拍摄,所获得的体内图像的图像信号通过无线方式发送到被检体2外部的通信装置50,并在显示装置70上进行显示。
在本实施方式中,磁控装置30可以由多个线圈和磁体共同组成。在一些示例中,磁控装置30可以包括第二磁体31和布置在第二磁体31周围的第一感应线圈(参见图10)32。磁控装置30可以利用由电力供给装置提供的电力产生旋转磁场或梯度磁场等三维外部磁场。特别地,磁控装置30至少能够产生沿铅垂方向的梯度的可变磁场。该磁控装置30对载置在检查床20上的被检体2内部的胶囊内窥镜10施加外部可变磁场,通过该外部可变磁场的作用对被检体2内部的第一磁体11产生磁引力,从而将胶囊内窥镜10引导到所期望的组织腔体3内的部位。在一些示例中,检查床20可以放置于地面或水平面上,此时被检体2可以平躺于检查床20进行组织腔体3的腔壁检查。
在本实施方式中,操作装置40可以使检查床20及检查床20上的被检体2相对于磁控装置30例如在XYZ三维坐标位置上移动,从而使检查床20及检查床20上的被检体2移动到适当的位置。操作装置 40能够将由磁控装置30产生的外部可变磁场施加到被检体2内部的胶囊内窥镜10,从而改变胶囊内窥镜10的移动。在这种情况下,能够使被检体2内部的胶囊内窥镜10位于形成有由磁控装置30产生的外部磁场的三维空间内。
另外,操作装置40可以通过使用键盘、鼠标、操纵杆等输入设备来实现的,根据医生或护士等用户的输入操作将各种信息输入到操作装置40。
在本实施方式中,通信装置50可以与配置在被检体2外面(例如身体表面)的接收天线(未图示)相连接,并与被检体2内部的胶囊内窥镜10的发射天线13进行无线通信。在一些示例中,通信装置50可以通过接收天线接收来自胶囊内窥镜10的无线信号和位置信息并进行解调处理,提取包含在该无线信号中的图像信号和位置信息等。
另外,在一些示例中,显示装置70可以对从通信装置50所获取的来自胶囊内窥镜10的无线信号进行解调并显示与该图像信号对应的图像信息即被检体2的体内图像。其中,由显示装置70所生成的被检体2的体内图像组可以被存储到存储单元60中。
在本实施方式中,磁控装置30可以产生可变磁场对胶囊内窥镜10的移动方向进行引导控制。通过医生等操作人员对操作装置40进行控制,从而通过磁控装置30将位于被检体2内的胶囊内窥镜10移动到适当的位置,并通过胶囊内窥镜10捕获组织腔体3内的图像。
如上所述,胶囊内窥镜10是形成为能够导入被检体2的组织腔体3内且形状如胶囊的医疗装置,且胶囊内窥镜10至少包括磁体11(第一磁体11)和用于在组织腔体(例如胃部)3内进行拍摄的摄像装置12。胶囊内窥镜10通过摄像装置12来对被检体2的体内图像进行拍摄。磁控装置30可以由多个线圈和磁体共同组成,且磁控装置30可以利用由电力供给装置提供的电力产生旋转磁场或梯度磁场等三维外部磁场。该磁控装置30对载置在检查床20上的被检体2内部的胶囊内窥镜10施加外部可变磁场,通过该外部可变磁场的作用对被检体2内部的第一磁体11产生磁引力,从而将胶囊内窥镜10引导到所期望的组织腔体3内的部位。
且该磁控装置30作为胶囊内窥镜***1的重要组成部分,其主要 通过对胶囊内窥镜10施加可变磁场而控制胶囊内窥镜10在组织腔体3内移动,从而获取组织腔体3内的图像。
以下,参照图4至图6,详细说明本公开所涉及的磁控装置30控制胶囊内窥镜10在组织腔体3内移动的方法。另外,为了方便说明,本公开主要以胃部为例来说明控制胶囊内窥镜10在组织腔体3内移动的方法。然而,本领域技术人员容易理解,对于其他组织腔体3例如消化腔(食道、大肠、结肠、小肠等)等,本公开所涉及的控制胶囊内窥镜10在组织腔体3内移动的方法也是能够适用的,或者不需要付出创造性劳动而稍作调整也是能够适用的。
图4是示出了本公开的实施方式所涉及的控制胶囊内窥镜10在组织腔体3内运动的方法的一种流程示意图。图5是示出了本公开的实施方式所涉及的控制胶囊内窥镜10在组织腔体3内运动的方法的另一种流程示意图。图6是示出了本公开的实施方式所涉及的胶囊内窥镜10在胃内运动的一种典型的路径示意图。
在被检体2开始做胃部的检查时,可以先让胶囊内窥镜10经人体的天然孔道(例如口腔等),或者是经手术做的小切口进入受检者的组织腔体3内。此时,可以使被检体2仰面躺在检查床20上。
在一些示例中,可以将胶囊内窥镜10设置成在经过规定的时间或者到达规定的场所之前不进行观察(图像获取),并且在经过规定时间或者通过观察图像等确认了胶囊内窥镜10已到达所要检查的组织腔体3内后,再激活胶囊内窥镜10中的供电电源15,使胶囊内窥镜10开始工作。
接着,可以利用设置于被检体2体外的磁控装置30对胶囊内窥镜10产生可变磁场,并且通过控制可变磁场而对胶囊内窥镜10产生驱动力,从而使胶囊内窥镜10从组织腔体3内的第一位置P1朝向组织腔体3内的相对侧移动到第二位置P2。
需要说明的是,这里的第一位置P1和第二位置P2均没有特别限制,只要位于组织腔体3内即可。例如,如图6所示,第一位置P1和第二位置P2均可以位于组织腔体3内的腔体壁(这里是胃壁)。在一些示例中,第一位置P1可以位于组织腔体3内的腔体壁,而第二位置P2可以位于组织腔体3内不接触腔体壁的地方。在另一些示例中,第 一位置P1和第二位置P2均可以位于组织腔体3内不接触腔体壁的地方。
在一些情况下,胶囊内窥镜10进入被检体2的组织腔体3之后会到达组织腔体(例如胃部)3的底部(例如第一位置P1),此时通过控制可变磁场以控制胶囊内窥镜10从而调整其镜头朝向,使其先位于组织腔体3的底部进行拍摄,并获取组织腔体3内壁的体内图像(步骤S110)。另外,在一些示例中,可以确定第一位置P1是否为期望位置(步骤S120)。若第一位置P1不是期望位置,则返回步骤S110利用可变磁场对胶囊内窥镜10进行重新引导并通过例如磁场定位的方法对胶囊内窥镜10进行定位。若第一位置P1为期望位置,则为了使胶囊内窥镜10移动到组织腔体3的相对侧(也即使胶囊内窥镜10向其重力的相反方向移动),此时可控制可变磁场,使胶囊内窥镜10在可变磁场的磁力、胶囊内窥镜10自身的重力以及组织腔体3底部的支持力和/或摩擦力的作用下产生向上的分力,以使胶囊内窥镜10向组织腔体3的相对侧移动(步骤S130)。这里,期望位置例如可以是能够获取到清楚图像的位置。
另外,当胶囊内窥镜10靠近第二位置P2时,可以控制可变磁场以使胶囊内窥镜10减速至预定速度(步骤S140)。在另一些示例中,步骤S140中也可以减速至小于该预定速度。接着,通过例如磁场定位的方法得知胶囊内窥镜10处于第二位置P2,并使胶囊内窥镜10在第二位置P2对组织腔体3的腔壁(例如胃壁)进行拍摄(步骤S150)。由此,能够防止胶囊内窥镜10加速运动状态下产生的冲击力对组织腔体3侧壁的组织产生损伤。在一些示例中,可以确定第二位置是否是期望位置(步骤S160)。若第二位置P2不是期望位置,则返回步骤S130可以利用可变磁场对胶囊内窥镜10进行重新引导并通过例如磁场定位的方法对胶囊内窥镜10定位。这里,第二位置P2没有特别限制,其可以为组织腔体3内的任意一点,也可以为相对于组织腔体3底部的相对侧的侧壁。
在另一些情况下,第一位置P1可以为组织腔体3内除了底部以外的任一位置。此时通过控制可变磁场以控制胶囊内窥镜10并到达第一位置(步骤S210)。在一些示例中,可以确定第一位置是否为期望位 置(步骤S220)。若第一位置P1不是期望位置,则返回步骤S210利用可变磁场对胶囊内窥镜10进行重新引导并通过例如磁场定位的方法对胶囊内窥镜10进行定位。若第一位置P1是期望位置,则为了使胶囊内窥镜10移动到组织腔体3的相对侧(也即使胶囊内窥镜10向其重力方向移动),此时可控制可变磁场,使胶囊内窥镜10在可变磁场的磁力和胶囊内窥镜10自身的重力的作用下产生向上的分力,以使胶囊内窥镜10向组织腔体3的相对侧移动(步骤S230)。
另外,当胶囊内窥镜10靠近第二位置P2时,控制可变磁场以使胶囊内窥镜10减速至预定速度(步骤S240)。在另一些示例中,步骤S140中也可以减速至小于此预定速度。接着,通过例如磁场定位的方法得知胶囊内窥镜10处于第二位置P2,并使胶囊内窥镜10在第二位置P2对组织腔体3的腔壁(例如胃壁)进行拍摄(步骤S250)。由此,能够防止胶囊内窥镜10加速运动状态下产生的冲击力对组织腔体3侧壁的组织产生损伤。在一些示例中,可以确定第二位置是否为期望位置(步骤S260)。若第二位置P2不是期望位置,则返回步骤S230可以利用可变磁场对胶囊内窥镜10进行重新引导并通过例如磁场定位的方法对胶囊内窥镜10定位。
在一些示例中,重复上述图5和图6所示的步骤S110至步骤S160以及步骤S210至步骤S260,直至完成组织腔体3内的图像拍摄。
在本实施方式中,磁控装置30被配置为对胶囊内窥镜10产生可变磁场,可变磁场包括由第二磁体31产生的基底磁场和由第一感应线圈32产生的感应磁场。感应线圈的磁轴线L的方向保持固定朝向,以使胶囊内窥镜10在可变磁场的牵引下始终处于第一感应线圈32的磁轴线L位置(参照图10)。
在一些示例中,可以通过改变第二磁体31的磁极相对于第一磁体11(即,胶囊内窥镜10中的磁体11)的相对位置来调整可变磁场的磁力大小。在一些示例中,例如,可通过偏转第二磁体31,以使第二磁体31的N极和S极的极性发生偏转,也可以通过移动第二磁体31,使第二磁体31的磁极相对于第一磁体11的相对位置发生变化,从而产生可变磁场控制胶囊内窥镜10的移动和偏转。在另一些实施例中,可以通过移动被检体2的位置,从而使第二磁体31的磁极相对于第一 磁体11的相对位置发生变化,从而产生可变磁场控制胶囊内窥镜10的移动和偏转。
可以理解的是,本实施方式所涉及的胶囊内窥镜10中的第一磁体11可以固定于胶囊内窥镜10中,因此,第一磁体11极性的偏转可以带动胶囊内窥镜10的镜头发生偏转。
另外,在一些示例中,可以通过改变第一感应线圈32的电流大小控制可变磁场的大小,同时通过改变第一感应线圈32相对于第一磁体11的相对位置可以控制可变磁场的方向。另外,在一些示例中,可以通过移动第一感应线圈32来实现第一感应线圈32相对于第一磁体11的相对位置的改变。在另一些示例中,也可以通过移动被检体2的位置来实现第一感应线圈32相对于第一磁体11的相对位置的改变。
此外,在一些示例中,可以通过改变第一感应线圈32的电流方向以改变第一感应线圈32所产生的磁场极性,从而可以改变可变磁场的磁力大小。
可以理解的是,依靠第二磁体31产生的基底磁场和第一感应线圈32产生的感应磁场,以及依靠两种磁力中的任意一种或两种磁力的合力从而能够实现胶囊内窥镜10在组织腔体3空间中的路径优化,同时可以主要通过控制第一感应线圈32的电流强弱以实现对胶囊内窥镜10运动速度的控制,从而既能够实现对组织腔体3的全面检查,也能够实现对组织腔体3腔壁的保护。
在本实施方式中,在一些示例中,第一位置P1可以为组织腔体3的腔底部位置。磁控装置30被配置为在胶囊内窥镜10从第一位置P1移动到第二位置P2的过程中,当胶囊内窥镜10位于第一位置P1时,控制可变磁场使其产生向上的磁力,同时使胶囊内窥镜10在组织腔体3底部的支持力和/或摩擦力、胶囊内窥镜10向下的重力作用下,使胶囊内窥镜10产生向上的分力,使将胶囊内窥镜10进行加速运动;当胶囊内窥镜10靠近第二位置P2时,此时,胶囊内窥镜10失去胃底的支持力和/或摩擦力,通过控制可变磁场以平衡胶囊内窥镜10自身的重力,从而可以使胶囊内窥镜10减速至预定速度,或小于预定速度。
在一些示例中,第二位置P2可以为相对于第一位置P1的组织腔体3空间中的任一位置,此时能够使组织腔体3脱离组织腔体3底部 粘膜或突起结构等的障碍,并使胶囊内窥镜10在到达该位置时减速至预定速度,从而对组织腔体3进行拍摄。在另一些实施例中,第二位置P2可以为相对于第一位置P1的组织腔体3的另一侧侧壁,此时由于贴近组织腔体3侧壁,相当于给了胶囊内窥镜10一个支点,可以使胶囊内窥镜10在此支点基于可变磁场的控制进行稳定地拍摄。
在一些示例中,磁控装置30被配置为在胶囊内窥镜10从第一位置P1移动到第二位置P2的过程中,当胶囊内窥镜10位于第一位置P1时,控制可变磁场以将胶囊内窥镜10进行加速至初始速度,此时可以保持这一初始速度移动预定距离,接着当胶囊内窥镜10靠近第二位置P2时,控制可变磁场以将胶囊内窥镜10减速至预定速度。这样,胶囊内窥镜10在移动过程中间经历了匀速运动,从而可以合理控制胶囊内窥镜10减速时的缓冲速度,另一方面,也有利于胶囊内窥镜10在匀速运动阶段拍摄的图像的清晰度。
在本实施方式中,当胶囊内窥镜10位于第二位置P2时,胶囊内窥镜10朝向第一位置P1的一侧对组织腔体3进行拍摄。此时,可以通过控制第二磁体31(参见稍后描述的图10)的偏转以控制摄像装置12的朝向,利用摄像装置12的镜头的偏转对组织腔体3进行拍摄。另外,在一些示例中,第二位置P2可以为相对于第一位置P1的组织腔体3空间中的任一位置。在另一些实施例中,第二位置P2可以为相对于第一位置P1的组织腔体3的侧壁。
另外,在本实施方式中,第一位置P1可以优选为组织腔体3的一侧的侧壁,第二位置P2可以优选为组织腔体3的另一侧的侧壁。由此,能够借助于侧壁的支持力以稳定胶囊内窥镜10,从而能够使胶囊内窥镜10在可变磁场的控制下更稳定地拍摄。
再次参照图6,在本实施方式中,令胶囊内窥镜10从胃部的第一位置P1移动到胃部的第二位置P2并再次回到胃部的第三位置P3的过程为穿梭运动过程。其中,第一位置P1与第三位置P3可以位于胃部的一侧,第二位置P2可以位于胃部的另一侧,在穿梭运动过程中,可以控制可变磁场而使胶囊内窥镜10产生偏移,从而使胶囊内窥镜10的第三位置P3偏离第一位置P1。
在一些示例中,穿梭运动可以是在胃部空间中的穿梭运动,这样, 能够避免由于胶囊内窥镜10产生的冲击力对胃部侧壁组织产生的损伤。在另一些实施例中,穿梭运动可以是在胃部各个侧壁之间的穿梭运动,这样,可以对胃部实现更全面的检查,能够避免存在对胃部隐蔽位置漏检的情况。
在本实施方式中,磁控装置30被配置为当胶囊内窥镜10位于组织腔体3的第一位置P1或第二位置P2时,沿着与磁轴线L的方向形成有夹角的方向移动组织腔体3而使第一磁体11的位置偏离磁轴线L,第二磁体31沿着磁轴线L的方向产生作用于胶囊内窥镜10的磁力。由此,能够方便通过基底磁场和感应磁场的配合能够驱动胶囊内窥镜10向特定的路径移动。此时,通过移动被检体2的位置,能够更稳定实现对胶囊内窥镜10的控制。
图8是示出了本公开的实施方式所涉及的胶囊内窥镜10漂浮于组织腔体3内的液面进行拍摄的示意图。图9是示出了本公开的实施方式所涉及的胶囊内窥镜10漂浮于组织腔体3内的液面进行拍摄的另一种示意图。
在一些示例中,在组织腔体3内可以充入液体4(参见图8或图9)。此时,胶囊内窥镜10的比重值可以被设定为小于提供给组织腔体3内的液体4的比重值且接近该比重值。在一些示例中,例如液体4为水时,胶囊内窥镜10的比重值可以被设为小于1且接近1。另外,胶囊内窥镜10的重心可以被设定为偏向胶囊型壳体一侧,在这种情况下,可以使胶囊内窥镜10在液体4中在重心的引导下更稳定地漂浮于液面,此时能够方便利用胶囊内窥镜10拍摄组织腔体3内的图像,减少因液面的波动影响而导致所拍摄的图像不稳定的问题。在一些示例中,液体4可以为水、汽水、牛奶或其他对人体无害的各种液体。
另外,液体4可以在组织腔体3内形成液面,此时,通过控制磁控装置30的可变磁场以使胶囊内窥镜10处于液面并保持与组织腔体3的相对位置,并且移动被检体2(即移动组织腔体3)来对组织腔体3进行拍摄。另外,由于胶囊内窥镜10位于液面位置,则在液面相对稳定的状态下,可以通过控制磁控装置30使胶囊内窥镜10漂浮于液面位置,并可以通过调整摄像装置12的朝向对组织腔体3进行拍摄,也可以移动组织腔体3(即被检体2)的位置,使胶囊内窥镜10进行在 液体4水平面各个方向的运动。
参照图9,可以利用液体4位置的变化,使胶囊内窥镜10产生垂直于液体4水平面的纵向的移动。在一些示例中,可以利用组织腔体3自身的吸收功能使液面位置逐渐降低。在另外一些示例中,也可以通过向组织腔体3逐渐充水来使液体4的液面的位置逐渐升高。
在液体4的液面发生变化的情况下,胶囊内窥镜10可以一边漂浮于液体4,一边随着液体4的逐渐变化来对组织腔体3内进行拍摄,从而也能够基本覆盖组织腔体3内所要拍摄的区域。另外,在这样的拍摄过程中,同样可以使胶囊内窥镜10进行旋转拍摄,从而能够进一步提高对组织腔体3的拍摄覆盖率。
可以理解的是,利用液体4的浮力、胶囊内窥镜10的重力以及可变磁场的磁力能够实现对胶囊内窥镜10在液面位置的稳定拍摄,通过液面位置的调整以及胶囊内窥镜10在液面水平面的移动能够更方便的对组织腔体3进行拍摄。而且,这种方式可以使胶囊内窥镜10位于组织腔体3中的任意空间位置进行稳定的旋转拍摄,因此能全方位拍摄到体内的图像。
在一些示例中,液体4在组织腔体3内形成的液面高度可以不小于50mm,这样能够确保胶囊内窥镜10漂浮于液面上。另外,可以通过改变可变磁场的磁力大小和方向使胶囊内窥镜10漂浮于组织腔体3内特定位置,同时改变摄像装置12的朝向对组织腔体3腔壁进行拍摄。另外,在一些示例中,也可以通过改变可变磁场的磁力大小,以调整胶囊内窥镜10漂浮于液体4中的位置,从而更有利胶囊内窥镜10在不同位置处进行拍摄。
在一些示例中,可以使组织腔体3相对于胶囊内窥镜10移动来对组织腔体3进行拍摄,也即,通过利用磁控装置30保持胶囊内窥镜10的位置而使组织腔体3相对于胶囊内窥镜10发生相对移动。在另外一些示例中,也可以通过改变磁控装置30的位置,从而改变胶囊内窥镜10的位置以对组织腔体3进行拍摄。
在一些示例中,也可以通过改变胶囊内窥镜10的比重值和可变磁场使胶囊内窥镜10悬浮于液面以下的任何位置进行拍摄。
图10是示出了本公开的实施方式所涉及的磁控装置30的一种示 意图。图11是示出了本公开的实施方式所涉及的磁控装置30的另一种示意图。
在本实施方式中,磁控装置30可以包括磁体(第二磁体)31和第一感应线圈32。其中,第一感应线圈32布置于第二磁体31相同的一侧。这样,能够使第一感应线圈32产生的磁场力和第二磁体31产生的磁场力更集中,能够更容易实现对胶囊内窥镜10的控制。
另外,在一些示例中,磁控装置30还可以包括布置在与第一感应线圈32不同侧的第二感应线圈33。其中,第一感应线圈32布置在与第二磁体31相同的一侧,第二感应线圈33布置在与第二磁体31不同的一侧。通过布置在被检体2不同的两侧的第一感应线圈32和第二感应线圈33,可以平衡上下方向的磁力大小,从而使胶囊内窥镜10在组织腔体3内能够更稳定的移动。
另外,在本实施方式中,磁控装置30还可以包括第三感应线圈34。在一些示例中,第三感应线圈34可以产生作用于胶囊内窥镜10的磁力,以使胶囊内窥镜10定位于组织腔体3内的预定位置。也就是说,第三感应线圈34可以起到对胶囊内窥镜10进行定位的作用。
在本实施方式中,第三感应线圈34的直径可以小于第一感应线圈32的直径和第二感应线圈33的直径。例如,第三感应线圈34的直径通常设置为1-15cm,第一感应线圈32和第二感应线圈33的直径可以设置为20-45cm,在这种情况下,相对于体积较小的胶囊内窥镜10,当胶囊内窥镜10处于第一感应线圈32和第二感应线圈33的范围内时,利用第三感应线圈34可以实现对胶囊内窥镜10在组织腔体3内的更准确的定位。
另外,在本实施方式中,第三感应线圈34可以设置在与第二感应线圈33相同的一侧,例如第三感应线圈34与第二感应线圈33可以设置在靠近地面的一侧。这样,利用胶囊内窥镜10自身的重力可以更容易平衡位于第二感应线圈33对侧的第一感应线圈32和第二磁体31产生的磁场力。
另外,在本实施方式中,胶囊内窥镜10的两端分别设置有摄像装置12。这样,能够减少胶囊内窥镜10的操作例如旋转,由此能够更容易且全方位地对组织腔体3进行拍摄。
另外,在本实施方式中,胶囊内窥镜10的重心可以相对于一端更靠近另一端。凭借这种设计方式,可以稳定胶囊内窥镜10的重心所在位置,能够使胶囊内窥镜10更稳定地在组织腔体3腔壁或漂浮于液面位置进行拍摄。
在本实施方式中,当胶囊内窥镜10位于组织腔体3的侧壁时,通过控制磁控装置30的可变磁场,以位于组织腔体3的侧壁的胶囊内窥镜10的一端为支点,调整胶囊内窥镜10的另一端的摄像装置12的朝向并进行拍摄。此时,借助于组织腔体3侧壁的支撑力,并通过调整摄像装置12的朝向,可以使胶囊内窥镜10朝向组织腔体3另一侧进行稳定的拍摄。
在一些示例中,参照图11,磁控装置30被配置为通过改变第二磁体31的磁极相对于第一磁体11的位置来控制可变磁场,此时,通过使第二磁体31的极性发生偏转,并同时改变第二磁体31相对于第一磁体11的相对位置,由此实现对胶囊内窥镜10的偏转和移动的控制。
在本实施方式中,胶囊内窥镜10的摄像装置12可以在组织腔体3内按规定时间间隔进行自动拍摄。例如,每0.1秒、每0.2秒、每0.3秒、或每0.5秒拍摄一次等。由此,能够在胶囊内窥镜10进入组织腔体3前或进入组织腔体3后激活胶囊内窥镜10以使胶囊内窥镜10在组织腔体3内自动拍摄,并可以将拍摄的所有图像经发射天线13无线传输给外部通信装置50,最后可以通过显示装置70筛选可能发生病变的图像。
在一些示例中,胶囊内窥镜10的摄像装置12可以在组织腔体3内按规定位移间隔进行自动拍摄。例如,可以在约为1mm~11mm的预定位移间隔内进行拍摄,再例如,可以优选在2mm~8mm的位移间隔内进行拍摄,以使摄像装置12拍摄的照片有10%以上的面积重叠。这样,可以使摄像装置12所拍摄的照片产生连续性,从而有助于识别组织腔体3的部位。
在一些示例中,如图10所示,当第二磁体31处于初始位置时,磁轴线L的方向可以为竖直方向(铅直方向),磁轴线L可以穿过第二磁体31。由此,能够使第二磁体31沿竖直方向的轴线和第一感应线圈32的磁轴线L重合,从而在控制胶囊内窥镜10移动的过程中,能 够使胶囊内窥镜10大体保持在磁轴线L上。
在本实施方式中,在一些示例中,第一感应线圈32可以围绕第二磁体31布置,并且第一感应线圈32的直径可以大于作为第二磁体31的球体的直径。由此,能够使磁体31的几何中心和第一感应线圈32的几何中心重合,使产生的磁场力相对集中,另外还能够节省磁控装置30所占空间。
在本实施方式中,如上所述,第二磁体31可以为球体。此时,通过改变球体极性的偏转可以带动胶囊内窥镜10中第一磁体11极性的偏转,因此能够带动胶囊内窥镜10拍摄角度的偏转。在另一些示例中,第二磁体31也可以为椭球体或圆柱体等。例如,当第二磁体31为圆柱体时,将第二磁体31以能够以与第一感应线圈32的磁轴线相交的点为中心旋转的方式布置在第一感应线圈32的周围。具体而言,当第二磁体31为圆柱体时,可以使第一感应线圈32的直径大于圆柱体的高度、底面直径或圆柱体正视图的矩形的对角线中较大的尺寸,以使圆柱体能够在第一感应线圈32所围绕而成的空间内自由旋转。
在本实施方式中,可以利用磁传感器阵列(未图示)分别检测第一磁体11、第二磁体31、第一感应线圈32、第二感应线圈33等的磁场,并基于胶囊内窥镜10磁偶极子的模型计算磁传感器阵列相对于胶囊内窥镜10的位置,从而获得胶囊内窥镜10相对于组织腔体3的定位位置。
具体而言,磁传感器阵列可以至少为一个三轴磁传感器,也可以为两个及以上二轴磁传感器,也可以为三个及以上一轴磁传感器。在一些示例中,磁传感器阵列可以设置在与第一感应线圈32和第二感应线圈33相对静止的支架(未图示)上,并与地面保持相对静止。在一些示例中,该支架配置在检查床20上,在进行检查时,被检体2可以位于检查床20,并随检查床20的移动而移动。
在胶囊内窥镜10进入组织腔体3前可以提前测得有第一感应线圈32和第二磁体31组成的磁控装置30所产生的背景磁场(X m0,Y m0,Z m0)。当胶囊内窥镜10位于组织腔体3内任意一处时,设此时磁传感器接收到的磁传感器强度为(Xs,Ys,Zs),此时磁控装置30所产生的磁场为(X m1,Y m2,Z m3)。此时,由于第一感应线圈32和第二 磁体31的相对位置保持固定,因此可以通过调整第一感应线圈32的电流大小或第二磁体31的偏向使(X m1,Y m2,Z m3)调整为(X m0,Y m0,Z m0)。此时,胶囊内窥镜10中第一磁体11产生的磁场强度(Xc,Yc,Zc)=(Xs-X m0,Ys-Y m0,Zs-Z m0),利用胶囊内窥镜10内第一磁体11的磁偶极子模型,则可以计算出胶囊内窥镜10相对于磁传感器阵列的相对位置。
另外,基于由磁传感器阵列所获取的定位位置,可以规划和调整胶囊内窥镜10在组织腔体3内的移动路径,使胶囊内窥镜10的拍摄区域基本覆盖组织腔体3。由此,能够合理的优化胶囊内窥镜10下一步的运动路径,例如在可能存在病变的区域加大胶囊内窥镜10移动路径的密集度,从而能够使胶囊内窥镜10实现对组织腔体3的全方位且细致的拍摄。
在本实施方式中,如上所述,组织腔体3可以为胃部。由于胃部相对于其他组织腔体3具有更大的空间,因此可以充分利用本公开所披露的磁控方法规划出胶囊内窥镜10移动的路径,以实现对胃部的全方位检查。
作为路径规划的另一个例子,图7是示出了本公开的实施方式所涉及的胶囊内窥镜10在组织腔体3内运动的另一种移动路径的示意图。在图7中,为方便说明,未图示组织腔体3的结构,另外,为进一步表现在三维空间中的移动,旁边示出了参考的XYZ坐标系。
参考上述说明,令胶囊内窥镜10从胃部的第一位置P1移动到胃部的第二位置P2并再次回到胃部的第三位置P3的过程为穿梭运动过程。其中,第一位置P1与第三位置P3可以位于胃部的一侧,第二位置P2可以位于胃部的另一侧。在穿梭运动过程中,在胶囊内窥镜10移动到胃部的第二位置P2之前,胶囊内窥镜10还可以移动到第一位置P1与第二位置P2之外的第四位置P4,第四位置P4不位于由第一位置P1、第二位置P2和第三位置P3构成的平面。由此,能够实现对组织腔体3各个部位的全面拍摄。
在一些示例中,在穿梭运动过程中,在胶囊内窥镜10移动到胃部的第三位置P3之前,胶囊内窥镜10还移动到第二位置P2与第三位置P3之外的第五位置P5,第五位置P5不位于由第一位置P1、第二位置 P2和第三位置P3构成的平面。由此,能够实现对组织腔体3各个部位的全面拍摄。
在另一些示例中,第一位置P1、第二位置P2、第三位置P3、第四位置P4和第五位置P5均位于胃部的内壁上。由此,能够借助胃内壁的支持力使胶囊内窥镜10更稳定地拍摄,并能够实现对组织腔体3各个部位的全面拍摄。
另外,上述第一位置P1和相对侧的第二位置P2旨在说明在本公开磁控方案下,胶囊内窥镜10可移动到组织腔体3的任意空间位置并进行拍摄,并且在此过程中可通过偏转第二磁体31使胶囊内窥镜10进行旋转拍摄。因此,其在组织腔体3内的运动路径为任意三维方向的运动,并优选为可覆盖组织腔体3的最优路径。
另外,在上述实施方式中,描述了利用磁传感器阵列对胶囊内窥镜10进行定位,但也可将磁传感器阵列替换为天线阵列,利用天线阵列所测得的电场进行定位。
此外,在上述实施方式中,可以在胶囊内窥镜10布置摄像装置12和照明装置(未图示),摄像装置12专用于照相,照明装置专用于照明等。但本公开不限于此,在胶囊内窥镜10中也可以只具有一个摄像装置12。
另外,上述胶囊内窥镜10的重心位置可以设计为相对于一侧更靠近另一侧。在这种情况下,能够方便将胶囊内窥镜10的形态控制成处于铅直方向。但本公开不限于此,胶囊内窥镜10的重心位置也可以位于胶囊内窥镜10的几何中心位置。
虽然以上结合附图和实施例对本公开进行了具体说明,但是可以理解,上述说明不以任何形式限制本公开。本领域技术人员在不偏离本公开的实质精神和范围的情况下可以根据需要对本公开进行变形和变化,这些变形和变化均落入本公开的范围内。

Claims (39)

  1. 一种胶囊内窥镜的磁控装置,所述胶囊内窥镜至少具有第一磁体和摄像装置,所述胶囊内窥镜位于组织腔体内,其特征在于,
    所述磁控装置包括第二磁体和布置在所述第二磁体周围的第一感应线圈,所述磁控装置被配置为对所述胶囊内窥镜产生驱动力,从而使所述胶囊内窥镜从所述组织腔体内的第一位置朝向所述组织腔体内的相对侧移动到第二位置,当所述胶囊内窥镜靠近所述第二位置时,控制可变磁场以使所述胶囊内窥镜减速至预定速度,并且所述磁控装置被配置为对所述胶囊内窥镜产生所述可变磁场,并且所述可变磁场包括由所述第二磁体产生的基底磁场和由所述第一感应线圈产生的感应磁场,所述第一感应线圈的磁轴线的方向保持固定朝向,并且通过改变所述第二磁体的磁极相对于所述第一磁体的相对位置、所述第一感应线圈的电流大小、所述第一感应线圈的电流方向中的至少一种来产生所述可变磁场。
  2. 根据权利要求1所述的磁控装置,其特征在于,
    所述磁控装置被配置为在所述胶囊内窥镜从所述第一位置移动到所述第二位置的过程中,当所述胶囊内窥镜位于所述第一位置时,控制所述可变磁场以将所述胶囊内窥镜进行加速,当所述胶囊内窥镜靠近所述第二位置时,控制所述可变磁场以使所述胶囊内窥镜减速至所述预定速度。
  3. 根据权利要求1所述的磁控装置,其特征在于,
    所述磁控装置被配置为在所述胶囊内窥镜从所述第一位置移动到所述第二位置的过程中,当所述胶囊内窥镜位于所述第一位置时,控制所述可变磁场以将所述胶囊内窥镜进行加速至初始速度,并保持所述初始速度移动预定距离,接着当所述胶囊内窥镜靠近所述第二位置时,控制所述可变磁场以将所述胶囊内窥镜减速至所述预定速度。
  4. 根据权利要求1所述的磁控装置,其特征在于,
    所述第一位置为所述组织腔体内的一侧的侧壁,所述第二位置为所述组织腔体内的另一侧的侧壁。
  5. 根据权利要求1所述的磁控装置,其特征在于
    令所述胶囊内窥镜从所述组织腔体内的所述第一位置移动到所述组织腔体内的所述第二位置并再次回到所述组织腔体内的第三位置的过程为穿梭运动过程,其中,所述第一位置与所述第三位置位于所述组织腔体内的一侧,所述第二位置位于所述组织腔体内的另一侧,
    所述磁控装置被配置为在所述穿梭运动过程中,控制所述可变磁场而使所述胶囊内窥镜产生偏移,从而使所述胶囊内窥镜的所述第三位置偏离所述第一位置。
  6. 根据权利要求5所述的磁控装置,其特征在于,
    所述磁控装置被配置为当所述胶囊内窥镜处于所述组织腔体内的所述第一位置或所述第二位置时,沿着与所述磁轴线的方向形成有夹角的方向移动所述组织腔体而使所述第一磁体的位置偏离所述磁轴线,所述第二磁体沿着所述磁轴线的方向产生作用于所述胶囊内窥镜的磁力。
  7. 一种胶囊内窥镜的磁控装置,所述胶囊内窥镜至少具有第一磁体和摄像装置,所述胶囊内窥镜位于组织腔体内,其特征在于,
    所述磁控装置包括第二磁体和布置在所述第二磁体周围的第一感应线圈,所述磁控装置被配置为对所述胶囊内窥镜产生可变磁场,并且所述可变磁场包括由所述第二磁体产生的基底磁场和由所述第一感应线圈产生的感应磁场,所述第一感应线圈的磁轴线的方向保持固定朝向,并且通过改变所述第二磁体的磁极相对于所述第一磁体的相对位置、所述第一感应线圈的电流大小、所述第一感应线圈的电流方向中的至少一种来产生所述可变磁场。
  8. 根据权利要求1所述的磁控装置,其特征在于,
    所述磁控装置被配置为在所述胶囊内窥镜从所述第一位置移动到所述第二位置的过程中,所述第二磁体对所述胶囊内窥镜产生第一磁力,所述第一感应线圈对所述胶囊内窥镜产生第二磁力,通过使所述第一磁力的磁力方向与所述第二磁力的磁力方向形成夹角而对所述胶囊内窥镜产生偏移运动。
  9. 根据权利要求1或8所述的磁控装置,其特征在于,
    在所述组织腔体内装有液体并在所述组织腔体内形成有液面,所述磁控装置被配置为控制所述可变磁场以使所述胶囊内窥镜处于液面并保持与所述组织腔体的相对位置,并且移动所述组织腔体对所述组织腔体内进行拍摄。
  10. 根据权利要求1或8所述的磁控装置,其特征在于,
    所述第一感应线圈布置于与所述第二磁体相同的一侧。
  11. 根据权利要求1或8所述的磁控装置,其特征在于,
    所述磁控装置还包括布置在与所述第一感应线圈不同侧的第二感应线圈,所述第二感应线圈布置在与所述第二磁体不同的一侧。
  12. 根据权利要求1所述的磁控装置,其特征在于,
    所述磁控装置还包括第三感应线圈,所述第三感应线圈产生作用于所述胶囊内窥镜的磁力,以使所述胶囊内窥镜定位于所述组织腔体内的预定位置。
  13. 根据权利要求12所述的磁控装置,其特征在于,
    所述第三感应线圈的直径小于所述第一感应线圈的直径和所述第二感应线圈的直径。
  14. 根据权利要求1或8所述的磁控装置,其特征在于,
    所述磁控装置被配置为当所述胶囊内窥镜位于所述组织腔体内的侧壁时,通过控制所述可变磁场,以位于所述组织腔体内的侧壁的所述胶囊内窥镜的一端为支点,调整所述胶囊内窥镜的另一端的所述摄像装置的朝向。
  15. 根据权利要求14所述的磁控装置,其特征在于,
    所述磁控装置被配置为通过改变所述第二磁体的磁极相对于所述第一磁体的位置来控制所述可变磁场。
  16. 根据权利要求1所述的磁控装置,其特征在于,
    令所述胶囊内窥镜从所述组织腔体的所述第一位置移动到所述组织腔体的所述第二位置并再次回到所述组织腔体的第三位置的过程为穿梭运动过程,其中,所述第一位置与所述第三位置位于所述组织腔体的一侧,所述第二位置 位于所述组织腔体的另一侧,
    在所述穿梭运动过程中,在所述胶囊内窥镜移动到所述组织腔体的所述第二位置之前,所述胶囊内窥镜还移动到所述第一位置与所述第二位置之外的第四位置,所述第四位置不位于由所述第一位置、所述第二位置和所述第三位置构成的平面。
  17. 根据权利要求16所述的磁控装置,其特征在于,
    在所述穿梭运动过程中,在所述胶囊内窥镜移动到所述组织腔体的所述第三位置之前,所述胶囊内窥镜还移动到所述第二位置与所述第三位置之外的第五位置,所述第五位置不位于由所述第一位置、所述第二位置和所述第三位置构成的平面。
  18. 根据权利要求17所述的磁控装置,其特征在于,
    所述第一位置、所述第二位置、所述第三位置、所述第四位置和所述第五位置均位于所述组织腔体的内壁上。
  19. 一种控制胶囊内窥镜在组织腔体内移动的方法,所述胶囊内窥镜至少具有第一磁体和摄像装置,其特征在于,
    包括:
    使所述胶囊内窥镜进入组织腔体内;
    对所述胶囊内窥镜产生可变磁场,并且通过控制所述可变磁场而对所述胶囊内窥镜产生驱动力,从而使所述胶囊内窥镜从所述组织腔体内的第一位置朝向所述组织腔体内的相对侧移动到第二位置;并且
    当所述胶囊内窥镜靠近所述第二位置时,控制所述可变磁场以使所述胶囊内窥镜减速至预定速度,
    其中,所述可变磁场包括由第二磁体产生的基底磁场和由第一感应线圈产生的感应磁场,所述第一感应线圈的磁轴线的方向保持固定朝向,所述可变磁场通过改变第二磁体的磁极相对于所述第一磁体的相对位置、所述第一感应线圈的电流大小、所述第一感应线圈的电流方向中的至少一种来产生变化。
  20. 根据权利要求19所述的方法,其特征在于,
    在所述胶囊内窥镜从所述第一位置移动到所述第二位置的过程中,当所述胶囊内窥镜位于所述第一位置时,控制所述可变磁场以将所述胶囊内窥镜进行加速,当所述胶囊内窥镜靠近所述第二位置时,控制所述可变磁场以使所述胶囊内窥镜减速至所述预定速度。
  21. 根据权利要求19所述的方法,其特征在于,
    在所述胶囊内窥镜从所述第一位置移动到所述第二位置的过程中,当所述胶囊内窥镜位于所述第一位置时,控制所述可变磁场以将所述胶囊内窥镜进行加速至初始速度,并保持所述初始速度移动预定距离,接着当所述胶囊内窥镜靠近所述第二位置时,控制所述可变磁场以将所述胶囊内窥镜减速至所述预定速度。
  22. 根据权利要求19所述的方法,其特征在于,
    当所述胶囊内窥镜位于所述第二位置时,所述胶囊内窥镜朝向所述第一位置的一侧对所述组织腔体内进行拍摄。
  23. 根据权利要求19所述的方法,其特征在于,
    所述第一位置为所述组织腔体内的一侧的侧壁,所述第二位置为所述组织腔体内的另一侧的侧壁。
  24. 根据权利要求19所述的方法,其特征在于
    令所述胶囊内窥镜从所述组织腔体内的所述第一位置移动到所述组织腔体内的所述第二位置并再次回到所述组织腔体内的第三位置的过程为穿梭运动过程,其中,所述第一位置与所述第三位置位于所述组织腔体内的一侧,所述第二位置位于所述组织腔体内的另一侧,
    在所述穿梭运动过程中,控制所述可变磁场而使所述胶囊内窥镜产生偏移,从而使所述胶囊内窥镜的所述第三位置偏离所述第一位置。
  25. 根据权利要求23所述的方法,其特征在于,
    当所述胶囊内窥镜处于所述组织腔体内的所述第一位置或所述第二位置时,沿着与所述磁轴线的方向形成有夹角的方向移动所述组织腔体而使所述第 一磁体的位置偏离所述磁轴线,所述第二磁体沿着所述磁轴线的方向产生作用于所述胶囊内窥镜的磁力。
  26. 一种控制胶囊内窥镜在组织腔体内移动的方法,所述胶囊内窥镜至少具有第一磁体和摄像装置,其特征在于,
    包括:
    使所述胶囊内窥镜进入组织腔体内;并且
    对所述胶囊内窥镜产生可变磁场,并且通过控制所述可变磁场而对所述胶囊内窥镜产生驱动力,
    其中,所述可变磁场包括由第二磁体产生的基底磁场和由第一感应线圈产生的感应磁场,所述第一感应线圈的磁轴线的方向保持固定朝向,所述可变磁场通过改变第二磁体的磁极相对于所述第一磁体的相对位置、所述第一感应线圈的电流大小、所述第一感应线圈的电流方向中的至少一种来产生变化。
  27. 根据权利要求19或26所述的方法,其特征在于,
    在所述胶囊内窥镜从所述第一位置移动到所述第二位置的过程中,所述基底磁场对所述胶囊内窥镜产生第一磁力,所述感应磁场对所述胶囊内窥镜产生第二磁力,通过使所述第一磁力的磁力方向与所述第二磁力的磁力方向形成夹角而对所述胶囊内窥镜产生偏移运动。
  28. 根据权利要求19或26所述的方法,其特征在于,
    在所述组织腔体内装有液体并在所述组织腔体内形成有液面,控制所述可变磁场以使所述胶囊内窥镜处于液面并保持与所述组织腔体的相对位置,并且移动所述组织腔体对所述组织腔体内进行拍摄。
  29. 根据权利要求19或26所述的方法,其特征在于,
    所述第一感应线圈布置于与所述第二磁体相同的一侧。
  30. 根据权利要求19或26所述的方法,其特征在于,
    所述磁控装置还包括布置在与所述第一感应线圈不同侧的第二感应线圈,所述第二感应线圈布置在与所述第二磁体不同的一侧。
  31. 根据权利要求30所述的方法,其特征在于,
    所述磁控装置还包括第三感应线圈,所述第三感应线圈产生作用于所述胶囊内窥镜的磁力,以使所述胶囊内窥镜定位于所述组织腔体内的预定位置。
  32. 根据权利要求31所述的方法,其特征在于,
    所述第三感应线圈的直径小于所述第一感应线圈的直径和所述第二感应线圈的直径。
  33. 根据权利要求32所述的方法,其特征在于,
    所述第三感应线圈设置在与所述第二感应线圈相同的一侧。
  34. 根据权利要求19或26所述的方法,其特征在于,
    当所述胶囊内窥镜位于所述组织腔体的侧壁时,通过控制所述可变磁场,以位于所述组织腔体的侧壁的所述胶囊内窥镜的一端为支点,调整所述胶囊内窥镜的另一端的摄像装置的朝向。
  35. 根据权利要求19所述的方法,其特征在于,
    所述磁轴线的方向为竖直方向,所述磁轴线穿过所述第二磁体。
  36. 根据权利要求19所述的方法,其特征在于,
    将所述第二磁体以能够以与所述第一感应线圈的磁轴线相交的点为中心旋转的方式布置在所述第一感应线圈的周围。
  37. 根据权利要求19所述的方法,其特征在于,
    令所述胶囊内窥镜从所述组织腔体的所述第一位置移动到所述组织腔体的所述第二位置并再次回到所述组织腔体的第三位置的过程为穿梭运动过程,其中,所述第一位置与所述第三位置位于所述组织腔体的一侧,所述第二位置位于所述组织腔体的另一侧,
    在所述穿梭运动过程中,在所述胶囊内窥镜移动到所述组织腔体的所述第二位置之前,所述胶囊内窥镜还移动到所述第一位置与所述第二位置之外的第四位置,所述第四位置不位于由所述第一位置、所述第二位置和所述第三位置构成的平面。
  38. 根据权利要求37所述的方法,其特征在于,
    在所述穿梭运动过程中,在所述胶囊内窥镜移动到所述组织腔体的所述第三位置之前,所述胶囊内窥镜还移动到所述第二位置与所述第三位置之外的第五位置,所述第五位置不位于由所述第一位置、所述第二位置和所述第三位置构成的平面。
  39. 根据权利要求38所述的方法,其特征在于,
    所述第一位置、所述第二位置、所述第三位置、所述第四位置和所述第五位置均位于组织腔体的内壁上。
PCT/CN2019/104815 2019-06-17 2019-09-07 胶囊内窥镜的磁控装置以及控制胶囊内窥镜在组织腔体内移动的方法 WO2020252940A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/595,714 US20220248943A1 (en) 2019-06-17 2019-09-07 Magnetic control device of capsule endoscope and method for controlling movement of capsule endoscope in tissue cavity
EP19934208.0A EP3942992A4 (en) 2019-06-17 2019-09-07 MAGNETIC CAPSULE ENDOSCOPE CONTROL DEVICE AND METHOD FOR CONTROLLING THE MOVEMENT OF A CAPSULE ENDOSCOPE IN A TISSUE CAVITY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910518998.7 2019-06-17
CN201910518998 2019-06-17

Publications (1)

Publication Number Publication Date
WO2020252940A1 true WO2020252940A1 (zh) 2020-12-24

Family

ID=72439705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104815 WO2020252940A1 (zh) 2019-06-17 2019-09-07 胶囊内窥镜的磁控装置以及控制胶囊内窥镜在组织腔体内移动的方法

Country Status (4)

Country Link
US (1) US20220248943A1 (zh)
EP (1) EP3942992A4 (zh)
CN (22) CN211511733U (zh)
WO (1) WO2020252940A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211511733U (zh) * 2019-06-17 2020-09-18 深圳硅基智控科技有限公司 胶囊内窥镜的磁控装置
CN112075914B (zh) * 2020-10-14 2023-06-02 深圳市资福医疗技术有限公司 胶囊内窥镜检查***
CN112515610B (zh) * 2020-11-30 2021-10-22 元化智能科技(深圳)有限公司 无线胶囊内窥镜的驱动方法、装置及***
CN112741689B (zh) * 2020-12-18 2022-03-18 上海卓昕医疗科技有限公司 应用光扫描部件来实现导航的方法及***
CN117562486A (zh) * 2022-08-08 2024-02-20 安翰科技(武汉)股份有限公司 磁控胶囊***的控制方法和装置
CN115624308B (zh) * 2022-12-21 2023-07-07 深圳市资福医疗技术有限公司 胶囊内窥镜巡航控制方法、装置及存储介质
CN117647815A (zh) * 2023-12-07 2024-03-05 杭州隆硕科技有限公司 一种半透明障碍物激光测距方法和***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105559739A (zh) * 2015-12-22 2016-05-11 苏州向东智造医疗科技有限公司 一种基于磁场强度变化的胶囊内镜运动控制方法
CN206659782U (zh) * 2016-12-23 2017-11-24 深圳市资福技术有限公司 一种胶囊内窥镜磁控制***及检查***
US20170360283A1 (en) * 2014-12-18 2017-12-21 Piolax, Inc. Capsule endoscope, capsule endoscopic inspection method, and capsule endoscopic inspection device
CN107773205A (zh) * 2017-10-31 2018-03-09 嘉兴复尔机器人有限公司 一种胶囊式内窥镜磁控***
CN207506552U (zh) * 2017-04-14 2018-06-19 深圳市资福医疗技术有限公司 一种胶囊式内窥镜及内窥镜检查***
CN208492032U (zh) * 2017-12-04 2019-02-15 湖北大学 一种基于磁主动控制法的胶囊内窥镜装置

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4426875B2 (ja) * 2004-03-08 2010-03-03 オリンパス株式会社 カプセル型医療装置磁気誘導システム
JP2005305006A (ja) * 2004-04-26 2005-11-04 Iden Videotronics:Kk カプセル型内視鏡の適応型撮影タイミングの決定方法
JP4388442B2 (ja) * 2004-09-08 2009-12-24 オリンパス株式会社 位置検出装置および被検体内導入システム
JP4891924B2 (ja) * 2005-12-27 2012-03-07 オリンパスメディカルシステムズ株式会社 カプセル型医療装置誘導システム及びその制御方法
CN101351148B (zh) * 2005-12-28 2010-09-08 奥林巴斯医疗株式会社 被检体内观察***
DE102006014040B4 (de) * 2006-03-27 2012-04-05 Siemens Ag Verfahren und Einrichtung zur drahtlosen Fernsteuerung der Kapselfunktionen einer Arbeitskapsel eines Magnetspulensystems
DE102006019986A1 (de) * 2006-04-26 2007-10-31 Siemens Ag Endoskopiekapsel
WO2009031456A1 (ja) * 2007-09-07 2009-03-12 Olympus Medical Systems Corp. 位置検出装置、医療装置誘導システム、位置検出方法、および医療装置誘導方法
JP4908356B2 (ja) * 2007-09-11 2012-04-04 オリンパスメディカルシステムズ株式会社 カプセル誘導システム
CN101808566B (zh) * 2007-09-25 2012-02-29 奥林巴斯医疗株式会社 位置检测装置
US8235888B2 (en) * 2008-07-08 2012-08-07 Olympus Medical Systems Corp. System for guiding capsule medical device
US8241206B2 (en) * 2008-07-08 2012-08-14 Olympus Medical Systems Corp. System for guiding capsule medical device
DE102008049198B4 (de) * 2008-09-26 2017-03-02 Siemens Healthcare Gmbh Spulensystem, medizinisches Gerät und Verfahren zur berührungslosen magnetischen Navigation eines magnetischen Körpers in einem Arbeitsraum
JP5329891B2 (ja) * 2008-09-29 2013-10-30 オリンパス株式会社 無線給電システムおよびその駆動方法
JP4902620B2 (ja) * 2008-10-21 2012-03-21 オリンパスメディカルシステムズ株式会社 カプセル誘導システム
EP2338402A4 (en) * 2008-10-24 2013-03-20 Olympus Medical Systems Corp CAPSUED ENDOSCOPY SYSTEM
WO2010106856A1 (ja) * 2009-03-16 2010-09-23 オリンパスメディカルシステムズ株式会社 位置検出システムおよび位置検出方法
EP2465408A4 (en) * 2009-11-10 2014-11-05 Olympus Medical Systems Corp GUIDING SYSTEM OF A CAPSULE MEDICAL DEVICE AND METHOD FOR GUIDING A CAPSULE MEDICAL DEVICE
EP2347699B1 (en) * 2010-01-22 2018-11-07 Novineon Healthcare Technology Partners Gmbh Capsule type endoscope including magnetic drive
JP5580637B2 (ja) * 2010-03-30 2014-08-27 オリンパス株式会社 画像処理装置、内視鏡装置の作動方法及びプログラム
CN101849814B (zh) * 2010-05-26 2012-12-12 上海理工大学 主动式红外无线胶囊内视镜***
DE102011003400A1 (de) * 2011-01-31 2012-08-02 Ate Antriebstechnik Und Entwicklungs Gmbh Elektromotor
US9050161B2 (en) * 2011-04-29 2015-06-09 James S. Feine Energy harvesting insert for an ultrasonic handpiece with electrical device
DE102011078405B4 (de) * 2011-06-30 2013-03-21 Siemens Aktiengesellschaft Verfahren zur Endoskopie mit magnetgeführter Endoskopkapsel sowie Einrichtung dazu
JP5916031B2 (ja) * 2011-09-05 2016-05-11 株式会社ミュー 医療装置
WO2013168681A1 (ja) * 2012-05-07 2013-11-14 オリンパスメディカルシステムズ株式会社 誘導装置及びカプセル型医療装置誘導システム
CN104302224B (zh) * 2012-05-07 2016-08-24 奥林巴斯株式会社 引导装置
CN104203068A (zh) * 2012-05-14 2014-12-10 奥林巴斯医疗株式会社 胶囊型医疗装置以及医疗***
CN102743174B (zh) * 2012-06-30 2016-06-29 安翰光电技术(武汉)有限公司 一种控制胶囊或探针运动的方法
CN102860810B (zh) * 2012-10-08 2014-10-29 安翰光电技术(武汉)有限公司 一种医用磁性胶囊内窥镜***
CN203234717U (zh) * 2012-11-27 2013-10-16 深圳市资福技术有限公司 一种胶囊内窥镜及其方位控制装置
CN103181748A (zh) * 2012-12-20 2013-07-03 深圳市资福技术有限公司 一种胶囊内窥镜运行姿态的控制***和控制方法
US9949666B2 (en) * 2013-02-08 2018-04-24 Given Imaging Ltd. Method and system for determining a device movement irrespective of movement of a reference frame
CN103169443A (zh) * 2013-03-29 2013-06-26 哈尔滨工业大学深圳研究生院 基于灵巧机器人的磁控主动式胶囊内窥镜运动控制***
CN103222841B (zh) * 2013-04-10 2015-12-23 深圳市资福技术有限公司 胶囊内窥镜体内运行速度的控制***
CN105411505B (zh) * 2014-09-15 2019-08-23 上海安翰医疗技术有限公司 一种控制胶囊内窥镜在人体消化道运动的装置及方法
CN103222842B (zh) * 2013-04-18 2015-09-09 安翰光电技术(武汉)有限公司 一种控制胶囊内窥镜在人体消化道运动的装置及方法
EP3037029A4 (en) * 2013-08-22 2017-04-19 Olympus Corporation Location detection device and location detection system
CN105491936B (zh) * 2013-08-28 2017-08-22 奥林巴斯株式会社 胶囊型内窥镜***
CN104814712A (zh) * 2013-11-07 2015-08-05 南京三维视嘉科技发展有限公司 三维内窥镜及三维成像方法
JP6376847B2 (ja) * 2014-05-31 2018-08-22 株式会社ミュー 医療装置
EP3539456B1 (en) * 2014-09-15 2021-06-23 Ankon Medical Technologies (Shanghai) Co., Ltd Apparatus for controlling the movement of a capsule endoscope in the digestive tract of a human body
WO2016092926A1 (ja) * 2014-12-08 2016-06-16 オリンパス株式会社 カプセル型内視鏡システム
KR101647020B1 (ko) * 2015-03-12 2016-08-11 전남대학교산학협력단 코일의 위치를 가변 할 수 있는 전자기 구동 장치
CN106572786B (zh) * 2015-03-30 2018-12-18 奥林巴斯株式会社 胶囊型内窥镜***以及磁场产生装置
WO2017017999A1 (ja) * 2015-07-24 2017-02-02 オリンパス株式会社 位置検出システム及び誘導システム
CN105286762A (zh) * 2015-10-30 2016-02-03 青岛光电医疗科技有限公司 一种用于体内微小型设备定位、转向及位移的外用控制器
JP6169303B1 (ja) * 2015-12-02 2017-07-26 オリンパス株式会社 位置検出システム及び位置検出システムの作動方法
WO2017094415A1 (ja) * 2015-12-02 2017-06-08 オリンパス株式会社 位置検出システム及び位置検出方法
US20170164819A1 (en) * 2015-12-13 2017-06-15 Kevin Bai Light Field Capsule Endoscope
CN105559738A (zh) * 2015-12-22 2016-05-11 苏州向东智造医疗科技有限公司 一种基于磁场空间分布变化的胶囊内镜运动控制方法
CN107405052B (zh) * 2016-03-04 2019-03-26 奥林巴斯株式会社 引导装置以及胶囊型医疗装置引导***
CN105962879A (zh) * 2016-04-22 2016-09-28 重庆金山科技(集团)有限公司 胶囊内窥镜的位姿控制***、控制方法及胶囊内窥镜
CN105942959B (zh) * 2016-06-01 2018-08-24 安翰光电技术(武汉)有限公司 胶囊内窥镜***及其三维成像方法
KR101923404B1 (ko) * 2016-07-01 2018-11-29 가천대학교 산학협력단 영상처리를 이용한 외부조종 무선 내시경의 자율 주행방법
CN206880655U (zh) * 2016-12-13 2018-01-16 重庆金山医疗器械有限公司 一种可控胶囊内镜***
CN106725271B (zh) * 2016-12-21 2018-08-24 重庆金山医疗器械有限公司 胶囊内窥镜在生物体内自动越障的***
JP2018130433A (ja) * 2017-02-17 2018-08-23 オリンパス株式会社 内視鏡システム、内視鏡及び挿入補助具
CN106983487B (zh) * 2017-03-14 2019-11-15 宜宾学院 无线胶囊内窥镜三维位置和三维姿态的定位***及其定位方法
CN106880333A (zh) * 2017-03-28 2017-06-23 重庆金山医疗器械有限公司 一种胶囊内镜控制装置
CN106963326A (zh) * 2017-04-12 2017-07-21 重庆金山医疗器械有限公司 胃部轮廓检测及模型生成方法
CN107349012A (zh) * 2017-05-26 2017-11-17 重庆金山医疗器械有限公司 一种胃部三维模型的建模方法及***
CN107432731A (zh) * 2017-08-31 2017-12-05 宁波视睿迪光电有限公司 内窥镜及内窥检测方法
US11122965B2 (en) * 2017-10-09 2021-09-21 Vanderbilt University Robotic capsule system with magnetic actuation and localization
CN108175368A (zh) * 2017-11-28 2018-06-19 重庆金山医疗器械有限公司 一种胶囊式内窥镜的控制***
CN108720793A (zh) * 2018-03-02 2018-11-02 重庆金山医疗器械有限公司 一种胶囊内窥镜的控制***及方法
CN108827133B (zh) * 2018-06-15 2020-05-01 北京理工大学 一种检测移动磁源位姿的方法
CN109171616A (zh) * 2018-08-07 2019-01-11 重庆金山医疗器械有限公司 获得被测物内部3d形状的***及方法
CN109620104B (zh) * 2019-01-10 2021-04-02 深圳市资福医疗技术有限公司 胶囊内窥镜及其定位方法及***
CN211511733U (zh) * 2019-06-17 2020-09-18 深圳硅基智控科技有限公司 胶囊内窥镜的磁控装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170360283A1 (en) * 2014-12-18 2017-12-21 Piolax, Inc. Capsule endoscope, capsule endoscopic inspection method, and capsule endoscopic inspection device
CN105559739A (zh) * 2015-12-22 2016-05-11 苏州向东智造医疗科技有限公司 一种基于磁场强度变化的胶囊内镜运动控制方法
CN206659782U (zh) * 2016-12-23 2017-11-24 深圳市资福技术有限公司 一种胶囊内窥镜磁控制***及检查***
CN207506552U (zh) * 2017-04-14 2018-06-19 深圳市资福医疗技术有限公司 一种胶囊式内窥镜及内窥镜检查***
CN107773205A (zh) * 2017-10-31 2018-03-09 嘉兴复尔机器人有限公司 一种胶囊式内窥镜磁控***
CN208492032U (zh) * 2017-12-04 2019-02-15 湖北大学 一种基于磁主动控制法的胶囊内窥镜装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3942992A4 *

Also Published As

Publication number Publication date
CN112089386A (zh) 2020-12-18
CN112089387A (zh) 2020-12-18
EP3942992A1 (en) 2022-01-26
CN113693544A (zh) 2021-11-26
EP3942992A4 (en) 2022-12-21
CN113693543A (zh) 2021-11-26
CN114027772A (zh) 2022-02-11
CN112089389A (zh) 2020-12-18
CN112089389B (zh) 2021-10-26
CN211633195U (zh) 2020-10-09
CN112089388B (zh) 2024-06-07
CN114831586A (zh) 2022-08-02
CN211749479U (zh) 2020-10-27
CN211749478U (zh) 2020-10-27
CN114847846A (zh) 2022-08-05
CN114052621A (zh) 2022-02-18
CN112089385A (zh) 2020-12-18
CN112089386B (zh) 2022-05-24
CN112089388A (zh) 2020-12-18
CN211511733U (zh) 2020-09-18
CN114795078A (zh) 2022-07-29
CN112089384A (zh) 2020-12-18
CN112089384B (zh) 2021-12-28
US20220248943A1 (en) 2022-08-11
CN113662496A (zh) 2021-11-19
CN113768449A (zh) 2021-12-10
CN112089387B (zh) 2021-10-26
CN113693543B (zh) 2023-06-02
CN211749480U (zh) 2020-10-27
CN112089385B (zh) 2022-03-29
CN114587241A (zh) 2022-06-07
CN113662496B (zh) 2024-06-14
CN113729594A (zh) 2021-12-03
CN113693544B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2020252940A1 (zh) 胶囊内窥镜的磁控装置以及控制胶囊内窥镜在组织腔体内移动的方法
EP2848185B1 (en) Guidance device and capsule medical device guidance system
JP4932971B2 (ja) カプセル型医療装置用誘導システム
JP6028132B1 (ja) 誘導装置及びカプセル型医療装置誘導システム
US8460177B2 (en) Capsule medical device guidance system and method for guiding capsule medical device
CN106455917B (zh) 胶囊型医疗装置引导***
EP2656773B1 (en) Capsule medical device guiding system and magnetic field generating apparatus
CN112294238A (zh) 控制胶囊内窥镜在组织腔体内移动的方法
WO2016157596A1 (ja) カプセル型内視鏡誘導システムおよびカプセル型内視鏡誘導装置
WO2017141499A1 (ja) 位置検出装置及び位置検出システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019934208

Country of ref document: EP

Effective date: 20211020

NENP Non-entry into the national phase

Ref country code: DE