WO2020250951A1 - Antenna - Google Patents

Antenna Download PDF

Info

Publication number
WO2020250951A1
WO2020250951A1 PCT/JP2020/022920 JP2020022920W WO2020250951A1 WO 2020250951 A1 WO2020250951 A1 WO 2020250951A1 JP 2020022920 W JP2020022920 W JP 2020022920W WO 2020250951 A1 WO2020250951 A1 WO 2020250951A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
housing
flexible substrate
conductor
design
Prior art date
Application number
PCT/JP2020/022920
Other languages
French (fr)
Japanese (ja)
Inventor
森本 康夫
健 茂木
稔貴 佐山
元司 小野
加賀谷 修
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2020250951A1 publication Critical patent/WO2020250951A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas

Definitions

  • the present invention relates to an antenna.
  • the in-vehicle flat antenna device shown in Patent Document 1 includes an antenna substrate, a radome that protects the surface of the antenna substrate, a bracket for fixing the antenna substrate to a car housing, and a power supply cable that supplies power to the antenna substrate.
  • the antenna board is provided in the car housing by being sandwiched between the radome and the bracket.
  • Patent Document 1 since the power supply cable connected to the antenna substrate is not blindfolded, there is a problem that the appearance of the housing surface is deteriorated.
  • the present disclosure provides an antenna capable of suppressing deterioration of the appearance of the housing surface.
  • the present disclosure is provided on a housing, an antenna conductor on the front side of the housing, a flexible substrate provided with the antenna conductor, and the flexible substrate so as to be connected to the antenna conductor, and shields electromagnetic waves.
  • an antenna including a transmission line having a shield structure and a design portion provided on the side of the transmission line opposite to the housing side and covering at least a part of the transmission line.
  • an antenna capable of suppressing deterioration of the appearance of the housing surface.
  • FIG. 2 is a cross-sectional view taken along the arrow II-II of FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG. It is a figure which shows the 1st modification of the antenna 100. It is a figure which shows the 2nd modification of the antenna 100. It is a figure which shows the 3rd modification of the antenna 100. It is sectional drawing which shows the structure at the time of simulation of an antenna.
  • FIG. 7 is a diagram showing an example of a simulation result of the radiation efficiency of the antenna conductor when the thickness of the design portion and the relative permittivity are changed in the configuration of FIG. 7.
  • FIG. 7 is a diagram showing an example of a simulation result of the radiation efficiency of the antenna conductor when the thickness of the design portion and the relative permittivity are changed in the configuration of FIG. 7.
  • FIG. 7 is a diagram showing an example of a simulation result of the radiation efficiency of the antenna conductor when the thickness of the design portion and the relative permittivity are changed in the configuration
  • FIG. 7 is a diagram showing an example of a simulation result of a gain of an antenna conductor when the thickness of the design portion and the relative permittivity are changed in the configuration of FIG. 7. It is sectional drawing which shows the 4th modification of the antenna 100.
  • FIG. 10 is a diagram showing an example of a simulation result of the radiation efficiency of the antenna conductor when the thickness of the design portion and the relative permittivity are changed in the configuration of FIG. 10.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction represent a direction parallel to the X-axis, a direction parallel to the Y-axis, and a direction parallel to the Z-axis, respectively.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction are orthogonal to each other.
  • the XY plane, YZ plane, and ZX plane are a virtual plane parallel to the X-axis direction and the Y-axis direction, a virtual plane parallel to the Y-axis direction and the Z-axis direction, and a virtual plane parallel to the Z-axis direction and the X-axis direction, respectively. Represents.
  • the power feeding circuit and the antenna are suitable for transmitting and receiving radio waves in a high frequency band (for example, over 1 GHz to 300 GHz) such as microwaves and millimeter waves.
  • the feeding circuit and antenna in one embodiment of the present disclosure can be applied to, for example, a V2X communication system, a fifth generation mobile communication system (so-called 5G), an in-vehicle radar system, and the like, but the applicable system is limited to these.
  • the frequency range includes, for example, ITS (Intelligent Transport Systems) (5.89 GHz), 5 G (3.6 to 6 GHz band), Wi-Fi (28 GHz band, 2.4 GHz, 5 GHz, 39 GHz band). It may be for obi).
  • FIG. 1 is an external view of a vehicle 1 provided with an antenna 100 including a power feeding circuit according to an embodiment of the present invention.
  • the vehicle 1 is, for example, a leading vehicle, a trailing vehicle, an intermediate vehicle, or the like of a train.
  • the antenna 100 is provided in the housing 1a of the vehicle 1.
  • the antenna 100 according to the embodiment can be used not only for trains but also for automobiles, buildings, robots, aircraft, and the like.
  • the housing 1a is not limited to, for example, the panel constituting the outer shell of the vehicle 1, and may be any place where the antenna conductor 120 described later can be installed.
  • the housing 1a also includes, for example, a windshield of an automobile, a rear glass of an automobile, a lining of an automobile, an aircraft, an automobile, a window glass of a building, a frame constituting an outer shell of a robot, and the like.
  • the antenna conductor 120 is provided on the indoor side (front side (front side)) of the window glass of the building, and RF described later.
  • the module 60 is provided on the back side of the ceiling portion (second housing) in the interior of the building. Then, the antenna conductor 120 and the feeding circuit 110 described later are integrally provided on the flexible substrate 30 described later, and the antenna conductor 120 is connected to the RF module 60 by the feeding circuit 110.
  • the antenna conductor 120 is sandwiched inside the windshield or provided on the front side of the surface of the windshield.
  • the RF module 60 is installed in the mounting portion of the rear mirror (second housing) of the automobile, and the antenna conductor 120 and the feeding circuit 110 are integrally provided on the flexible substrate 30, and the antenna conductor 120 is provided by the feeding circuit 110. It is connected to the RF module 60.
  • the antenna conductor 120 is provided on the front side of the surface of the body of the robot, and the RF module 60 is installed on the back side of the body of the robot.
  • the flexible substrate 30 is integrally provided with the antenna conductor 120 and the feeding circuit 110, and the antenna conductor 120 is connected to the RF module 60 by the feeding circuit 110.
  • the antenna conductor 120 is provided on the front side of the surface of the housing, and the RF module 60 is installed on the back side of the housing.
  • wireless devices include electronic devices such as information terminals, mobile phones, smartphones, personal computers, game consoles, televisions, and music and video players.
  • the housing is a member that contains a machine or electrical device that has some function, and the shape is not limited to the box shape, but also includes plate-shaped, flat-shaped, and curved-shaped ones.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • the antenna 100 includes a housing 1a, a feeding circuit 110, an antenna conductor 120, an RF connector 50, and an RF module 60.
  • the power feeding circuit 110 is provided on the flexible substrate 30 provided from the outer surface 1a1 of the housing 1a to the inner side surface 1a2 of the housing 1a, and is provided on the flexible substrate 30 so as to be connected to the antenna conductor 120 to shield electromagnetic waves.
  • a transmission line 20 having a shield structure is provided.
  • the power feeding circuit 110 further includes a design portion 40 provided on the side opposite to the housing 1a side of the transmission line 20 (outside the housing 1a) so as to cover at least a part of the transmission line 20.
  • the housing 1a is a container / housing containing equipment having some function in a communication mobile body such as an automobile, a building, a robot, or an aircraft, and may have a flat shape or a curved shape.
  • the housing 1a has a bent portion 11 (specifically, an end face portion or a hole portion in the housing 1a) that physically connects the outer surface 1a1 and the inner side surface 1a2.
  • the flexible substrate 30 has flexibility that can be bent along the curved surface portion of the housing 1a, can be repeatedly deformed with a weak force, and maintains its electrical characteristics even when deformed. It is a single-phase double-sided substrate with characteristics.
  • the flexible substrate is preferably provided on the curved surface portion of the housing 1a without any gap.
  • the flexible substrate 30 has a structure in which, for example, a conductor foil having a thickness of 12 ⁇ m to 50 ⁇ m is laminated on the upper and lower surfaces of a thin-film dielectric (base film) having a thickness of 12 ⁇ m to 50 ⁇ m.
  • a material called solder resist (resist / photoresist) or coverlay (Coverley), polyimide, polyester or the like is used.
  • the conductor foil for example, gold, silver, copper, aluminum, platinum, chromium and the like are used. Since the flexible substrate 30 is thinner than a general rigid substrate (total thickness 300 ⁇ m to 1,600 ⁇ m) and has excellent workability, it is possible to process a complicated shape.
  • the dielectric of the flexible substrate 30 is preferably a transparent dielectric member that transmits visible light.
  • Transparent includes translucent. Since the dielectric is transparent and the conductors (antenna conductor 120, signal line 21, ground conductor 22) are in the form of a thin mesh, it becomes almost transparent in the visible light region, and the housing 1a is not covered by the design portion 40. Will be visible.
  • the visible light transmittance of the dielectric of the flexible substrate 30 is preferably, for example, 30% or more, more preferably 40% or more, further preferably 50% or more, still more preferably 60%, in terms of suppressing obstruction of the field of view through the flexible substrate 30.
  • the above is even more preferable, and 80% or more is particularly preferable.
  • the upper limit is not particularly limited, but may be 99% or less, and may be 95% or less.
  • the visible light transmittance is a weighted average value obtained by multiplying the value of the spectral transmittance measured by the spectrophotometer by the weight coefficient defined by the Japanese Industrial Standards (JIS R3106 (1998)).
  • the dielectric of the flexible substrate 30 has a dielectric loss tangent (so-called tan ⁇ ) of 0.01 or less, for example, at 28 GHz.
  • the dielectric loss tangent at 28 GHz is an example of an index at a frequency in the GHz band. Therefore, if the dielectric tangent at 28 GHz is 0.01 or less, the transmission loss of the transmission line 20 is suppressed even at 1 GHz to 100 GHz, for example, so that the plane antenna is not limited to the vicinity of 28 GHz but is a planar antenna at 1 GHz to 100 GHz (in this example). , The antenna gain of the antenna conductor 120) can be improved.
  • the dielectric of the flexible substrate 30 is preferably 0.005 or less, more preferably 0.004 or less, still more preferably 0.003 or less, in terms of suppressing transmission loss (and thus a decrease in antenna gain) of the transmission line 20. , 0.002 or less is more preferable, and 0.001 or less is particularly preferable.
  • the dielectric loss tangent of the dielectric of the flexible substrate 30 at 28 GHz may be greater than 0, for example, 0.00001 or more, 0.0005 or more, or 0.001 or more.
  • the dielectric loss tangent (tan ⁇ ) is a value measured at 25 ° C. and 28 GHz using a cavity resonator and a vector network analyzer by a method specified in Japanese Industrial Standards (JIS R 1641: 2007).
  • the flexible substrate 30 extends from the flat surface portion 10 of the housing 1a to the bent portion 11 on the outer surface 1a1 of the housing 1a, and is further folded back at the end portion of the bent portion 11 toward the inner side surface 1a2 of the housing 1a. Stretch.
  • the RF connector 50 is connected to the flexible substrate 30 extending to the inner side surface 1a2 of the housing 1a.
  • the RF connector 50 is connected to, for example, an RF module 60 provided on the inner side surface 1a2 of the housing 1a.
  • the transmission line 20 can be constructed in parallel with the portion where the curvature of the housing 1a changes even in the housing 1a having a curved surface. Therefore, the degree of freedom in designing the antenna 100 is improved, and the transmission line 20 does not appear to float from the housing 1a, so that the design is improved.
  • the flexible substrate 30 may be provided in the housing 1a having no curved surface. Even when the flexible substrate 30 is provided in the housing 1a having no curved surface, the flexible substrate 30 can be provided so as to be folded back from the outer surface 1a1 of the housing 1a toward the inner side surface 1a2.
  • the connection to the RF module 60 provided on the inner side surface 1a2 of the antenna 100 is facilitated, the design is improved, and the degree of freedom in designing the antenna 100 is improved.
  • the antenna conductor 120 is provided, for example, in the folded portion 31 of the flexible substrate 30.
  • the folded-back portion 31 of the flexible substrate 30 is a portion where the thickness in the Z-axis direction is increased by folding back the end portion of the dielectric of the sheet-shaped flexible substrate 30.
  • the antenna conductor 120 is provided on the outside of the housing 1a via the folded-back portion 31 of the flexible substrate 30.
  • the antenna conductor 120 may be a flat antenna such as a patch antenna, or a waveguide slot antenna using a substrate-integrated waveguide. In the form shown in FIG. 2, the antenna conductor 120 has a conductor pattern whose surface is parallel to the XY plane.
  • the antenna conductor 120 may be a conductor pattern formed on the flexible substrate 30, a conductor sheet, a conductor substrate, or the like which is manufactured in advance and then arranged on the flexible substrate 30.
  • gold, silver, copper, aluminum, platinum, chromium, or the like is used for example.
  • the transmission line 20 in FIG. 3 is preferably, for example, a substrate-integrated waveguide (SIW) having a shield structure that shields magnetism.
  • SIW may also be referred to as a substrate built-in waveguide or a post-wall waveguide.
  • the SIW is a waveguide that is composed of a dielectric of a flexible substrate 30, two conductor layers (described later), and a plurality of conductor columns 23, and transmits a signal in a waveguide mode.
  • the two conductor layers are a conductor pattern (ground conductor 22) formed on the dielectric of the flexible substrate 30.
  • the conductor column 23 is a solid or hollow columnar conductor that electrically connects the two conductor layers.
  • a plurality of conductor columns 23 are arranged at intervals so that high-frequency signals propagating in SIW do not leak to the outside.
  • the ground conductor 22 for example, gold, silver, copper, aluminum, platinum, chromium, or the like is used.
  • the thickness of the ground conductor 22 is preferably 0.09 ⁇ m or more, more preferably 0.35 ⁇ m or more.
  • the thickness of the ground conductor 22 is preferably 110 ⁇ m or less. When the thickness of the ground conductor 22 is within the above range, the antenna gain of the antenna conductor 120 can be increased.
  • the signal line 21 shown in FIG. 2 is a conductor pattern connected to the dielectric of the transmission line 20.
  • One end (the end in the plus Y-axis direction) of the signal line 21 is provided in a region between the antenna conductor 120 and the ground conductor 22 (a portion where the dielectric overlaps in the folded portion 31).
  • the signal line 21 is electrically connected to, for example, the antenna conductor 120 in a non-contact manner.
  • gold, silver, copper, aluminum, platinum, chromium and the like are used for the signal line 21, for example.
  • the thickness of the signal line 21 is preferably 0.09 ⁇ m or more, more preferably 0.35 ⁇ m or more.
  • the thickness of the signal line 21 is preferably 110 ⁇ m or less.
  • the transmission line 20 may be a transmission line other than SIW.
  • Other examples of the transmission line 20 include flexible strip lines, microstrip lines, and the like.
  • the design unit 40 functions as a blindfold that covers the antenna conductor 120 and the transmission line 20.
  • the end 41 on the plus Y-axis direction of the design portion 40 is in contact with, for example, the outer surface 1a1 of the housing 1a near the end of the folded-back portion 31 of the flexible substrate 30 in the plus Y-axis direction.
  • the end portion 42 on the side opposite to the end portion 41 of the design portion 40 extends to, for example, the vicinity of the end portion of the bent portion 11 of the housing 1a.
  • the portion extending from the folded portion 20a to the inside of the housing 1a is not provided with the design portion 40. This is because it is difficult to see this portion when the housing 1a is viewed in a plan view from the plus Z axis direction.
  • the design of the antenna conductor 120 and the transmission line 20 can be improved without covering the portion with the design portion 40. Further, since the area where the design portion 40 is provided can be reduced, an increase in the manufacturing cost of the antenna 100 can be suppressed.
  • the design unit 40 covers both the antenna conductor 120 and the transmission line 20, but the design unit 40 may have a shape that covers at least a part of the transmission line 20.
  • a part of the transmission line 20 is, for example, a region from the boundary between the folded portion 31 of the flexible substrate 30 and the signal line 21 to the folded portion 20a of the transmission line 20 (near the end of the bent portion 11 of the housing 1a). Is. With this configuration, it is possible to prevent a part of the transmission line 20 from being covered by the design portion 40 and the appearance of the housing 1a from being deteriorated.
  • the design portion 40 is, for example, a sheet member, a coating film, or the like made of a material having flexibility, radio wave transmission, waterproof resistance, impact resistance, etc. that can be bent along the curved surface of the housing.
  • the design portion 40 When the design portion 40 is a sheet member, the design portion has a transparent resin layer provided on the front surface (front side), that is, a side opposite to the transmission line 20 side, and a base provided on the back surface (the surface on the transmission line 20 side). It has a material layer.
  • the transparent resin layer is made of an acrylic resin having excellent durability and high transparency
  • the base material layer is made of acrylonitrile-ethylene-styrene resin (AES resin).
  • AES resin acrylonitrile-ethylene-styrene resin
  • the base material layer may be a resin other than the AES resin, for example, ABS resin, polycarbonate resin, polyvinyl chloride, or the like.
  • the thickness of the design portion 40 is preferably 0.25 ⁇ g or less, 0.15 ⁇ g or less, and further preferably 0.05 ⁇ g or less from the viewpoint of radio wave transmission.
  • ⁇ g is an effective wavelength and is calculated by ⁇ / ⁇ ( ⁇ : wavelength at the frequency used, ⁇ : non-dielectric constant of the design portion 40).
  • AES resin has the same basic characteristics as ABS resin, and by using special ethylene propylene rubber as the rubber component, it has better stability against photodegradation than ABS resin and can be used outdoors for a long period of time. Further, the AES resin has excellent molding processability and can be arbitrarily colored. Therefore, the AES resin is a suitable material for the design unit 40 installed in, for example, an automobile or a train used outdoors.
  • ABS resin is a highly versatile resin, flexible, durable and easy to process, and can be colored arbitrarily like AES resin.
  • ABS resin has low weather resistance (the property that industrial products can withstand outdoor environments such as sunlight, temperature, humidity, and rain), so it is designed to be installed in the housing of robots used indoors, for example. It is a material suitable for the part 40.
  • Polycarbonate resin is a plastic that can be colored arbitrarily and has high transparency, self-extinguishing properties, and impact resistance. Further, since the polycarbonate resin has high weather resistance, it is a suitable material for the design unit 40 installed in, for example, an automobile or a train used outdoors.
  • Polyvinyl chloride is inexpensive and has excellent workability, but has insulating properties, so that it is suitable as a material that can inexpensively manufacture a design portion 40 having a shape that covers a part of a transmission line 20.
  • the design portion 40 is a coating film
  • a paint having radio wave transmission is used.
  • the paint is not particularly limited, and examples thereof include acrylic paint, urethane paint, epoxy paint, and polyester paint.
  • the coating method is not particularly limited, and examples thereof include air spray coating, airless spray coating, immersion coating, shower coat coating, and roll coater coating.
  • the antenna 100 is completed simply by attaching the pre-manufactured design unit 40 to the transmission line 20 or the like, so that the assembly time of the antenna 100 can be shortened and the antenna 100 can be mass-produced. It will be possible. Further, by forming the sheet shape, even if a step portion is generated at the boundary portion between the folded portion 31 of the flexible substrate 30 and the signal line 21 or the boundary portion between the folded portion 31 of the flexible substrate 30 and the housing 1a. , The sheet-shaped design portion 40 can make the step portion inconspicuous. Therefore, the design can be further improved. Further, since the design portion 40 can be easily removed by forming the sheet shape, the maintenance of the antenna conductor 120, the transmission line 20, and the like is improved.
  • the design portion 40 is a sheet-shaped member
  • at least a part of the flexible substrate 30 may be covered with the sheet-shaped design portion 40 and fixed to the housing 1a.
  • the flexible substrate 30 can be fixed to the housing 1a even if the step of fixing the flexible substrate 30 to the housing 1a by adhesion or the like is omitted. Therefore, the work of applying an adhesive or the like to bond the flexible substrate 30 to the housing 1a can be omitted, and the manufacturing time of the antenna 100 can be shortened.
  • the sheet-shaped design portion 40 is second. It may be provided only in the housing.
  • the housing 1a is a window glass of a building (first housing)
  • an antenna conductor 120 is provided on the indoor side of the window glass of the building, and the RF module 60 is fitted with the window glass of the building (interior). It is provided on the surface of the ceiling (second housing) of the building (second housing).
  • the antenna conductor 120 and the feeding circuit 110 described later are integrally provided on the flexible substrate 30, the antenna conductor 120 is connected to the RF module 60 by the feeding circuit 110, and the feeding circuit 110 is connected by the sheet-shaped design portion 40. Be covered.
  • the antenna conductor 120 is sandwiched inside the windshield or provided on the surface of the windshield.
  • the RF module 60 is installed in the mounting portion of the rear mirror (second housing) of the automobile, and the antenna conductor 120 and the feeding circuit 110 are integrally provided on the flexible substrate 30, and the antenna conductor 120 is RFed by the feeding circuit 110.
  • the power feeding circuit 110 may be covered with the sheet-shaped design portion 40.
  • the design portion 40 is a coating film
  • good adhesion to the antenna conductor 120 and the transmission line 20 can be obtained. Further, since the coating film can be formed regardless of the shapes of the transmission line 20 and the flexible substrate 30, the degree of freedom in designing the antenna 100 is improved.
  • the color of the design unit 40 is substantially the same as the color of the housing 1a.
  • the substantially same color in this configuration example is a color difference that is almost indistinguishable visually, and is a L * a * b value in the L * a * b * display system measured by a color difference meter, and the color difference ⁇ E is 3.
  • the color difference ⁇ E is 1.5 or less.
  • the color difference ⁇ E is the color difference of the maximum color scheme between the patterns.
  • ⁇ E ⁇ (L1-L2) 2 + (a1-a2) 2 + (b1-b2) 2 ⁇ 0.5 L1, a1, b1: Color measurement result of the housing 1a L2, a2, b2: Color measurement result of the design unit 40
  • the RF connector 50 is a connector for passing a high frequency signal and connecting to another board or another line. Generally, some are composed of coaxial lines.
  • the RF module 60 is a component on which devices having various functions are mounted. Generally, devices such as amplifiers, phasers, mixers, signal sources, filters, switches, circulators, AD / DA (Analog to Digital / Digital to Analog) converters, etc. are mounted, and RF connectors and power supplies are mounted on the input / output interfaces. / Some are provided with a control connector.
  • FIG. 4 is a diagram showing a first modification of the antenna 100.
  • the description of the same configuration and effect as the above-mentioned antenna will be omitted or simplified by referring to the above-mentioned description.
  • the antenna 100A shown in FIG. 4 includes at least a housing 1a, a feeding circuit 110A, and an antenna conductor 120, and the feeding circuit 110A includes an insulating member 70 in addition to the configuration shown in FIG.
  • the insulating member 70 is provided between the design portion 40 and the flexible substrate 30.
  • the insulating member 70 is a plate-shaped or sheet-shaped flexible base material containing a dielectric as a main component.
  • a dielectric as a main component.
  • the design portion 40 is formed of a coating film
  • the distance from the design portion 40 to the dielectric of the flexible substrate 30 can be increased, so that a decrease in antenna gain due to the coating film can be suppressed.
  • the thickness of the insulating member 70 is equal to or more than half of the distance between the antenna conductor 120 and the ground conductor 22 in the flexible substrate 30 or the distance between the signal line 21 and the ground conductor 22 (that is, the thickness of the insulating material of the flexible substrate 30). desirable.
  • FIG. 5 is a diagram showing a second modification of the antenna 100.
  • the description of the same configuration and effect as the above-mentioned antenna will be omitted or simplified by referring to the above-mentioned description.
  • the antenna 100B shown in FIG. 5 includes at least a housing 1a, a feeding circuit 110B, and an antenna conductor 120, and the feeding circuit 110B includes an insulating member 80 provided so as to be sandwiched between the folded-back portions 31 in addition to the configuration shown in FIG. Be prepared.
  • the insulating member 80 is a plate-shaped base material containing a dielectric as a main component, and may be a flexible base material.
  • the antenna 100 is a sub6 antenna, it is necessary to increase the distance from the ground conductor 22 in the sub6 frequency band. Therefore, by providing the insulating member 80, the distance from the ground conductor 22 to the antenna conductor 120 can be increased. Therefore, it is preferable in that it suppresses a decrease in antenna gain.
  • the insulating member 80 has a function of increasing the distance from the antenna conductor 120 to the ground conductor 22.
  • FIG. 6 is a diagram showing a third modification example of the antenna 100.
  • the description of the same configuration and effect as the above-mentioned antenna will be omitted or simplified by referring to the above-mentioned description.
  • the antenna 100C shown in FIG. 6 includes at least a housing 1a, a feeding circuit 110C, and an antenna conductor 120.
  • the power supply circuit 110C includes a flexible substrate 30, a transmission line 20, and a design unit 40.
  • the flexible substrate 30 is connected to the antenna conductor 120 provided on the outer surface 1a1 of the housing 1a, and the transmission line 20 is provided on the flexible substrate 30 so as to be connected to the antenna conductor 120.
  • the transmission line 20 has a shield structure (for example, the SIW structure shown in FIG. 3) that shields electromagnetic waves.
  • the design unit 40 is provided on the side opposite to the housing 1a side with respect to the transmission line 20, and covers at least a part of the transmission line 20.
  • the outer surface 1a1 has a recess 2 that does not penetrate the back surface (in this example, the inner surface 1a2).
  • the recess 2 may be counterbore or groove.
  • At least a part of the transmission line 20 and the antenna conductor 120 are installed in the recess 2 and are covered by the design portion 40.
  • the design unit 40 may be a sheet member or a coating film, as in the above configuration. When the design portion 40 is a coating film, the surface of the coating film becomes more uniform, so that deterioration of the appearance of the housing surface can be further suppressed.
  • the recess 2 has a bottom surface 2a having a depth ha and a bottom surface 2b having a depth hb, and the bottom surface 2b is deeper than the bottom surface 2a (ha ⁇ hb).
  • the portion of the flexible substrate 30 on which the transmission line 20 is arranged is fixed to the bottom surface 2a by the adhesive layer 3a.
  • the portion of the flexible substrate 30 on which the antenna conductor 120 is arranged is fixed to the bottom surface 2b by the adhesive layer 3b.
  • the radiation efficiency of the antenna conductor 120 increases in a predetermined frequency band, and the antenna Gain is improved.
  • the relative permittivity of the design portion 40 is preferably less than 11.5 and less than 10.5 in that the radiation efficiency of the antenna conductor 120 is increased and the gain of the antenna is improved. Is more preferable.
  • the lower limit of the thickness of the design portion 40 is not particularly limited as long as it is larger than 0.
  • the relative permittivity of the design portion 40 is also not particularly limited as long as it is larger than 0.
  • FIG. 7 is a cross-sectional view showing the configuration at the time of simulation.
  • FIG. 8 is a diagram showing an example of a simulation result of the radiation efficiency S11 of the antenna conductor 120 when the thickness t of the design portion 40 and the relative permittivity eps are changed in the configuration of FIG. 7.
  • FIG. 9 is a diagram showing an example of a simulation result of the gain of the antenna conductor 120 when the thickness t of the design portion 40 and the relative permittivity eps are changed in the configuration of FIG. 7.
  • the vertical axis of FIG. 9 represents the maximum gain at each frequency.
  • the thickness t of the design portion 40 is 250 ⁇ m or less and the relative permittivity of the design portion 40 is less than 12, the radiation efficiency of the antenna conductor 120 in the frequency band of 27 to 28 GHz increases (see FIG. 8), and in that frequency band. The result was that the antenna gain of the above was improved (see FIG. 9).
  • Antenna conductor 120 Patch conductor with a thickness of 43 ⁇ m Flexible substrate 30 thickness: 200 ⁇ m Relative permittivity of the dielectric of the flexible substrate 30: 2.0 Thickness of ground conductor 22: 43 ⁇ m Transmission line 20: A microstrip line was used.
  • FIG. 10 is a cross-sectional view showing a fourth modified example of the antenna 100.
  • the description of the same configuration and effect as the above-mentioned antenna will be omitted or simplified by referring to the above-mentioned description.
  • the antenna 100D shown in FIG. 10 differs from the above-described configuration in that it includes a dielectric layer 43. At least one of the relative permittivity and the dielectric loss tangent of the dielectric layer 43 is smaller than that of the design portion 40, and is located between the design portion 40 and the antenna conductor 120. By providing such a dielectric layer 43, the radiation efficiency of the antenna conductor 120 can be increased, and the influence of the characteristic change of the design portion 40 on the radiation efficiency of the antenna conductor 120 can be suppressed.
  • a specific example of the dielectric layer 43 is polyimide.
  • a cover tape such as polyimide for the dielectric layer 43, the adhesion strength with the design portion 40 (particularly, the coating film) is improved by surface roughness.
  • the dielectric loss tangent at 28 GHz of the dielectric layer 43 is smaller than that of the design portion 40, the radiation loss in the antenna conductor 120 is suppressed, so that the decrease in the gain of the antenna can be suppressed.
  • the dielectric loss tangent at 28 GHz is an example of an index at a frequency in the gigahertz band. Therefore, if the dielectric loss tangent at 28 GHz is smaller than that of the design portion 40, the radiation loss in the antenna conductor 120 is suppressed even at 1 GHz to 100 GHz, for example. Therefore, the gain of the antenna can be improved not only in the vicinity of 28 GHz but also in 1 GHz to 100 GHz.
  • FIG. 11 is a diagram showing an example of a simulation result of the radiation efficiency S11 of the antenna conductor when the thickness t of the design portion and the relative permittivity eps are changed in the configuration of FIG.
  • the conditions for each part during the simulation in FIG. 11 are as follows. Thickness of dielectric layer 43: 63 ⁇ m Relative permittivity of dielectric layer 43: 3.6 Dielectric loss tangent of dielectric layer 43: 0.01 (@ 28 GHz) The conditions other than these were the same as in FIGS. 8 and 9.
  • FIG. 11 Compared with FIG. 8 (without the dielectric layer 43), according to FIG. 11 (with the dielectric layer 43), it was obtained that the radiation efficiency of the antenna conductor 120 was increased by providing the dielectric layer 43. Further, in the case of FIG. 11, it was obtained that the change in the radiation efficiency of the antenna conductor 120 was smaller than that in the case of FIG. 8 even if the thickness t or the relative permittivity of the design portion 40 changed. That is, the result was obtained that the influence of the change such as the characteristic variation of the design portion 40 on the radiation efficiency of the antenna conductor 120 can be suppressed.
  • the design portion 40 when the design portion 40 is a coating film, the design portion 40 of the coating film is provided on the portion of the flexible substrate 30 where the shield structure is formed, and the flexible substrate 30 is shielded.
  • the portion where the structure is not formed (dielectric of the flexible substrate 30) may be formed of a substantially transparent insulating member or a mesh-shaped insulating member.
  • the portion where the shield structure is not formed is, for example, a region from the end of the signal line 21 shown in FIG. 2 in the plus Y-axis direction to the end of the folded-back portion 31 in the plus Y-axis direction.
  • the design portion 40 when the design portion 40 is a coating film, the design portion 40 of the coating film is provided on the portion of the flexible substrate 30 where the shield structure is formed, and the flexible substrate 30 is shielded.
  • the antenna conductor 120 provided in the portion where the structure is not formed (the dielectric material of the flexible substrate 30) may be formed in a substantially transparent mesh shape.
  • the portion where the shield structure is not formed is, for example, a region from the end of the signal line 21 shown in FIG. 2 in the plus Y-axis direction to the end of the folded-back portion 31 in the plus Y-axis direction.
  • the antenna conductor 120 is provided on the flexible substrate 30 in the present embodiment, it may be provided on the rigid substrate instead of the flexible substrate 30. With this configuration, the thickness of the substrate can be increased, so that the same effect as in the case of providing the above-mentioned insulating member 80 can be obtained.
  • the RF module 60 is installed on the back side (inner side surface 1a2) of the housing 1a, but the antenna conductor 120 and the RF module 60 need only be separated.
  • the installation location of the RF module 60 is The outer surface 1a1 of the housing 1a may be used.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • Vehicle 1a Housing 1a1: Outer surface 1a2: Inner side surface 2: Indentation 2a, 2b: Bottom surface 3a, 3b: Adhesive layer 10: Flat surface part 11: Bending part 20: Transmission line 21: Signal line 22: Ground conductor 23 : Conductor pillar 30: Flexible substrate 31: Folded part 40: Design part 41: End part 42: End part 43: Dielectric layer 50: RF connector 60: RF module 70: Insulation member 100: Antenna 100A: Antenna 100B: Antenna 100C : Antenna 100D: Antenna 110: Feeding circuit 110A: Feeding circuit 110B: Feeding circuit 110C: Feeding circuit 120: Antenna conductor

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

An antenna provided with: a housing; an antenna conductor located on the front side of the housing; a flexible board on which the antenna conductor is provided; a transmission line so provided on the flexible board as to be connected to the antenna conductor and having a shield structure that shields against electromagnetic waves; and an aesthetically designed part provided, for the transmission line, on the opposite side to the housing side and covering at least a portion of the transmission line.

Description

アンテナantenna
 本発明は、アンテナに関する。 The present invention relates to an antenna.
 ロボット、自動車、列車などには種々の電波を送受するアンテナが搭載されることが知られている。特許文献1に示される車載用平面アンテナ装置は、アンテナ基板と、アンテナ基板の表面を保護するレドームと、アンテナ基板を車の筐体に固定するためのブラケットと、アンテナ基板に給電する給電ケーブルとを備える。アンテナ基板はレドームとブラケットにより挟み込まれることで車の筐体に設けられる。 It is known that robots, automobiles, trains, etc. are equipped with antennas that transmit and receive various radio waves. The in-vehicle flat antenna device shown in Patent Document 1 includes an antenna substrate, a radome that protects the surface of the antenna substrate, a bracket for fixing the antenna substrate to a car housing, and a power supply cable that supplies power to the antenna substrate. To be equipped with. The antenna board is provided in the car housing by being sandwiched between the radome and the bracket.
実開平5-55607号公報Jikkenhei No. 5-55607
 しかしながら、特許文献1に示される従来技術では、アンテナ基板に繋がる給電ケーブルが目隠しされていないため、筐体表面の見栄えを低下させる要因になるという課題があった。 However, in the conventional technique shown in Patent Document 1, since the power supply cable connected to the antenna substrate is not blindfolded, there is a problem that the appearance of the housing surface is deteriorated.
 そこで、本開示は、筐体表面の見栄えの低下を抑制可能なアンテナを提供する。 Therefore, the present disclosure provides an antenna capable of suppressing deterioration of the appearance of the housing surface.
 本開示は、筐体と、前記筐体の表側にあるアンテナ導体と、前記アンテナ導体が設けられたフレキシブル基板と、前記アンテナ導体に接続されるように前記フレキシブル基板に設けられ、電磁波を遮蔽するシールド構造を有する伝送線路と、前記伝送線路に対して前記筐体側とは反対側に設けられ、少なくとも前記伝送線路の一部を覆い隠す意匠部と、を備えるアンテナを提供する。 The present disclosure is provided on a housing, an antenna conductor on the front side of the housing, a flexible substrate provided with the antenna conductor, and the flexible substrate so as to be connected to the antenna conductor, and shields electromagnetic waves. Provided is an antenna including a transmission line having a shield structure and a design portion provided on the side of the transmission line opposite to the housing side and covering at least a part of the transmission line.
 本開示の技術によれば、筐体表面の見栄えの低下を抑制可能なアンテナを提供できる。 According to the technology of the present disclosure, it is possible to provide an antenna capable of suppressing deterioration of the appearance of the housing surface.
本発明の実施の形態に係るアンテナ100を備えた車両1の外観図である。It is an external view of the vehicle 1 provided with the antenna 100 which concerns on embodiment of this invention. 図1の図II-II矢視断面図である。FIG. 2 is a cross-sectional view taken along the arrow II-II of FIG. 図2の図III-III矢視断面図である。FIG. 3 is a cross-sectional view taken along the line III-III of FIG. アンテナ100の第1変形例を示す図である。It is a figure which shows the 1st modification of the antenna 100. アンテナ100の第2変形例を示す図である。It is a figure which shows the 2nd modification of the antenna 100. アンテナ100の第3変形例を示す図である。It is a figure which shows the 3rd modification of the antenna 100. アンテナのシミュレーション時の構成を示す断面図である。It is sectional drawing which shows the structure at the time of simulation of an antenna. 図7の構成において、意匠部の厚さと比誘電率を変化させたときのアンテナ導体の放射効率のシミュレーション結果の一例を示す図である。FIG. 7 is a diagram showing an example of a simulation result of the radiation efficiency of the antenna conductor when the thickness of the design portion and the relative permittivity are changed in the configuration of FIG. 7. 図7の構成において、意匠部の厚さと比誘電率を変化させたときのアンテナ導体の利得のシミュレーション結果の一例を示す図である。FIG. 7 is a diagram showing an example of a simulation result of a gain of an antenna conductor when the thickness of the design portion and the relative permittivity are changed in the configuration of FIG. 7. アンテナ100の第4変形例を示す断面図である。It is sectional drawing which shows the 4th modification of the antenna 100. 図10の構成において、意匠部の厚さと比誘電率を変化させたときのアンテナ導体の放射効率のシミュレーション結果の一例を示す図である。FIG. 10 is a diagram showing an example of a simulation result of the radiation efficiency of the antenna conductor when the thickness of the design portion and the relative permittivity are changed in the configuration of FIG. 10.
 以下、図面を参照して、本開示に係る実施形態について説明する。なお、平行、直角、直交、水平、垂直、上下、左右などの方向には、例えばアンテナが設置される筐体が曲面で構成されている場合など、本発明の効果を損なわない程度のずれが許容される。また、X軸方向、Y軸方向、Z軸方向は、それぞれ、X軸に平行な方向、Y軸に平行な方向、Z軸に平行な方向を表す。X軸方向とY軸方向とZ軸方向は、互いに直交する。XY平面、YZ平面、ZX平面は、それぞれ、X軸方向及びY軸方向に平行な仮想平面、Y軸方向及びZ軸方向に平行な仮想平面、Z軸方向及びX軸方向に平行な仮想平面を表す。 Hereinafter, embodiments according to the present disclosure will be described with reference to the drawings. In the directions such as parallel, right angle, orthogonal, horizontal, vertical, up and down, left and right, there is a deviation that does not impair the effect of the present invention, for example, when the housing in which the antenna is installed is composed of a curved surface. Permissible. Further, the X-axis direction, the Y-axis direction, and the Z-axis direction represent a direction parallel to the X-axis, a direction parallel to the Y-axis, and a direction parallel to the Z-axis, respectively. The X-axis direction, the Y-axis direction, and the Z-axis direction are orthogonal to each other. The XY plane, YZ plane, and ZX plane are a virtual plane parallel to the X-axis direction and the Y-axis direction, a virtual plane parallel to the Y-axis direction and the Z-axis direction, and a virtual plane parallel to the Z-axis direction and the X-axis direction, respectively. Represents.
 本開示の一実施形態に給電回路及びアンテナは、マイクロ波やミリ波等の高周波帯(例えば、1GHz超~300GHz)の電波の送受に好適である。本開示の一実施形態における給電回路及びアンテナは、例えば、V2X通信システム、第5世代移動通信システム(いわゆる、5G)、車載レーダーシステムなどに適用可能であるが、適用可能なシステムはこれらに限られない。周波数域としては、例えばITS(Intelligent Transport Systems:高度道路交通システム)(5.89GHz)用や、5G(3.6から6GHz帯)用、Wi-Fi(28GHz帯、2.4GHz、5GHz、39GHz帯)用であってよい。 In one embodiment of the present disclosure, the power feeding circuit and the antenna are suitable for transmitting and receiving radio waves in a high frequency band (for example, over 1 GHz to 300 GHz) such as microwaves and millimeter waves. The feeding circuit and antenna in one embodiment of the present disclosure can be applied to, for example, a V2X communication system, a fifth generation mobile communication system (so-called 5G), an in-vehicle radar system, and the like, but the applicable system is limited to these. I can't. The frequency range includes, for example, ITS (Intelligent Transport Systems) (5.89 GHz), 5 G (3.6 to 6 GHz band), Wi-Fi (28 GHz band, 2.4 GHz, 5 GHz, 39 GHz band). It may be for obi).
 図1は、本発明の実施の形態に係る給電回路を含むアンテナ100を備えた車両1の外観図である。車両1は、例えば列車の先頭車両、後尾車両、中間車両などである。車両1の筐体1aにはアンテナ100が設けられている。なお、実施の形態に係るアンテナ100は、列車以外にも、自動車、建築物、ロボット、航空機などにも利用可能である。筐体1aは、例えば車両1の外郭を構成するパネルに限定されず、後述するアンテナ導体120を設置可能な箇所であればよい。筐体1aには、例えば自動車のフロントガラス、自動車のリアガラス、自動車、航空機、自動車等の内張、建築物の窓ガラス、ロボットの外郭を構成するフレームなども含まれる。 FIG. 1 is an external view of a vehicle 1 provided with an antenna 100 including a power feeding circuit according to an embodiment of the present invention. The vehicle 1 is, for example, a leading vehicle, a trailing vehicle, an intermediate vehicle, or the like of a train. The antenna 100 is provided in the housing 1a of the vehicle 1. The antenna 100 according to the embodiment can be used not only for trains but also for automobiles, buildings, robots, aircraft, and the like. The housing 1a is not limited to, for example, the panel constituting the outer shell of the vehicle 1, and may be any place where the antenna conductor 120 described later can be installed. The housing 1a also includes, for example, a windshield of an automobile, a rear glass of an automobile, a lining of an automobile, an aircraft, an automobile, a window glass of a building, a frame constituting an outer shell of a robot, and the like.
 また、筐体1aがビルの窓ガラス(第1筐体)である場合、例えば、ビルの窓ガラスの室内側(表側(おもてがわ))にアンテナ導体120が設けられ、後述するRFモジュール60はビルの室内の天井部(第2筐体)の裏側に設けられる。そして、後述するフレキシブル基板30にアンテナ導体120と後述する給電回路110が一体で設けられており、給電回路110によってアンテナ導体120がRFモジュール60に接続される。 When the housing 1a is the window glass of the building (first housing), for example, the antenna conductor 120 is provided on the indoor side (front side (front side)) of the window glass of the building, and RF described later. The module 60 is provided on the back side of the ceiling portion (second housing) in the interior of the building. Then, the antenna conductor 120 and the feeding circuit 110 described later are integrally provided on the flexible substrate 30 described later, and the antenna conductor 120 is connected to the RF module 60 by the feeding circuit 110.
 また、筐体1aが自動車のフロントガラス(第1筐体)である場合、アンテナ導体120は、フロントガラスの内側に挟み込まれているか、フロントガラスの表面の表側に設けられる。そして、RFモジュール60は自動車のルームミラー(第2筐体)の取り付け部に設置され、フレキシブル基板30にアンテナ導体120と給電回路110が一体で設けられており、給電回路110によってアンテナ導体120がRFモジュール60に接続される。 Further, when the housing 1a is the windshield of an automobile (first housing), the antenna conductor 120 is sandwiched inside the windshield or provided on the front side of the surface of the windshield. The RF module 60 is installed in the mounting portion of the rear mirror (second housing) of the automobile, and the antenna conductor 120 and the feeding circuit 110 are integrally provided on the flexible substrate 30, and the antenna conductor 120 is provided by the feeding circuit 110. It is connected to the RF module 60.
 また、筐体1aがロボットのボディである場合、アンテナ導体120はロボットのボディの表面の表側に設けられ、RFモジュール60はロボットのボディの裏側に設置される。フレキシブル基板30にアンテナ導体120と給電回路110が一体で設けられており、給電回路110によってアンテナ導体120がRFモジュール60に接続される。 When the housing 1a is the body of the robot, the antenna conductor 120 is provided on the front side of the surface of the body of the robot, and the RF module 60 is installed on the back side of the body of the robot. The flexible substrate 30 is integrally provided with the antenna conductor 120 and the feeding circuit 110, and the antenna conductor 120 is connected to the RF module 60 by the feeding circuit 110.
 また、筐体1aが無線装置の筐体である場合、アンテナ導体120は筐体の表面の表側に設けられ、RFモジュール60は筐体の裏側に設置される。無線装置の具体例として、情報端末機、携帯電話、スマートフォン、パソコン、ゲーム機、テレビ、音楽や映像のプレーヤーなどの電子機器が挙げられる。 When the housing 1a is the housing of the wireless device, the antenna conductor 120 is provided on the front side of the surface of the housing, and the RF module 60 is installed on the back side of the housing. Specific examples of wireless devices include electronic devices such as information terminals, mobile phones, smartphones, personal computers, game consoles, televisions, and music and video players.
 なお、筐体(きょうたい)とは、何らかの機能を有する機械や電気機器などを中に収めた部材をいい、形状は箱型に限らず、板状、平面状や曲面状のものも含む。 The housing is a member that contains a machine or electrical device that has some function, and the shape is not limited to the box shape, but also includes plate-shaped, flat-shaped, and curved-shaped ones.
 図2は図1の図II-II矢視断面図、図3は図2の図III-III矢視断面図である。アンテナ100は、筐体1a、給電回路110、アンテナ導体120、RFコネクタ50、及びRFモジュール60を備える。 FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1, and FIG. 3 is a cross-sectional view taken along the line III-III of FIG. The antenna 100 includes a housing 1a, a feeding circuit 110, an antenna conductor 120, an RF connector 50, and an RF module 60.
 給電回路110は、筐体1aの外側面1a1から筐体1aの内側面1a2に渡って設けられるフレキシブル基板30と、アンテナ導体120に接続されるようにフレキシブル基板30に設けられ、電磁波を遮蔽するシールド構造を有する伝送線路20とを備える。また、給電回路110は、少なくとも伝送線路20の一部を覆い隠すように伝送線路20の筐体1a側とは反対側(筐体1aの外側)に設けられる意匠部40をさらに備える。 The power feeding circuit 110 is provided on the flexible substrate 30 provided from the outer surface 1a1 of the housing 1a to the inner side surface 1a2 of the housing 1a, and is provided on the flexible substrate 30 so as to be connected to the antenna conductor 120 to shield electromagnetic waves. A transmission line 20 having a shield structure is provided. Further, the power feeding circuit 110 further includes a design portion 40 provided on the side opposite to the housing 1a side of the transmission line 20 (outside the housing 1a) so as to cover at least a part of the transmission line 20.
 筐体1aは、自動車、建築物、ロボット、航空機などの通信移動体において、何らかの機能を有する機器などを収めた容器・ハウジングであって、平面形状であっても曲面形状であってもよい。筐体1aは、外側面1a1と内側面1a2とを物理的につなげるような屈曲部11(具体的には、筐体1aにおける端面部や穴部)を有する。 The housing 1a is a container / housing containing equipment having some function in a communication mobile body such as an automobile, a building, a robot, or an aircraft, and may have a flat shape or a curved shape. The housing 1a has a bent portion 11 (specifically, an end face portion or a hole portion in the housing 1a) that physically connects the outer surface 1a1 and the inner side surface 1a2.
 フレキシブル基板30は、筐体1aの曲面部に沿うように曲げることが可能な柔軟性を有し、弱い力で繰り返し変形させることが可能であり、変形した場合にもその電気的特性を維持する特性をもつ単相両面基板である。フレキシブル基板は、筐体1aの曲面部に隙間なく設けられることが好ましい。 The flexible substrate 30 has flexibility that can be bent along the curved surface portion of the housing 1a, can be repeatedly deformed with a weak force, and maintains its electrical characteristics even when deformed. It is a single-phase double-sided substrate with characteristics. The flexible substrate is preferably provided on the curved surface portion of the housing 1a without any gap.
 フレキシブル基板30は、例えば、厚み12μmから50μmの薄膜状の誘電体(ベースフィルム)の上下面に、厚みが12μm~50μmの導体箔が張り合わされた構造である。誘電体には、ソルダーレジスト(レジスト/フォトレジスト)、カバーレイ(Coverlay)と呼ばれる材料で、ポリイミド、ポリエステルなどが使用される。導体箔には、例えば、金、銀、銅、アルミニウム、白金、クロムなどが用いられる。フレキシブル基板30は、一般的なリジッド基板(総厚300μm~1,600μm)と比較して薄く、加工性に優れるため、複雑な形状加工が可能である。 The flexible substrate 30 has a structure in which, for example, a conductor foil having a thickness of 12 μm to 50 μm is laminated on the upper and lower surfaces of a thin-film dielectric (base film) having a thickness of 12 μm to 50 μm. As the dielectric, a material called solder resist (resist / photoresist) or coverlay (Coverley), polyimide, polyester or the like is used. For the conductor foil, for example, gold, silver, copper, aluminum, platinum, chromium and the like are used. Since the flexible substrate 30 is thinner than a general rigid substrate (total thickness 300 μm to 1,600 μm) and has excellent workability, it is possible to process a complicated shape.
 フレキシブル基板30の誘電体は、可視光を透過する透明な誘電体部材が好ましい。「透明」には、半透明が含まれる。誘電体が透明であり、導体(アンテナ導体120、信号線21、接地導体22)が細いメッシュ状になることで、可視光領域にてほぼ透明になり、意匠部40で覆わなくとも筐体1aを目視できるようになる。 The dielectric of the flexible substrate 30 is preferably a transparent dielectric member that transmits visible light. "Transparent" includes translucent. Since the dielectric is transparent and the conductors (antenna conductor 120, signal line 21, ground conductor 22) are in the form of a thin mesh, it becomes almost transparent in the visible light region, and the housing 1a is not covered by the design portion 40. Will be visible.
 フレキシブル基板30の誘電体の可視光線透過率は、フレキシブル基板30越しの視野の遮りを抑える点で、例えば、30%以上が好ましく、40%以上がより好ましく、50%以上がさらに好ましく、60%以上がよりさらに好ましく、80%以上が特に好ましい。また、上限は特に限定されないが、99%以下であってよく、95%以下であってよい。ここで、可視光透過率は、分光光度計により測定された分光透過率の値に、日本工業規格(JIS R3106(1998))により規定された重価係数を乗じて加重平均した値である。 The visible light transmittance of the dielectric of the flexible substrate 30 is preferably, for example, 30% or more, more preferably 40% or more, further preferably 50% or more, still more preferably 60%, in terms of suppressing obstruction of the field of view through the flexible substrate 30. The above is even more preferable, and 80% or more is particularly preferable. The upper limit is not particularly limited, but may be 99% or less, and may be 95% or less. Here, the visible light transmittance is a weighted average value obtained by multiplying the value of the spectral transmittance measured by the spectrophotometer by the weight coefficient defined by the Japanese Industrial Standards (JIS R3106 (1998)).
 フレキシブル基板30の誘電体は、例えば28GHzにおける誘電正接(いわゆる、tanδ)が0.01以下である。なお、28GHzにおける誘電正接は、GHz帯の周波数における指標の例である。そのため、28GHzにおける誘電正接が0.01以下であれば、例えば、1GHz~100GHzにおいても伝送線路20の伝送損失が抑制されるので、28GHz近傍に限らず、1GHz~100GHzにおける平面アンテナ(この例では、アンテナ導体120)のアンテナ利得を向上できる。フレキシブル基板30の誘電体は、伝送線路20の伝送損失(ひいては、アンテナ利得の低下)を抑制する点で、0.005以下が好ましく、0.004以下がより好ましく、0.003以下がさらに好ましく、0.002以下がさらに好ましく、0.001以下が特に好ましい。フレキシブル基板30の誘電体の28GHzにおける誘電正接は、0よりも大きければよく、例えば、0.00001以上でもよく、0.0005以上でもよく、0.001以上でもよい。 The dielectric of the flexible substrate 30 has a dielectric loss tangent (so-called tan δ) of 0.01 or less, for example, at 28 GHz. The dielectric loss tangent at 28 GHz is an example of an index at a frequency in the GHz band. Therefore, if the dielectric tangent at 28 GHz is 0.01 or less, the transmission loss of the transmission line 20 is suppressed even at 1 GHz to 100 GHz, for example, so that the plane antenna is not limited to the vicinity of 28 GHz but is a planar antenna at 1 GHz to 100 GHz (in this example). , The antenna gain of the antenna conductor 120) can be improved. The dielectric of the flexible substrate 30 is preferably 0.005 or less, more preferably 0.004 or less, still more preferably 0.003 or less, in terms of suppressing transmission loss (and thus a decrease in antenna gain) of the transmission line 20. , 0.002 or less is more preferable, and 0.001 or less is particularly preferable. The dielectric loss tangent of the dielectric of the flexible substrate 30 at 28 GHz may be greater than 0, for example, 0.00001 or more, 0.0005 or more, or 0.001 or more.
 なお、誘電正接(tanδ)は、25℃、28GHzで、日本工業規格(JIS R 1641:2007)に規定されている方法により、空洞共振器及びベクトルネットワークアナライザを用いて測定された値である。 The dielectric loss tangent (tan δ) is a value measured at 25 ° C. and 28 GHz using a cavity resonator and a vector network analyzer by a method specified in Japanese Industrial Standards (JIS R 1641: 2007).
 フレキシブル基板30は、筐体1aの外側面1a1において筐体1aの平面部10から屈曲部11まで延伸し、さらに屈曲部11の端部で折り返されて、筐体1aの内側面1a2に向かって延伸する。筐体1aの内側面1a2に延伸したフレキシブル基板30にはRFコネクタ50が接続される。RFコネクタ50は、例えば筐体1aの内側面1a2に設けられるRFモジュール60に接続される。RFコネクタ50及びRFモジュール60が筐体1aの内側に設けられることで、RFコネクタ50及びRFモジュール60が筐体1aで目隠しされるため、アンテナ100の意匠性が向上する。 The flexible substrate 30 extends from the flat surface portion 10 of the housing 1a to the bent portion 11 on the outer surface 1a1 of the housing 1a, and is further folded back at the end portion of the bent portion 11 toward the inner side surface 1a2 of the housing 1a. Stretch. The RF connector 50 is connected to the flexible substrate 30 extending to the inner side surface 1a2 of the housing 1a. The RF connector 50 is connected to, for example, an RF module 60 provided on the inner side surface 1a2 of the housing 1a. By providing the RF connector 50 and the RF module 60 inside the housing 1a, the RF connector 50 and the RF module 60 are blindfolded by the housing 1a, so that the design of the antenna 100 is improved.
 フレキシブル基板30が筐体1aの曲面に沿って設けられることで、曲面を有する筐体1aにおいても、筐体1aの曲率が変化する部分と平行に伝送線路20を構築できる。そのため、アンテナ100の設計の自由度が向上すると共に、伝送線路20が筐体1aから浮き上がるように見えることがなくなり、意匠性が向上する。なお、フレキシブル基板30は、曲面を有さない筐体1aに設けてもよい。フレキシブル基板30が曲面を有さない筐体1aに設けられた場合でも、筐体1aの外側面1a1から内側面1a2に向かって折り返すようにしてフレキシブル基板30を設けることができるため、筐体1aの内側面1a2に設けられるRFモジュール60への接続が容易化され、意匠性が向上すると共にアンテナ100の設計の自由度が向上する。 By providing the flexible substrate 30 along the curved surface of the housing 1a, the transmission line 20 can be constructed in parallel with the portion where the curvature of the housing 1a changes even in the housing 1a having a curved surface. Therefore, the degree of freedom in designing the antenna 100 is improved, and the transmission line 20 does not appear to float from the housing 1a, so that the design is improved. The flexible substrate 30 may be provided in the housing 1a having no curved surface. Even when the flexible substrate 30 is provided in the housing 1a having no curved surface, the flexible substrate 30 can be provided so as to be folded back from the outer surface 1a1 of the housing 1a toward the inner side surface 1a2. The connection to the RF module 60 provided on the inner side surface 1a2 of the antenna 100 is facilitated, the design is improved, and the degree of freedom in designing the antenna 100 is improved.
 アンテナ導体120は、例えば、フレキシブル基板30の折り返し部31に設けられる。フレキシブル基板30の折り返し部31は、シート状のフレキシブル基板30の誘電体の端部が折り返されることでZ軸方向の厚みが増加している部分である。アンテナ導体120は、フレキシブル基板30の折り返し部31を介して、筐体1aの外側に設けられる。フレキシブル基板30に折り返し部31を設けることで、例えば、接地導体22とアンテナ導体120との間に絶縁性のワッシャなどを設けなくとも、伝送線路20の接地導体22からアンテナ導体120までの距離を広げることができる。これにより、アンテナ導体120の利得を向上させることができると共に、アンテナ100の構造が簡素化されアンテナ100の信頼性が向上する。 The antenna conductor 120 is provided, for example, in the folded portion 31 of the flexible substrate 30. The folded-back portion 31 of the flexible substrate 30 is a portion where the thickness in the Z-axis direction is increased by folding back the end portion of the dielectric of the sheet-shaped flexible substrate 30. The antenna conductor 120 is provided on the outside of the housing 1a via the folded-back portion 31 of the flexible substrate 30. By providing the folded portion 31 on the flexible substrate 30, for example, the distance from the ground conductor 22 of the transmission line 20 to the antenna conductor 120 can be increased without providing an insulating washer or the like between the ground conductor 22 and the antenna conductor 120. Can be expanded. As a result, the gain of the antenna conductor 120 can be improved, the structure of the antenna 100 is simplified, and the reliability of the antenna 100 is improved.
 アンテナ導体120は、パッチアンテナ等の平面アンテナでもよいし、基板一体型導波路による導波管スロットアンテナでもよい。図2に示す形態では、アンテナ導体120は、その表面がXY平面に平行な導体パターンである。アンテナ導体120は、フレキシブル基板30に形成される導体パターンでもよいし、予め製造された後にフレキシブル基板30に配置される導体シート、導体基板などでもよい。アンテナ導体120には、例えば、金、銀、銅、アルミニウム、白金、クロムなどが用いられる。 The antenna conductor 120 may be a flat antenna such as a patch antenna, or a waveguide slot antenna using a substrate-integrated waveguide. In the form shown in FIG. 2, the antenna conductor 120 has a conductor pattern whose surface is parallel to the XY plane. The antenna conductor 120 may be a conductor pattern formed on the flexible substrate 30, a conductor sheet, a conductor substrate, or the like which is manufactured in advance and then arranged on the flexible substrate 30. For the antenna conductor 120, for example, gold, silver, copper, aluminum, platinum, chromium, or the like is used.
 図3における伝送線路20は、例えば磁気を遮蔽するシールド構造を有する基板一体型導波路(Substrate Integrated Waveguide:SIW)であることが好ましい。SIWは、基板内蔵導波路、ポスト壁導波路と称する場合もある。SIWは、図3に示すとおり、フレキシブル基板30の誘電体と、2つの導体層(後述)と、複数の導体柱23とによって構成され、導波管モードで信号を伝達する導波路である。2つの導体層は、フレキシブル基板30の誘電体に形成される導体パターン(接地導体22)である。導体柱23は、2つの導体層を電気的に接続する中実又は中空の柱状導電体である。導体柱23は、SIW中を伝搬する高周波信号が外部に漏洩しない間隔で複数配列されている。 The transmission line 20 in FIG. 3 is preferably, for example, a substrate-integrated waveguide (SIW) having a shield structure that shields magnetism. SIW may also be referred to as a substrate built-in waveguide or a post-wall waveguide. As shown in FIG. 3, the SIW is a waveguide that is composed of a dielectric of a flexible substrate 30, two conductor layers (described later), and a plurality of conductor columns 23, and transmits a signal in a waveguide mode. The two conductor layers are a conductor pattern (ground conductor 22) formed on the dielectric of the flexible substrate 30. The conductor column 23 is a solid or hollow columnar conductor that electrically connects the two conductor layers. A plurality of conductor columns 23 are arranged at intervals so that high-frequency signals propagating in SIW do not leak to the outside.
 接地導体22には、例えば、金、銀、銅、アルミニウム、白金、クロムなどが用いられる。接地導体22の厚さは、0.09μm以上が好ましく、0.35μm以上がより好ましい。また、接地導体22の厚さは、110μm以下が好ましい。接地導体22の厚さが上記範囲内であれば、アンテナ導体120のアンテナ利得を高めることができる。 For the ground conductor 22, for example, gold, silver, copper, aluminum, platinum, chromium, or the like is used. The thickness of the ground conductor 22 is preferably 0.09 μm or more, more preferably 0.35 μm or more. The thickness of the ground conductor 22 is preferably 110 μm or less. When the thickness of the ground conductor 22 is within the above range, the antenna gain of the antenna conductor 120 can be increased.
 図2に示す信号線21は、伝送線路20の誘電体に接続される導体パターンである。信号線21の一端(プラスY軸方向の端部)は、アンテナ導体120と接地導体22との間の領域(折り返し部31において誘電体が重なる部分)に設けられる。信号線21は、例えばアンテナ導体120と非接触で電気的に接続される。信号線21には、例えば、金、銀、銅、アルミニウム、白金、クロムなどが用いられる。信号線21の厚さは、0.09μm以上が好ましく、0.35μm以上がより好ましい。また、信号線21の厚さは、110μm以下が好ましい。 The signal line 21 shown in FIG. 2 is a conductor pattern connected to the dielectric of the transmission line 20. One end (the end in the plus Y-axis direction) of the signal line 21 is provided in a region between the antenna conductor 120 and the ground conductor 22 (a portion where the dielectric overlaps in the folded portion 31). The signal line 21 is electrically connected to, for example, the antenna conductor 120 in a non-contact manner. For the signal line 21, for example, gold, silver, copper, aluminum, platinum, chromium and the like are used. The thickness of the signal line 21 is preferably 0.09 μm or more, more preferably 0.35 μm or more. The thickness of the signal line 21 is preferably 110 μm or less.
 なお、伝送線路20は、SIW以外の伝送線路でもよい。伝送線路20の他の例として、柔軟性のあるストリップ線路、マイクロストリップ線路などがある。 The transmission line 20 may be a transmission line other than SIW. Other examples of the transmission line 20 include flexible strip lines, microstrip lines, and the like.
 意匠部40は、アンテナ導体120及び伝送線路20を覆う目隠しとして機能する。本構成例では、意匠部40のプラスY軸方向側の端部41が、例えば筐体1aの外側面1a1の内、フレキシブル基板30の折り返し部31のプラスY軸方向の端部付近に接している。そして、意匠部40の端部41とは反対側の端部42が、例えば筐体1aの屈曲部11の端部付近まで伸びている。 The design unit 40 functions as a blindfold that covers the antenna conductor 120 and the transmission line 20. In this configuration example, the end 41 on the plus Y-axis direction of the design portion 40 is in contact with, for example, the outer surface 1a1 of the housing 1a near the end of the folded-back portion 31 of the flexible substrate 30 in the plus Y-axis direction. There is. Then, the end portion 42 on the side opposite to the end portion 41 of the design portion 40 extends to, for example, the vicinity of the end portion of the bent portion 11 of the housing 1a.
 伝送線路20の全体の内、折り返し部分20aから筐体1aの内側に伸びる部分は、当該部分には、意匠部40が設けられていない。当該部分は、筐体1aをプラスZ軸方向から平面視したときに目視し難いためである。この構成により、当該部分を意匠部40で覆わなくとも、アンテナ導体120及び伝送線路20の意匠性を向上させることができる。また、意匠部40を設ける領域を小さくできるため、アンテナ100の製造コストの増加を抑制できる。 Of the entire transmission line 20, the portion extending from the folded portion 20a to the inside of the housing 1a is not provided with the design portion 40. This is because it is difficult to see this portion when the housing 1a is viewed in a plan view from the plus Z axis direction. With this configuration, the design of the antenna conductor 120 and the transmission line 20 can be improved without covering the portion with the design portion 40. Further, since the area where the design portion 40 is provided can be reduced, an increase in the manufacturing cost of the antenna 100 can be suppressed.
 なお、本構成例では、意匠部40がアンテナ導体120及び伝送線路20の双方を覆っているが、意匠部40は、少なくとも伝送線路20の一部を覆い隠す形状であればよい。伝送線路20の一部は、例えば、フレキシブル基板30の折り返し部31と信号線21との境界部から、伝送線路20の折り返し部分20a(筐体1aの屈曲部11の端部付近)までの領域である。この構成により、伝送線路20の一部が意匠部40で覆い隠され、筐体1aの外観の見栄えが低下することを抑制できる。 In this configuration example, the design unit 40 covers both the antenna conductor 120 and the transmission line 20, but the design unit 40 may have a shape that covers at least a part of the transmission line 20. A part of the transmission line 20 is, for example, a region from the boundary between the folded portion 31 of the flexible substrate 30 and the signal line 21 to the folded portion 20a of the transmission line 20 (near the end of the bent portion 11 of the housing 1a). Is. With this configuration, it is possible to prevent a part of the transmission line 20 from being covered by the design portion 40 and the appearance of the housing 1a from being deteriorated.
 意匠部40は、例えば、筐体の曲面に沿って曲げることができる柔軟性、電波透過性、耐防水性、耐衝撃性などを併せ持つ材料で構成されるシート部材、塗装膜などである。 The design portion 40 is, for example, a sheet member, a coating film, or the like made of a material having flexibility, radio wave transmission, waterproof resistance, impact resistance, etc. that can be bent along the curved surface of the housing.
 意匠部40がシート部材の場合、意匠部は、表面(おもてめん)すなわち伝送線路20側とは反対側に設けられる透明樹脂層と、裏面(伝送線路20側の面)に設けられる基材層とを備える。透明樹脂層は、耐久性に優れ、高い透明性を有するアクリル樹脂によって構成される、基材層は、アクリロニトル-エチレン-スチレン樹脂(AES樹脂)によって構成される。なお、基材層は、AES樹脂以外の樹脂、例えばABS樹脂、ポリカーボネート樹脂、ポリ塩化ビニルなどでもよい。 When the design portion 40 is a sheet member, the design portion has a transparent resin layer provided on the front surface (front side), that is, a side opposite to the transmission line 20 side, and a base provided on the back surface (the surface on the transmission line 20 side). It has a material layer. The transparent resin layer is made of an acrylic resin having excellent durability and high transparency, and the base material layer is made of acrylonitrile-ethylene-styrene resin (AES resin). The base material layer may be a resin other than the AES resin, for example, ABS resin, polycarbonate resin, polyvinyl chloride, or the like.
 意匠部40の厚さは、0.25λg以下、0.15λg以下、さらには0.05λg以下であることが電波透過性の点で好ましい。λgとは、実効波長であり、λ/√εによって計算される(λ:使用周波数における波長、ε:意匠部40の非誘電率)。 The thickness of the design portion 40 is preferably 0.25λg or less, 0.15λg or less, and further preferably 0.05λg or less from the viewpoint of radio wave transmission. λg is an effective wavelength and is calculated by λ / √ε (λ: wavelength at the frequency used, ε: non-dielectric constant of the design portion 40).
 AES樹脂は、基本的特性がABS樹脂と同等であり、ゴム成分を特殊エチレンプロピレンゴムとすることで、ABS樹脂より光劣化に対して良好な安定性があり、長期屋外使用が可能である。またAES樹脂は、成形加工性にすぐれ、任意な着色が可能である。そのため、AES樹脂は、例えば屋外で利用される自動車、列車などに設置される意匠部40に好適な材料である。 AES resin has the same basic characteristics as ABS resin, and by using special ethylene propylene rubber as the rubber component, it has better stability against photodegradation than ABS resin and can be used outdoors for a long period of time. Further, the AES resin has excellent molding processability and can be arbitrarily colored. Therefore, the AES resin is a suitable material for the design unit 40 installed in, for example, an automobile or a train used outdoors.
 ABS樹脂は汎用性の高い樹脂であり、柔軟性があり、丈夫で加工がしやすく、AES樹脂と同様に任意な着色が可能である。その反面、ABS樹脂は、耐候性(工業製品が太陽光、温度、湿度、雨などの屋外環境に耐えられる性質)が低いため、例えば屋内で利用されるロボットの筐体などに設置される意匠部40に好適な材料である。 ABS resin is a highly versatile resin, flexible, durable and easy to process, and can be colored arbitrarily like AES resin. On the other hand, ABS resin has low weather resistance (the property that industrial products can withstand outdoor environments such as sunlight, temperature, humidity, and rain), so it is designed to be installed in the housing of robots used indoors, for example. It is a material suitable for the part 40.
 ポリカーボネート樹脂は、任意な着色が可能であり、また高い透明性、自己消火性、耐衝撃性を併せ持つプラスチックである。また、ポリカーボネート樹脂は耐候性が高いため、例えば屋外で利用される自動車、列車などに設置される意匠部40に好適な材料である。 Polycarbonate resin is a plastic that can be colored arbitrarily and has high transparency, self-extinguishing properties, and impact resistance. Further, since the polycarbonate resin has high weather resistance, it is a suitable material for the design unit 40 installed in, for example, an automobile or a train used outdoors.
 ポリ塩化ビニルは、安価で加工性に優れる反面、絶縁性を有するため、伝送線路20の一部を覆う形状の意匠部40を安価に製造できる材料として好適である。 Polyvinyl chloride is inexpensive and has excellent workability, but has insulating properties, so that it is suitable as a material that can inexpensively manufacture a design portion 40 having a shape that covers a part of a transmission line 20.
 意匠部40が塗装膜の場合、例えば電波透過性を有する塗料が用いられる。塗料としては、特に限定はされないが、アクリル系塗料、ウレタン系塗料、エポキシ系塗料、ポリエステル系塗料等を例示できる。塗装方法としては、特に限定はされないが、エアースプレー塗装、エアーレススプレー塗装、浸漬塗装、シャワーコート塗装、ロールコーター塗装等を例示できる。 When the design portion 40 is a coating film, for example, a paint having radio wave transmission is used. The paint is not particularly limited, and examples thereof include acrylic paint, urethane paint, epoxy paint, and polyester paint. The coating method is not particularly limited, and examples thereof include air spray coating, airless spray coating, immersion coating, shower coat coating, and roll coater coating.
 意匠部40がシート状の部材である場合、予め製造した意匠部40を伝送線路20などに張り付けるだけでアンテナ100が完成するため、アンテナ100の組み立て時間を短縮でき、アンテナ100の大量生産が可能になる。また、シート状にすることで、フレキシブル基板30の折り返し部31と信号線21との境界部や、フレキシブル基板30の折り返し部31と筐体1aとの境界部などに、段差部が生じても、シート状の意匠部40がその段差部を目立たなくすることができる。従って意匠性をより向上させることができる。またシート状にすることで、意匠部40の取り外しが容易になるため、アンテナ導体120、伝送線路20などのメンテナンスが向上する。 When the design unit 40 is a sheet-shaped member, the antenna 100 is completed simply by attaching the pre-manufactured design unit 40 to the transmission line 20 or the like, so that the assembly time of the antenna 100 can be shortened and the antenna 100 can be mass-produced. It will be possible. Further, by forming the sheet shape, even if a step portion is generated at the boundary portion between the folded portion 31 of the flexible substrate 30 and the signal line 21 or the boundary portion between the folded portion 31 of the flexible substrate 30 and the housing 1a. , The sheet-shaped design portion 40 can make the step portion inconspicuous. Therefore, the design can be further improved. Further, since the design portion 40 can be easily removed by forming the sheet shape, the maintenance of the antenna conductor 120, the transmission line 20, and the like is improved.
 また、意匠部40がシート状の部材の場合、フレキシブル基板30の少なくとも一部がシート状の意匠部40により覆われるようにして筐体1aに固定されている構成としてもよい。この構成により、フレキシブル基板30を筐体1aに接着などにより固定する工程を省いても、フレキシブル基板30を筐体1aへ固定できる。従って、フレキシブル基板30を筐体1aに接着するために接着剤などを塗布する作業を省くことができ、アンテナ100の製造時間を短縮できる。なお、アンテナ導体120が設けられる筐体(第1筐体)と、RFモジュール60が設けられる筐体(第2筐体)とが別の部材である場合、シート状の意匠部40は第2筐体にのみ設けられてもよい。例えば、筐体1aがビルの窓ガラス(第1筐体)である場合、例えば、ビルの窓ガラスの室内側にアンテナ導体120が設けられ、RFモジュール60がビルの窓ガラスが嵌め込まれる内装(第2筐体)あるいは建物の天井部(第2筐体)の表面に設けられる。この場合、フレキシブル基板30にアンテナ導体120と後述する給電回路110が一体で設けられており、給電回路110によってアンテナ導体120がRFモジュール60に接続され、給電回路110がシート状の意匠部40により覆われる。 Further, when the design portion 40 is a sheet-shaped member, at least a part of the flexible substrate 30 may be covered with the sheet-shaped design portion 40 and fixed to the housing 1a. With this configuration, the flexible substrate 30 can be fixed to the housing 1a even if the step of fixing the flexible substrate 30 to the housing 1a by adhesion or the like is omitted. Therefore, the work of applying an adhesive or the like to bond the flexible substrate 30 to the housing 1a can be omitted, and the manufacturing time of the antenna 100 can be shortened. When the housing (first housing) in which the antenna conductor 120 is provided and the housing (second housing) in which the RF module 60 is provided are different members, the sheet-shaped design portion 40 is second. It may be provided only in the housing. For example, when the housing 1a is a window glass of a building (first housing), for example, an antenna conductor 120 is provided on the indoor side of the window glass of the building, and the RF module 60 is fitted with the window glass of the building (interior). It is provided on the surface of the ceiling (second housing) of the building (second housing). In this case, the antenna conductor 120 and the feeding circuit 110 described later are integrally provided on the flexible substrate 30, the antenna conductor 120 is connected to the RF module 60 by the feeding circuit 110, and the feeding circuit 110 is connected by the sheet-shaped design portion 40. Be covered.
 また、筐体1aが自動車のフロントガラス(第1筐体)である場合、アンテナ導体120はフロントガラスの内側に挟み込まれているか、フロントガラスの表面に設けられる。そしてRFモジュール60は自動車のルームミラー(第2筐体)の取り付け部に設置され、フレキシブル基板30にアンテナ導体120と給電回路110が一体で設けられており、給電回路110によってアンテナ導体120がRFモジュール60に接続される。この場合、給電回路110がシート状の意匠部40により覆われてもよい。 Further, when the housing 1a is the windshield of an automobile (first housing), the antenna conductor 120 is sandwiched inside the windshield or provided on the surface of the windshield. The RF module 60 is installed in the mounting portion of the rear mirror (second housing) of the automobile, and the antenna conductor 120 and the feeding circuit 110 are integrally provided on the flexible substrate 30, and the antenna conductor 120 is RFed by the feeding circuit 110. Connected to module 60. In this case, the power feeding circuit 110 may be covered with the sheet-shaped design portion 40.
 意匠部40が塗装膜の場合には、アンテナ導体120及び伝送線路20との良好な密着性が得られる。さらに、伝送線路20及びフレキシブル基板30の形状に関わりなく塗装膜を形成できるため、アンテナ100の設計の自由度が向上する。 When the design portion 40 is a coating film, good adhesion to the antenna conductor 120 and the transmission line 20 can be obtained. Further, since the coating film can be formed regardless of the shapes of the transmission line 20 and the flexible substrate 30, the degree of freedom in designing the antenna 100 is improved.
 なお、意匠部40の色は、筐体1aの色と略同じにすることが好ましい。本構成例における略同じ色とは、目視で殆ど区別が付かない色差のことであって、色差計で測定したL*a*b*表示系におけるL*a*b値で、色差ΔEが3以下、好ましくは、色差ΔEが1.5以下をいう。色差ΔEは、模様間の最大配色の色差のことである。 It is preferable that the color of the design unit 40 is substantially the same as the color of the housing 1a. The substantially same color in this configuration example is a color difference that is almost indistinguishable visually, and is a L * a * b value in the L * a * b * display system measured by a color difference meter, and the color difference ΔE is 3. Hereinafter, preferably, the color difference ΔE is 1.5 or less. The color difference ΔE is the color difference of the maximum color scheme between the patterns.
 ΔE={(L1-L2)+(a1-a2)+(b1-b2)0.5
 L1、a1、b1:筐体1aの測色結果
 L2、a2、b2:意匠部40の測色結果
 意匠部40の色を筐体1aの色と略同じにすることで、例えば白色の筐体1aに白色の意匠部40を貼り合わせた場合に、それぞれの色が厳密には互いに異なるとしても実用上同じ色と見なせるため、アンテナ100の意匠性がより向上する。
ΔE = {(L1-L2) 2 + (a1-a2) 2 + (b1-b2) 2 } 0.5
L1, a1, b1: Color measurement result of the housing 1a L2, a2, b2: Color measurement result of the design unit 40 By making the color of the design unit 40 substantially the same as the color of the housing 1a, for example, a white housing When the white design portion 40 is attached to 1a, even if the colors are strictly different from each other, they can be regarded as the same color in practical use, so that the design of the antenna 100 is further improved.
 RFコネクタ50は、高周波の信号を通し、他の基板や他の線路と接続するためのコネクタである。一般的には同軸線路から構成されるものがある。RFモジュール60は、各種機能を持つデバイスが実装された部品である。一般的には、増幅器、位相器、ミキサ、信号源、フィルタ、スイッチ、サーキュレータ、AD/DA(Analog to Digital / Digital to Analog)コンバータ、などのデバイスが実装され、入出力インターフェースにRFコネクタおよび電源/制御コネクタが設けられたものがある。 The RF connector 50 is a connector for passing a high frequency signal and connecting to another board or another line. Generally, some are composed of coaxial lines. The RF module 60 is a component on which devices having various functions are mounted. Generally, devices such as amplifiers, phasers, mixers, signal sources, filters, switches, circulators, AD / DA (Analog to Digital / Digital to Analog) converters, etc. are mounted, and RF connectors and power supplies are mounted on the input / output interfaces. / Some are provided with a control connector.
 図4はアンテナ100の第1変形例を示す図である。上述のアンテナと同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。図4に示すアンテナ100Aは、筐体1a、給電回路110A及びアンテナ導体120を少なくとも備え、給電回路110Aは、図2に示す構成に加え、絶縁部材70を備える。 FIG. 4 is a diagram showing a first modification of the antenna 100. The description of the same configuration and effect as the above-mentioned antenna will be omitted or simplified by referring to the above-mentioned description. The antenna 100A shown in FIG. 4 includes at least a housing 1a, a feeding circuit 110A, and an antenna conductor 120, and the feeding circuit 110A includes an insulating member 70 in addition to the configuration shown in FIG.
 絶縁部材70は、意匠部40とフレキシブル基板30との間に設けられる。絶縁部材70は、誘電体を主成分とする板状又はシート状のフレキシブルな基材である。例えば、意匠部40が塗装膜で形成された場合、塗装膜は、材料の物性値(比誘電率と誘電正接)を管理し難いため、誘電正接が低下する傾向にある。絶縁部材70を設けることによって、意匠部40からフレキシブル基板30の誘電体までの距離を広げることができるため、塗装膜によるアンテナ利得の低下を抑制できる。絶縁部材70の厚みは、フレキシブル基板30におけるアンテナ導体120と接地導体22との距離、あるいは、信号線21と接地導体22との距離(すなわちフレキシブル基板30の絶縁材厚み)の半分以上であると望ましい。 The insulating member 70 is provided between the design portion 40 and the flexible substrate 30. The insulating member 70 is a plate-shaped or sheet-shaped flexible base material containing a dielectric as a main component. For example, when the design portion 40 is formed of a coating film, it is difficult to control the physical property values (relative permittivity and dielectric loss tangent) of the material in the coating film, so that the dielectric loss tangent tends to decrease. By providing the insulating member 70, the distance from the design portion 40 to the dielectric of the flexible substrate 30 can be increased, so that a decrease in antenna gain due to the coating film can be suppressed. The thickness of the insulating member 70 is equal to or more than half of the distance between the antenna conductor 120 and the ground conductor 22 in the flexible substrate 30 or the distance between the signal line 21 and the ground conductor 22 (that is, the thickness of the insulating material of the flexible substrate 30). desirable.
 図5はアンテナ100の第2変形例を示す図である。上述のアンテナと同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。図5に示すアンテナ100Bは、筐体1a、給電回路110B及びアンテナ導体120を少なくとも備え、給電回路110Bは、図2に示す構成に加え、折り返し部31に挟み込まれるように設けられる絶縁部材80を備える。 FIG. 5 is a diagram showing a second modification of the antenna 100. The description of the same configuration and effect as the above-mentioned antenna will be omitted or simplified by referring to the above-mentioned description. The antenna 100B shown in FIG. 5 includes at least a housing 1a, a feeding circuit 110B, and an antenna conductor 120, and the feeding circuit 110B includes an insulating member 80 provided so as to be sandwiched between the folded-back portions 31 in addition to the configuration shown in FIG. Be prepared.
 絶縁部材80は、誘電体を主成分とする板状の基材であり、フレキシブルな基材であってもよい。アンテナ100がsub6のアンテナである場合、sub6の周波数帯では接地導体22との距離を稼ぐ必要があるため、絶縁部材80を設けることにより、接地導体22からアンテナ導体120までの距離を広げることができるため、アンテナ利得の低下を抑制する点で好ましい。絶縁部材80は、アンテナ導体120から接地導体22までの距離を広げる機能を有する。 The insulating member 80 is a plate-shaped base material containing a dielectric as a main component, and may be a flexible base material. When the antenna 100 is a sub6 antenna, it is necessary to increase the distance from the ground conductor 22 in the sub6 frequency band. Therefore, by providing the insulating member 80, the distance from the ground conductor 22 to the antenna conductor 120 can be increased. Therefore, it is preferable in that it suppresses a decrease in antenna gain. The insulating member 80 has a function of increasing the distance from the antenna conductor 120 to the ground conductor 22.
 図6は、アンテナ100の第3変形例を示す図である。上述のアンテナと同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。図6に示すアンテナ100Cは、筐体1a、給電回路110C及びアンテナ導体120を少なくとも備える。給電回路110Cは、フレキシブル基板30、伝送線路20、及び意匠部40を備える。 FIG. 6 is a diagram showing a third modification example of the antenna 100. The description of the same configuration and effect as the above-mentioned antenna will be omitted or simplified by referring to the above-mentioned description. The antenna 100C shown in FIG. 6 includes at least a housing 1a, a feeding circuit 110C, and an antenna conductor 120. The power supply circuit 110C includes a flexible substrate 30, a transmission line 20, and a design unit 40.
 フレキシブル基板30は、筐体1aの外側面1a1に設けられるアンテナ導体120に接続され、伝送線路20は、アンテナ導体120に接続されるようにフレキシブル基板30に設けられる。伝送線路20は、電磁波を遮蔽するシールド構造(例えば、図3に示すSIW構造)を有する。意匠部40は、伝送線路20に対して筐体1a側とは反対側に設けられ、少なくとも伝送線路20の一部を覆い隠す。 The flexible substrate 30 is connected to the antenna conductor 120 provided on the outer surface 1a1 of the housing 1a, and the transmission line 20 is provided on the flexible substrate 30 so as to be connected to the antenna conductor 120. The transmission line 20 has a shield structure (for example, the SIW structure shown in FIG. 3) that shields electromagnetic waves. The design unit 40 is provided on the side opposite to the housing 1a side with respect to the transmission line 20, and covers at least a part of the transmission line 20.
 外側面1a1は、裏面(この例では、内側面1a2)に貫通していない窪み2を有する。窪み2は、座繰りでも溝でもよい。伝送線路20の少なくとも一部及びアンテナ導体120は、窪み2に設置され、意匠部40によって覆い隠される。これにより、伝送線路20の少なくとも一部及びアンテナ導体120は、外側面1a1からの出っ張りが抑えられた状態で意匠部40により隠れるので、筐体表面の見栄えの低下を抑制する効果が高まる。意匠部40は、上述の構成と同様に、シート部材でも塗装膜でもよい。意匠部40が塗装膜であると、その塗装膜の表面がより均一になるので、筐体表面の見栄えの低下を更に抑制できる。 The outer surface 1a1 has a recess 2 that does not penetrate the back surface (in this example, the inner surface 1a2). The recess 2 may be counterbore or groove. At least a part of the transmission line 20 and the antenna conductor 120 are installed in the recess 2 and are covered by the design portion 40. As a result, at least a part of the transmission line 20 and the antenna conductor 120 are hidden by the design portion 40 in a state where the protrusion from the outer surface 1a1 is suppressed, so that the effect of suppressing deterioration of the appearance of the housing surface is enhanced. The design unit 40 may be a sheet member or a coating film, as in the above configuration. When the design portion 40 is a coating film, the surface of the coating film becomes more uniform, so that deterioration of the appearance of the housing surface can be further suppressed.
 フレキシブル基板30の少なくとも一部は、窪み2に配置される。窪み2は、深さhaの底面2aと深さhbの底面2bを有し、底面2bは、底面2aよりも深い(ha<hb)。フレキシブル基板30のうち伝送線路20が配置されている部分は、接着層3aによって底面2aに固定されている。フレキシブル基板30のうちアンテナ導体120が配置されている部分は、接着層3bによって底面2bに固定されている。 At least a part of the flexible substrate 30 is arranged in the recess 2. The recess 2 has a bottom surface 2a having a depth ha and a bottom surface 2b having a depth hb, and the bottom surface 2b is deeper than the bottom surface 2a (ha <hb). The portion of the flexible substrate 30 on which the transmission line 20 is arranged is fixed to the bottom surface 2a by the adhesive layer 3a. The portion of the flexible substrate 30 on which the antenna conductor 120 is arranged is fixed to the bottom surface 2b by the adhesive layer 3b.
 本実施の形態において、意匠部40の厚さは、250μm以下であり、意匠部40の比誘電率は、12未満であると、所定の周波数帯において、アンテナ導体120の放射効率が上がり、アンテナの利得が向上する。アンテナ導体120の放射効率が上がり、アンテナの利得が向上する点で、意匠部40の厚さが250μm以下の場合、意匠部40の比誘電率は、11.5未満が好ましく、10.5未満がより好ましい。意匠部40の厚さの下限は、0よりも大きければ、特に限定されない。意匠部40の比誘電率も、0よりも大きければ、特に限定されない。 In the present embodiment, when the thickness of the design portion 40 is 250 μm or less and the relative permittivity of the design portion 40 is less than 12, the radiation efficiency of the antenna conductor 120 increases in a predetermined frequency band, and the antenna Gain is improved. When the thickness of the design portion 40 is 250 μm or less, the relative permittivity of the design portion 40 is preferably less than 11.5 and less than 10.5 in that the radiation efficiency of the antenna conductor 120 is increased and the gain of the antenna is improved. Is more preferable. The lower limit of the thickness of the design portion 40 is not particularly limited as long as it is larger than 0. The relative permittivity of the design portion 40 is also not particularly limited as long as it is larger than 0.
 図7は、シミュレーション時の構成を示す断面図である。図8は、図7の構成において、意匠部40の厚さtと比誘電率epsを変化させたときのアンテナ導体120の放射効率S11のシミュレーション結果の一例を示す図である。図9は、図7の構成において、意匠部40の厚さtと比誘電率epsを変化させたときのアンテナ導体120の利得のシミュレーション結果の一例を示す図である。図9の縦軸は、各周波数における最大利得を表す。 FIG. 7 is a cross-sectional view showing the configuration at the time of simulation. FIG. 8 is a diagram showing an example of a simulation result of the radiation efficiency S11 of the antenna conductor 120 when the thickness t of the design portion 40 and the relative permittivity eps are changed in the configuration of FIG. 7. FIG. 9 is a diagram showing an example of a simulation result of the gain of the antenna conductor 120 when the thickness t of the design portion 40 and the relative permittivity eps are changed in the configuration of FIG. 7. The vertical axis of FIG. 9 represents the maximum gain at each frequency.
 意匠部40の厚さtが250μm以下で意匠部40の比誘電率が12未満であると、27~28GHzの周波数帯におけるアンテナ導体120の放射効率が上がり(図8参照)、その周波数帯でのアンテナ利得が向上する(図9参照)という結果が得られた。 When the thickness t of the design portion 40 is 250 μm or less and the relative permittivity of the design portion 40 is less than 12, the radiation efficiency of the antenna conductor 120 in the frequency band of 27 to 28 GHz increases (see FIG. 8), and in that frequency band. The result was that the antenna gain of the above was improved (see FIG. 9).
 なお、図8,9のシミュレーション時の各部の条件は、
  アンテナ導体120:厚さ43μmのパッチ導体
  フレキシブル基板30の厚さ:200μm
  フレキシブル基板30の誘電体の比誘電率:2.0
  接地導体22の厚さ:43μm
  伝送線路20:マイクロストリップ線路
とした。
The conditions for each part during the simulation in FIGS. 8 and 9 are as follows.
Antenna conductor 120: Patch conductor with a thickness of 43 μm Flexible substrate 30 thickness: 200 μm
Relative permittivity of the dielectric of the flexible substrate 30: 2.0
Thickness of ground conductor 22: 43 μm
Transmission line 20: A microstrip line was used.
 図10はアンテナ100の第4変形例を示す断面図である。上述のアンテナと同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。図10に示すアンテナ100Dは、誘電体層43を備える点で、上述の構成と異なる。誘電体層43は、比誘電率と誘電正接との少なくとも一方が意匠部40よりも小さく、意匠部40とアンテナ導体120との間にある。このような誘電体層43を備えることで、アンテナ導体120の放射効率が上がるとともに、意匠部40の特性変化がアンテナ導体120の放射効率に与える影響を抑制できる。 FIG. 10 is a cross-sectional view showing a fourth modified example of the antenna 100. The description of the same configuration and effect as the above-mentioned antenna will be omitted or simplified by referring to the above-mentioned description. The antenna 100D shown in FIG. 10 differs from the above-described configuration in that it includes a dielectric layer 43. At least one of the relative permittivity and the dielectric loss tangent of the dielectric layer 43 is smaller than that of the design portion 40, and is located between the design portion 40 and the antenna conductor 120. By providing such a dielectric layer 43, the radiation efficiency of the antenna conductor 120 can be increased, and the influence of the characteristic change of the design portion 40 on the radiation efficiency of the antenna conductor 120 can be suppressed.
 誘電体層43の具体例として、ポリイミドなどがある。ポリイミド等のカバーテープを誘電体層43に採用することで、表面粗化により意匠部40(特に、塗装膜)との密着強度が向上する。 A specific example of the dielectric layer 43 is polyimide. By adopting a cover tape such as polyimide for the dielectric layer 43, the adhesion strength with the design portion 40 (particularly, the coating film) is improved by surface roughness.
 誘電体層43は、28GHzにおける誘電正接が意匠部40よりも小さいと、アンテナ導体120における放射損失が抑制されるので、アンテナの利得の低下を抑制できる。なお、28GHzにおける誘電正接は、ギガヘルツ帯の周波数における指標の例である。そのため、28GHzにおける誘電正接が、意匠部40よりも小さければ、例えば、1GHz~100GHzにおいてもアンテナ導体120における放射損失が抑制される。よって、28GHz近傍に限らず、1GHz~100GHzにおけるアンテナの利得を向上できる。 When the dielectric loss tangent at 28 GHz of the dielectric layer 43 is smaller than that of the design portion 40, the radiation loss in the antenna conductor 120 is suppressed, so that the decrease in the gain of the antenna can be suppressed. The dielectric loss tangent at 28 GHz is an example of an index at a frequency in the gigahertz band. Therefore, if the dielectric loss tangent at 28 GHz is smaller than that of the design portion 40, the radiation loss in the antenna conductor 120 is suppressed even at 1 GHz to 100 GHz, for example. Therefore, the gain of the antenna can be improved not only in the vicinity of 28 GHz but also in 1 GHz to 100 GHz.
 図11は、図10の構成において、意匠部の厚さtと比誘電率epsを変化させたときのアンテナ導体の放射効率S11のシミュレーション結果の一例を示す図である。図11のシミュレーション時の各部の条件は、
  誘電体層43の厚さ:63μm
  誘電体層43の比誘電率:3.6
  誘電体層43の誘電正接:0.01(@28GHz)
とし、それら以外の条件は、図8,9の場合と同じとした。
FIG. 11 is a diagram showing an example of a simulation result of the radiation efficiency S11 of the antenna conductor when the thickness t of the design portion and the relative permittivity eps are changed in the configuration of FIG. The conditions for each part during the simulation in FIG. 11 are as follows.
Thickness of dielectric layer 43: 63 μm
Relative permittivity of dielectric layer 43: 3.6
Dielectric loss tangent of dielectric layer 43: 0.01 (@ 28 GHz)
The conditions other than these were the same as in FIGS. 8 and 9.
 図8(誘電体層43なし)と比較すると、図11(誘電体層43あり)によれば、誘電体層43を設けることによって、アンテナ導体120の放射効率が上がるという結果が得られた。また、図11の場合、図8の場合に比べて、意匠部40の厚さt又は比誘電率が変化しても、アンテナ導体120の放射効率の変化が小さいという結果が得られた。つまり、意匠部40の特性ばらつきなどの変化がアンテナ導体120の放射効率に与える影響を抑制できるという結果が得られた。 Compared with FIG. 8 (without the dielectric layer 43), according to FIG. 11 (with the dielectric layer 43), it was obtained that the radiation efficiency of the antenna conductor 120 was increased by providing the dielectric layer 43. Further, in the case of FIG. 11, it was obtained that the change in the radiation efficiency of the antenna conductor 120 was smaller than that in the case of FIG. 8 even if the thickness t or the relative permittivity of the design portion 40 changed. That is, the result was obtained that the influence of the change such as the characteristic variation of the design portion 40 on the radiation efficiency of the antenna conductor 120 can be suppressed.
 なお、本実施の形態において、意匠部40が塗装膜である場合、フレキシブル基板30において、シールド構造が形成されている部分には、塗装膜の意匠部40が設けられ、フレキシブル基板30において、シールド構造が形成されていない部分(フレキシブル基板30の誘電体)は、略透明の絶縁部材、又はメッシュ状の絶縁部材で形成される構成としてもよい。シールド構造が形成されていない部分は、例えば図2に示す信号線21のプラスY軸方向の端部から折り返し部31のプラスY軸方向の端部までの領域である。この構成により、塗装膜の意匠部40が設けられていない部分(伝送線路20の誘電体)を目立たなくすることができ、アンテナ100の意匠性が向上する。 In the present embodiment, when the design portion 40 is a coating film, the design portion 40 of the coating film is provided on the portion of the flexible substrate 30 where the shield structure is formed, and the flexible substrate 30 is shielded. The portion where the structure is not formed (dielectric of the flexible substrate 30) may be formed of a substantially transparent insulating member or a mesh-shaped insulating member. The portion where the shield structure is not formed is, for example, a region from the end of the signal line 21 shown in FIG. 2 in the plus Y-axis direction to the end of the folded-back portion 31 in the plus Y-axis direction. With this configuration, the portion of the coating film where the design portion 40 is not provided (the dielectric material of the transmission line 20) can be made inconspicuous, and the design of the antenna 100 is improved.
 また、本実施の形態において、意匠部40が塗装膜である場合、フレキシブル基板30において、シールド構造が形成されている部分には、塗装膜の意匠部40が設けられ、フレキシブル基板30において、シールド構造が形成されていない部分(フレキシブル基板30の誘電体)に設けられるアンテナ導体120は、略透明のメッシュ状に形成される構成としてもよい。シールド構造が形成されていない部分は、例えば図2に示す信号線21のプラスY軸方向の端部から折り返し部31のプラスY軸方向の端部までの領域である。この構成により、塗装膜の意匠部40が設けられていない部分(アンテナ導体120)を目立たなくすることができ、アンテナ100の意匠性が向上する。 Further, in the present embodiment, when the design portion 40 is a coating film, the design portion 40 of the coating film is provided on the portion of the flexible substrate 30 where the shield structure is formed, and the flexible substrate 30 is shielded. The antenna conductor 120 provided in the portion where the structure is not formed (the dielectric material of the flexible substrate 30) may be formed in a substantially transparent mesh shape. The portion where the shield structure is not formed is, for example, a region from the end of the signal line 21 shown in FIG. 2 in the plus Y-axis direction to the end of the folded-back portion 31 in the plus Y-axis direction. With this configuration, the portion (antenna conductor 120) where the design portion 40 of the coating film is not provided can be made inconspicuous, and the design of the antenna 100 is improved.
 なお、本実施の形態において、アンテナ導体120は、フレキシブル基板30に設けられているが、フレキシブル基板30の代わりにリジッド基板に設けてもよい。このように構成した場合、基板厚を厚くすることができるため、前述した絶縁部材80を設ける場合と同様の効果が得られる。 Although the antenna conductor 120 is provided on the flexible substrate 30 in the present embodiment, it may be provided on the rigid substrate instead of the flexible substrate 30. With this configuration, the thickness of the substrate can be increased, so that the same effect as in the case of providing the above-mentioned insulating member 80 can be obtained.
 なお各構成例では、筐体1aの裏側(内側面1a2)にRFモジュール60が設置されているが、アンテナ導体120とRFモジュール60が分離されていればよく、例えばRFモジュール60の設置場所は筐体1aの外側面1a1でもよい。 In each configuration example, the RF module 60 is installed on the back side (inner side surface 1a2) of the housing 1a, but the antenna conductor 120 and the RF module 60 need only be separated. For example, the installation location of the RF module 60 is The outer surface 1a1 of the housing 1a may be used.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 本国際出願は、2019年6月11日に出願した日本国特許出願第2019-109114号に基づく優先権を主張するものであり、日本国特許出願第2019-109114号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2019-109114 filed on June 11, 2019, and the entire contents of Japanese Patent Application No. 2019-109114 are included in this international application. Invite to.
 1    :車両
 1a   :筐体
 1a1  :外側面
 1a2  :内側面
 2:窪み
 2a,2b:底面
 3a,3b:接着層
 10   :平面部
 11   :屈曲部
 20   :伝送線路
 21   :信号線
 22   :接地導体
 23   :導体柱
 30   :フレキシブル基板
 31   :折り返し部
 40   :意匠部
 41   :端部
 42   :端部
 43   :誘電体層
 50   :RFコネクタ
 60   :RFモジュール
 70   :絶縁部材
 100  :アンテナ
 100A :アンテナ
 100B :アンテナ
 100C :アンテナ
 100D :アンテナ
 110  :給電回路
 110A :給電回路
 110B :給電回路
 110C :給電回路
 120  :アンテナ導体
1: Vehicle 1a: Housing 1a1: Outer surface 1a2: Inner side surface 2: Indentation 2a, 2b: Bottom surface 3a, 3b: Adhesive layer 10: Flat surface part 11: Bending part 20: Transmission line 21: Signal line 22: Ground conductor 23 : Conductor pillar 30: Flexible substrate 31: Folded part 40: Design part 41: End part 42: End part 43: Dielectric layer 50: RF connector 60: RF module 70: Insulation member 100: Antenna 100A: Antenna 100B: Antenna 100C : Antenna 100D: Antenna 110: Feeding circuit 110A: Feeding circuit 110B: Feeding circuit 110C: Feeding circuit 120: Antenna conductor

Claims (19)

  1.  筐体と、
     前記筐体の表側にあるアンテナ導体と、
     前記アンテナ導体が設けられたフレキシブル基板と、
     前記アンテナ導体に接続されるように前記フレキシブル基板に設けられ、電磁波を遮蔽するシールド構造を有する伝送線路と、
     前記伝送線路に対して前記筐体側とは反対側に設けられ、少なくとも前記伝送線路の一部を覆い隠す意匠部と、
     を備えるアンテナ。
    With the housing
    The antenna conductor on the front side of the housing and
    A flexible substrate provided with the antenna conductor and
    A transmission line provided on the flexible substrate so as to be connected to the antenna conductor and having a shield structure for shielding electromagnetic waves.
    A design unit provided on the side opposite to the housing side of the transmission line and covering at least a part of the transmission line.
    Antenna with.
  2.  前記フレキシブル基板は、前記筐体の曲面に沿って設けられる請求項1に記載のアンテナ。 The antenna according to claim 1, wherein the flexible substrate is provided along a curved surface of the housing.
  3.  前記意匠部の色は、前記筐体の色と略同じである請求項1又は2に記載のアンテナ。 The antenna according to claim 1 or 2, wherein the color of the design portion is substantially the same as the color of the housing.
  4.  前記フレキシブル基板は、前記筐体の外側面から前記筐体の内側面まで延伸している請求項1から3の何れか一項に記載のアンテナ。 The antenna according to any one of claims 1 to 3, wherein the flexible substrate extends from the outer surface of the housing to the inner surface of the housing.
  5.  前記筐体には、折り返し部が形成され、
     前記フレキシブル基板は、前記折り返し部に沿って、前記筐体の外側面から前記筐体の内側面まで延伸している請求項4に記載のアンテナ。
    A folded portion is formed in the housing.
    The antenna according to claim 4, wherein the flexible substrate extends from the outer surface of the housing to the inner surface of the housing along the folded portion.
  6.  前記意匠部は、シート状の部材であり、
     前記フレキシブル基板は、シート状の前記意匠部により前記筐体に固定されている請求項1から5の何れか一項に記載のアンテナ。
    The design portion is a sheet-like member and is
    The antenna according to any one of claims 1 to 5, wherein the flexible substrate is fixed to the housing by the sheet-shaped design portion.
  7.  前記意匠部は、塗装膜であり、
     前記塗装膜と前記フレキシブル基板との間に設けられる絶縁部材を備える請求項1から6の何れか一項に記載のアンテナ。
    The design part is a coating film and
    The antenna according to any one of claims 1 to 6, further comprising an insulating member provided between the coating film and the flexible substrate.
  8.  前記意匠部は、塗装膜であり、
     前記フレキシブル基板において、前記シールド構造が形成されている部分には、前記塗装膜が設けられ、
     前記フレキシブル基板において、前記シールド構造が形成されていない部分は、略透明の絶縁部材で形成される請求項1から7の何れか一項に記載のアンテナ。
    The design part is a coating film and
    In the flexible substrate, the coating film is provided on a portion where the shield structure is formed.
    The antenna according to any one of claims 1 to 7, wherein the portion of the flexible substrate on which the shield structure is not formed is formed of a substantially transparent insulating member.
  9.  前記意匠部は、塗装膜であり、
     前記フレキシブル基板において、前記シールド構造が形成されている部分には、前記塗装膜が設けられ、
     前記フレキシブル基板において、前記シールド構造が形成されていない部分に設けられる前記アンテナ導体は、略透明のメッシュ状に形成される請求項1から8の何れか一項に記載のアンテナ。
    The design part is a coating film and
    In the flexible substrate, the coating film is provided on a portion where the shield structure is formed.
    The antenna according to any one of claims 1 to 8, wherein the antenna conductor provided in a portion of the flexible substrate on which the shield structure is not formed is formed in a substantially transparent mesh shape.
  10.  前記伝送線路は、基板一体型導波路である請求項1から9の何れか一項に記載のアンテナ。 The antenna according to any one of claims 1 to 9, wherein the transmission line is a substrate-integrated waveguide.
  11.  前記アンテナ導体は、リジッド基板に形成される請求項1から10の何れか一項に記載のアンテナ。 The antenna according to any one of claims 1 to 10, wherein the antenna conductor is formed on a rigid substrate.
  12.  前記アンテナ導体は、平面アンテナである請求項1から11の何れか一項に記載のアンテナ。 The antenna according to any one of claims 1 to 11, wherein the antenna conductor is a flat antenna.
  13.  前記アンテナ導体は、パッチアンテナである請求項1から11の何れか一項に記載のアンテナ。 The antenna according to any one of claims 1 to 11, wherein the antenna conductor is a patch antenna.
  14.  前記アンテナ導体は、基板一体型導波路による導波管スロットアンテナである請求項1から11の何れか一項に記載のアンテナ。 The antenna according to any one of claims 1 to 11, wherein the antenna conductor is a waveguide slot antenna using a substrate-integrated waveguide.
  15.  前記表面は、裏面に貫通していない窪みを有し、
     前記伝送線路の少なくとも一部及び前記アンテナ導体は、前記窪みに設置され、前記意匠部によって覆い隠された、請求項1から14のいずれか一項に記載のアンテナ。
    The front surface has a recess that does not penetrate the back surface.
    The antenna according to any one of claims 1 to 14, wherein at least a part of the transmission line and the antenna conductor are installed in the recess and covered by the design portion.
  16.  前記意匠部は、塗装膜である、請求項15に記載のアンテナ。 The antenna according to claim 15, wherein the design unit is a coating film.
  17.  前記意匠部の厚さは、250μm以下であり、
     前記意匠部の比誘電率は、12未満である、請求項1から16のいずれか一項に記載のアンテナ。
    The thickness of the design portion is 250 μm or less.
    The antenna according to any one of claims 1 to 16, wherein the relative permittivity of the design portion is less than 12.
  18.  比誘電率と誘電正接との少なくとも一方が前記意匠部よりも小さい誘電体層を、前記意匠部と前記アンテナ導体との間に備える、請求項1から17のいずれか一項に記載のアンテナ。 The antenna according to any one of claims 1 to 17, wherein a dielectric layer in which at least one of the relative permittivity and the dielectric loss tangent is smaller than the design portion is provided between the design portion and the antenna conductor.
  19.  前記誘電体層は、28GHzにおける誘電正接が前記意匠部よりも小さい、請求項18に記載のアンテナ。 The antenna according to claim 18, wherein the dielectric layer has a dielectric loss tangent at 28 GHz smaller than that of the design portion.
PCT/JP2020/022920 2019-06-11 2020-06-10 Antenna WO2020250951A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019109114A JP2022112525A (en) 2019-06-11 2019-06-11 Power feed circuit and antenna
JP2019-109114 2019-06-11

Publications (1)

Publication Number Publication Date
WO2020250951A1 true WO2020250951A1 (en) 2020-12-17

Family

ID=73781479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022920 WO2020250951A1 (en) 2019-06-11 2020-06-10 Antenna

Country Status (3)

Country Link
JP (1) JP2022112525A (en)
TW (1) TW202107770A (en)
WO (1) WO2020250951A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024079869A1 (en) * 2022-10-14 2024-04-18 日本電業工作株式会社 Light-transmissive antenna

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280566A (en) * 2005-03-31 2006-10-19 Secom Co Ltd Portable housing with induction antenna, and position detection system
JP2012079008A (en) * 2010-09-30 2012-04-19 Toshiba Tec Corp Rfid tag
JP2012151829A (en) * 2010-12-27 2012-08-09 Canon Components Inc Flexible printed wiring board and radio communication module
WO2017051649A1 (en) * 2015-09-25 2017-03-30 株式会社村田製作所 Antenna module and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280566A (en) * 2005-03-31 2006-10-19 Secom Co Ltd Portable housing with induction antenna, and position detection system
JP2012079008A (en) * 2010-09-30 2012-04-19 Toshiba Tec Corp Rfid tag
JP2012151829A (en) * 2010-12-27 2012-08-09 Canon Components Inc Flexible printed wiring board and radio communication module
WO2017051649A1 (en) * 2015-09-25 2017-03-30 株式会社村田製作所 Antenna module and electronic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIOMI HIDEHISA ET AL.: "Millimeter wave SIW prototype using fluoropolymer flexible printed circuit board", LECTURE PROCEEDINGS 1 OF THE 2015 ELECTRONICS SOCIETY CONFERENCE OF IEICE, vol. 1, 25 August 2015 (2015-08-25), pages 52 *

Also Published As

Publication number Publication date
JP2022112525A (en) 2022-08-03
TW202107770A (en) 2021-02-16

Similar Documents

Publication Publication Date Title
JP5805299B2 (en) Flat conductor connection parts for antenna structures
KR101213616B1 (en) Antenna arrangement and window fitted with this antenna arrangement
WO2020071390A1 (en) Antenna system
US11894625B2 (en) Antenna
US10403981B2 (en) Electromagnetic wave absorber
US10931017B2 (en) Antenna
JP6743486B2 (en) Vehicle window glass
US10320053B2 (en) Wideband coplanar waveguide fed monopole applique antennas
CN107453028A (en) Film antenna to FAKRA connector
JP6771331B2 (en) Multi-band antenna for window assembly
WO2020250951A1 (en) Antenna
CN107086350A (en) For mitigating surface wave and improving the impedance surface treating part of glass antenna gain
US6225954B1 (en) Integrated antenna means for a motor vehicle comprising reflector
US11108141B2 (en) Embedded patch antennas, systems and methods
WO2019208453A1 (en) Vehicle antenna, window glass having vehicle antenna, and antenna system
US20050231426A1 (en) Transparent wideband antenna system
JP2023504200A (en) multilayer glass patch antenna
US11735823B2 (en) Coplanar antenna structure having a wide slot
JPS61290803A (en) Microstrip antenna for automobile
US7154444B2 (en) Ground plane compensation for mobile antennas
US20080068268A1 (en) Low profile antenna
Song et al. Challenges in glass integrated optically transparent antennas
US20220416399A1 (en) Vehicle pane
CN220138694U (en) Internet of vehicles antenna and vehicle
WO2022024614A1 (en) Antenna device attachment structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20823146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP