WO2020250927A1 - 赤血球除去装置、単核球回収器、細胞培養装置、細胞培養システム、細胞培養方法、及び単核球の回収方法 - Google Patents

赤血球除去装置、単核球回収器、細胞培養装置、細胞培養システム、細胞培養方法、及び単核球の回収方法 Download PDF

Info

Publication number
WO2020250927A1
WO2020250927A1 PCT/JP2020/022839 JP2020022839W WO2020250927A1 WO 2020250927 A1 WO2020250927 A1 WO 2020250927A1 JP 2020022839 W JP2020022839 W JP 2020022839W WO 2020250927 A1 WO2020250927 A1 WO 2020250927A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
blood
container
flow path
Prior art date
Application number
PCT/JP2020/022839
Other languages
English (en)
French (fr)
Inventor
剛士 田邊
亮二 平出
健太 須藤
Original Assignee
アイ ピース, インコーポレイテッド
剛士 田邊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイ ピース, インコーポレイテッド, 剛士 田邊 filed Critical アイ ピース, インコーポレイテッド
Priority to JP2021526112A priority Critical patent/JP7343881B2/ja
Priority to CN202080033351.6A priority patent/CN113785049A/zh
Priority to US17/617,876 priority patent/US20220306993A1/en
Priority to EP20823391.6A priority patent/EP3981870A4/en
Publication of WO2020250927A1 publication Critical patent/WO2020250927A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0641Erythrocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/26Constructional details, e.g. recesses, hinges flexible
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/14Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus with filters, sieves or membranes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/22Settling tanks; Sedimentation by gravity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/08Chemical, biochemical or biological means, e.g. plasma jet, co-culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0081Purging biological preparations of unwanted cells
    • C12N5/0087Purging against subsets of blood cells, e.g. purging alloreactive T cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0645Macrophages, e.g. Kuepfer cells in the liver; Monocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/11Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from blood or immune system cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/11Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from blood or immune system cells
    • C12N2506/115Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from blood or immune system cells from monocytes, from macrophages
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18811Sendai virus
    • C12N2760/18841Use of virus, viral particle or viral elements as a vector
    • C12N2760/18843Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present invention relates to cell technology, and relates to an erythrocyte removal device, a mononuclear cell collector, a cell culture device, a cell culture system, a cell culture method, and a mononuclear cell recovery method.
  • Embryonic stem cells are stem cells established from early human or mouse embryos. ES cells have the pluripotency to differentiate into all cells existing in the living body. Currently, human ES cells are available for cell transplantation therapy for many diseases such as Parkinson's disease, juvenile diabetes, and leukemia. However, there are also obstacles to ES cell transplantation. In particular, ES cell transplantation can elicit immune rejection similar to the rejection that follows unsuccessful organ transplantation. In addition, there are many criticisms and dissenting opinions from an ethical point of view regarding the use of ES cells established by destroying human embryos.
  • iPS induced pluripotent stem cells
  • IPS cells may be derived from blood cells. Not limited to the use of inducing iPS cells, a technique capable of efficiently processing blood cells is desired. Further, a device capable of efficiently culturing not only iPS cells but also various cells is desired. Therefore, one of the objects of the present invention is to provide an erythrocyte removal device, a mononuclear cell collector, a cell culture device, a cell culture system, a cell culture method, and a method for collecting mononuclear cells.
  • an red blood cell remover that receives blood from the blood container and at least partially removes red blood cells from the blood, and an red blood cell remover from the blood container.
  • a red blood cell removing device comprising the flow path of the above is provided.
  • the inside of the flow path for sending blood from the blood container to the red blood cell removing device may be closed from the outside air.
  • the above-mentioned red blood cell remover receives a treated blood in which red blood cells are at least partially removed from the red blood cell remover, and collects mononuclear cells from the treated blood.
  • a mononuclear cell collector and a mononuclear cell collector from the red blood cell remover. May further include, at least, a flow path for delivering processed blood from which red blood cells have been partially removed.
  • the red blood cell removing device may be able to remove the gas inside.
  • the above-mentioned red blood cell removing device further includes a flow path through which the treated blood from which the red blood cells have been partially removed flows, and the inside of the flow path through which the treated blood from which the red blood cells have been at least partially removed can flow can be closed from the outside air. You may.
  • the monocyte collector may be able to remove the gas inside.
  • the inside of the blood container and the inside of the red blood cell removing device may be closed from the outside air.
  • the inside of the monocyte collector may be closed from the outside air.
  • the closed space including the inside of the blood container and the inside of the red blood cell removing device does not have to exchange gas with the outside.
  • the blood container and the red blood cell removing device may be embedded.
  • At least a part of the blood container and / or at least a part of the red blood cell removing device may be formed by being engraved in a member.
  • a monocyte collector may be embedded.
  • At least a part of the monocyte collector may be carved into a member.
  • blood and at least one of an erythrocyte sedimentation agent and an erythrocyte remover may be mixed in the erythrocyte remover.
  • the above-mentioned erythrocyte eliminator further comprises an erythrocyte treatment agent container containing at least one of the erythrocyte sedimentation agent and the erythrocyte eliminator, and the erythrocyte eliminator receives at least one of the erythrocyte sedimentation agent and the erythrocyte remover from the erythrocyte treatment agent container. You may.
  • the erythrocyte eliminator further comprises a mixer that mixes blood with at least one of the erythrocyte sedimentation agent and the erythrocyte eliminator, and the erythrocyte eliminator from the mixer at least one of the erythrocyte sedimentation agent and the erythrocyte depletion agent You may receive blood mixed with red blood cells.
  • the mixer may be provided with a bent flow path through which a mixed solution of blood and at least one of the erythrocyte sedimentation agent and the erythrocyte removal agent flows.
  • the above-mentioned red blood cell removing device may further include a flow path for sending at least blood from the blood container to the red blood cell removing device.
  • the above-mentioned red blood cell removing device may be provided with a vacuum container capable of evacuating the inside, which is connected to at least a flow path for sending blood from the blood container to the red blood cell removing device.
  • the road may be further provided.
  • the above-mentioned red blood cell remover may further include a fluid machine for sending at least blood from the blood container to the red blood cell remover.
  • the blood container may be capable of changing the volume of the blood container.
  • the red blood cell removing device may be capable of changing the volume of the red blood cell removing device.
  • the monocyte collector may be able to change the volume of the monocyte collector.
  • the red blood cell treatment agent container may be capable of changing the volume of the red blood cell treatment agent container.
  • the red blood cells may settle in the red blood cell removing device, and the supernatant in the red blood cell removing device may be sent to the mononuclear cell collecting device as treated blood in which the red blood cells are at least partially removed.
  • the above-mentioned red blood cell remover may further include a flow path for sending processed blood from which at least partially removed red blood cells has been removed from the red blood cell remover to the monocyte collector.
  • the above-mentioned red blood cell remover may further include a fluid machine for sending processed blood from which at least partially removed red blood cells have been removed from the red blood cell remover to the monocyte collector.
  • the treated blood from which red blood cells have been partially removed may be diluted in a monocyte collector.
  • monocytes may settle in the monocyte collector.
  • platelets may float in a diluted solution of treated blood.
  • red blood cells may be hemolyzed by a red blood cell removing agent in a diluted solution of treated blood.
  • the above-mentioned red blood cell removing device may further include a dilution liquid container containing a dilution liquid for diluting the treated blood from which red blood cells have been partially removed.
  • the diluting solution may be a buffer solution.
  • the dilution liquid container may be capable of changing the volume of the dilution liquid container.
  • the supernatant in the mononuclear cell collector may be removed after the mononuclear cells have settled in the mononuclear cell collector.
  • platelets floating in the supernatant may be removed.
  • the component of hemolyzed red blood cells floating in the supernatant may be removed.
  • a first opening may be provided at the bottom of the monocyte collector, and a second opening may be provided at a position higher than the first opening in the direction of gravity.
  • the bottom of the mononuclear cell collector is funnel-shaped, a first opening is provided at the tip of the funnel-shaped bottom, and a second opening is provided on the side surface of the funnel-shaped bottom. You may.
  • red blood cell removing device when treated blood from which red blood cells have been partially removed is introduced into a monocyte collector, monocytes may accumulate at the bottom and the supernatant may be discharged from the second opening. ..
  • platelets floating in the supernatant may be removed by discharging the supernatant.
  • the component of hemolyzed red blood cells floating in the supernatant may be removed by discharging the supernatant.
  • the above-mentioned red blood cell removing device may further include a monocyte suction device that sucks mononuclear cells from the first opening.
  • the size of the first opening may be set so that the mononuclear cells are clogged in the first opening when the mononuclear cells are not sucked by the mononuclear ball suction device.
  • the above-mentioned red blood cell remover may further include a flow path for sending the fluid in the red blood cell remover to the blood container.
  • the red blood cell remover may further include at least one of a fluid machine for sending blood from the blood vessel to the red blood cell remover and at least one of the fluid machines for sending the fluid in the red blood cell remover to the blood vessel. ..
  • the above-mentioned red blood cell remover may further include a flow path for sending the fluid in the mononuclear cell collector to the red blood cell remover.
  • the above-mentioned erythrocyte eliminator transfers the fluid in the erythrocyte eliminator to the erythrocyte eliminator, and the fluid machine for sending the processed blood from which at least the erythrocytes have been partially removed to the erythrocyte eliminator. It may further be equipped with at least one of the fluid machines for feeding.
  • the mononuclear ball recovery device includes a recovery container for containing a solution containing mononuclear balls, and the bottom of the recovery container is funnel-shaped, and a first opening is provided at the tip of the funnel-shaped bottom. Is provided, and a mononuclear ball collector is provided, which is provided with a second opening on the side surface of the funnel-shaped bottom.
  • the mononuclear cells when the solution is introduced into the collection container, the mononuclear cells may accumulate at the tip of the funnel-shaped bottom and the solution may be discharged from the second opening.
  • the mononuclear ball collector described above may further include a mononuclear ball suction device that sucks the mononuclear balls accumulated at the tip of the funnel-shaped bottom.
  • the size of the first opening may be set so that the mononuclear ball is clogged in the first opening when the mononuclear ball is not sucked by the mononuclear ball suction device.
  • a cell incubator for culturing cells and a volume-variable container connected to the cell incubator are provided, and the fluid can move in the cell incubator and the volume-variable container.
  • a cell culture device is provided.
  • the above-mentioned cell culture apparatus may include at least a first volume variable container and a second volume variable container as the volume variable container.
  • the volume of the first volume variable container when the fluid in the cell incubator moves into the first volume variable container, the volume of the first volume variable container may expand and the volume of the second volume variable container may contract.
  • the volume of the first volume variable container may contract and the volume of the second volume variable container may expand.
  • the volume of the second volume variable container may contract and the volume of the first volume variable container may expand.
  • the inside of the cell incubator, the inside of the first volume variable container, and the inside of the second volume variable container may be closed from the outside air.
  • the cell incubator, the first volume variable container, and the second volume variable container may be embedded.
  • At least a part of the cell incubator, at least a part of the first volume variable container, and at least a part of the second volume variable container may be formed by being carved into a member.
  • the first variable volume container may contain the substance, and the substance may come into contact with the cells due to the movement of the fluid.
  • the substance is an inducing factor, and the inducing factor may be introduced into cells by the movement of a fluid.
  • the above cell culture apparatus may further include a fluid machine for moving the fluid in the cell incubator to the first volume variable container.
  • the above cell culture apparatus may further include a fluid machine for moving the fluid in the cell incubator to the second volume variable container.
  • the cell culture device described above may further include a flow path for supplying cells into the cell culture device.
  • the above cell culture apparatus may further include a flow path for supplying the culture solution, which is connected to a flow path for supplying cells into the cell incubator.
  • cells and a culture medium may be mixed in a flow path for supplying cells into the cell incubator, and the culture medium containing the cells may be supplied into the cell incubator.
  • the above cell culture apparatus may further include a fluid machine for supplying cells into the cell incubator.
  • the cells may be somatic cells or stem cells.
  • the above-mentioned cell culture apparatus may further include a fluid container for accommodating the fluid supplied into the cell incubator.
  • the fluid may be a somatic cell medium or a stem cell medium.
  • the stem cell medium may be an induction culture medium, an expansion culture medium, or a maintenance culture medium.
  • At least one of the volumes of the first volume variable container and the second volume variable container may expand when the fluid is supplied from the fluid container into the cell culture device.
  • the above cell culture apparatus may further include a fluid machine for supplying fluid into the cell incubator.
  • the above-mentioned cell culture apparatus may further include a temperature control unit that regulates the temperature inside the cell incubator.
  • cells may be adherently cultured in the cell incubator.
  • the inside of the cell incubator may be coated with a cell adhesion coating agent.
  • cells may be suspended-cultured in the cell incubator.
  • the above cell culture device may further include a hollow fiber membrane arranged in the cell culture device.
  • cells may be cultured inside the hollow fiber membrane.
  • the cells in the cell culture device may be movable to a variable volume container.
  • the above cell culture apparatus further includes a flow path connected to the cell incubator and a fluid machine provided in the flow path, and the fluid machine sucks cells in the cell incubator into the flow path. At least one of cell passage and expansion culture may be performed by returning the cells in the channel to the cell incubator.
  • the flow path may have a structure for dividing a cell mass.
  • a cell culture system including a mononuclear cell collector that collects monocytes from blood and a cell incubator that receives mononuclear cells from the mononuclear cell collector is provided.
  • the monocyte collector may receive the treated blood from which red blood cells have been at least partially removed and collect the monocytes from the treated blood.
  • the cell culture system described above may further include a red blood cell remover for supplying the mononuclear cell collector with treated blood from which red blood cells have been at least partially removed.
  • the cell culture system described above may further include a blood vessel for supplying the red blood cell remover with blood before at least partial removal of red blood cells.
  • the above cell culture system includes a variable volume container connected to the cell incubator, and when the fluid in the cell incubator moves to the variable volume container, the volume of the variable volume container may expand.
  • the above cell culture system includes a first volume variable container connected to the cell culture device and a second volume variable container connected to the cell culture device, and the fluid in the cell culture device is a first volume variable container.
  • the volume of the first volume variable container may expand and the volume of the second volume variable container may contract.
  • the inside of the mononuclear cell collector and the inside of the cell culture device may be closed from the outside air.
  • the inside of the red blood cell remover may be closed from the outside air.
  • the inside of the blood container may be closed from the outside air.
  • the inside of the first volume variable container and the inside of the second volume variable container may be closed from the outside air.
  • a blood container a red blood cell remover, a mononuclear cell collector, and a cell culture device may be embedded.
  • At least a portion of the blood vessel, at least a portion of the red blood cell remover, at least a portion of the mononuclear cell collector, and at least a portion of the cell culture vessel are carved into the member. You may.
  • the first volume variable container and the second volume variable container may be embedded.
  • At least a part of the first volume variable container and at least a part of the second volume variable container may be formed by being carved into a member.
  • the inside of the first volume variable container and the inside of the second volume variable container do not have to exchange gas with the outside.
  • a cell culture method in which a factor is introduced into a cell in a cell incubator and the cell into which the factor is introduced is cultured in the same cell incubator as the cell incubator.
  • the cell incubator may be closed while the factor is introduced into the cell and the cell into which the factor is introduced is cultured.
  • variable volume container is connected to the cell incubator, and the fluid may move in the cell incubator and the variable volume container.
  • the factor may be supplied from a variable volume container.
  • the cells in the first state into which the factor has been introduced may be induced into the cells in the second state in the same cell incubator.
  • the first state may be a differentiated state and the second state may be an undifferentiated state.
  • the first state may be a dedifferentiated state and the second state may be a differentiated state.
  • the first state may be a dedifferentiated state
  • the second state may be a dedifferentiated state different from the first state
  • the cells in the first state may be somatic cells.
  • the cells in the first state may be blood cells.
  • the cells in the first state may be mononuclear cells.
  • the cells in the second state may be stem cells.
  • the cells in the second state may be iPS cells.
  • the cells in the first state may be stem cells.
  • the cells in the first state may be iPS cells.
  • the cells in the second state may be somatic cells.
  • the cells in the first state may be somatic cells, and the cells in the second state may be different from the cells in the first state.
  • the cells in the first state may be blood cells from which red blood cells have been partially removed.
  • the cells in the first state may be blood cells from which platelets have been partially removed.
  • the factor may be a factor that induces cells in the first state to cells in the second state.
  • the factor may be a factor that induces the state of a specific cell.
  • the factor may be a reprogramming factor.
  • the factor may be a differentiation-inducing factor.
  • the cells into which the factor has been introduced may be recovered from the cell incubator, returned to the same cell incubator as the cell incubator, and the cells may be subcultured or expanded.
  • treating blood to produce treated blood from which red blood cells have been at least partially removed diluting the treated blood, and mononuclear cells contained in the diluted treated blood.
  • a method for recovering monocytes comprises precipitating the blood, removing the supernatant of the diluted treated blood, and recovering the monocytes.
  • treated blood is prepared in an erythrocyte remover, and the treated blood is diluted, mononuclear cells are settled, and the supernatant is removed in the mononuclear cell collector.
  • the monocyte collector may be closed.
  • blood may be treated with an erythrocyte sedimentation agent or an erythrocyte remover.
  • the treated blood may be diluted with a phosphate buffer solution.
  • the supernatant of diluted treated blood may contain platelets.
  • red blood cells may be removed at least partially in the recovered monocytes.
  • platelets may be at least partially removed from the recovered monocytes.
  • an erythrocyte removal device it is possible to provide an erythrocyte removal device, a mononuclear cell collector, a cell culture device, a cell culture system, a cell culture method, and a method for collecting mononuclear cells.
  • FIG. 6 is a histogram showing the results of flow cytometry of iPS cells according to Example 1. It is an analysis result of the fluorescence activation cell sorting which concerns on Example 2.
  • FIG. 1 It is a micrograph (a) of the treated blood before being put into the monocyte collector according to the second embodiment, and a micrograph (b) of a solution containing monocytes recovered from the monocyte collector. It is a graph which shows the number of platelets in the treated blood before putting into the monocyte collector which concerns on Example 2, and the number of platelets in the solution containing the monocyte recovered from the monocyte collector. Photograph (a) of a culture solution containing treated blood before being placed in the mononuclear cell collector according to Example 2 and a photograph (b) of a culture solution containing a solution containing mononuclear cells from which platelets have been removed. ). It is a micrograph of the cell produced by the method of producing iPS cell which concerns on Example 3. FIG.
  • FIG. 6 is a histogram showing the results of flow cytometry analysis of cells prepared by the method for producing iPS cells according to Example 3. It is a micrograph of the cell produced by the method of producing iPS cell which concerns on Example 4.
  • FIG. 6 is a histogram showing the results of flow cytometry analysis of cells prepared by the method for producing iPS cells according to Example 4. It is a micrograph of the cell produced by the method of producing iPS cell which concerns on Example 5.
  • FIG. 6 is a histogram showing the results of flow cytometry analysis of cells prepared by the method for producing iPS cells according to Example 5. It is a micrograph of the cell produced by the method of producing iPS cell which concerns on Example 6.
  • FIG. 6 is a histogram showing the results of flow cytometry analysis of cells prepared by the method for producing iPS cells according to Example 6.
  • the red blood cell removing device 100 As shown in FIG. 1, the red blood cell removing device 100 according to the first embodiment has a blood container 10 for accommodating blood and an red blood cell removing device 11 that receives blood from the blood container 10 and at least partially removes red blood cells from the blood. And.
  • the blood container 10 stores blood inside.
  • the blood container 10 may have a structure capable of closing the inside from the outside air.
  • the enclosed space, including the inside of the blood vessel 10, may be configured to prevent gas exchange with the outside.
  • the blood container 10 may be embedded and embedded in a gas impermeable substance. At least a part of the blood container 10 may be formed by being carved into a member. At least a part of the blood container 10 may be carved into a member and formed by overlapping recesses.
  • the blood container 10 may be capable of changing the volume of the blood container 10.
  • the erythrocyte remover 11 houses, for example, an erythrocyte sedimentation agent or an erythrocyte remover inside.
  • the red blood cell remover 11 may have a structure capable of closing the inside from the outside air.
  • the enclosed space including the inside of the red blood cell remover 11 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the red blood cell remover 11 may be embedded and embedded in a gas impermeable substance. At least a portion of the red blood cell remover 11 may be carved into the member. At least a part of the red blood cell remover 11 may be carved into a member and formed by overlapping recesses.
  • the red blood cell remover 11 may be capable of changing the volume of the red blood cell remover 11.
  • a flow path 13 for sending blood from the blood container 10 to the red blood cell remover 11 is provided between the blood container 10 and the red blood cell remover 11.
  • the flow path 13 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 13 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 13 may be embedded and embedded in a gas impermeable substance. At least a part of the flow path 13 may be formed by being carved into a member. At least a part of the flow path 13 may be carved into a member and formed by overlapping recesses.
  • a flow path 12 for sending a fluid such as gas such as air from the red blood cell remover 11 to the blood container 10 is provided between the blood container 10 and the red blood cell remover 11.
  • the flow path 12 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 12 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 12 may be embedded and embedded in a gas impermeable substance. At least a part of the flow path 12 may be formed by being carved into a member. At least a part of the flow path 12 may be formed by being carved into a member and overlapping recesses.
  • the blood container 10 and each of the flow paths 12 and 13 may be connected by a connector.
  • the connector may be a sterile connector.
  • the connector may be a needleless connector.
  • the needleless connector may be a split septum type or a mechanical valve type.
  • the flow path 13 is provided with a fluid machine 14 such as a pump for moving the fluid in the flow path 13.
  • a fluid machine may be provided in the flow path 12, or a fluid machine may be provided in both the flow path 12 and the flow path 13.
  • the fluid includes both a gas and a liquid.
  • a positive displacement pump can be used as the fluid machine 14.
  • positive displacement pumps include reciprocating pumps including piston pumps, plunger pumps and diaphragm pumps, or rotary pumps including gear pumps, vane pumps and screw pumps.
  • diaphragm pumps include tubing pumps and piezoelectric (piezo) pumps.
  • the tubing pump is sometimes referred to as a peristaltic pump.
  • a microfluidic chip module in which various types of pumps are combined may be used. The same applies to the other fluid machines in the present disclosure.
  • a closed pump such as a peristaltic pump, a tubing pump, and a diaphragm pump, it is possible to send the fluid without the pump directly contacting the fluid inside the flow path.
  • the fluid machine 14 sucks the blood in the blood container 10 through the flow path 13 and supplies the sucked blood into the erythrocyte remover 11. Then, the gas in the red blood cell remover 11 is pushed by the pressure and sent into the blood vessel 10 via the flow path 12. In this way, the blood in the blood container 10 is sent into the red blood cell remover 11, and the gas in the red blood cell remover 11 is sent into the blood container 10, thereby reducing the pressure in the blood container 10 and the red blood cell remover 11. It is possible to average.
  • the fluid machine 14 may suck the gas in the red blood cell remover 11 through the flow path 13 and supply the sucked gas into the blood container 10.
  • the blood in the blood container 10 is pushed by the atmospheric pressure and sent into the red blood cell remover 11 via the flow path 12.
  • the blood sent into the red blood cell remover 11 comes into contact with the erythrocyte sedimentation agent or the red blood cell remover in the red blood cell remover 11.
  • the fluid machine 14 may agitate the blood by repeating suction of the fluid from the red blood cell remover 11 and delivery of the fluid into the red blood cell remover 11.
  • the erythrocyte sedimentation agent is contained in the erythrocyte eliminator 11
  • the erythrocytes are sedimented in the erythrocyte eliminator 11 and the erythrocytes are at least partially removed from the blood.
  • the red blood cell remover is contained in the red blood cell remover 11
  • the red blood cells are hemolyzed in the red blood cell remover 11 and the red blood cells are at least partially removed from the blood.
  • the red blood cell removing device 100 may further include a mononuclear cell collecting device 15 that receives treated blood from which red blood cells are at least partially removed from the red blood cell removing device 11 and collects mononuclear cells from the treated blood.
  • the monocyte collector 15 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the mononucleosis recovery device 15 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the monocyte collector 15 may be embedded and embedded in a gas impermeable material. At least a part of the monocyte collector 15 may be carved into a member. At least a part of the monocyte collector 15 may be carved into a member and formed by superimposing recesses.
  • the monocyte collector 15 may be capable of changing the volume of the monocyte collector 15.
  • the bottom of the mononuclear ball collector 15 is provided with a first opening 115, and the side surface of the mononuclear ball collector 15 is provided with a second opening 116.
  • the position of the first opening 115 is below the second opening 116 in the direction of gravity.
  • a flow path 19 is connected to the first opening 115 of the monocyte collector 15.
  • the flow path 19 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 19 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 19 may be embedded and embedded in a gas impermeable substance. At least a part of the flow path 19 may be formed by being carved into a member. At least a part of the flow path 19 may be carved into a member and formed by overlapping recesses.
  • a flow path 117 is connected to the second opening 116 of the monocyte collector 15.
  • the flow path 117 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 117 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 117 may be embedded and embedded in a gas impermeable material. At least a part of the flow path 117 may be formed by being carved into a member. At least a part of the flow path 117 may be carved into a member and formed by overlapping recesses. As shown in FIG. 1, the flow path 117 is provided with a fluid machine 21 such as a pump for moving the fluid in the flow path 117.
  • the bottom of the monocyte collector 15 may be funnel-shaped.
  • a first opening 115 is provided at the tip of the funnel-shaped bottom of the mononuclear ball collector 15, and a second opening 116 is provided on the side surface of the funnel-shaped bottom.
  • the second opening 116 may be provided with a filter through which monocytes cannot pass.
  • the monocyte collector 15 can accommodate a diluted solution such as a buffer solution inside.
  • the diluting liquid may be introduced into the mononuclear cell collector 15 from the diluting liquid container 61 shown in FIG. 1 containing the diluting liquid via the flow path 60.
  • the dilution liquid container 61 may be capable of changing the volume of the dilution liquid container. Further, for example, the inside of the flow path 19 and the flow path 117 is filled with a diluent.
  • At least one of the dilution liquid container 61 and the flow path 60 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the dilution container 61 and the flow path 60 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the dilution liquid container 61 and the flow path 60 may be embedded and embedded in a gas impermeable substance.
  • At least a part of the dilution liquid container 61 and the flow path 60 may be formed by being carved into the member.
  • At least a part of the dilution liquid container 61 and the flow path 60 may be formed by being carved into a member and overlapping recesses.
  • the flow path 17 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 17 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 17 may be embedded and embedded in a gas impermeable substance. At least a part of the flow path 17 may be formed by being carved into a member. At least a part of the flow path 17 may be carved into a member and formed by overlapping recesses.
  • a flow path 16 for sending a fluid such as a gas such as air from the monocyte collector 15 to the red blood cell remover 11 is provided between the red blood cell remover 11 and the monocyte collector 15.
  • the flow path 16 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 16 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 16 may be embedded and embedded in a gas impermeable substance. At least a part of the flow path 16 may be formed by being carved into a member. At least a part of the flow path 16 may be carved into a member and formed by overlapping recesses.
  • the flow path 17 is provided with a fluid machine 18 such as a pump for moving the fluid in the flow path 17.
  • a fluid machine may be provided in the flow path 16, or a fluid machine may be provided in both the flow path 16 and the flow path 17.
  • the fluid machine 18 sucks the treated blood from which the red blood cells in the red blood cell remover 11 have been at least partially removed via the flow path 17.
  • the treated blood from which the sucked red blood cells have been at least partially removed is supplied into the mononuclear cell collector 15, the gas in the mononuclear cell collector 15 is pushed by the pressure and the red blood cells are pushed through the flow path 16. It is sent into the remover 11.
  • the treated blood from which the erythrocytes in the erythrocyte remover 11 are at least partially removed is sent into the mononuclear cell collector 15, and the gas in the mononuclear sphere collector 15 is sent into the erythrocyte remover 11. Therefore, it is possible to average the pressure in the red blood cell remover 11 and the mononuclear cell collector 15.
  • the diluent may be repeatedly supplied from the diluent container 61.
  • the fluid machine 18 may suck the gas in the mononuclear cell collector 15 through the flow path 17 and supply the sucked gas into the red blood cell remover 11.
  • the treated blood from which the red blood cells in the red blood cell remover 11 have been removed at least partially is pushed by the atmospheric pressure and sent into the mononuclear cell collector 15 via the flow path 16.
  • the treated blood in which the red blood cells in the red blood cell remover 11 are at least partially removed can be sent into the monocyte collector 15. It is possible.
  • the supernatant in the red blood cell remover 11 is sent to the mononuclear cell collector 15 as treated blood from which the red blood cells are at least partially removed.
  • the treated blood from which the red blood cells have been partially removed, which has been sent to the monocyte collector 15, is diluted with a diluent as shown in FIG. 2 (a).
  • a diluent as shown in FIG. 2 (a).
  • the diluent may contain an erythrocyte remover. In this case, the red blood cells remaining in the treated blood solution are hemolyzed.
  • the settled monocytes accumulate at the tip of the funnel-shaped bottom of the monocyte collector 15.
  • FIG. 1 provided in the flow path 117 connected to the second opening 116 of the monocyte collector 15.
  • the fluid machine 21 shown in the above sucks the diluted treated blood solution which is the supernatant.
  • the suction force for sucking the supernatant is set so as to make it difficult to suck the settled monocytes shown in FIG. 2 (c).
  • the supernatant contains platelets and hemolyzed red blood cells.
  • the aspirated supernatant may be sent into the red blood cell remover 11 or the blood vessel 10 shown in FIG. Further, a gas having a volume similar to that of the supernatant sucked from the monocyte collector 15 may be sent from the red blood cell remover 11 or the blood container 10 into the monocyte collector 15.
  • the flow path 19 is provided with a monocyte suction device 20 that sucks monocytes accumulated at the bottom of the monocyte collector 15.
  • a fluid machine such as a pump can be used.
  • the size of the first opening 115 shown in FIG. 2 for example, when the mononuclear ball suction device 20 does not suck the mononuclear sphere, the mononuclear sphere is clogged in the first opening 115, and the mononuclear ball suction device 20 It is set so that the mononuclear sphere can pass through the first opening 115 when the mononuclear sphere is sucked.
  • the monocyte suction device 20 sucks the monocytes, the monocytes move from the inside of the monocyte collector 15 to the flow path 19.
  • the monocytes in the monocyte collector 15 may be moved to the flow path 19 by pressurizing the inside of the monocyte collector 15.
  • the monocyte suction device 20 may or may not be provided in the flow path 19.
  • the cell culture device 200 includes a cell incubator 22 for culturing cells.
  • the cell incubator 22 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the cell incubator 22 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the cell incubator 22 may be embedded and embedded in a gas impermeable substance. At least a part of the cell incubator 22 may be formed by being carved into a member. At least a part of the cell incubator 22 may be carved into a member and formed by overlapping recesses.
  • the cells may be adherently cultured or suspended in the cell incubator 22.
  • the inside of the cell incubator 22 may be coated with a cell adhesion coating agent such as matrigel, collagen, polylysine, fibronectin, vitronectin, and laminin. In the following, suspension culture will be described as an example.
  • a cell adhesion coating agent such as matrigel, collagen, polylysine, fibronectin, vitronectin, and laminin.
  • suspension culture will be described as an example.
  • cells cannot permeate, but medium components and waste products may be separated by a permeable medium component permeation member.
  • the inner wall of the cell incubator 22 is coated with a non-cell adhesive substance such as poly-HEMA (poly 2-hydroxyethyl methyllate) to make the inner wall of the cell incubator 22 non-adhesive. May be good.
  • the cell incubator 22 may be provided with a window for observing the inside. As the window material, for example, glass and resin can be used.
  • the cell incubator 22 may be provided with a temperature control unit for heating and cooling the window.
  • the temperature control unit may be a transparent heater such as a transparent conductive film that is arranged on the window and heats the window.
  • the cell incubator 22 may be provided with a temperature control unit for heating and cooling the housing. By controlling the temperature of the housing with the temperature control unit, it is possible to control the temperature of the medium in the cell incubator 22.
  • the cell incubator 22 may further include a thermometer for measuring the temperature of the medium in the cell incubator 22. The thermometer may measure the temperature of the medium based on the temperature of the cell incubator 22 without contacting the medium, or may directly measure the temperature of the medium by contacting the medium. In this case, the temperature control unit may be feedback-controlled so that the temperature of the medium becomes a predetermined temperature. The temperature of the medium is adjusted, for example, from 20 ° C to 45 ° C.
  • a flow path 19 is connected to the cell incubator 22. Cells are sent into the cell incubator 22 via the flow path 19.
  • a flow path 23 is connected to the flow path 19.
  • the flow path 23 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 23 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 23 may be embedded and embedded in a gas impermeable substance. At least a part of the flow path 23 may be formed by being carved into a member. At least a part of the flow path 23 may be carved into a member and formed by overlapping recesses.
  • the flow path 23 is provided with a fluid machine 24 such as a pump for moving the fluid in the flow path 23.
  • a first medium container 25 which is a fluid container for accommodating a somatic cell medium such as a differentiated cell medium, is connected to the flow path 23.
  • the somatic cell culture medium may be a gel or a liquid.
  • the medium When the medium is gel-like, the medium may contain a polymer compound.
  • High molecular weight compounds include, for example, gellan gum, deacylated gellan gum, hyaluronic acid, lambzan gum, dieutan gum, xanthan gum, carrageenan, fucoidan, pectin, pectic acid, pectinic acid, heparan sulfate, heparin, heparin sulfate, keratosulfate, chondroitin sulfate. , Deltaman sulfate, ramnan sulfate, and at least one selected from the group consisting of salts thereof.
  • the medium may contain methyl cellulose. By including methyl cellulose, agglutination between cells is further suppressed.
  • the medium is poly (glycerol monomethacrylate) (PGMA), poly (2-hydroxypropylmethacrylate) (PHPMA), Poly (N-isopropylacrylamide) (PNIPAM), amine terminated, carboxylic acid terminated, maleimide terminated, N-hydroxysuccinimide (NHS).
  • PGMA poly (glycerol monomethacrylate)
  • PPMA poly (2-hydroxypropylmethacrylate)
  • PNIPAM Poly (N-isopropylacrylamide)
  • NHS N-hydroxysuccinimide
  • the gel-like medium or gel medium includes a polymer medium.
  • the first medium container 25 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the first medium container 25 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the first medium container 25 may be embedded and embedded in a gas impermeable substance. At least a part of the first medium container 25 may be formed by being carved into a member. At least a part of the first medium container 25 may be carved into a member and formed by overlapping recesses. The volume of the first medium container 25 may be changed.
  • the first medium container 25 includes a syringe containing a somatic cell culture medium and a plunger inserted into the syringe and movable in the syringe, and the somatic cells in the syringe are moved by the movement of the plunger.
  • the volume that can accommodate the medium can be changed.
  • the first medium container 25 may be a flexible bellows or bag.
  • the fluid machine 24 sends the somatic cell medium from the first medium container 25 to the flow path 19 via the flow path 23.
  • the first medium container 25 reduces the volume that can accommodate the somatic cell culture medium.
  • the volume of the first medium container 25 may be actively contracted, or the volume may be passively contracted by the suction force from the inside of the flow path 23.
  • the somatic cell medium sent to the flow path 19 via the flow path 23 and the mononuclear cells in the flow path 19 are mixed and sent into the cell incubator 22.
  • the first medium container 25 may be provided with a temperature control device for adjusting the temperature of the medium in the first medium container 25.
  • the first volume variable container 27 is connected to the cell incubator 22 via a flow path 26.
  • the flow path 26 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 26 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 26 may be embedded and embedded in a gas impermeable substance. At least a part of the flow path 26 may be formed by being carved into a member. At least a part of the flow path 26 may be carved into a member and formed by overlapping recesses.
  • the flow path 26 may be provided with a fluid machine 28 such as a pump for moving the fluid in the flow path 26.
  • the first variable volume container 27 may have a structure in which the inside can be closed from the outside air.
  • the closed space including the inside of the first variable volume container 27 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the first volume variable container 27 may be embedded and embedded in a gas impermeable substance. At least a part of the first volume variable container 27 may be formed by being carved into a member. At least a part of the first volume variable container 27 may be carved into a member and formed by overlapping recesses.
  • the first volume variable container 27 may be capable of changing the volume of the first volume variable container 27.
  • the first variable volume container 27 includes a syringe for accommodating the fluid and a plunger which is inserted into the syringe and can move in the syringe, and accommodates the fluid in the syringe by moving the plunger.
  • the possible volume can be changed.
  • the first variable volume container 27 may be a flexible bellows or bag.
  • a second volume variable container 30 is connected to the cell incubator 22 via, for example, a flow path 29.
  • the flow path 29 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 29 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 29 may be embedded and embedded in a gas impermeable substance. At least a part of the flow path 29 may be formed by being carved into a member. At least a part of the flow path 29 may be carved into a member and formed by overlapping recesses.
  • the flow path 29 may be provided with a fluid machine such as a pump for moving the fluid in the flow path 29.
  • the second volume variable container 30 may have a structure in which the inside can be closed from the outside air.
  • the closed space including the inside of the second volume variable container 30 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the second volume variable container 30 may be embedded and embedded in a gas impermeable substance. At least a part of the second volume variable container 30 may be formed by being carved into a member. At least a part of the second volume variable container 30 may be carved into a member and formed by overlapping recesses.
  • the second volume variable container 30 may be capable of changing the volume of the second volume variable container 30.
  • the second volume variable container 30 includes a syringe for accommodating the fluid and a plunger which is inserted into the syringe and can move in the syringe, and accommodates the fluid in the syringe by moving the plunger.
  • the possible volume can be changed.
  • the second volume variable container 30 may be a flexible bellows or bag.
  • the gas such as air in the cell incubator 22 moves into, for example, the second volume variable container 30 and has a second volume.
  • the variable vessel 30 expands in volume and receives the gas that has moved from the inside of the cell incubator 22.
  • the volume of the second variable volume container 30 may be actively expanded, or the volume may be passively expanded by receiving pressure.
  • the first volume variable container 27 contains, for example, a substance such as a factor that induces cells in the first state such as an inducing factor into cells in the second state.
  • the inducing factor may be RNA, protein, or compound.
  • the RNA may be a modified RNA or an unmodified RNA.
  • the first volume variable container 27 may contain, for example, a lipofection reagent.
  • the inducing factor may be contained in a plasmid vector, or a viral vector such as a retrovirus vector, a lentiviral vector, or a Sendai viral vector, or a virus.
  • induction refers to reprogramming, reprogramming, transformation, transdifferentiation or lineage reprogramming, differentiation induction, cell fate reprogramming, and the like.
  • Reprogramming factors include, for example, OCT3 / 4, SOX2, KLF4, c-MYC.
  • an inducing factor such as a reprogramming factor is introduced into a mononuclear cell to prepare an iPS cell
  • the fluid machine 28 uses a somatic cell medium containing the mononuclear cell in the cell incubator 22 through a flow path 26. Through, it is moved into the first volume variable container 27.
  • the first volume variable container 27 expands the volume and receives a somatic cell medium containing mononuclear cell cells.
  • the volume of the first variable volume container 27 may be actively expanded, or the volume may be passively expanded by receiving pressure.
  • the second volume variable container 30 containing the gas contracts its volume, and the housed gas is sent into the cell incubator 22.
  • the volume of the second variable volume container 30 may be actively contracted, or the volume may be passively contracted by the suction force from the inside of the cell incubator 22.
  • the first volume variable container 27 may repeatedly expand and contract in volume to agitate the somatic cell culture medium containing mononuclear cells and an inducing factor.
  • the fluid machine 28 moves the somatic cell medium containing the mononuclear cells into which the inducer has been introduced in the first volume variable container 27 into the cell incubator 22 via the flow path 26. ..
  • the first volume variable container 27 contracts the volume.
  • the second volume variable container 30 expands the volume and receives gas from the inside of the cell incubator 22.
  • the fluid machine 28 transmits the inducing factor in the first volume variable container 27 via the flow path 26. , May be moved into the cell incubator 22. At this time, the first volume variable container 27 may contract the volume, and the second volume variable container 30 may expand the volume.
  • the inducing factor moves from the first volume variable container 27 into the cell incubator 22 to come into contact with the mononuclear cells in the cell incubator 22, and the inducing factor is introduced into the mononuclear cells.
  • the fluid machine 28 may move the inducing factor in the first volume variable container 27 into the cell incubator 22 via the flow path 26 in a plurality of times. As a result, the inducing factor is introduced into the mononuclear cells in a plurality of times.
  • the cell incubator 22 is connected to, for example, a second medium container 32, which is a fluid container for accommodating a medium such as a stem cell medium or a somatic cell medium, via a flow path 31.
  • a second medium container 32 contains the stem cell medium
  • the stem cell medium may be a gel or a liquid.
  • an induction culture medium, an expansion culture medium, and a maintenance culture medium can be used.
  • the flow path 31 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 31 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 31 may be embedded and embedded in a gas impermeable substance. At least a part of the flow path 31 may be formed by being carved into a member. At least a part of the flow path 31 may be formed by being carved into a member and overlapping recesses.
  • the flow path 31 may be provided with a fluid machine 33 such as a pump for moving the fluid in the flow path 31.
  • the second medium container 32 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the second medium container 32 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the second medium container 32 may be embedded and embedded in a gas impermeable substance. At least a part of the second medium container 32 may be formed by being carved into a member. At least a part of the second medium container 32 may be carved into the member and formed by overlapping the recesses. The volume of the second medium container 32 may be changed in the second medium container 32.
  • the second medium container 32 includes a syringe for accommodating the fluid and a plunger which is inserted into the syringe and can move in the syringe, and the fluid in the syringe can be accommodated by moving the plunger. Volume can be changed.
  • the second medium container 32 may be a flexible bellows or bag.
  • the second medium container 32 may be provided with a temperature control device for adjusting the temperature of the medium in the second medium container 32.
  • a third volume variable container 35 is connected to the cell incubator 22 via, for example, a flow path 34.
  • the flow path 34 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 34 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 34 may be embedded and embedded in a gas impermeable substance. At least a part of the flow path 34 may be formed by being carved into a member. At least a part of the flow path 34 may be carved into a member and formed by overlapping recesses.
  • the third volume variable container 35 may have a structure in which the inside can be closed from the outside air.
  • the closed space including the inside of the third volume variable container 35 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the third volume variable container 35 may be embedded and embedded in a gas impermeable substance. At least a part of the third volume variable container 35 may be formed by being carved into a member. At least a part of the third volume variable container 35 may be carved into a member and formed by overlapping recesses.
  • the third volume variable container 35 may be capable of changing the volume of the third volume variable container 35.
  • the third volume variable container 35 includes a syringe for accommodating the fluid and a plunger which is inserted into the syringe and can move in the syringe, and accommodates the fluid in the syringe by moving the plunger.
  • the possible volume can be changed.
  • the third volume variable container 35 may be a flexible bellows or bag.
  • the fluid machine 33 moves the stem cell medium in the second medium container 32 into the cell incubator 22 via the flow path 31.
  • the stem cell medium may be placed in a section in the cell incubator 22 that is in contact with a section in which cells exist and in which cells do not exist, among the sections separated by the medium component permeation member.
  • the volume of the second medium container 32 in which the stem cell medium is sucked from the inside, contracts.
  • the volume of the second medium container 32 may be actively contracted or passively contracted.
  • the third volume variable container 35 expands the volume and receives the excess fluid in the cell incubator 22 due to the inflow of the stem cell medium through the flow path 34.
  • the flow path 34 may be in contact with a compartment in which cells exist and connected to a compartment in which cells do not exist among the compartments separated by the medium component permeation member in the cell incubator 22.
  • the volume of the third variable volume container 35 may be actively expanded, or the volume may be passively expanded by receiving pressure.
  • the flow path 34 may be in contact with the section in which the cells exist among the sections separated by the medium component permeation member in the cell incubator 22. In this case, the surplus cells in the cell incubator 22 may be sent out to the third volume variable container 35 via the flow path 34.
  • the medium in the section in which the cells are present and the medium in the section in which the cells are not present exchange medium components and waste products by, for example, osmotic pressure.
  • the culture component permeation member for example, a semipermeable membrane, a mesh, and a hollow fiber membrane can be used.
  • the semipermeable membrane includes a dialysis membrane.
  • the molecular weight cut-off of the semipermeable membrane is, for example, 0.1 kDa or more, 10 kDa or more, or 50 kDa or more.
  • the semitransparent film is, for example, cellulose ester, ethyl cellulose, cellulose ester, regenerated cellulose, polysulfone, polyacrylic nitrile, polymethyl methacrylate, ethylene vinyl alcohol copolymer, polyester polymer alloy, polycarbonate, polyamide, cellulose acetate, cellulose di It is composed of acetate, cellulose triacetate, copper ammonium rayon, saponified cellulose, hemophan film, phosphatidylcholine film, vitamin E coating film and the like.
  • the mesh When the culture component permeation member is a mesh, the mesh has smaller pores than the cells cultured in the cell incubator 22.
  • the material of the mesh is, for example, resin and metal, but is not particularly limited.
  • the surface of the culture component permeation member may be non-cell adhesive.
  • the hollow fiber membrane has pores smaller than those of cells cultured in the cell incubator 22.
  • cells may be cultured inside the hollow fiber membrane.
  • the fluid machine 33 moves the stem cell medium in the second medium container 32 into the cell incubator 22 via the flow path 31 at a predetermined timing. You may.
  • the third volume variable container 35 may expand the volume and accept the excess used stem cell medium in the cell incubator 22 due to the inflow of fresh stem cell medium.
  • the fluid machine 33 controls, for example, the amount of liquid to be sent to the medium according to the state of the medium, the state of the cell mass in the medium, the number of cells, the number of cell masses, the turbidity of the medium, and the change in pH. You may start and end the liquid feeding.
  • a fluid machine 37 such as a pump may be connected to the section in which the cells exist among the sections separated by the medium component permeation member in the cell incubator 22 via the flow path 36.
  • the flow path 36 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 36 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 36 may be embedded and embedded in a gas impermeable substance. At least a part of the flow path 36 may be formed by being carved into a member. At least a part of the flow path 36 may be formed by being carved into a member and overlapping recesses.
  • the fluid machine 37 uses a medium between the section in which the cells are present and the flow path 36 among the sections separated by the medium component permeation member in the cell incubator 22. Circulate.
  • the fluid machine 37 may circulate the medium at all times, or may circulate the medium at any time.
  • the fluid machine 37 reciprocates the medium between the section in which the cells exist and the flow path 36 among the sections separated by the medium component permeation member in the cell incubator 22 to stir the medium. May be good.
  • the fluid machine 37 may constantly agitate the medium or may agitate the medium at an arbitrary timing.
  • the fluid machine 37 controls, for example, the amount of liquid to be sent to the medium according to the state of the medium, the state of the cell mass in the medium, the number of cells, the number of cell masses, the turbidity of the medium, and the change in pH. You may start and end the liquid feeding.
  • the cells may be subcultured and expanded by aspirating the cells in the cell incubator 22 into the flow path 36 and returning the cells to the cell incubator 22.
  • the flow path 36 may have a structure for dividing the cell mass. For example, by having a structure in which the flow path 36 is meandering or a structure in which the diameter increases or decreases, it is possible to divide the cell mass flowing in the flow path 36.
  • a fluid machine 39 such as a pump may be connected to a section in the cell incubator 22 which is separated by a medium component permeation member and in which no cells exist, via a flow path 38.
  • the flow path 38 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 38 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 38 may be embedded and embedded in a gas impermeable material. At least a part of the flow path 38 may be formed by being carved into a member. At least a part of the flow path 38 may be carved into a member and formed by overlapping recesses.
  • the fluid machine 39 includes a cell-free compartment and a flow path 38 among the compartments separated by the medium component permeation member in the cell incubator 22. Circulate the medium between.
  • the fluid machine 39 may circulate the medium at all times, or may circulate the medium at any time.
  • the fluid machine 39 reciprocates the medium between the cell-free compartment and the flow path 38 among the compartments separated by the medium component permeation member in the cell incubator 22 to stir the medium. May be good.
  • the fluid machine 39 may constantly agitate the medium or may agitate the medium at any time.
  • the fluid machine 39 controls, for example, the amount of liquid to be sent to the medium according to the state of the medium, the state of the cell mass in the medium, the number of cells, the number of cell masses, the turbidity of the medium, and the change in pH. You may start and end the liquid feeding.
  • iPS cells are prepared from mononuclear cells into which an inducing factor has been introduced in the cell incubator 22, expanded and cultured, and then the iPS cells are collected from the cell incubator 22.
  • the iPS cells may form a cell mass (colony) in the cell incubator 22.
  • the cell culture apparatus 200 for example, since cells are cultured in a completely closed system, it is possible to reduce the risk of cross-contamination due to leakage of cells from the culture apparatus. Further, for example, even when cells are infected with a virus such as HIV hepatitis virus, it is possible to reduce the risk of infection to the operator due to cell leakage. Further, it is possible to reduce the risk that the medium in the cell incubator contaminates bacteria, viruses, molds and the like in the air outside the cell incubator. Furthermore, according to the cell incubator according to the embodiment, it is possible to incubate cells without using a CO 2 incubator.
  • the erythrocyte removal device 101 includes a blood container 50 for containing blood and an erythrocyte treatment agent container 53 for containing an erythrocyte sedimentation agent or an erythrocyte removal agent.
  • the blood container 50 stores blood inside.
  • the blood container 50 may have a structure capable of closing the inside from the outside air.
  • the enclosed space including the inside of the blood container 50 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the blood container 50 may be embedded and embedded in a gas impermeable substance. At least a part of the blood container 50 may be formed by carving into a member. At least a part of the blood container 50 may be carved into a member and formed by overlapping recesses.
  • the blood container 50 may be capable of changing the volume of the blood container 50.
  • the blood container 50 includes a syringe for accommodating a fluid and a plunger which is inserted into the syringe and can move in the syringe, and a volume capable of accommodating the fluid in the syringe by moving the plunger. Can be changed.
  • the blood container 50 may be a flexible bellows or bag.
  • the erythrocyte treatment agent container 53 contains an erythrocyte sedimentation agent or an erythrocyte remover.
  • the erythrocyte treatment agent container 53 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the erythrocyte treatment agent container 53 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the erythrocyte treatment agent container 53 may be embedded and embedded in a gas impermeable substance.
  • At least a part of the red blood cell treatment agent container 53 may be formed by being carved into a member.
  • At least a part of the red blood cell treatment agent container 53 may be carved into a member and formed by overlapping recesses.
  • the volume of the red blood cell treatment agent container 53 may be changed.
  • the erythrocyte processing agent container 53 includes a syringe for accommodating the fluid and a plunger which is inserted into the syringe and can move in the syringe, and the fluid in the syringe can be accommodated by moving the plunger.
  • the volume can be changed.
  • the red blood cell treatment agent container 53 may be a flexible bellows or bag.
  • the red blood cell removing device 101 further includes, for example, a mixer 57 that mixes blood with an erythrocyte sedimentation agent or an erythrocyte removing agent.
  • the mixer 57 includes, for example, a bent flow path through which a mixed solution of blood and an erythrocyte sedimentation agent or an erythrocyte remover flows.
  • the bent flow path may be bent in a spiral shape.
  • the flow path may meander in the bent flow path.
  • the cross-sectional area may repeatedly increase and decrease in the bent flow path.
  • the mixer 57 may have a structure capable of closing the inside from the outside air.
  • the enclosed space including the inside of the mixer 57 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the mixer 57 may be embedded and embedded in a gas impermeable material. At least a part of the mixer 57 may be formed by carving into a member. At least a part of the mixer 57 may be carved into a member and formed by overlapping recesses.
  • the blood container 50 is connected to at least a flow path 51 for sending blood from the blood container 50 to the mixer 57.
  • the erythrocyte treatment agent container 53 is connected to a flow path 54 for sending at least the erythrocyte sedimentation agent or the erythrocyte remover from the erythrocyte treatment agent container 53 to the mixer 57.
  • the flow path 51 and the flow path 54 merge with the flow path 56.
  • the flow path 56 is connected to the mixer 57.
  • the mixer 57 is connected to a flow path 58 for sending the mixed solution of the blood mixed in the mixer 57 and the erythrocyte sedimentation agent or the erythrocyte remover into the erythrocyte remover 11.
  • the flow path 51 may be provided with a fluid machine 52 such as a pump for moving the fluid in the flow path 51.
  • the flow path 54 may be provided with a fluid machine 55 such as a pump for moving the fluid in the flow path 54.
  • the flow paths 51, 54, 56, 58 may have a structure capable of closing the inside from the outside air.
  • the enclosed space including the inside of the flow paths 51, 54, 56, 58 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the channels 51, 54, 56, 58 may be embedded and embedded in a gas impermeable material. At least a part of the flow paths 51, 54, 56, 58 may be formed by being carved into a member. At least a part of the flow paths 51, 54, 56, 58 may be carved into the member and formed by overlapping the recesses.
  • the fluid machine 52 moves the blood in the blood container 50 into the mixer 57 via the flow paths 51 and 56. .. Further, the fluid machine 55 moves the erythrocyte sedimentation agent or the erythrocyte remover in the erythrocyte treatment agent container 53 into the mixer 57 via the flow paths 54 and 56.
  • a fluid machine is not provided in the flow paths 51 and 54, but a fluid machine is provided in the flow path 56, and the fluid machine provided in the flow path 56 is the blood in the blood container 50 and the red blood cells in the red blood cell treatment agent container 53.
  • the precipitant or red blood cell remover may be moved into the mixer 57.
  • the blood is mixed with the erythrocyte sedimentation rate or the erythrocyte depleting agent.
  • the mixed solution of the blood mixed in the mixer 57 and the erythrocyte sedimentation agent or the erythrocyte remover is sent to the erythrocyte remover 11 via the flow path 58.
  • the red blood cells settle or hemolyze in the red blood cell remover 11 as in the first embodiment.
  • other components of the red blood cell removing device 101 according to the second embodiment may be the same as the red blood cell removing device 100 according to the second embodiment.
  • the red blood cell removing device 101 As shown in FIG. 4, the red blood cell removing device 101 according to the third embodiment is provided in a flow path 51 for sending at least blood from the blood container 50 to the mixer 57, and the inside can be evacuated.
  • a container 70 is provided.
  • the vacuum container 70 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the vacuum vessel 70 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the vacuum vessel 70 may be embedded and embedded in a gas impermeable substance. At least a part of the vacuum vessel 70 may be formed by being carved into a member. At least a part of the vacuum container 70 may be carved into a member and formed by overlapping recesses. The volume of the vacuum container 70 may be changed in the vacuum container 70.
  • the vacuum vessel 70 may be a flexible bellows or bag.
  • the red blood cell removing device 101 can evacuate the inside provided in the flow path 54 for sending at least the erythrocyte sedimentation agent or the red blood cell removing agent from the red blood cell processing agent container 53 to the mixer 57.
  • a vacuum container 71 is provided.
  • the vacuum container 71 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the vacuum vessel 71 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the vacuum vessel 71 may be embedded and embedded in a gas impermeable substance. At least a part of the vacuum vessel 71 may be formed by being carved into a member. At least a part of the vacuum container 71 may be carved into a member and formed by overlapping recesses. The volume of the vacuum container 71 may be changed.
  • the vacuum vessel 71 may be a flexible bellows or bag.
  • the blood in the blood container 50 moves into the vacuum container 70, and the blood is further mixed through the flow paths 51 and 56. Move into the vessel 57.
  • the erythrocyte treatment agent container 53 is connected to the flow path 54 with the inside of the vacuum container 71 evacuated in advance, the erythrocyte sedimentation agent or the erythrocyte remover in the erythrocyte treatment agent container 53 moves into the vacuum container 71. Further, blood moves into the mixer 57 via the channels 54 and 56.
  • red blood cell removing device 101 may be the same as those of the second embodiment.
  • the vacuum vessels 70 and 71 shown in FIG. 4 may be omitted, and the red blood cell remover 11 may be evacuated in advance.
  • the blood container 50 is connected to the flow path 51 and the red blood cell treatment agent container 53 is connected to the flow path 54 with the inside of the red blood cell remover 11 evacuated in advance
  • the blood in the blood container 50 passes through the flow paths 51 and 56.
  • the erythrocyte sedimentation agent or erythrocyte remover in the erythrocyte treatment agent container 53 moves into the mixer 57 via the flow paths 54 and 56. Further, the blood mixed in the mixer 57 and the erythrocyte sedimentation agent or the erythrocyte remover move into the erythrocyte remover 11 via the flow path 58.
  • the flow path 51 and the flow path 54 are closed with a valve or the like, the inside of the red blood cell remover 11 is evacuated, and the valves of the flow path 51 and the flow path 54 are opened, the blood in the blood container 50 flows into the flow paths 51 and 56.
  • the erythrocyte sedimentation agent or the erythrocyte remover in the erythrocyte treatment agent container 53 moves into the mixer 57 via the flow paths 54 and 56. Further, the blood mixed in the mixer 57 and the erythrocyte sedimentation agent or the erythrocyte remover move into the erythrocyte remover 11 via the flow path 58.
  • the cells sent to the cell incubator 22 shown in FIG. 1 are not limited to mononuclear cells.
  • the cells sent to the cell incubator 22 may be stem cells, fibroblasts, or other somatic cells.
  • the cells sent to the cell incubator 22 are arbitrary.
  • the first volume variable container 27 houses the differentiation-inducing factor inside.
  • Example 1 In this example, an example is shown in which cells can be cultured in a completely closed environment without exchanging medium and gas. Growth factors were added to the medium (StemSpan H3000, registered trademark, STEMCELL Technologies Inc.), and deacylated gellan gum was further added to the medium to prepare a gel medium.
  • Selection factors were added to the medium (StemSpan H3000, registered trademark, STEMCELL Technologies Inc.), and deacylated gellan gum was further added to the medium to prepare a gel medium.
  • the prepared gel medium was placed in a 15 mL tube, and 2 ⁇ 10 5 blood cells were seeded in the gel medium. Then, a 15 mL tube was placed in a CO 2 incubator, and blood cells (mononuclear cells) were cultured for 7 days. Then, a Sendai virus vector carrying OCT3 / 4, SOX2, KLF4, and cMYC was added to the gel medium so that the multiplicity of infection (MOI) was 10.0, and blood cells were infected with Sendai virus.
  • MOI multiplicity of infection
  • DMEM / F12 containing 20% KnockOut SR registered trademark, Thermo Fisher SCIENTIFIC
  • the medium containing the cells was placed in a sealable cell incubator, and the gel medium was injected into the cell incubator. After that, the inside of the cell incubator was sealed to prevent gas exchange from occurring completely between the inside and the outside of the cell incubator.
  • the suspension culture of cells into which the reprogramming factor was introduced was started in the cell incubator. Then, once every two days, the 2 mL gel medium in the medium retention tank 40 was replaced with 2 mL of fresh gel medium.
  • Example 2 Blood was treated with an erythrocyte sedimentation rate to obtain treated blood from which red blood cells were at least partially removed.
  • the results of treatment of the treated blood with a surface cell marker antibody and analysis by fluorescence activated cell sorting (FACS) are shown in FIG.
  • the treated blood contained CD3 positive cells, CD14 positive cells, CD31 positive cells, CD33 positive cells, CD34 positive cells, CD19 positive cells, CD41 positive cells, CD42 positive cells, and CD56 positive cells.
  • the treated blood from which red blood cells were at least partially removed was placed in a mononuclear cell collector as shown in FIG. 2, diluted with a buffer solution, and the supernatant was removed. Then, the monocytes were collected from the monocyte collector. As shown in FIG. 8 (a), the treated blood before being placed in the mononuclear cell collector contained a large amount of platelets. On the other hand, as shown in FIG. 8B, platelets were almost completely removed from the solution containing monocytes recovered from the monocyte collector.
  • FIG. 9 shows a graph showing the number of platelets in the treated blood before being placed in the monocyte collector and the number of platelets in the solution containing the monocytes recovered from the monocyte collector in the same area. Shown.
  • Example 3 Deacylated gellan gum was added to the blood medium to prepare a gel medium.
  • the prepared gel medium was placed in a laminin-coated 6-well dish, and 2 ⁇ 10 5 blood cells (mononuclear cells) were seeded. Then, a 6-well dish was placed in a CO 2 incubator at 37 ° C., and blood cells were cultured for 7 days. Then, a Sendai virus vector (CytoTune-iPS2.0, ThermoFisher SCIENTIFIC) carrying OCT3 / 4, SOX2, KLF4, and cMYC was added to the blood growth medium so that the infection multiplicity (MOI) was 5, and blood cells were added to Sendai. Infected with a virus.
  • a Sendai virus vector (CytoTune-iPS2.0, ThermoFisher SCIENTIFIC) carrying OCT3 / 4, SOX2, KLF4, and cMYC was added to the blood growth medium so that the infection multiplicity (MO
  • DMEM / F12 containing 20% KnockOut SR registered trademark, Thermo Fisher SCIENTIFIC
  • Stemfit Two days after adding Sendai virus to the blood growth medium with the cells in the 6-well dish, use 500 ⁇ L of stem cell medium (DMEM / F12 containing 20% KnockOut SR (registered trademark, Thermo Fisher SCIENTIFIC)) or Stemfit. The medium was exchanged.
  • DMEM / F12 containing 20% KnockOut SR registered trademark, Thermo Fisher SCIENTIFIC
  • Example 4 Deacylated gellan gum was added to the blood medium to prepare a gel medium.
  • the prepared gel medium was placed in a laminin-coated flask, and 5 ⁇ 10 5 blood cells (mononuclear cells) were seeded. Then, it was placed in a CO 2 incubator at 37 ° C., and blood cells were cultured for 7 days.
  • a Sendai virus vector (CytoTune-iPS2.0, ThermoFisher SCIENTIFIC) carrying OCT3 / 4, SOX2, KLF4, and cMYC was added to the blood growth medium so that the infection multiplicity (MOI) was 5, and blood cells were added to Sendai. Infected with a virus.
  • the flask was completely filled with stem cell medium (DMEM / F12 containing 20% KnockOut SR (registered trademark, ThermoFisher SCIENTIFIC)) or stem fit so that no air remained in the flask.
  • the flask was closed so that it was filled and gas exchange with the outside did not occur, and the inside of the flask was closed so that cells, microorganisms, impurities, etc. did not permeate.
  • Example 5 A non-gelled liquid blood growth medium was placed in a laminin-coated 6-well dish and 2 ⁇ 10 5 blood cells (mononuclear cells) were seeded. Then, a 6-well dish was placed in a CO 2 incubator at 37 ° C., and blood cells were cultured for 7 days. Then, a Sendai virus vector (CytoTune-iPS2.0, ThermoFisher SCIENTIFIC) carrying OCT3 / 4, SOX2, KLF4, and cMYC was added to the blood growth medium so that the infection multiplicity (MOI) was 5, and blood cells were added to Sendai. Infected with a virus.
  • a Sendai virus vector (CytoTune-iPS2.0, ThermoFisher SCIENTIFIC) carrying OCT3 / 4, SOX2, KLF4, and cMYC was added to the blood growth medium so that the infection multiplicity (MOI) was 5, and blood cells were added to Sendai. Infected with
  • DMEM / F12 containing 20% KnockOut SR registered trademark, Thermo Fisher SCIENTIFIC
  • Stemfit Two days after adding Sendai virus to the blood growth medium with the cells in the 6-well dish, use 500 ⁇ L of stem cell medium (DMEM / F12 containing 20% KnockOut SR (registered trademark, Thermo Fisher SCIENTIFIC)) or Stemfit. The medium was exchanged.
  • DMEM / F12 containing 20% KnockOut SR registered trademark, Thermo Fisher SCIENTIFIC
  • Example 6 A non-gelled liquid blood growth medium was placed in a laminin-coated flask and 5 ⁇ 10 5 blood cells (mononuclear cells) were seeded. The flask was then placed in a 37 ° C. CO 2 incubator and the blood cells were cultured for 7 days. Then, a Sendai virus vector (CytoTune-iPS2.0, ThermoFisher SCIENTIFIC) carrying OCT3 / 4, SOX2, KLF4, and cMYC was added to the blood growth medium so that the infection multiplicity (MOI) was 5, and blood cells were added to Sendai. Infected with a virus.
  • a Sendai virus vector (CytoTune-iPS2.0, ThermoFisher SCIENTIFIC) carrying OCT3 / 4, SOX2, KLF4, and cMYC was added to the blood growth medium so that the infection multiplicity (MOI) was 5, and blood cells were added to Sendai. Infected with a virus.
  • the flask was completely filled with stem cell medium (DMEM / F12 containing 20% KnockOut SR (registered trademark, ThermoFisher SCIENTIFIC)) or stem fit so that no air remained in the flask.
  • the flask was closed so that it was filled and gas exchange with the outside did not occur, and the inside of the flask was closed so that cells, microorganisms, impurities, etc. did not permeate.
  • fluid machine 38 ... flow path, 39 ... fluid machine, 40 ... medium holding tank, 50 ... blood container, 51 ... flow path, 52 ... fluid machine, 53 ... Erythrontic treatment agent container, 54 ... Flow path, 55 ... Fluid machine, 56 ... Flow path, 57 ... Mixer, 58 ... Flow path, 60 ... Flow path , 61 ... Diluting liquid container, 70 ... Vacuum container, 71 ... Vacuum container, 100 ... Erythrobolite remover, 101 ... Erythrobolite remover, 115 ... Opening, 116 ... Opening, 117 ... Channel, 200 ... Cell culture device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Transplantation (AREA)
  • Reproductive Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physiology (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

細胞培養器内で細胞に因子を導入し、前記細胞培養器と同一の細胞培養器内で前記因子を導入された細胞を培養する、細胞の培養方法が提供される。また、血液を処理して、赤血球を少なくとも部分的に除去された処理血液を作製することと、処理血液を希釈することと、希釈された処理血液に含まれる単核球を沈降させることと、希釈された処理血液の上澄みを除去することと、単核球を回収することと、を含む、単核球の回収方法が提供される。

Description

赤血球除去装置、単核球回収器、細胞培養装置、細胞培養システム、細胞培養方法、及び単核球の回収方法
 本発明は細胞技術に関し、赤血球除去装置、単核球回収器、細胞培養装置、細胞培養システム、細胞培養方法、及び単核球の回収方法に関する。
 胚性幹細胞(ES細胞)は、ヒトやマウスの初期胚から樹立された幹細胞である。ES細胞は、生体に存在する全ての細胞へと分化できる多能性を有する。現在、ヒトES細胞は、パーキンソン病、若年性糖尿病、及び白血病等、多くの疾患に対する細胞移植療法に利用可能である。しかし、ES細胞の移植には障害もある。特に、ES細胞の移植は、不成功な臓器移植に続いて起こる拒絶反応と同様の免疫拒絶反応を惹起しうる。また、ヒト胚を破壊して樹立されるES細胞の利用に対しては、倫理的見地から批判や反対意見が多い。
 このような背景の状況の下、京都大学の山中伸弥教授は、4種の遺伝子:OCT3/4、KLF4、c-MYC、及びSOX2を体細胞に導入することにより、誘導多能性幹細胞(iPS細胞)を樹立することに成功した。これにより、山中教授は、2012年のノーベル生理学・医学賞を受賞した(例えば、特許文献1、2参照。)。iPS細胞は、拒絶反応や倫理的問題のない理想的な多能性細胞である。したがって、iPS細胞は、細胞移植療法への利用が期待されている。
特許第4183742号公報 特開2014-114997号公報
 iPS細胞は血液細胞から誘導される場合がある。iPS細胞を誘導する用途に限らず、血液細胞を効率的に処理可能な技術が望まれている。また、iPS細胞に限らず、様々な細胞を効率よく培養可能な装置が望まれている。そこで、本発明は、赤血球除去装置、単核球回収器、細胞培養装置、細胞培養システム、細胞培養方法、及び単核球の回収方法を提供することを目的の一つとする。
 本発明の態様によれば、血液を収容する血液容器と、血液容器から血液を受け、血液から赤血球を少なくとも部分的に除去する赤血球除去器と、血液容器から赤血球除去器に少なくとも血液を送るための流路と、を備える赤血球除去装置が提供される。
 上記の赤血球除去装置において、血液容器から赤血球除去器に血液を送るための流路の内部が外気から閉鎖可能であってもよい。
 上記の赤血球除去装置が、赤血球除去器から赤血球を少なくとも部分的に除去された処理血液を受け、処理血液から単核球を回収する単核球回収器と、赤血球除去器から単核球回収器に少なくとも赤血球を少なくとも部分的に除去された処理血液を送るための流路と、をさらに備えていてもよい。
 上記の赤血球除去装置において、赤血球除去器が内部の気体を除去可能であってもよい。
 上記の赤血球除去装置が、赤血球を少なくとも部分的に除去された処理血液が流れる流路をさらに備え、赤血球を少なくとも部分的に除去された処理血液が流れる流路の内部が外気から閉鎖可能であってもよい。
 上記の赤血球除去装置において、単核球回収器が内部の気体を除去可能であってもよい。
 上記の赤血球除去装置において、血液容器の内部及び赤血球除去器の内部が、外気から閉鎖可能であってもよい。
 上記の赤血球除去装置において、単核球回収器の内部が、外気から閉鎖可能であってもよい。
 上記の赤血球除去装置において、血液容器の内部及び赤血球除去器の内部を含む閉鎖空間が、外部と気体の交換をしなくてもよい。
 上記の赤血球除去装置において、血液容器及び赤血球除去器が、包埋されていてもよい。
 上記の赤血球除去装置において、血液容器の少なくとも一部及び/又は赤血球除去器の少なくとも一部が、部材に彫り込まれて形成されていてもよい。
 上記の赤血球除去装置において、単核球回収器が包埋されていてもよい。
 上記の赤血球除去装置において、単核球回収器の少なくとも一部が部材に彫り込まれて形成されていてもよい。
 上記の赤血球除去装置において、赤血球除去器内で、血液と、赤血球沈降剤及び赤血球除去剤の少なくとも一方と、が混合されてもよい。
 上記の赤血球除去装置が、赤血球沈降剤及び赤血球除去剤の少なくとも一方を収容する赤血球処理剤容器をさらに備え、赤血球除去器が、赤血球処理剤容器から赤血球沈降剤及び赤血球除去剤の少なくとも一方を受けてもよい。
 上記の赤血球除去装置が、血液と、赤血球沈降剤及び赤血球除去剤の少なくとも一方と、を混合する混合器をさらに備え、赤血球除去器が、混合器から、赤血球沈降剤及び赤血球除去剤の少なくとも一方と混合された血液を受けてもよい。
 上記の赤血球除去装置において、混合器が、血液と赤血球沈降剤及び赤血球除去剤の少なくとも一方との混合液が流れる、折れ曲がり流路を備えていてもよい。
 上記の赤血球除去装置が、血液容器から赤血球除去器に少なくとも血液を送るための流路をさらに備えていてもよい。
 上記の赤血球除去装置が、血液容器から赤血球除去器に少なくとも血液を送るための流路に接続された、内部を真空にすることができる真空容器を備えていてもよい。
 上記の赤血球除去装置が、赤血球沈降剤及び赤血球除去剤の少なくとも一方を収容する赤血球処理剤容器と、赤血球処理剤容器から赤血球除去器に赤血球沈降剤及び赤血球除去剤の少なくとも一方を送るための流路と、をさらに備えていてもよい。
 上記の赤血球除去装置が、血液容器から赤血球除去器に少なくとも血液を送るための流体機械をさらに備えていてもよい。
 上記の赤血球除去装置において、血液容器が当該血液容器の容積を変更可能であってもよい。
 上記の赤血球除去装置において、赤血球除去器が当該赤血球除去器の容積を変更可能であってもよい。
 上記の赤血球除去装置において、単核球回収器が当該単核球回収器の容積を変更可能であってもよい。
 上記の赤血球除去装置において、赤血球処理剤容器が当該赤血球処理剤容器の容積を変更可能であってもよい。
 上記の赤血球除去装置において、赤血球除去器内で、赤血球が沈降し、赤血球除去器内の上澄みが赤血球を少なくとも部分的に除去された処理血液として単核球回収器に送られてもよい。
 上記の赤血球除去装置が、赤血球除去器から単核球回収器に少なくとも赤血球を少なくとも部分的に除去された処理血液を送るための流路をさらに備えていてもよい。
 上記の赤血球除去装置が、赤血球除去器から単核球回収器に少なくとも赤血球を少なくとも部分的に除去された処理血液を送るための流体機械をさらに備えていてもよい。
 上記の赤血球除去装置において、単核球回収器内で、赤血球を少なくとも部分的に除去された処理血液が希釈されてもよい。
 上記の赤血球除去装置において、単核球回収器内で、単核球が沈降してもよい。
 上記の赤血球除去装置において、処理血液の希釈液中で血小板が浮遊してもよい。
 上記の赤血球除去装置において、処理血液の希釈液中で、赤血球除去剤により赤血球が溶血してもよい。
 上記の赤血球除去装置が、赤血球を少なくとも部分的に除去された処理血液を希釈するための希釈用液を収容する希釈用液容器をさらに備えていてもよい。
 上記の赤血球除去装置において、希釈用液が緩衝液であってもよい。
 上記の赤血球除去装置において、希釈用液容器が当該希釈用液容器の容積を変更可能であってもよい。
 上記の赤血球除去装置において、単核球回収器内で単核球が沈降した後、単核球回収器内の上澄みが除去されてもよい。
 上記の赤血球除去装置において、上澄みを除去することにより、上澄み中に浮遊している血小板が除去されてもよい。
 上記の赤血球除去装置において、上澄みを除去することにより、上澄み中に浮遊している溶血した赤血球の成分が除去されてもよい。
 上記の赤血球除去装置において、単核球回収器の底部に第1開口が設けられており、重力方向において第1開口より高い位置に第2開口が設けられていてもよい。
 上記の赤血球除去装置において、単核球回収器の底部が漏斗状であり、漏斗状の底部の先端に第1開口が設けられており、漏斗状の底部の側面に第2開口が設けられていてもよい。
 上記の赤血球除去装置において、単核球回収器に赤血球を少なくとも部分的に除去された処理血液が導入されると、底部に単核球が蓄積し、第2開口から上澄みが排出されてもよい。
 上記の赤血球除去装置において、上澄みが排出されることにより、上澄み中に浮遊している血小板が除去されてもよい。
 上記の赤血球除去装置において、上澄みが排出されることにより、上澄み中に浮遊している溶血した赤血球の成分が除去されてもよい。
 上記の赤血球除去装置が、第1開口から単核球を吸引する単核球吸引装置をさらに備えていてもよい。
 上記の赤血球除去装置において、第1開口の大きさが、単核球が単核球吸引装置で吸引されない場合に、単核球が第1開口に詰まるよう設定されていてもよい。
 上記の赤血球除去装置が、赤血球除去器内の流体を血液容器に送るための流路をさらに備えていてもよい。
 上記の赤血球除去装置が、血液容器から赤血球除去器に少なくとも血液を送るための流体機械、及び赤血球除去器内の流体を血液容器に送るための流体機械の少なくも一方をさらに備えていてもよい。
 上記の赤血球除去装置が、単核球回収器内の流体を赤血球除去器に送るための流路をさらに備えていてもよい。
 上記の赤血球除去装置が、赤血球除去器から単核球回収器に少なくとも赤血球を少なくとも部分的に除去された処理血液を送るための流体機械、及び単核球回収器内の流体を赤血球除去器に送るための流体機械の少なくも一方をさらに備えていてもよい。
 本発明の態様によれば、単核球を含む溶液を収容する回収容器を備える単核球回収器であって、回収容器の底部が漏斗状であり、漏斗状の底部の先端に第1開口が設けられており、漏斗状の底部の側面に第2開口が設けられている、単核球回収器が提供される。
 上記の単核球回収器において、回収容器に溶液が導入されると、漏斗状の底部の先端に単核球が蓄積し、第2開口から溶液が排出されてもよい。
 上記の単核球回収器が、漏斗状の底部の先端に蓄積した単核球を吸引する単核球吸引装置をさらに備えていてもよい。
 上記の単核球回収器において、第1開口の大きさが、単核球が単核球吸引装置で吸引されない場合に、単核球が第1開口に詰まるよう設定されていてもよい。
 本発明の態様によれば、細胞を培養するための細胞培養器と、細胞培養器に接続された容積可変容器と、を備え、細胞培養器及び容積可変容器内を流体が移動可能である、細胞培養装置が提供される。
 上記の細胞培養装置が、容積可変容器として、少なくとも第1容積可変容器及び第2容積可変容器を備えていてもよい。
 上記の細胞培養装置において、細胞培養器内の流体が第1容積可変容器内に移動すると、第1容積可変容器の容積が膨張し、第2容積可変容器の容積が収縮してもよい。
 上記の細胞培養装置において、第1容積可変容器内の流体が細胞培養器内に移動すると、第1容積可変容器の容積が収縮し、第2容積可変容器の容積が膨張してもよい。
 上記の細胞培養装置において、第2容積可変容器内の流体が細胞培養器内に移動すると、第2容積可変容器の容積が収縮し、第1容積可変容器の容積が膨張してもよい。
 上記の細胞培養装置において、細胞培養器の内部、第1容積可変容器の内部、及び第2容積可変容器の内部が、外気から閉鎖可能であってもよい。
 上記の細胞培養装置において、細胞培養器、第1容積可変容器、及び第2容積可変容器が、包埋されていてもよい。
 上記の細胞培養装置において、細胞培養器の少なくとも一部、第1容積可変容器の少なくとも一部、及び第2容積可変容器の少なくとも一部が、部材に彫り込まれて形成されていてもよい。
 上記の細胞培養装置において、第1容積可変容器が物質を収容し、流体の移動により、細胞に物質が接触してもよい。
 上記の細胞培養装置において、物質が誘導因子であり、流体の移動により、細胞に誘導因子が導入されてもよい。
 上記の細胞培養装置が、細胞培養器内の流体を第1容積可変容器に移動させるための流体機械をさらに備えていてもよい。
 上記の細胞培養装置が、細胞培養器内の流体を第2容積可変容器に移動させるための流体機械をさらに備えていてもよい。
 上記の細胞培養装置が、細胞培養器内に細胞を供給するための流路をさらに備えていてもよい。
 上記の細胞培養装置が、細胞培養器内に細胞を供給するための流路に接続された、培養液を供給するための流路をさらに備えていてもよい。
 上記の細胞培養装置において、細胞培養器内に細胞を供給するための流路内で細胞と培養液が混合し、細胞を含む培養液が細胞培養器内に供給されてもよい。
 上記の細胞培養装置において、細胞を供給するための流路から細胞培養器内に細胞が導入される際に、第1容積可変容器及び第2容積可変容器の少なくとも一方の容積が膨張してもよい。
 上記の細胞培養装置が、細胞培養器内に細胞を供給するための流体機械をさらに備えていてもよい。
 上記の細胞培養装置において、細胞が体細胞又は幹細胞であってもよい。
 上記の細胞培養装置が、細胞培養器内に供給される流体を収容する流体容器をさらに備えていてもよい。
 上記の細胞培養装置において、流体が、体細胞培地又は幹細胞培地であってもよい。
 上記の細胞培養装置において、幹細胞培地が、誘導培養培地、拡大培養培地、又は維持培養培地であってもよい。
 上記の細胞培養装置において、流体容器から細胞培養器内に流体が供給される際に、第1容積可変容器及び第2容積可変容器の少なくともいずれかの容積が膨張してもよい。
 上記の細胞培養装置が、流体を細胞培養器内に供給するための流体機械をさらに備えていてもよい。
 上記の細胞培養装置が、細胞培養器内の温度を調節する温度調節部をさらに備えていてもよい。
 上記の細胞培養装置において、細胞培養器内で細胞が接着培養されてもよい。
 上記の細胞培養装置において、細胞培養器内が細胞接着性コーティング剤でコートされていてもよい。
 上記の細胞培養装置において、細胞培養器内で細胞が浮遊培養されてもよい。
 上記の細胞培養装置が、細胞培養器内に配置された中空糸膜をさらに備えていてもよい。
 上記の細胞培養装置において、中空糸膜の内側で細胞が培養されてもよい。
 上記の細胞培養装置において、細胞培養器内の細胞を容積可変容器に移動可能であってもよい。
 上記の細胞培養装置が、細胞培養器に接続された流路と、当該流路に設けられた流体機械と、をさらに備え、流体機械が、細胞培養器内の細胞を流路に吸引し、流路内の細胞を細胞培養器内に戻すことにより、細胞の継代及び拡大培養の少なくとも一方を行ってもよい。
 上記の細胞培養装置において、流路が、細胞塊を分割する構造を有していてもよい。
 本発明の態様によれば、血液から単核球を回収する単核球回収器と、単核球回収器から単核球を受ける細胞培養器と、を備える、細胞培養システムが提供される。
 上記の細胞培養システムにおいて、単核球回収器が赤血球を少なくとも部分的に除去された処理血液を受け、処理血液から単核球を回収してもよい。
 上記の細胞培養システムが、単核球回収器に赤血球を少なくとも部分的に除去された処理血液を供給するための赤血球除去器をさらに備えていてもよい。
 上記の細胞培養システムが、赤血球除去器に赤血球を少なくとも部分的に除去される前の血液を供給するための血液容器をさらに備えていてもよい。
 上記の細胞培養システムが、細胞培養器に接続された容積可変容器を備え、細胞培養器内の流体が容積可変容器に移動すると、容積可変容器の容積が膨張してもよい。
 上記の細胞培養システムが、細胞培養器に接続された第1容積可変容器と、細胞培養器に接続された第2容積可変容器と、を備え、細胞培養器内の流体が第1容積可変容器に移動すると、第1容積可変容器の容積が膨張し、第2容積可変容器の容積が収縮してもよい。
 上記の細胞培養システムにおいて、単核球回収器の内部及び細胞培養器の内部が、外気から閉鎖可能であってもよい。
 上記の細胞培養システムにおいて、赤血球除去器の内部が、外気から閉鎖可能であってもよい。
 上記の細胞培養システムにおいて、血液容器の内部が、外気から閉鎖可能であってもよい。
 上記の細胞培養システムにおいて、第1容積可変容器の内部及び第2容積可変容器の内部が、外気から閉鎖可能であってもよい。
 上記の細胞培養システムにおいて、血液容器、赤血球除去器、単核球回収器、及び細胞培養器が、包埋されていてもよい。
 上記の細胞培養システムにおいて、血液容器の少なくとも一部、赤血球除去器の少なくとも一部、単核球回収器の少なくとも一部、及び細胞培養器の少なくとも一部が、部材に彫り込まれて形成されていてもよい。
 上記の細胞培養システムにおいて、第1容積可変容器及び第2容積可変容器が、包埋されていてもよい。
 上記の細胞培養システムにおいて、第1容積可変容器の少なくとも一部及び第2容積可変容器の少なくとも一部が、部材に彫り込まれて形成されていてもよい。
 上記の細胞培養システムにおいて、第1容積可変容器の内部及び第2容積可変容器の内部が、外部と気体の交換をしなくともよい。
 本発明の態様によれば、細胞培養器内で細胞に因子を導入し、細胞培養器と同一の細胞培養器内で因子を導入された細胞を培養する、細胞の培養方法が提供される。
 上記の細胞の培養方法において、細胞に因子を導入し、因子を導入された細胞を培養している間、細胞培養器が閉鎖されていてもよい。
 上記の細胞の培養方法において、細胞培養器に容積可変容器が接続されており、細胞培養器及び容積可変容器内を流体が移動してもよい。
 上記の細胞の培養方法において、容積可変容器から因子が供給されてもよい。
 上記の細胞の培養方法において、同一の細胞培養器内で因子を導入された第1の状態の細胞を第2の状態の細胞に誘導してもよい。
 上記の細胞の培養方法において、第1の状態が分化状態であり、第2の状態が未分化状態であってもよい。
 上記の細胞の培養方法において、第1の状態が脱分化状態であり、第2の状態が分化状態であってもよい。
 上記の細胞の培養方法において、第1の状態が脱分化状態であり、第2の状態が第1の状態とは異なる脱分化状態であってもよい。
 上記の細胞の培養方法において、第1の状態の細胞が体細胞であってもよい。
 上記の細胞の培養方法において、第1の状態の細胞が血液細胞であってもよい。
 上記の細胞の培養方法において、第1の状態の細胞が単核球であってもよい。
 上記の細胞の培養方法において、第2の状態の細胞が幹細胞であってもよい。
 上記の細胞の培養方法において、第2の状態の細胞がiPS細胞であってもよい。
 上記の細胞の培養方法において、第1の状態の細胞が幹細胞であってもよい。
 上記の細胞の培養方法において、第1の状態の細胞がiPS細胞であってもよい。
 上記の細胞の培養方法において、第2の状態の細胞が体細胞であってもよい。
 上記の細胞の培養方法において、第1の状態の細胞が体細胞であり、第2の状態の細胞が第1の状態の細胞とは異なる体細胞であってもよい。
 上記の細胞の培養方法において、第1の状態の細胞が、赤血球を少なくとも部分的に除去された血液細胞であってよい。
 上記の細胞の培養方法において、第1の状態の細胞が、血小板を少なくとも部分的に除去された血液細胞であってもよい。
 上記の細胞の培養方法において、因子が、第1の状態の細胞を第2の状態の細胞に誘導する因子であってもよい。
 上記の細胞の培養方法において、因子が、特定の細胞の状態を誘導する因子であってもよい。
 上記の細胞の培養方法において、因子が初期化因子であってもよい。
 上記の細胞の培養方法において、因子が分化誘導因子であってもよい。
 上記の細胞の培養方法において、因子を導入された細胞を細胞培養器から回収し、当該細胞培養器と同一の細胞培養器に細胞を戻して、細胞を継代又は拡大培養してもよい。
 本発明の態様によれば、血液を処理して、赤血球を少なくとも部分的に除去された処理血液を作製することと、処理血液を希釈することと、希釈された処理血液に含まれる単核球を沈降させることと、希釈された処理血液の上澄みを除去することと、単核球を回収することと、を含む、単核球の回収方法が提供される。
 上記の単核球の回収方法において、赤血球除去器内で処理血液を作製し、単核球回収器内で処理血液の希釈、単核球の沈降、及び上澄みの除去がなされ、赤血球除去器及び単核球回収器が閉鎖されていてもよい。
 上記の単核球の回収方法において、赤血球沈降剤又は赤血球除去剤で血液を処理してもよい。
 上記の単核球の回収方法において、処理血液をリン酸緩衝液で希釈してもよい。
 上記の単核球の回収方法において、希釈された処理血液の上澄みが血小板を含んでいてもよい。
 上記の単核球の回収方法において、回収された単核球において、赤血球が少なくとも部分的に除去されていてもよい。
 上記の単核球の回収方法において、回収された単核球において、血小板が少なくとも部分的に除去されていてもよい。
 本発明によれば、赤血球除去装置、単核球回収器、細胞培養装置、細胞培養システム、細胞培養方法、及び単核球の回収方法を提供可能である。
第1実施形態に係る細胞培養システムの模式図である。 第1実施形態に係る単核球回収器の模式図である。 第2実施形態に係る赤血球除去装置の模式図である。 第3実施形態に係る赤血球除去装置の模式図である。 実施例1に係る細胞塊の顕微鏡写真である。 実施例1に係るiPS細胞のフローサイトメトリーの結果を示すヒストグラムである。 実施例2に係る蛍光活性化セルソーティングの分析結果である。 実施例2に係る単核球回収器に入れる前の処理血液の顕微鏡写真(a)と、単核球回収器から回収された単核球を含む溶液の顕微鏡写真(b)である。 実施例2に係る単核球回収器に入れる前の処理血液における血小板の数と、単核球回収器から回収された単核球を含む溶液における血小板の数と、を示すグラフである。 実施例2に係る単核球回収器に入れる前の血小板を含む処理血液入れた培養液の写真(a)と、血小板を除去された単核球を含む溶液を入れた培養液の写真(b)である。 実施例3に係るiPS細胞の作製方法で作製された細胞の顕微鏡写真である。 実施例3に係るiPS細胞の作製方法で作製された細胞をフローサイトメトリーで分析した結果を示すヒストグラムである。 実施例4に係るiPS細胞の作製方法で作製された細胞の顕微鏡写真である。 実施例4に係るiPS細胞の作製方法で作製された細胞をフローサイトメトリーで分析した結果を示すヒストグラムである。 実施例5に係るiPS細胞の作製方法で作製された細胞の顕微鏡写真である。 実施例5に係るiPS細胞の作製方法で作製された細胞をフローサイトメトリーで分析した結果を示すヒストグラムである。 実施例6に係るiPS細胞の作製方法で作製された細胞の顕微鏡写真である。 実施例6に係るiPS細胞の作製方法で作製された細胞をフローサイトメトリーで分析した結果を示すヒストグラムである。
 以下に本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。ただし、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
 (第1実施形態)
 図1に示すように、第1実施形態に係る赤血球除去装置100は、血液を収容する血液容器10と、血液容器10から血液を受け、血液から赤血球を少なくとも部分的に除去する赤血球除去器11と、を備える。
 血液容器10は、内部に血液を収容する。血液容器10は、内部を外気から閉鎖可能な構造を有し得る。血液容器10の内部を含む閉鎖空間は、外部と気体の交換をしないよう構成され得る。血液容器10は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。血液容器10の少なくとも一部は、部材に彫り込まれて形成されていてもよい。血液容器10の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。血液容器10は、当該血液容器10の容積を変更可能であってもよい。
 赤血球除去器11は、例えば、内部に赤血球沈降剤又は赤血球除去剤を収容する。赤血球除去器11は、内部を外気から閉鎖可能な構造を有し得る。赤血球除去器11の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。赤血球除去器11は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。赤血球除去器11の少なくとも一部は、部材に彫り込まれて形成されていてもよい。赤血球除去器11の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。赤血球除去器11は、当該赤血球除去器11の容積を変更可能であってもよい。
 血液容器10と、赤血球除去器11と、の間には、血液容器10から赤血球除去器11に血液を送るための流路13が設けられている。流路13は、内部を外気から閉鎖可能な構造を有し得る。流路13の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路13は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路13の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路13の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 また、血液容器10と、赤血球除去器11と、の間には、赤血球除去器11から血液容器10に空気等の気体等の流体を送るための流路12が設けられている。流路12は、内部を外気から閉鎖可能な構造を有し得る。流路12の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路12は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路12の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路12の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 血液容器10と、流路12、13のそれぞれと、は、コネクターで接続されてもよい。コネクターは無菌コネクターであってもよい。コネクターは、ニードルレスコネクターであってもよい。ニードルレスコネクターは、スプリットセプタム型であってもよいし、メカニカルバルブ型であってもよい。
 流路13には、流路13内の流体を移動させるためのポンプ等の流体機械14が設けられている。なお、流路12に流体機械が設けられていてもよいし、流路12と流路13の両方に流体機械が設けられていてもよい。なお、本開示において、流体とは気体及び液体の両方を含む。
 流体機械14としては、容積式ポンプが使用可能である。容積式ポンプの例としては、ピストンポンプ、プランジャーポンプ、及びダイヤフラムポンプを含む往復ポンプ、あるいは、ギアポンプ、ベーンポンプ、及びネジポンプを含む回転ポンプが挙げられる。ダイヤフラムポンプの例としては、チュービングポンプ及び圧電(ピエゾ)ポンプが挙げられる。チュービングポンプは、ペリスタルティックポンプと呼ばれる場合もある。また、様々な種類のポンプを組み合わせたマイクロ流体チップモジュールを用いてもよい。本開示における他の流体機械についても同様である。ペリスタルティックポンプ、チュービングポンプ、及びダイヤフラムポンプ等の密閉型ポンプを用いると、流路内部の流体にポンプが直接接触することなく、流体を送ることが可能である。
 予め赤血球除去器11内に気体と赤血球沈降剤が充填されている場合、流体機械14が流路13を介して血液容器10内の血液を吸引し、吸引した血液を赤血球除去器11内に供給すると、赤血球除去器11内の気体は、圧力に押され、流路12を介して、血液容器10内に送られる。このように、血液容器10内の血液を、赤血球除去器11内に送り、赤血球除去器11内の気体を血液容器10内に送ることにより、血液容器10内と赤血球除去器11内の圧力を平均化することが可能である。
 なお、流体機械14が流路13を介して赤血球除去器11内の気体を吸引し、吸引した気体を血液容器10内に供給してもよい。この場合、血液容器10内の血液は、気圧に押され、流路12を介して、赤血球除去器11内に送られる。このように、赤血球除去器11内の気体を除去することによっても、血液容器10内の血液を、赤血球除去器11内に送ることが可能である。
 赤血球除去器11内に送り込まれた血液は、赤血球除去器11内の赤血球沈降剤又は赤血球除去剤と接触する。流体機械14は、赤血球除去器11内から流体の吸引と、赤血球除去器11内への流体の送り出しを繰り返して、血液を攪拌してもよい。赤血球除去器11内に赤血球沈降剤が収容されている場合、赤血球除去器11内で赤血球が沈降し、血液から、赤血球が少なくとも部分的に除去される。赤血球除去器11内に赤血球除去剤が収容されている場合、赤血球除去器11内で赤血球が溶血し、血液から、赤血球が少なくとも部分的に除去される。
 赤血球除去装置100は、赤血球除去器11から、赤血球を少なくとも部分的に除去された処理血液を受け、処理血液から単核球を回収する単核球回収器15をさらに備えていてもよい。単核球回収器15は、内部を外気から閉鎖可能な構造を有し得る。単核球回収器15の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。単核球回収器15は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。単核球回収器15の少なくとも一部は、部材に彫り込まれて形成されていてもよい。単核球回収器15の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。単核球回収器15は、当該単核球回収器15の容積を変更可能であってもよい。
 図2に示すように、例えば、単核球回収器15の底部には第1開口115が設けられており、単核球回収器15の側面には第2開口116が設けられている。第1開口115の位置は、重力方向において第2開口116より下である。
 単核球回収器15の第1開口115には流路19が接続されている。流路19は、内部を外気から閉鎖可能な構造を有し得る。流路19の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路19は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路19の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路19の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 単核球回収器15の第2開口116には流路117が接続されている。流路117は、内部を外気から閉鎖可能な構造を有し得る。流路117の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路117は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路117の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路117の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。図1に示すように、流路117には、流路117内の流体を移動させるためのポンプ等の流体機械21が設けられている。
 図2に示すように、単核球回収器15の底部が漏斗状であってもよい。この場合、例えば、単核球回収器15の漏斗状の底部の先端に第1開口115が設けられ、漏斗状の底部の側面に第2開口116が設けられる。第2開口116には、単核球が通過することができないフィルターが設けられていてもよい。
 単核球回収器15は、内部に、緩衝液等の希釈液を収容可能である。希釈液は、希釈用液を収容する図1に示す希釈用液容器61から流路60を介して、単核球回収器15内に導入されてもよい。希釈用液容器61は、当該希釈用液容器の容積を変更可能であってもよい。また、例えば、流路19及び流路117内部は、希釈液で充填される。
 希釈用液容器61及び流路60の少なくともいずれかは、内部を外気から閉鎖可能な構造を有していてもよい。希釈用液容器61及び流路60の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。希釈用液容器61及び流路60は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。希釈用液容器61及び流路60の少なくとも一部は、部材に彫り込まれて形成されていてもよい。希釈用液容器61及び流路60の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 赤血球除去器11と、単核球回収器15と、の間には、赤血球除去器11から単核球回収器15に赤血球を少なくとも部分的に除去された処理血液を送るための流路17が設けられている。流路17は、内部を外気から閉鎖可能な構造を有し得る。流路17の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路17は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路17の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路17の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 また、赤血球除去器11と、単核球回収器15と、の間には、単核球回収器15から赤血球除去器11に空気等の気体等の流体を送るための流路16が設けられている。流路16は、内部を外気から閉鎖可能な構造を有し得る。流路16の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路16は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路16の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路16の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 流路17には、流路17内の流体を移動させるためのポンプ等の流体機械18が設けられている。なお、流路16に流体機械が設けられていてもよいし、流路16と流路17の両方に流体機械が設けられていてもよい。
 予め単核球回収器15内に気体と希釈液が充填されている場合、流体機械18が流路17を介して赤血球除去器11内の赤血球を少なくとも部分的に除去された処理血液を吸引し、吸引した赤血球を少なくとも部分的に除去された処理血液を単核球回収器15内に供給すると、単核球回収器15内の気体は、圧力に押され、流路16を介して、赤血球除去器11内に送られる。このように、赤血球除去器11内の赤血球を少なくとも部分的に除去された処理血液を単核球回収器15内に送り、単核球回収器15内の気体を赤血球除去器11内に送ることにより、赤血球除去器11内と単核球回収器15内の圧力を平均化することが可能である。希釈液は希釈用液容器61から繰り返し供給されてもよい。
 なお、流体機械18が流路17を介して単核球回収器15内の気体を吸引し、吸引した気体を赤血球除去器11内に供給してもよい。この場合、赤血球除去器11内の赤血球を少なくとも部分的に除去された処理血液は、気圧に押され、流路16を介して、単核球回収器15内に送られる。このように、単核球回収器15内の気体を除去することによっても、赤血球除去器11内の赤血球を少なくとも部分的に除去された処理血液を、単核球回収器15内に送ることが可能である。
 赤血球除去器11内で、赤血球を沈降させた場合、赤血球除去器11内の上澄みが赤血球を少なくとも部分的に除去された処理血液として単核球回収器15に送られる。
 単核球回収器15に送り込まれた、赤血球を少なくとも部分的に除去された処理血液は、図2(a)に示すように、希釈液で希釈される。希釈された処理血液溶液中において、血小板は浮遊し、単核球は、単核球回収器15の底に向かって沈降する。なお、希釈液が赤血球除去剤を含んでいてもよい。この場合、処理血液溶液中に残存する赤血球が溶血する。
 図2(b)に示すように、沈降した単核球は、単核球回収器15の漏斗状の底部の先端に蓄積する。希釈された処理血液溶液中において単核球が沈降した後、図2(c)に示すように、単核球回収器15の第2開口116に接続された流路117に設けられた図1に示す流体機械21が、上澄みである希釈された処理血液溶液を吸引する。上澄みを吸引する吸引力は、図2(c)に示す沈降した単核球を吸引しにくいように設定される。上澄みは、血小板及び溶血した赤血球を含んでいる。したがって、上澄みを単核球回収器15内から吸引除去することにより、血小板及び赤血球から単核球を分離することが可能である。吸引された上澄みは、図1に示す赤血球除去器11内あるいは血液容器10内に送られてもよい。また、単核球回収器15内から吸引された上澄みと同程度の容積の気体を、赤血球除去器11内あるいは血液容器10内から単核球回収器15内に送ってもよい。
 流路19には、単核球回収器15の底部に蓄積した単核球を吸引する単核球吸引装置20が設けられている。単核球吸引装置20としては、ポンプ等の流体機械が使用可能である。図2に示す第1開口115の大きさは、例えば、単核球吸引装置20が単核球を吸引していない場合に単核球が第1開口115に詰まり、単核球吸引装置20が単核球を吸引している場合に単核球が第1開口115を通過できるよう設定されている。単核球吸引装置20が単核球を吸引すると、単核球は、単核球回収器15内から流路19に移動する。
 なお、単核球回収器15内を加圧することにより、単核球回収器15内の単核球を流路19に移動させてもよい。この場合、流路19に単核球吸引装置20が設けられていてもよいし、設けられていなくてもよい。
 図1に示すように、第1実施形態に係る細胞培養装置200は、細胞を培養するための細胞培養器22を備える。細胞培養器22は、内部を外気から閉鎖可能な構造を有し得る。細胞培養器22の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。細胞培養器22は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。細胞培養器22の少なくとも一部は、部材に彫り込まれて形成されていてもよい。細胞培養器22の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 細胞培養器22内で、細胞を接着培養してもよいし、細胞を浮遊培養してもよい。細胞を接着培養する場合、細胞培養器22内を、マトリゲル、コラーゲン、ポリリジン、フィブロネクチン、ヴィトロネクチン、及びラミニン等の細胞接着用コーティング剤でコーティングしてもよい。以下においては、浮遊培養を例に挙げて説明する。細胞培養器22内部は、細胞は透過できないが、培地成分及び老廃物は透過可能な培地成分透過部材で区切られていてもよい。細胞培養器22の内壁には、細胞が接着しないよう、poly-HEMA(poly 2-hydroxyethyl methacrylate)等の細胞非接着性物質をコーティングして、細胞培養器22の内壁を細胞非接着性にしてもよい。細胞培養器22には、内部を観察可能な窓が設けられていてもよい。窓の材料としては、例えば、ガラス及び樹脂が使用可能である。
 細胞培養器22には、窓を加熱及び冷却するための、温度調節部が設けられていてもよい。温度調節部は、窓に配置され、窓を加熱する透明導電膜等の透明ヒーターであってもよい。あるいは、細胞培養器22には、筐体を加熱及び冷却するための温度調節部を備えていてもよい。筐体を温度調節部で温度調節することにより、細胞培養器22内の培地を温度調節することが可能である。細胞培養器22には、細胞培養器22内の培地の温度を測る温度計をさらに備えていてもよい。温度計は、培地に接触することなく細胞培養器22の温度に基づいて培地の温度を測ってもよいし、培地に接触して培地の温度を直接測ってもよい。この場合、培地の温度が所定の温度となるよう、温度調節部がフィードバック制御されてもよい。培地の温度は、例えば、20℃から45℃に調節される。
 細胞培養器22には流路19が接続されている。流路19を介して、細胞培養器22内に細胞が送られる。流路19には、流路23が接続されている。流路23は、内部を外気から閉鎖可能な構造を有し得る。流路23の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路23は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路23の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路23の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。流路23には、流路23内の流体を移動させるためのポンプ等の流体機械24が設けられている。
 流路23には、例えば分化細胞培地等の体細胞培地を収容する流体容器である第1培地容器25が接続されている。体細胞培地は、ゲルであってもよいし、液体であってもよい。
 培地がゲル状である場合、培地は、高分子化合物を含んでいてもよい。高分子化合物は、例えば、ジェランガム、脱アシル化ジェランガム、ヒアルロン酸、ラムザンガム、ダイユータンガム、キサンタンガム、カラギーナン、フコイダン、ペクチン、ペクチン酸、ペクチニン酸、ヘパラン硫酸、ヘパリン、ヘパリチン硫酸、ケラト硫酸、コンドロイチン硫酸、デルタマン硫酸、ラムナン硫酸、及びそれらの塩からなる群から選択される少なくとも1種であってもよい。また、培地は、メチルセルロースを含んでいてもよい。メチルセルロースを含むことにより、細胞同士の凝集がより抑制される。
 あるいは、培地は、poly(glycerol monomethacrylate) (PGMA)、poly(2-hydroxypropyl methacrylate) (PHPMA)、Poly (N-isopropylacrylamide) (PNIPAM)、amine terminated、carboxylic acid terminated、maleimide terminated、N-hydroxysuccinimide (NHS) ester terminated、triethoxysilane terminated、Poly (N-isopropylacrylamide-co-acrylamide)、Poly (N-isopropylacrylamide-co-acrylic acid)、Poly (N-isopropylacrylamide-co-butylacrylate)、Poly (N-isopropylacrylamide-co-methacrylic acid)、Poly (N-isopropylacrylamide-co-methacrylic acid-co-octadecyl acrylate)、及びN-Isopropylacrylamideから選択される少なくの温度感受性ゲルを含んでいてもよい。
 なお、本開示において、ゲル状の培地あるいはゲル培地とは、ポリマー培地を包含する。
 流路19から細胞培養器22内に送られる細胞が体細胞である単核球である場合、体細胞培地としては、例えば、血液細胞培地が使用可能である。第1培地容器25は、内部を外気から閉鎖可能な構造を有し得る。第1培地容器25の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。第1培地容器25は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。第1培地容器25の少なくとも一部は、部材に彫り込まれて形成されていてもよい。第1培地容器25の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。第1培地容器25は、当該第1培地容器25の容積を変更可能であってもよい。この場合、例えば、第1培地容器25は、体細胞培地を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の体細胞培地を収容可能な容積を変更可能である。あるいは、第1培地容器25は、可撓性を有する蛇腹やバッグであってもよい。
 単核球回収器15から流路19に単核球が送られると、流体機械24は、第1培地容器25から流路19に、流路23を介して体細胞培地を送る。第1培地容器25は、体細胞培地を収容可能な容積を減少させる。なお、第1培地容器25は、能動的に容積を収縮させてもよいし、流路23内部からの吸引力により、受動的に容積を収縮させてもよい。流路23を介して流路19に送られてきた体細胞培地と、流路19内の単核球と、が混合し、細胞培養器22内に送られる。
 第1培地容器25には、第1培地容器25内の培地の温度を調節する温度調節装置が設けられていてもよい。
 細胞培養器22には、例えば、流路26を介して第1容積可変容器27が接続されている。流路26は、内部を外気から閉鎖可能な構造を有し得る。流路26の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路26は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路26の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路26の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。流路26には、流路26内の流体を移動させるためのポンプ等の流体機械28が設けられていてもよい。
 第1容積可変容器27は、内部を外気から閉鎖可能な構造を有し得る。第1容積可変容器27の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。第1容積可変容器27は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。第1容積可変容器27の少なくとも一部は、部材に彫り込まれて形成されていてもよい。第1容積可変容器27の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。第1容積可変容器27は、当該第1容積可変容器27の容積を変更可能であってもよい。この場合、例えば、第1容積可変容器27は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、第1容積可変容器27は、可撓性を有する蛇腹やバッグであってもよい。
 細胞培養器22には、例えば、流路29を介して第2容積可変容器30が接続されている。流路29は、内部を外気から閉鎖可能な構造を有し得る。流路29の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路29は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路29の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路29の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。流路29には、流路29内の流体を移動させるためのポンプ等の流体機械が設けられていてもよい。
 第2容積可変容器30は、内部を外気から閉鎖可能な構造を有し得る。第2容積可変容器30の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。第2容積可変容器30は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。第2容積可変容器30の少なくとも一部は、部材に彫り込まれて形成されていてもよい。第2容積可変容器30の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。第2容積可変容器30は、当該第2容積可変容器30の容積を変更可能であってもよい。この場合、例えば、第2容積可変容器30は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、第2容積可変容器30は、可撓性を有する蛇腹やバッグであってもよい。
 流路19から細胞培養器22内に単核球と体細胞培地が送り込まれると、細胞培養器22内の空気等の気体は、例えば、第2容積可変容器30内に移動し、第2容積可変容器30は容積を膨張させて、細胞培養器22内から移動してきた気体を受け入れる。なお、第2容積可変容器30は、能動的に容積を膨張させてもよいし、圧力を受けて受動的に容積を膨張させてもよい。
 第1容積可変容器27は、例えば、内部に、誘導因子等の第1の状態の細胞を第2の状態の細胞に誘導する因子等の物質を収容する。誘導因子はRNAであってもよいし、タンパク質であってもよいし、化合物であってもよい。RNAは、修飾RNAであってもよいし、非修飾RNAであってもよい。第1容積可変容器27は、例えば、リポフェクション試薬を収容していてもよい。誘導因子は、プラスミドベクター、あるいはレトロウイルスベクター、レンチウイルスベクター、又はセンダイウイルスベクター等のウイルスベクターあるいはウイルスに含まれていてもよい。本開示において、誘導とは、リプログラミング、初期化、形質転換、分化転換(Transdifferentiation or Lineage reprogramming)、分化誘導及び細胞の運命変更(Cell fate reprogramming)等を指す。リプログラミング因子は、例えば、OCT3/4、SOX2、KLF4、c-MYCを含む。単核球細胞にリプログラミング因子等の誘導因子を導入し、iPS細胞を作製する際には、流体機械28が、細胞培養器22内の単核球を含む体細胞培地を、流路26を介して、第1容積可変容器27内に移動させる。また、第1容積可変容器27は容積を膨張させ、単核球細胞を含む体細胞培地を受け入れる。なお、第1容積可変容器27は、能動的に容積を膨張させてもよいし、圧力を受けて受動的に容積を膨張させてもよい。気体を収容している第2容積可変容器30は容積を収縮させ、収容している気体が細胞培養器22内に送り込まれる。なお、第2容積可変容器30は、能動的に容積を収縮させてもよいし、細胞培養器22内部からの吸引力により、受動的に容積を収縮させてもよい。
 単核球は、細胞培養器22内から第1容積可変容器27内へ移動することにより、第1容積可変容器27内の誘導因子と接触し、単核球に誘導因子が導入される。なお、第1容積可変容器27は、容積の膨張と収縮を繰り返し、単核球と誘導因子を含む体細胞培地を攪拌させてもよい。
 所定の期間経過後、流体機械28が、第1容積可変容器27内の誘導因子を導入された単核球を含む体細胞培地を、流路26を介して、細胞培養器22内に移動させる。第1容積可変容器27は容積を収縮させる。また、第2容積可変容器30は容積を膨張させ、細胞培養器22内から気体を受け入れる。
 あるいは、単核球細胞にリプログラミング因子等の誘導因子を導入し、iPS細胞を作製する際には、流体機械28が、第1容積可変容器27内の誘導因子を、流路26を介して、細胞培養器22内に移動させてもよい。この際、第1容積可変容器27は容積を収縮させ、第2容積可変容器30は容積を膨張させてもよい。誘導因子は、第1容積可変容器27内から細胞培養器22内へ移動することにより、細胞培養器22内の単核球と接触し、単核球に誘導因子が導入される。なお、流体機械28が、第1容積可変容器27内の誘導因子を、流路26を介して、細胞培養器22内に、複数回に分けて移動させてもよい。これにより、単核球に誘導因子が、複数回に分けて導入される。
 細胞培養器22には、例えば、流路31を介して、例えば幹細胞培地や体細胞培地等の培地を収容する流体容器である第2培地容器32が接続されている。以下においては、第2培地容器32が幹細胞培地を収容している例を説明する。幹細胞培地は、ゲルであってもよいし、液体であってもよい。幹細胞培地としては、誘導培養培地、拡大培養培地、及び維持培養培地が使用可能である。
 流路31は、内部を外気から閉鎖可能な構造を有し得る。流路31の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路31は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路31の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路31の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。流路31には、流路31内の流体を移動させるためのポンプ等の流体機械33が設けられていてもよい。
 第2培地容器32は、内部を外気から閉鎖可能な構造を有し得る。第2培地容器32の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。第2培地容器32は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。第2培地容器32の少なくとも一部は、部材に彫り込まれて形成されていてもよい。第2培地容器32の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。第2培地容器32は、当該第2培地容器32の容積を変更可能であってもよい。この場合、例えば、第2培地容器32は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、第2培地容器32は、可撓性を有する蛇腹やバッグであってもよい。
 第2培地容器32には、第2培地容器32内の培地の温度を調節する温度調節装置が設けられていてもよい。
 細胞培養器22には、例えば、流路34を介して、第3容積可変容器35が接続されている。流路34は、内部を外気から閉鎖可能な構造を有し得る。流路34の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路34は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路34の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路34の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 第3容積可変容器35は、内部を外気から閉鎖可能な構造を有し得る。第3容積可変容器35の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。第3容積可変容器35は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。第3容積可変容器35の少なくとも一部は、部材に彫り込まれて形成されていてもよい。第3容積可変容器35の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。第3容積可変容器35は、当該第3容積可変容器35の容積を変更可能であってもよい。この場合、例えば、第3容積可変容器35は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、第3容積可変容器35は、可撓性を有する蛇腹やバッグであってもよい。
 単核球に誘導因子が導入されてから所定の期間経過後、流体機械33が、第2培地容器32内の幹細胞培地を、流路31を介して、細胞培養器22内に移動させる。幹細胞培地は、細胞培養器22内の培地成分透過部材で区切られた区画のうち、細胞が存在する区画に接し、細胞が存在しない区画に入れられてもよい。内部から幹細胞培地を吸引された第2培地容器32は、容積を収縮させる。なお、第2培地容器32は、能動的に容積を収縮させてもよいし、受動的に容積を収縮させてもよい。第3容積可変容器35は容積を膨張させ、幹細胞培地の流入により細胞培養器22内の余剰となった流体を流路34を介して受け入れる。流路34は、細胞培養器22内の培地成分透過部材で区切られた区画のうち、細胞が存在する区画に接し、細胞が存在しない区画に接続していてもよい。なお、第3容積可変容器35は、能動的に容積を膨張させてもよいし、圧力を受けて受動的に容積を膨張させてもよい。
 あるいは、流路34は、細胞培養器22内の培地成分透過部材で区切られた区画のうち、細胞が存在する区画に接していてもよい。この場合、細胞培養器22内の余剰な細胞を、流路34を介して第3容積可変容器35に送り出してもよい。
 細胞培養器22内の培地成分透過部材で区切られた区画のうち、細胞が存在する区画の培地と、細胞が存在しない区画の培地と、は、例えば浸透圧により、培地成分や老廃物を交換する。培養成分透過部材としては、例えば、半透膜、メッシュ、及び中空糸膜が使用可能である。半透膜は、透析膜を含む。
 培養成分透過部材が半透膜である場合、半透膜の分画分子量は、例えば、0.1KDa以上、10KDa以上、あるいは50KDa以上である。半透膜は、例えば、セルロースエステル、エチルセルロース、セルロースエステル類、再生セルロース、ポリスルホン、ポリアクリルニトリル、ポリメチルメタクリレート、エチレンビニルアルコール共重合体、ポリエステル系ポリマーアロイ、ポリカーボネート、ポリアミド、セルロースアセテート、セルロースジアセテート、セルローストリアセテート、銅アンモニウムレーヨン、鹸化セルロース、ヘモファン膜、フォスファチジルコリン膜、及びビタミンEコーティング膜等からなる。
 培養成分透過部材がメッシュである場合、メッシュは、細胞培養器22内で培養される細胞よりも小さい孔を有する。メッシュの材料は、例えば樹脂及び金属であるが、特に限定されない。培養成分透過部材の表面は、細胞非接着性であってもよい。
 培養成分透過部材が中空糸膜である場合、中空糸膜は、細胞培養器22内で培養される細胞よりも小さい孔を有する。例えば、中空糸膜の内側で細胞が培養されてもよい。
 細胞培養器22内で細胞を培養している間、所定のタイミングで、流体機械33が、第2培地容器32内の幹細胞培地を、流路31を介して、細胞培養器22内に移動させてもよい。第3容積可変容器35は容積を膨張させ、新鮮な幹細胞培地の流入により細胞培養器22内の余剰となった使用済み幹細胞培地を受け入れてもよい。流体機械33は、例えば、培地の状態、培地中の細胞塊の状態、細胞数、細胞塊数、培地の濁度、及びpHの変化に応じて、培地の送液量を制御したり、培地の送液の開始及び終了をしたりしてもよい。
 細胞培養器22内の培地成分透過部材で区切られた区画のうち、細胞が存在する区画には、流路36を介してポンプ等の流体機械37が接続されていてもよい。流路36は、内部を外気から閉鎖可能な構造を有し得る。流路36の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路36は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路36の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路36の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 例えば、流体機械37は、細胞の凝集を制御するために、細胞培養器22内の培地成分透過部材で区切られた区画のうち細胞が存在する区画と、流路36と、の間で培地を循環させる。流体機械37は、常時培地を循環させてもよいし、任意のタイミングで培地を循環させてもよい。あるいは、流体機械37は、細胞培養器22内の培地成分透過部材で区切られた区画のうち細胞が存在する区画と、流路36と、の間で培地を往復運動させ、培地を攪拌してもよい。流体機械37は、常時培地を攪拌してもよいし、任意のタイミングで培地を攪拌してもよい。流体機械37は、例えば、培地の状態、培地中の細胞塊の状態、細胞数、細胞塊数、培地の濁度、及びpHの変化に応じて、培地の送液量を制御したり、培地の送液の開始及び終了をしたりしてもよい。
 細胞培養器22内の細胞を流路36内に吸引し、細胞を細胞培養器22内に戻すことによって、細胞を継代及び拡大培養してもよい。流路36内は、細胞塊を分割する構造を有していてもよい。例えば、流路36内が、蛇行する構造や、径が増減する構造を有することにより、流路36内を流れる細胞塊を分割することが可能である。
 細胞培養器22内の培地成分透過部材で区切られた区画のうち、細胞が存在しない区画には、流路38を介してポンプ等の流体機械39が接続されていてもよい。流路38は、内部を外気から閉鎖可能な構造を有し得る。流路38の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路38は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路38の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路38の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 例えば、流体機械39は、培地成分透過部材に培地が接触する機会を増やすために、細胞培養器22内の培地成分透過部材で区切られた区画のうち細胞が存在しない区画と、流路38と、の間で培地を循環させる。流体機械39は、常時培地を循環させてもよいし、任意のタイミングで培地を循環させてもよい。あるいは、流体機械39は、細胞培養器22内の培地成分透過部材で区切られた区画のうち細胞が存在しない区画と、流路38と、の間で培地を往復運動させ、培地を攪拌してもよい。流体機械39は、常時培地を攪拌してもよいし、任意のタイミングで培地を攪拌してもよい。流体機械39は、例えば、培地の状態、培地中の細胞塊の状態、細胞数、細胞塊数、培地の濁度、及びpHの変化に応じて、培地の送液量を制御したり、培地の送液の開始及び終了をしたりしてもよい。
 例えば、細胞培養器22内で誘導因子を導入された単核球からiPS細胞が作製され、拡大培養された後、iPS細胞が細胞培養器22内から回収される。iPS細胞は、細胞培養器22内で細胞塊(コロニー)を形成してもよい。
 本発明者らの知見により、細胞は、完全に閉鎖された密閉空間で培養可能であるため、細胞培養器22内に、二酸化炭素ガス、窒素ガス、及び酸素ガス等を積極的に供給しなくともよい。そのため、細胞培養器22をCOインキュベーター内に配置しなくともよい。また、密閉されている細胞培養器22内に、細胞培養器22外に存在する細胞、微生物、ウイルス、及び塵等が進入しないため、細胞培養器22内の清浄度が保たれる。そのため、細胞培養器22をクリーンルーム内に配置しなくともよい。ただし、細胞が存在する閉鎖系内に二酸化炭素ガス、窒素ガス、及び酸素ガス等を供給することは、必ずしも妨げられない。
 実施形態に係る細胞培養装置200によれば、例えば、完全閉鎖系で細胞が培養されるため、培養装置からの細胞の漏れ出しによるクロスコンタミネーションのリスクを低減することが可能である。また、例えば、細胞がHIV肝炎ウイルス等のウイルスに感染している場合であっても、細胞の漏れ出しによるオペレーターへの感染のリスクを低減することが可能である。さらに、細胞培養器内の培地が、細胞培養器外の空気中の細菌、ウイルス及びカビ等にコンタミネーションするリスクを低減することが可能である。またさらに、実施形態に係る細胞培養器によれば、COインキュベーターを用いることなく、細胞を培養することも可能である。
 (第2実施形態)
 図3に示すように、第2実施形態に係る赤血球除去装置101は、血液を収容する血液容器50と、赤血球沈降剤又は赤血球除去剤を収容する赤血球処理剤容器53を備える。
 血液容器50は、内部に血液を収容する。血液容器50は、内部を外気から閉鎖可能な構造を有し得る。血液容器50の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。血液容器50は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。血液容器50の少なくとも一部は、部材に彫り込まれて形成されていてもよい。血液容器50の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。血液容器50は、当該血液容器50の容積を変更可能であってもよい。この場合、例えば、血液容器50は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、血液容器50は、可撓性を有する蛇腹やバッグであってもよい。
 赤血球処理剤容器53は、内部に赤血球沈降剤又は赤血球除去剤を収容する。赤血球処理剤容器53は、内部を外気から閉鎖可能な構造を有し得る。赤血球処理剤容器53の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。赤血球処理剤容器53は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。赤血球処理剤容器53の少なくとも一部は、部材に彫り込まれて形成されていてもよい。赤血球処理剤容器53の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。赤血球処理剤容器53は、当該赤血球処理剤容器53の容積を変更可能であってもよい。この場合、例えば、赤血球処理剤容器53は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、赤血球処理剤容器53は、可撓性を有する蛇腹やバッグであってもよい。
 第2実施形態に係る赤血球除去装置101は、例えば、血液と、赤血球沈降剤又は赤血球除去剤と、を混合する混合器57をさらに備える。混合器57は、例えば、血液と赤血球沈降剤又は赤血球除去剤との混合液が流れる、折れ曲がり流路を備える。折れ曲がり流路は、らせん状に折れ曲がっていてもよい。折れ曲がり流路において流路が蛇行していてもよい。折れ曲がり流路において、断面積が増減を繰り返していてもよい。混合器57は、内部を外気から閉鎖可能な構造を有し得る。混合器57の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。混合器57は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。混合器57の少なくとも一部は、部材に彫り込まれて形成されていてもよい。混合器57の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 血液容器50には、少なくとも血液を血液容器50から混合器57に送るための流路51が接続されている。赤血球処理剤容器53には、少なくとも赤血球沈降剤又は赤血球除去剤を赤血球処理剤容器53から混合器57に送るための流路54が接続されている。流路51と流路54は流路56に合流する。流路56は混合器57に接続されている。混合器57には、混合器57内で混合された血液と赤血球沈降剤又は赤血球除去剤との混合液を赤血球除去器11内に送るための流路58が接続されている。
 流路51には、流路51内の流体を移動させるためのポンプ等の流体機械52が設けられていてもよい。流路54には、流路54内の流体を移動させるためのポンプ等の流体機械55が設けられていてもよい。
 流路51、54、56、58は、内部を外気から閉鎖可能な構造を有し得る。流路51、54、56、58の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路51、54、56、58は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路51、54、56、58の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路51、54、56、58の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 赤血球除去器11に血液と赤血球沈降剤又は赤血球除去剤との混合液を送る際、流体機械52が、血液容器50内の血液を、流路51、56を介して混合器57内に移動させる。また、流体機械55が、赤血球処理剤容器53内の赤血球沈降剤又は赤血球除去剤を、流路54、56を介して混合器57内に移動させる。なお、流路51、54に流体機械を設けず、流路56に流体機械を設け、流路56に設けられた流体機械が、血液容器50内の血液と、赤血球処理剤容器53内の赤血球沈降剤又は赤血球除去剤と、を、混合器57内に移動させてもよい。混合器57内で、血液と、赤血球沈降剤又は赤血球除去剤と、が混合する。混合器57内で混合された血液と赤血球沈降剤又は赤血球除去剤との混合液は、流路58を介して赤血球除去器11に送られる。赤血球除去器11内で、赤血球が沈降するか、あるいは溶血するのは、第1実施形態と同様である。また、第2実施形態に係る赤血球除去装置101の他の構成要素は、第2実施形態に係る赤血球除去装置100と同様であってもよい。
 (第3実施形態)
 図4に示すように、第3実施形態に係る赤血球除去装置101は、血液容器50から混合器57に少なくとも血液を送るための流路51に設けられた、内部を真空にすることができる真空容器70を備える。
 真空容器70は、内部を外気から閉鎖可能な構造を有し得る。真空容器70の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。真空容器70は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。真空容器70の少なくとも一部は、部材に彫り込まれて形成されていてもよい。真空容器70の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。真空容器70は、当該真空容器70の容積を変更可能であってもよい。真空容器70は、可撓性を有する蛇腹やバッグであってもよい。
 第3実施形態に係る赤血球除去装置101は、赤血球処理剤容器53から混合器57に少なくとも赤血球沈降剤又は赤血球除去剤を送るための流路54に設けられた、内部を真空にすることができる真空容器71を備える。
 真空容器71は、内部を外気から閉鎖可能な構造を有し得る。真空容器71の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。真空容器71は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。真空容器71の少なくとも一部は、部材に彫り込まれて形成されていてもよい。真空容器71の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。真空容器71は、当該真空容器71の容積を変更可能であってもよい。真空容器71は、可撓性を有する蛇腹やバッグであってもよい。
 予め真空容器70内を真空にした状態で、流路51に血液容器50を接続すると、血液容器50内の血液が真空容器70内に移動し、さらに血液が流路51、56を介して混合器57内に移動する。また、予め真空容器71内を真空にした状態で、流路54に赤血球処理剤容器53を接続すると、赤血球処理剤容器53内の赤血球沈降剤又は赤血球除去剤が真空容器71内に移動し、さらに血液が流路54、56を介して混合器57内に移動する。
 第3実施形態に係る赤血球除去装置101の他の構成要素は、第2実施形態と同様であってもよい。
 (第4実施形態)
 図4に示した真空容器70、71を省略し、赤血球除去器11を予め真空にしてもよい。予め赤血球除去器11内を真空にした状態で、流路51に血液容器50を接続し、流路54に赤血球処理剤容器53を接続すると、血液容器50内の血液が流路51、56を介して混合器57内に移動し、赤血球処理剤容器53内の赤血球沈降剤又は赤血球除去剤が流路54、56を介して混合器57内に移動する。さらに、混合器57内で混合された血液と赤血球沈降剤又は赤血球除去剤が、流路58を介して赤血球除去器11内に移動する。
 あるいは、流路51及び流路54を弁等で閉塞し、赤血球除去器11内を真空にし、流路51及び流路54の弁を開放すると、血液容器50内の血液が流路51、56を介して混合器57内に移動し、赤血球処理剤容器53内の赤血球沈降剤又は赤血球除去剤が流路54、56を介して混合器57内に移動する。さらに、混合器57内で混合された血液と赤血球沈降剤又は赤血球除去剤が、流路58を介して赤血球除去器11内に移動する。
 (他の実施形態)
 上記のように、本発明を実施形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施形態、実施形態及び運用技術が明らかになるはずである。例えば、図1に示す細胞培養器22に送られる細胞は、単核球に限定されない。細胞培養器22に送られる細胞は、幹細胞、線維芽細胞、あるいは他の体細胞であってもよい。細胞培養器22に送られる細胞は、任意である。
 さらに、第1実施形態では、細胞培養器22内で単核球からiPS細胞を作製する例を説明したが、細胞培養器22内で幹細胞から神経細胞等の分化細胞を作製してもよい。幹細胞は、iPS細胞、胚性幹細胞(ES細胞)、体性幹細胞あるいは他の人工的に誘導された幹細胞等であってもよい。この場合は、例えば、第1容積可変容器27は、内部に分化誘導因子を収容する。このように、本発明は様々な実施の形態等を包含するということを理解すべきである。
 (実施例1)
 本実施例においては、完全に閉鎖された環境下において、培地交換及びガス交換をすることなく、細胞を培養可能である例を示す。増殖因子を培地(StemSpan H3000、登録商標、STEMCELL Technologies Inc.)に添加し、さらに培地に脱アシル化ゲランガムを添加して、ゲル培地を用意した。
 用意したゲル培地を15mLチューブに入れ、ゲル培地に2×10個の血液細胞を播種した。その後、15mLチューブをCOインキュベーター内に配置し、7日間、血液細胞(単核球)を培養した。その後、ゲル培地にOCT3/4、SOX2、KLF4、cMYCを搭載するセンダイウイルスベクターを感染多重度(MOI)が10.0となるよう添加し、血液細胞をセンダイウイルスに感染させた。
 ゲル培地にセンダイウイルスを添加した後、ゲル培地に15mLのゲル化した幹細胞培地(20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)を含むDMEM/F12)を添加し、そのうち15mLのセンダイウイルスに感染した細胞を含む培地を密閉可能な細胞培養器に入れ、ゲル培地を細胞培養器に注入した。その後、細胞培養器内部を密閉し、細胞培養器の内部と外部とで、ガス交換が完全に生じないようにした。
 細胞培養器内で初期化因子を導入された細胞の浮遊培養を開始した。その後、2日に一度、培地保持槽40内の2mLのゲル培地を、2mLの新鮮なゲル培地に交換した。
 15日後、細胞を顕微鏡で観察したところ、図5に示すように、ES細胞様コロニーを形成していることが確認された。また、4%-パラホルムアルデヒドを用いて細胞を固定し、フローサイトメーターを用いて、固定された細胞における細胞表面抗原TRA-1-60の発現量を測定したところ、図6に示すように、90%以上TRA-1-60陽性であり、ほぼ完全にリプログラミングされていることが確認された。したがって、完全に閉鎖された環境下において、培地交換及びガス交換をすることなく、幹細胞以外の体細胞からiPS細胞を誘導できることが示された。
 (実施例2)
 血液を赤血球沈降剤で処理し、赤血球を少なくとも部分的に除去された処理血液を得た。処理血液を表面細胞マーカー抗体で処理し、蛍光活性化セルソーティング(FACS)で分析した結果を図7に示す。処理血液は、CD3陽性細胞、CD14陽性細胞、CD31陽性細胞、CD33陽性細胞、CD34陽性細胞、CD19陽性細胞、CD41陽性細胞、CD42陽性細胞、及びCD56陽性細胞を含んでいた。 
 赤血球を少なくとも部分的に除去された処理血液を図2に示したような単核球回収器に入れ、緩衝液で希釈し、上澄みを除去した。その後、単核球回収器から単核球を回収した。図8(a)に示すように、単核球回収器に入れる前の処理血液は、血小板を多く含んでいた。一方、図8(b)に示すように、単核球回収器から回収された単核球を含む溶液は、血小板がほぼ除去されていた。同一面積あたりにおける、単核球回収器に入れる前の処理血液における血小板の数と、単核球回収器から回収された単核球を含む溶液における血小板の数と、を示すグラフを図9に示す。
 単核球回収器に入れる前の血小板を含む処理血液を培養液に入れると、図10(a)に示すように、凝集した。これに対し、単核球回収器から回収された、血小板を除去された単核球を含む溶液を培養液に入れると、図10(b)に示すように、凝集しなかった。
 (実施例3)
 血液培地に脱アシル化ゲランガムを添加して、ゲル培地を用意した。用意したゲル培地をラミニンコートした6ウェルディッシュに入れ、2×10個の血液細胞(単核球)を播種した。その後、6ウェルディッシュを37℃のCOインキュベーター内に配置し、7日間、血液細胞を培養した。その後、血液増殖培地にOCT3/4、SOX2、KLF4、cMYCを搭載するセンダイウイルスベクター(CytoTune-iPS2.0、ThermoFisher SCIENTIFIC)を感染多重度(MOI)が5となるよう添加し、血液細胞をセンダイウイルスに感染させた。
 細胞を6ウェルディッシュに入れたまま、血液増殖培地にセンダイウイルスを添加した二日後に、500μLの幹細胞培地(20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)を含むDMEM/F12)又はステムフィットを利用して培地交換した。
 血液増殖培地にセンダイウイルスを添加して15日後、細胞を顕微鏡で観察したところ、図11に示すように、ES細胞様コロニーが形成されていることが確認された。また、4%-パラホルムアルデヒドを用いて細胞を固定し、フローサイトメーターを用いて、固定された細胞における細胞表面抗原TRA-1-60の発現量を測定したところ、図12に示すように、誘導後の細胞は、ほぼ100%TRA-1-60陽性であり、ほぼ完全にリプログラミングされていることが確認された。したがって、細胞培養器内で細胞にリプログラミング因子を導入し、同一の細胞培養器内でリプログラミング因子を導入された細胞を培養して、細胞をリプログラミングすることが可能であることが示された。
 (実施例4)
 血液培地に脱アシル化ゲランガムを添加して、ゲル培地を用意した。用意したゲル培地をラミニンコートしたフラスコに入れ、5×10個の血液細胞(単核球)を播種した。その後、37℃のCOインキュベーター内に配置し、7日間、血液細胞を培養した。その後、血液増殖培地にOCT3/4、SOX2、KLF4、cMYCを搭載するセンダイウイルスベクター(CytoTune-iPS2.0、ThermoFisher SCIENTIFIC)を感染多重度(MOI)が5となるよう添加し、血液細胞をセンダイウイルスに感染させた。
 血液増殖培地にセンダイウイルスを添加した二日後、フラスコ内に空気が残らないように、幹細胞培地(20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)を含むDMEM/F12)又はステムフィットでフラスコを完全に満たし、外部とのガス交換が生じないように、フラスコのキャップを閉め、細胞、微生物、及び不純物等が透過しないよう、フラスコの内部を閉鎖した。
 血液増殖培地にセンダイウイルスを添加して15日後、細胞を顕微鏡で観察したところ、図13に示すように、ES細胞様コロニーが形成されていることが確認された。また、4%-パラホルムアルデヒドを用いて細胞を固定し、フローサイトメーターを用いて、固定された細胞における細胞表面抗原TRA-1-60の発現量を測定したところ、図14に示すように、誘導後の細胞は、ほぼ100%TRA-1-60陽性であり、ほぼ完全にリプログラミングされていることが確認された。したがって、細胞培養器内で細胞にリプログラミング因子を導入し、同一の閉鎖された細胞培養器内でリプログラミング因子を導入された細胞を培養して、細胞をリプログラミングすることが可能であることが示された。
 (実施例5)
 ゲル状ではない液体の血液増殖培地をラミニンコートした6ウェルディッシュに入れ、2×10個の血液細胞(単核球)を播種した。その後、6ウェルディッシュを37℃のCOインキュベーター内に配置し、7日間、血液細胞を培養した。その後、血液増殖培地にOCT3/4、SOX2、KLF4、cMYCを搭載するセンダイウイルスベクター(CytoTune-iPS2.0、ThermoFisher SCIENTIFIC)を感染多重度(MOI)が5となるよう添加し、血液細胞をセンダイウイルスに感染させた。
 細胞を6ウェルディッシュに入れたまま、血液増殖培地にセンダイウイルスを添加した二日後に、500μLの幹細胞培地(20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)を含むDMEM/F12)又はステムフィットを利用して培地交換した。
 血液増殖培地にセンダイウイルスを添加して15日後、細胞を顕微鏡で観察したところ、図15に示すように、ES細胞様コロニーが形成されていることが確認された。また、4%-パラホルムアルデヒドを用いて細胞を固定し、フローサイトメーターを用いて、固定された細胞における細胞表面抗原TRA-1-60の発現量を測定したところ、図16に示すように、誘導後の細胞は、ほぼ100%TRA-1-60陽性であり、ほぼ完全にリプログラミングされていることが確認された。したがって、細胞培養器内で細胞にリプログラミング因子を導入し、同一の細胞培養器内でリプログラミング因子を導入された細胞を培養して、細胞をリプログラミングすることが可能であることが示された。
 (実施例6)
 ゲル状ではない液体の血液増殖培地をラミニンコートしたフラスコに入れ、5×10個の血液細胞(単核球)を播種した。その後、フラスコを37℃のCOインキュベーター内に配置し、7日間、血液細胞を培養した。その後、血液増殖培地にOCT3/4、SOX2、KLF4、cMYCを搭載するセンダイウイルスベクター(CytoTune-iPS2.0、ThermoFisher SCIENTIFIC)を感染多重度(MOI)が5となるよう添加し、血液細胞をセンダイウイルスに感染させた。
 血液増殖培地にセンダイウイルスを添加した二日後、フラスコ内に空気が残らないように、幹細胞培地(20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)を含むDMEM/F12)又はステムフィットでフラスコを完全に満たし、外部とのガス交換が生じないように、フラスコのキャップを閉め、細胞、微生物、及び不純物等が透過しないよう、フラスコの内部を閉鎖した。
 血液増殖培地にセンダイウイルスを添加して15日後、細胞を顕微鏡で観察したところ、図17に示すように、ES細胞様コロニーが形成されていることが確認された。また、4%-パラホルムアルデヒドを用いて細胞を固定し、フローサイトメーターを用いて、固定された細胞における細胞表面抗原TRA-1-60の発現量を測定したところ、図18に示すように、誘導後の細胞は、ほぼ100%TRA-1-60陽性であり、ほぼ完全にリプログラミングされていることが確認された。したがって、細胞培養器内で細胞にリプログラミング因子を導入し、同一の閉鎖された細胞培養器内でリプログラミング因子を導入された細胞を培養して、細胞をリプログラミングすることが可能であることが示された。
 10・・・血液容器、11・・・赤血球除去器、12・・・流路、13・・・流路、14・・・流体機械、15・・・単核球回収器、16・・・流路、17・・・流路、18・・・流体機械、19・・・流路、20・・・単核球吸引装置、21・・・流体機械、22・・・細胞培養器、23・・・流路、24・・・流体機械、25・・・培地容器、26・・・流路、27・・・容積可変容器、28・・・流体機械、29・・・流路、30・・・容積可変容器、31・・・流路、32・・・培地容器、33・・・流体機械、34・・・流路、35・・・容積可変容器、36・・・流路、37・・・流体機械、38・・・流路、39・・・流体機械、40・・・培地保持槽、50・・・血液容器、51・・・流路、52・・・流体機械、53・・・赤血球処理剤容器、54・・・流路、55・・・流体機械、56・・・流路、57・・・混合器、58・・・流路、60・・・流路、61・・・希釈用液容器、70・・・真空容器、71・・・真空容器、100・・・赤血球除去装置、101・・・赤血球除去装置、115・・・開口、116・・・開口、117・・・流路、200・・・細胞培養装置

Claims (20)

  1.  細胞培養器内で細胞に因子を導入し、
     前記細胞培養器と同一の細胞培養器内で前記因子を導入された細胞を培養する、
     細胞の培養方法。
  2.  前記細胞に因子を導入し、前記因子を導入された細胞を培養している間、前記細胞培養器が閉鎖されている、請求項1に記載の細胞の培養方法。
  3.  前記細胞培養器に容積可変容器が接続されており、
     前記細胞培養器及び前記容積可変容器内を流体が移動する、
     請求項1又は2に記載の細胞の培養方法。
  4.  前記容積可変容器から前記因子が供給される、請求項3に記載の細胞の培養方法。
  5.  前記細胞培養器と同一の細胞培養器内で前記因子を導入された第1の状態の細胞を第2の状態の細胞に誘導する、請求項1から4のいずれか1項に記載の細胞の培養方法。
  6.  前記第1の状態の細胞が体細胞である、請求項5に記載の細胞の培養方法。
  7.  前記第2の状態の細胞が幹細胞である、請求項5又は6に記載の細胞の培養方法。
  8.  前記第2の状態の細胞がiPS細胞である、請求項5又は6に記載の細胞の培養方法。
  9.  前記第1の状態の細胞が幹細胞である、請求項5に記載の細胞の培養方法。
  10.  前記第2の状態の細胞が体細胞である、請求項5に記載の細胞の培養方法。
  11.  前記第1の状態の細胞が体細胞であり、前記第2の状態の細胞が前記第1の状態の細胞とは異なる体細胞である、請求項5に記載の細胞の培養方法。
  12.  前記第1の状態の細胞が、血小板及び赤血球の少なくとも一方を少なくとも部分的に除去された血液細胞である、請求項5に記載の細胞の培養方法。
  13.  前記因子が、第1の状態の細胞を第2の状態の細胞に誘導する因子である、請求項1から12のいずれか1項に記載の細胞の培養方法。
  14.  前記因子が初期化因子である、請求項1から8のいずれか1項に記載の細胞の培養方法。
  15.  前記因子が分化誘導因子である、請求項1から5のいずれか1項に記載の細胞の培養方法。
  16.  前記因子を導入された細胞を前記細胞培養器から回収し、前記細胞培養器と同一の細胞培養器に前記細胞を戻して、前記細胞を継代又は拡大培養する、請求項1から15のいずれか1項に記載の細胞の培養方法。
  17.  血液を処理して、赤血球を少なくとも部分的に除去された処理血液を作製することと、
     前記処理血液を希釈することと、
     前記希釈された処理血液に含まれる単核球を沈降させることと、
     前記希釈された処理血液の上澄みを除去することと、
     前記単核球を回収することと、
     を含む、単核球の回収方法。
  18.  赤血球除去器内で前記処理血液を作製し、
     単核球回収器内で前記処理血液の希釈、前記単核球の沈降、及び前記上澄みの除去がなされ、前記赤血球除去器及び前記単核球回収器が閉鎖されている、請求項17に記載の単核球の回収方法。
  19.  赤血球沈降剤又は赤血球除去剤で前記血液を処理する、請求項17又は18に記載の単核球の回収方法。
  20.  前記回収された単核球において、血小板及び赤血球の少なくとも一方が少なくとも部分的に除去されている、請求項17から19のいずれか1項に記載の単核球の回収方法。
PCT/JP2020/022839 2019-06-10 2020-06-10 赤血球除去装置、単核球回収器、細胞培養装置、細胞培養システム、細胞培養方法、及び単核球の回収方法 WO2020250927A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021526112A JP7343881B2 (ja) 2019-06-10 2020-06-10 赤血球除去装置、単核球回収器、細胞培養装置、細胞培養システム、細胞培養方法、及び単核球の回収方法
CN202080033351.6A CN113785049A (zh) 2019-06-10 2020-06-10 红细胞除去装置、单核细胞回收器、细胞培养装置、细胞培养***、细胞培养方法及单核细胞的回收方法
US17/617,876 US20220306993A1 (en) 2019-06-10 2020-06-10 Erythrocyte removal device, mononuclear cell collector, cell culture device, cell culture system, cell culture method, and mononuclear cell collection method
EP20823391.6A EP3981870A4 (en) 2019-06-10 2020-06-10 ERYTHROCYTE REMOVAL DEVICE, MONONUCLEAR CELL COLLECTOR, CELL CULTURE DEVICE, CELL CULTURE SYSTEM, CELL CULTURE METHOD, AND MONONUCLEAR CELL COLLECTION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962859307P 2019-06-10 2019-06-10
US62/859,307 2019-06-10

Publications (1)

Publication Number Publication Date
WO2020250927A1 true WO2020250927A1 (ja) 2020-12-17

Family

ID=73781480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022839 WO2020250927A1 (ja) 2019-06-10 2020-06-10 赤血球除去装置、単核球回収器、細胞培養装置、細胞培養システム、細胞培養方法、及び単核球の回収方法

Country Status (5)

Country Link
US (1) US20220306993A1 (ja)
EP (1) EP3981870A4 (ja)
JP (1) JP7343881B2 (ja)
CN (1) CN113785049A (ja)
WO (1) WO2020250927A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183742B1 (ja) 2005-12-13 2008-11-19 国立大学法人京都大学 誘導多能性幹細胞の製造方法
JP2014114997A (ja) 2012-12-07 2014-06-26 Koken Ltd 局所空気清浄化装置
JP2017535282A (ja) * 2014-11-05 2017-11-30 ジュノー セラピューティクス インコーポレイテッド 形質導入および細胞プロセシングのための方法
WO2018015561A1 (en) * 2016-07-21 2018-01-25 Celyad Method and apparatus for automated independent parallel batch-processing of cells
JP2018061519A (ja) * 2012-02-01 2018-04-19 東洋製罐グループホールディングス株式会社 細胞培養用キット
JP2019080575A (ja) * 2019-02-05 2019-05-30 剛士 田邊 体細胞製造システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605822A (en) * 1989-06-15 1997-02-25 The Regents Of The University Of Michigan Methods, compositions and devices for growing human hematopoietic cells
WO2007142309A1 (ja) * 2006-06-09 2007-12-13 Michio Ishibashi 腎糸球体治療剤のスクリーニング方法
US20160060601A1 (en) * 2013-04-17 2016-03-03 Nissan Chemical Industries, Ltd. Medium composition and method for producing red blood cells using same
WO2014200114A1 (en) * 2013-06-11 2014-12-18 Kyoto University Method of efficiently establishing induced pluripotent stem cells
GB201508752D0 (en) * 2015-05-21 2015-07-01 Mason Christopher And Veraitch Farlan S Cell culture device, system and methods of use thereof
CN108138130A (zh) * 2015-08-31 2018-06-08 爱平世股份有限公司 多能干细胞制造***和生产诱导多能干细胞的方法
WO2017162467A1 (en) * 2016-03-21 2017-09-28 General Electric Company Pluripotent stem cell expansion and passage using a stirred tank bioreactor
AU2017301040B2 (en) * 2016-07-19 2023-01-05 Accellta Ltd. Culture media for culturing pluripotent stem cells in suspension
KR102410357B1 (ko) * 2016-11-11 2022-06-16 오리바이오테크 엘티디 세포 배양 장치 시스템 및 그의 사용 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183742B1 (ja) 2005-12-13 2008-11-19 国立大学法人京都大学 誘導多能性幹細胞の製造方法
JP2018061519A (ja) * 2012-02-01 2018-04-19 東洋製罐グループホールディングス株式会社 細胞培養用キット
JP2014114997A (ja) 2012-12-07 2014-06-26 Koken Ltd 局所空気清浄化装置
JP2017535282A (ja) * 2014-11-05 2017-11-30 ジュノー セラピューティクス インコーポレイテッド 形質導入および細胞プロセシングのための方法
WO2018015561A1 (en) * 2016-07-21 2018-01-25 Celyad Method and apparatus for automated independent parallel batch-processing of cells
JP2019080575A (ja) * 2019-02-05 2019-05-30 剛士 田邊 体細胞製造システム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Handbook of gene transfer experiments", 1 November 2015, TAKARA BIO INC., JP, article ANONYMOUS: "General protocol of Trans1T-X2", pages: 1 - 12, XP009533495 *
ANONYMOUS: "Ficoll-Paque(TM) PREMIUM", INSTRUCTIONS 28-4039-56AE CELL PREPARATION MEDIA, 15 October 2005 (2005-10-15), pages 1 - 15, XP055771696 *
OKIYONEDA TSUKASA ET AL.: "Introduction of the conventional method of DNA transfection by adenovirus vector", FOLIA PHARMACOLOGICA JAPONICA, vol. 119, no. 6, June 2002 (2002-06-01), pages 337 - 344, XP055771677 *
SEKI TOMOHISA ET AL.: "Generating induced pluripotent stem cells from terminally differentiated human peripheral T cells", IGAKU NO AYUMI = JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 239, no. 14, 2011, JP, pages 1320 - 1325, XP009533263, ISSN: 0039-2359 *

Also Published As

Publication number Publication date
EP3981870A1 (en) 2022-04-13
EP3981870A4 (en) 2023-11-01
CN113785049A (zh) 2021-12-10
US20220306993A1 (en) 2022-09-29
JP7343881B2 (ja) 2023-09-13
JPWO2020250927A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
US11912977B2 (en) Pluripotent stem cell production system
WO2020250929A1 (ja) 赤血球除去装置、単核球回収器、細胞培養装置、細胞培養システム、細胞培養方法、及び単核球の回収方法
ES2755552T3 (es) Dispositivos de filtración de flujo tangencial y métodos para el enriquecimiento de leucocitos
WO2018154791A1 (ja) 細胞処理システム及び細胞処理装置
US20230030031A1 (en) Cell treatment device, suspension culture vessel, and stem cell induction method
JP5155530B2 (ja) 成体幹細胞分離・培養システム
WO2020040135A1 (ja) 細胞の培養又は誘導方法
WO2021090767A1 (ja) 細胞培養装置
WO2020262354A1 (ja) 細胞培養器及び細胞培養装置
WO2020250927A1 (ja) 赤血球除去装置、単核球回収器、細胞培養装置、細胞培養システム、細胞培養方法、及び単核球の回収方法
JP7090337B2 (ja) 細胞処理システム及び細胞処理装置
WO2022210034A1 (ja) 細胞の培養器及び細胞の培養方法
WO2021038998A1 (ja) 細胞製造装置及びそのシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526112

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020823391

Country of ref document: EP

Effective date: 20220110