WO2020248465A1 - 底座、光发射模组、3d识别装置及智能终端 - Google Patents

底座、光发射模组、3d识别装置及智能终端 Download PDF

Info

Publication number
WO2020248465A1
WO2020248465A1 PCT/CN2019/112889 CN2019112889W WO2020248465A1 WO 2020248465 A1 WO2020248465 A1 WO 2020248465A1 CN 2019112889 W CN2019112889 W CN 2019112889W WO 2020248465 A1 WO2020248465 A1 WO 2020248465A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
light source
heat sink
main body
Prior art date
Application number
PCT/CN2019/112889
Other languages
English (en)
French (fr)
Inventor
林君翰
李宗政
周祥禾
陈冠宏
詹明山
Original Assignee
南昌欧菲生物识别技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲生物识别技术有限公司 filed Critical 南昌欧菲生物识别技术有限公司
Publication of WO2020248465A1 publication Critical patent/WO2020248465A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management

Definitions

  • the present invention relates to the technical field of 3D recognition, in particular to a base, a light emitting module, a 3D recognition device and an intelligent terminal.
  • the 3D recognition device usually includes a light emitting module and a light receiving module. After the projection light emitted by the light emitting module is projected onto the surface of the object to be measured, the information light reflected from the surface of the object to be measured carries the information on the surface of the object to be measured, and the light is received The module receives and processes the information light to obtain a 3D image of the surface of the test object.
  • the light emitting module includes a light source and a projection light forming unit, and the light emitted by the light source becomes the projection light after passing through the projection light forming unit.
  • a light source with higher power needs to be selected, that is, a high-energy light source needs to be selected, but the high-energy light source generates more heat during operation.
  • the traditional light source mainly dissipates heat through the substrate carrying the light source, and the heat dissipation area is insufficient, and the heat is easy to accumulate on the substrate. The accumulated heat easily causes the light attenuation phenomenon of the light source, and when the heat accumulates to a certain degree, the light source will burn out.
  • a base a light emitting module, a 3D recognition device, and an intelligent terminal are provided.
  • a base including:
  • the main body is provided with through holes penetrating both ends of the main body, the through holes are used to provide a light channel for the light source, and the main body includes a light incident end and a light emission end; and
  • the heat sink is arranged on the side wall of the body, and the heat sink includes a heat dissipation surface exposed to the body, so that when a heat transfer path is established between the heat sink and the light source, The heat dissipation surface directly exchanges heat with the outside to dissipate heat from the light source.
  • a light emitting module includes:
  • the light source is arranged on the heat dissipation substrate and is electrically connected to the heat dissipation substrate;
  • the light incident end of the plastic body is provided on the heat dissipation substrate, and the light source is accommodated in the plastic body;
  • the thermal conductive glue is located on the outer surface of the base and connects the heat dissipation substrate and the heat sink to establish a heat transfer path through the heat dissipation substrate, the thermal conductive glue and the heat sink in sequence.
  • a 3D recognition device including:
  • the light receiving module is used to receive the light from the light source reflected from the surface of the object.
  • An intelligent terminal includes the above-mentioned 3D recognition device.
  • FIG. 1 is a three-dimensional schematic diagram of a light emitting module provided by an embodiment of the present invention
  • FIG. 2 is a schematic top view of the light emitting module shown in FIG. 1;
  • Figure 3 is a schematic cross-sectional view taken along line A-A in Figure 2;
  • Figure 4 is a schematic cross-sectional view taken along line B-B in Figure 2;
  • FIG. 5 is a three-dimensional schematic diagram of the light emitting module shown in FIG. 1 from another perspective;
  • Fig. 6 is an exploded view of the light emitting module shown in Fig. 5;
  • FIG. 7 is a schematic structural diagram of a 3D recognition device provided by an embodiment of the present invention.
  • a light emitting module 10 provided by an embodiment of the present invention includes a substrate 100, a light source 200, a base 300 and a projection light forming unit 400.
  • the light source 200 and the base 300 are both disposed on the substrate 100, and the base 300 is a hollow structure with open ends, and the light source 200 is accommodated in the base 300.
  • the projected light forming unit 400 is arranged in the base 300, and the light emitted by the light source 200 becomes projected light after the projected light forming unit 400.
  • the projected light can be used as an active light source in 3D recognition. Of course, the projected light can also be used for other applications , This embodiment does not limit it.
  • the light source 200 is a VCSEL (Vertical Cavity Surface Emitting Laser, vertical cavity surface emitting laser) light source.
  • the projection light forming unit 400 is a diffractive optical element (DOE) or a diffuser (Diffuser).
  • DOE diffractive optical element
  • Diffuser diffuser
  • the substrate 100 is a carrier of the light source 200.
  • the substrate 100 is also a medium through which the light source 200 is connected to the power source. At this time, the light source 200 is electrically connected to the substrate 100.
  • the substrate 100 is also a heat dissipation substrate, so that the heat generated when the light source 200 operates can be dissipated through the substrate 100.
  • the substrate 100 includes a ceramic substrate and a conductive circuit provided on the ceramic substrate.
  • the substrate is used for heat dissipation, the heat dissipation area is limited, and the heat is easy to accumulate on the substrate.
  • the accumulated heat can easily lead to light attenuation of the light source, and when the heat is accumulated to a certain degree, the light source will burn out. .
  • the undesirable phenomenon is more serious.
  • the base 300 is designed as a heat dissipation base, and the substrate 100 and the base 300 are connected through the thermally conductive adhesive 500 to form a heat transfer path through the substrate 100, the thermally conductive adhesive 500 and the base 300 in sequence.
  • the light emitting module 10 uses the substrate 100 and the base 300 for heat dissipation at the same time, which increases the heat dissipation area, so that the light emitting module 10 has a better heat dissipation effect.
  • the base 300 includes a plastic body 310 and a heat sink 320.
  • the plastic body 310 is provided with through holes 3142 passing through both ends of the plastic body 310.
  • the through holes 3142 are used to provide a light channel for the light source 200.
  • the light source 200 and the projection light forming unit 400 are both received in the through holes 3142.
  • the heat sink 320 is disposed on the side wall 312 of the plastic body 310, and the heat sink 320 includes a heat dissipation surface 322, which is exposed on the plastic body 310, so that when a heat transfer path is established between the heat sink 320 and the light source 200, the heat dissipation surface 322 directly exchanges heat with the outside, thereby dissipating heat for the light source 200.
  • the heat dissipation effect of the heat sink 320 is better than that of the plastic body 310.
  • the plastic body 310 with poor heat dissipation effect and the heat sink 320 with better heat dissipation effect are combined to form a base 300 with better heat dissipation effect.
  • the base made of plastic can establish a heat transfer path between the base 300 and the light source 200, so that the base 300 can dissipate heat for the light source 20.
  • the light emitting module 10 uses the substrate 100 and the base 300 to dissipate heat at the same time, which increases the heat dissipation area, so that the light emitting module 10 has a better heat dissipation effect.
  • the material of the heat sink 320 is different from the material of the plastic body 310.
  • the heat sink 320 includes a connection surface 324 disposed opposite to the heat dissipation surface 322, and the connection surface 324 is embedded in the side wall 312 of the plastic body 310. In this way, it can be ensured that the inner wall of the through hole 3142 is made of plastic material, and the heat sink 320 is prevented from changing the material of the inner wall of the through hole 3142.
  • the material of the heat sink 320 is metal, that is, the heat sink 320 is a metal sheet, and the heat sink 320 may be a copper sheet, a steel sheet, or the like with high thermal conductivity. The thermal conductivity of the metal sheet is higher than that of the plastic, so that the base 300 has a better heat dissipation effect.
  • the heat sink 320 and the plastic body 310 are integrally formed by injection molding.
  • the heat sink 320 insert
  • liquid plastic is injected into the mold cavity.
  • the liquid plastic solidifies to form the plastic body 310. This operation is also called embedding.
  • Parts injection molding insert molding
  • the heat sink 320 and the plastic body 310 are integrally formed by injection molding, and the base 300 can be manufactured on the basis of an existing mold, so that the original assembly method and volume size of the traditional base may not be changed.
  • the plastic body 310 includes a light incident end 310a and a light exit end 310b.
  • the plastic body 310 includes a main body portion 314 and an auxiliary portion 316 connected to each other.
  • the main body portion 314 and the auxiliary portion 316 are arranged along a first direction 12, which is perpendicular to the arrangement direction of the light incident end 310a to the light emission end 310b (the first Two directions 14).
  • the through hole 3142 is opened on the main body 314. In the arrangement direction from the light incident end 310 a to the light exit end 310 b, the height of the main portion 314 is greater than the height of the auxiliary portion 316. As shown in FIG.
  • an end of the auxiliary part 316 away from the light emitting end 310 b is provided with an expansion slot 3162, and the expansion slot 3162 communicates with the through hole 3142.
  • the end of the through hole 3142 close to the auxiliary part 316 and the expansion groove 3162 jointly correspond to the light incident end 310a
  • the end of the through hole 3142 away from the auxiliary part 316 corresponds to the light emission end 310b
  • the opening width of the light incident end 310a is larger than the opening width of the light emission end 310b .
  • the overall volume and weight of the base 300 can be made smaller on the premise that the light source 200 and the electronic component 110 can be accommodated, thereby facilitating obtaining a small-sized light emitting module 10 , Which is convenient to be applied to smart terminals.
  • the first direction 12 is perpendicular to the second direction 14. Specifically, the first direction 12 is a horizontal direction, and the second direction 14 is a vertical direction.
  • an end of the auxiliary part 316 facing away from the opening of the light emitting end 310 b is provided with an air escape hole 3164, and the air escape hole 3164 communicates with the expansion slot 3162.
  • the substrate 100 and the base 300 are usually assembled by gluing, and the glue is cured by heating (that is, a glue layer is provided between the substrate 100 and the base 300). In the process of heating and curing the glue, the air escape hole 3164 can be effectively avoided The air pressure in the base 300 is too high. After the substrate 100 and the base 300 are fixed, the air escape hole 3164 can be sealed with glue to prevent moisture and dust from entering the base 300.
  • the heat sink 320 is provided on the side wall 312 of the main body portion 314 away from the auxiliary portion 316.
  • the light source 200 is usually arranged corresponding to the through hole 3142, that is, the center of the light source 200 roughly coincides with the center line of the through hole 3142, so that the side wall 312 of the main body 314 away from the auxiliary part 316 is far away from the main body relative to the auxiliary part 316
  • the side wall 312 of the 314 is closer to the light source 200, and the heat sink 320 is arranged close to the light source 200 to facilitate the conduction of heat from the light source 200 to the heat sink 320, thereby having a better heat dissipation effect.
  • the end of the heat sink 320 away from the light incident end 310a is located between the end of the auxiliary portion 316 away from the light incident end 310a and the light emission end 310b. In this way, it can be ensured that the heat sink 320 has a longer length in the second direction 14, that is, a larger heat dissipation area.
  • the plastic body 310 has a plurality of side walls 312 which are connected end to end.
  • the number of radiating fins 320 may be multiple (three or more) and the number of radiating fins 320 is less than or equal to the number of side walls 312, and each radiating fin 320 is arranged corresponding to a side wall 312.
  • one or two heat sinks 320 are provided in order to reduce the difficulty of manufacturing the base 300 (the more the number of heat sinks 320, the greater the manufacturing difficulty).
  • the cross section of the plastic body 310 is square.
  • the plastic body 310 is a body made of plastic material, while in some other embodiments, the body can also be made of other materials.
  • the 3D recognition device 90 provided by an embodiment of the present invention includes a light emitting module 10 and a light receiving module 20. After the structured light or TOF projection light emitted by the light emitting module 10 is projected onto the surface 30 of the object to be measured, the light receiving module 20 receives the information light reflected from the surface 30 of the object to be measured and carrying information on the surface of the object 30.
  • An embodiment of the present invention also provides an intelligent terminal, which includes the above-mentioned 3D recognition device 90.
  • the smart terminal is a smart phone, a tablet, a smart watch, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

一种底座(300),包括:塑胶本体(310),开设有贯穿塑胶本体(310)两端的通孔(3142),通孔(3142)用于为光源(200)提供光线通道,塑胶本体(310)包括光线入射端及光线射出端;散热片(320),设于塑胶本体(310)的侧壁(312)上,且散热片(320)包括散热表面(322),散热表面(322)外露处于塑胶本体(310),以当散热片(320)与光源(200)之间建立热量传递路径时,散热表面(322)直接与外界进行热交换为光源(200)散热。还公开了一种光发射模组,一种3D识别装置,以及一种智能终端。

Description

底座、光发射模组、3D识别装置及智能终端 技术领域
本发明涉及3D识别技术领域,特别是涉及一种底座、光发射模组、3D识别装置及智能终端。
背景技术
近年来,随着3D识别技术的发展,智能手机、平板电脑等智能终端逐步采用3D识别装置来进行人脸识别,以进行屏幕解锁、快速支付等操作。
3D识别装置通常包括光发射模组与光接收模组,光发射模组发射的投射光投影至被测物表面后,被测物表面反射回来的信息光携带被测物表面的信息,光接收模组接收并处理信息光,即可获得被测物表面的3D图像。
其中,光发射模组包括光源及投射光形成单元,光源发出的光线经过投射光形成单元后变成投射光。为了精确获得被测物表面的3D图像,需要选用功率较大的光源,也即需要选用高能量光源,但高能量光源在工作时会产生较多热量。传统的光源主要通过承载光源的基板散热,散热面积不足,热量容易累积在基板处,积累的热量容易导致光源产生光衰减现象,而且当热量积累到一定程度后,还会出现光源烧毁现象。
发明内容
根据本申请的各种实施例,提供一种底座、光发射模组、3D识别装置及智能终端。
一种底座,包括:
本体,开设有贯穿所述本体两端的通孔,所述通孔用于为光源提供光线通道,所述本体包括光线入射端及光线射出端;以及
散热片,设于所述本体的侧壁上,且所述散热片包括散热表面,所述散热表面外露于所述本体,以当所述散热片与所述光源之间建立热量传递路径时,所述散热表面直接与外界进行热交换为所述光源散热。
一种光发射模组,包括:
散热基板;
光源,设于所述散热基板上,并与所述散热基板电连接;
上述的底座,所述塑胶本体的所述光线入射端设于所述散热基板上,且所述光源收容于所述塑胶本体内;以及
导热胶,位于所述底座外表面,并连接所述散热基板与所述散热片,以建立依次经所述散热基板、所述导热胶及所述散热片的热量传递路径。
一种3D识别装置,包括:
上述的光发射模组;以及
光接收模组,用于接收由被测物表面反射回来的光源的光线。
一种智能终端,包括上述的3D识别装置。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本发明一实施例提供的光发射模组的立体示意图;
图2为图1所示的光发射模组的俯视示意图;
图3为沿图2中的A-A线的剖面示意图;
图4为沿图2中的B-B线的剖面示意图;
图5为图1所示的光发射模组的另一视角的立体示意图;
图6为图5所示的光发射模组的***图;
图7为本发明一实施例提供的3D识别装置的结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体地实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1-图4所示,本发明一实施例提供的光发射模组10,该光发射模组10包括基板100、光源200、底座300以及投射光形成单元400。光源200及底座300均设于基板100上,且底座300为两端开口的中空结构,光源200收容于底座300内。投射光形成单元400设于底座300内,光源200发出的光线经投射光形成单元400后变成投射光,投射光可用于作为3D识别中的主动光源,当然该投射光也可以用于其他应用,本实施例不做限制。在一些实施例中,光源200为VCSEL(Vertical Cavity Surface Emitting Laser, 垂直腔面发射激光器)光源。投射光形成单元400为衍射光学元件(Diffractive Optical Elements,DOE)或散射器(Diffuser)。
基板100为光源200的载体。基板100还为光源200与电源接通的媒介,此时,光源200与基板100电连接。基板100还为散热基板,从而光源200工作时产生的热量可以通过基板100散出。在一些实施例中,基板100包括陶瓷基板及设于陶瓷基板上的导电线路。在一些实施例中,基板100上还有各种电子元件110,电子元件110可以为电容、电阻等光发射模组10工作时的必要元件。
在传统的光发射模组中,采用基板散热,散热面积有限,热量容易累积在基板处,积累的热量容易导致光源产生光衰减现象,而且当热量积累到一定程度后,还会出现光源烧毁现象。特别是当光源为功率较大的光源时,不良现象更严重。
为了解决上述问题,在一些实施例中,将底座300设计为散热底座,并通过导热胶500连接基板100与底座300,从而形成依次经基板100、导热胶500及底座300的热量传递路径。相对于传统的采用基板散热的光发射模组,上述光发射模组10同时采用基板100与底座300散热,增加了散热面积,从而使得上述光发射模组10具有较好的散热效果。
在一些实施例中,如图5及图6所示,底座300包括塑胶本体310及散热片320。塑胶本体310开设有贯穿塑胶本体310两端的通孔3142,通孔3142用于为光源200提供光线通道,光源200与投射光形成单元400均收容于通孔3142内。散热片320设于塑胶本体310的侧壁312上,且散热片320包括散热表面322,散热表面322外露于塑胶本体310,以当散热片320与光源200之间建立热量传递路径时,散热表面322直接与外界进行热交换,从而为光源200散热。
其中,散热片320的散热效果优于塑胶本体310的散热效果,将散热效果较差的塑胶本体310与散热效果较好的散热片320结合构成具有较好散热效果的底座300,相对于由纯塑胶构成的底座,上述底座300能与光源200 之间建立热量传递路径时,从而使得底座300能为光源20散热。当上述底座300应用于光发射模组10时,光发射模组10同时采用基板100与底座300散热,增加了散热面积,从而使得光发射模组10具有较好的散热效果。
在一些实施例中,散热片320的材质不同于塑胶本体310的材质,散热片320包括与散热表面322相背设置的连接表面324,连接表面324内嵌于塑胶本体310的侧壁312内。如此,可以确保通孔3142的内壁均为塑胶材质,避免散热片320改变通孔3142的内壁的材质。在一些实施例中,散热片320的材质为金属,也即散热片320为金属片,散热片320可以为导热系数较高的铜片、钢片等。金属片的导热系数比塑胶的导热系数高,从而使得上述底座300具有较好的散热效果。
在一些实施例中,散热片320与塑胶本体310为注塑一体成型结构。在实际操作中,将散热片320(嵌件)事先放入模具型腔内,然后在模具型腔内注入液态的塑胶,液态的塑胶固化后形成塑胶本体310,这一操作过程也称为嵌件注塑成型(insert molding注塑)。散热片320与塑胶本体310注塑一体成型,可以在现有的模具基础上制作上述底座300,从而可以不改变原有的传统的底座的组装方式与体积尺寸。
在一些实施例中,如图5所示,塑胶本体310包括光线入射端310a及光线射出端310b。塑胶本体310包括相连的主体部314及辅助部316,主体部314与辅助部316沿第一方向12排布,第一方向12垂直于光线入射端310a至光线射出端310b的排布方向(第二方向14)。通孔3142开设于主体部314上。在光线入射端310a至光线射出端310b的排布方向上,主体部314的高度大于辅助部316的高度。如图3所示,辅助部316远离光线射出端310b的一端开设有扩展槽3162,扩展槽3162与通孔3142连通。通孔3142靠近辅助部316的一端及扩展槽3162共同对应光线入射端310a,通孔3142远离辅助部316的一端对应光线射出端310b,光线入射端310a的开口宽度大于光线射出端310b的开口宽度。如此,在既能满足光线出射要求,又具有足够的空间收容光源200及电子元件110的前提下,还可以使得底座300的整体体 积及重量较小,从而利于得到小尺寸的光发射模组10,进而便于应用于智能终端上。
在一些实施方中,第一方向12与第二方向14垂直。具体地,第一方向12为水平方向,第二方向14为竖直方向。
在一些实施例中,如图3所示,辅助部316背离于光线射出端310b开口的一端开设有逃气孔3164,逃气孔3164与扩展槽3162连通。通常采用胶粘的方式组装基板100与底座300,并采用加热的方式固化胶水(也即基板100与底座300之间设置有胶层),在加热固化胶水的过程中,逃气孔3164可以有效避免底座300内的气压过大。待基板100与底座300固定后,可以用胶水封堵逃气孔3164,从而避免水汽、灰尘进入底座300。
在一些实施例中,散热片320设于主体部314远离辅助部316的侧壁312上。在实际应用中,光源200通常与通孔3142对应设置,即光源200的中心与通孔3142的中心线大致重合,从而主体部314远离辅助部316的侧壁312相对于辅助部316远离主体部314的侧壁312更靠近光源200,散热片320靠近光源200设置更利于光源200热量传导至散热片320,从而具有更好的散热效果。
在一些实施例中,散热片320远离光线入射端310a的一端位于辅助部316远离光线入射端310a的一端与光线射出端310b之间。如此,可以确保散热片320在第二方向14上具有较长的长度,也即具有较大的散热面积。
在一些实施例中,如图6所示,塑胶本体310具有多个侧壁312,多个侧壁312首尾相连。散热片320的数目可以为多个(三个及三个以上)且散热片320的数目小于等于侧壁312的数目,每一散热片320对应一侧壁312设置。在一些实施例中,为了降低制作底座300的难度(散热片320数目越多,制作难度越大),设置一个或两个散热片320。在一些实施例中,塑胶本体310的横截面为方形。
在上述各实施例中,塑胶本体310是由塑胶材质制成的本体,而在其他一些实施例中,本体也可以是由其他材质制成。
如图7所示,本发明一实施例提供的3D识别装置90,包括光发射模组10及光接收模组20。光发射模组10发射的结构光或TOF投射光投影至被测物表面30后,光接收模组20接收由被测物表面30反射回来的携带被测物表面30信息的信息光。
本发明一实施例还提供一种智能终端,该智能终端包括上述3D识别装置90。在一些实施例中,智能终端为智能手机、平板、智能手表等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种底座,包括:
    本体,开设有贯穿所述本体两端的通孔,所述通孔用于为光源提供光线通道,所述本体包括光线入射端及光线射出端;以及
    散热片,设于所述本体的侧壁上,且所述散热片包括散热表面,所述散热表面外露于所述本体,以当所述散热片与所述光源之间建立热量传递路径时,所述散热表面直接与外界进行热交换为所述光源散热。
  2. 根据权利要求1所述的底座,其特征在于,所述散热片包括与所述散热表面相背设置的连接表面,所述连接表面内嵌于所述本体的侧壁内。
  3. 根据权利要求1所述的底座,其特征在于,所述本体包括相连的主体部及辅助部,所述通孔开设于所述主体部上,所述主体部与所述辅助部沿第一方向排布,所述第一方向垂直于所述光线入射端至所述光线射出端的排布方向,在所述光线入射端至所述光线射出端的排布方向上所述主体部的高度大于所述辅助部的高度,所述辅助部远离所述光线射出端的一端开设有扩展槽,所述扩展槽与所述通孔连通,所述通孔靠近所述辅助部的一端及所述扩展槽共同对应所述光线入射端,所述通孔远离所述辅助部的一端对应所述光线射出端,并且所述光线入射端的开口宽度大于所述光线射出端的开口宽度。
  4. 根据权利要求3所述的底座,其特征在于,所述辅助部背离所述光线射出端开口的一端开设有逃气孔,所述逃气孔与所述扩展槽连通。
  5. 根据权利要求3所述的底座,其特征在于,所述散热片设于所述主体部远离所述辅助部的侧壁上。
  6. 根据权利要求1所述的底座,其特征在于,所述本体具有多个所述侧壁,所述散热片的个数小于或等于所述侧壁的个数,且每一个所述散热片对应设置在其中一个所述侧壁上。
  7. 根据权利要求1-6中任一项所述的底座,所述散热片为金属片,所述本体为塑胶本体,所述金属片与所述塑胶本体为注塑一体成型结构。
  8. 一种光发射模组,包括:
    基板;
    光源,设于所述基板上,并与所述基板电连接;以及
    如权利要求1-7中任一项所述的底座,所述本体的所述光线入射端设于所述基板上,且所述光源收容于所述本体内。
  9. 根据权利要求8所述的光发射模组,其特征在于,所述基板为散热基板。
  10. 根据权利要求8所述的光发射模组,其特征在于,所述光发射模组还包括导热胶,位于所述底座外表面,并连接所述基板与所述散热片,以建立依次经所述基板、所述导热胶及所述散热片的热量传递路径。
  11. 根据权利要求8所述的光发射模组,其特征在于,所述光发射模组还包括投射光形成单元,所述投射光形成单元设于所述本体内,并与所述光源相对,用于将所述光源发出的光线转变为透射光。
  12. 根据权利要求11所述的光发射模组,其特征在于,所述投射光形成单元为衍射光学元件或散射器。
  13. 根据权利要求8所述的光发射模组,其特征在于,所述光源为VCSEL光源。
  14. 一种3D识别装置,包括:
    如权利要求8-13任一项所述的光发射模组;以及
    光接收模组,用于接收由被测物表面反射回来的光线。
  15. 一种智能终端,包括如权利要求14所述的3D识别装置。
PCT/CN2019/112889 2019-06-11 2019-10-24 底座、光发射模组、3d识别装置及智能终端 WO2020248465A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910502190.XA CN112072458A (zh) 2019-06-11 2019-06-11 底座、光发射模组、3d识别装置及智能终端
CN201910502190.X 2019-06-11

Publications (1)

Publication Number Publication Date
WO2020248465A1 true WO2020248465A1 (zh) 2020-12-17

Family

ID=73657831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112889 WO2020248465A1 (zh) 2019-06-11 2019-10-24 底座、光发射模组、3d识别装置及智能终端

Country Status (2)

Country Link
CN (1) CN112072458A (zh)
WO (1) WO2020248465A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070001290A1 (en) * 2005-06-30 2007-01-04 Daw-Heng Wong Semiconductor packaging structure
EP1978388A2 (en) * 2007-04-04 2008-10-08 AmTRAN Technology Co. Ltd. Photoelectric element package
CN104303380A (zh) * 2012-05-01 2015-01-21 三菱电机株式会社 半导体封装件
CN105042377A (zh) * 2015-08-07 2015-11-11 苏州晶雷光电照明科技有限公司 一种具有散热片的led灯
EP3324229A1 (en) * 2016-09-14 2018-05-23 Technology Research Association for Future Additive Manufacturing Semiconductor laser module and additive manufacturing device
US20190027892A1 (en) * 2015-07-29 2019-01-24 Nichia Corporation Semiconductor laser device
CN209046740U (zh) * 2018-11-13 2019-06-28 南昌欧菲生物识别技术有限公司 光电模组、深度获取组件及电子装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070001290A1 (en) * 2005-06-30 2007-01-04 Daw-Heng Wong Semiconductor packaging structure
EP1978388A2 (en) * 2007-04-04 2008-10-08 AmTRAN Technology Co. Ltd. Photoelectric element package
CN104303380A (zh) * 2012-05-01 2015-01-21 三菱电机株式会社 半导体封装件
US20190027892A1 (en) * 2015-07-29 2019-01-24 Nichia Corporation Semiconductor laser device
CN105042377A (zh) * 2015-08-07 2015-11-11 苏州晶雷光电照明科技有限公司 一种具有散热片的led灯
EP3324229A1 (en) * 2016-09-14 2018-05-23 Technology Research Association for Future Additive Manufacturing Semiconductor laser module and additive manufacturing device
CN209046740U (zh) * 2018-11-13 2019-06-28 南昌欧菲生物识别技术有限公司 光电模组、深度获取组件及电子装置

Also Published As

Publication number Publication date
CN112072458A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
US7777247B2 (en) Semiconductor light emitting device mounting substrates including a conductive lead extending therein
KR20180079202A (ko) 칩 패키지 구조체 및 그 제조 방법
WO2018146933A1 (ja) 半導体装置及び半導体装置の製造方法
JP2009188720A (ja) 固体撮像装置およびその製造方法
US20160095197A1 (en) Circuit board module and circuit board structure
JP2012114393A (ja) 放熱基板及びその製造方法
JP4433875B2 (ja) 発熱部品の放熱構造と、この放熱構造における放熱部材の製造方法
CN209608737U (zh) 摄像头模组及电子设备
WO2020248465A1 (zh) 底座、光发射模组、3d识别装置及智能终端
KR200400943Y1 (ko) 히트 싱크
JP2014146702A (ja) 電子装置および筐体
CN111164769A (zh) 制造发光器件的方法
CN114153092B (zh) 背光模组及显示装置
WO2022027470A1 (zh) 一种芯片及芯片封装方法、电子设备
KR102182621B1 (ko) 전자장치용 케이스
KR101353299B1 (ko) 고효율 고방열구조의 led패키지 구조 및 그 제조방법
JP2014135374A (ja) 伝熱基板
TW202141153A (zh) 鏡頭模組及電子裝置
TW202018402A (zh) 光學投射裝置
CN112444921A (zh) 一种光模块组件及光通信设备
CN212723467U (zh) 一种光模块
CN218525576U (zh) 一种高功率密度的3d封装功率模块
US20240258198A1 (en) Electronic package module
EP4407674A1 (en) Electronic package module
KR19990055507A (ko) 메모리모듈 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932537

Country of ref document: EP

Kind code of ref document: A1