WO2020243949A1 - 滤波器以及用于发射通道的电路 - Google Patents

滤波器以及用于发射通道的电路 Download PDF

Info

Publication number
WO2020243949A1
WO2020243949A1 PCT/CN2019/090348 CN2019090348W WO2020243949A1 WO 2020243949 A1 WO2020243949 A1 WO 2020243949A1 CN 2019090348 W CN2019090348 W CN 2019090348W WO 2020243949 A1 WO2020243949 A1 WO 2020243949A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
impedance
filter
modulator
output signal
Prior art date
Application number
PCT/CN2019/090348
Other languages
English (en)
French (fr)
Inventor
缪卫明
杨帆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980096930.2A priority Critical patent/CN113892236B/zh
Priority to PCT/CN2019/090348 priority patent/WO2020243949A1/zh
Publication of WO2020243949A1 publication Critical patent/WO2020243949A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits

Definitions

  • This application relates to the field of electricity, and more specifically, to a filter and a circuit for a transmission channel.
  • the present application provides a filter and a circuit for a transmission channel, which can improve the linearity of the post amplifier without increasing the power consumption of the post amplifier.
  • a filter for providing a signal to be modulated to a modulator, including: a first filtering component; a first adjusting component, including a first network with adjustable impedance, the first network and the The first filter component is coupled; the controller is used to adjust the impedance of the first network according to the first output signal of the modulator, the first output signal is the modulator to the first signal to be modulated Generated after modulation.
  • the impedance of the first network in the filter can be adjusted correspondingly according to the first output signal of the modulator, thereby improving the flexibility of the filter. degree.
  • the filter further includes a serial peripheral interface SPI, and the controller adjusts the impedance of the first network through the SPI.
  • the controller is specifically configured to adjust the impedance of the first network to decrease.
  • the controller adjusts the impedance of the first network to decrease, so that the output impedance of the filter can be adjusted to match the frequency of the first output signal of the modulator. This improves the flexibility of the filter.
  • the first filter component includes at least one inductor.
  • the first end of the first adjusting component is grounded, and the second end of the first adjusting component is connected to the output end of the first filtering component.
  • the filter further includes: a second filter component, including at least one inductor; a second adjustment component, including a second network with adjustable impedance, the second adjustment The third terminal of the component is grounded, and the fourth terminal of the second adjusting component is connected to the output terminal of the second filtering component.
  • the controller is further configured to adjust the first network impedance and the second output signal of the modulator according to the first output signal of the modulator and the second output signal of the modulator.
  • the second output signal is generated after the modulator modulates the second signal to be modulated.
  • the controller may adjust the impedance of the first network in the filter and the impedance of the second network in the filter accordingly according to the first output signal and the second output signal of the modulator. Impedance, thereby improving the flexibility of the filter.
  • the controller adjusts the impedance of the second network through the SPI.
  • the controller further It is specifically used to adjust the impedance reduction of the first network and the impedance reduction of the second network.
  • the controller adjusts the decrease of the impedance of the first network and the decrease of the impedance of the second network to realize the output impedance of the filter
  • the adjustment coordinated with the frequency of the first output signal of the modulator and the frequency of the second output signal of the modulator improves the flexibility of the filter.
  • the first network includes a first element and/or a first adjustable capacitor, wherein the first element is a first adjustable resistor or a first adjustable capacitor Field effect tube.
  • the second network includes a second element and/or a second adjustable capacitor, wherein the second element is a second adjustable resistor or a second adjustable capacitor Field effect tube.
  • the filter further includes: a third adjustable resistor, a fifth end of the third adjustable resistor is connected to the second end, and the third The sixth terminal of the adjustable resistor is connected to the fourth terminal.
  • the controller is further configured to control the sum of the third adjustable resistor and the impedance of the first network as a target impedance, or the third adjustable resistor The sum of the resistance and the impedance of the second network is the target impedance.
  • a circuit for a transmission channel including: a modulator; a filter, the filter including: a first filtering component; a first adjustment component including a first network with adjustable impedance, the The first network is coupled with the first filter component; the controller is configured to adjust the impedance of the first network according to the first output signal of the modulator, and the first output signal is the pair of the modulator The first signal to be modulated is generated after modulation.
  • the controller can adjust the impedance of the first network in the filter according to the first output signal of the modulator, so as to meet the low power consumption design of the circuit , Reduce the production cost of the circuit.
  • the filter further includes a serial peripheral interface SPI, and the controller adjusts the impedance of the first network through the SPI.
  • the controller is specifically configured to adjust the impedance of the first network to decrease.
  • the first filter component includes at least one inductor.
  • the first end of the first adjusting component is grounded, and the second end of the first adjusting component is connected to the output end of the first filtering component.
  • the filter further includes: a second filter component, including at least one inductor; a second adjustment component, including a second network with adjustable impedance, the second adjustment The third terminal of the component is grounded, and the fourth terminal of the second adjusting component is connected to the output terminal of the second filtering component.
  • the controller is further configured to adjust the first network according to the frequency of the first output signal of the modulator and the second output signal of the modulator And the impedance of the second network, the second output signal is generated after the modulator modulates the second signal to be modulated.
  • the controller can adjust the impedance of the first network in the filter and the second network in the filter according to the first output signal and the second output signal of the modulator. Therefore, the low power consumption design of the circuit for the transmission channel is satisfied, and the production cost of the circuit for the transmission channel is reduced.
  • the controller adjusts the impedance of the second network through the SPI.
  • the controller further It is specifically used to adjust the impedance reduction of the first network and the impedance reduction of the second network.
  • the first network includes a first element and/or a first adjustable capacitor, wherein the first element is a first adjustable resistor or a first adjustable capacitor Field effect tube.
  • the second network includes a second element and/or a second adjustable capacitor, wherein the second element is a second adjustable resistor or a second adjustable capacitor Field effect tube.
  • the filter further includes: a third adjustable resistor, a fifth end of the third adjustable resistor is connected to the second end, and the third The sixth terminal of the adjustable resistor is connected to the fourth terminal.
  • the controller is further configured to control the sum of the third adjustable resistor and the impedance of the first network as a target impedance, or the third adjustable resistor The sum of the resistance and the impedance of the second network is the target impedance.
  • the circuit further includes: an oscillator, and an output terminal of the oscillator outputs the third harmonic.
  • a chip system including the first aspect and the filter in any possible implementation manner of the first aspect.
  • a chip system including the second aspect and the circuit for transmitting the channel in any one of the possible implementation manners of the second aspect.
  • Figure 1 shows a schematic diagram of the launch architecture in a single-channel chip.
  • Figure 2 shows a schematic diagram of a transmitter internal circuit module in a single-channel chip.
  • FIG. 3 is a schematic structural diagram of a circuit 300 for transmitting channels according to an embodiment of the present application.
  • Passive components resistance, inductance, and capacitance components. Their common feature is that they can work when there is a signal without adding power to the circuit.
  • Inductance is an attribute of a closed loop and a physical quantity.
  • a magnetic field is induced in the coil, and the induced magnetic field will generate an induced current to resist the current passing through the coil.
  • the interaction between this current and the coil is called electrical inductance.
  • Modulator refers to a device that modulates low-frequency signals into high-frequency signals through digital signal processing technology for signal transmission.
  • the modulator is generally used to modulate two input signals (for example, the signal to be modulated output by the positive phase (I) path and the signal to be modulated output by the quadrature (Q) path).
  • the frequency of the output signal of the modulator is equal to the sum or difference of the frequencies of the two input signals, or a circuit combining the two.
  • the general modulator also needs to receive the local oscillator signal from the voltage-controlled oscillator, and its circuit completely works in the radio frequency band.
  • the local oscillator of the modulator adopts a 25% duty cycle
  • the energy difference between the fundamental frequency signal and the third harmonic of the modulator output is 9.5dB
  • the energy of the fundamental frequency signal and the third harmonic of the modulator output enters at the same time.
  • the linearity of the post-amplifier will be deteriorated. Therefore, the power consumption of the post-amplifier needs to be increased to meet the linearity requirements of the system.
  • FIG. 1 shows a schematic diagram of the launch architecture in a single-channel chip.
  • the transmitting architecture in the single-channel chip includes two input signals, namely in-phase (I) and quadrature (Q).
  • Each channel includes a digital to analog converter (DAC) 110, a filter 120, a modulator 130, and an amplifier 140, respectively.
  • the following uses the same phase one as an example to introduce each component.
  • the DAC 110 converts the digital signal into an analog signal and sends it to the low-pass filter 120.
  • the low-pass filter 120 allows baseband signals below the cutoff frequency to pass through the analog signal, but signals above the cutoff frequency cannot pass.
  • the modulator 130 modulates the baseband signal output by the low pass filter 120 and the local oscillator LO signal output by the oscillator 150 into a high frequency signal, and the modulator 130 realizes the conversion of the input baseband signal into a high frequency radio frequency signal.
  • the high frequency radio frequency signal enters the amplifier 140, and the amplifier 140 can amplify the high frequency radio frequency signal.
  • FIG. 2 shows a schematic diagram of a transmitter internal circuit module in a single-channel chip.
  • the filter can be composed of a differential circuit that has two input terminals, one of the two input terminals is a positive (for example, P pole) input, and the other input is a negative (for example, N pole) Input terminal, the input signals of the two input terminals can be the first baseband signal to be processed and the second baseband signal to be processed respectively, where the phase difference between the first baseband signal to be processed and the second signal to be processed is 90° .
  • the filter 120 may be a passive filter, that is, the passive filter is composed of an inductor and a capacitor, and the filter may be a fifth-order filter, that is, each path in the differential circuit of the fifth-order filter It can include two inductors and three capacitors, that is, the two inductors are L1 122 and L2 124, and the three capacitors are 121, 123, and 125; or, the two inductors are L1' and L2', and the three capacitors are respectively. They are 121', 123', 125'.
  • the filter also includes an adjustable resistor R1, and the baseband signal to be processed is filtered by the passive filter 120.
  • FIG. 3 is a schematic structural diagram of a circuit 300 for transmitting channels according to an embodiment of the present application. As shown in FIG. 3, the circuit 300 for transmitting channel includes:
  • the filter includes a first filtering component 310.
  • the first filter component 310 may include at least one inductor, and the filtered first signal to be modulated output from the output terminal of the first filter component 310 is input to the external modulator 130.
  • the first filter component 310 includes three inductors, that is, the three inductors are an inductor L1, an inductor L2, and an inductor Ls, respectively.
  • the filter may further include a first adjustment component 320, the first adjustment component 320 may include a first network with adjustable impedance, a first end of the first adjustment component 320 is grounded, and a second end of the first adjustment component 320 Connected to the output terminal of the first filter component 310.
  • the first network may include a first element and/or a first adjustable capacitor, where the first element is a first adjustable resistor or a first adjustable field effect transistor.
  • the first element may be a first adjustable resistor Rp
  • the first adjustable capacitor may be Cp.
  • the filter may further include a controller 340 for adjusting the impedance of the first network according to the first output signal of the modulator 130, where the first output signal is generated after the modulator modulates the first signal to be modulated.
  • the aforementioned controller 340 may also be a processor, such as a CPU.
  • the controller 340 is specifically configured to control the impedance of the first network to decrease.
  • the filter may further include a serial peripheral interface (serial peripheral interface, SPI), and the controller 340 adjusts the impedance of the first network through the SPI.
  • the circuit for the transmission channel may further include an oscillator 150, and the signal output by the oscillator 150 is the LO local oscillator signal and its harmonic signal.
  • the controller 340 controls the impedance of the first network 320 to decrease according to the increase in the frequency of the first output signal, so as to make the energy difference between the frequency of the first output signal and the frequency of the third harmonic output by the oscillator 150
  • the first threshold is greater than or equal to the first threshold, and the first threshold is greater than or equal to 13dB.
  • the first threshold may be 13dB, and the first threshold may also be 14dB. In this way, the influence of the high-frequency signal of the third harmonic at the output of the modulator 130 on the linearity of the cascaded amplifier 330 can be suppressed, that is, the signal input to the amplifier 330 is amplified by the amplifier 330 without causing signal distortion of the input amplifier 330 .
  • the filter may further include a second filter component 310', the second filter component 310' may include at least one inductor, and the filtered second signal to be modulated output by the output terminal of the second filter component is input To the external modulator 130.
  • the second filter component 310' includes three inductors, that is, the three inductors are an inductor L1', an inductor L2', and an inductor Ls', respectively.
  • the circuit 300 for the transmission channel may further include a second adjustment component 320', the second adjustment component 320' includes a second network with adjustable impedance, the third end of the second adjustment component is grounded, and the second adjustment component The fourth terminal of is connected to the output terminal of the second filter component.
  • the second network may include a second element and/or a second adjustable capacitor, wherein the second element is a second adjustable resistor or a second adjustable field effect transistor.
  • the second element is a second adjustable resistor Rp'
  • the second adjustable capacitor is Cp'.
  • the aforementioned controller 340 is further configured to adjust the impedance of the first network and the impedance of the second network according to the first output signal of the modulator 130 and the second output signal of the modulator 130, and the second output signal is a modulator.
  • the generator 130 modulates the second signal to be modulated and generates it.
  • the filter 300 can also adjust the impedance of the second network through the aforementioned SPI.
  • the controller 340 is also specifically configured to adjust the decrease and decrease of the impedance of the first network 320.
  • the impedance of the second network 320' is reduced.
  • the controller 340 controls the decrease of the impedance of the first network 320 and the decrease of the impedance of the second network 320' according to the increase of the frequency of the first output signal and the increase of the frequency of the second output signal, so that the first
  • the energy difference between the frequency of an output signal and the frequency of the third harmonic output by the oscillator 150 is greater than or equal to a first threshold, and the first threshold is greater than or equal to 13dB.
  • the first threshold may be 13dB, and the first threshold is also It can be 14dB.
  • the energy difference between the frequency of the second output signal and the frequency of the third harmonic output by the oscillator 150 may be greater than or equal to the second threshold, wherein the second threshold may be equal to the first threshold.
  • the second threshold is greater than or equal to 13dB.
  • the second threshold may be 13dB, and the second threshold may also be 14dB. In this way, the influence of the high-frequency signal of the third harmonic at the output of the modulator 130 on the linearity of the cascaded amplifier 330 can be suppressed, that is, the signal input to the amplifier 330 is amplified by the amplifier 330 without causing signal distortion of the input amplifier 330 .
  • the filter may further include a third adjustable resistor R1.
  • the fifth end of R1 is connected to the second end, and the sixth end of R1 is connected to the fourth end.
  • the controller 340 is further configured to adjust the impedance of the first network and the impedance of the third adjustable resistor R1 according to the signal frequency of the output terminal of the modulator 130, that is, the controller 340 according to the frequency of the first output signal, and according to the first Second, the frequency of the output signal, adjust the impedance of the second network and the impedance of the third adjustable resistor R1, and keep them at different operating frequencies.
  • the sum of the impedance of the first network and the impedance of the third adjustable resistor R1 is the target impedance
  • the sum of the impedance of the second network and the impedance of the third adjustable resistor R1 is the target impedance.
  • the operating frequency can be understood as the frequency of the signal at the output of the modulator, and the target impedance is determined by the operating frequency.
  • the impedance value Z of the first network satisfies formula (1):
  • the impedance value Z'of the second network satisfies the following formula (2):
  • the target impedance is:
  • the target impedance is:
  • the controller 340 can adjust the working frequency and the impedance value of the first network, and the working frequency and the impedance value of the second network according to formula (1) and formula (2).
  • the controller 340 can realize the impedance of the first network and the impedance of the third adjustable resistor R1 as the target impedance according to formula (3); the controller 340 can realize the impedance of the second network according to formula (4)
  • the sum of the value and the impedance of the third adjustable resistor R1 is the target impedance.
  • the controller 340 can control the resistance of the third adjustable resistor R1 to be smaller, control the impedance of the first network to be relatively larger, and make the third adjustable resistor R1 and the first The impedance value of the network satisfies formula (3).
  • the controller 340 can control the resistance of the third adjustable resistor R1 to be smaller, control the impedance value of the second network to be relatively larger, and make the impedance value of R1 and the second network satisfy the formula (4); for another example, work
  • the controller 340 can control the resistance of the third adjustable resistor R1 to be larger or not connected (open circuit), and control the impedance value of the first network and the impedance value of the second network to be relatively small.
  • the controller 340 can control the resistance of the third adjustable resistor R1 to be larger or not connected (open circuit), and control the impedance value of the second network to be relatively small Some, and make R1 and the impedance value of the second network satisfy according to formula (4). Therefore, under different operating frequencies, the sum of the impedance value of the first network and the impedance value of the third adjustable resistor R1 does not change, and the sum of the impedance value of the second network and the impedance value of the third adjustable resistor R1 does not change. .
  • the energy difference between the signal frequency of the modulator output port and the third harmonic frequency in different frequency bands is not less than 13dB, and the low power consumption design of the channel is realized.
  • the embodiment of the present application also provides a filter, which is as described in the above-mentioned filter in the circuit for the transmission channel, and will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

本申请提供了一种滤波器以及用于发射通道的电路,所述滤波器用于向调制器提供待调制信号,包括:第一滤波组件;第一调节组件,包括阻抗可调节的第一网络,所述第一网络与所述第一滤波组件耦合;控制器,用于根据所述调制器的第一输出信号,调节所述第一网络的阻抗,所述第一输出信号是所述调制器对第一待调制信号进行调制后生成的。上述滤波器可以根据调制器的第一输出信号,相应的调节第一网络的阻抗,从而提高了滤波器的灵活度。

Description

滤波器以及用于发射通道的电路 技术领域
本申请涉及电学领域,并且更具体地,涉及一种滤波器以及用于发射通道的电路。
背景技术
随着第五代移动通信(5th Generation,5G)技术的不断发展,运营商能够提供大带宽、多通道基站芯片来解决大规模多输入多输出的应用需求。在多通道芯片中的发射通道采用零中频架构下,滤波器和调制器均采用无源架构,其中,若调制器的本振(local oscillator,LO)采用25%的占空比,则理论上调制器的输出基频信号与三次谐波信号的能量差为9.5dB,在调制器输出基频信号及三次谐波的能量同时进入后级放大器后,会恶化后级放大器的线性度。因此,需增加后级放大器的功耗来满足后级放大器对线性度的要求,这样不利于整个芯片的低功耗节能的设计要求。
发明内容
本申请提供了一种滤波器以及用于发射通道的电路,在不增加后级放大器的功耗的情况下,改善后级放大器的线性度。
第一方面,提供了一种滤波器,用于向调制器提供待调制信号,包括:第一滤波组件;第一调节组件,包括阻抗可调节的第一网络,所述第一网络与所述第一滤波组件耦合;控制器,用于根据所述调制器的第一输出信号,调节所述第一网络的阻抗,所述第一输出信号是所述调制器对所述第一待调制信号进行调制后生成的。
本申请实施例中提出的滤波器的方案中,相比于传统的滤波器,可以根据调制器的第一输出信号,相应的调节滤波器中第一网络的阻抗,从而提高了滤波器的灵活度。
结合第一方面,在一种可能的实现方式中,所述滤波器还包括串行外设接口SPI,所述控制器通过所述SPI调节所述第一网络的阻抗。
结合第一方面,在一种可能的实现方式中,随着所述调制器的第一输出信号的频率的增大,所述控制器具体用于调节所述第一网络的阻抗减小。
在调制器的第一输出信号的频率增大的情况下,控制器调节第一网络的阻抗减小,实现了滤波器的输出阻抗与调制器的第一输出信号的频率相配合的调整,提高了滤波器的灵活度。
结合第一方面,在一种可能的实现方式中,所述第一滤波组件包括至少一个电感。
结合第一方面,在一种可能的实现方式中,所述第一调节组件的第一端接地,所述第一调节组件的第二端与所述第一滤波组件的输出端相连。
结合第一方面,在一种可能的实现方式中,所述滤波器还包括:第二滤波组件,包括至少一个电感;第二调节组件,包括阻抗可调节的第二网络,所述第二调节组件的第三端接地,所述第二调节组件的第四端与所述第二滤波组件的输出端相连。
结合第一方面,在一种可能的实现方式中,所述控制器还用于根据所述调制器的第一输出信号和所述调制器的第二输出信号,调节所述第一网络阻抗和所述第二网络的阻抗,所述第二输出信号是所述调制器对所述第二待调制信号进行调制后生成的。
本申请实施例中提出的滤波器的方案中,控制器可以根据调制器的第一输出信号和第二输出信号,相应的调节滤波器中第一网络的阻抗和滤波器中的第二网络的阻抗,从而提高了滤波器的灵活度。
结合第一方面,在一种可能的实现方式中,所述控制器通过所述SPI调节所述第二网络的阻抗。
结合第一方面,在一种可能的实现方式中,随着所述调制器的第一输出信号的频率的增大和所述调制器的第二输出信号的频率的增大,所述控制器还具体用于调节所述第一网络的阻抗减小和所述第二网络的阻抗减小。
在调制器的第一输出信号的频率增大和第二输出信号的频率增大的情况下,控制器调节第一网络的阻抗减小和第二网络阻抗的减小,实现了滤波器的输出阻抗与调制器的第一输出信号的频率和调制器的第二输出信号的频率相配合的调整,提高了滤波器的灵活度。结合第一方面,在一种可能的实现方式中,所述第一网络包括第一元件和/或第一可调电容,其中,所述第一元件为第一可调电阻或第一可调场效应管。
结合第一方面,在一种可能的实现方式中,所述第二网络包括第二元件和/或第二可调电容,其中,所述第二元件为第二可调电阻或第二可调场效应管。
结合第一方面,在一种可能的实现方式中,所述滤波器还包括:第三可调电阻,所述第三可调电阻的第五端与所述第二端连接,所述第三可调电阻的第六端与所述第四端相连。
结合第一方面,在一种可能的实现方式中,所述控制器还用于控制所述第三可调电阻和所述第一网络的阻抗之和为目标阻抗,或所述第三可调电阻和所述第二网络的阻抗之和为目标阻抗。
第二方面,提供了一种用于发射通道的电路,包括:调制器;滤波器,所述滤波器包括:第一滤波组件;第一调节组件,包括阻抗可调节的第一网络,所述第一网络与所述第一滤波组件耦合;控制器,用于根据所述调制器的第一输出信号,调节所述第一网络的阻抗,所述第一输出信号是所述调制器对所述第一待调制信号进行调制后生成的。
本申请实施例中提出的用于发射通道的电路的方案中,控制器可以根据调制器的第一输出信号,相应的调节滤波器中第一网络的阻抗,从而满足该电路低功耗的设计,降低了该电路的生产成本。
结合第二方面,在一种可能的实现方式中,所述滤波器还包括串行外设接口SPI,所述控制器通过所述SPI调节所述第一网络的阻抗。
结合第二方面,在一种可能的实现方式中,随着所述调制器的第一输出信号的频率的增大,所述控制器具体用于调节所述第一网络的阻抗减小。
结合第二方面,在一种可能的实现方式中,所述第一滤波组件包括至少一个电感。
结合第二方面,在一种可能的实现方式中,所述第一调节组件的第一端接地,所述第一调节组件的第二端与所述第一滤波组件的输出端相连。
结合第二方面,在一种可能的实现方式中,所述滤波器还包括:第二滤波组件,包括 至少一个电感;第二调节组件,包括阻抗可调节的第二网络,所述第二调节组件的第三端接地,所述第二调节组件的第四端与所述第二滤波组件的输出端相连。
结合第二方面,在一种可能的实现方式中,所述控制器还用于根据所述调制器的第一输出信号的频率和所述调制器的第二输出信号,调节所述第一网络的阻抗和所述第二网络的阻抗,所述第二输出信号是所述调制器对所述第二待调制信号进行调制后生成的。
本申请实施例中提出的用于发射通道的电路方案中,控制器可以根据调制器的第一输出信号和第二输出信号,调节滤波器中第一网络的阻抗和滤波器中的第二网络的阻抗,从而满足用于发射通道的电路低功耗的设计,降低了用于发射通道的电路的生产成本。
结合第二方面,在一种可能的实现方式中,所述控制器通过所述SPI调节所述第二网络的阻抗。
结合第二方面,在一种可能的实现方式中,随着所述调制器的第一输出信号的频率的增大和所述调制器的第二输出信号的频率的增大,所述控制器还具体用于调节所述第一网络的阻抗减小和所述第二网络的阻抗减小。
结合第二方面,在一种可能的实现方式中,所述第一网络包括第一元件和/或第一可调电容,其中,所述第一元件为第一可调电阻或第一可调场效应管。
结合第二方面,在一种可能的实现方式中,所述第二网络包括第二元件和/或第二可调电容,其中,所述第二元件为第二可调电阻或第二可调场效应管。
结合第二方面,在一种可能的实现方式中,所述滤波器还包括:第三可调电阻,所述第三可调电阻的第五端与所述第二端连接,所述第三可调电阻的第六端与所述第四端相连。
结合第二方面,在一种可能的实现方式中,所述控制器还用于控制所述第三可调电阻和所述第一网络的阻抗之和为目标阻抗,或所述第三可调电阻和所述第二网络的阻抗之和为目标阻抗。
结合第二方面,在一种可能的实现方式中,所述电路还包括:振荡器,所述振荡器的输出端输出所述三次谐波。
第三方面,提供了一种芯片***,包括第一方面以及第一方面任一种可能的实现方式中的滤波器。
第四方面,提供了一种芯片***,包括第二方面以及第二方面任一种可能的实现方式中的用于发射通道的电路。
附图说明
图1示出了单通道芯片中的发射架构示意图。
图2示出了单通道芯片中的发射内部电路模块示意图。
图3是本申请实施例提供的一种用于发射通道的电路300的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为便于理解本申请实施例,首先对下文中涉及的几个概念做简单说明。
1、无源元件:电阻类、电感类、电容类元件,它们共同的特点是在电路中无需加电 源即可在有信号时工作。
2、电感是闭合回路的一种属性,是一个物理量。当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。这种电流与线圈的相互作用关系称为电的感抗。感抗XL的计算公式为:XL=ωL=2πfL,其中,ω是角频率,L是线圈电感,f是工作频率。从感抗的计算公式可以看到,随着频率的增大,电感的感抗也不断增大,即电感对高频信号的阻力增大。换言之,电感在高频电路中可起到阻碍高频信号的作用,频率越高阻力就越大。
3、调制器是指通过数字信号处理技术,将低频信号调制到高频信号中,进行信号传输的一种设备。调制器一般用于将两路输入信号(例如,正相(I)路输出的待调制信号和正交(Q)路输出的待调制信号)进行调制。调制器的输出信号的频率等于两个输入信号频率之和、差或为两者其他组合的电路。一般调制器还需要接收来自压控振荡器的本振信号,其电路完全工作在射频频段。
若调制器的本振采用25%的占空比,则理论上调制器的输出基频信号与三次谐波的能量差为9.5dB,在调制器输出基频信号及三次谐波的能量同时进入后级放大器后,会恶化后级放大器的线性度,因此,需增加后级放大器的功耗来满足***对线性度的要求。
图1示出了单通道芯片中的发射架构示意图。如图1所示,该单通道芯片中的发射架构包括两路输入信号,即同相(I)和正交两路(Q)。每一路分别包括数字模拟转换器110(digital to analog converter,DAC)、滤波器120、调制器130、放大器140。下面以同相一路为例,介绍各个元件。DAC 110将数字信号转换为模拟信号,发送至低通滤波器120,低通滤波器120将模拟信号中容许低于截止频率的基带信号通过,但是高于截止频率的信号不能通过。调制器130将低通滤波器120的输出的基带信号和振荡器150输出的本振LO信号调制为高频信号,调制器130实现了将输入基带信号转化为高频射频信号。该高频射频信号进入放大器140,放大器140可以对该高频射频信号进行放大。
图2示出了单通道芯片中的发射内部电路模块示意图。如图2虚线部分所示,可以是图1中滤波器120的一种可能实现方式。该滤波器可以由差分电路组成,该差分电路有两个输入端,该两个输入端中一个输入端为正极(例如,P极)输入端,另外一个输入端为负极(例如,N极)输入端,两个输入端的输入的信号可以分别为第一待处理的基带信号和第二待处理的基带信号,其中,第一待处理的基带信号和第二待处理信号的相位差为90°。该滤波器120可以是无源滤波器,即该无源滤波器是由电感和电容组成的,且该滤波器可以为五阶滤波器,即该五阶滤波器的差分电路中的每一路中可以包括两个电感和三个电容,即两个电感分别是L1 122、L2 124,三个电容分别是121、123、125;或者,两个电感分别是L1’、L2’,三个电容分别是121’、123’、125’。该滤波器还包括可调电阻R1,待处理的基带信号经过无源滤波器120实现滤波。
图3是本申请实施例的用于发射通道的电路300的结构示意图。如图3所示,该用于发射通道的电路300包括:
调制器130;
滤波器,该滤波器包括第一滤波组件310。该第一滤波组件310可以包括至少一个电感,从第一滤波组件310的输出端输出的滤波后的第一待调制信号被输入至外部的调制器130。例如,如图3所示,第一滤波组件310包括3个电感,即这3个电感分别为电感L1、 电感L2、电感Ls。该滤波器还可以包括第一调节组件320,该第一调节组件320可以包括阻抗可调节的第一网络,该第一调节组件320的第一端接地,该第一调节组件320的第二端与第一滤波组件310的输出端相连。其中,第一网络可以包括第一元件和/或第一可调电容,其中,该第一元件为第一可调电阻或第一可调场效应管。例如,图3所示,该第一元件可以是第一可调电阻Rp,该第一可调电容可以是Cp。该滤波器还可以包括控制器340,用于根据调制器130的第一输出信号,调节第一网络的阻抗,其中,第一输出信号是调制器对第一待调制信号进行调制后生成的。
可选地,上述控制器340还可以是处理器,例如CPU。
可选地,随着调制器130的第一输出信号的频率的增大,该控制器340具体用于控制第一网络的阻抗减小。
可选地,该滤波器还可以包括串行外设接口(serial peripheral interface,SPI),控制器340通过该SPI调节第一网络的阻抗。可选地,该用于发射通道的电路还可包括振荡器150,该振荡器150输出的信号即为LO本振信号及其谐波信号。
该控制器340通过根据第一输出信号的频率的增大,来控制第一网络320的阻抗减小,从而可以使得第一输出信号的频率与振荡器150输出的三次谐波的频率的能量差大于或等于第一阈值,该第一阈值大于或等于13dB,例如,该第一阈值可以是13dB,该第一阈值也可以是14dB。这样可以抑制调制器130的输出端的三次谐波的高频信号对级联的放大器330的线性度的影响,即输入放大器330的信号,经过放大器330的放大,不会造成输入放大器330的信号失真。
可选地,该滤波器还可以包括第二滤波组件310’,该第二滤波组件310’可以包括至少一个电感,该第二滤波组件的输出端输出的滤波后的第二待调制信号被输入至外部的调制器130。例如,如图3所示,第二滤波组件310’包括3个电感,即这3个电感分别为电感L1’、电感L2’、电感Ls’。该用于发射通道的电路300还可以包括第二调节组件320’,该第二调节组件320’包括阻抗可调节的第二网络,该第二调节组件的第三端接地,该第二调节组件的第四端与第二滤波组件的输出端相连。其中,第二网络可以包括第二元件和/或第二可调电容,其中,该第二元件为第二可调电阻或第二可调场效应管。例如,图3所示,该第二元件是第二可调电阻Rp’,该第二可调电容是Cp’。
可选地,上述控制器340还用于根据调制器130的第一输出信号和调制器130的第二输出信号,调节第一网络的阻抗和第二网络的阻抗,该第二输出信号是调制器130对第二待调制信号进行调制后生成的。
可选地,该滤波器300还可以通过上述SPI调节第二网络的阻抗。
可选地,随着调制器130的第一输出信号的频率的增大和调制器130的第二输出信号的频率的增大,控制器340还具体用于调节第一网络320的阻抗减小和第二网络320’的阻抗减小。
该控制器340通过根据第一输出信号的频率的增大和第二输出信号的频率的增大,来控制第一网络320的阻抗减小和第二网络320’阻抗的减小,从而可以使得第一输出信号的频率与振荡器150输出的三次谐波的频率的能量差大于或等于第一阈值,该第一阈值大于或等于13dB,例如,该第一阈值可以是13dB,该第一阈值也可以是14dB。同时,也可以使得第二输出信号的频率与振荡器150输出的三次谐波的频率的能量差大于或等于第 二阈值,其中,第二阈值可以和第一阈值相等。该第二阈值大于等于13dB,例如,该第二阈值可以是13dB,该第二阈值也可以是14dB。这样可以抑制调制器130的输出端的三次谐波的高频信号对级联的放大器330的线性度的影响,即输入放大器330的信号,经过放大器330的放大,不会造成输入放大器330的信号失真。
可选地,该滤波器还可包括第三可调电阻R1。该R1的第五端与第二端连接,该R1的第六端与第四端相连。
可选地,控制器340还用于根据调制器130的输出端的信号频率,即控制器340根据第一输出信号的频率调节第一网络的阻抗和第三可调电阻R1的阻抗,且根据第二输出信号的频率,调节第二网络的阻抗和第三可调电阻R1的阻抗,并保持在不同的工作频率下,第一网络的阻抗和第三可调电阻R1的阻抗之和为目标阻抗,且第二网络的阻抗和第三可调电阻R1的阻抗之和为目标阻抗。其中,工作频率可以理解为调制器的输出端的信号的频率,目标阻抗是由工作频率确定的。
其中,第一网络的阻抗值Z满足公式(1):
Figure PCTCN2019090348-appb-000001
其中,ω是第一输出信号的角频率,ω=2πf,f为工作频率;L s是电感L s的电感值;C p是第一网络中第一可调电容的电容值;R p是第一元件的电阻值。
其中,第二网络的阻抗值Z’满足一下公式(2):
Figure PCTCN2019090348-appb-000002
其中,ω’是第二输出信号的角频率,ω’=2πf 1,f 1为即工作频率;L’ s是电感L’ s的电感值;C’ p是第二网络中第二可调电容的电容值;R’ p是第二元件的电阻值。
其中,目标阻抗为:
Figure PCTCN2019090348-appb-000003
或者,目标阻抗为:
Figure PCTCN2019090348-appb-000004
控制器340可以根据公式(1)和公式(2),来实现工作频率和第一网络的阻抗值、工作频率和第二网络的阻抗值相配合的调节。控制器340可以根据公式(3),来实现第一网络的阻抗值和第三可调电阻R1的阻抗之和为目标阻抗;控制器340可以根据公式(4),来实现第二网络的阻抗值和第三可调电阻R1的阻抗之和为目标阻抗。从而实现不同频段下,调制器输出口的信号(第一输出信号和第二输出信号)与三次谐波的能量差不低于13dB,进而改善了后级放大器330的线性度,实现通道的低功耗设计。
例如,工作频率是1.8GHz或2.1GHz时,控制器340可以控制第三可调电阻R1的电阻较小,控制第一网络的阻抗值相对大一些,并使得第三可调电阻R1和第一网络的阻抗值满足公式(3)。同时,控制器340可以控制第三可调电阻R1的电阻较小,控制第二网 络的阻抗值相对大一些,并使得R1和第二网络的阻抗值满足根据公式(4);又例如,工作频率是3.5GHz或4.9GHz时,控制器340可以控制第三可调电阻R1的电阻较大或不接入(开路),控制第一网络的阻抗值和第二网络的阻抗值相对小一些,并使得R1和第一网络的阻抗值满足公式(3);同时,控制器340可以控制第三可调电阻R1的电阻较大或不接入(开路),控制第二网络的阻抗值相对小一些,并使得R1和第二网络的阻抗值满足根据公式(4)。从而在不同的工作频率下,第一网络的阻抗值和第三可调电阻R1的阻抗值之和不变,且第二网络的阻抗值和第三可调电阻R1的阻抗值之和不变。从而实现不同频段下调制器输出口的信号频率与三次谐波频率的能量差不低于13dB,实现通道的低功耗设计。
本申请实施例还提供了一种滤波器,该滤波器如上述用于发射通道的电路中的滤波器所述,这里不再详细赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种滤波器,用于向调制器提供待调制信号,其特征在于,包括:
    第一滤波组件;
    第一调节组件,包括阻抗可调节的第一网络,所述第一网络与所述第一滤波组件耦合;
    控制器,用于根据所述调制器的第一输出信号,调节所述第一网络的阻抗,所述第一输出信号是所述调制器对第一待调制信号进行调制后生成的。
  2. 根据权利要求1所述的滤波器,其特征在于,所述滤波器还包括串行外设接口SPI,所述控制器通过所述SPI调节所述第一网络的阻抗。
  3. 根据权利要求1或2所述的滤波器,其特征在于,随着所述调制器的第一输出信号的频率的增大,所述控制器具体用于调节所述第一网络的阻抗减小。
  4. 根据权利要求1所述的滤波器,其特征在于,所述第一滤波组件包括至少一个电感。
  5. 根据权利要求1所述的滤波器,其特征在于,所述第一调节组件的第一端接地,所述第一调节组件的第二端与所述第一滤波组件的输出端相连。
  6. 根据权利要求1至5中任一项所述的滤波器,其特征在于,所述滤波器还包括:
    第二滤波组件,包括至少一个电感;
    第二调节组件,包括阻抗可调节的第二网络,所述第二调节组件的第三端接地,所述第二调节组件的第四端与所述第二滤波组件的输出端相连。
  7. 根据权利要求6所述的滤波器,其特征在于,所述控制器还用于根据所述调制器的第一输出信号和所述调制器的第二输出信号,调节所述第一网络阻抗和所述第二网络的阻抗,所述第二输出信号是所述调制器对所述第二待调制信号进行调制后生成的。
  8. 根据权利要求7所述的滤波器,其特征在于,所述控制器通过所述SPI调节所述第二网络的阻抗。
  9. 根据权利要求7或8所述的滤波器,其特征在于,随着所述调制器的第一输出信号的频率的增大和所述调制器的第二输出信号的频率的增大,所述控制器还具体用于调节所述第一网络的阻抗减小和调节所述第二网络的阻抗减小。
  10. 根据权利要求1至3中任一项所述的滤波器,其特征在于,所述第一网络包括第一元件和/或第一可调电容,其中,所述第一元件为第一可调电阻或第一可调场效应管。
  11. 根据权利要求6至9中任一项所述的滤波器,其特征在于,所述第二网络包括第二元件和/或第二可调电容,其中,所述第二元件为第二可调电阻或第二可调场效应管。
  12. 根据权利要求1至11中任一项所述的滤波器,其特征在于,所述滤波器还包括:
    第三可调电阻,所述第三可调电阻的第五端与所述第二端连接,所述第三可调电阻的第六端与所述第四端相连。
  13. 根据权利要求1至12中任一项所述的滤波器,其特征在于,所述控制器还用于控制所述第三可调电阻和所述第一网络的阻抗之和为目标阻抗,或所述第三可调电阻和所述第二网络的阻抗之和为目标阻抗。
  14. 一种用于发射通道的电路,其特征在于,包括:
    调制器;
    滤波器,所述滤波器包括:
    第一滤波组件;
    第一调节组件,包括阻抗可调节的第一网络,所述第一网络与所述第一滤波组件耦合;
    控制器,用于根据调制器的第一输出信号,调节所述第一网络的阻抗,所述第一输出信号是所述调制器对第一待调制信号进行调制后生成的。
  15. 根据权利要求14所述的电路,其特征在于,所述滤波器还包括串行外设接口SPI,所述控制器通过所述SPI调节所述第一网络的阻抗。
  16. 根据权利要求14或15所述的电路,其特征在于,随着所述调制器的第一输出信号的频率的增大,所述控制器具体用于调节所述第一网络的阻抗减小。
  17. 根据权利要求14所述的电路,其特征在于,所述第一滤波组件包括至少一个电感。
  18. 根据权利要求14所述的电路,其特征在于,所述第一调节组件的第一端接地,所述第一调节组件的第二端与所述第一滤波组件的输出端相连。
  19. 根据权利要求14至18中任一项所述的电路,其特征在于,所述滤波器还包括:
    第二滤波组件,包括至少一个电感;
    第二调节组件,包括阻抗可调节的第二网络,所述第二调节组件的第三端接地,所述第二调节组件的第四端与所述第二滤波组件的输出端相连。
  20. 根据权利要求19所述的电路,其特征在于,所述控制器还用于根据所述调制器的第一输出信号和所述调制器的第二输出信号,调节所述第一网络的阻抗和所述第二网络的阻抗,所述第二输出信号是所述调制器对所述第二待调制信号进行调制后生成的。
  21. 根据权利要求20所述的电路,其特征在于,所述控制器通过所述SPI调节所述第二网络的阻抗。
  22. 根据权利要求20或21所述的电路,其特征在于,随着所述调制器的第一输出信号的频率的增大和所述调制器的第二输出信号的频率的增大,所述控制器还具体用于调节所述第一网络的阻抗减小和所述第二网络的阻抗减小。
  23. 根据权利要求14至16中任一项所述的电路,其特征在于,所述第一网络包括第一元件和/或第一可调电容,其中,所述第一元件为第一可调电阻或第一可调场效应管。
  24. 根据权利要求19至22中任一项所述的电路,其特征在于,所述第二网络包括第二元件和/或第二可调电容,其中,所述第二元件为第二可调电阻或第二可调场效应管。
  25. 根据权利要求14至24中任一项所述的电路,其特征在于,所述滤波器还包括:
    第三可调电阻,所述第三可调电阻的第五端与所述第二端连接,所述第三可调电阻的第六端与所述第四端相连。
  26. 根据权利要求14至25中任一项所述的电路,其特征在于,所述控制器还用于控制所述第三可调电阻和所述第一网络的阻抗之和为目标阻抗,或所述第三可调电阻和所述第二网络的阻抗之和为目标阻抗。
  27. 根据权利要求14至26中任一项所述的电路,其特征在于,所述电路还包括:
    振荡器,所述振荡器的输出端输出所述三次谐波。
  28. 一种芯片***,其特征在于,包括如权利要求1至13中任一项所述的滤波器, 或者,包括如权利要求14至27中任一项所述的用于发射通道的电路。
PCT/CN2019/090348 2019-06-06 2019-06-06 滤波器以及用于发射通道的电路 WO2020243949A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980096930.2A CN113892236B (zh) 2019-06-06 2019-06-06 滤波器以及用于发射通道的电路
PCT/CN2019/090348 WO2020243949A1 (zh) 2019-06-06 2019-06-06 滤波器以及用于发射通道的电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/090348 WO2020243949A1 (zh) 2019-06-06 2019-06-06 滤波器以及用于发射通道的电路

Publications (1)

Publication Number Publication Date
WO2020243949A1 true WO2020243949A1 (zh) 2020-12-10

Family

ID=73652726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090348 WO2020243949A1 (zh) 2019-06-06 2019-06-06 滤波器以及用于发射通道的电路

Country Status (2)

Country Link
CN (1) CN113892236B (zh)
WO (1) WO2020243949A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115267394A (zh) * 2022-07-29 2022-11-01 电子科技大学 基于小型电路板磁场探头自动化测量近场emi的测量***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604984A (zh) * 2009-05-31 2009-12-16 复旦大学 一种超宽带发射机及其设计方法
CN103155431A (zh) * 2010-08-26 2013-06-12 维斯普瑞公司 可调无线电前端及方法
CN103187982A (zh) * 2011-12-29 2013-07-03 国民技术股份有限公司 一种无线发射机和一种带阻滤波器
GB2521699A (en) * 2013-12-27 2015-07-01 Cambridge Silicon Radio Ltd Electrostatic Discharge protection
CN108028670A (zh) * 2015-08-12 2018-05-11 舒尔获得控股公司 宽带可调谐组合器***
CN109728835A (zh) * 2019-02-19 2019-05-07 深圳市和盈互联科技有限公司 一种多频段收发高隔离度的电路装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1516787B1 (de) * 1966-04-01 1969-10-16 Philips Patentverwaltung Sinusoszillator mit linearer Abhaengigkeit der Frequenz- oder Periodendauer von nur einem passiven Element
US6670861B1 (en) * 2002-08-29 2003-12-30 Analog Devices, Inc. Method of modulation gain calibration and system thereof
US6844763B1 (en) * 2002-08-29 2005-01-18 Analog Devices, Inc. Wideband modulation summing network and method thereof
CN101882911A (zh) * 2010-04-30 2010-11-10 苏州英诺迅科技有限公司 提高功率放大器线性度及功率附加效率的滤波电路
CN103166595A (zh) * 2011-12-09 2013-06-19 北京北方微电子基地设备工艺研究中心有限责任公司 阻抗匹配器、半导体设备和阻抗匹配方法
EP3108587B1 (en) * 2014-02-20 2017-07-26 Telefonaktiebolaget LM Ericsson (publ) Circuit and method for providing an adjustable impedance
CN205039810U (zh) * 2015-09-15 2016-02-17 威胜集团有限公司 无线通信电路和用该电路制成的计量仪表
CN106656069B (zh) * 2016-09-13 2022-07-08 锐迪科微电子(上海)有限公司 一种应用于gsm射频功率放大器的多频输出匹配网络

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604984A (zh) * 2009-05-31 2009-12-16 复旦大学 一种超宽带发射机及其设计方法
CN103155431A (zh) * 2010-08-26 2013-06-12 维斯普瑞公司 可调无线电前端及方法
CN103187982A (zh) * 2011-12-29 2013-07-03 国民技术股份有限公司 一种无线发射机和一种带阻滤波器
GB2521699A (en) * 2013-12-27 2015-07-01 Cambridge Silicon Radio Ltd Electrostatic Discharge protection
CN108028670A (zh) * 2015-08-12 2018-05-11 舒尔获得控股公司 宽带可调谐组合器***
CN109728835A (zh) * 2019-02-19 2019-05-07 深圳市和盈互联科技有限公司 一种多频段收发高隔离度的电路装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115267394A (zh) * 2022-07-29 2022-11-01 电子科技大学 基于小型电路板磁场探头自动化测量近场emi的测量***

Also Published As

Publication number Publication date
CN113892236B (zh) 2023-05-12
CN113892236A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
US9838047B2 (en) Radio-frequency transmitter and amplifier
US20140327483A1 (en) Complementary metal oxide semiconductor power amplifier
JP2004519126A (ja) 高調波が減少し効率が改善されたcmos電力増幅器
CN104702221A (zh) 脉冲宽度调制音频功率放大器
CN109067008B (zh) 一种无线能量与数据同步传输***及其参数设计方法
US20220416739A1 (en) Push-pull radio frequency power amplifier and method for controlling circuit
WO2020243949A1 (zh) 滤波器以及用于发射通道的电路
US10263649B2 (en) Fully integrated power amplifier employing transformer combiner with enhanced back-off efficiency
CN205320035U (zh) 一种高线性度的堆叠结构的射频功率放大器
CN106505901B (zh) 一种线性-谐振复合式超高频逆变器
CN106487352B (zh) 数字可变电容电路、谐振电路、放大电路和发送器
WO2024007728A1 (zh) 匹配电路及功率放大电路
CN211296713U (zh) 一种包含变压器耦合除三分频的宽带注入锁定除四分频器
CN204465463U (zh) 脉冲宽度调制音频功率放大器
CN110011626A (zh) 功率放大电路
CN109450388A (zh) 改善谐波性能的宽带匹配电路及功率放大器
WO2021161721A1 (ja) 電力増幅回路、高周波回路及び通信装置
CN205160476U (zh) 一种带有失真补偿电路的功率放大器
CN104836574B (zh) 一种自动对齐的包络跟踪功率放大器结构
CN106921218A (zh) 电能发射端及应用其的无线电能传输装置
TW202021265A (zh) 線性度改善系統及線性度改善方法
JP6211325B2 (ja) 直交変調器
US20240097655A1 (en) Compact transformer-based notch filter
WO2023226784A1 (zh) 一种射频放大电路、射频收发机及通信设备
WO2021026712A1 (zh) 滤波器电路以及用于发射通道的集成电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931632

Country of ref document: EP

Kind code of ref document: A1