WO2020241158A1 - ドライバ回路、及びスイッチシステム - Google Patents

ドライバ回路、及びスイッチシステム Download PDF

Info

Publication number
WO2020241158A1
WO2020241158A1 PCT/JP2020/018104 JP2020018104W WO2020241158A1 WO 2020241158 A1 WO2020241158 A1 WO 2020241158A1 JP 2020018104 W JP2020018104 W JP 2020018104W WO 2020241158 A1 WO2020241158 A1 WO 2020241158A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
effect transistor
circuit
switch element
semiconductor switch
Prior art date
Application number
PCT/JP2020/018104
Other languages
English (en)
French (fr)
Inventor
雄介 木下
貴志 一柳
龍介 鹿又
秀俊 石田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US17/614,716 priority Critical patent/US11637552B2/en
Priority to CN202080039205.4A priority patent/CN113875140B/zh
Priority to JP2021522728A priority patent/JPWO2020241158A1/ja
Publication of WO2020241158A1 publication Critical patent/WO2020241158A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/0412Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/01Modifications for accelerating switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/20Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits characterised by logic function, e.g. AND, OR, NOR, NOT circuits

Definitions

  • the present disclosure relates to a driver circuit and a switch system, and more particularly to a driver circuit of a current-driven semiconductor switch element and a switch system including the driver circuit.
  • Patent Document 1 a gate drive circuit for a semiconductor element is known.
  • the semiconductor element described in Patent Document 1 is a gate-driven semiconductor element.
  • the semiconductor element is driven based on the signal from the switching circuit.
  • the switching circuit comprises a drive circuit and a parallel circuit of a gate resistor and a capacitor to form a gate drive circuit.
  • the drive circuit is composed of NPN transistors and PNP transistors.
  • the gate-driven semiconductor element that constitutes the semiconductor element is a GIT (Gate Injection Transistor).
  • An object of the present disclosure is to provide a driver circuit and a switch system capable of shortening the turn-on time of a semiconductor switch element without using a capacitor having a large capacity.
  • the driver circuit of one aspect according to the present disclosure is a driver circuit of a current-driven semiconductor switch element having a gate and a source corresponding to the gate, and speeds up the power supply terminal, the ground terminal, the signal input terminal, and the like. It includes a circuit and an impedance element. The ground terminal is connected to the source of the semiconductor switch element.
  • the speed-up circuit is provided between the power supply terminal and the gate of the semiconductor switch element.
  • the impedance element is provided between a node between the speed-up circuit and the gate of the semiconductor switch element and the signal input terminal.
  • the speed-up circuit includes a first field effect transistor and a second field effect transistor.
  • the second field-effect transistor is connected in series with the first field-effect transistor and is connected to the gate of the semiconductor switch element.
  • the impedance of the impedance element is higher than the impedance of the speed-up circuit when both the first field-effect transistor and the second field-effect transistor are in the ON state.
  • the driver circuit of one aspect according to the present disclosure is a driver circuit of a current-driven semiconductor switch element having a gate and a source corresponding to the gate, and is a power supply terminal, a ground terminal, a signal input terminal, and a first.
  • the field-effect transistor, the second field-effect transistor, and the impedance element are provided.
  • the ground terminal is connected to the source of the semiconductor switch element.
  • the first field effect transistor is connected to the power supply terminal.
  • the second field-effect transistor is connected in series with the first field-effect transistor and is connected to the gate of the semiconductor switch element.
  • the impedance element is provided between a node between the second field effect transistor and the gate of the semiconductor switch element, and a signal input terminal.
  • the potential level of the signal input to the signal input terminal changed from the first potential level to the second potential level higher than the first potential level while the second electric current effect transistor was on.
  • the gate voltage of the semiconductor switch element is set to be larger than the threshold voltage.
  • the gate voltage of the semiconductor switch element is set to the predetermined value by making the value larger than the value and then continuing to pass a current through the impedance element to the gate of the semiconductor switch element.
  • One aspect of the switch system according to the present disclosure includes the driver circuit and the semiconductor switch element.
  • FIG. 1 is a circuit diagram of a switch system including a driver circuit according to the first embodiment.
  • FIG. 2 is a timing chart for explaining the operation of the driver circuit of the above.
  • FIG. 3 is a circuit diagram of a switch system including the driver circuit according to the second embodiment.
  • FIG. 4 is a circuit diagram of a switch system including the driver circuit according to the third embodiment.
  • FIG. 5 is a circuit diagram of a switch system including the driver circuit according to the fourth embodiment.
  • FIG. 6 is a circuit diagram of a switch system including the driver circuit according to the fifth embodiment.
  • FIG. 7 is a circuit diagram of a switch system including the driver circuit according to the sixth embodiment.
  • FIG. 8 is an operation explanatory diagram of the constant current circuit in the same driver circuit.
  • FIG. 1 is a circuit diagram of a switch system including a driver circuit according to the first embodiment.
  • FIG. 2 is a timing chart for explaining the operation of the driver circuit of the above.
  • FIG. 3 is a circuit diagram of
  • FIG. 9 is a circuit diagram of a switch system including the driver circuit according to the seventh embodiment.
  • FIG. 10 is a timing chart for explaining the operation of the driver circuit of the above.
  • FIG. 11 is a circuit diagram of a switch system including the driver circuit according to the eighth embodiment.
  • the driver circuit 1 is a driver circuit of a current-driven semiconductor switch element 2.
  • the semiconductor switch element 2 has a gate 21 and a source 22 corresponding to the gate 21.
  • the current-driven semiconductor switch element 2 is an element that turns on by passing a current through the gate 21, and the current flows through the gate 21 even after the turn-on.
  • the current-driven semiconductor switch element 2 does not include, for example, a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).
  • the switch system 3 includes a driver circuit 1 and a semiconductor switch element 2.
  • the semiconductor switch element 2 has a drain 23 in addition to the above-mentioned gate 21 and source 22.
  • the switch system 3 has a source terminal 32 and a drain terminal 33 connected to the source 22 and the drain 23 of the semiconductor switch element 2, respectively.
  • the semiconductor switch element 2 is, for example, a GaN-based semiconductor switch element. More specifically, the semiconductor switch element 2 is a GaN-based GIT (Gate Injection Transistor).
  • GaN-based GIT Gate Injection Transistor
  • the semiconductor switch element 2 includes, for example, a substrate, a buffer layer, a first nitride semiconductor layer, a second nitride semiconductor layer, a source electrode, a gate electrode, a drain electrode, a p-type layer, and the like.
  • the buffer layer is formed on the substrate.
  • the first nitride semiconductor layer is formed on the buffer layer.
  • the second nitride semiconductor layer is formed on the first nitride semiconductor layer.
  • the source electrode, gate electrode and drain electrode are formed on the second nitride semiconductor layer.
  • the p-type layer is interposed between the gate electrode and the second nitride semiconductor layer.
  • a diode structure is formed by a second nitride semiconductor layer and a p-type layer.
  • the gate 21 in the semiconductor switch element 2 includes a gate electrode and a p-type layer.
  • the source 22 in the semiconductor switch element 2 includes a source electrode.
  • the drain 23 in the semiconductor switch element 2 includes a drain electrode.
  • the substrate is, for example, a silicon substrate.
  • the buffer layer is, for example, an undoped GaN layer.
  • the first nitride semiconductor layer is, for example, an undoped GaN layer.
  • the second nitride semiconductor layer is, for example, an undoped AlGaN layer.
  • the p-type layer is, for example, a p-type AlGaN layer.
  • Each of the buffer layer, the first nitride semiconductor layer, and the second nitride semiconductor layer is inevitably mixed with Mg, H, Si, C, O, etc. during growth by MOVPE (Metal Organic Vapor Phase Epitaxy) or the like. Impurities may be present.
  • MOVPE Metal Organic Vapor Phase Epitaxy
  • the driver circuit 1 includes a power supply terminal 11, a ground terminal 12, and a signal input terminal 13.
  • the speed-up circuit 14 and the impedance element 15 are provided.
  • the ground terminal 12 is connected to the source 22 of the current-driven semiconductor switch element 2 having the gate 21, the source 22, and the drain 23.
  • the speed-up circuit 14 is provided between the power supply terminal 11 and the gate 21 of the semiconductor switch element 2.
  • the impedance element 15 is provided between the node N1 between the speed-up circuit 14 and the gate 21 of the semiconductor switch element 2 and the signal input terminal 13.
  • the speed-up circuit 14 has a first field effect transistor Q1 and a second field effect transistor Q2.
  • the second field-effect transistor Q2 is connected in series with the first field-effect transistor Q1 and is connected to the gate 21 of the semiconductor switch element 2.
  • the impedance of the impedance element 15 is higher than the impedance of the speed-up circuit 14 when both the first field effect transistor Q1 and the second field effect transistor Q2 are in the ON state.
  • the driver circuit 1 according to the first embodiment further includes a resistance voltage dividing circuit 16.
  • the resistance voltage dividing circuit 16 is provided between the power supply terminal 11 and the ground terminal 12.
  • the gate GQ2 of the second field effect transistor Q2 is connected to the output terminal 161 of the resistance voltage dividing circuit 16.
  • a DC power supply 4 having an output end on the high potential side and an output end on the low potential side is connected between the power supply terminal 11 and the ground terminal 12 of the driver circuit 1.
  • the output terminal on the high potential side of the DC power supply 4 is connected to the power supply terminal 11 of the driver circuit 1.
  • the output terminal on the low potential side of the DC power supply 4 is connected to the ground terminal 12 of the driver circuit 1.
  • the output voltage of the DC power supply 4 is, for example, 12V.
  • the DC power supply 4 is an insulated power supply.
  • the DC power supply 4 is not a component of the driver circuit 1.
  • a series circuit of the driver IC (Integrated Circuit) 5 and the signal source 6 is connected between the signal input terminal 13 and the ground terminal 12 of the driver circuit 1.
  • the driver IC 5 and the signal source 6 are not components of the driver circuit 1.
  • the signal source 6 outputs a drive signal (see FIG. 2).
  • the drive signal is, for example, a signal whose potential level changes between a first potential level VL1 (eg 0V) and a second potential level VL2 (eg 12V).
  • the first potential level VL1 is, for example, the same potential level as the potential level at the output end on the low potential side of the DC power supply 4.
  • the second potential level VL2 is, for example, the same potential level as the potential level at the output end on the high potential side of the DC power supply 4.
  • the driver IC5 is, for example, a CMOS (Complementary Metal-Oxide Semiconductor) inverter, and includes a reverse series circuit of a p-channel MOSFET and an n-channel MOSFET.
  • This reverse series circuit is connected between the output end on the high potential side and the output end on the low potential side of the DC power supply 4.
  • the drains of the p-channel MOSFET and the n-channel MOSFET are connected to each other, the source of the p-channel MOSFET is connected to the output end on the high potential side of the DC power supply 4, and the source of the n-channel MOSFET is the DC power supply. It is connected to the output end on the low potential side of 4.
  • the driver IC 5 When the potential level of the drive signal input from the signal source 6 is the second potential level VL2, the driver IC 5 has the p-channel MOSFET in the off state and the n-channel MOSFET in the on state, and the potential level of the output signal is the first potential. It becomes level VL1. Further, in the driver IC 5, when the potential level of the drive signal input from the signal source 6 is the first potential level VL1, the p-channel MOSFET is in the on state and the n-channel MOSFET is in the off state, and the potential level of the output signal is the first. The two potential level is VL2. In the drive signal and the output signal of the driver IC5, the second potential level VL2 (for example, 12V) corresponds to the logic 1, and the first potential level VL1 (for example, 0V) corresponds to the logic 0.
  • VL2 for example, 12V
  • the first potential level VL1 for example, 0V
  • the speed-up circuit 14 is a circuit for turning on the semiconductor switch element 2 at a higher speed.
  • each of the first field effect transistor Q1 and the second field effect transistor Q2 is a GaN-based GIT like the semiconductor switch element 2.
  • each of the first field-effect transistor Q1 and the second field-effect transistor Q2 is a normal-off type field-effect transistor.
  • the first field effect transistor Q1 has a gate GQ1, a drain DQ1, and a source SQ1.
  • the second field effect transistor Q2 has a gate GQ2, a drain DQ2, and a source SQ2.
  • the source SQ1 of the first field-effect transistor Q1 and the drain DQ2 of the second field-effect transistor Q2 are connected.
  • the drain DQ1 of the first field effect transistor Q1 is connected to the power supply terminal 11.
  • the source SQ2 of the second field effect transistor Q2 is connected to the gate 21 of the semiconductor switch element 2.
  • the current capacity of each of the first field-effect transistor Q1 and the second field-effect transistor Q2 is smaller than the current capacity of the semiconductor switch element 2.
  • the gate width of each of the first field-effect transistor Q1 and the second field-effect transistor Q2 is smaller than the gate width of the semiconductor switch element 2.
  • the gate width of the second field-effect transistor Q2 is, for example, about the same as the gate width of the first field-effect transistor Q1, but may be the same or different.
  • the first field effect transistor Q1 causes a larger current (gate current) to flow through the gate 21 of the semiconductor switch element 2 than in the stationary on state to obtain the gate voltage of the semiconductor switch element 2.
  • This is an element for temporarily increasing the predetermined value Vg1 (see FIG. 2), which is larger than the threshold voltage.
  • the second field-effect transistor Q2 is turned on, the semiconductor switch element 2 is turned on, and then the second field-effect transistor Q2 is turned off.
  • the driver circuit 1 further includes a first gate resistor R1 and a second gate resistor R2.
  • One end of the first gate resistor R1 is connected to the signal input terminal 13.
  • the other end of the first gate resistor R1 is connected to the gate GQ1 of the first field effect transistor Q1.
  • One end of the second gate resistor R2 is connected to the output end 161 of the resistor voltage divider circuit 16.
  • the other end of the second gate resistor R2 is connected to the gate GQ2 of the second field effect transistor Q2. From the viewpoint of turning on the first field effect transistor Q1 at high speed, the resistance value of the first gate resistor R1 is smaller than the resistance value of the second gate resistor R2.
  • the impedance element 15 is provided between the node N1 between the speed-up circuit 14 and the gate 21 of the semiconductor switch element 2 and the signal input terminal 13. One end of the impedance element 15 is connected to the node N1. The other end of the impedance element 15 is connected to the signal input terminal 13.
  • the impedance element 15 is an element for determining the gate voltage (the above-mentioned predetermined value Vg1) applied between the gate 21 and the source 22 of the semiconductor switch element 2 in the stationary on state of the semiconductor switch element 2.
  • the impedance element 15 is, for example, a resistor R5.
  • the resistance value of the resistor R5 is determined so that the gate current that the semiconductor switch element 2 turns on flows through the gate 21 of the semiconductor switch element 2.
  • the magnitude relationship between the resistance value of the gate resistor R2 and the resistance value of the resistor R5 is determined to be opposite to the magnitude relationship between the gate width of the second field effect transistor Q2 and the gate width of the semiconductor switch element 2.
  • the resistance voltage dividing circuit 16 is a series circuit of the resistance R3 and the resistance R4, and is provided between the power supply terminal 11 and the ground terminal 12 with the resistance R3 on the power supply terminal 11 side and the resistance R4 on the ground terminal 12 side. There is.
  • the output terminal 161 of the resistance voltage dividing circuit 16 is a connection point between the resistance R3 and the resistance R4. In the resistance voltage dividing circuit 16, the ratio of the resistance value of the resistor R3 to the resistance value of the resistor R4 is determined so that the voltage for turning on the second field effect transistor Q2 can be output from the output terminal 161.
  • the resistance value of the second gate resistor R2 is set to be about the same as the resistance value of the resistor R3 of the resistance voltage dividing circuit 16, so that the second field effect effect when the semiconductor switch element 2 is turned on.
  • the time until the transistor Q2 turns off becomes longer.
  • the time during which the gate voltage of the semiconductor switch element 2 can be temporarily increased from the predetermined value Vg1 can be lengthened, and the turn-on speed of the semiconductor switch element 2 can be further increased.
  • the driver circuit 1 can make the drain current flowing through the semiconductor switch element 2 larger than the drain current when the gate voltage is the predetermined value Vg1 while the gate voltage of the semiconductor switch element 2 is larger than the predetermined value Vg1.
  • the driver circuit 1 can gain the time required to pass the inrush current depending on the application.
  • the gate width of the semiconductor switch element 2 is, for example, 400 mm.
  • the gate width of the first field effect transistor Q1 is, for example, 10 mm.
  • the gate width of the second field effect transistor Q2 is, for example, 10 mm.
  • the resistance value of the first gate resistor R1 is, for example, 100 ⁇ .
  • the resistance value of the second gate resistor R2 is, for example, 1 k ⁇ to 10 k ⁇ .
  • the resistance value of the resistor R3 is, for example, 5 k ⁇ .
  • the resistance value of the resistor R4 is, for example, 2 k ⁇ .
  • the resistance value of the resistor R5 constituting the impedance element 15 is, for example, 500 ⁇ .
  • the driver circuit 1 includes a power supply terminal 11, a ground terminal 12, a signal input terminal 13, and a first field effect transistor as described above. It includes Q1, a second field effect transistor Q2, and an impedance element 15 (resistor R5).
  • FIG. 2 shows a drive signal input to the signal source 6, an output signal of the driver IC 5, a gate voltage of the first field effect transistor Q1, a gate voltage of the second field effect transistor Q2, and a gate voltage of the semiconductor switch element 2. It is a timing chart schematically showing the relationship between the drain 23 and the source 22 voltage of the semiconductor switch element 2.
  • the potential level of the signal (output signal of the driver IC 5) input to the signal input terminal 13 is from the first potential level VL1 to the first.
  • the potential level changes to a second potential level VL2 higher than the potential level VL1 the first electric field effect transistor Q1 is turned on and a current larger than the current (for example, 1 [mA]) passing through the impedance element 15 (for example, 1).
  • the gate voltage of the semiconductor switch element 2 is made larger than the predetermined value Vg1 which is larger than the threshold voltage of the semiconductor switch element 2, and then the semiconductor switch is passed through the impedance element 15.
  • the semiconductor switch element 2 is constantly turned on.
  • a capacitor having a large capacitance is used by providing the speed-up circuit 14 using the first field effect transistor Q1 and the second field effect transistor Q2.
  • the turn-on time of the semiconductor switch element 2 can be shortened without this.
  • driver circuit 1 according to the first embodiment is configured as a monolithic integrated circuit, it is not necessary to provide a capacitor having a large capacity, so that the size can be reduced.
  • switch system 3 according to the first embodiment is configured as a monolithic integrated circuit, it is not necessary to provide a capacitor having a large capacity, so that the size can be reduced.
  • the driver circuit 1a according to the second embodiment is substantially the same as the driver circuit 1 (see FIG. 1) according to the first embodiment, and is provided with a constant current circuit 17 instead of the resistor R4 of the driver circuit 1. It is different from the driver circuit 1 according to the above.
  • the same components as the driver circuit 1 and the switch system 3 according to the first embodiment are designated by the same reference numerals and description thereof will be omitted.
  • the driver circuit 1a according to the second embodiment includes a series circuit of the resistor R3 and the constant current circuit 17 instead of the resistance voltage dividing circuit 16 of the driver circuit 1 according to the first embodiment.
  • the resistor R3 is connected to the power supply terminal 11.
  • the constant current circuit 17 is provided between the resistor R3 and the ground terminal 12.
  • the gate GQ2 of the second field effect transistor Q2 is connected to the node N2 between the resistor R3 and the constant current circuit 17.
  • the constant current circuit 17 includes, for example, a field effect transistor Q3 having a gate GQ3, a drain DQ3, and a source SQ3, and is configured by short-circuiting the gate GQ3 and the source SQ3 of the field effect transistor Q3.
  • the drain DQ3 of the field effect transistor Q3 is connected to the resistor R3, and the source SQ3 of the field effect transistor Q3 is connected to the ground terminal 12.
  • the field effect transistor Q3 is, for example, a GaN-based GIT.
  • the driver circuit 1a and the switch system 3a according to the second embodiment include the speed-up circuit 14 so that the semiconductor switch element 2 does not use a capacitor having a large capacitance. Turn-on time can be shortened.
  • the DC power supply 4 connected between the power supply terminal 11 and the ground terminal 12 passes through the power supply terminal 11 and the first field effect transistor Q1 to the second field effect transistor Q2.
  • the flowing current can be suppressed to the current of the constant current circuit 17, and the power loss can be reduced.
  • the driver circuit 1b according to the third embodiment is substantially the same as the driver circuit 1 according to the first embodiment (see FIG. 1), and is provided with a constant voltage circuit 18 instead of the resistor R4. Different from 1.
  • the same components as the driver circuit 1 and the switch system 3 according to the first embodiment are designated by the same reference numerals and description thereof will be omitted.
  • the driver circuit 1b includes a series circuit of the resistor R3 and the constant voltage circuit 18 instead of the resistance voltage dividing circuit 16 of the driver circuit 1 according to the first embodiment.
  • the resistor R3 is connected to the power supply terminal 11.
  • the constant voltage circuit 18 is provided between the resistor R3 and the ground terminal 12.
  • the node N3 between the resistor R3 and the constant voltage circuit 18 is connected to the gate GQ2 of the second field effect transistor Q2.
  • the constant voltage circuit 18 is configured by connecting a plurality of diodes D1 in series.
  • the anode of the diode D1 that is the closest to the resistor R3 in the circuit among the plurality of diodes D1 is connected to the resistor R3, and the cathode of the diode D1 that is the farthest from the resistor R3 in the circuit is connected to the ground terminal 12. ing.
  • the total value of the forward voltages (Vf) of the plurality of diodes D1 is larger than the threshold voltage of the second field effect transistor Q2, and the second field effect It is decided that the transistor Q2 is not broken.
  • the driver circuit 1b and the switch system 3b according to the third embodiment include the speed-up circuit 14 so that the semiconductor switch element 2 does not use a large-capacity capacitor. Turn-on time can be shortened.
  • the driver circuit 1b includes the constant voltage circuit 18, the second field effect transistor Q2 is connected to the second field effect transistor Q2 regardless of the magnitude of the voltage applied between the power supply terminal 11 and the ground terminal 12. It is possible to suppress the application of an excessive gate voltage.
  • the driver circuit 1c according to the fourth embodiment is substantially the same as the driver circuit 1 (see FIG. 1) according to the first embodiment, and the speed-up circuit 14c is provided instead of the speed-up circuit 14 according to the first embodiment. It is different from the driver circuit 1.
  • the same components as the driver circuit 1 and the switch system 3 according to the first embodiment are designated by the same reference numerals and description thereof will be omitted.
  • the second field-effect transistor Q2 is configured by Darlington-connecting the third field-effect transistor Q21 and the fourth field-effect transistor Q22. Therefore, the speed-up circuit 14c connects the first field-effect transistor Q1 and the second field-effect transistor Q2 composed of the Darlington circuit of the third field-effect transistor Q21 and the fourth field-effect transistor Q22. Including.
  • Each of the third field effect transistor Q21 and the fourth field effect transistor Q22 is, for example, a GaN-based GIT.
  • the third field effect transistor Q21 has a gate GQ21, a drain DQ21 and a source SQ21.
  • the fourth field effect transistor Q22 has a gate GQ22, a drain DQ22, and a source SQ22.
  • the current capacity of the fourth field-effect transistor Q22 is larger than the current capacity of the third field-effect transistor Q21.
  • the gate width of the fourth field-effect transistor Q22 is larger than the gate width of the third field-effect transistor Q21.
  • the gate width of the semiconductor switch element 2 is 400 mm as in the switch system 3 according to the first embodiment
  • the gate width of the fourth field effect transistor Q22 in the driver circuit 1c and the switch system 3c according to the fourth embodiment is For example, it is the same as the gate width of the first field effect transistor Q1, and is 10 mm as an example.
  • the gate width of the third field effect transistor Q21 is, for example, 1 mm.
  • the gate GQ21 of the third field effect transistor Q21 is connected to the output terminal 161 of the resistance voltage dividing circuit 16.
  • the source SQ22 of the fourth field effect transistor Q22 is connected to the gate 21 of the semiconductor switch element 2.
  • the turn-on time of the semiconductor switch element 2 can be shortened without using a capacitor having a large capacitance.
  • the current amplification factor of the second field effect transistor Q2 can be increased as compared with the driver circuit 1 of the first embodiment, so that the resistors R3 and R4 of the resistance voltage dividing circuit 16 can be increased.
  • the resistance value of can be increased.
  • the driver circuit 1d according to the fifth embodiment is substantially the same as the driver circuit 1 (see FIG. 1) according to the first embodiment, and is provided with the speed-up circuit 14d instead of the speed-up circuit 14 according to the first embodiment. It is different from the driver circuit 1.
  • the same components as the driver circuit 1 and the switch system 3 according to the first embodiment are designated by the same reference numerals and description thereof will be omitted.
  • the speed-up circuit 14d includes a normal-on type second field-effect transistor Q2d instead of the normal-off type second field-effect transistor Q2 in the speed-up circuit 14.
  • the second field effect transistor Q2d is a GaN-based GIT.
  • the second field effect transistor Q2d has a gate GQ2d, a drain DQ2d and a source SQ2d.
  • the gate GQ2 of the normally-off type second field effect transistor Q2 has a p-type layer like the gate 21 of the semiconductor switch element 2.
  • the gate GQ2d of the normalion type second field effect transistor Q2d is provided with a recess structure under the gate 21 on the surface of the second nitride semiconductor layer (for example, an undoped AlGaN layer), for example.
  • the thickness of the second nitride semiconductor layer is made thinner under the gate 21 than under the source 22.
  • the gate GQ2d of the normalion type second field effect transistor Q2d may be composed of a gate electrode that is Schottky-bonded to the second nitride semiconductor layer without providing the p-type layer.
  • the turn-on time of the semiconductor switch element 2 can be shortened without using a capacitor having a large capacitance.
  • the second field effect transistor Q2d of the speedup circuit 14d is a normalion type field effect transistor, the output voltage of the DC power supply 4 is small (for example, in the case of 5V). However, the gate voltage of the first field effect transistor Q1 can be increased.
  • the output voltage of the DC power supply 4 is In the case of 5V, the turn-on speed of the semiconductor switch element 2 cannot be increased.
  • the gate voltage of the second field-effect transistor Q2 in the on state is 3V
  • a current flows through the first field-effect transistor Q1 and the second field-effect transistor Q2 when the semiconductor switch element 2 is turned on.
  • the gate voltage of the semiconductor switch element 2 rises.
  • the second field effect transistor Q2 is turned off when the gate voltage of the semiconductor switch element 2 reaches 1 V, the gate voltage of the semiconductor switch element 2 slowly rises to a predetermined value Vg1 (for example, 3 V).
  • the switch system 3d for example, assuming that the threshold voltages of the second field effect transistor Q2d and the semiconductor switch element 2 are -3V and + 2V, and the predetermined value Vg1 is + 3V. Even when the output voltage of the DC power supply 4 is 5 V, the turn-on speed of the semiconductor switch element 2 can be increased. Assuming that the gate voltage of the second field-effect transistor Q2d is 1V when the semiconductor switch element 2 is turned on, a current flows through the first field-effect transistor Q1 and the second field-effect transistor Q2d. , The gate voltage of the semiconductor switch element 2 rises.
  • the gate voltage of the semiconductor switch element 2 When the gate voltage of the semiconductor switch element 2 reaches 4V, the second field effect transistor Q2d is turned off, and the gate voltage of the semiconductor switch element 2 slowly drops to a predetermined value Vg1 (3V). Therefore, in the driver circuit 1d and the switch system 3d according to the fifth embodiment, when the semiconductor switch element 2 is turned on, the gate voltage of the semiconductor switch element 2 can be temporarily raised to a value larger than a predetermined value Vg1. It is possible to shorten the turn-on time.
  • the driver circuit 1e according to the sixth embodiment is substantially the same as the driver circuit 1 (FIG. 1) according to the first embodiment, and the driver circuit 1 according to the first embodiment is provided with a constant current circuit 19 instead of the resistor R3. Is different from.
  • the same components as the driver circuit 1 and the switch system 3 according to the first embodiment are designated by the same reference numerals and description thereof will be omitted.
  • the driver circuit 1e includes a series circuit of the constant current circuit 19 and the resistor R4 instead of the resistance voltage dividing circuit 16 of the driver circuit 1 according to the first embodiment.
  • the constant current circuit 19 is connected to the power supply terminal 11.
  • the resistor R4 is connected between the constant current circuit 19 and the ground terminal 12.
  • the gate GQ2 of the second field effect transistor Q2 is connected to the node N4 between the constant current circuit 19 and the resistor R4.
  • the constant current circuit 19 includes, for example, a field effect transistor Q8 having a gate GQ8, a drain DQ8, and a source SQ8, and is configured by short-circuiting the gate GQ8 and the source SQ8 of the field effect transistor Q8.
  • the drain DQ8 of the field effect transistor Q8 is connected to the power supply terminal 11, and the source SQ8 of the field effect transistor Q8 is connected to the resistor R4.
  • the field effect transistor Q8 is, for example, a GaN-based GIT. Since the gate GQ8 and the source SQ8 are short-circuited, the field effect transistor Q8 has a voltage-current characteristic as shown by the solid line in FIG. 8 when the drain voltage is Vd and the drain current is Id.
  • VCC in FIG. 8 is the output voltage of the DC power supply 4.
  • VCC / R4 in FIG. 8 is a value obtained by dividing the output voltage of the DC power supply 4 by the resistance value of the resistor R4.
  • the difference between the intersection of the perpendicular line and the horizontal axis drawn from the intersection of the straight line connecting the VCS / R4 and the VCS and the voltage-current characteristic to the horizontal axis (drain voltage) and the VCS is the second. This is the maximum value of the gate voltage of the field effect transistor Q2.
  • the driver circuit 1e and the switch system 3e according to the sixth embodiment are provided with the speed-up circuit 14, so that the semiconductor switch element 2 does not use a large-capacity capacitor. Turn-on time can be shortened.
  • the driver circuit 1e according to the sixth embodiment includes the constant current circuit 19, the current flowing through the second field effect transistor Q2 can be limited even if the output voltage of the DC power supply 4 changes, and the power of the driver circuit 1e can be limited. It is possible to reduce the loss and stabilize the gate voltage of the second field effect transistor Q2.
  • the driver circuit 1f according to the seventh embodiment is substantially the same as the driver circuit 1 according to the first embodiment, and differs from the driver circuit 1 according to the first embodiment in that a DCFL (Direct Coupled FET Logic) circuit 10 is further provided. .. Regarding the driver circuit 1f and the switch system 3f according to the seventh embodiment, the same components as the driver circuit 1 and the switch system 3 according to the first embodiment are designated by the same reference numerals and description thereof will be omitted.
  • DCFL Direct Coupled FET Logic
  • the DCFL circuit 10 has an input terminal 101 and an output terminal 102, and is connected between the power supply terminal 11 and the ground terminal 12.
  • the input terminal 101 of the DCFL circuit 10 is connected to the signal input terminal 13. Further, in the driver circuit 1f, the output terminal 102 of the DCFL circuit 10 is connected to the gate 21 of the semiconductor switch element 2 via the impedance element 15.
  • the DCFL circuit 10 is a logic circuit including a field effect transistor Q4 and a field effect transistor Q5.
  • the field effect transistor Q4 has a gate GQ4, a drain DQ4 and a source SQ4.
  • the field effect transistor Q5 has a gate GQ5, a drain DQ5, and a source SQ5.
  • the field effect transistor Q4 is a normalion type GaN-based GIT.
  • the field effect transistor Q5 is a normally-off type GaN-based GIT.
  • the gate GQ4 of the field effect transistor Q4 and the source SQ4 are short-circuited, and the field effect transistor Q4 operates as a constant current element.
  • the gate GQ5 is connected to the signal input terminal 13.
  • the gate GQ5 of the field-effect transistor Q5 constitutes the input end 101, and the connection point between the source SQ4 of the field-effect transistor Q4 and the drain DQ5 of the field-effect transistor Q5 constitutes the output end 102 of the DCFL circuit 10. ing.
  • the DCFL circuit 10 outputs the output logic 0 from the output terminal 102 when the input logic of the input terminal 101 is 1, and outputs the output logic 1 from the output terminal 102 when the input logic of the input terminal 101 is 0.
  • the DCFL circuit 10 if the potential level equal to or higher than the threshold voltage of the field effect transistor Q5 is set to the input logic 1 and the potential level less than the threshold voltage of the field effect transistor Q5 is set to the input logic 0, the electric field effect is obtained when the input logic is 1.
  • the output terminal 102 has the same potential as the ground terminal 12.
  • the impedance of the field effect transistor Q5 in the on state is smaller than the impedance of the field effect transistor Q4 in the on state so that the output logic becomes 0 when the input logic is 1.
  • the gate width of the field-effect transistor Q5 is larger than the gate width of the field-effect transistor Q4.
  • the driver circuit 1f further includes a resistor R6 provided between the DCFL circuit 10 and the power supply terminal 11, but it does not have to be provided. If the resistance value of the resistor R6 is larger than the resistance value of the resistor R5, the gate voltage of the semiconductor switch element 2 in the steady-on state is determined by the resistance value of the resistor R6, so care must be taken when designing the circuit. ..
  • the driver circuit 1f further includes a gate resistor R7 provided between the gate GQ5 of the field effect transistor Q5 and the signal input terminal 13.
  • the gate resistor R7 is provided to prevent the gate GQ5 of the field effect transistor Q5 from being directly connected to the driver IC5 and destroying the gate GQ5 due to an overvoltage.
  • the driver circuit 1f further includes a field effect transistor Q6 provided between the node N1 and the ground terminal 12.
  • the field effect transistor Q6 has a gate GQ6, a drain DQ6, and a source SQ6.
  • the field effect transistor Q6 is a normally-off type GaN-based GIT.
  • the field effect transistor Q6 is an element provided to increase the turn-off speed of the semiconductor switch element 2, the drain DQ6 is connected to the gate of the semiconductor switch element 2, and the source SQ6 is connected to the source 22 of the semiconductor switch element 2. Will be done.
  • the field effect transistor Q6 is provided to form a path that does not pass through the impedance element 15 as a path for extracting the gate charge of the semiconductor switch element 2 when the semiconductor switch element 2 is turned off.
  • the driver circuit 1f further includes a gate resistor R8 provided between the gate GQ6 of the field effect transistor Q6 and the signal input terminal 13.
  • the gate resistor R8 is provided to prevent the gate GQ6 of the field effect transistor Q6 from being directly connected to the driver IC5 and destroying the gate GQ6 due to an overvoltage. From the viewpoint of increasing the turn-on speed of the field effect transistor Q6 and increasing the turn-off speed of the semiconductor switch element 2, the resistance value of the gate resistance R8 is preferably small.
  • the driver circuit 1f further includes a field effect transistor Q7 connected in parallel to the gate resistor R8.
  • the field effect transistor Q7 has a gate GQ7, a drain DQ7, and a source SQ7.
  • the field effect transistor Q7 is a normally-off type GaN-based GIT.
  • the source SQ7 of the field-effect transistor Q7 is connected to one end of the field-effect transistor Q6 on the gate resistor R8, and the drain DQ7 is connected to the other end of the gate resistor 8 on the signal input terminal 13 side.
  • the field effect transistor Q7 has a short circuit between the gate GQ7 and the source SQ7, and functions as a diode.
  • the field-effect transistor Q7 is an element for increasing the turn-off speed of the field-effect transistor Q6.
  • the output voltage of the DC power supply 4 is set to 12 V, for example, the semiconductor switch element 2 in the switch system 3f, the gate widths of the field effect transistors Q1, Q2, Q4 to Q7, and the circuit constants of the resistors R2 to R8. An example will be described.
  • the gate width of the semiconductor switch element 2 is, for example, 400 mm.
  • the gate width of the first field effect transistor Q1 is, for example, 10 mm.
  • the gate width of the second field effect transistor Q2 is, for example, 10 mm.
  • the gate width of the field effect transistor Q4 is, for example, 0.1 mm.
  • the gate width of the field effect transistor Q5 is, for example, 1 mm.
  • the gate width of the field effect transistor Q6 is, for example, 10 mm.
  • the gate width of the field effect transistor Q7 is, for example, 1 mm.
  • the resistance value of the second gate resistor R2 is, for example, 1 k ⁇ .
  • the resistance value of the resistor R3 is, for example, 5 k ⁇ .
  • the resistance value of the resistor R4 is, for example, 2 k ⁇ .
  • the resistance value of the resistor R5 constituting the impedance element 15 is, for example, 500 ⁇ .
  • the resistance value of the resistor R6 is, for example, 100 ⁇ .
  • the resistance value of the gate resistor R7 is, for example, 5 k ⁇ .
  • the resistance value of the gate resistor R8 is, for example, 1 k ⁇ .
  • FIG. 10 shows a drive signal input to the signal source 6, an output signal of the driver IC 5, a gate voltage of the first field effect transistor Q1 (first FET), and a second field effect transistor Q2 (second FET).
  • Gate voltage, gate voltage of semiconductor switch element 2, drain-source voltage of semiconductor switch element 2, gate voltage of field effect transistor Q5 (fifth FET), and gate of field effect transistor Q6 (sixth FET) It is a timing chart which shows the relationship of voltage schematically.
  • the potential level of the signal (output signal of the driver IC 5) input to the signal input terminal 13 is from the first potential level VL1 when the second electric current effect transistor Q2 is on.
  • the first electric field effect transistor Q1 is turned on and a current larger than the current passing through the impedance element 15 is passed through the gate 21 of the semiconductor switch element 2.
  • the gate voltage of the semiconductor switch element 2 is made larger than the predetermined value Vg1 which is larger than the threshold voltage of the semiconductor switch element 2, and then the current is continuously passed through the gate 21 of the semiconductor switch element 2 through the impedance element 15 to make the semiconductor switch. Put the element 2 in the steady on state.
  • the driver circuit 1f and the switch system 3f according to the seventh embodiment include the speed-up circuit 14 so that the semiconductor switch element 2 does not use a large-capacity capacitor. Turn-on time can be shortened.
  • driver circuit 1f by providing the DCFL circuit 10, it is possible to increase the turn-off speed of the semiconductor switch element 2.
  • driver circuit 1f according to the seventh embodiment can be configured by a monolithic integrated circuit by providing the DCFL circuit 10.
  • the resistor R6 may or may not be present. Further, when the driver circuit 1f includes the resistor R6, the field effect transistor Q4 may or may not be present. By providing the field effect transistor Q4, a substantially constant current flows even if the output voltage of the DC power supply 4 changes, so that it is easy to handle. If the output voltage of the DC power supply 4 is determined, only the resistor R6 of the field effect transistor Q4 and the resistor R6 may be provided. When only the resistor R6 is used, the resistance value of the resistor R6 is, for example, 10 k ⁇ .
  • the driver circuit 1g according to the eighth embodiment is a driver circuit of a current-driven semiconductor switch element 2A.
  • the same components as the driver circuit 1 and the switch system 3 according to the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the semiconductor switch element 2A is a dual gate type bidirectional switch element having two gates 21 and two sources 22 each. There is a one-to-one correspondence between the two gates 21 and the two sources 22.
  • one of the two gates 21 may be referred to as a first gate 21A, and the other may be referred to as a second gate 21B.
  • the source 22 corresponding to the first gate 21A may be referred to as the first source 22A
  • the source 22 corresponding to the second gate 21B may be referred to as the second source 22B.
  • the semiconductor switch element 2A will be briefly described, and then the driver circuit 1g and the switch system 3g will be described.
  • the semiconductor switch element 2A is a kind of GaN-based GIT.
  • the semiconductor switch element 2A includes, for example, a substrate, a buffer layer, a first nitride semiconductor layer, a second nitride semiconductor layer, a first source electrode, a first gate electrode, and a second gate electrode. , A second source electrode, a first p-type layer, and a second p-type layer are provided.
  • the buffer layer is formed on the substrate.
  • the first nitride semiconductor layer is formed on the buffer layer.
  • the second nitride semiconductor layer is formed on the first nitride semiconductor layer.
  • the first source electrode, the first gate electrode, the second gate electrode, and the second source electrode are formed on the second nitride semiconductor layer.
  • the first p-type layer is interposed between the first gate electrode and the second nitride semiconductor layer.
  • the second p-type layer is interposed between the second gate electrode and the second nitride semiconductor layer.
  • the first source 22A includes a first source electrode.
  • the first gate 21A includes a first gate electrode and a first p-type layer.
  • the second gate 21B includes a second gate electrode and a second p-type layer.
  • the second source 22B includes a second source electrode.
  • the substrate is, for example, a silicon substrate.
  • the buffer layer is, for example, an undoped GaN layer.
  • the first nitride semiconductor layer is, for example, an undoped GaN layer.
  • the second nitride semiconductor layer is, for example, an undoped AlGaN layer.
  • Each of the first p-type layer and the second p-type layer is, for example, a p-type AlGaN layer.
  • Each of the buffer layer, the first nitride semiconductor layer and the second nitride semiconductor layer is inevitably mixed with Mg, H, Si, C, O, etc. during growth by MOVPE (Metal Organic Vapor Phase Epitaxy) or the like. Impurities may be present.
  • MOVPE Metal Organic Vapor Phase Epitaxy
  • the second nitride semiconductor layer constitutes a heterojunction together with the first nitride semiconductor layer.
  • two-dimensional electron gas Two-Dimensional Electron Gas
  • the region containing the two-dimensional electron gas can function as an n-channel layer (electron conduction layer).
  • a state in which a voltage equal to or higher than the first threshold voltage (for example, 1.3 V) is not applied between the first gate 21A and the first source 22A is also referred to as an off state of the first gate 21A.
  • a state in which a voltage equal to or higher than the first threshold voltage is applied between the first gate 21A and the first source 22A with the first gate 21A as the high potential side is also referred to as an on state of the first gate 21A.
  • a state in which a voltage equal to or higher than the second threshold voltage (for example, 1.3 V) is not applied between the second gate 21B and the second source 22B is also referred to as an off state of the second gate 21B.
  • a state in which a voltage equal to or higher than the second threshold voltage is applied between the second gate 21B and the second source 22B with the second gate 21B as the high potential side is also referred to as an on state of the second gate 21B.
  • the semiconductor switch element 2A realizes a normally-off type transistor by providing the above-mentioned first p-type layer and second p-type layer.
  • the semiconductor switch element 2A has a bidirectional on state, a bidirectional off state, and a first diode according to the combination of the first gate voltage and the second gate voltage given to the first gate 21A and the second gate 21B, respectively. It is possible to switch between the state and the second diode state.
  • the first gate voltage is a voltage applied between the first gate 21A and the first source 22A.
  • the second gate voltage is a voltage applied between the second gate 21B and the second source 22B.
  • the bidirectional on state is a state in which currents in both directions (the first direction A1 and the second direction A2 opposite to the first direction A1) are passed.
  • the bidirectional off state is a state in which bidirectional current is blocked.
  • the first diode state is a state in which a current in the first direction A1 is passed.
  • the second diode state is a state in which a current in the second direction A2 is passed.
  • the semiconductor switch element 2A when the first gate 21A is in the ON state and the second gate 21B is in the ON state, the semiconductor switch element 2A is in the bidirectional ON state. In the semiconductor switch element 2A, when the first gate 21A is in the off state and the second gate 21B is in the off state, the semiconductor switch element 2A is in the bidirectional off state. In the semiconductor switch element 2A, when the first gate 21A is in the off state and the second gate 21B is in the on state, the first diode state is set. In the semiconductor switch element 2A, when the first gate 21A is in the ON state and the second gate 21B is in the OFF state, the second diode state is set.
  • driver circuit 1g and the switch system 3g will be described.
  • the driver circuit 1g includes two speed-up circuits 14.
  • the speed-up circuit 14 connected to the first gate 21A of the semiconductor switch element 2A is referred to as the first speed-up circuit 14A
  • the speed-up circuit 14 connected to the second gate 21B May be referred to as a second speed-up circuit 14B.
  • the first speed-up circuit 14A and the second speed-up circuit 14B have the same circuit configuration.
  • the driver circuit 1g includes two sets of the power supply terminal 11, the ground terminal 12, and the signal input terminal 13, and the two sets correspond one-to-one with the two speed-up circuits 14.
  • the power supply terminal 11, ground terminal 12, and signal input terminal 13 in one of the two sets will be referred to as a first power supply terminal 11A, a first ground terminal 12A, and a first signal input terminal 13A.
  • the power supply terminal 11, ground terminal 12, and signal input terminal 13 in the other set may be referred to as a second power supply terminal 11B, a second ground terminal 12B, and a second signal input terminal 13B.
  • the first power supply terminal 11A, the first ground terminal 12A, and the first signal input terminal 13A correspond to the first gate 21A and the first source 22A of the semiconductor switch element 2A, and correspond to the second power supply terminal 11B, the second ground terminal 12B, and the second ground terminal 12B.
  • the second signal input terminal 13B corresponds to the second gate 21B and the second source 22B of the semiconductor switch element 2A.
  • the driver circuit 1g includes two resistance voltage dividing circuits 16, and the two resistance voltage dividing circuits 16 have a one-to-one correspondence with the above two sets.
  • the resistance voltage divider circuit 16 corresponding to the first power supply terminal 11A, the first ground terminal 12A, and the first signal input terminal 13A is referred to as the first resistance voltage divider circuit 16A
  • the second power supply terminal 11B, the second ground terminal is used as the second resistance voltage divider circuit 16B.
  • the driver circuit 1g includes two impedance elements 15.
  • one impedance element 15 of the two impedance elements 15 is provided between the first gate 21A and the first signal input terminal 13A, and the other impedance element 15 is provided between the second gate 21B and the second signal input. It is provided between the terminal 13B.
  • the DC power supply 4 connected between the first power supply terminal 11A and the first ground terminal 12A of the driver circuit 1g is referred to as a first DC power supply 4A
  • the second power supply terminal 11B and the second ground are referred to as the first DC power supply 4A
  • the DC power supply 4 connected to the terminal 12B may be referred to as a second DC power supply 4B.
  • the driver IC 5 is set as the first driver IC 5A and the signal source 6 is also used. May be referred to as a first signal source 6A.
  • the driver IC 5 is set as the second driver IC 5B and the signal source 6 is used. May be referred to as a second signal source 6B.
  • the output voltage of the first DC power supply 4A and the second DC power supply 4B are the same, but may be different.
  • the first signal source 6A and the second signal source 6B have the same second potential level VL2, but may be different from each other.
  • the turn-on time of the semiconductor switch element 2A can be shortened without using a capacitor having a large capacitance.
  • driver circuit 1g according to the eighth embodiment is configured as a monolithic integrated circuit, it is not necessary to provide a capacitor having a large capacity, so that the size can be reduced. Further, when the switch system 3g according to the eighth embodiment is configured as a monolithic integrated circuit, it is not necessary to provide a capacitor having a large capacity, so that the size can be reduced.
  • the above embodiments 1 to 8 are only one of the various embodiments of the present disclosure.
  • the above embodiments 1 to 8 can be changed in various ways depending on the design and the like as long as the object of the present disclosure can be achieved.
  • the resistance voltage dividing circuit 16 in the driver circuit 1 according to the first embodiment may include at least two resistors R3 and R4, and may have a configuration in which three or more resistors are connected in series.
  • the speed-up circuit 14 includes one or more field-effect transistors connected in series or in parallel to the second field-effect transistor Q2 in addition to the first field-effect transistor Q1 and the second field-effect transistor Q2. It may be included.
  • circuit configurations of the constant current circuit 17, the constant voltage circuit 18, and the constant current circuit 19 are examples, and the circuit configuration is not particularly limited, but by adopting the above configuration, the formation of a monolithic integrated circuit becomes easy.
  • the p-type layer in the semiconductor switch element 2 of the switch systems 3 to 3f is not limited to the p-type AlGaN layer, and may be, for example, a p-type GaN layer or a p-type metal oxide semiconductor layer. Good.
  • the p-type metal oxide semiconductor layer is, for example, a NiO layer.
  • the NiO layer may contain, for example, at least one alkali metal selected from the group of lithium, sodium, potassium, rubidium and cesium as an impurity. Further, the NiO layer may contain, for example, a transition metal such as silver or copper which becomes monovalent when added as an impurity.
  • Each of the first p-type layer and the second p-type layer in the semiconductor switch element 2A of the switch system 3g is the same as the p-type layer in the semiconductor switch element 2.
  • Each of the semiconductor switch element 2 and the semiconductor switch element 2A may include one or more nitride semiconductor layers between the buffer layer and the first nitride semiconductor layer.
  • the buffer layer is not limited to a single layer structure, and may have, for example, a superlattice structure.
  • the substrate in each of the semiconductor switch element 2 and the semiconductor switch element 2A is not limited to the silicon substrate, and may be, for example, a GaN substrate, a SiC substrate, a sapphire substrate, or the like.
  • the semiconductor switch element 2A can be applied to an electric device such as a multi-level inverter, a dimmer, and a matrix converter that performs AC-AC power conversion.
  • the driver circuit (1; 1a; 1b; 1c; 1d; 1e; 1f; 1g) is a current-driven semiconductor having a gate (21) and a source (22) corresponding to the gate (21).
  • a driver circuit for a switch element (2; 2A) which includes a power supply terminal (11), a ground terminal (12), a signal input terminal (13), a speed-up circuit (14; 14c; 14d), and an impedance element. (15) and.
  • the ground terminal (12) is connected to the source (22; 22A, 22B) of the semiconductor switch element (2; 2A).
  • the speed-up circuit (14; 14c; 14d) is provided between the power supply terminal (11; 11A, 11B) and the gate (21) of the semiconductor switch element (2; 2A).
  • the impedance element (15) includes a node (N1) between the speed-up circuit (14; 14c; 14d) and the gate (21) of the semiconductor switch element (2; 2A), and signal input terminals (13; 13A, 13B). ) And.
  • the speed-up circuit (14; 14c; 14d) has a first field effect transistor (Q1) and a second field effect transistor (Q2; Q2d).
  • the second field-effect transistor (Q2; Q2d) is connected in series with the first field-effect transistor (Q1), and is connected to the gate (21) of the semiconductor switch element (2; 2A).
  • the impedance of the impedance element (15) is that of the speed-up circuit (14; 14c; 14d) when both the first field effect transistor (Q1) and the second field effect transistor (Q2; Q2d) are in the ON state. Higher than impedance.
  • the driver circuit (1; 1a; 1b; 1c; 1d; 1e; 1f; 1g) according to the first aspect shortens the turn-on time of the semiconductor switch element (2; 2A) without using a capacitor having a large capacitance. It can be planned.
  • the driver circuit (1; 1c; 1d; 1f; 1g) according to the second aspect further includes a resistance voltage dividing circuit (16) in the first aspect.
  • the resistance voltage divider circuit (16) is provided between the power supply terminal (11) and the ground terminal (12).
  • the gate (Q2G) of the second field effect transistor (Q2) is connected to the output end (161) of the resistance voltage divider circuit (16).
  • the gate voltage of the second field effect transistor (Q2) can be determined by the resistance voltage dividing circuit (16).
  • the driver circuit (1a) according to the third aspect further includes a resistor (R3) and a constant current circuit (17) in the first aspect.
  • the resistor (R3) is connected to the power supply terminal (11).
  • the constant current circuit (17) is provided between the resistor (R3) and the ground terminal (12).
  • the gate (Q2G) of the second field effect transistor (Q2) is connected to the node (N2) between the resistor (R3) and the constant current circuit (17).
  • the driver circuit (1a) is, for example, from the DC power supply (4) connected between the power supply terminal (11) and the ground terminal (12) to the power supply terminal (11) and the first electric current effect.
  • the current flowing through the second field effect transistor (Q2) through the transistor (Q1) can be suppressed to the current of the constant current circuit (17), and the power loss can be reduced.
  • the driver circuit (1b) further includes a resistor (R3) and a constant voltage circuit (18) in the first aspect.
  • the resistor (R3) is connected to the power supply terminal (11).
  • the constant voltage circuit (18) is provided between the resistor (R3) and the ground terminal (12).
  • the constant voltage circuit (18) is configured by connecting a plurality of diodes (D1) in series.
  • the node (N3) between the resistor (R3) and the constant voltage circuit (18) is connected to the gate (GQ2) of the second field effect transistor (Q2).
  • the driver circuit (1b) according to the fourth aspect is excessive to the second field effect transistor (Q2) regardless of the magnitude of the voltage applied between the power supply terminal (11) and the ground terminal (12). It is possible to suppress the application of a large gate voltage.
  • the second field effect transistor (Q2) is the third field effect transistor (Q21) and the fourth field effect transistor (Q22). And, are configured by Darlington connection.
  • the third field effect transistor (Q21) has a gate (GQ21) and a source (SQ21).
  • the fourth field effect transistor (Q22) has a gate (GQ22) and a source (SQ22).
  • the current capacity of the fourth field-effect transistor (Q22) is larger than the current capacity of the third field-effect transistor (Q21).
  • the gate (GQ21) of the third field effect transistor (Q21) is connected to the output end (161) of the resistance voltage divider circuit (16).
  • the source (SQ22) of the fourth field effect transistor (Q22) is connected to the gate (21) of the semiconductor switch element (2).
  • the driver circuit (1c) according to the fifth aspect since the current amplification factor of the second field effect transistor (Q2) can be increased, the resistance value of each resistance (R3, R4) of the resistance voltage dividing circuit (16) can be increased. You can make it bigger. As a result, the power loss can be reduced in the driver circuit (1c) according to the fifth aspect.
  • the second field effect transistor (Q2d) is a normalion type field effect transistor.
  • the driver circuit (1d) even when the voltage applied between the power supply terminal (11) and the ground terminal (12) is small (for example, in the case of 5V), the first field effect transistor (for example, 5V) The gate voltage of Q1) can be increased.
  • the driver circuit (1e) further includes a constant current circuit (19) and a resistor (R4) in the first aspect.
  • the constant current circuit (19) is connected to the power supply terminal (11).
  • the resistor (R4) is provided between the constant current circuit (19) and the ground terminal (12).
  • the gate (GQ2) of the second field effect transistor (Q2) is connected to the node (N4) between the constant current circuit (19) and the resistor (R4).
  • the driver circuit (1e) even if the voltage applied between the power supply terminal (11) and the ground terminal (12) changes, the current flowing through the second field effect transistor (Q2) is transferred. It can be limited, the power loss can be reduced, and the gate voltage of the second field effect transistor (Q2) can be stabilized.
  • the driver circuit (1f) further includes a DCFL circuit (10) in any one of the first to seventh aspects.
  • the DCFL circuit (10) has an input end (101) and an output end (102), and is provided between the power supply terminal (11) and the ground terminal (12).
  • the input end (101) of the DCFL circuit (10) is connected to the signal input terminal (13).
  • the output end (102) of the DCFL circuit (10) is connected to the gate (21) of the semiconductor switch element (2) via the impedance element (15).
  • the turn-off time of the semiconductor switch element (2) can be shortened.
  • the semiconductor switch element (2A) is a dual having two gates (21) and two sources (22). It is a gate type bidirectional switch element.
  • the driver circuit (1 g) includes two speed-up circuits (14). One speed-up circuit (14) of the two speed-up circuits (14) is connected to the first gate (21A), which is one of the two gates 21 (21), and the remaining one speed-up circuit. (14) is connected to the second gate (21B), which is the other gate (21) of the two gates 21.
  • the driver circuit (1 g) according to the ninth aspect can shorten the turn-on time of the semiconductor switch element (2A).
  • the semiconductor switch element (2; 2A) is It is a GaN-based semiconductor switch element.
  • the turn-on time of the semiconductor switch (2; 2A), which is a GaN-based semiconductor switch, can be shortened.
  • the driver circuit (1; 1a; 1b; 1c; 1d; 1e; 1f; 1g) is a current-driven semiconductor having a gate (21) and a source (22) corresponding to the gate (21). It is a driver circuit of a switch element (2; 2A), and is a power supply terminal (11), a ground terminal (12), a signal input terminal (13), a first field effect transistor (Q1), and a second. It includes a field effect transistor (Q2; Q2d) and an impedance element (15).
  • the ground terminal (12) is connected to the source (22) of the semiconductor switch element (2; 2A).
  • the first field effect transistor (Q1) is connected to the power supply terminal (11).
  • the second field-effect transistor (Q2; Q2d) is connected in series with the first field-effect transistor (Q1), and is connected to the gate (21) of the semiconductor switch element (2; 2A).
  • the impedance element (15) includes a node (N1) between the second field effect transistor (Q2; Q2d) and the gate (21) of the semiconductor switch element (2; 2A), a signal input terminal (13), and the like. It is provided between.
  • the driver circuit (1; 1a; 1b; 1c; 1d; 1e; 1f; 1g) is a signal input to the signal input terminal (13) with the second field effect transistor (Q2; Q2d) turned on.
  • the first field effect transistor (Q1) When the voltage level changes from the first potential level (VL1) to the second potential level (VL2) higher than the first potential level (VL1), the first field effect transistor (Q1) is turned on and the impedance element (Q1) is turned on.
  • the gate voltage of the semiconductor switch element (2; 2A) By passing a current larger than the current passing through 15) through the gate (21) of the semiconductor switch element (2; 2A), the gate voltage of the semiconductor switch element (2; 2A) is set to a predetermined value (Vg1) larger than the threshold voltage.
  • the semiconductor switch element (2; 2A) is constantly turned on by continuously passing a current from the signal input terminal (13) through the impedance element (15) to the gate (21) of the semiconductor switch element (2; 2A). Put it in a state.
  • the driver circuit (1; 1a; 1b; 1c; 1d; 1e; 1f; 1g) according to the eleventh aspect shortens the turn-on time of the semiconductor switch element (2; 2A) without using a capacitor having a large capacitance. It can be planned.
  • the driver circuit (1; 1a; 1b; 1c; 1d; 1e; 1f; 1g) is a monolithic integrated circuit.
  • the driver circuit (1; 1a; 1b; 1c; 1d; 1e; 1f; 1g) according to the twelfth aspect can be miniaturized.
  • the switch system (3; 3a; 3b; 3c; 3d; 3e; 3f; 3g) according to the thirteenth aspect is the driver circuit (1; 1a; 1b; 1c; 1d) according to any one of the first to eleventh aspects. 1e; 1f; 1g) and a semiconductor switch element (2; 2A).
  • the turn-on time of the semiconductor switch element (2; 2A) can be shortened without using a capacitor having a large capacitance. You can plan.
  • the driver circuit (1; 1a; 1b; 1c; 1d; 1e; 1f; 1g) is a monolithic integrated circuit.
  • the driver circuit (1; 1a; 1b; 1c; 1d; 1e; 1f; 1g) can be downsized. You can plan.
  • the switch system (3; 3a; 3b; 3c; 3d; 3e; 3f; 3g) is a monolithic integrated circuit in which a driver circuit (1; 1a; 1b; 1c; 1d; 1e; 1f; 1g) and a semiconductor switch element (2; 2A) are integrated.
  • the switch system (3; 3a; 3b; 3c; 3d; 3e; 3f; 3g) according to the fifteenth aspect can be miniaturized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

容量の大きなコンデンサを用いずにターンオン時間の短縮化を図る。スピードアップ回路(14)は、電源端子(11)と半導体スイッチ素子(2)のゲート(21)との間に設けられる。インピーダンス素子(15)は、スピードアップ回路(14)と半導体スイッチ素子(2)のゲート(21)との間のノード(N1)と、信号入力端子(13)と、の間に設けられる。スピードアップ回路(14)では、第2の電界効果トランジスタ(Q2)は、第1の電界効果トランジスタ(Q1)に直列接続されており、半導体スイッチ素子(2)のゲート(21)に接続される。インピーダンス素子(15)のインピーダンスは、第1の電界効果トランジスタ(Q1)と第2の電界効果トランジスタ(Q2)との両方がオン状態のときのスピードアップ回路(14)のインピーダンスよりも高い。

Description

ドライバ回路、及びスイッチシステム
 本開示は、ドライバ回路、及びスイッチシステムに関し、より詳細には、電流駆動型の半導体スイッチ素子のドライバ回路、及びそれを備えるスイッチシステムに関する。
 従来、半導体素子のゲート駆動回路が知られている(特許文献1)。
 特許文献1に記載された半導体素子は、ゲート駆動型半導体素子である。半導体素子は、スイッチング回路からの信号に基づいて駆動される。スイッチング回路は、ドライブ回路と、ゲート抵抗器とコンデンサとの並列回路と、でゲート駆動回路を構成している。
 ドライブ回路は、NPNトランジスタ及びPNPトランジスタで構成されている。半導体素子を構成するゲート駆動型半導体素子は、GIT(Gate Injection Transistor)である。
 特許文献1に開示されたゲート駆動回路では、ゲート抵抗器と並列接続されたコンデンサを備えることで、高速スイッチングを可能としているので、容量の大きなコンデンサを備える必要があった。
特開2010-51165号公報
 本開示の目的は、容量の大きなコンデンサを用いずに半導体スイッチ素子のターンオン時間の短縮化を図れるドライバ回路、及びスイッチシステムを提供することにある。
 本開示に係る一態様のドライバ回路は、ゲート及び前記ゲートに対応するソースを有する電流駆動型の半導体スイッチ素子のドライバ回路であって、電源端子と、グランド端子と、信号入力端子と、スピードアップ回路と、インピーダンス素子と、を備える。前記グランド端子は、前記半導体スイッチ素子の前記ソースに接続される。前記スピードアップ回路は、前記電源端子と前記半導体スイッチ素子の前記ゲートとの間に設けられる。前記インピーダンス素子は、前記スピードアップ回路と前記半導体スイッチ素子の前記ゲートとの間のノードと、前記信号入力端子と、の間に設けられる。前記スピードアップ回路は、第1の電界効果トランジスタと、第2の電界効果トランジスタと、を有する。前記第2の電界効果トランジスタは、前記第1の電界効果トランジスタに直列接続されており、前記半導体スイッチ素子の前記ゲートに接続される。前記インピーダンス素子のインピーダンスは、前記第1の電界効果トランジスタと前記第2の電界効果トランジスタとの両方がオン状態のときの前記スピードアップ回路のインピーダンスよりも高い。
 本開示に係る一態様のドライバ回路は、ゲート及び前記ゲートに対応するソースを有する電流駆動型の半導体スイッチ素子のドライバ回路であって、電源端子と、グランド端子と、信号入力端子と、第1の電界効果トランジスタと、第2の電界効果トランジスタと、インピーダンス素子と、を備える。前記グランド端子は、前記半導体スイッチ素子の前記ソースに接続される。前記第1の電界効果トランジスタは、前記電源端子に接続されている。前記第2の電界効果トランジスタは、前記第1の電界効果トランジスタに直列接続されており、前記半導体スイッチ素子の前記ゲートに接続される。前記インピーダンス素子は、前記第2の電界効果トランジスタと前記半導体スイッチ素子の前記ゲートとの間のノードと、前記信号入力端子と、の間に設けられる。前記ドライバ回路は、前記第2の電界効果トランジスタがオンの状態で、前記信号入力端子に入力される信号の電位レベルが第1電位レベルから第1電位レベルよりも高い第2電位レベルに変化したときに、前記第1の電界効果トランジスタがオンして前記インピーダンス素子を通る電流よりも大きな電流を前記半導体スイッチ素子の前記ゲートに流すことで前記半導体スイッチ素子のゲート電圧を閾値電圧よりも大きな所定値よりも大きくし、その後、前記インピーダンス素子を通して前記半導体スイッチ素子の前記ゲートに電流を流し続けることで前記半導体スイッチ素子のゲート電圧を前記所定値にする。
 本開示に係る一態様のスイッチシステムは、前記ドライバ回路と、前記半導体スイッチ素子と、を備える。
図1は、実施形態1に係るドライバ回路を備えるスイッチシステムの回路図である。 図2は、同上のドライバ回路の動作を説明するためのタイミングチャートである。 図3は、実施形態2に係るドライバ回路を備えるスイッチシステムの回路図である。 図4は、実施形態3に係るドライバ回路を備えるスイッチシステムの回路図である。 図5は、実施形態4に係るドライバ回路を備えるスイッチシステムの回路図であるである。 図6は、実施形態5に係るドライバ回路を備えるスイッチシステムの回路図である。 図7は、実施形態6に係るドライバ回路を備えるスイッチシステムの回路図である。 図8は、同上のドライバ回路における定電流回路の動作説明図である。 図9は、実施形態7に係るドライバ回路を備えるスイッチシステムの回路図である。 図10は、同上のドライバ回路の動作を説明するためのタイミングチャートである。 図11は、実施形態8に係るドライバ回路を備えるスイッチシステムの回路図である。
 (実施形態1)
 以下では、実施形態1に係るドライバ回路1及びそれを備えるスイッチシステム3について、図1に基づいて説明する。
 (1)概要
 ドライバ回路1は、電流駆動型の半導体スイッチ素子2のドライバ回路である。半導体スイッチ素子2は、ゲート21及びゲート21に対応するソース22を有する。電流駆動型の半導体スイッチ素子2は、ゲート21に電流を流すことによってターンオンし、ターンオン後もゲート21に電流が流れる素子である。電流駆動型の半導体スイッチ素子2は、例えば、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)を含まない。
 スイッチシステム3は、ドライバ回路1と、半導体スイッチ素子2と、を備える。半導体スイッチ素子2は、上述のゲート21及びソース22の他にドレイン23を有する。スイッチシステム3は、半導体スイッチ素子2のソース22及びドレイン23にそれぞれ接続されたソース端子32及びドレイン端子33を有する。
 (2)スイッチシステムの各構成要素
 (2.1)半導体スイッチ素子
 半導体スイッチ素子2は、例えば、GaN系半導体スイッチ素子である。より詳細には、半導体スイッチ素子2は、GaN系GIT(Gate Injection Transistor)である。
 半導体スイッチ素子2は、例えば、基板と、バッファ層と、第1の窒化物半導体層と、第2の窒化物半導体層と、ソース電極と、ゲート電極と、ドレイン電極と、p型層と、を備える。バッファ層は、基板上に形成されている。第1の窒化物半導体層は、バッファ層上に形成されている。第2の窒化物半導体層は、第1の窒化物半導体層上に形成されている。ソース電極、ゲート電極及びドレイン電極は、第2の窒化物半導体層上に形成されている。p型層は、ゲート電極と第2の窒化物半導体層との間に介在している。半導体スイッチ素子2では、第2の窒化物半導体層とp型層とでダイオード構造を構成する。半導体スイッチ素子2におけるゲート21は、ゲート電極と、p型層と、を含む。半導体スイッチ素子2におけるソース22は、ソース電極を含む。半導体スイッチ素子2におけるドレイン23は、ドレイン電極を含む。基板は、例えば、シリコン基板である。バッファ層は、例えば、アンドープのGaN層である。第1の窒化物半導体層は、例えば、アンドープのGaN層である。第2の窒化物半導体層は、例えば、アンドープのAlGaN層である。p型層は、例えば、p型AlGaN層である。バッファ層、第1の窒化物半導体層及び第2の窒化物半導体層のそれぞれは、MOVPE(Metal Organic Vapor Phase Epitaxy)等による成長時に不可避的に混入されるMg、H、Si、C、O等の不純物が存在してもよい。
 (2.2)ドライバ回路
 (2.2.1)ドライバ回路の構成
 実施形態1に係るドライバ回路1は、図1に示すように、電源端子11と、グランド端子12と、信号入力端子13と、スピードアップ回路14と、インピーダンス素子15と、を備える。
 グランド端子12は、ゲート21、ソース22及びドレイン23を有する電流駆動型の半導体スイッチ素子2のソース22に接続される。
 スピードアップ回路14は、電源端子11と半導体スイッチ素子2のゲート21との間に設けられる。
 インピーダンス素子15は、スピードアップ回路14と半導体スイッチ素子2のゲート21との間のノードN1と、信号入力端子13と、の間に設けられる。
 スピードアップ回路14は、第1の電界効果トランジスタQ1と、第2の電界効果トランジスタQ2と、を有する。
 第2の電界効果トランジスタQ2は、第1の電界効果トランジスタQ1に直列接続されており、半導体スイッチ素子2のゲート21に接続される。
 インピーダンス素子15のインピーダンスは、第1の電界効果トランジスタQ1と第2の電界効果トランジスタQ2との両方がオン状態のときのスピードアップ回路14のインピーダンスよりも高い。
 実施形態1に係るドライバ回路1は、抵抗分圧回路16を更に備える。抵抗分圧回路16は、電源端子11とグランド端子12との間に設けられている。実施形態1に係るドライバ回路1では、第2の電界効果トランジスタQ2のゲートGQ2が抵抗分圧回路16の出力端161に接続されている。
 (2.2.2)ドライバ回路の詳細
 ドライバ回路1の電源端子11とグランド端子12との間には、高電位側の出力端と低電位側の出力端とを有する直流電源4が接続される。ドライバ回路1の電源端子11には、直流電源4の高電位側の出力端が接続される。ドライバ回路1のグランド端子12には、直流電源4の低電位側の出力端が接続される。直流電源4の出力電圧は、例えば、12Vである。直流電源4は、絶縁電源である。なお、直流電源4は、ドライバ回路1の構成要素ではない。
 ドライバ回路1の信号入力端子13とグランド端子12との間には、ドライバIC(IntegratedCircuit)5と信号源6との直列回路が接続される。なお、ドライバIC5及び信号源6は、ドライバ回路1の構成要素ではない。
 信号源6は、ドライブ信号(図2参照)を出力する。ドライブ信号は、例えば、電位レベルが第1電位レベルVL1(例えば、0V)と第2電位レベルVL2(例えば、12V)との間で変化する信号である。第1電位レベルVL1は、例えば、直流電源4の低電位側の出力端の電位レベルと同じ電位レベルである。第2電位レベルVL2は、例えば、直流電源4の高電位側の出力端の電位レベルと同じ電位レベルである。
 ドライバIC5は、例えば、CMOS(ComplementaryMetal-Oxide Semiconductor)インバータであり、pチャネルMOSFETとnチャネルMOSFETとの逆直列回路を含む。この逆直列回路は、直流電源4の高電位側の出力端と低電位側の出力端との間に接続されている。この逆直列回路では、pチャネルMOSFETとnチャネルMOSFETのドレイン同士が接続されており、pチャネルMOSFETのソースが直流電源4の高電位側の出力端に接続され、nチャネルMOSFETのソースが直流電源4の低電位側の出力端に接続されている。ドライバIC5は、信号源6から入力されるドライブ信号の電位レベルが第2電位レベルVL2のときには、pチャネルMOSFETがオフ状態、nチャネルMOSFETがオン状態となって出力信号の電位レベルが第1電位レベルVL1となる。また、ドライバIC5は、信号源6から入力されるドライブ信号の電位レベルが第1電位レベルVL1のときには、pチャネルMOSFETがオン状態、nチャネルMOSFETがオフ状態となって出力信号の電位レベルが第2電位レベルVL2となる。ドライブ信号及びドライバIC5の出力信号では、第2電位レベルVL2(例えば、12V)が論理1に対応し、第1電位レベルVL1(例えば、0V)が論理0に対応する。
 スピードアップ回路14は、半導体スイッチ素子2をより高速でターンオンさせるための回路である。
 スピードアップ回路14では、第1の電界効果トランジスタQ1と第2の電界効果トランジスタQ2とが直列接続されている。第1の電界効果トランジスタQ1及び第2の電界効果トランジスタQ2の各々は、半導体スイッチ素子2と同様、GaN系GITである。実施形態1に係るドライバ回路1では、第1の電界効果トランジスタQ1及び第2の電界効果トランジスタQ2の各々は、ノーマリオフ型の電界効果トランジスタである。第1の電界効果トランジスタQ1は、ゲートGQ1、ドレインDQ1、及びソースSQ1を有する。第2の電界効果トランジスタQ2は、ゲートGQ2、ドレインDQ2、及びソースSQ2を有する。スピードアップ回路14では、第1の電界効果トランジスタQ1のソースSQ1と第2電界効果トランジスタQ2のドレインDQ2とが接続されている。スピードアップ回路14では、第1の電界効果トランジスタQ1のドレインDQ1が、電源端子11と接続されている。また、スピードアップ回路14では、第2の電界効果トランジスタQ2のソースSQ2が半導体スイッチ素子2のゲート21と接続されている。
 第1の電界効果トランジスタQ1及び第2の電界効果トランジスタQ2の各々の電流容量は、半導体スイッチ素子2の電流容量よりも小さい。第1の電界効果トランジスタQ1及び第2の電界効果トランジスタQ2の各々のゲート幅は、半導体スイッチ素子2のゲート幅よりも小さい。第2の電界効果トランジスタQ2のゲート幅は、例えば、第1の電界効果トランジスタQ1のゲート幅と同程度であるが、同じであってもよいし、異なってもよい。
 第1の電界効果トランジスタQ1は、半導体スイッチ素子2をターンオンした際に半導体スイッチ素子2のゲート21に定常オン状態のときよりも大きな電流(ゲート電流)を流して半導体スイッチ素子2のゲート電圧を一時的に、閾値電圧よりも大きな所定値Vg1(図2参照)よりも大きくするための素子である。
 ドライバ回路1では、第2の電界効果トランジスタQ2をオン状態として半導体スイッチ素子2をターンオンさせた後に、第2の電界効果トランジスタQ2をオフする。
 ドライバ回路1は、第1のゲート抵抗R1と、第2のゲート抵抗R2と、を更に備える。第1のゲート抵抗R1の一端は、信号入力端子13に接続されている。第1のゲート抵抗R1の他端は、第1の電界効果トランジスタQ1のゲートGQ1に接続されている。第2のゲート抵抗R2の一端は、抵抗分圧回路16の出力端161に接続されている。第2のゲート抵抗R2の他端は、第2の電界効果トランジスタQ2のゲートGQ2に接続されている。第1の電界効果トランジスタQ1を高速にオンする観点から、第1のゲート抵抗R1の抵抗値は、第2のゲート抵抗R2の抵抗値よりも小さい。
 インピーダンス素子15は、スピードアップ回路14と半導体スイッチ素子2のゲート21との間のノードN1と、信号入力端子13と、の間に設けられる。インピーダンス素子15の一端はノードN1に接続されている。インピーダンス素子15の他端は信号入力端子13に接続されている。インピーダンス素子15は、半導体スイッチ素子2の定常オン状態において半導体スイッチ素子2のゲート21とソース22との間に印加されるゲート電圧(上記の所定値Vg1)を決めるための素子である。インピーダンス素子15は、例えば、抵抗R5である。抵抗R5の抵抗値は、半導体スイッチ素子2がオンするゲート電流が半導体スイッチ素子2のゲート21に流れるように決めてある。ゲート抵抗R2の抵抗値と抵抗R5の抵抗値との大小関係は、第2の電界効果トランジスタQ2のゲート幅と半導体スイッチ素子2のゲート幅の大小関係と逆になるように決めてある。
 抵抗分圧回路16は、抵抗R3と抵抗R4との直列回路であり、抵抗R3を電源端子11側、抵抗R4をグランド端子12側として、電源端子11とグランド端子12との間に設けられている。抵抗分圧回路16の出力端161は、抵抗R3と抵抗R4との接続点である。抵抗分圧回路16では、第2の電界効果トランジスタQ2をオンするための電圧を出力端161から出力できるように抵抗R3の抵抗値と抵抗R4の抵抗値との比率を決められている。電源端子11とグランド端子12との間に直流電源4が接続されている状態では、抵抗分圧回路16の抵抗R3及び抵抗R4に常に電流が流れるので、抵抗R3及び抵抗R4それぞれの抵抗値が小さいと直流電源4の電力損失が大きくなる。したがって、直流電源4の電力損失を低減する観点では、各抵抗R3,R4それぞれの抵抗値は大きいほうが好ましい。ただし、第2の電界効果トランジスタQ2のゲート電圧を大きくして第2の電界効果トランジスタQ2の動作を安定させる観点では、各抵抗R3,R4それぞれの抵抗値は大きくしすぎないようにする必要がある。
 ドライバ回路1では、例えば、第2のゲート抵抗R2の抵抗値を、抵抗分圧回路16の抵抗R3の抵抗値と同じ程度にすることにより、半導体スイッチ素子2をオンさせるとき第2の電界効果トランジスタQ2がオフするまでの時間が長くなる。これにより、半導体スイッチ素子2のゲート電圧を所定値Vg1よりも一時的に大きくできる時間を長くでき、半導体スイッチ素子2のターンオン速度をより高速化できる。また、ドライバ回路1は、半導体スイッチ素子2のゲート電圧が所定値Vg1よりも大きい間は半導体スイッチ素子2に流れるドレイン電流をゲート電圧が所定値Vg1の場合のドレイン電流よりも大きくできる。これにより、ドライバ回路1は、そのアプリケーションによっては突入電流を流しきるために必要な時間を稼ぐことができる。
 以下、直流電源4の出力電圧を例えば12Vとした場合について、スイッチシステム3における半導体スイッチ素子2、第1の電界効果トランジスタQ1及び第2の電界効果トランジスタQ2それぞれのゲート幅と回路定数との一例を説明する。
 半導体スイッチ素子2のゲート幅は、例えば、400mmである。第1の電界効果トランジスタQ1のゲート幅は、例えば、10mmである。第2の電界効果トランジスタQ2のゲート幅は、例えば、10mmである。
 第1のゲート抵抗R1の抵抗値は、例えば、100Ωである。第2のゲート抵抗R2の抵抗値は、例えば、1kΩ~10kΩである。
 抵抗R3の抵抗値は、例えば、5kΩである。抵抗R4の抵抗値は、例えば、2kΩである。インピーダンス素子15を構成する抵抗R5の抵抗値は、例えば、500Ωである。
 (3)ドライバ回路及びそれを備えるスイッチシステムの動作
 実施形態1に係るドライバ回路1は、上述のように、電源端子11と、グランド端子12と、信号入力端子13と、第1の電界効果トランジスタQ1と、第2の電界効果トランジスタQ2と、インピーダンス素子15(抵抗R5)と、を備える。
 図2は、信号源6に入力されるドライブ信号、ドライバIC5の出力信号、第1の電界効果トランジスタQ1のゲート電圧、第2の電界効果トランジスタQ2のゲート電圧、半導体スイッチ素子2のゲート電圧、及び半導体スイッチ素子2のドレイン23・ソース22間電圧の関係を模式的に示すタイミングチャートである。
 実施形態1に係るドライバ回路1は、第2の電界効果トランジスタQ2がオン状態で、信号入力端子13に入力される信号(ドライバIC5の出力信号)の電位レベルが第1電位レベルVL1から第1電位レベルVL1よりも高い第2電位レベルVL2に変化したときに、第1の電界効果トランジスタQ1がオンしてインピーダンス素子15を通る電流(例えば、1[mA])よりも大きな電流(例えば、1[A])を半導体スイッチ素子2のゲート21に流すことで半導体スイッチ素子2のゲート電圧を半導体スイッチ素子2の閾値電圧よりも大きな所定値Vg1よりも大きくし、その後、インピーダンス素子15を通して半導体スイッチ素子2のゲート21に電流を流し続けることで半導体スイッチ素子2を定常オン状態にする。
 (4)利点
 実施形態1に係るドライバ回路1及びスイッチシステム3では、第1電界効果トランジスタQ1と第2電界効果トランジスタQ2とを用いたスピードアップ回路14を備えることにより、容量の大きなコンデンサを用いずに半導体スイッチ素子2のターンオン時間の短縮化を図れる。
 また、実施形態1に係るドライバ回路1は、モノリシック集積回路として構成する場合に、容量の大きなコンデンサを備える必要がないので、小型化を図れる。また、実施形態1に係るスイッチシステム3は、モノリシック集積回路として構成する場合に、容量の大きなコンデンサを備える必要がないので、小型化を図れる。
 (実施形態2)
 以下、実施形態2に係るドライバ回路1a及びそれを備えるスイッチシステム3aについて、図3に基づいて説明する。
 実施形態2に係るドライバ回路1aは、実施形態1に係るドライバ回路1(図1参照)と略同じであり、ドライバ回路1の抵抗R4の代わりに定電流回路17を備える点で、実施形態1に係るドライバ回路1と相違する。実施形態2に係るドライバ回路1a及びスイッチシステム3aに関し、実施形態1に係るドライバ回路1及びスイッチシステム3と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態2に係るドライバ回路1aは、実施形態1に係るドライバ回路1の抵抗分圧回路16の代わりに、抵抗R3と定電流回路17との直列回路を備える。抵抗R3は、電源端子11に接続されている。定電流回路17は、抵抗R3とグランド端子12との間に設けられている。
 ドライバ回路1aでは、第2の電界効果トランジスタQ2のゲートGQ2が抵抗R3と定電流回路17との間のノードN2に接続されている。
 定電流回路17は、例えば、ゲートGQ3、ドレインDQ3及びソースSQ3を有する電界効果トランジスタQ3を含み、この電界効果トランジスタQ3のゲートGQ3とソースSQ3とを短絡することによって構成されている。定電流回路17では、電界効果トランジスタQ3のドレインDQ3が抵抗R3に接続され、電界効果トランジスタQ3のソースSQ3がグランド端子12に接続されている。電界効果トランジスタQ3は、例えば、GaN系GITである。
 実施形態2に係るドライバ回路1a及びスイッチシステム3aは、実施形態1に係るドライバ回路1及びスイッチシステム3と同様、スピードアップ回路14を備えることにより、容量の大きなコンデンサを用いずに半導体スイッチ素子2のターンオン時間の短縮化を図れる。
 また、実施形態2に係るドライバ回路1aは、電源端子11とグランド端子12との間に接続される直流電源4から電源端子11及び第1の電界効果トランジスタQ1を通して第2の電界効果トランジスタQ2に流れる電流を定電流回路17の電流に抑制でき、電力損失を低減することが可能となる。
 (実施形態3)
 以下、実施形態3に係るドライバ回路1b及びそれを備えるスイッチシステム3bについて、図4に基づいて説明する。
 実施形態3に係るドライバ回路1bは、実施形態1に係るドライバ回路1(図1参照)と略同じであり、抵抗R4の代わりに定電圧回路18を備える点で、実施形態1に係るドライバ回路1と相違する。実施形態3に係るドライバ回路1b及びスイッチシステム3bに関し、実施形態1に係るドライバ回路1及びスイッチシステム3と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態3に係るドライバ回路1bは、実施形態1に係るドライバ回路1の抵抗分圧回路16の代わりに、抵抗R3と定電圧回路18との直列回路を備える。抵抗R3は、電源端子11に接続されている。定電圧回路18は、抵抗R3とグランド端子12との間に設けられている。ドライバ回路1bでは、抵抗R3と定電圧回路18との間のノードN3が、第2の電界効果トランジスタQ2のゲートGQ2に接続されている。
 定電圧回路18は、複数のダイオードD1を直列接続して構成されている。定電圧回路18では、複数のダイオードD1のうち回路的に抵抗R3に最も近いダイオードD1のアノードが抵抗R3に接続され、回路的に抵抗R3から最も遠いダイオードD1のカソードがグランド端子12に接続されている。定電圧回路18において直列接続するダイオードD1の数は、複数のダイオードD1の順方向電圧(Vf)の合計値が第2の電界効果トランジスタQ2の閾値電圧よりも大きく、かつ、第2の電界効果トランジスタQ2が壊れないように決めてある。
 実施形態3に係るドライバ回路1b及びスイッチシステム3bは、実施形態1に係るドライバ回路1及びスイッチシステム3と同様、スピードアップ回路14を備えることにより、容量の大きなコンデンサを用いずに半導体スイッチ素子2のターンオン時間の短縮化を図れる。
 また、実施形態3に係るドライバ回路1bは、定電圧回路18を備えるので、電源端子11とグランド端子12との間に印加される電圧の大きさによらず、第2の電界効果トランジスタQ2に過大なゲート電圧が印加されるのを抑制することが可能となる。
 (実施形態4)
 以下、実施形態4に係るドライバ回路1c及びそれを備えるスイッチシステム3cについて、図5に基づいて説明する。
 実施形態4に係るドライバ回路1cは、実施形態1に係るドライバ回路1(図1参照)と略同じであり、スピードアップ回路14の代わりにスピードアップ回路14cを備える点で、実施形態1に係るドライバ回路1と相違する。実施形態4に係るドライバ回路1c及びスイッチシステム3cに関し、実施形態1に係るドライバ回路1及びスイッチシステム3と同様の構成要素については、同一の符号を付して説明を省略する。
 スピードアップ回路14cでは、第2の電界効果トランジスタQ2が、第3の電界効果トランジスタQ21と、第4の電界効果トランジスタQ22と、をダーリントン接続して構成されている。したがって、スピードアップ回路14cは、第1の電界効果トランジスタQ1と、第3の電界効果トランジスタQ21と第4の電界効果トランジスタQ22とのダーリントン回路により構成される第2の電界効果トランジスタQ2と、を含む。第3の電界効果トランジスタQ21及び第4の電界効果トランジスタQ22の各々は、例えば、GaN系GITである。
 第3の電界効果トランジスタQ21は、ゲートGQ21、ドレインDQ21及びソースSQ21を有する。第4の電界効果トランジスタQ22は、ゲートGQ22、ドレインDQ22及びソースSQ22を有する。第4の電界効果トランジスタQ22の電流容量は、第3の電界効果トランジスタQ21の電流容量よりも大きい。ここにおいて、第4の電界効果トランジスタQ22のゲート幅は、第3の電界効果トランジスタQ21のゲート幅よりも大きい。例えば、実施形態1に係るスイッチシステム3と同様に半導体スイッチ素子2のゲート幅が400mmの場合、実施形態4に係るドライバ回路1c及びスイッチシステム3cでは、第4の電界効果トランジスタQ22のゲート幅は、例えば、第1の電界効果トランジスタQ1のゲート幅と同じであり、一例として10mmである。これに対して、第3の電界効果トランジスタQ21のゲート幅は、例えば、1mmである。
 スピードアップ回路14cでは、第3の電界効果トランジスタQ21のゲートGQ21が抵抗分圧回路16の出力端161に接続されている。第4の電界効果トランジスタQ22のソースSQ22が半導体スイッチ素子2のゲート21に接続される。
 実施形態4に係るドライバ回路1c及びスイッチシステム3cは、スピードアップ回路14cを備えることにより、容量の大きなコンデンサを用いずに半導体スイッチ素子2のターンオン時間の短縮化を図れる。
 また、実施形態4に係るドライバ回路1cでは、実施形態1のドライバ回路1と比べて、第2の電界効果トランジスタQ2の電流増幅率を大きくできるので、抵抗分圧回路16の各抵抗R3,R4の抵抗値を大きくできる。これにより、実施形態4に係るドライバ回路1cでは、電力損失を低減することが可能となる。
 (実施形態5)
 以下、実施形態5に係るドライバ回路1d及びそれを備えるスイッチシステム3dについて、図6に基づいて説明する。
 実施形態5に係るドライバ回路1dは、実施形態1に係るドライバ回路1(図1参照)と略同じであり、スピードアップ回路14の代わりにスピードアップ回路14dを備える点で、実施形態1に係るドライバ回路1と相違する。実施形態5に係るドライバ回路1d及びスイッチシステム3dに関し、実施形態1に係るドライバ回路1及びスイッチシステム3と同様の構成要素については、同一の符号を付して説明を省略する。
 スピードアップ回路14dは、スピードアップ回路14におけるノーマリオフ型の第2の電界効果トランジスタQ2の代わりに、ノーマリオン型の第2の電界効果トランジスタQ2dを備えている。第2の電界効果トランジスタQ2dは、GaN系GITである。第2の電界効果トランジスタQ2dは、ゲートGQ2d、ドレインDQ2d及びソースSQ2dを有する。ノーマリオフ型の第2の電界効果トランジスタQ2のゲートGQ2は、半導体スイッチ素子2のゲート21と同様にp型層を備えている。これに対し、ノーマリオン型の第2の電界効果トランジスタQ2dのゲートGQ2dは、例えば、第2の窒化物半導体層(例えば、アンドープのAlGaN層)の表面においてゲート21下にリセス構造を設けることで第2の窒化物半導体層の厚さをゲート21下でソース22下よりも薄くしてある。ノーマリオン型の第2の電界効果トランジスタQ2dのゲートGQ2dは、p型層を備えずに第2の窒化物半導体層にショットキー接合するゲート電極により構成されていてもよい。
 実施形態5に係るドライバ回路1d及びスイッチシステム3dは、スピードアップ回路14dを備えることにより、容量の大きなコンデンサを用いずに半導体スイッチ素子2のターンオン時間の短縮化を図れる。
 また、実施形態5に係るドライバ回路1dは、スピードアップ回路14dの第2の電界効果トランジスタQ2dがノーマリオン型の電界効果トランジスタなので、直流電源4の出力電圧が小さい場合(例えば、5Vの場合)でも第1の電界効果トランジスタQ1のゲート電圧を大きくすることができる。
 実施形態1に係るスイッチシステム3では、例えば、第2の電界効果トランジスタQ2及び半導体スイッチ素子2の各々の閾値電圧を+2Vとし、上記の所定値Vg1を+3Vとすると、直流電源4の出力電圧が5Vの場合、半導体スイッチ素子2のターンオン速度の高速化ができなくなる。第2の電界効果トランジスタQ2のオンしている状態でのゲート電圧が3Vとすると、半導体スイッチ素子2のターンオンのときには、第1の電界効果トランジスタQ1及び第2の電界効果トランジスタQ2を通じて電流が流れ、半導体スイッチ素子2のゲート電圧が上昇する。しかしながら、半導体スイッチ素子2のゲート電圧が1Vになった時点で第2の電界効果トランジスタQ2がオフするので、半導体スイッチ素子2のゲート電圧は所定値Vg1(例えば、3V)までゆっくり上昇する。
 これに対して、実施形態5に係るスイッチシステム3dでは、例えば、第2の電界効果トランジスタQ2d及び半導体スイッチ素子2それぞれの閾値電圧を-3V、+2Vとし、上記の所定値Vg1を+3Vとすると、直流電源4の出力電圧が5Vの場合でも、半導体スイッチ素子2のターンオン速度の高速化が可能である。第2の電界効果トランジスタQ2dのオンしている状態でのゲート電圧が1Vとすると、半導体スイッチ素子2のターンオンのときには、第1の電界効果トランジスタQ1及び第2の電界効果トランジスタQ2dを通じて電流が流れ、半導体スイッチ素子2のゲート電圧が上昇する。半導体スイッチ素子2のゲート電圧が4Vになった時点で第2の電界効果トランジスタQ2dがオフし、半導体スイッチ素子2のゲート電圧は所定値Vg1(3V)までゆっくり低下する。したがって、実施形態5に係るドライバ回路1d及びスイッチシステム3dでは、半導体スイッチ素子2をターンオンさせるときに半導体スイッチ素子2のゲート電圧を一時的に所定値Vg1よりも大きな値に上昇させることができ、ターンオン時間を短縮化することが可能となる。
 (実施形態6)
 以下、実施形態6に係るドライバ回路1e及びそれを備えるスイッチシステム3eについて、図7に基づいて説明する。
 実施形態6に係るドライバ回路1eは、実施形態1に係るドライバ回路1(図1)と略同じであり、抵抗R3の代わりに定電流回路19を備える点で、実施形態1に係るドライバ回路1と相違する。実施形態6に係るドライバ回路1e及びスイッチシステム3eに関し、実施形態1に係るドライバ回路1及びスイッチシステム3と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態6に係るドライバ回路1eは、実施形態1に係るドライバ回路1の抵抗分圧回路16の代わりに、定電流回路19と抵抗R4との直列回路を備える。定電流回路19は、電源端子11に接続されている。抵抗R4は、定電流回路19とグランド端子12との間に接続されている。ドライバ回路1eでは、第2の電界効果トランジスタQ2のゲートGQ2が、定電流回路19と抵抗R4との間のノードN4に接続されている。
 定電流回路19は、例えば、ゲートGQ8、ドレインDQ8及びソースSQ8を有する電界効果トランジスタQ8を含み、この電界効果トランジスタQ8のゲートGQ8とソースSQ8とを短絡することによって構成されている。定電流回路19では、電界効果トランジスタQ8のドレインDQ8が電源端子11に接続され、電界効果トランジスタQ8のソースSQ8が抵抗R4に接続されている。電界効果トランジスタQ8は、例えば、GaN系GITである。電界効果トランジスタQ8は、ゲートGQ8とソースSQ8とが短絡されているので、ドレイン電圧をVd、ドレイン電流をIdとすると、図8に実線で示すような電圧-電流特性を有する。図8における「VCC」は、直流電源4の出力電圧である。また、図8における「VCC/R4」は、直流電源4の出力電圧を抵抗R4の抵抗値で除した値である。図8において、VCC/R4とVCCとを結んでいる直線と電圧-電流特性との交点から横軸(ドレイン電圧)に下した垂線と横軸との交点とVCCとの差分が、第2の電界効果トランジスタQ2のゲート電圧の最大値である。
 実施形態6に係るドライバ回路1e及びスイッチシステム3eは、実施形態1に係るドライバ回路1及びスイッチシステム3と同様、スピードアップ回路14を備えることにより、容量の大きなコンデンサを用いずに半導体スイッチ素子2のターンオン時間の短縮化を図れる。
 また、実施形態6に係るドライバ回路1eは、定電流回路19を備えるので、直流電源4の出力電圧が変化しても第2の電界効果トランジスタQ2に流れる電流を制限でき、ドライバ回路1eの電力損失の低減及び第2の電界効果トランジスタQ2のゲート電圧の安定化を図れる。
 (実施形態7)
 以下、実施形態7に係るドライバ回路1f及びそれを備えるスイッチシステム3fについて、図9に基づいて説明する。
 実施形態7に係るドライバ回路1fは、実施形態1に係るドライバ回路1と略同じであり、DCFL(Direct Coupled FET Logic)回路10を更に備える点で、実施形態1に係るドライバ回路1と相違する。実施形態7に係るドライバ回路1f及びスイッチシステム3fに関し、実施形態1に係るドライバ回路1及びスイッチシステム3と同様の構成要素については、同一の符号を付して説明を省略する。
 DCFL回路10は、入力端101及び出力端102を有し電源端子11とグランド端子12との間に接続されている。
 ドライバ回路1fでは、DCFL回路10の入力端101が信号入力端子13に接続されている。また、ドライバ回路1fでは、DCFL回路10の出力端102がインピーダンス素子15を介して半導体スイッチ素子2のゲート21に接続される。
 DCFL回路10は、電界効果トランジスタQ4と電界効果トランジスタQ5とを含む論理回路である。電界効果トランジスタQ4は、ゲートGQ4、ドレインDQ4及びソースSQ4を有する。電界効果トランジスタQ5は、ゲートGQ5、ドレインDQ5及びソースSQ5を有する。電界効果トランジスタQ4は、ノーマリオン型のGaN系GITである。電界効果トランジスタQ5は、ノーマリオフ型のGaN系GITである。
 DCFL回路10では、電界効果トランジスタQ4のゲートGQ4とソースSQ4とが短絡されており、電界効果トランジスタQ4が定電流素子として動作する。
 電界効果トランジスタQ5では、ゲートGQ5が信号入力端子13と接続されている。DCFL回路10では、電界効果トランジスタQ5のゲートGQ5が入力端101を構成し、電界効果トランジスタQ4のソースSQ4と電界効果トランジスタQ5のドレインDQ5との接続点がDCFL回路10の出力端102を構成している。
 DCFL回路10は、入力端101の入力論理が1のときに出力端102から出力論理0を出力し、入力端101の入力論理が0のときに出力端102から出力論理1を出力する。DCFL回路10では、電界効果トランジスタQ5の閾値電圧以上の電位レベルを入力論理1とし、電界効果トランジスタQ5の閾値電圧未満の電位レベルを入力論理0とすると、入力論理が1の場合は、電界効果トランジスタQ5がオンで、出力端102はグランド端子12と同電位になる。
 DCFL回路10においては、入力論理が1のとき出力論理が0になるように、電界効果トランジスタQ5のオン状態でのインピーダンスが、電界効果トランジスタQ4のオン状態でのインピーダンスよりも小さい。ここにおいて、電界効果トランジスタQ5のゲート幅は、電界効果トランジスタQ4のゲート幅よりも大きい。
 また、ドライバ回路1fは、DCFL回路10と電源端子11との間に設けられた抵抗R6を更に備えているが、備えていなくてもよい。抵抗R6の抵抗値については、抵抗R5の抵抗値よりも大きくすると、抵抗R6の抵抗値によって半導体スイッチ素子2の定常オン状態でのゲート電圧が決まってしまうので、回路設計時に注意が必要である。
 また、ドライバ回路1fは、電界効果トランジスタQ5のゲートGQ5と信号入力端子13との間に設けられたゲート抵抗R7を更に備える。ゲート抵抗R7は、電界効果トランジスタQ5のゲートGQ5がドライバIC5に直結されてゲートGQ5が過電圧によって破壊されるのを防止するために設けてある。
 また、ドライバ回路1fは、ノードN1とグランド端子12との間に設けられる電界効果トランジスタQ6を更に備える。電界効果トランジスタQ6は、ゲートGQ6、ドレインDQ6及びソースSQ6を有する。電界効果トランジスタQ6は、ノーマリオフ型のGaN系GITである。電界効果トランジスタQ6は、半導体スイッチ素子2のターンオフ速度を高速化するために設けた素子であり、ドレインDQ6が半導体スイッチ素子2のゲートに接続され、ソースSQ6が半導体スイッチ素子2のソース22に接続される。電界効果トランジスタQ6は、半導体スイッチ素子2をオフさせるときに半導体スイッチ素子2のゲート電荷を引き抜く経路として、インピーダンス素子15を通らない経路を形成するために設けられている。
 また、ドライバ回路1fは、電界効果トランジスタQ6のゲートGQ6と信号入力端子13との間に設けられたゲート抵抗R8を更に備える。ゲート抵抗R8は、電界効果トランジスタQ6のゲートGQ6がドライバIC5に直結されてゲートGQ6が過電圧によって破壊されるのを防止するために設けてある。電界効果トランジスタQ6のターンオン速度を速くして半導体スイッチ素子2のターンオフ速度を速める観点では、ゲート抵抗R8の抵抗値は、小さいほうが好ましい。
 また、ドライバ回路1fは、ゲート抵抗R8に並列接続された電界効果トランジスタQ7を更に備える。電界効果トランジスタQ7は、ゲートGQ7、ドレインDQ7及びソースSQ7を有する。電界効果トランジスタQ7は、ノーマリオフ型のGaN系GITである。電界効果トランジスタQ7のソースSQ7は、ゲート抵抗R8における電界効果トランジスタQ6側の一端に接続され、ドレインDQ7は、ゲート抵抗8における信号入力端子13側の他端に接続されている。電界効果トランジスタQ7は、ゲートGQ7とソースSQ7とを短絡してあり、ダイオードとして機能する。電界効果トランジスタQ7は、電界効果トランジスタQ6のターンオフ速度を高速化するための素子である。
 以下、直流電源4の出力電圧を例えば12Vとした場合について、スイッチシステム3fにおける半導体スイッチ素子2、各電界効果トランジスタQ1、Q2、Q4~Q7それぞれのゲート幅と各抵抗R2~R8の回路定数との一例を説明する。
 半導体スイッチ素子2のゲート幅は、例えば、400mmである。第1の電界効果トランジスタQ1のゲート幅は、例えば、10mmである。第2の電界効果トランジスタQ2のゲート幅は、例えば、10mmである。電界効果トランジスタQ4のゲート幅は、例えば、0.1mmである。電界効果トランジスタQ5のゲート幅は、例えば、1mmである。電界効果トランジスタQ6のゲート幅は、例えば、10mmである。電界効果トランジスタQ7のゲート幅は、例えば、1mmである。第2のゲート抵抗R2の抵抗値は、例えば、1kΩである。抵抗R3の抵抗値は、例えば、5kΩである。抵抗R4の抵抗値は、例えば、2kΩである。インピーダンス素子15を構成する抵抗R5の抵抗値は、例えば、500Ωである。抵抗R6の抵抗値は、例えば、100Ωである。ゲート抵抗R7の抵抗値は、例えば、5kΩである。ゲート抵抗R8の抵抗値は、例えば、1kΩである。
 図10は、信号源6に入力されるドライブ信号、ドライバIC5の出力信号、第1の電界効果トランジスタQ1(第1のFET)のゲート電圧、第2の電界効果トランジスタQ2(第2のFET)のゲート電圧、半導体スイッチ素子2のゲート電圧、半導体スイッチ素子2のドレイン・ソース間電圧、電界効果トランジスタQ5(第5のFET)のゲート電圧、及び電界効果トランジスタQ6(第6のFET)のゲート電圧の関係を模式的に示すタイミングチャートである。
 上述の実施形態1に係るドライバ回路1は、第2の電界効果トランジスタQ2がオン状態で、信号入力端子13に入力される信号(ドライバIC5の出力信号)の電位レベルが第1電位レベルVL1から第1電位レベルVL1よりも高い第2電位レベルVL2に変化したときに、第1の電界効果トランジスタQ1がオンしてインピーダンス素子15を通る電流よりも大きな電流を半導体スイッチ素子2のゲート21に流すことで半導体スイッチ素子2のゲート電圧を半導体スイッチ素子2の閾値電圧よりも大きな所定値Vg1よりも大きくし、その後、インピーダンス素子15を通して半導体スイッチ素子2のゲート21に電流を流し続けることで半導体スイッチ素子2を定常オン状態にする。
 実施形態7に係るドライバ回路1f及びスイッチシステム3fは、実施形態1に係るドライバ回路1及びスイッチシステム3と同様、スピードアップ回路14を備えることにより、容量の大きなコンデンサを用いずに半導体スイッチ素子2のターンオン時間の短縮化を図れる。
 また、実施形態7に係るドライバ回路1fでは、DCFL回路10を備えることにより、半導体スイッチ素子2のターンオフ速度の高速化を図ることが可能となる。
 また、実施形態7に係るドライバ回路1fでは、DCFL回路10を備えることにより、モノリシック集積回路により構成することが可能となる。
 ドライバ回路1fは、電界効果トランジスタQ4を備えている場合、抵抗R6はあってもなくてもよい。また、ドライバ回路1fが抵抗R6を備えている場合、電界効果トランジスタQ4はあってもよいし、なくてもよい。電界効果トランジスタQ4を備えることにより、直流電源4の出力電圧が変化してもおおよそ定電流が流れるので、扱いやすい。直流電源4の出力電圧が決まっていれば電界効果トランジスタQ4と抵抗R6とのうち抵抗R6のみを備えていてもよい。抵抗R6のみの場合の抵抗R6の抵抗値は、例えば、10kΩである。
 (実施形態8)
 以下、実施形態8に係るドライバ回路1g及びそれを備えるスイッチシステム3gについて、図11に基づいて説明する。
 実施形態8に係るドライバ回路1gは、電流駆動型の半導体スイッチ素子2Aのドライバ回路である。実施形態8に係るドライバ回路1g及びスイッチシステム3gに関し、実施形態1に係るドライバ回路1及びスイッチシステム3と同様の構成要素については、同一の符号を付して説明を省略する。
 半導体スイッチ素子2Aは、ゲート21及びソース22の各々を2つ有するデュアルゲート型の双方向スイッチ素子である。2つのゲート21と2つのソース22とは一対一に対応する。以下では、説明の便宜上、2つのゲート21の一方を第1ゲート21Aと称し、他方を第2ゲート21Bと称することもある。また、2つのソース22のうち第1ゲート21Aに対応するソース22を第1ソース22Aと称し、第2ゲート21Bに対応するソース22を第2ソース22Bと称することもある。
 以下、半導体スイッチ素子2Aについて簡単に説明してから、ドライバ回路1g及びスイッチシステム3gについて説明する。
 半導体スイッチ素子2Aは、GaN系GITの一種である。半導体スイッチ素子2Aは、例えば、基板と、バッファ層と、第1の窒化物半導体層と、第2の窒化物半導体層と、第1ソース電極と、第1ゲート電極と、第2ゲート電極と、第2ソース電極と、第1p型層と、第2p型層と、を備える。バッファ層は、基板上に形成されている。第1の窒化物半導体層は、バッファ層上に形成されている。第2の窒化物半導体層は、第1の窒化物半導体層上に形成されている。第1ソース電極、第1ゲート電極、第2ゲート電極及び第2ソース電極は、第2の窒化物半導体層上に形成されている。第1p型層は、第1ゲート電極と第2の窒化物半導体層との間に介在している。第2p型層は、第2ゲート電極と第2の窒化物半導体層との間に介在している。半導体スイッチ素子2Aでは、第1ソース22Aは、第1ソース電極を含む。第1ゲート21Aは、第1ゲート電極と、第1p型層と、を含む。第2ゲート21Bは、第2ゲート電極と、第2p型層と、を含む。第2ソース22Bは、第2ソース電極を含む。基板は、例えば、シリコン基板である。バッファ層は、例えば、アンドープのGaN層である。第1の窒化物半導体層は、例えば、アンドープのGaN層である。第2の窒化物半導体層は、例えば、アンドープのAlGaN層である。第1p型層及び第2p型層の各々は、例えば、p型AlGaN層である。バッファ層、第1の窒化物半導体層及び第2の窒化物半導体層のそれぞれは、MOVPE(Metal Organic Vapor Phase Epitaxy)等による成長時に不可避的に混入されるMg、H、Si、C、O等の不純物が存在してもよい。
 半導体スイッチ素子2Aでは、第2の窒化物半導体層は、第1の窒化物半導体層とともにヘテロ接合部を構成する。第1の窒化物半導体層においては、ヘテロ接合部の近傍に、2次元電子ガス(Two-Dimensional Electron Gas)が発生している。2次元電子ガスを含む領域(以下、「2次元電子ガス層」ともいう)は、nチャネル層(電子伝導層)として機能することが可能である。
 以下では、説明の便宜上、第1ゲート21Aと第1ソース22Aとの間に第1閾値電圧(例えば、1.3V)以上の電圧が印加されていない状態を、第1ゲート21Aがオフ状態ともいう。また、第1ゲート21Aと第1ソース22Aとの間に第1ゲート21Aを高電位側として第1閾値電圧以上の電圧が印加されている状態を、第1ゲート21Aがオン状態ともいう。また、第2ゲート21Bと第2ソース22Bとの間に第2閾値電圧(例えば、1.3V)以上の電圧が印加されていない状態を、第2ゲート21Bがオフ状態ともいう。また、第2ゲート21Bと第2ソース22Bとの間に第2ゲート21Bを高電位側として第2閾値電圧以上の電圧が印加されている状態を、第2ゲート21Bがオン状態ともいう。
 半導体スイッチ素子2Aは、上述の第1p型層及び第2p型層を備えることにより、ノーマリオフ型のトランジスタを実現している。
 半導体スイッチ素子2Aは、第1ゲート21A及び第2ゲート21Bそれぞれに与えられる第1ゲート電圧及び第2ゲート電圧の組み合わせに応じて、双方向オン状態と、双方向オフ状態と、第1のダイオード状態と、第2のダイオード状態と、を切替可能である。第1ゲート電圧は、第1ゲート21Aと第1ソース22Aとの間に印加される電圧である。第2ゲート電圧は、第2ゲート21Bと第2ソース22Bとの間に印加される電圧である。双方向オン状態は、双方向(第1方向A1及び第1方向A1とは反対の第2方向A2)の電流を通過させる状態である。双方向オフ状態は、双方向の電流を阻止する状態である。第1のダイオード状態は、第1方向A1の電流を通過させる状態である。第2のダイオード状態は、第2方向A2の電流を通過させる状態である。
 半導体スイッチ素子2Aでは、第1ゲート21Aがオン状態で、かつ第2ゲート21Bがオン状態である場合に双方向オン状態となる。半導体スイッチ素子2Aでは、第1ゲート21Aがオフ状態で、かつ第2ゲート21Bがオフ状態である場合に双方向オフ状態となる。半導体スイッチ素子2Aでは、第1ゲート21Aがオフ状態で、かつ第2ゲート21Bがオン状態である場合に第1のダイオード状態となる。半導体スイッチ素子2Aでは、第1ゲート21Aがオン状態で、かつ第2ゲート21Bがオフ状態である場合に第2のダイオード状態となる。
 次に、ドライバ回路1g及びスイッチシステム3gについて説明する。
 ドライバ回路1gは、スピードアップ回路14を2つ備える。以下では、2つのスピードアップ回路14のうち半導体スイッチ素子2Aの第1ゲート21Aに接続されるスピードアップ回路14を第1スピードアップ回路14Aと称し、第2ゲート21Bに接続されるスピードアップ回路14を第2スピードアップ回路14Bと称することもある。
 第1スピードアップ回路14Aと第2スピードアップ回路14Bとは、同じ回路構成を有している。
 また、ドライバ回路1gは、電源端子11、グランド端子12及び信号入力端子13のセットを2つ備えており、2つのセットが2つのスピードアップ回路14に一対一に対応している。以下では、説明の便宜上、2つのセットのうち一方のセットにおける電源端子11、グランド端子12及び信号入力端子13を第1電源端子11A、第1グランド端子12A及び第1信号入力端子13Aと称し、他方のセットにおける電源端子11、グランド端子12及び信号入力端子13を第2電源端子11B、第2グランド端子12B及び第2信号入力端子13Bと称することもある。第1電源端子11A、第1グランド端子12A及び第1信号入力端子13Aは、半導体スイッチ素子2Aの第1ゲート21A及び第1ソース22Aに対応し、第2電源端子11B、第2グランド端子12B及び第2信号入力端子13Bは、半導体スイッチ素子2Aの第2ゲート21B及び第2ソース22Bに対応している。
 また、ドライバ回路1gは、抵抗分圧回路16を2つ備えており、2つの抵抗分圧回路16が、上述の2つのセットに一対一に対応している。図11では、第1電源端子11A、第1グランド端子12A及び第1信号入力端子13Aに対応する抵抗分圧回路16を第1抵抗分圧回路16Aとし、第2電源端子11B、第2グランド端子12B及び第2信号入力端子13Bに対応する抵抗分圧回路16を第2抵抗分圧回路16Bとしてある。
 また、ドライバ回路1gは、インピーダンス素子15を2つ備えている。ドライバ回路1gでは、2つのインピーダンス素子15の一方のインピーダンス素子15が第1ゲート21Aと第1信号入力端子13Aとの間に設けられ、他方のインピーダンス素子15が第2ゲート21Bと第2信号入力端子13Bとの間に設けられている。
 以下では、説明の便宜上、ドライバ回路1gの第1電源端子11Aと第1グランド端子12Aとの間に接続される直流電源4を第1直流電源4Aと称し、第2電源端子11Bと第2グランド端子12Bとの間に接続される直流電源4を第2直流電源4Bと称することもある。また、ドライバ回路1gの第1信号入力端子13Aと第1グランド端子12Aとの間に接続されるドライバIC5と信号源6との直列回路についても、ドライバIC5を第1ドライバIC5Aとし、信号源6を第1信号源6Aと称することもある。また、ドライバ回路1gの第2信号入力端子13Bと第2グランド端子12Bとの間に接続されるドライバIC5と信号源6との直列回路についても、ドライバIC5を第2ドライバIC5Bとし、信号源6を第2信号源6Bと称することもある。
 第1直流電源4Aと第2直流電源4Bとは、互いの出力電圧が同じであるが、異なってもよい。
 第1信号源6Aと第2信号源6Bとは、互いの第2電位レベルVL2が同じであるが、異なってもよい。
 実施形態8に係るドライバ回路1g及びスイッチシステム3gは、2つのスピードアップ回路14を備えることにより、容量の大きなコンデンサを用いずに半導体スイッチ素子2Aのターンオン時間の短縮化を図れる。
 また、実施形態8に係るドライバ回路1gは、モノリシック集積回路として構成する場合に、容量の大きなコンデンサを備える必要がないので、小型化を図れる。また、実施形態8に係るスイッチシステム3gは、モノリシック集積回路として構成する場合に、容量の大きなコンデンサを備える必要がないので、小型化を図れる。
 上記の実施形態1~8は、本開示の様々な実施形態の一つに過ぎない。上記の実施形態1~8は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。
 例えば、実施形態1に係るドライバ回路1における抵抗分圧回路16は、少なくとも2つの抵抗R3,R4を備えていればよく、3つ以上の抵抗が直列接続された構成としてもよい。
 また、スピードアップ回路14は、第1の電界効果トランジスタQ1と第2の電界効果トランジスタQ2とに加えて、第2の電界効果トランジスタQ2に直列接続又は並列接続された1以上の電界効果トランジスタを含んでいてもよい。
 また、定電流回路17、定電圧回路18及び定電流回路19それぞれの回路構成は、一例であり、特に限定されないが、上記の構成を採用することにより、モノリシック集積回路の形成が容易になる。
 また、スイッチシステム3~3fの半導体スイッチ素子2におけるp型層は、p型AlGaN層に限らず、例えば、p型GaN層であってもよいし、p型金属酸化物半導体層であってもよい。p型金属酸化物半導体層は、例えば、NiO層である。NiO層は、例えば、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムの群から選ばれる少なくとも1種のアルカリ金属を不純物として含んでいてもよい。また、NiO層は、例えば、不純物として添加されたときに一価となる銀、銅等の遷移金属を含んでいてもよい。スイッチシステム3gの半導体スイッチ素子2Aにおける第1p型層及び第2p型層の各々についても、半導体スイッチ素子2におけるp型層と同様である。
 半導体スイッチ素子2及び半導体スイッチ素子2Aの各々は、バッファ層と第1の窒化物半導体層との間に、1層以上の窒化物半導体層を含んでいてもよい。また、バッファ層は、単層構造に限らず、例えば、超格子構造を有していてもよい。
 また、半導体スイッチ素子2及び半導体スイッチ素子2Aの各々における基板は、シリコン基板に限らず、例えば、GaN基板、SiC基板、サファイア基板等であってもよい。
 半導体スイッチ素子2Aは、例えば、マルチレベルインバータ、調光器、交流-交流電力変換を行うマトリクスコンバータ等の電気装置に適用できる。
 (態様)
 以上説明した実施形態等から本明細書には以下の態様が開示されている。
 第1の態様に係るドライバ回路(1;1a;1b;1c;1d;1e;1f;1g)は、ゲート(21)及びゲート(21)に対応するソース(22)を有する電流駆動型の半導体スイッチ素子(2;2A)のドライバ回路であって、電源端子(11)と、グランド端子(12)と、信号入力端子(13)と、スピードアップ回路(14;14c;14d)と、インピーダンス素子(15)と、を備える。グランド端子(12)は、半導体スイッチ素子(2;2A)のソース(22;22A,22B)に接続される。スピードアップ回路(14;14c;14d)は、電源端子(11;11A,11B)と半導体スイッチ素子(2;2A)のゲート(21)との間に設けられる。インピーダンス素子(15)は、スピードアップ回路(14;14c;14d)と半導体スイッチ素子(2;2A)のゲート(21)との間のノード(N1)と、信号入力端子(13;13A,13B)と、の間に設けられる。スピードアップ回路(14;14c;14d)は、第1の電界効果トランジスタ(Q1)と、第2の電界効果トランジスタ(Q2;Q2d)と、を有する。第2の電界効果トランジスタ(Q2;Q2d)は、第1の電界効果トランジスタ(Q1)に直列接続されており、半導体スイッチ素子(2;2A)のゲート(21)に接続される。インピーダンス素子(15)のインピーダンスは、第1の電界効果トランジスタ(Q1)と第2の電界効果トランジスタ(Q2;Q2d)との両方がオン状態のときのスピードアップ回路(14;14c;14d)のインピーダンスよりも高い。
 第1の態様に係るドライバ回路(1;1a;1b;1c;1d;1e;1f;1g)は、容量の大きなコンデンサを用いずに半導体スイッチ素子(2;2A)のターンオン時間の短縮化を図れる。
 第2の態様に係るドライバ回路(1;1c;1d;1f;1g)は、第1の態様において、抵抗分圧回路(16)を更に備える。抵抗分圧回路(16)は、電源端子(11)とグランド端子(12)との間に設けられている。第2の電界効果トランジスタ(Q2)のゲート(Q2G)が抵抗分圧回路(16)の出力端(161)に接続されている。
 第2の態様に係るドライバ回路(1;1c;1d;1f;1g)では、抵抗分圧回路(16)によって第2の電界効果トランジスタ(Q2)のゲート電圧を決めることができる。
 第3の態様に係るドライバ回路(1a)は、第1の態様において、抵抗(R3)と、定電流回路(17)と、を更に備える。抵抗(R3)は、電源端子(11)に接続されている。定電流回路(17)は、抵抗(R3)とグランド端子(12)との間に設けられている。第2の電界効果トランジスタ(Q2)のゲート(Q2G)が抵抗(R3)と定電流回路(17)との間のノード(N2)に接続されている。
 第3の態様に係るドライバ回路(1a)は、例えば、電源端子(11)とグランド端子(12)との間に接続される直流電源(4)から電源端子(11)及び第1の電界効果トランジスタ(Q1)を通して第2の電界効果トランジスタ(Q2)に流れる電流を定電流回路(17)の電流に抑制でき、電力損失を低減することが可能となる。
 第4の態様に係るドライバ回路(1b)は、第1の態様において、抵抗(R3)と、定電圧回路(18)と、を更に備える。抵抗(R3)は、電源端子(11)に接続されている。定電圧回路(18)は、抵抗(R3)とグランド端子(12)との間に設けられている。定電圧回路(18)は、複数のダイオード(D1)を直列接続して構成されている。ドライバ回路(1b)では、抵抗(R3)と定電圧回路(18)との間のノード(N3)が、第2の電界効果トランジスタ(Q2)のゲート(GQ2)に接続されている。
 第4の態様に係るドライバ回路(1b)は、電源端子(11)とグランド端子(12)との間に印加される電圧の大きさによらず、第2の電界効果トランジスタ(Q2)に過大なゲート電圧が印加されるのを抑制することが可能となる。
 第5の態様に係るドライバ回路(1c)では、第2の態様において、第2の電界効果トランジスタ(Q2)は、第3の電界効果トランジスタ(Q21)と、第4の電界効果トランジスタ(Q22)と、をダーリントン接続して構成されている。第3の電界効果トランジスタ(Q21)は、ゲート(GQ21)及びソース(SQ21)を有する。第4の電界効果トランジスタ(Q22)は、ゲート(GQ22)及びソース(SQ22)を有する。第4の電界効果トランジスタ(Q22)の電流容量は、第3の電界効果トランジスタ(Q21)の電流容量よりも大きい。第3の電界効果トランジスタ(Q21)のゲート(GQ21)が抵抗分圧回路(16)の出力端(161)に接続されている。第4の電界効果トランジスタ(Q22)のソース(SQ22)が半導体スイッチ素子(2)のゲート(21)に接続される。
 第5の態様に係るドライバ回路(1c)では、第2の電界効果トランジスタ(Q2)の電流増幅率を大きくできるので、抵抗分圧回路(16)の各抵抗(R3,R4)の抵抗値を大きくできる。これにより、第5の態様に係るドライバ回路(1c)では、電力損失を低減することが可能となる。
 第6の態様に係るドライバ回路(1d)では、第1~5の態様のいずれか一つにおいて、第2の電界効果トランジスタ(Q2d)は、ノーマリオン型の電界効果トランジスタである。
 第6の態様に係るドライバ回路(1d)では、電源端子(11)とグランド端子(12)との間に印加される電圧が小さい場合(例えば、5Vの場合)でも第1の電界効果トランジスタ(Q1)のゲート電圧を大きくすることができる。
 第7の態様に係るドライバ回路(1e)は、第1の態様において、定電流回路(19)と、抵抗(R4)と、を更に備える。定電流回路(19)は、電源端子(11)に接続されている。抵抗(R4)は、定電流回路(19)とグランド端子(12)との間に設けられている。第2の電界効果トランジスタ(Q2)のゲート(GQ2)が定電流回路(19)と抵抗(R4)との間のノード(N4)に接続されている。
 第7の態様に係るドライバ回路(1e)では、電源端子(11)とグランド端子(12)との間に印加される電圧が変化しても第2の電界効果トランジスタ(Q2)に流れる電流を制限でき、電力損失の低減及び第2の電界効果トランジスタ(Q2)のゲート電圧の安定化を図れる。
 第8の態様に係るドライバ回路(1f)は、第1~7の態様のいずれか一つにおいて、DCFL回路(10)を更に備える。DCFL回路(10)は、入力端(101)及び出力端(102)を有し電源端子(11)とグランド端子(12)との間に設けられている。DCFL回路(10)の入力端(101)が信号入力端子(13)に接続されている。DCFL回路(10)の出力端(102)がインピーダンス素子(15)を介して半導体スイッチ素子(2)のゲート(21)に接続される。
 第8の態様に係るドライバ回路(1f)では、半導体スイッチ素子(2)のターンオフ時間の短縮化を図れる。
 第9の態様に係るドライバ回路(1g)では、第1~8の態様のいずれか一つにおいて、半導体スイッチ素子(2A)は、ゲート(21)及びソース(22)の各々を2つ有するデュアルゲート型の双方向スイッチ素子である。ドライバ回路(1g)は、スピードアップ回路(14)を2つ備える。2つのスピードアップ回路(14)のうち1つのスピードアップ回路(14)が2つのゲート21のうち一方のゲート(21)である第1ゲート(21A)に接続され、残りの1つのスピードアップ回路(14)が2つのゲート21のうち他方のゲート(21)である第2ゲート(21B)に接続される。
 第9の態様に係るドライバ回路(1g)は、半導体スイッチ素子(2A)のターンオン時間の短縮化を図れる。
 第10の態様に係るドライバ回路(1;1a;1b;1c;1d;1e;1f;1g)は、第1~9の態様のいずれか一つにおいて、半導体スイッチ素子(2;2A)は、GaN系半導体スイッチ素子である。
 第10の態様に係るドライバ回路(1;1a;1b;1c;1d;1e;1f;1g)では、GaN系半導体スイッチである半導体スイッチ(2;2A)のターンオン時間の短縮化を図れる。
 第11の態様に係るドライバ回路(1;1a;1b;1c;1d;1e;1f;1g)は、ゲート(21)及びゲート(21)に対応するソース(22)を有する電流駆動型の半導体スイッチ素子(2;2A)のドライバ回路であって、電源端子(11)と、グランド端子(12)と、信号入力端子(13)と、第1の電界効果トランジスタ(Q1)と、第2の電界効果トランジスタ(Q2;Q2d)と、インピーダンス素子(15)と、を備える。グランド端子(12)は、半導体スイッチ素子(2;2A)のソース(22)に接続される。第1の電界効果トランジスタ(Q1)は、電源端子(11)に接続されている。第2の電界効果トランジスタ(Q2;Q2d)は、第1の電界効果トランジスタ(Q1)に直列接続されており、半導体スイッチ素子(2;2A)のゲート(21)に接続される。インピーダンス素子(15)は、第2の電界効果トランジスタ(Q2;Q2d)と半導体スイッチ素子(2;2A)のゲート(21)との間のノード(N1)と、信号入力端子(13)と、の間に設けられる。ドライバ回路(1;1a;1b;1c;1d;1e;1f;1g)は、第2の電界効果トランジスタ(Q2;Q2d)がオンの状態で、信号入力端子(13)に入力される信号の電圧レベルが第1電位レベル(VL1)から第1電位レベル(VL1)よりも高い第2電位レベル(VL2)に変化したときに、第1の電界効果トランジスタ(Q1)がオンしてインピーダンス素子(15)を通る電流よりも大きな電流を半導体スイッチ素子(2;2A)のゲート(21)に流すことで半導体スイッチ素子(2;2A)のゲート電圧を閾値電圧よりも大きな所定値(Vg1)よりも大きくし、その後、信号入力端子(13)からインピーダンス素子(15)を通して半導体スイッチ素子(2;2A)のゲート(21)に電流を流し続けることで半導体スイッチ素子(2;2A)を定常オン状態にする。
 第11の態様に係るドライバ回路(1;1a;1b;1c;1d;1e;1f;1g)は、容量の大きなコンデンサを用いずに半導体スイッチ素子(2;2A)のターンオン時間の短縮化を図れる。
 第12の態様に係るドライバ回路(1;1a;1b;1c;1d;1e;1f;1g)では、第1~11の態様のいずれか一つにおいて、ドライバ回路(1;1a;1b;1c;1d;1e;1f;1g)は、モノリシック集積回路である。
 第12の態様に係るドライバ回路(1;1a;1b;1c;1d;1e;1f;1g)は、小型化を図れる。
 第13の態様に係るスイッチシステム(3;3a;3b;3c;3d;3e;3f;3g)は、第1~11の態様のいずれか一つのドライバ回路(1;1a;1b;1c;1d;1e;1f;1g)と、半導体スイッチ素子(2;2A)と、を備える。
 第13の態様に係るスイッチシステム(3;3a;3b;3c;3d;3e;3f;3g)では、容量の大きなコンデンサを用いずに半導体スイッチ素子(2;2A)のターンオン時間の短縮化を図れる。
 第14の態様に係るスイッチシステム(3;3a;3b;3c;3d;3e;3f;3g)では、第13の態様において、ドライバ回路(1;1a;1b;1c;1d;1e;1f;1g)は、モノリシック集積回路である。
 第14の態様に係るスイッチシステム(3;3a;3b;3c;3d;3e;3f;3g)では、ドライバ回路(1;1a;1b;1c;1d;1e;1f;1g)の小型化を図れる。
 第15の態様に係るスイッチシステム(3;3a;3b;3c;3d;3e;3f;3g)では、第13の態様において、スイッチシステム(3;3a;3b;3c;3d;3e;3f;3g)は、ドライバ回路(1;1a;1b;1c;1d;1e;1f;1g)と半導体スイッチ素子(2;2A)とが集積化されたモノリシック集積回路である。
 第15の態様に係るスイッチシステム(3;3a;3b;3c;3d;3e;3f;3g)は、小型化を図れる。
 1、1a、1b、1c、1d、1e、1f、1g ドライバ回路
 2、2A 半導体スイッチ素子
 21 ゲート
 21A 第1ゲート
 21B 第2ゲート
 22 ソース
 22A 第1ソース
 22B 第2ソース
 3、3a、3b、3c、3d、3e、3f、3g スイッチシステム
 10 DCFL回路
 101 入力端
 102 出力端
 11 電源端子
 12 グランド端子
 13 信号入力端子
 14、14c、14d スピードアップ回路
 15 インピーダンス素子
 16 抵抗分圧回路
 161 出力端
 17 定電流回路
 18 定電圧回路
 19 定電流回路
 D1 ダイオード
 N1 ノード
 N2 ノード
 Q1 第1の電界効果トランジスタ
 Q2、Q2d 第2の電界効果トランジスタ
 Q21 第3の電界効果トランジスタ
 Q22 第4の電界効果トランジスタ
 Vg1 所定値
 VL1 第1電位レベル
 VL2 第2電位レベル

Claims (15)

  1.  ゲート及び前記ゲートに対応するソースを有する電流駆動型の半導体スイッチ素子のドライバ回路であって、
     電源端子と、
     前記半導体スイッチ素子の前記ソースに接続されるグランド端子と、
     信号入力端子と、
     前記電源端子と前記半導体スイッチ素子の前記ゲートとの間に設けられるスピードアップ回路と、
     前記スピードアップ回路と前記半導体スイッチ素子の前記ゲートとの間のノードと、前記信号入力端子と、の間に設けられるインピーダンス素子と、を備え、
     前記スピードアップ回路は、
      第1の電界効果トランジスタと、
      前記第1の電界効果トランジスタに直列接続されており、前記半導体スイッチ素子の前記ゲートに接続される第2の電界効果トランジスタと、を有し、
     前記インピーダンス素子のインピーダンスは、前記第1の電界効果トランジスタと前記第2の電界効果トランジスタとの両方がオン状態のときの前記スピードアップ回路のインピーダンスよりも高い、
     ドライバ回路。
  2.  前記電源端子と前記グランド端子との間に設けられている抵抗分圧回路を更に備え、
     前記第2の電界効果トランジスタの前記ゲートが前記抵抗分圧回路の出力端に接続されている、
     請求項1に記載のドライバ回路。
  3.  前記電源端子に接続されている抵抗と、
     前記抵抗と前記グランド端子との間に設けられている定電流回路と、を更に備え、
     前記第2の電界効果トランジスタの前記ゲートが前記抵抗と前記定電流回路との間のノードに接続されている、
     請求項1に記載のドライバ回路。
  4.  前記電源端子に接続されている抵抗と、
     前記抵抗と前記グランド端子との間に設けられている定電圧回路と、を更に備え、
     前記定電圧回路は、複数のダイオードを直列接続して構成されており、
     前記抵抗と前記定電圧回路との間のノードが、前記第2の電界効果トランジスタの前記ゲートに接続されている、
     請求項1に記載のドライバ回路。
  5.  前記第2の電界効果トランジスタは、
      ゲート、ドレイン及びソースを有する第3の電界効果トランジスタと、ゲート、ドレイン及びソースを有し前記第3の電界効果トランジスタよりも電流容量の大きな第4の電界効果トランジスタと、をダーリントン接続して構成されており、
     前記第3の電界効果トランジスタの前記ゲートが前記抵抗分圧回路の前記出力端に接続されており、
     前記第4の電界効果トランジスタの前記ソースが前記半導体スイッチ素子の前記ゲートに接続される、
     請求項2に記載のドライバ回路。
  6.  前記第2の電界効果トランジスタは、ノーマリオン型の電界効果トランジスタである、
     請求項1~5のいずれか一項に記載のドライバ回路。
  7.  前記電源端子に接続されている定電流回路と、
     前記定電流回路と前記グランド端子との間に設けられている抵抗と、を更に備え、
     前記第2の電界効果トランジスタの前記ゲートが前記定電流回路と前記抵抗との間のノードに接続されている、
     請求項1に記載のドライバ回路。
  8.  入力端及び出力端を有し前記電源端子と前記グランド端子との間に設けられているDCFL回路を更に備え、
     前記DCFL回路の入力端が前記信号入力端子に接続されており、
     前記DCFL回路の出力端が前記インピーダンス素子を介して前記半導体スイッチ素子の前記ゲートに接続される、
     請求項1~7のいずれか一項に記載のドライバ回路。
  9.  前記半導体スイッチ素子は、前記ゲート及び前記ソースの各々を2つ有するデュアルゲート型の双方向スイッチ素子であり、
     前記スピードアップ回路を2つ備え、
     前記2つのスピードアップ回路のうち1つのスピードアップ回路が前記2つのゲートのうち一方のゲートである第1ゲートに接続され、残りの1つのスピードアップ回路が前記2つのゲートのうち他方のゲートである第2ゲートに接続されている、
     請求項1~8のいずれか一項に記載のドライバ回路。
  10.  前記半導体スイッチ素子は、GaN系半導体スイッチ素子である、
     請求項1~9のいずれか一項に記載のドライバ回路。
  11.  ゲート及び前記ゲートに対応するソースを有する電流駆動型の半導体スイッチ素子のドライバ回路であって、
     電源端子と、
     前記半導体スイッチ素子の前記ソースに接続されるグランド端子と、
     信号入力端子と、
     前記電源端子に接続されている第1の電界効果トランジスタと、
     前記第1の電界効果トランジスタに直列接続されており、前記半導体スイッチ素子の前記ゲートに接続される第2の電界効果トランジスタと、
     前記第2の電界効果トランジスタと前記半導体スイッチ素子の前記ゲートとの間のノードと、前記信号入力端子と、の間に設けられるインピーダンス素子と、を備え、
     前記第2の電界効果トランジスタがオンの状態で、前記信号入力端子に入力される信号の電位レベルが第1電位レベルから前記第1電位レベルよりも高い第2電位レベルに変化したときに、
      前記第1の電界効果トランジスタがオンして前記インピーダンス素子を通る電流よりも大きな電流を前記半導体スイッチ素子の前記ゲートに流すことで前記半導体スイッチ素子のゲート電圧を閾値電圧よりも大きな所定値よりも大きくし、その後、
      前記インピーダンス素子を通して前記半導体スイッチ素子の前記ゲートに電流を流し続けることで前記半導体スイッチ素子のゲート電圧を前記所定値にする、
     ドライバ回路。
  12.  前記ドライバ回路は、モノリシック集積回路である、
     請求項1~11のいずれか一項に記載のドライバ回路。
  13.  請求項1~11のいずれか一項に記載のドライバ回路と、前記半導体スイッチ素子と、を備える、
     スイッチシステム。
  14.  前記ドライバ回路は、モノリシック集積回路である、
     請求項13に記載のスイッチシステム。
  15.  前記スイッチシステムは、前記ドライバ回路と前記半導体スイッチ素子とが集積化されたモノリシック集積回路である、
     請求項13に記載のスイッチシステム。
PCT/JP2020/018104 2019-05-30 2020-04-28 ドライバ回路、及びスイッチシステム WO2020241158A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/614,716 US11637552B2 (en) 2019-05-30 2020-04-28 Driver circuit and switch system
CN202080039205.4A CN113875140B (zh) 2019-05-30 2020-04-28 驱动器电路和开关***
JP2021522728A JPWO2020241158A1 (ja) 2019-05-30 2020-04-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-101723 2019-05-30
JP2019101723 2019-05-30

Publications (1)

Publication Number Publication Date
WO2020241158A1 true WO2020241158A1 (ja) 2020-12-03

Family

ID=73554060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018104 WO2020241158A1 (ja) 2019-05-30 2020-04-28 ドライバ回路、及びスイッチシステム

Country Status (4)

Country Link
US (1) US11637552B2 (ja)
JP (1) JPWO2020241158A1 (ja)
CN (1) CN113875140B (ja)
WO (1) WO2020241158A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116455006B (zh) * 2022-01-07 2024-04-05 荣耀终端有限公司 充电电路、电子设备以及充电***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291939A (ja) * 1991-09-16 1993-11-05 Advanced Micro Devices Inc Cmosセルフブースト回路
JP2008066929A (ja) * 2006-09-06 2008-03-21 Mitsubishi Electric Corp 半導体装置
JP2008193717A (ja) * 2008-03-17 2008-08-21 Hitachi Ltd 半導体装置の駆動方法および装置
JP2012527178A (ja) * 2009-05-11 2012-11-01 エスエス エスシー アイピー、エルエルシー エンハンスメントモード型およびデプレションモード型のワイドバンドギャップ半導体jfetのためのゲートドライバ
WO2012157118A1 (ja) * 2011-05-19 2012-11-22 トヨタ自動車株式会社 電圧駆動型素子を駆動する駆動装置
JP2015204661A (ja) * 2014-04-11 2015-11-16 東芝シュネデール・インバータ株式会社 半導体素子駆動回路
WO2017081856A1 (ja) * 2015-11-09 2017-05-18 パナソニックIpマネジメント株式会社 スイッチング回路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678526A (ja) * 1992-06-25 1994-03-18 Yaskawa Electric Corp ゲートドライブ回路
JP2010051165A (ja) 2008-07-24 2010-03-04 Panasonic Corp 半導体装置のゲート駆動回路及びそれを用いた電力変換装置
JP5488550B2 (ja) * 2011-08-19 2014-05-14 株式会社安川電機 ゲート駆動回路および電力変換装置
CN107534383B (zh) * 2015-05-13 2020-09-01 松下半导体解决方案株式会社 驱动电路、开关控制电路以及开关装置
US10404251B2 (en) * 2016-05-04 2019-09-03 The Hong Kong University Of Science And Technology Power device with integrated gate driver
JP7073913B2 (ja) * 2018-05-30 2022-05-24 三菱電機株式会社 半導体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291939A (ja) * 1991-09-16 1993-11-05 Advanced Micro Devices Inc Cmosセルフブースト回路
JP2008066929A (ja) * 2006-09-06 2008-03-21 Mitsubishi Electric Corp 半導体装置
JP2008193717A (ja) * 2008-03-17 2008-08-21 Hitachi Ltd 半導体装置の駆動方法および装置
JP2012527178A (ja) * 2009-05-11 2012-11-01 エスエス エスシー アイピー、エルエルシー エンハンスメントモード型およびデプレションモード型のワイドバンドギャップ半導体jfetのためのゲートドライバ
WO2012157118A1 (ja) * 2011-05-19 2012-11-22 トヨタ自動車株式会社 電圧駆動型素子を駆動する駆動装置
JP2015204661A (ja) * 2014-04-11 2015-11-16 東芝シュネデール・インバータ株式会社 半導体素子駆動回路
WO2017081856A1 (ja) * 2015-11-09 2017-05-18 パナソニックIpマネジメント株式会社 スイッチング回路

Also Published As

Publication number Publication date
JPWO2020241158A1 (ja) 2020-12-03
CN113875140B (zh) 2024-03-15
US11637552B2 (en) 2023-04-25
CN113875140A (zh) 2021-12-31
US20220224321A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
US7961031B2 (en) Semiconductor switch circuit
JP6558359B2 (ja) 半導体装置
WO2020241158A1 (ja) ドライバ回路、及びスイッチシステム
JPH09172368A (ja) 半導体出力回路
US20090174387A1 (en) Semiconductor Device
JP6779932B2 (ja) 半導体装置
EP1326337B1 (en) High voltage push-pull driver on standard CMOS
WO2021079611A1 (ja) レーザダイオード駆動回路
US5576655A (en) High-withstand-voltage integrated circuit for driving a power semiconductor device
US10720922B1 (en) Semiconductor device
JP2024103706A (ja) ドライバ回路、及びスイッチシステム
US10847947B2 (en) GaN laser diode drive FET with gate current reuse
JP2004350127A (ja) スイッチ回路及びバススイッチ回路
US4837458A (en) Flip-flop circuit
JP6506107B2 (ja) 負電圧発生回路、正負電圧論理回路、及び高周波スイッチ回路
JPH11317652A (ja) 出力回路
JP2021111677A (ja) 半導体装置
EP0545604B1 (en) High-withstand voltage integrated circuit
EP1001537A2 (en) Control circuit
US20230231018A1 (en) Control system and control method for dual-gate bidirectional switch
WO2021199738A1 (ja) 判定装置及びそれを備えるスイッチシステム
JP7471061B2 (ja) インバータ分岐ドライバ
JP7055714B2 (ja) 半導体装置
JP2009267015A (ja) 半導体装置
JP2020077906A (ja) 出力回路及び電子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522728

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813479

Country of ref document: EP

Kind code of ref document: A1