WO2020238582A1 - 步进电机检测方法、装置和*** - Google Patents

步进电机检测方法、装置和*** Download PDF

Info

Publication number
WO2020238582A1
WO2020238582A1 PCT/CN2020/089180 CN2020089180W WO2020238582A1 WO 2020238582 A1 WO2020238582 A1 WO 2020238582A1 CN 2020089180 W CN2020089180 W CN 2020089180W WO 2020238582 A1 WO2020238582 A1 WO 2020238582A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
stepping motor
stepper motor
target
Prior art date
Application number
PCT/CN2020/089180
Other languages
English (en)
French (fr)
Inventor
张潮红
陈志刚
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020238582A1 publication Critical patent/WO2020238582A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/346Testing of armature or field windings

Definitions

  • the present disclosure relates to the field of motors, and in particular to a stepping motor detection method, device and system.
  • stepper motors The application range of stepper motors is very wide, ranging from mechanical equipment to smart terminal equipment.
  • the stepper motor will work abnormally during operation, such as locked rotor, the coil current of the stepper motor will increase significantly after the locked rotor, causing serious heating of the coil, which will affect the life of the stepper motor. Therefore, it is very important to detect the working condition of the stepper motor.
  • stepper motor detection methods include speed detection method and phase current detection method.
  • the speed detection method needs to add additional photoelectric detection devices and positioning devices, which not only requires high cost, but also takes up a large space;
  • the detection effect of a high-power stepper motor is not sensitive.
  • the related stepper motor detection methods are not ideal and need to be improved urgently.
  • the embodiments of the present disclosure provide a stepper motor detection method, device, and system to better detect the stall condition of the stepper motor.
  • a method for detecting a stepper motor includes:
  • the operating condition of the stepping motor is determined.
  • a stepper motor detection device in a second aspect, the device includes:
  • the first voltage obtaining module is configured to obtain the phase voltage of the target phase of the stepper motor at the target time, wherein at the target time, the phase current of the target phase is zero;
  • the working condition determining module is configured to determine the working condition of the stepping motor based on the phase voltage.
  • a stepping motor detection system includes: a stepping motor, a driving device of the stepping motor, and a stepping motor detection device, wherein:
  • the driving device is used to drive the stepping motor to run
  • the stepper motor detection device is used to obtain the phase voltage of the target phase of the stepper motor at a target time, wherein at the target time, the phase current of the target phase is zero; and based on the phase voltage, determine Describe the working conditions of the stepper motor.
  • a mobile terminal in a fourth aspect, includes the stepping motor detection system as described in the third aspect.
  • the stepper motor detection method determines the working condition of the stepper motor based on the relationship between the phase voltage of the target phase of the stepper motor at the moment when the phase current is zero and the preset threshold. Since the working condition of the stepper motor can be determined only by detecting the phase voltage, the small changes to the stepper motor can save the installation space of the stepper motor and improve the detection effect of the low-power stepper motor. A more ideal stepper motor detection program.
  • FIG. 1 is a schematic structural diagram of a stepping motor detection system provided by some embodiments of the disclosure.
  • FIG. 2 is a schematic diagram of working waveforms of a target phase of a stepper motor provided by some embodiments of the present disclosure.
  • FIG. 3 is one of the schematic flowcharts of the stepping motor detection method provided by some embodiments of the present disclosure.
  • FIG. 4 is a second schematic flowchart of a stepping motor detection method provided by some embodiments of the disclosure.
  • FIG. 5 is one of the structural schematic diagrams of the stepping motor detection device provided by some embodiments of the disclosure.
  • FIG. 6 is the second structural diagram of the stepping motor detection device provided by some embodiments of the disclosure.
  • FIG. 7 is a schematic diagram of the hardware structure of a terminal device provided by some embodiments of the present disclosure.
  • stepper motors are divided into two-phase stepper motors, three-phase stepper motors, four-phase stepper motors and five-phase stepper motors, and so on.
  • the phase current of one phase is greater than zero, while the phase currents of the remaining phases are zero.
  • the coil of the phase with zero phase current will generate an induced voltage due to the rotation of the stepper motor rotor (magnet), and if the stepper motor is locked, the phase current is zero.
  • the induced voltage on the rotor will decrease or disappear when the rotor stops or decelerates.
  • FIG. 2 shows a current waveform diagram of the A phase and the B phase of the two-phase stepping motor 1.
  • the current waveforms of phase A and phase B are both sine waves, and the two-phase stepping motor 1 is driven alternately by phase A current and phase B current, and in each cycle, phase A and phase B are Phase B has two moments when the current is zero. For example, at t1 and t3, the current of phase B is zero, and at t2 and t4, the current of phase A is zero.
  • phase current of the phase B is zero.
  • the coil will generate induced voltage due to the rotation of the rotor (magnet), and if the stepper motor is blocked, the induced voltage on phase B will decrease or disappear due to the rotor stopping or decelerating; for the same reason, at t2 or t4, due to The two-phase stepping motor 1 is also driven by phase B (the phase current of phase B is greater than zero).
  • the coil of phase A with zero phase current will generate an induced voltage due to the rotation of the rotor (magnet), and if When the stepper motor is locked, the induced voltage on phase A will decrease or disappear due to the rotor stopping or decelerating.
  • some embodiments of the present disclosure provide a stepper motor detection method, device, system and mobile terminal to better realize the detection of the working condition of the stepper motor.
  • the mobile terminal includes, but is not limited to, terminal devices that send and receive wireless communication signals, such as mobile phones, IPADs, tablet computers, and wearable devices.
  • the execution subject of a stepper motor detection method may be the stepper motor detection device 3 shown in FIG. 1, and the stepper motor detection device 3 includes a voltage acquisition module. , For obtaining the phase voltage of the target phase of the stepper motor at the target time, wherein at the target time, the phase current of the target phase is zero.
  • the stepping motor detection device 3 can also communicate with the driving device 2 to exchange signaling and data.
  • a stepper motor detection method may include:
  • Step 301 Obtain the phase voltage of the target phase of the stepper motor at the target time, wherein at the target time, the phase current of the target phase is zero.
  • the phase voltage of the target phase of the stepper motor at the target time can be obtained.
  • the two-phase stepping motor 1 can start to run under the driving of the driving device 2.
  • the target moments corresponding to different targets may be the same or different.
  • the target moments corresponding to the multiple targets may be multiple moments in the same period.
  • the number of excitation phases of a stepper motor is two phases, then as shown in Figure 2, you can first obtain the phase voltage of phase B at time t1 when the current of phase B is zero, and then obtain the phase voltage of phase B when the current of phase A is zero.
  • the phase voltage of phase A is obtained to obtain 2 phase voltages; or, the phase voltage of phase B can be obtained only at time t1 when the current of phase B is zero to obtain 1 phase voltage; or, phase voltage can be obtained only at phase A
  • the phase voltage of phase A is obtained, and one phase voltage is obtained.
  • phase voltage of phase B and/or phase C can be obtained at the moment when the current of phase B and phase C is zero, and/or the phase voltage of phase A and phase B At the moment of zero, obtain the phase voltage of phase A and/or B, and/or, at the moment when the current of phase B and C is zero, obtain the phase voltage of phase B and/or C to obtain one or more Phase voltage.
  • the number of excitation phases of the stepper motor is four or five phases or more, and so on, one or more phase voltages are finally obtained.
  • Step 302 Determine the working condition of the stepping motor based on the obtained phase voltage.
  • the working condition of the stepping motor can be determined based on the relationship between the acquired phase voltage and the preset threshold, such as determining whether the stepping motor is locked.
  • the preset threshold can be determined according to the magnitude of the induced voltage generated on the coil of the target phase when the stepper motor is not locked (when the stepper motor is working normally), for example, when the stepper motor is not locked,
  • the magnitude of the induced voltage generated on the coil of the target phase is used as the preset threshold.
  • step 301 the more the number of phase voltages obtained, the more accurate the working condition of the stepping motor determined in step 302 will be. If multiple phase voltages are measured in step 301, but some of the multiple phase voltages are greater than the preset threshold, and the other part of the phase voltages are less than the preset threshold, it can be considered that the multiple phase voltages obtained in step 301 are affected by If the interference is not accurate enough, the obtained multiple phase voltages can be discarded, and step 301 is performed again to obtain.
  • Some embodiments of the present disclosure provide a stepper motor detection method.
  • the stepper motor When the stepper motor is not locked, the target phase with zero phase current will generate an induced voltage due to the rotation of the stepper motor rotor, and the stepper motor will be blocked. During rotation, the induced voltage on the target phase with zero phase current will decrease or disappear due to the rotor stopping or decelerating. Therefore, the operation of the stepper motor can be determined by obtaining the phase voltage of the target phase at the moment when the phase current is zero happensing. And because the working condition of the stepping motor can be determined only by detecting the phase voltage, the change to the stepping motor is small, the installation space of the stepping motor can be saved, and the detection effect of the low-power stepping motor can be improved. A more ideal stepper motor detection program.
  • a stepper motor detection method provided by some embodiments of the present disclosure.
  • the stepper motor is a two-phase stepper motor.
  • a stepper motor detection method provided by some embodiments of the present disclosure may include:
  • Step 401 Drive the stepper motor to start running.
  • the two-phase stepping motor 1 can start to run under the control of the driving device 2.
  • Step 402 Obtain the phase voltage of the first phase of the stepper motor at a first target time, where at the first target time, the phase current of the first phase is zero.
  • Step 403 Obtain the phase voltage of the second phase of the stepper motor at a second target time, wherein at the second target time, the phase current of the second phase is zero.
  • the first target moment and the second target moment are two moments in the same cycle, and between the first target moment and the second target moment, the phase of the first phase The phase current and the phase current of the second phase are greater than zero.
  • time t1 and time t2 are two times in the same cycle, and between time t1 and time t2, the phase currents of phase A and phase B are greater than zero.
  • the first target moment and the second target moment may also be two moments in different periods.
  • phase voltage VB1 of phase B of the stepper motor can be detected at time t1; since the phase current of phase A is zero at time t2, The phase voltage VA1 of the A phase of the stepping motor can be detected at t2.
  • step 401 to the foregoing step 403 can be regarded as a more detailed implementation of step 301 in the embodiment shown in FIG. 3.
  • both the phase voltage of the first phase (such as phase B) and the phase voltage of the second phase (such as phase A) can be detected by differential input.
  • phase B the two phase voltages of VB1+ and VB1- can be collected at t1 at the same time, and one half of the absolute value of the difference between the two phase voltages is regarded as phase B at time t1
  • the phase voltage of VB1
  • phase voltages of the first phase such as phase B
  • phase A phase voltages of the second phase
  • other methods can also be used to detect the phase voltages of the first phase (such as phase B) and the second phase (such as phase A) at the corresponding target time, which is not limited in some embodiments of the present disclosure. .
  • step 302 may include: based on the acquired relationship between the phase voltage of the first phase and the preset threshold, and the relationship between the phase voltage of the second phase and the preset threshold, determining The working condition of the stepping motor. For the specific determination process, see step 404 to step 407 below.
  • Step 404 Determine whether the acquired phase voltage of the first phase and the phase voltage of the second phase are both greater than a preset threshold, if it is, perform step 405, otherwise, perform step 406.
  • Step 405 It is determined that the stepping motor is working normally and no stall has occurred.
  • step 405 it is possible to continue to detect whether the stepper motor will be locked, such as continuing to perform step 303 and step 304, and after performing step 304 Go back to step 404.
  • Step 406 Determine whether the acquired phase voltage of the first phase and the phase voltage of the second phase are both less than a preset threshold, if yes, perform step 407, otherwise, perform step 408.
  • Step 407 It is determined that the stepping motor is working abnormally and is locked.
  • the method shown in FIG. 4 may further include: adopting a preset protection measure to protect the stepper motor, for example, as shown in FIG. 1, the stepper motor detection device 3 A control command can be sent to the driving device 2 to stop the driving device 2 from driving the stepping motor.
  • the method shown in FIG. 4 may further include: using a preset reminding method to remind the user that the stepper motor is locked.
  • the stepper motor detection device 3 can remind the user that the stepper motor is blocked by flashing an alarm indicator, emitting an alarm sound, and sending an alarm notification.
  • the method shown in FIG. 4 may further include:
  • Step 408 In the case that one of the acquired phase voltage of the first phase and the phase voltage of the second phase is greater than or equal to the preset threshold, and the other is less than the preset threshold, perform step 303 And step 304.
  • Step 303 Re-obtain the phase voltage of the first phase of the stepper motor at a third target time, wherein at the third target time, the phase current of the first phase is zero.
  • phase current of the B phase is zero again at time t3
  • phase voltage VB2 of the B phase of the stepping motor can be detected again at time t3.
  • Step 304 Re-obtain the phase voltage of the second phase of the stepping motor at the fourth target time, where at the fourth target time, the phase current of the second phase is zero.
  • phase voltage VA2 of the A phase of the stepping motor can be detected again at the time t4.
  • step 304 it may be determined based on the relationship between the reacquired phase voltage of the first phase and the preset threshold, and the reacquired relationship between the phase voltage of the second phase and the preset threshold. Describe the working conditions of the stepper motor. That is, after step 304, it is possible to return to step 404 to repeat the process of determining the working condition of the stepping motor.
  • the embodiment shown in FIG. 4 provides a stepper motor detection method.
  • the stepper motor When the stepper motor is not locked, the target phase with zero phase current will generate an induced voltage due to the rotation of the stepper motor rotor.
  • the induced voltage on the target phase with zero phase current will decrease or disappear due to the rotor stopping or decelerating. Therefore, the step can be determined based on the phase voltage of the target phase at the moment when the phase current is zero.
  • the working condition of the stepping motor can be determined only by detecting the phase voltage, the change to the stepping motor is small, the installation space of the stepping motor can be saved, and the detection effect of the low-power stepping motor can be improved.
  • a more ideal stepper motor detection program A more ideal stepper motor detection program.
  • Fig. 4 is an example of a two-phase stepper motor.
  • the stepper motor detection method provided by some embodiments of the present disclosure is described in detail. It can be understood that the locked-rotor detection of a stepper motor with more than two phases can also be used In the stepper motor detection method provided by some embodiments of the present disclosure, the specific detection process is similar to the locked-rotor detection process of a two-phase stepper motor, and the description is not repeated here.
  • step 404 the execution order of step 404, step 406, and step 408 can be arbitrary, and is not limited to the execution order shown in FIG. 4.
  • a stepping motor detection method provided by the present disclosure.
  • some embodiments of the present disclosure also provide a stepping motor detection device, which may be a stepping motor detection device as shown in FIG. Enter the motor detection device 3, which will be introduced below.
  • a stepping motor detection device may include: a first voltage acquisition module 501 and a working condition determination module 502.
  • the first voltage obtaining module 501 is configured to obtain the phase voltage of the target phase of the stepper motor at the target time, wherein at the target time, the phase current of the target phase is zero.
  • the target moments corresponding to different targets may be the same or different.
  • the target moments corresponding to the multiple targets may be multiple moments in the same period.
  • the working condition determining module 502 is configured to determine the working condition of the stepping motor based on the phase voltage.
  • the working condition determining module 502 can be used to determine the working condition of the stepping motor based on the relationship between the phase voltage and a preset threshold.
  • the working condition determining module 502 may determine the working condition of the stepper motor, such as whether a stall occurs, based on whether the acquired one or more phase voltages are all greater than a preset threshold. More specifically, the working condition determining module 502 may determine that the stepper motor is working normally when the obtained one or more phase voltages are all greater than the preset threshold; when the obtained one or more phase voltages are all less than the preset threshold In the case of, confirm that the stepper motor is working abnormally.
  • Some embodiments of the present disclosure provide a stepper motor detection device.
  • the target phase with zero phase current will generate an induced voltage due to the rotation of the stepper motor rotor.
  • the induced voltage on the target phase with zero phase current will decrease or disappear due to the rotor stopping or decelerating. Therefore, the operation of the stepper motor can be determined based on the phase voltage of the target phase at the moment when the phase current is zero. .
  • the working condition of the stepping motor can be determined only by detecting the phase voltage, the change to the stepping motor is small, the installation space of the stepping motor can be saved, and the detection effect of the low-power stepping motor can be improved.
  • a more ideal stepper motor detection program is a more ideal stepper motor detection program.
  • a more detailed embodiment is used to illustrate a stepping motor detection device provided by some embodiments of the present disclosure.
  • the stepper motor is a two-phase stepper motor.
  • a stepping motor detection device provided by some embodiments of the present disclosure may include: a first voltage obtaining module 501, a working condition determining module 502, a third voltage obtaining module 503, and a fourth voltage obtaining module 504 and trigger module 505.
  • the first voltage obtaining module 501 includes: an operating sub-module 601, a first voltage obtaining sub-module 602, and a second voltage obtaining sub-module 603.
  • the running sub-module 601 is used to drive the stepping motor to run.
  • the running sub-module 601 may first send an instruction to drive the stepping motor to run to the drive device of the stepping motor, and then the drive device drives the stepping motor to run.
  • the first voltage obtaining sub-module 602 is configured to obtain the phase voltage of the first phase of the stepper motor at a first target time, where, at the first target time, the phase current of the first phase is zero.
  • the second voltage obtaining sub-module 603 is configured to obtain the phase voltage of the second phase of the stepper motor at a second target time, where, at the second target time, the phase current of the second phase is zero.
  • the first target moment and the second target moment are two moments in the same cycle, and between the first target moment and the second target moment, the phase of the first phase The phase current and the phase current of the second phase are greater than zero.
  • the working condition determining module 502 is configured to determine the obtained relationship between the phase voltage of the first phase and the preset threshold, and the relationship between the phase voltage of the second phase and the preset threshold. Describe the working conditions of the stepper motor.
  • the working condition determining module 502 may include: a first determining sub-module 604, a first determining sub-module 605, a second determining sub-module 606, a second determining sub-module 607, and a third determining sub-module 608.
  • the first determination sub-module 604 is used to determine whether the acquired phase voltage of the first phase and the phase voltage of the second phase are both greater than a preset threshold, if it is to trigger the first determination sub-module 605, otherwise trigger the second Determine the sub-module 606.
  • the first determining sub-module 605 is used to determine that the stepper motor is working normally and is not locked.
  • the working condition determining module 502 can be used to determine that the stepping motor does not occur when the phase voltage of the first phase and the phase voltage of the second phase are both greater than or equal to the preset threshold. Stalled.
  • the second determination submodule 606 is used to determine whether the acquired phase voltage of the first phase and the phase voltage of the second phase are both less than a preset threshold, if it is to trigger the second determination submodule 607, otherwise trigger the third Determine the sub-module 608.
  • the second determining sub-module 607 is used to determine that the stepper motor is working abnormally and is locked.
  • the working condition determining module 502 may be used to determine that the stepper motor is locked when the phase voltage of the first phase and the phase voltage of the second phase are both less than the preset threshold.
  • the third judgment submodule 608 is configured to determine whether one of the acquired phase voltage of the first phase and the phase voltage of the second phase is greater than or equal to the preset threshold, and the other is less than the preset threshold. In this case, the third voltage monitoring module 503 and the fourth voltage obtaining module 504 are triggered.
  • the third voltage monitoring module 503 is configured to reacquire the phase voltage of the first phase of the stepper motor at a third target time, wherein at the third target time, the phase current of the first phase is zero.
  • the fourth voltage acquisition module 504 is configured to re-acquire the phase voltage of the second phase of the stepper motor at a fourth target time, wherein at the fourth target time, the phase current of the second phase is zero.
  • the trigger module 505 is configured to trigger the working condition determination module 502, based on the relationship between the re-acquired phase voltage of the first phase and the preset threshold, and the re-acquired phase voltage of the second phase and the The relationship of the preset threshold value determines the working condition of the stepping motor.
  • the trigger module 505 is used to trigger the first judgment sub-module 604 first.
  • the embodiment shown in FIG. 6 provides a stepping motor detection device.
  • the target phase with zero phase current will generate an induced voltage due to the rotation of the stepping motor rotor.
  • the induced voltage on the target phase with zero phase current will decrease or disappear due to the rotor stopping or decelerating. Therefore, the step can be determined based on the phase voltage of the target phase at the moment when the phase current is zero.
  • the working condition of the stepping motor can be determined only by detecting the phase voltage, the change to the stepping motor is small, the installation space of the stepping motor can be saved, and the detection effect of the low-power stepping motor can be improved.
  • a more ideal stepper motor detection program is not locked, the target phase with zero phase current will generate an induced voltage due to the rotation of the stepping motor rotor.
  • the induced voltage on the target phase with zero phase current will decrease or disappear due to the rotor stopping or decelerating. Therefore, the step can be determined based on the phase voltage of the target phase at the moment when the
  • some embodiments of the present disclosure also provide a stepper motor detection system.
  • the system may include: a stepper motor 1, a stepper motor 1 The driving device 2 and the stepping motor detection device 3, in which,
  • the driving device 2 is used to drive the stepping motor to run;
  • the stepper motor detection device 3 is used to obtain the phase voltage of the target phase of the stepper motor at the target time, wherein at the target time, the phase current of the target phase is zero; and based on the phase voltage, determine The working condition of the stepping motor.
  • stepper motor detection device 3 determining that the stepper motor is locked can refer to the above method embodiment, and the description is not repeated here.
  • Some embodiments of the present disclosure provide a stepping motor detection system, because the stepping motor detection device 3 can determine the working condition of the stepping motor based on the phase voltage of the target phase at the moment when the phase current is zero. Therefore, the change to the stepper motor is small, does not need to take up a large space, and has a better detection effect for the small power stepper motor, which is a more ideal stepper motor detection program.
  • some embodiments of the present disclosure further provide a mobile terminal, which may include at least one stepper motor detection system described above. It is not difficult to understand that since the mobile terminal applies a stepper motor detection system provided by some embodiments of the present disclosure, it can improve the effectiveness of stepper motor detection and save the installation space of the mobile terminal.
  • FIG. 7 is a schematic diagram of the hardware structure of a mobile terminal that implements various embodiments of the present disclosure.
  • the mobile terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710, and Power 711 and other components.
  • a radio frequency unit 701 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710, and Power 711 and other components.
  • the mobile terminal may include more or less components than those shown in the figure, or combine certain components, or different components. Layout.
  • mobile terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, and pedometers.
  • the processor 710 is configured to obtain the phase voltage of the target phase of the stepping motor at the target time, wherein at the target time, the phase current of the target phase is zero; and based on the phase voltage, determine the step Into the working conditions of the motor. Since the working condition of the stepping motor can be determined only by detecting the phase voltage, the installation space of the stepping motor can be saved, and the detection effect of the low-power stepping motor can be improved.
  • the radio frequency unit 701 can be used to receive and send signals during the process of sending and receiving information or talking. Specifically, after receiving downlink data from the base station, it is processed by the processor 710; , Send the uplink data to the base station.
  • the radio frequency unit 701 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 701 can also communicate with the network and other devices through a wireless communication system.
  • the mobile terminal provides users with wireless broadband Internet access through the network module 702, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 703 may convert the audio data received by the radio frequency unit 701 or the network module 702 or stored in the memory 709 into audio signals and output them as sounds. Moreover, the audio output unit 703 may also provide audio output related to a specific function performed by the mobile terminal 700 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 703 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 704 is used to receive audio or video signals.
  • the input unit 704 may include a graphics processing unit (GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is used for the image of a still picture or video obtained by an image capture device (such as a camera) in the video capture mode or the image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 706.
  • the image frame processed by the graphics processor 7041 may be stored in the memory 709 (or other storage medium) or sent via the radio frequency unit 701 or the network module 702.
  • the microphone 7042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 701 for output in the case of a telephone call mode.
  • the mobile terminal 700 also includes at least one sensor 705, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 7061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 7061 and the display panel 7061 when the mobile terminal 700 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the posture of the mobile terminal (such as horizontal and vertical screen switching, related games , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 705 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 706 is used to display information input by the user or information provided to the user.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 707 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the mobile terminal.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072.
  • the touch panel 7071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 7071 or near the touch panel 7071. operating).
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 710, the command sent by the processor 710 is received and executed.
  • the touch panel 7071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 707 may also include other input devices 7072.
  • other input devices 7072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 7071 can be overlaid on the display panel 7061.
  • the touch panel 7071 detects a touch operation on or near it, it transmits it to the processor 710 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 7061.
  • the touch panel 7071 and the display panel 7061 are used as two independent components to implement the input and output functions of the mobile terminal, in some embodiments, the touch panel 7071 and the display panel 7061 can be integrated
  • the implementation of the input and output functions of the mobile terminal is not specifically limited here.
  • the interface unit 708 is an interface for connecting an external device with the mobile terminal 700.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 708 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the mobile terminal 700 or can be used to connect to the mobile terminal 700 and external Transfer data between devices.
  • the memory 709 can be used to store software programs and various data.
  • the memory 709 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 710 is the control center of the mobile terminal. It uses various interfaces and lines to connect the various parts of the entire mobile terminal, runs or executes software programs and/or modules stored in the memory 709, and calls data stored in the memory 709 , Perform various functions of the mobile terminal and process data, so as to monitor the mobile terminal as a whole.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 710.
  • the mobile terminal 700 may also include a power supply 711 (such as a battery) for supplying power to various components.
  • a power supply 711 (such as a battery) for supplying power to various components.
  • the power supply 711 may be logically connected to the processor 710 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the mobile terminal 700 includes some functional modules not shown, which will not be repeated here.
  • some embodiments of the present disclosure further provide a mobile terminal, including a processor 710, a memory 709, a program stored on the memory 709 and running on the processor 710, and the program is executed by the processor 710
  • a mobile terminal including a processor 710, a memory 709, a program stored on the memory 709 and running on the processor 710, and the program is executed by the processor 710
  • Some embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, each process of the above-mentioned stepper motor detection method embodiment is implemented and can To achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the computer readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in this application.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present disclosure.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Stepping Motors (AREA)

Abstract

一种步进电机(1)检测方法、装置和***,方法包括:获取步进电机(1)的目标相在目标时刻的相电压,其中,在目标时刻,目标相的相电流为零(S301);基于相电压,确定步进电机(1)的工作情况(S302)。这种检测方法对步进电机(1)的改动较小,不需要占用较大的空间,且对小功率步进电机(1)有更好的检测效果。

Description

步进电机检测方法、装置和***
相关申请的交叉引用
本申请主张在2019年5月31日在中国提交的中国专利申请号No.201910468574.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及电机领域,尤其涉及一种步进电机检测方法、装置和***。
背景技术
步进电机的应用范围非常广泛,大到机械设备,小到智能终端设备都在使用。步进电机在运行的过程中会出现工作异常情况,如堵转,堵转后步进电机的线圈电流会显著增大,使得线圈出现严重的发热现象,这会影响步进电机的寿命。因此,对步进电机工作情况进行检测显得十分重要。
相关的步进电机检测方法有转速检测法和相电流检测法,其中,转速检测法需要增加额外的光电检测器件和定位装置,不但成本高还需要占用较大的空间;相电流检测法对小功率的步进电机的检测效果不灵敏。总之,相关的步进电机检测方法不够理想,亟待改进。
发明内容
本公开实施例提供一种步进电机检测方法、装置和***,以更好地检测出步进电机的堵转情况。
为了解决上述技术问题,本公开是这样实现的:
第一方面,提供了一种步进电机检测方法,所述方法包括:
获取步进电机的目标相在目标时刻的相电压,其中,在所述目标时刻,所述目标相的相电流为零;
基于所述相电压,确定所述步进电机的工作情况。
第二方面,提供了一种步进电机检测装置,所述装置包括:
第一电压获取模块,用于获取步进电机的目标相在目标时刻的相电压, 其中,在所述目标时刻,所述目标相的相电流为零;
工作情况确定模块,用于基于所述相电压,确定所述步进电机的工作情况。
第三方面,提供了一种步进电机检测***,所述***包括:步进电机、所述步进电机的驱动装置和步进电机检测装置,其中,
所述驱动装置,用于驱动所述步进电机运行;
所述步进电机检测装置,用于获取步进电机的目标相在目标时刻的相电压,其中,在所述目标时刻,所述目标相的相电流为零;基于所述相电压,确定所述步进电机的工作情况。
第四方面,提供了一种移动终端,所述移动终端包括如第三方面所述的步进电机检测***。
本公开的一些实施例提供的步进电机检测方法,基于步进电机目标相在相电流为零的时刻的相电压与预设阈值的关系,确定步进电机的工作情况。由于仅通过检测相电压就可以确定出步进电机的工作情况,因此,对步进电机的改动较小,可以节省步进电机的安装空间,提升对小功率步进电机的检测效果,是一种更理想的步进电机检测方案。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1为本公开的一些实施例提供的步进电机检测***的结构示意图。
图2为本公开的一些实施例提供的步进电机的目标相的工作波形示意图。
图3为本公开的一些实施例提供的步进电机检测方法的流程示意图之一。
图4为本公开的一些实施例提供的步进电机检测方法的流程示意图之二。
图5为本公开的一些实施例提供的步进电机检测装置的结构示意图之一。
图6为本公开的一些实施例提供的步进电机检测装置的结构示意图之二。
图7为本公开的一些实施例提供的一种终端设备的硬件结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
按照定子励磁相数,步进电机分为两相步进电机、三相步进电机、四相步进电机和五相步进电机,等等。在步进电机的运行过程中,周期性的在某一个(或多个)时刻,有一相的相电流大于零,而其余各相的相电流为零。此时,由于步进电机还在运行,相电流为零的相的线圈上会因步进电机转子(磁铁)的转动产生感应电压,而如果步进电机发生堵转,相电流为零的相上的感应电压会因转子停止或减速而降低或消失。
步进电机相电流为零的相的线圈上产生的感应电压可以通过下式来计算:E=Blv,其中,B为转子(磁铁)的磁场强度,l为目标相的线圈在转子的磁场中的长度,v是转子的切割磁感线的速度。基于上式可知,转子转动的越快,相电流为零的相的线圈上产生的感应电压越大,转子转动的越慢,相电流为零的相的线圈上产生的感应电压越小。
因此,在步进电机运行之后,可以通过检测步进电机的一个相或多个相在相电流为零的时刻的相电压,来确定步进电机是否发生堵转。
以图1所示的两相步进电机1为例,在其运行过程中,周期性的在某一个(或多个)时刻,有一相的相电流大于零,而另一相的相电流为零。图2示出了两相步进电机1的A相和B相的一种电流波形图。从图2中可以看出,A相和B相的电流波形均为正弦波,并由A相电流和B相电流交替的驱动两相步进电机1工作,且在每一个周期内A相和B相各出现两次电流为零的时刻,如在t1和t3时刻,B相的电流为零,在t2和t4时刻,A相的电流为零。
进一步地,如图2所示,在t1或t3时刻,由于两相步进电机1还在A相(A相的相电流大于零)的驱动下运行,因此,相电流为零的B相的线圈上会因转子(磁铁)的转动产生感应电压,而如果步进电机发生堵转,B相上的感应电压会因转子停止或减速而降低或消失;同理,在t2或t4时刻,由于两相步进电机1还在B相(B相的相电流大于零)的驱动下运行,因此, 相电流为零的A相的线圈上会因转子(磁铁)的转动产生感应电压,而如果步进电机发生堵转,A相上的感应电压会因转子停止或减速而降低或消失。
基于上述原理,本公开的一些实施例提供一种步进电机检测方法、装置、***和移动终端,以更好地实现对步进电机工作情况的检测。其中,所述移动终端包括但不限于手机、IPAD、平板电脑、可穿戴设备等收发无线通信信号的终端设备。
需要说明的是,本公开的一些实施例提供的一种步进电机检测方法的执行主体可以是图1中所示的步进电机检测装置3,该步进电机检测装置3中包括电压获取模块,用于获取步进电机的目标相在目标时刻的相电压,其中,在所述目标时刻,所述目标相的相电流为零。可选地,如图1所示,步进电机检测装置3还可以与驱动装置2相互通信,以交换信令和数据。
如图3所示,本公开的一些实施例提供的一种步进电机检测方法,可以包括:
步骤301、获取步进电机的目标相在目标时刻的相电压,其中,在所述目标时刻,所述目标相的相电流为零。
具体可以在步进电机开始运行后,获取步进电机的目标相在目标时刻的相电压。如图1所示,两相步进电机1可以在驱动装置2的驱动下开始运行。
需要说明的是,被检测的目标相可以是一个也可以是多个,当被检测的目标相为多个时,不同目标相对应的目标时刻可以相同也可以不同。可选地,当被检测的目标相为多个时,这多个目标相对应的目标时刻可以是同一周期内的多个时刻。
举例来说,假如步进电机的励磁相数为两相,那么如图2所示,可以先在B相电流为零的t1时刻,获取B相的相电压,然后在A相电流为零的t2时刻,获取A相的相电压,得到2个相电压;或者,可以仅在B相电流为零的t1时刻,获取B相的相电压,得到1个相电压;或者,可以仅在A相电流为零的t2时刻,获取A相的相电压,得到1个相电压。
假如步进电机的励磁相数为三相,那么,可以在B相和C相电流为零的时刻,获取B相和/或C相的相电压,和/或,在A相和B相电流为零的时刻,获取A相和/或B相的相电压,和/或,在B相和C相电流为零的时刻, 获取B相和/或C相的相电压,得到一个或多个相电压。当步进电机的励磁相数为四相或五相及以上时,以此类推,最终获取到一个或多个相电压。
步骤302、基于获取的相电压,确定所述步进电机的工作情况。
作为一个例子,可以基于获取的相电压与预设阈值的关系,确定所述步进电机的工作情况,如确定所述步进电机是否发生堵转。
具体的,可以基于获取的一个或多个相电压是否均大于预设阈值,来确定步进电机是否发生堵转。更为具体的,可以在获取的一个或多个相电压均大于预设阈值的情况下,确定步进电机没有发生堵转;在获取的一个或多个相电压均小于预设阈值的情况下,确定步进电机发生堵转。
其中,预设阈值可以根据步进电机未发生堵转时(步进电机正常工作时),目标相的线圈上产生的感应电压的大小来确定,例如直接将步进电机未发生堵转时,目标相的线圈上产生的感应电压的大小作为所述预设阈值。
可以理解,在步骤301中,获取的相电压的个数越多,步骤302确定出的步进电机的工作情况越准确。如果步骤301中测得多个相电压,但这多个相电压中一部分相电压大于所述预设阈值,另一部分相电压小于所述预设阈值,可以认为步骤301获取的多个相电压受到了干扰,不够准确,可以丢弃获取的这多个相电压,并重新执行步骤301进行获取。
本公开的一些实施例提供的一种步进电机检测方法,由于步进电机未发生堵转时,相电流为零的目标相会因步进电机转子的转动产生感应电压,步进电机发生堵转时,相电流为零的目标相上的感应电压会因转子停止或减速而降低或消失,因此,可以通过获取目标相在相电流为零的时刻的相电压,来确定步进电机的工作情况。并且由于仅通过检测相电压就可以确定出步进电机的工作情况,因此,对步进电机的改动较小,可以节省步进电机的安装空间,提升对小功率步进电机的检测效果,是一种更理想的步进电机检测方案。
下面结合图4,以一个更为详细的实施例来说明本公开的一些实施例提供的一种步进电机检测方法。在图4所示的实施例中,所述步进电机为两相步进电机。如图4所示,本公开的一些实施例提供的一种步进电机检测方法,可以包括:
步骤401、驱动步进电机开始运行。
如图1所示,两相步进电机1可以在驱动装置2的控制下开始运行。
步骤402、获取所述步进电机的第一相在第一目标时刻的相电压,其中,在所述第一目标时刻,所述第一相的相电流为零。
步骤403、获取所述步进电机的第二相在第二目标时刻的相电压,其中,在所述第二目标时刻,所述第二相的相电流为零。
可选地,所述第一目标时刻和所述第二目标时刻为同一周期内的两个时刻,且在所述第一目标时刻和所述第二目标时刻之间,所述第一相的相电流和所述第二相的相电流大于零。如图2所示,t1时刻和t2时刻是同一周期内的两个时刻,且在t1时刻和t2时刻之间,A相和B相的相电流大于零。当然,第一目标时刻和所述第二目标时刻也可以是不同周期内的两个时刻。
继续参考图2可知,由于在t1时刻,B相的相电流为零,因此可以在t1时刻检测步进电机的B相的相电压VB1;由于在t2时刻,A相的相电流为零,因此可以在t2时刻检测步进电机的A相的相电压VA1。
上述步骤401至上述步骤403可以看作是图3所示的实施例中的步骤301的一种更为详细的实施方式。
可选地,为了提升检测的准确性,在获取第一相(如B相)的相电压和第二相(如A相)的相电压时,均可以采用差分输入的方式来检测。具体如图1所示,对于B相,在t1时刻可以同时采集VB1+和VB1-两个相电压,并将这两个相电压的差值的绝对值的二分之一作为B相在t1时刻的相电压,也即:VB1=|(VB1+)-(VB1-)|/2;对于A相,在t2时刻,可以同时采集VA1+和VA1-两个相电压,并将这两个相电压的差值的绝对值的二分之一作为A相在t2时刻的相电压,也即:VA1=|(VA1+)-(VA1-)|/2。
当然,除了差分输入方式,还可以采用其他方式检测第一相(如B相)和第二相(如A相)在对应的目标时刻的相电压,本公开的一些实施例对此不做限定。
在步骤403之后,上述步骤302可以包括:基于获取的所述第一相的相电压与所述预设阈值的关系,以及所述第二相的相电压与所述预设阈值的关系,确定所述步进电机的工作情况。具体确定过程详见下述步骤404至步骤 407。
步骤404、确定获取的所述第一相的相电压和所述第二相的相电压是否均大于预设阈值,如果是执行步骤405,否则执行步骤406。
例如,确定VA1和VB1是否均大于预设阈值TH。
步骤405、确定所述步进电机工作正常,未发生堵转。
可选地,在步骤405确定所述步进电机未发生堵转之后,可以继续对步进电机之后是否会发生堵转进行检测,如继续执行步骤303和步骤304,并在执行完步骤304之后返回执行步骤404。
步骤406、确定获取的所述第一相的相电压和所述第二相的相电压是否均小于预设阈值,如果是,执行步骤407,否则,执行步骤408。
例如,确定VA1和VB1是否均小于预设阈值TH。
步骤407、确定所述步进电机工作异常,发生堵转。
可选地,在确定步进电机发生堵转之后,图4所示的方法还可以包括:采用预设保护措施保护所述步进电机,例如,如图1所示,步进电机检测装置3可以向驱动装置2发送控制指令,以使驱动装置2停止驱动步进电机工作。
可选地,在确定步进电机发生堵转之后,图4所示的方法还可以包括:采用预设提醒方式提醒用户所述步进电机发生堵转。例如,如图1所示,步进电机检测装置3可以通过闪烁告警指示灯、发出告警声音、发送告警通知等方式,提醒用户所述步进电机发生堵转。
可选地,在上述步骤407之后,图4所示的方法还可以包括:
步骤408、在获取的所述第一相的相电压和所述第二相的相电压中的一个大于或等于所述预设阈值,另一个小于所述预设阈值的情况下,执行步骤303和步骤304。
步骤303、重新获取所述步进电机的第一相在第三目标时刻的相电压,其中,在所述第三目标时刻,所述第一相的相电流为零。
例如,如图2所示,由于在t3时刻,B相的相电流再次为零,因此可以在t3时刻再次检测步进电机的B相的相电压VB2。
步骤304、重新获取所述步进电机的第二相在第四目标时刻的相电压, 其中,在所述第四目标时刻,所述第二相的相电流为零。
例如,如图2所示,由于在t4时刻,A相的相电流再次为零,因此可以在t4时刻再次检测步进电机的A相的相电压VA2。
在步骤304之后,可以基于重新获取的所述第一相的相电压与所述预设阈值的关系,以及重新获取的所述第二相的相电压与所述预设阈值的关系,确定所述步进电机的工作情况。也即,在步骤304之后,可以返回执行步骤404,重复执行确定步进电机工作情况的过程。
不难理解,图4所示的实施例提供的一种步进电机检测方法,由于步进电机未发生堵转时,相电流为零的目标相会因步进电机转子的转动产生感应电压,步进电机发生堵转时,相电流为零的目标相上的感应电压会因转子停止或减速而降低或消失,因此,可以基于目标相在相电流为零的时刻的相电压,来确定步进电机的工作情况。并且由于仅通过检测相电压就可以确定出步进电机的工作情况,因此,对步进电机的改动较小,可以节省步进电机的安装空间,提升对小功率步进电机的检测效果,是一种更理想的步进电机检测方案。
图4是以两相步进电机为例,对本公开的一些实施例提供的步进电机检测方法进行了详细的说明,可以理解,对于两相以上的步进电机的堵转检测,也可以采用本公开的一些实施例提供的步进电机检测方法,具体的检测过程与两相步进电机的堵转检测过程类似,此处不做重复描述。
需要说明的是,在图4所示的实施例中,步骤404、步骤406和步骤408的执行顺序可以是任意的,并不局限于图4所示的执行顺序。
以上是对本公开提供的一种步进电机检测方法的说明,相应于上述方法实施例,本公开的一些实施例还提供一种步进电机检测装置,该装置可以是如图1所示的步进电机检测装置3,下面进行介绍。
如图5所示,本公开的一些实施例提供的一种步进电机检测装置,可以包括:第一电压获取模块501和工作情况确定模块502。
第一电压获取模块501,用于获取步进电机的目标相在目标时刻的相电压,其中,在所述目标时刻,所述目标相的相电流为零。
需要说明的是,被检测的目标相可以是一个也可以是多个,当被检测的 目标相为多个时,不同目标相对应的目标时刻可以相同也可以不同。可选地,当被检测的目标相为多个时,这多个目标相对应的目标时刻可以是同一周期内的多个时刻。
工作情况确定模块502,用于基于所述相电压,确定所述步进电机的工作情况。
作为一个例子,所述工作情况确定模块502,可用于基于所述相电压与预设阈值的关系,确定所述步进电机的工作情况。
具体的,工作情况确定模块502可以基于获取的一个或多个相电压是否均大于预设阈值,来确定步进电机的工作情况,如是否发生堵转。更为具体的,工作情况确定模块502可以在获取的一个或多个相电压均大于预设阈值的情况下,确定步进电机工作正常;在获取的一个或多个相电压均小于预设阈值的情况下,确定步进电机工作异常。
本公开的一些实施例提供的一种步进电机检测装置,由于步进电机未发生堵转时,相电流为零的目标相会因步进电机转子的转动产生感应电压,步进电机发生堵转时,相电流为零的目标相上的感应电压会因转子停止或减速而降低或消失,因此,可以基于目标相在相电流为零的时刻的相电压,来确定步进电机的工作情况。并且由于仅通过检测相电压就可以确定出步进电机的工作情况,因此,对步进电机的改动较小,可以节省步进电机的安装空间,提升对小功率步进电机的检测效果,是一种更理想的步进电机检测方案。
下面结合图6,以一个更为详细的实施例来说明本公开的一些实施例提供的一种步进电机检测装置。在图6所示的实施例中,所述步进电机为两相步进电机。如图6所示,本公开的一些实施例提供的一种步进电机检测装置,可以包括:第一电压获取模块501、工作情况确定模块502、第三电压获取模块503、第四电压获取模块504和触发模块505。
其中,第一电压获取模块501包括:运行子模块601、第一电压获取子模块602和第二电压获取子模块603。
所述运行子模块601,用于驱动步进电机运行。
在实际应用中,运行子模块601可以先向步进电机的驱动装置发送驱动步进电机运行的指令,然后由驱动装置驱动步进电机运行。
所述第一电压获取子模块602,用于获取所述步进电机的第一相在第一目标时刻的相电压,其中,在所述第一目标时刻,所述第一相的相电流为零。
所述第二电压获取子模块603,用于获取所述步进电机的第二相在第二目标时刻的相电压,其中,在所述第二目标时刻,所述第二相的相电流为零。
可选地,所述第一目标时刻和所述第二目标时刻为同一周期内的两个时刻,且在所述第一目标时刻和所述第二目标时刻之间,所述第一相的相电流和所述第二相的相电流大于零。
其中,工作情况确定模块502,用于基于获取的所述第一相的相电压与所述预设阈值的关系,以及所述第二相的相电压与所述预设阈值的关系,确定所述步进电机的工作情况。
具体的,工作情况确定模块502可以包括:第一判断子模块604、第一确定子模块605、第二判断子模块606、第二确定子模块607和第三判断子模块608。
第一判断子模块604,用于确定获取的所述第一相的相电压和所述第二相的相电压是否均大于预设阈值,如果是触发第一确定子模块605,否则触发第二判断子模块606。
第一确定子模块605,用于确定所述步进电机工作正常,未发生堵转。
也就是说,工作情况确定模块502可用于在所述第一相的相电压和所述第二相的相电压均大于或等于所述预设阈值的情况下,确定所述步进电机未发生堵转。
第二判断子模块606,用于确定获取的所述第一相的相电压和所述第二相的相电压是否均小于预设阈值,如果是触发第二确定子模块607,否则触发第三判断子模块608。
第二确定子模块607,用于确定所述步进电机工作异常,发生堵转。
也就是说,工作情况确定模块502可用于在所述第一相的相电压和所述第二相的相电压均小于所述预设阈值的情况下,确定所述步进电机发生堵转。
第三判断子模块608,用于在获取的所述第一相的相电压和所述第二相的相电压中的一个大于或等于所述预设阈值,另一个小于所述预设阈值的情况下,触发第三电压监测模块503和第四电压获取模块504。
第三电压监测模块503,用于重新获取所述步进电机的第一相在第三目标时刻的相电压,其中,在所述第三目标时刻,所述第一相的相电流为零。
第四电压获取模块504,用于重新获取所述步进电机的第二相在第四目标时刻的相电压,其中,在所述第四目标时刻,所述第二相的相电流为零。
触发模块505,用于触发所述工作情况确定模块502,基于重新获取的所述第一相的相电压与所述预设阈值的关系,以及重新获取的所述第二相的相电压与所述预设阈值的关系,确定所述步进电机的工作情况。
如图6所示,在一个例子中,触发模块505用于先触发第一判断子模块604。
不难理解,图6所示的实施例提供的一种步进电机检测装置,由于步进电机未发生堵转时,相电流为零的目标相会因步进电机转子的转动产生感应电压,步进电机发生堵转时,相电流为零的目标相上的感应电压会因转子停止或减速而降低或消失,因此,可以基于目标相在相电流为零的时刻的相电压,来确定步进电机的工作情况。并且由于仅通过检测相电压就可以确定出步进电机的工作情况,因此,对步进电机的改动较小,可以节省步进电机的安装空间,提升对小功率步进电机的检测效果,是一种更理想的步进电机检测方案。
可选地,除了上述方法和装置外,本公开的一些实施例还提供了一种步进电机检测***,如图1所示,***可以包括:步进电机1、所述步进电机1的驱动装置2和步进电机检测装置3,其中,
所述驱动装置2,用于驱动所述步进电机运行;
所述步进电机检测装置3,用于获取步进电机的目标相在目标时刻的相电压,其中,在所述目标时刻,所述目标相的相电流为零;基于所述相电压,确定所述步进电机的工作情况。
其中,步进电机检测装置3确定所述步进电机发生堵转的详细过程可以参照上文中的方法实施例,此处不做重复描述。
本公开的一些实施例提供的一种步进电机检测***,由于步进电机检测装置3可以基于目标相在相电流为零的时刻的相电压,来确定步进电机的工作情况。因此对步进电机的改动较小,不需要占用较大的空间,且对小功率 步进电机有更好的检测效果,是一种更理想的步进电机检测方案。
可选地,本公开的一些实施例还提供了一种移动终端,该移动终端可以包括至少一个上述步进电机检测***。不难理解,由于该移动终端应用的是本公开的一些实施例提供的一种步进电机检测***,因此可以在提高步进电机检测有效性的同时,节省移动终端的安装空间。
图7为实现本公开各个实施例的一种移动终端的硬件结构示意图,
该移动终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、处理器710、以及电源711等部件。本领域技术人员可以理解,图7中示出的移动终端结构并不构成对移动终端的限定,移动终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开的一些实施例中,移动终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器710,用于获取步进电机的目标相在目标时刻的相电压,其中,在所述目标时刻,所述目标相的相电流为零;基于所述相电压,确定所述步进电机的工作情况。由于仅通过检测相电压就可以确定出步进电机的工作情况,因此可以节省步进电机的安装空间,提升对小功率步进电机的检测效果。
应理解的是,本公开的一些实施例中,射频单元701可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器710处理;另外,将上行的数据发送给基站。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元701还可以通过无线通信***与网络和其他设备通信。
移动终端通过网络模块702为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元703可以将射频单元701或网络模块702接收的或者在存储器709中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元703还可以提供与移动终端700执行的特定功能相关的音频输出(例如, 呼叫信号接收声音、消息接收声音等等)。音频输出单元703包括扬声器、蜂鸣器以及受话器等。
输入单元704用于接收音频或视频信号。输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元706上。经图形处理器7041处理后的图像帧可以存储在存储器709(或其它存储介质)中或者经由射频单元701或网络模块702进行发送。麦克风7042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元701发送到移动通信基站的格式输出。
移动终端700还包括至少一种传感器705,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板7061的亮度,接近传感器可在移动终端700移动到耳边时,关闭显示面板7061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别移动终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器705还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元706用于显示由用户输入的信息或提供给用户的信息。显示单元706可包括显示面板7061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板7061。
用户输入单元707可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合 的物体或附件在触控面板7071上或在触控面板7071附近的操作)。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器710,接收处理器710发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板7071。除了触控面板7071,用户输入单元707还可以包括其他输入设备7072。具体地,其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板7071可覆盖在显示面板7061上,当触控面板7071检测到在其上或附近的触摸操作后,传送给处理器710以确定触摸事件的类型,随后处理器710根据触摸事件的类型在显示面板7061上提供相应的视觉输出。虽然在图7中,触控面板7071与显示面板7061是作为两个独立的部件来实现移动终端的输入和输出功能,但是在某些实施例中,可以将触控面板7071与显示面板7061集成而实现移动终端的输入和输出功能,具体此处不做限定。
接口单元708为外部装置与移动终端700连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元708可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到移动终端700内的一个或多个元件或者可以用于在移动终端700和外部装置之间传输数据。
存储器709可用于存储软件程序以及各种数据。存储器709可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器710是移动终端的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器709内的软件程序和/或模块,以及调用存储在存储器709内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。处理器710可包括一个或多个处理单元;可选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
移动终端700还可以包括给各个部件供电的电源711(比如电池),可选的,电源711可以通过电源管理***与处理器710逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。
另外,移动终端700包括一些未示出的功能模块,在此不再赘述。
可选的,本公开的一些实施例还提供一种移动终端,包括处理器710,存储器709,存储在存储器709上并可在所述处理器710上运行的程序,该程序被处理器710执行时实现上述步进电机检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述步进电机检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
可以理解的是,本公开的一些实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (12)

  1. 一种步进电机检测方法,包括:
    获取步进电机的目标相在目标时刻的相电压,其中,在所述目标时刻,所述目标相的相电流为零;
    基于所述相电压,确定所述步进电机的工作情况。
  2. 根据权利要求1所述的方法,其中,
    所述步进电机为两相步进电机,其中,所述获取步进电机的目标相在目标时刻的相电压,包括:
    获取所述步进电机的第一相在第一目标时刻的相电压,其中,在所述第一目标时刻,所述第一相的相电流为零;
    获取所述步进电机的第二相在第二目标时刻的相电压,其中,在所述第二目标时刻,所述第二相的相电流为零;
    其中,所述基于所述相电压,确定所述步进电机的工作情况,包括:
    基于获取的所述第一相的相电压与所述预设阈值的关系,以及所述第二相的相电压与所述预设阈值的关系,确定所述步进电机的工作情况。
  3. 根据权利要求2所述的方法,其中,
    所述第一目标时刻和所述第二目标时刻为同一周期内的两个时刻,且在所述第一目标时刻和所述第二目标时刻之间,所述第一相的相电流和所述第二相的相电流大于零。
  4. 根据权利要求3所述的方法,其中,
    所述基于获取的所述第一相的相电压与所述预设阈值的关系,以及所述第二相的相电压与所述预设阈值的关系,确定所述步进电机的工作情况,包括:
    在获取的所述第一相的相电压和所述第二相的相电压均小于所述预设阈值的情况下,确定所述步进电机工作异常;
    在获取的所述第一相的相电压和所述第二相的相电压均大于或等于所述预设阈值的情况下,确定所述步进电机工作正常。
  5. 根据权利要求3所述的方法,其中,
    在获取的所述第一相的相电压和所述第二相的相电压中的一个大于或等于所述预设阈值,另一个小于所述预设阈值的情况下,所述方法还包括:
    重新获取所述步进电机的第一相在第三目标时刻的相电压,其中,在所述第三目标时刻,所述第一相的相电流为零;
    重新获取所述步进电机的第二相在第四目标时刻的相电压,其中,在所述第四目标时刻,所述第二相的相电流为零;
    基于重新获取的所述第一相的相电压与所述预设阈值的关系,以及重新获取的所述第二相的相电压与所述预设阈值的关系,确定所述步进电机的工作情况。
  6. 一种步进电机检测装置,包括:
    第一电压获取模块,用于获取步进电机的目标相在目标时刻的相电压,其中,在所述目标时刻,所述目标相的相电流为零;
    工作情况确定模块,用于基于所述相电压,确定所述步进电机的工作情况。
  7. 根据权利要求6所述的装置,其中,
    所述步进电机为两相步进电机,
    其中,所述第一电压获取模块包括:第一电压获取子模块和第二电压获取子模块;
    所述第一电压获取子模块,用于获取所述步进电机的第一相在第一目标时刻的相电压,其中,在所述第一目标时刻,所述第一相的相电流为零;
    所述第二电压获取子模块,用于获取所述步进电机的第二相在第二目标时刻的相电压,其中,在所述第二目标时刻,所述第二相的相电流为零;
    其中,所述工作情况确定模块,用于基于获取的所述第一相的相电压与所述预设阈值的关系,以及所述第二相的相电压与所述预设阈值的关系,确定所述步进电机的工作情况。
  8. 根据权利要求7所述的装置,其中,
    所述第一目标时刻和所述第二目标时刻为同一周期内的两个时刻,且在所述第一目标时刻和所述第二目标时刻之间,所述第一相的相电流和所述第二相的相电流的绝对值均大于零。
  9. 根据权利要求8所述的装置,其中,
    所述工作情况确定模块,用于在获取的所述第一相的相电压和所述第二相的相电压均小于所述预设阈值的情况下,确定所述步进电机工作异常;或者,
    所述工作情况确定模块,用于在获取的所述第一相的相电压和所述第二相的相电压均大于或等于所述预设阈值的情况下,确定所述步进电机工作正常。
  10. 根据权利要求8所述的装置,其中,所述装置还包括:
    第三电压获取模块,用于当获取的所述第一相的相电压和所述第二相的相电压中的一个大于或等于所述预设阈值,另一个小于所述预设阈值时,重新获取所述步进电机的第一相在第三目标时刻的相电压,其中,在所述第三目标时刻,所述第一相的相电流为零;
    第四电压获取模块,用于重新获取所述步进电机的第二相在第四目标时刻的相电压,其中,在所述第四目标时刻,所述第二相的相电流为零;
    触发模块,用于触发所述工作情况确定模块,重新获取的所述第一相的相电压与所述预设阈值的关系,以及重新获取的所述第二相的相电压与所述预设阈值的关系,确定所述步进电机的工作情况。
  11. 一种步进电机检测***,包括:步进电机、所述步进电机的驱动装置和步进电机检测装置,其中,
    所述驱动装置,用于驱动所述步进电机运行;
    所述步进电机检测装置,用于获取步进电机的目标相在目标时刻的相电压,其中,在所述目标时刻,所述目标相的相电流为零;基于所述相电压,确定所述步进电机的工作情况。
  12. 一种移动终端,包括如权利要求11所述的步进电机检测***。
PCT/CN2020/089180 2019-05-31 2020-05-08 步进电机检测方法、装置和*** WO2020238582A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910468574.4 2019-05-31
CN201910468574.4A CN110187274A (zh) 2019-05-31 2019-05-31 一种步进电机检测方法、装置和***

Publications (1)

Publication Number Publication Date
WO2020238582A1 true WO2020238582A1 (zh) 2020-12-03

Family

ID=67719262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089180 WO2020238582A1 (zh) 2019-05-31 2020-05-08 步进电机检测方法、装置和***

Country Status (2)

Country Link
CN (1) CN110187274A (zh)
WO (1) WO2020238582A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110187274A (zh) * 2019-05-31 2019-08-30 维沃移动通信有限公司 一种步进电机检测方法、装置和***
CN112653093B (zh) * 2019-10-10 2023-09-01 惠州拓邦电气技术有限公司 防交流电机堵转的方法及装置
EP3993257A1 (en) * 2020-11-03 2022-05-04 Ypsomed AG System and method to detect drive blockage in a drug delivery device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344916A (zh) * 2013-06-28 2013-10-09 江苏浩峰汽车附件有限公司 电机堵转检测方法
WO2014156386A1 (ja) * 2013-03-29 2014-10-02 三菱電機株式会社 電動機の診断装置および開閉装置
CN104155605A (zh) * 2014-07-24 2014-11-19 上海镭隆科技发展有限公司 一种便携式电机带旋变运动控制的测试设备及测试方法
CN104422883A (zh) * 2013-08-21 2015-03-18 华为技术有限公司 一种电机失步的检测方法和检测设备
CN105137351A (zh) * 2015-07-27 2015-12-09 深圳市安进汽车电子有限公司 测量仪表步进电机输出平稳性的方法
CN106970324A (zh) * 2017-04-25 2017-07-21 北京太尔时代科技有限公司 一种限位传感方法
CN109557464A (zh) * 2017-09-25 2019-04-02 郑州宇通客车股份有限公司 一种电机缺相故障检测方法及装置
CN110187274A (zh) * 2019-05-31 2019-08-30 维沃移动通信有限公司 一种步进电机检测方法、装置和***

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202678A (ja) * 1988-02-08 1989-08-15 Kawasaki Steel Corp 電動機のストール検出方法
US6900657B2 (en) * 2003-09-24 2005-05-31 Saia-Burgess Automotive, Inc. Stall detection circuit and method
CN100578247C (zh) * 2006-06-30 2010-01-06 台达电子工业股份有限公司 马达的测试方法及测试电路
CN100563093C (zh) * 2007-09-21 2009-11-25 艾默生网络能源有限公司 一种异步电动机的堵转参数辨识方法及装置
CN101609115A (zh) * 2008-06-16 2009-12-23 台达电子工业股份有限公司 马达驱动器输出欠相检测方法
US8058894B2 (en) * 2009-03-31 2011-11-15 Semiconductor Components Industries, Llc Method for detecting a fault condition
CN102004224B (zh) * 2009-08-31 2012-12-12 比亚迪股份有限公司 一种三相电机缺相的检测***及其检测方法
CN103368476B (zh) * 2012-04-11 2017-05-10 广东高标电子科技有限公司 电动交通工具的电机转子电角度检测电路
US9071181B2 (en) * 2013-03-13 2015-06-30 Microchip Technology Incorporated Three phase brushless DC motor sensor-less control using sinusoidal drive method and apparatus
CN104898055B (zh) * 2014-03-04 2017-11-24 乐星产电(无锡)有限公司 电机状态判断方法及装置
CN103986379B (zh) * 2014-05-26 2017-02-01 北京经纬恒润科技有限公司 单片机、步进电机的驱动电路、驱动芯片及驱动方法
CN107093965B (zh) * 2017-05-24 2019-08-23 杭州三花研究院有限公司 控制电机速度的方法及控制电机速度的***
CN107104615B (zh) * 2017-05-24 2019-06-14 杭州三花研究院有限公司 控制电机的方法及控制***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156386A1 (ja) * 2013-03-29 2014-10-02 三菱電機株式会社 電動機の診断装置および開閉装置
CN103344916A (zh) * 2013-06-28 2013-10-09 江苏浩峰汽车附件有限公司 电机堵转检测方法
CN104422883A (zh) * 2013-08-21 2015-03-18 华为技术有限公司 一种电机失步的检测方法和检测设备
CN104155605A (zh) * 2014-07-24 2014-11-19 上海镭隆科技发展有限公司 一种便携式电机带旋变运动控制的测试设备及测试方法
CN105137351A (zh) * 2015-07-27 2015-12-09 深圳市安进汽车电子有限公司 测量仪表步进电机输出平稳性的方法
CN106970324A (zh) * 2017-04-25 2017-07-21 北京太尔时代科技有限公司 一种限位传感方法
CN109557464A (zh) * 2017-09-25 2019-04-02 郑州宇通客车股份有限公司 一种电机缺相故障检测方法及装置
CN110187274A (zh) * 2019-05-31 2019-08-30 维沃移动通信有限公司 一种步进电机检测方法、装置和***

Also Published As

Publication number Publication date
CN110187274A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2020238582A1 (zh) 步进电机检测方法、装置和***
WO2016188260A1 (zh) 通信消息发送方法及设备
WO2020221044A1 (zh) 步进电机的控制方法和移动终端
WO2015062235A1 (zh) 电子设备、电池保护方法和装置
WO2020216002A1 (zh) 检测方法及移动终端
WO2021052413A1 (zh) 节能信号监听时刻的确定方法、配置方法及相关设备
WO2019120087A1 (zh) 降低功耗的处理方法及移动终端
WO2020220999A1 (zh) 截屏方法及终端设备
WO2021139694A1 (zh) 控制方法、装置及电子设备
KR101958255B1 (ko) 전자장치에서 상황인식에 따라 진동 강도를 제어하기 위한 방법 및 장치
WO2016045027A1 (zh) 屏幕灵敏度调整方法和移动终端
CN108681413B (zh) 一种显示模组的控制方法及移动终端
CN112415367B (zh) 驱动芯片异常侦测方法、装置、电子设备及可读存储介质
EP3846016A1 (en) Image display method and mobile terminal
CN111651030B (zh) 传感器检测方法、装置、存储介质及移动终端
US20230019967A1 (en) Electronic device, and interaction method and device
WO2015074387A1 (zh) 滑动操作响应方法、装置及终端设备
CN109164456B (zh) 深度摄像头模组、移动终端及摄像头模组互扰处理方法
WO2019154322A1 (zh) 来电处理方法及移动终端
CN108021315B (zh) 一种控制方法及移动终端
WO2018133211A1 (zh) 一种双屏电子设备的屏幕切换方法及双屏电子设备
CN110505378B (zh) 升降式摄像头控制方法及移动终端
CN110048648B (zh) 一种电机控制方法及终端设备
CN108170360B (zh) 一种手势功能的控制方法及移动终端
CN109189482A (zh) 一种显示控制方法、终端及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814030

Country of ref document: EP

Kind code of ref document: A1