WO2020233297A1 - 车灯光学元件组件、车辆照明模组、车灯及车辆 - Google Patents

车灯光学元件组件、车辆照明模组、车灯及车辆 Download PDF

Info

Publication number
WO2020233297A1
WO2020233297A1 PCT/CN2020/085171 CN2020085171W WO2020233297A1 WO 2020233297 A1 WO2020233297 A1 WO 2020233297A1 CN 2020085171 W CN2020085171 W CN 2020085171W WO 2020233297 A1 WO2020233297 A1 WO 2020233297A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
light
secondary optical
primary optical
primary
Prior art date
Application number
PCT/CN2020/085171
Other languages
English (en)
French (fr)
Inventor
李聪
龚卫刚
仇智平
祝贺
张大攀
李辉
聂睿
孙晓芬
桑文慧
Original Assignee
华域视觉科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910417075.2A external-priority patent/CN111964000A/zh
Priority claimed from CN201910556042.6A external-priority patent/CN110173669B/zh
Application filed by 华域视觉科技(上海)有限公司 filed Critical 华域视觉科技(上海)有限公司
Priority to US17/415,864 priority Critical patent/US11391429B2/en
Publication of WO2020233297A1 publication Critical patent/WO2020233297A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/26Elongated lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/19Attachment of light sources or lamp holders
    • F21S41/192Details of lamp holders, terminals or connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/29Attachment thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/29Attachment thereof
    • F21S41/295Attachment thereof specially adapted to projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/322Optical layout thereof the reflector using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/14Bayonet-type fastening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a vehicle lighting device, in particular to a vehicle lamp optical element assembly, a vehicle lighting module including the vehicle lamp optical element assembly, a vehicle lamp including the vehicle lighting module, and a vehicle including the vehicle lamp.
  • automotive lamp modules generally refer to low beam and/or high beam lighting modules in automotive headlights.
  • the optical components of the automotive lamp module include light sources, primary optical components (reflectors, condensers, etc.). Device, etc.) and secondary optical components (usually lenses).
  • primary optical components reflectors, condensers, etc.
  • Device, etc. secondary optical components
  • secondary optical components usually lenses
  • the lights on concept cars and even mass-produced cars displayed by many mainstream vehicle companies are narrower and more compact, and they also have multiple modules. Realize the trend of vehicle lighting, instead of the common one or two modules with larger light-emitting surface openings to achieve vehicle lighting.
  • a vehicle lighting module in the form of light source + light guide + lens is generally adopted.
  • the volume of the vehicle lighting module and the opening of the light exit surface are both large, and the lens opening height (up and down direction) and width (left and right direction) dimensions generally require 40-70mm, the length of the light guide is generally 40-70mm, which cannot be applied to the increasingly compact car lights.
  • the car light module structure of the prior art is used to directly reduce the size, the light effect will be lost, and the resulting car light shape will not meet the requirements of regulations.
  • the field urgently needs corresponding technical solutions to meet this demand.
  • the problem to be solved by the present invention is to provide a vehicle light optical element assembly, which optimizes the structure so that the overall size is reduced under the premise of ensuring the light efficiency, so as to adapt to the narrow and compact vehicle lights. modeling.
  • the problem to be solved by the second aspect of the present invention is to provide a vehicle lighting module, the vehicle lighting module is optimized in structure so that the overall size is reduced under the premise of ensuring light efficiency, so as to adapt to the narrow and compact vehicle lamp shape .
  • the problem to be solved by the third aspect of the present invention is to provide a vehicle lamp whose optical element assembly is optimized in structure to reduce the overall size while ensuring light efficiency, so that the shape of the vehicle lamp is narrower and smaller. compact.
  • the problem to be solved by the fourth aspect of the present invention is to provide a vehicle in which the optical element assembly of the vehicle lamp is optimized in structure to reduce the overall size while ensuring the light effect, thereby making the shape of the vehicle lamp narrower ,compact.
  • one aspect of the present invention provides a vehicle light optical element assembly, which includes a primary optical element and a secondary optical element, and light can pass through the primary optical element and the secondary optical element in sequence
  • the post-projection forms an illumination light shape
  • the primary optical element includes at least one light-incoming part, a light-passing part, and a light-exiting part sequentially arranged along the light-emitting direction
  • the primary optical element is located on the optical axis of the light-incoming part on both sides
  • the direction of the optical axis close to the secondary optical element is inclined, and the light-emitting portion is a concave arc surface; or,
  • the direction of the optical axis of the light entrance part is the same as the direction of the optical axis of the secondary optical element, and the transverse section line and/or the longitudinal section line of the light exit section are configured as a forward convex arc.
  • the longitudinal section of the light-emitting portion is gradually curved upwards and backwards from the lower boundary of the light-emitting portion of the primary optical element.
  • the lower surface of the primary optical element is inclined backward and downward with respect to the optical axis of the secondary optical element, and the inclination angle is ⁇ 15°.
  • the distance between the upper and lower surfaces of the primary optical element gradually decreases from back to front.
  • a second aspect of the present invention provides a vehicle lighting module.
  • the vehicle lighting module includes a radiator, a circuit board, a light source, and the vehicle lamp according to any one of claims to which are sequentially arranged from back to front along the light emitting direction Optical element assembly, the light source is electrically connected to the circuit board; the vehicle lighting module further includes a primary optical element support for supporting the primary optical element and a secondary optical element for supporting the secondary optical element Optical component holder.
  • the secondary optical element and the secondary optical element holder are integrally molded parts.
  • the secondary optical element holder is configured as a light shield, and the secondary optical element is a two-color injection molded one piece.
  • an opening is formed between the upper and lower ends of the secondary optical element and the secondary optical element holder.
  • the primary optical element holder can be plugged into the secondary optical element holder to fix the relative positions of the primary optical element and the secondary optical element, and the secondary optical element holder is fixed to the heat sink connection.
  • the primary optical element holder includes insertion positioning portions formed on both sides of the primary optical element, and the secondary optical element holder is provided with slots that can be inserted into the insertion positioning portion.
  • the slot penetrates the rear end of the secondary optical element holder and extends from back to front, the front end surface of the insertion positioning portion is in contact with the front surface inside the slot, and the insertion positioning portion
  • the rear end surface of the insertion positioning portion is in contact with the surface of the circuit board, the top surface of the insertion positioning portion is in contact with the upper surface inside the slot, and the bottom surface of the insertion positioning portion is in contact with the lower surface inside the slot.
  • a convex structure is provided on the surface of the insertion positioning portion that contacts the slot.
  • the left and right inner sides of the front end of the secondary optical element holder are provided with arc-shaped baffles.
  • the heat sink is provided with a heat sink positioning pin
  • the primary optical element is provided with a primary optical element positioning hole that can be matched with the heat sink positioning pin
  • the number of the primary optical element positioning hole is two.
  • One of them is a circular hole in contact with the peripheral surface of the radiator positioning pin
  • the primary optical element is provided with a vent connecting the circular hole with the outside.
  • the size of at least one of the top and bottom and left and right directions of the light exit surface of the secondary optical element is ⁇ 35 mm.
  • the primary optical element support includes a support frame and a limiting member, the limiting member is fixed on the primary optical element, the support frame is provided with a limiting groove, and the limiting member and The limiting groove is matched and connected to the support frame and relatively fixed; the secondary optical element support is provided with a slot, and the primary optical element support is inserted and matched with the slot.
  • the slot penetrates the rear end of the secondary optical element bracket and extends from back to front, the front end surface of the support frame is in contact with the front surface inside the slot, and the back of the support frame The end surface is in contact with the surface of the circuit board, the top surface of the stopper is in contact with the upper surface inside the slot, and the bottom surface of the support frame is in contact with the lower surface inside the slot.
  • the left and right sides of the support frame are respectively provided with an engaging part, and the inner sides of the two engaging parts are respectively in contact with the left and right sides of the secondary optical element holder.
  • both the primary optical element support and the secondary optical element support are fixedly connected to the heat sink.
  • a third aspect of the present invention provides a vehicle lamp, which includes the vehicle lighting module described in any one of the above.
  • a fourth aspect of the present invention provides a vehicle including the above-mentioned vehicle lamp.
  • the present invention achieves the following beneficial effects:
  • the bracket of the primary optical element is matched with the slot of the secondary optical element, which saves the installation space of the bracket of the primary optical element, thereby achieving the purpose of miniaturization.
  • an arc-shaped baffle is provided at the front end of the secondary optical element holder to block the light that forms stray light after entering the lens and exiting, thereby eliminating stray light and improving the light shape effect.
  • the primary optical element and the secondary optical element are assembled into an integral structure to directly determine the relative position of the two, realizing the primary optical element and the secondary optical element
  • the assembly of the radiator causes a positioning error between the two, so it can ensure the positioning accuracy and installation reliability of the primary optical element and the secondary optical element, thereby ensuring the accuracy and functional stability of the vehicle light shape.
  • FIG. 1 is a schematic structural diagram of a main low beam module in a specific embodiment of the present invention
  • Figure 2 is an exploded exploded view of Figure 1;
  • Figure 3 is a transverse sectional view of Figure 1;
  • Figure 4 is a longitudinal sectional view of Figure 1;
  • FIG. 5 is a schematic diagram of the light shape formed by the projection of the main low beam module in the specific embodiment of the present invention.
  • FIG. 6 is a schematic structural view of an embodiment in which the secondary optical element of the main low beam module and the secondary optical element holder are integrated in the specific embodiment of the present invention
  • Figure 7 is a longitudinal sectional view of Figure 6;
  • FIG. 8 is a schematic structural view of another embodiment in which the secondary optical element of the main low beam module and the secondary optical element holder are integrated in the specific embodiment of the present invention
  • Figure 9 is a longitudinal sectional view of Figure 8.
  • FIG. 10 is a schematic diagram of the structure of the secondary optical element holder of the main low beam module in the specific embodiment of the present invention.
  • Figure 11 is a perspective view from another direction of Figure 10;
  • FIG. 12 is a schematic diagram of the original optical path of light blocked by the arc-shaped baffle of the main low beam module in the specific embodiment of the present invention.
  • FIG. 13 is a schematic structural view from the rear of an integrated piece composed of the primary optical element of the main low beam module and the primary optical element holder in the specific embodiment of the present invention
  • FIG. 14 is a perspective view of an integrated piece formed by the primary optical element of the main low beam module and the primary optical element holder in the specific embodiment of the present invention, as viewed from the rear bottom;
  • Figure 15 is an enlarged schematic diagram of E in Figure 14;
  • FIG. 16 is a perspective view from the front and top of the integral piece composed of the primary optical element of the main low beam module and the primary optical element holder in the specific embodiment of the present invention
  • FIG. 17 is an enlarged schematic diagram of F in FIG. 16;
  • Figure 18 is a transverse sectional view of Figure 16;
  • Fig. 19 is an enlarged schematic diagram of H in Fig. 18;
  • 20 is a schematic view of the secondary optical element holder of the main low beam module in the specific embodiment of the present invention, viewed from the rear;
  • Figure 21 is a perspective view from another direction of Figure 20;
  • FIG. 22 is a perspective view of the primary optical element of the main low beam module and the secondary optical element bracket after being matched and fixed in the specific embodiment of the present invention
  • Fig. 23 is a schematic view from the side after the primary optical element of the main low beam module and the secondary optical element bracket are matched and fixed in the specific embodiment of the present invention
  • Figure 24 is a cross-sectional view taken along the line I-I of Figure 23;
  • Fig. 25 is an enlarged schematic diagram of J in Fig. 24;
  • Figure 26 is a K-K sectional view of Figure 23;
  • FIG. 27 is an enlarged schematic diagram of L in FIG. 26;
  • FIG. 28 is a schematic diagram of the primary optical element of the main low beam module, the circuit board and the radiator in the specific embodiment of the present invention, viewed from the side after being fitted together;
  • Figure 29 is a cross-sectional view taken along the line M-M of Figure 28;
  • FIG. 30 is a schematic structural diagram of an auxiliary low beam module in a specific embodiment of the present invention.
  • Figure 31 is a transverse cross-sectional view of Figure 30;
  • Figure 32 is a longitudinal sectional view of Figure 30;
  • 33 is a schematic diagram of the orientation of the primary optical element and the secondary optical element in the auxiliary low beam module in the specific embodiment of the present invention.
  • Fig. 34 is a perspective view of Fig. 33 as viewed from the rear bottom;
  • 35 is a top view of the primary optical element in the auxiliary low beam module in the specific embodiment of the present invention.
  • 36 is a side view of the primary optical element in the auxiliary low beam module in the specific embodiment of the present invention.
  • FIG. 37 is a perspective view of the primary optical element in the auxiliary low beam module in the specific embodiment of the present invention, viewed from below;
  • 39 is a comparison diagram of the longitudinal section of the primary optical element and the secondary optical element of the main low beam module and the auxiliary beam module along the optical axis of the respective secondary optical elements in the specific embodiment of the present invention.
  • FIG. 40 is a schematic diagram of the light shape formed by the projection of the auxiliary low beam module containing the III zone structure in the specific embodiment of the present invention.
  • 41 is a schematic diagram of the light shape formed by the projection of the auxiliary low beam module without the III zone structure in the specific embodiment of the present invention.
  • FIG. 43 is a schematic diagram of the structure of the primary optical element and the primary optical element of the low beam module in the specific embodiment of the present invention.
  • Figure 44 is a perspective view of Figure 43 seen from the rear;
  • FIG. 45 is a schematic structural diagram of a low beam module in a specific embodiment of the present invention.
  • FIG. 46 is a longitudinal cross-sectional view of a low beam module in a specific embodiment of the present invention.
  • 47 is a schematic diagram of the orientation of the primary optical element and the secondary optical element of the low beam module in the specific embodiment of the present invention.
  • FIG. 48 is a schematic diagram of the orientation of the primary optical element and the secondary optical element and the secondary optical element holder of the low beam module in the specific embodiment of the present invention.
  • Fig. 49 is an enlarged schematic diagram of P in Fig. 48;
  • 50 is a schematic diagram of the light shape formed by the projection of the low beam module in the specific embodiment of the present invention.
  • 51 is a schematic view of the structure of the primary optical element and the primary optical element holder of the high beam module in the specific embodiment of the present invention.
  • FIG. 53 is a perspective view of the high beam module viewed from the rear in the specific embodiment of the present invention.
  • Figure 54 is a longitudinal sectional view of Figure 52;
  • 55 is a schematic diagram of the light shape formed by the projection of the high beam module in the specific embodiment of the present invention.
  • FIG. 56 is a schematic structural diagram of a dual optical module in a specific embodiment of the present invention.
  • Figure 57 is a longitudinal sectional view of Figure 56;
  • FIG. 58 is a schematic diagram of the light shape formed by the projection of the dual light module in the specific embodiment of the present invention.
  • FIG. 59 is a schematic diagram of a three-dimensional structure of a vehicle lamp optical element assembly in a specific embodiment of the present invention.
  • Figure 60 is a side view of Figure 59;
  • Fig. 61 is a schematic diagram of the assembly process of the vehicle light optical component assembly in Fig. 59;
  • Fig. 62 is a schematic structural view of the primary optical element and the primary optical element holder in Fig. 59 viewed from another angle;
  • Fig. 63 is a schematic structural diagram of the support frame in Fig. 59;
  • FIG. 64 is a schematic diagram of the structure of the primary optical element and the limiting member in FIG. 59;
  • FIG. 65 is a schematic structural view from one angle of the integrated piece composed of the secondary optical element and the secondary optical element holder in FIG. 59;
  • FIG. 66 is a schematic structural view of the integrated piece composed of the secondary optical element and the secondary optical element holder in FIG. 59 viewed from another angle;
  • Fig. 67 is a three-dimensional schematic diagram of the vehicle lamp optical element assembly in Fig. 59 installed on the circuit board and the radiator;
  • Fig. 68 is an exploded schematic diagram of Fig. 67;
  • FIG. 69 is a three-dimensional structural diagram of a main low beam module 1 in a specific embodiment of the present invention.
  • FIG. 70 is a three-dimensional structural diagram of the primary optical element of the main low beam module one in the specific embodiment of the present invention.
  • FIG. 71 is a schematic diagram of a light shape formed by a projection of a main low beam module in an embodiment of the present invention.
  • FIG. 72 is a three-dimensional structural diagram of the second main low beam module in the specific embodiment of the present invention.
  • Figure 73 is a transverse cross-sectional view of Figure 72;
  • 74 is a three-dimensional structural view of the primary optical element of the main low beam module 2 in the specific embodiment of the present invention.
  • FIG. 75 is a three-dimensional structural diagram of the primary optical element of the main low beam module 2 provided with the III zone structure and the 50L structure in the specific embodiment of the present invention.
  • FIG. 76 is a three-dimensional structure diagram of the primary optical element of the main low beam module 1 provided with a 50L structure in the specific embodiment of the present invention.
  • FIG. 77 is a light profile diagram of the second main low beam module in the specific embodiment of the present invention.
  • FIG. 78 is a schematic diagram of the light shape formed by superimposing and projecting the first and second light shapes of the main low beam module in a specific embodiment of the present invention.
  • the arrangement direction of the circuit board 4, the primary optical element 11 and the secondary optical element 21 is defined as from back to front, that is, the circuit board 4 is located behind the primary optical element 11, and the secondary optical element 21 is located
  • the front of the primary optical element 11 is the left-right direction perpendicular to the front-rear direction in the horizontal plane, and the up-down direction is perpendicular to the front-rear direction in the vertical plane.
  • Top surface refers to the upper surface of the component
  • bottom surface refers to the lower surface of the component.
  • the optical axis refers to the axis passing through the focal point of the optical element and extending along the light beam transmission direction of the optical element, that is, the center line of the light beam;
  • the central area light shape refers to the light shape located in the central area of the illuminating light shape
  • the expanded area light shape refers to the light shape that reflects the expansion of the illuminating light shape, and the two form a complete illuminating light shape after superposition
  • the main low beam module is a module used to form the light shape of the central area of the low beam
  • the auxiliary low beam module is a module used to form the light shape of the low beam widened area
  • the low beam module is a module used to form a low beam light shape.
  • the low beam light shape includes the light shape of the low beam center area and the light shape of the low beam widened area;
  • the main high beam module is a module used to form the light shape of the central area of the high beam
  • the auxiliary high beam module is a module used to form the light shape of the high beam widening area
  • the high beam module is a module used to form the high beam light shape.
  • the high beam light shape includes the light shape of the central area of the high beam and the light shape of the high beam extended area;
  • the dual-beam module is a far and near beam integrated module used to form the low beam and the high beam shape.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or Integral connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be a communication between two elements or an interaction relationship between two elements.
  • installation and “connection” should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or Integral connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be a communication between two elements or an interaction relationship between two elements.
  • the optical component assembly of a vehicle lamp of the present invention includes a primary optical component 11 and a secondary optical component 21, and light can pass through the primary optical component 11 and the secondary optical component 21 in turn before being projected to form Illumination light shape
  • the primary optical element 11 includes at least one light-incoming part 112, a light-passing part 113, and a light-exiting part 114 arranged in sequence along the light-exiting direction. The light enters the primary optical element 11 from the light-incoming part 112 and passes through the The light passing part 113 is then emitted from the light emitting part 114.
  • the light incident portion 112 may have various types of light-concentrating structures, for example, it may be a light-concentrating cup-shaped structure as shown in FIGS. 13 to 14 or a convex structure facing away from the light-transmitting portion 113.
  • the outer contour surface of the condenser cup is a curved structure with a diameter gradually expanding from back to front.
  • the light incident surface can be a flat surface, or it can be a cavity 1121 with an opening backward as shown in the rear end as shown in Figure 18.
  • the bottom of the cavity 1121 is provided with a protrusion 1122 that protrudes away from the light-transmitting portion 113 to gather more light and improve the light efficiency.
  • the optical axis of the light incident portion 112 on both sides of the primary optical element 11 is inclined close to the optical axis of the secondary optical element 21, and the light output portion 114 is the inner portion.
  • the optical axis direction of the light entrance portion 112 is the same as the optical axis direction of the secondary optical element 21, and the transverse section line of the light exit portion 114 is a forward convex arc, so that The light emitted from the light emitting portion 114 is concentrated toward the middle, so that the light can basically enter the secondary optical element 21 with a small width.
  • the longitudinal section of the light emitting portion 114 is configured as a forward convex arc, so that the emitted light in this direction is concentrated in the middle, and the height of the secondary optical element 21 can be made smaller.
  • the longitudinal section of the light-emitting portion 114 is gradually curved upward and backward from the lower boundary of the light-emitting portion 114 of the primary optical element 11.
  • the lower surface of the primary optical element 11 is inclined backward and downward with respect to the optical axis 211 of the secondary optical element, and the inclination angle is ⁇ 15°, preferably 5°-10°, which can further make more outgoing light rays shine.
  • the secondary optical element 21 to improve light efficiency.
  • the distance between the upper and lower surfaces of the primary optical element 11 is gradually reduced from back to front, so that the light is converged in the vertical direction to form a high-brightness light shape.
  • the above-mentioned car light optical components can be applied to various modules, including main low beam module, auxiliary low beam module, low beam module, main high beam module, auxiliary high beam module, high beam module and double beam
  • the difference of the module is that the optical components of the vehicle light with different structures can be selected according to the respective light shape requirements and the corresponding light distribution can be performed.
  • the vehicle lighting module provided by the second aspect of the present invention includes a radiator 3, a circuit board 4, a light source 5, and the above-mentioned vehicle light optical element assembly that are sequentially arranged from back to front along the light emitting direction, and the light source 5 is electrically connected to the On the circuit board 4; the vehicle lighting module also includes a primary optical element holder 12a or a primary optical element holder 12b or a primary optical element holder 12c for supporting the primary optical element 11 and a primary optical element holder 12c for supporting the secondary optical element 21 of the secondary optical element holder 22a or secondary optical element holder 22b or secondary optical element holder 22c.
  • the secondary optical element 21 and the secondary optical element holder 22a or the secondary optical element holder 22b or the secondary optical element holder 22c are integrally molded parts. Further, the secondary optical element holder 22a can be used as a light shield to prevent light leakage, such as
  • the module structure shown in FIG. 1 has both a supporting function and a light-shielding function. It is formed by two-color injection molding with the secondary optical element 21.
  • the secondary optical element 21 is made of transparent materials (transparent plastic, silica gel, etc.).
  • the secondary optical element holder 22a is made of dark light-shielding material (black PC, etc.). As for the secondary optical element holder 22b and the secondary optical element holder 22c shown in FIGS. 52 and 59, they only have a supporting function.
  • an opening 225 is formed between the upper and lower ends of the secondary optical element 21 and the secondary optical element holder 22a.
  • the opening 225 is used to increase the light entering the secondary optical element 21 and improve the light efficiency.
  • FIG. 8 and FIG. 9 if the opening is not provided, the light emitted to the position will be absorbed by the secondary optical element holder 22 a having a light-absorbing function, and cannot enter the secondary optical element 21. Of course, the opening may not be provided.
  • the primary optical element holder 12a can be inserted into the secondary optical element holder 22a.
  • the primary optical element holder 12c can be plugged into the secondary optical element holder 22c to fix the relative positions of the primary optical element 11 and the secondary optical element 21, the secondary optical element holder 22a or the secondary optical element holder 22a
  • the secondary optical element holder 22c is fixedly connected to the heat sink 3; the other is that the primary optical element holder 12b and the secondary optical element holder 22b are both fixedly connected to the heat sink 3 to connect the primary optical element
  • the relative position of the element 11 and the secondary optical element 21 is fixed.
  • the primary optical element holder 12a includes insertion positioning portions 1101 formed on both sides of the primary optical element 11, and the secondary optical element holder 22a is provided with A slot 221a that can be inserted into the insertion positioning portion 1101.
  • the slot 221a penetrates through the rear end of the secondary optical element holder 22a and extends from back to front, and the primary optical element 11 can be inserted forward from the opening of the slot 221a from the rear.
  • the front end surface of the insertion positioning portion 1101 is in contact with the front surface 2211a (as shown in FIG. 20) inside the slot 221a, and the rear end surface is in contact with the surface of the circuit board 4 to restrict the primary optical element 11 relative to the secondary optical element.
  • the bracket 22a moves back and forth; the top surface of the insertion positioning portion 1101 is in contact with the upper surface 2212a (as shown in FIG.
  • the lower surface 2213a (as shown in FIG. 20) of the lens is in contact with each other to restrict the primary optical element 11 from moving up and down relative to the secondary optical element holder 22a.
  • the material of the primary optical element 11 is transparent plastic (PC, PMMA, etc.), silica gel or glass, and the material is preferably silica gel.
  • the material of the primary optical element 11 is silica gel, as shown in Figs. 13, 16-19 and Figs. 24-27, a convex surface is provided on the insertion positioning portion 1101 that contacts the slot 221a. ⁇ 111 ⁇ From the structure 111. Utilizing the characteristic that the deformation of silica gel is larger than that of plastics such as PC, PMMA, etc., the primary optical element 11 of the silica gel is compressed under the contact force of the secondary optical element holder 22a. The positive fit improves the installation reliability of the primary optical element 11.
  • the left and right inner sides of the front end of the secondary optical element holder 22a are provided with arc-shaped baffles 223.
  • the arc-shaped baffles 223 are used to block access to the secondary optical element 21.
  • the stray light is formed after exiting, so that the stray light can be eliminated. That is to say, if the light shielded by the arc-shaped baffle 223 enters the secondary optical element 21 and is refracted by the secondary optical element 21, stray light (light outside the illuminating light shape is collectively referred to as invalid light).
  • the reason why the arc baffle 223 is set in an arc shape is that the incident light in the middle of the secondary optical element 21 is more than that of the upper and lower ends.
  • the arc shape can not only shield the light that forms stray light, but also avoid excessive shielding.
  • the light forming the illuminating light shape that is, if the baffle is rectangular, the incident light at the upper and lower ends of the secondary optical element 21 will be shielded too much, and the light used to form the illuminating light shape will be included.
  • the rear end of the secondary optical element holder 22a is provided with a secondary optical element holder mounting hole 222a, and correspondingly, the heat sink 3 and the circuit board 4 are provided
  • the mounting hole on the heat sink 3 is a threaded hole
  • the screw 6 is used to pass through the secondary optical element bracket mounting hole 222a, the mounting hole on the circuit board 4 and the mounting hole on the heat sink 3 in order to The secondary optical element bracket 22a is mounted on the heat sink 3 and the circuit board 4.
  • the heat sink 3 is provided with a heat sink positioning pin 31, and the primary optical element 11 is provided with a primary optical element positioning pin 31 that can cooperate with the heat sink positioning pin 31.
  • the circuit board 4 is provided with a circuit board primary positioning hole 41, and the heat sink positioning pin 31 passes through the circuit board primary positioning hole 41 and cooperates with the primary optical element positioning hole 122 to The primary optical element 11 is confined to the heat sink 3 and the circuit board 4; as shown in Figures 2 and 6, the secondary optical element holder 22a is provided with a secondary optical element holder positioning Pin 224a, the radiator 3 is provided with a radiator secondary positioning hole, the circuit board 4 is provided with a circuit board secondary positioning hole 42, the radiator secondary positioning hole and the circuit board secondary positioning hole The hole 42 cooperates with the secondary optical element bracket positioning pin 224 a to confine the secondary optical element 21 on the heat sink 3 and the circuit board 4.
  • the number of the primary optical element positioning holes 122 is preferably two, one is a circular hole contacting the peripheral surface of the radiator positioning pin 31, and the other is for positioning with the radiator.
  • the pin 31 has a waist-shaped hole for clearance fit. If the two primary optical element positioning holes 122 are both round holes, the position of the heat sink positioning pin 31 needs to be very precise to smoothly insert the heat sink positioning pin 31 into the primary optical element positioning hole 122, which increases the difficulty of processing and is easy to cause Therefore, one of the primary optical element positioning holes 122 is set as a waist-shaped hole. As long as one of the radiator positioning pins 31 is aligned with the circular hole, the other radiator positioning pin 31 will be easily inserted into the waist-shaped hole for positioning.
  • the accuracy will not decrease.
  • the primary optical element 11 is provided with a vent 1221 connecting the circular hole with the outside to prevent the radiator positioning pin 31 from being inserted into the circular hole to compress air to cause deformation of the primary optical element 11 and affect the accuracy of the optical system. Affect the light shape effect.
  • the size of at least one of the upper and lower directions and the left and right directions of the light exit surface of the secondary optical element 21 is ⁇ 35mm, preferably ⁇ 15mm, so as to achieve the requirement of the small opening of the secondary optical element 21.
  • the secondary optical element 21 is preferably a lens.
  • the vehicle lighting module of this embodiment can be a main low beam module, an auxiliary low beam module, a main high beam module or an auxiliary high beam module.
  • the difference lies in that the optical components of the vehicle lights have different structures according to the respective light shape requirements. The selection and the corresponding light distribution can be done.
  • the lower boundary of the light exit portion 114 of the main low beam module is set as a cutoff portion 115, and the shape of the cutoff portion 115 matches the shape of the near light and dark cutoff line.
  • the light exit portion 114 of the main low beam module is a concave arc surface, which is compatible with the focal surface of the secondary optical element 21, so that the light shape in the central area of the light shape is clear.
  • the lower surface of the primary optical element 11 of the main low beam module is provided with an upwardly recessed recess 116 at a position close to the light exiting portion 114 for forming a 50L dark area light shape.
  • an upwardly recessed recess 116 used to change the light path of part of the light to achieve the function of reducing the brightness of the 50L dark area, that is, the light originally hitting the position will change the light transmission direction due to the existence of the recess 116, and will not hit the 50L dark area, thus making the 50L dark
  • the area brightness meets the legal requirements.
  • the focal length of the secondary optical element 21 of the main low beam module is 10-30mm, preferably 15mm, 20mm, 25mm, 30mm.
  • the overall size of the main low beam module is 70-120 mm in the front-rear direction (length), 50-80 mm in the left-right direction (width), and 20-40 mm in the vertical direction (height).
  • the light emitted from the primary optical element 11 enters the secondary optical element 21 as much as possible, and at the same time, it can achieve high brightness in the central area of the light shape.
  • the optical axis of the light entrance portion 112 on both sides of the optical module is inclined in the direction close to the optical axis 211 of the secondary optical element, so that the light is concentrated in the middle, so that the light from the primary optical element 11 can basically enter the secondary optical element.
  • the light shape projected by the main low beam module is shown in FIG. 5.
  • the auxiliary low beam module has the same installation structure as the main low beam module.
  • the difference is that the light shape formed by the auxiliary low beam module has a large widening angle.
  • the light shape of the low beam widening area requires the cooperation of the respective optical surfaces of the primary optical element 11 and the secondary optical element 21, and the light shape with a suitable widening angle is obtained through the light distribution of the two.
  • the light shape with a suitable widening angle is obtained through the light distribution of the two.
  • the primary optical element 11 in the above-mentioned main low beam module in order to ensure that when the left and right width of the secondary optical element 21 is small, the light emitted from the primary optical element 11 enters the secondary optical element 21 as much as possible, and at the same time It can also achieve high brightness in the central area of the light shape.
  • the optical axis of the light incident portion 112 on both sides of the upper figure in Figure 38 is inclined with respect to the optical axis 211 of the secondary optical element, and they are all close to the optical axis 211 of the secondary optical element.
  • the direction of is inclined so that the light is concentrated in the middle, ensuring that the light of the primary optical element 11 can basically enter the secondary optical element 21.
  • each light source 5 is arranged on the same circuit board 4, there is a certain angle between the optical axis of the light source 5 and the optical axis of the light incident portion 112 located on both sides, which results in insufficient light efficiency. Therefore, in order to realize that the light effect is not lost even when the secondary optical element 21 has a smaller width, as shown in the lower figure in FIG. 38, all the light incident portions 112 of the auxiliary low beam module are configured as light
  • the axial direction is the same as that of the optical axis 211 of the secondary optical element.
  • the transverse section of the light-emitting portion 114 of the primary optical element 11 is set as a forward convex arc, so that the emitted light is concentrated in the middle, and the light is basically Can enter the secondary optical element 21 with a small width.
  • the longitudinal section line of the light-emitting portion 114 of the primary optical element 11 can also be set to a forward convex arc, so that the emitted light in this direction is concentrated in the middle, and the secondary optical element 21 The height is made small.
  • the longitudinal section of the auxiliary low beam module is gradually curved upwards and backwards from the lower boundary of the light exit portion 114 of the primary optical element 11, and the focal point of the secondary optical element 21 is preferably set on the lower boundary
  • the lower surface of the primary optical element 11 is inclined backward and downward with respect to the optical axis 211 of the secondary optical element, and the inclination angle is less than or equal to 15°, preferably 5°-10°, which can further make more outgoing light enter the secondary optical element 21. Improve light efficiency.
  • the radius of any point on the light emitting portion 114 of the primary optical element 11 of the auxiliary low beam module is 5 to 150 mm, preferably 7 to 25 mm, and the specific value is determined according to the actual light distribution situation.
  • the upper figure of Figure 38 is a schematic diagram of the horizontal cross-section of the main low beam module
  • the bottom diagram is a schematic diagram of the horizontal cross-section of the auxiliary low beam module
  • the top diagram of Figure 39 is a schematic diagram of the longitudinal cross-section of the main low beam module
  • the figure below is a schematic diagram of the longitudinal cross-section of the auxiliary low beam module.
  • the primary optical element of the auxiliary low beam module can be The lower surface of 11 is provided with a zone III structure 117 for forming a low-beam zone III light shape.
  • the zone III structure 117 and the secondary optical element 21 can form a low-beam zone III light shape with a larger width.
  • the III zone structure 117 is disposed in the middle section of the light-transmitting portion 113, has a wedge-shaped structure and has a thickness gradually increasing from back to front.
  • the light-emitting surface of the III zone structure 117 is a flat surface or a curved surface, the width in the left and right direction is 2-5 mm, preferably 3 mm, and the height in the vertical direction is 0.2-1 mm, preferably 0.4 mm.
  • the lower boundary shape of the primary optical element 11 does not need to match the shape of the near-bright and dark cut-off line.
  • the primary optical elements 11 of the main low-beam module and the auxiliary low-beam module can also be used interchangeably, as long as the parameters of each optical surface are adjusted by light distribution to meet the desired light shape.
  • the light shape projected by the auxiliary low beam module containing the III zone structure 117 is shown in Figure 40; the light shape projected by the auxiliary low beam module without the III zone structure 117 is shown in Figure 41; The light shape formed by the auxiliary low beam module of 117 superimposed on the main low beam module is shown in FIG. 42.
  • the difference between the main high beam module, the auxiliary high beam module and the above-mentioned main low beam module is the conventional distinguishing structure according to the characteristics of the high beam in the prior art, which will not be listed here.
  • the primary optical element support 12c includes a support frame 1201 and a limiting member 1202.
  • the limiting member 1202 is fixed on the primary optical element 11, and the support frame 1201 is provided with The limiting slot 1203, the limiting member 1202 is connected to the limiting slot 1203 and is relatively fixed to the support frame 1201; through the matching connection of the limiting member 1202 and the support frame 1201, the primary optical element 11 is connected to the support frame 1201.
  • the frame 1201 is relatively fixed to realize the positioning and support of the primary optical element 11 on the primary optical element support 12c, that is, the stopper 1202 and the support frame 1201 are assembled together to form the primary optical element support 12c supporting the primary optical element 11.
  • the upper surface of the support frame 1201 is partially sunk to form a limiting slot 1203, so that the bottom surface of the limiting slot 1203 faces upward and is a horizontal plane, and the lower surface of the limiting member 1202 is a horizontal plane,
  • the member 1202 is placed in the limiting groove 1203, and the lower surface of the limiting member 1202 is in contact with the bottom surface of the limiting groove 1203.
  • the limiting member 1202 is provided with a limiting member positioning hole 1204, and the limiting groove 1203 is provided with a positioning hole corresponding to the limiting member. 1204 is inserted into the matched primary optical element bracket positioning pin 1205.
  • the relative position of the limiter 1202 and the support frame 1201 can be limited by the insertion of the primary optical element support positioning pin 1205 and the limiter positioning hole 1204.
  • the positioning member 1202 performs accurate positioning, thereby achieving accurate positioning between the primary optical element 11 and the primary optical element holder 12c.
  • the secondary optical element holder 22c is provided with a slot 221c
  • the primary optical element holder 12c is mated with the slot 221c
  • the The primary optical element holder 12c has a positioning surface contacting the inner surface of the slot 221c.
  • the relative positions of the primary optical element holder 12c and the secondary optical element holder 22c can be defined, so that the primary optical element holder 12c and the secondary optical element holder 22c Relatively fixed, realizes the assembly positioning between the primary optical element holder 12c and the secondary optical element holder 22c, and has the advantages of convenient installation and reliable positioning.
  • a limiter 1202 is respectively provided on the left and right sides of the primary optical element 11, and correspondingly, the left and right sides of the secondary optical element support 22c are respectively provided with a slot 221c, one of the two slots 221c
  • the space is an assembly space for the primary optical element 11 to be inserted.
  • the secondary optical element 21 is provided at the front end of the secondary optical element holder 22c
  • the slot 221c penetrates the rear end of the secondary optical element holder 22c and extends from back to front, thereby enabling the primary optical element holder 12c to be inserted into the slot 221c from the rear end of the slot 221c and follow the figure.
  • the slot 221c penetrates the rear end of the secondary optical element holder 22c and extends from back to front. In order to ensure that the positioning surface of the primary optical element holder 12c is in contact with the inner surface of the slot 221c, the primary optical element holder can be effectively defined.
  • the relative position of 12c and the secondary optical element support 22c, the front end surface of the support frame 1201 is in contact with the front surface 2211c inside the slot 221c, and the rear end surface of the support frame 1201 is in contact with the surface of the circuit board 4 Contact to restrict the primary optical element holder 12c from moving forward relative to the secondary optical element holder 22c; the top surface of the stopper 1202 is in contact with the upper surface 2212c inside the slot 221c to restrict the primary optical element
  • the support 12c moves upward relative to the secondary optical element support 22c; the bottom surface of the support 1201 contacts the lower surface 2213c inside the slot 221c to restrict the primary optical element support 12c from moving downward relative to the secondary optical element support 22c .
  • the front end surface of the support frame 1201 located directly in front of the limit slot 1203 constitutes the front positioning surface of the primary optical element bracket 12c; after the limit piece 1202 is assembled into the limit slot 1203 on the support frame 1201, the limit piece The top surface of 1202 is higher than the top surface of the support frame 1201, so the top surface of the stop 1202 constitutes the upper positioning surface of the primary optical element holder 12c; the bottom surface of the support frame 1201 constitutes the lower positioning surface of the primary optical element holder 12c.
  • the upper surface of the inner side of the slot 221c is partially recessed and does not contact and cooperate with the upper surface of the limiting member 1202, and the lower surface of the inner side of the slot 221c is partially recessed.
  • the contact area between the upper surface of the inner side of the slot 221c and the upper surface of the stop 1202, and the lower surface of the inner side of the slot 221c and the lower surface of the support 1201 can be reduced.
  • the contact area forms a small-area contact positioning.
  • the processing accuracy of the small-area contact surface is easier to ensure, which can make the positioning surface of the primary optical element holder 12c and the surface inside the slot 221c better contact, thereby making the positioning more accurate .
  • the slot 221c penetrates through the secondary optical element holder 22c in the left-right direction, and the secondary optical element holder 22c is provided or integrally formed on the left and right sides of the secondary optical element 21.
  • the left and right sides of the support frame 1201 An engaging portion 1206 is respectively provided on the right sides, and the inner sides of the two engaging portions 1206 are respectively in contact with the left and right sides of the secondary optical element holder 22c to restrict the primary optical element holder 12c from facing each other.
  • the secondary optical element holder 22c moves left and right.
  • the two engaging portions 1206 are respectively provided on the left and right sides of the support frame 1201 and both extend forward to the front of the support frame 1201.
  • the support frame 1201 The front end surface of the two engaging portions 1206 is in contact with the front surface of the inner side of the slot 221c, the two engaging portions 1206 are located on the outer side of the secondary optical element holder 22c, and the inner side surfaces of the two engaging portions 1206 are respectively connected to the inner surface of the secondary optical element holder 22c The left side and the right side are in contact with the area in front of the slot 221c.
  • the engaging portion 1206 of the primary optical element holder 12c In order to allow the engaging portion 1206 of the primary optical element holder 12c to pass through the rear end of the slot 221c to the front and outside of the slot 221c, as shown in FIG.
  • the rear end of the secondary optical element holder 22c is provided with a back-to-back through secondary optical element
  • the through slot 226 of the bracket 22c, the opening of the through slot 226 faces the slot 221c and communicates with the rear end of the slot 221c on the outside of the slot 221c.
  • the rear end of the primary optical element holder 12c has a rear positioning surface for contact with the surface of the circuit board 4, and the rear end surface of the secondary optical element holder 22c is provided There is a protrusion 227 for contact with the surface of the circuit board 4.
  • the rear positioning surface of the primary optical component holder 12c is in contact with the surface of the circuit board 4
  • the protrusion 227 at the rear end of the secondary optical component holder 22c is in contact with the circuit board 4
  • the surface contact and fit can restrict the primary optical element holder 12c from moving backward relative to the secondary optical element holder 22c, and position the vehicle light optical element assembly on the surface of the circuit board 4.
  • the rear end surface of the support frame 1201 constitutes the rear positioning surface of the primary optical element holder 12c.
  • a protrusion 227 may be provided on the left and right sides of the rear end surface of the secondary optical element holder 22c, respectively.
  • the entire rear end surface of the secondary optical element holder 22c is prevented from contacting the surface of the circuit board 4, thereby reducing
  • the contact area between the rear end of the secondary optical element holder 22c and the surface of the circuit board 4 forms a small-area contact positioning.
  • the processing accuracy of the small-area contact surface is easier to ensure, which can make the protrusion 227 and the surface of the circuit board 4 better Ground contact, so that the positioning is more accurate.
  • the optical component assembly of the vehicle lamp of this embodiment directly determines the two components by assembling the primary optical component 11 and the secondary optical component 21 into an integral structure through the matching connection of the primary optical component holder 12c and the secondary optical component holder 22c.
  • the relative positions of the two realize the direct positioning between the primary optical element 11 and the secondary optical element 21.
  • the front positioning surface of the primary optical element holder 12c (the front end surface of the support frame 1201) is in contact with the front surface 2211c inside the slot 221c of the secondary optical element holder 22c, thereby restricting the primary optical element holder 12c relative to the secondary optical element.
  • the bracket 22c moves forward, and the upper positioning surface (the top surface of the stop 1202) of the primary optical element bracket 12c is in contact with the upper surface 2212c inside the slot 221c, restricting the primary optical element bracket 12c relative to the secondary optical element bracket 22c moves upward, and the lower positioning surface of the primary optical element holder 12c (the bottom surface of the support frame 1201) is in contact with the lower surface 2213c inside the slot 221c, restricting the downward movement of the primary optical element holder 12c relative to the secondary optical element holder 22c ,
  • the inner sides of the two engaging portions 1206 on the primary optical element holder 12c are in contact with the left and right sides of the secondary optical element holder 22c, respectively, which restricts the primary optical element holder 12c from being relative to the secondary optical element holder 22c.
  • the rear positioning surface of the primary optical element holder 12c (the rear end surface of the support frame 1201) is in contact with the surface of the circuit board 4, and the protrusion 227 at the rear end of the secondary optical element holder 22c is in contact with the surface of the circuit board 4.
  • the primary optical element holder 12c is restricted from moving backwards relative to the secondary optical element holder 22c, thereby realizing the relative fixation of the primary optical element holder 12c and the secondary optical element holder 22c in the front and rear, up and down, and left and right directions, ensuring that the primary The omnidirectional positioning accuracy and installation stability of the optical element holder 12c and the secondary optical element holder 22c are guaranteed to ensure the positioning accuracy and installation stability of the primary optical element 11 and the secondary optical element 21, so that the vehicle light optical element assembly can be used for a long time. After use, the relative position of the primary optical element 11 and the secondary optical element 21 can be kept unchanged, thereby ensuring the accuracy and stability of the vehicle light shape.
  • the primary optical element 11 and the secondary optical element 21 are assembled into an integral structure, and the relative positions of the primary optical element 11 and the secondary optical element 21 are determined, and then the integral structure is mounted on the circuit board 4 and the heat sink 3. , Can reduce the positioning accuracy requirements of the circuit board 4 and the heat sink 3, making the installation process easier and more convenient.
  • the positioning and installation structures of the primary optical element holder 12c, the secondary optical element holder 22c, the heat sink 3, the circuit board 4, and the light source 5 belong to the prior art and will not be repeated here.
  • the primary optical element holder 12b and the secondary optical element holder 22b are both fixedly connected to the heat sink 3.
  • the primary optical element holder 12b is provided on or integrally formed on the upper or lower surface of the primary optical element 11, and the secondary optical element holder 22b is provided on or integrally formed on the upper and lower surfaces of the secondary optical element 21. end.
  • the vehicle lighting module of this embodiment can be a low beam module, a high beam module or a dual beam module.
  • the difference is that the optical components of the vehicle light with different structures are selected according to the respective light shape requirements and the corresponding light distribution is performed. can.
  • the primary optical element holder 12b of the low beam module and the heat sink 3 are positioned by the primary positioning device, and the secondary optical element holder 22b and the heat sink 3 pass between The secondary positioning device is positioned, the primary optical element holder 12b is provided with a primary optical element holder mounting hole 121 on the rear end surface to install the primary optical element holder 12b on the heat sink 3 and the circuit board 4, The rear end surface of the secondary optical element holder 22b is provided with a secondary optical element holder mounting hole 222b for mounting the secondary optical element holder 22b on the heat sink 3.
  • the primary positioning device includes a primary positioning hole of the heat sink provided on the heat sink 3, a primary positioning hole of the circuit board provided on the circuit board 4, and a primary positioning hole provided on the primary optical element bracket 12b.
  • the primary optical element positioning pin 123b passes through the primary positioning hole of the circuit board and cooperates with the primary positioning hole of the heat sink to limit the primary optical element 11 to the heat sink 3 and
  • the secondary positioning device includes a secondary optical element bracket positioning pin 224b provided on the rear surface of the secondary optical element bracket 22b and a heat sink secondary provided on the heat sink 3 A positioning hole, the secondary optical element bracket positioning pin 224b cooperates with the secondary positioning hole of the heat sink to limit the secondary optical element 21 on the heat sink 3.
  • the heat sink 3 has a right-angled U-shaped profile
  • the primary optical element holder 12b is mounted on the inner bottom surface of the right-angled U-shaped heat sink 3
  • the secondary optical element holder 22b Installed on the two ends of the radiator 3 in a right-angled U shape.
  • the low beam module can be used for the main low beam or the auxiliary low beam.
  • the primary optical element 11 has the same structure as the primary optical element 11 in the auxiliary low beam module.
  • the primary optical element holder 12b of the low beam module is located on the upper surface of the primary optical element 11, and the transverse section line of the light exit surface 114 of the primary optical element 11 of the low beam module is set as a forward convex arc
  • the line and longitudinal section line are set as a straight line or an arc protruding forward.
  • the light shape projected by the low beam module is shown in Figure 50.
  • the high beam module structure is basically the same as the low beam module.
  • the difference is that the primary optical element holder 12b is located on the lower surface of the primary optical element 11; The distance between the upper and lower surfaces of the optical element 11 is gradually reduced from back to front, so that the light converges in the up and down direction to form a high-brightness high beam shape; the primary optical element does not have a III zone structure 117.
  • the light shape projected by the high beam module is shown in Figure 55.
  • the dual-beam module includes a primary optical element 11 of the low beam module, a primary optical element 11 of the high beam module, and a secondary optical element 21.
  • the radiator 3, the circuit board 4, and the light source 5 are arranged forward in sequence.
  • the two primary optical elements 11 are provided with positioning pins for positioning with the circuit board 4, and the secondary optical element 21 is provided with positioning pins for positioning with the radiator 3 ,
  • Two primary optical elements 11 and one secondary optical element 21 are fixedly connected to the heat sink 3 respectively.
  • the overall dimensions of the module are: 70 to 120 mm in the front and rear direction, 10 to 40 mm in the left and right direction, and 40 to 80 mm in the vertical direction.
  • the present invention also provides a fourth embodiment of the vehicle lighting module, as shown in Figure 69- Figure 78, the vehicle lighting module includes a radiator (not shown in the figure), a circuit board (not shown in the figure) Out) and a module unit, the module unit includes a light source 5, a primary optical element 11, and a secondary optical element 21 arranged in order from back to front along the light-emitting direction; the light sources in a single module unit are set to 1-5 .
  • the vehicle lighting module has at least two module units: a main light type module unit and an auxiliary light type module unit; the light type of the main light type module unit covers the core area of the light type.
  • the light shape of the light center area, the light type of the auxiliary light type module unit covers the core area and forms a low beam widened area light shape; the main light type module unit and the auxiliary light type module unit cooperate with each other Form a complete lighting system.
  • the main light type module unit has several, and the auxiliary light type module unit has several; the interaction between each module unit can realize the lighting function as a whole; it can also be realized as an individual module unit Partial lighting function.
  • the secondary optical element 21 is a plano-convex lens, the height and width of the opening of the plano-convex lens are both 5-20 mm; the front-rear distance of the primary optical element 11 is 10-20 mm.
  • the primary optical element 11 is sequentially provided with a light entrance portion 112, a light passage portion 113, and a light exit portion 114 along the light exit direction.
  • the upper or lower surface of the light passage portion 113 is set as a reflective portion, and the upper surface of the light exit portion 114
  • the boundary or the lower boundary is set as a cut-off portion 115, and the light emitted by the light source 5 first enters the primary optical element 11 from the light entrance portion 112, and then irradiates the light exit portion 114.
  • the length of the light-transmitting portion 113 is 10-20 mm.
  • the light-emitting portion 114 is set as a smooth concave arc surface with no step difference.
  • the radius R of the arc Fs of the arc is less than or equal to 20 mm, and is used to cooperate with the lens of the secondary optical element 21, the cut-off part 115 is arranged at the boundary of the light emitting part 114, and the focal point of the lens is arranged at At the boundary, or the distance from the boundary does not exceed 2mm.
  • the structure for forming the low-beam zone III light-shaped area and the 50L light-shaped area is provided in the reflective part of the primary optical element 11 of the low-beam module, where the 50L structure is a concave cavity (ie, the recess 116), which is close to the The cut-off part 115 is arranged; the III zone structure 117 is arranged in the middle section of the reflecting part, and has a wedge-shaped structure with a thickness gradually increasing from back to front. Its light-emitting surface is a concave curved surface, and the concave refers to the concave toward the rear end.
  • the main beam module unit includes two types: main low beam module one and main low beam module two. The following describes each light module unit in this embodiment:
  • the two main low beam modules are set to two, as shown in Figures 72-76.
  • the difference from the main low beam module one is that the light source 5 and the light incident portion 112 of the primary optical element 11 are both set to two
  • the secondary optical element 21 is a lens
  • the height (up and down direction) of the lens opening is about 8-12 mm
  • the width (left and right direction) is about 13-17 mm
  • the light incident portion 112 of the primary optical element 11 has an oblique angle with respect to the central axis.
  • the light sources 5 on both sides of the primary optical element 11 and the light incident portion 112 of the primary optical element 11 are inclined toward the middle, that is, the primary optical element 11 is located on both sides of the incident light.
  • the optical axis of the light portion 112 is inclined toward the optical axis 211 of the secondary optical element, and the formed light shape is as shown in FIG. 77.
  • the light shape formed by the superposition of the main low beam module 1 and the main low beam module 2 is shown in FIG. 78.
  • auxiliary light type module The difference between the auxiliary light type module and the main light type module is a conventional setting in the prior art, which is not an innovation of the present invention, and will not be repeated here.
  • a third aspect of the present invention provides a vehicle lamp, which includes any one of the vehicle lighting modules described above.
  • a fourth aspect of the present invention provides a vehicle, which includes any of the above-mentioned vehicle lights.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

一种车灯光学元件组件、车辆照明模组、车灯以及车辆,车灯光学元件组件包括初级光学元件(11)和次级光学元件(21),初级光学元件(11)包括沿出光方向依次设置的至少一个入光部(112)、通光部(113)和出光部(114),初级光学元件(11)位于两侧的入光部(112)的光轴向靠近次级光学元件光轴(211)方向倾斜,出光部(114)为内凹弧面;或者,入光部(112)的光轴方向与次级光学元件光轴(211)方向相同,出光部(114)的横向截线和/或纵向截线配置为向前凸出的弧线。本发明采用特定的初级光学元件(11)和次级光学元件(21)的配合设计,使得车辆照明模组在保证光效的前提下体积小巧,能够适应窄小、紧凑的车灯造型。

Description

车灯光学元件组件、车辆照明模组、车灯及车辆
相关申请的交叉引用
本申请要求2019年5月20日提交的中国专利申请201910417075.2和2019年6月25日提交的中国专利申请201910556042.6的权益,该两件申请的内容通过引用被合并于本申请。
技术领域
本发明涉及车辆照明装置,具体涉及一种车灯光学元件组件、包括该车灯光学元件组件的车辆照明模组、包括该车辆照明模组的车灯以及包括该车灯的车辆。
背景技术
在车灯照明技术领域,车灯模组一般是指汽车前照灯中的近光和/或远光照明模组,车灯模组的光学零件包含光源、初级光学元件(反射镜、聚光器等)和次级光学元件(一般为透镜)。随着汽车行业的发展逐渐成熟和稳定,车辆前照灯的种类越来越多样化,在车辆前照灯的综合性能方面,客户提出了越来越高的要求,车灯的发展趋势是越来越窄小,这样会使得汽车整体的造型更具个性化和科技感。以2019年在上海国际博览中心举办的国际车展为例,很多主流的整车企业展示的概念车、甚至是量产车上的车灯的造型更加窄小、紧凑,而且还具有多个模组实现车辆照明的趋势,而不是之前常见的一两个出光面开口较大的模组实现车辆照明。现有技术中,一般采用光源+光导+透镜形式的车辆照明模组,该种车辆照明模组体积以及出光面开口均较大,透镜开口高(上下方向)和宽(左右方向)尺寸一般要40~70mm,光导的长度一般也要40~70mm,不能适用于空间日益紧凑的车灯之中。如果采用现有技术的车灯模组结构将尺寸直接缩小,会损失光效,所得车灯光形不符合法规要求。本领域亟待相应的技术方案,以满足这种需求。
发明内容
本发明一方面所要解决的问题是提供一种车灯光学元件组件,该车灯光学元件组件通过结构优化使得在保证光效的前提下将整体尺寸减小,以适应窄小、紧凑的车灯造型。
本发明第二方面所要解决的问题是提供一种车辆照明模组,该车辆照明模组通过结构优化使得在保证光效的前提下将整体尺寸减小,以适应窄小、紧凑的车灯造型。
本发明第三方面所要解决的问题是提供一种车灯,该车灯的光学元件组件通过结构优化使得在保证光效的前提下将整体尺寸减小,从而使得车灯的造型更加窄小、紧凑。
本发明第四方面所要解决的问题是提供一种车辆,该车辆的车灯的光学元件组件通过结构优化使得在保证光效的前提下将整体尺寸减小,从而使得车灯的造型更加窄小、紧凑。
为了实现上述目的,本发明一方面提供一种车灯光学元件组件,该车灯光学元件组件包括初级光学元件和次级光学元件,光线能够依次经过所述初级光学元件和所述次级光学元件后投射形成照明光形,所述初级光学元件包括沿出光方向依次设置的至少一个入光部、通光部和出光部,所述初级光学元件位于两侧的所述入光部的光轴向靠近次级光学元件光轴方向倾斜,所述出光部为内凹弧面;或者,
所述入光部的光轴方向与所述次级光学元件光轴方向相同,所述出光部的横向截线和/或纵向截线配置为向前凸出的弧线。
优选地,所述出光部的纵向截线由所述初级光学元件的出光部的下边界向上、向后逐渐弯曲。
优选地,所述初级光学元件的下表面相对于所述次级光学元件光轴向后下方倾斜,倾斜角度≤15°。
优选地,所述初级光学元件的上下表面之间的间距由后向前逐渐减小。
本发明第二方面提供一种车辆照明模组,该车辆照明模组包括沿出光方向自后向前依次设置的散热器、电路板、光源以及根据权利要求至中任一项所述的车灯光学元件组件,所述光源电连接在所述电路板上;所述车辆照明模组还包括用于支撑所述初级光学元件的初级光学元件支架和用于支撑所述次级光学元件的次级光学元件支架。
优选地,所述次级光学元件和所述次级光学元件支架为一体成型件。
优选地,所述次级光学元件支架配置为遮光罩,其与所述次级光学元件为双色注塑一体件。
优选地,所述次级光学元件的上下两端与所述次级光学元件支架之间形成有开口。
优选地,所述初级光学元件支架能够和所述次级光学元件支架插接以将所述初级光学元件和次级光学元件的相对位置固定,所述次级光学元件支架与所述散热器固定连接。
具体地,所述初级光学元件支架包括形成于所述初级光学元件两侧的***定位部,所述次级光学元件支架上设有能够与所述***定位部插接的插槽。
具体地,所述插槽贯通所述次级光学元件支架的后端且从后向前延伸,所述***定位部的前端面与所述插槽内侧的前表面相接触,所述***定位部的后端面与所述电路板表面接触,所述***定位部的顶面与所述插槽内侧的上表面相接触,所述***定位部的底面与所述插槽内侧的下表面相接触。
优选地,所述***定位部上与所述插槽相接触的表面上设置有凸起结构。
优选地,所述次级光学元件支架的前端的左右内侧设有弧形挡板。
优选地,所述散热器上设有散热器定位销,所述初级光学元件上设有能够与所述散热器定位销配合的初级光学元件定位孔,所述初级光学元件定位孔的数量有两个,其中一个为与所述散热器定位销周面接触的圆孔,所述初级光学元件上开设有连通所述圆孔与外界的通气孔。
优选地,所述次级光学元件的出光面的上下和左右两个方向中至少有一个方向的尺寸≤35mm。
另一个具体地,所述初级光学元件支架包括支撑架和限位件,所述限位件固设于所述初级光学元件上,所述支撑架上设有限位槽,所述限位件与所述限位槽配合连接并与所述支撑架相对固定;所述次级光学元件支架上设有插槽,所述初级光学元件支架与所述插槽插接配合。
进一步地,所述插槽贯通所述次级光学元件支架的后端且从后向前延伸,所述支撑架的前端面与所述插槽内侧的前表面相接触,所述支撑架的后端面与所述电路板的表面相接触,所述限位件的顶面与所述插槽内侧的上表面相接触,所述支撑架的底面与所述插槽内侧的下表面相接触。
优选地,所述支撑架的左、右两侧分别设有一个卡合部,两个所述卡合部相对的内侧面分别与所述次级光学元件支架的左、右侧面相接触。
具体地,所述初级光学元件支架和所述次级光学元件支架均与所述散热器固定连接。
本发明第三方面提供一种车灯,该车灯包括以上任意一项所述的车辆照明模组。
本发明第四方面提供一种车辆,该车辆包括上述的车灯。
通过上述技术方案,本发明实现了以下有益效果:
1、采用特定的初级光学元件和次级光学元件的配合设计,使得车辆照明模组在保证光效的前提下体积小巧、出光面开口尺寸小,能够适应窄小、紧凑的车灯造型,更具个性化和科技感。
2、在本发明的优选方案中,初级光学元件的支架与次级光学元件的插槽配合,节约了初级光学元件的支架的安装空间,从而实现更加小型化的目的。
3、在本发明的优选方案中,在次级光学元件支架前端设弧形挡板,用于遮挡进入透镜并出射后形成杂散光的光线,从而可以消除杂散光,提升光形效果。
4、通过初级光学元件支架与次级光学元件支架的配合连接,将初级光学元件与次级光学元件装配成一整体结构而直接确定了两者的相对位置,实现了初级光学元件与次级光学元件之间的直接定位,将本发明的车灯光学元件组件安装到电路板及散热器上时,由于初级光学元件与次级光学元件之间存在固定的装配定位关系,不会因与电路板及散热器的装配而使两者之间产生定位误差,因此能够保证初级光学元件与次级光学元件的定位精度和安装靠性,从而保证车灯光形的准确性和功能稳定性。
附图说明
图1是本发明具体实施方式中主近光模组的结构示意图;
图2是图1的分解***图;
图3是图1的横向剖面图;
图4是图1的纵向剖面图;
图5是本发明具体实施方式中主近光模组投射形成的光形示意图;
图6是本发明具体实施方式中主近光模组的次级光学元件和次级光学元件支架一体的一种实施例的结构示意图;
图7是图6的纵向剖面图;
图8是本发明具体实施方式中主近光模组的次级光学元件和次级光学元件支架一体的另一种实施例的结构示意图;
图9是图8的纵向剖面图;
图10是本发明具体实施方式中主近光模组的次级光学元件支架的结构示意图;
图11是图10另一个方向的立体图;
图12是本发明具体实施方式中主近光模组的弧形挡板所遮挡的光线的原光路示意图;
图13是本发明具体实施方式中主近光模组的初级光学元件和初级光学元件支架构成的一体件从后方看的结构示意图;
图14是本发明具体实施方式中主近光模组的初级光学元件和初级光学元件支架构成的一体件从后下方看的立体图;
图15是图14中E处放大示意图;
图16是本发明具体实施方式中主近光模组的初级光学元件和初级光学元件支架构成的一体件从前上方看的立体图;
图17是图16的F处放大示意图;
图18是图16的横向剖面图;
图19是图18中H处放大示意图;
图20是本发明具体实施方式中主近光模组的次级光学元件支架从后方看的示意图;
图21是图20另一个方向的立体图;
图22是本发明具体实施方式中主近光模组的初级光学元件与次级光学元件支架配合固定后的立体图;
图23是本发明具体实施方式中主近光模组的初级光学元件与次级光学元件支架配合固定后从侧面看的示 意图;
图24是图23的I-I向剖面图;
图25是图24中J处放大示意图;
图26是图23的K-K向剖面图;
图27是图26中L处放大示意图;
图28是本发明具体实施方式中主近光模组的初级光学元件与电路板和散热器配合安装后从侧面看的示意图;
图29是图28的M-M向剖面图;
图30是本发明具体实施方式中辅助近光模组的结构示意图;
图31是图30的横向剖面图;
图32是图30的纵向剖面图;
图33是本发明具体实施方式中辅助近光模组中的初级光学元件与次级光学元件的方位示意图;
图34是图33从后下方看的立体图;
图35是本发明具体实施方式中辅助近光模组中的初级光学元件的俯视图;
图36是本发明具体实施方式中辅助近光模组中的初级光学元件的侧视图;
图37是本发明具体实施方式中辅助近光模组中的初级光学元件从下方看的立体图;
图38是本发明具体实施方式中主近光模组和辅助近光模组的初级光学元件和次级光学元件的横剖面对比图;
图39是本发明具体实施方式中主近光模组和辅助经模组的初级光学元件和次级光学元件沿各自次级光学元件光轴的纵剖面对比图;
图40是本发明具体实施方式中含III区结构的辅助近光模组投射形成的光形示意图;
图41是本发明具体实施方式中不含III区结构的辅助近光模组投射形成的光形示意图;
图42是本发明具体实施方式中主近光模组叠加不含III区结构的辅助近光模组投射形成的光形示意图;
图43是本发明具体实施方式中近光模组的初级光学元件和初级光学元件的结构示意图;
图44是图43从后方看的立体图;
图45是本发明具体实施方式中近光模组的结构示意图;
图46是本发明具体实施方式中近光模组的纵向剖面图;
图47是本发明具体实施方式中近光模组的初级光学元件与次级光学元件的方位示意图;
图48是本发明具体实施方式中近光模组的初级光学元件与次级光学元件以及次级光学元件支架的方位示意图;
图49是图48中P处放大示意图;
图50是本发明具体实施方式中近光模组投射形成的光形示意图;
图51是本发明具体实施方式中远光模组的初级光学元件和初级光学元件支架的结构示意图;
图52是本发具体实施方式中远光模组的结构示意图;
图53是本发明具体实施方式中远光模组从后方看的立体图;
图54是图52的纵向剖面图;
图55是本发明具体实施方式中远光模组投射形成的光形示意图;
图56是本发明具体实施方式中双光模组的结构示意图;
图57是图56的纵向剖面图;
图58是本发明具体实施方式中双光模组投射形成的光形示意图;
图59是本发明具体实施方式中车灯光学元件组件的立体结构示意图;
图60是图59中的侧视图;
图61是图59中的车灯光学元件组件的装配过程示意图;
图62是图59中的初级光学元件和初级光学元件支架从另一个角度看的结构示意图;
图63是图59中的支撑架的结构示意图;
图64是图59中的初级光学元件与限位件的结构示意图;
图65是图59中的次级光学元件和次级光学元件支架构成的一体件从一个角度看的结构示意图;
图66是图59中的次级光学元件和次级光学元件支架构成的一体件从另一个角度看的结构示意图;
图67是图59中的车灯光学元件组件安装于电路板和散热器上的立体结构示意图;
图68是图67的分解示意图;
图69是本发明具体实施方式中主近光模组一的立体结构图;
图70是本发明具体实施方式中主近光模组一的初级光学元件的立体结构图;
图71是本发明具体实施方式中主近光模组一投射形成的光形示意图;
图72是本发明具体实施方式中主近光模组二的立体结构图;
图73是图72的横向剖面图;
图74是本发明具体实施方式中主近光模组二的初级光学元件的立体结构图;
图75是本发明具体实施方式中主近光模组二的初级光学元件设置有III区结构和50L结构的立体结构图;
图76是本发明具体实施方式中主近光模组一的初级光学元件设置有50L结构的立体结构图;
图77是本发明具体实施方式中主近光模组二的光形图;
图78是本发明具体实施方式中主近光模组一、二光形叠加投射形成的光形示意图。
附图标记说明
11初级光学元件、111凸起结构、112入光部、1121凹腔、1122凸起、113通光部、114出光部、115截止部、116凹陷部、117III区结构、1101***定位部、12a/12b/12c初级光学元件支架、121初级光学元件支架安装孔、122初级光学元件定位孔、1221通气孔、123b初级光学元件定位销、1201支撑架、1202限位件、1203限位槽、1204限位件定位孔、1205初级光学元件支架定位销、1206卡合部、21次级光学元件、211次级光学元件光轴、22a/22b/22c次级光学元件支架、221a/221c插槽、2211a/2211c前表面、2212a/2212c上表面、2213a/2213c下表面、222a/222b/222c次级光学元件支架安装孔、223弧形挡板、224a/224b次级光学元件支架定位销、225开口、226通槽、227突出部、3散热器、31散热器定位销、4电路板、41电路板初级定位孔、42电路板次级定位孔、5光源、6螺钉
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
首先需要说明的是,在下文的描述中为清楚地说明本发明的技术方案而涉及的一些方位词,如术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系与车灯光学元件组件或车辆照明模组在使用状态下的上下前后左右方向相同。本发明的车灯光学元件组件安装在电路板4上时,初级光学元件11位于电路板4与次级光学元件21之间,电路板4上光源5发出的光线依次经过初级光学元件11和次级光学元件21后射出,形成车灯照明光形。本文中,为便于描述,定义电路板4、初级光学元件11和次级光学元件21的排布方向为从后至前,即电路板4位于初级光学元件11的后方,次级光学元件21位于初级光学元件11的前方,在水平面内与前后方向垂直的为左右方向,在竖直平面内与前后方向垂直的为上下方向。“顶面”指的是部件的上表面,“底面”指的是部件的下表面。以上仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本发明中,光轴是指过光学元件焦点并沿该光学元件的光束传输方向延伸的轴线,即光束的中心线;
中心区域光形是指位于照明光形中心区域的光形,展宽区域光形是指体现照明光形展宽的光形,两者叠加后形成完整的照明光形;
主近光模组是用于形成近光中心区域光形的模组;
辅助近光模组是用于形成近光展宽区域光形的模组;
近光模组是用于形成近光光形的模组,近光光形包括近光中心区域光形和近光展宽区域光形;
主远光模组是用于形成远光中心区域光形的模组;
辅助远光模组是用于形成远光展宽区域光形的模组;
远光模组是用于形成远光光形的模组,远光光形包括远光中心区域光形和远光展宽区域光形;
双光模组是用于形成近光和远光光形的远近光一体式模组。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或者是一体连接;可以是直接连接,也可以是通过中间媒介间接连接,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
参见图1-图78所示,本发明的车灯光学元件组件包括初级光学元件11和次级光学元件21,光线能够依次经过所述初级光学元件11和所述次级光学元件21后投射形成照明光形,所述初级光学元件11包括沿出光方向依次设置的至少一个入光部112、通光部113和出光部114,光线由所述入光部112进入初级光学元件11,经所述通光部113后由所述出光部114出射。
所述入光部112可以为多种形式的聚光结构,例如可以是如图13-图14所示的呈聚光杯状的结构或者朝向远离所述通光部113方向的凸出结构。聚光杯的外部轮廓面为由后向前口径逐渐扩大的曲面结构,其入光面可以是平面,也可以是如图18所示的后端开设有开口向后的凹腔1121,所述凹腔1121的底部设有朝向远离所述通光部113方向凸出的凸起1122,以汇聚更多的光线,提高光效。
如图3和图73所示,所述初级光学元件11位于两侧的所述入光部112的光轴向靠近所述次级光学元件21的光轴方向倾斜,所述出光部114为内凹弧面;或者,
如图31所示,所述入光部112的光轴方向与所述次级光学元件21的光轴方向相同,所述出光部114的横向截线为向前凸出的弧线,以使所述出光部114的出射光线向中间集中,实现光线基本都能进入小宽度的次级光学元件21,
如图32所示,所述出光部114的纵向截线配置为向前凸出的弧线,使得该方向上出射光线向中间集中,可以将次级光学元件21的高度做小。
优选地,所述出光部114的纵向截线由所述初级光学元件11的出光部114的下边界向上、向后逐渐弯曲。
如图39所示,所述初级光学元件11的下表面相对于次级光学元件光轴211向后下方倾斜,倾斜角度≤15°,优选5°~10°,可以进一步使更多出射光线射入次级光学元件21,提高光效。
如图54所示,所述初级光学元件11的上下表面之间的间距由后向前逐渐减小,以使光线在上下方向上汇聚,形成高亮度光形。
上述车灯光学组件可应用于各种模组,包括主近光模组、辅助近光模组、近光模组、主远光模组、辅助远光模组、远光模组和双光模组,不同在于根据各自的光形要求进行不同结构的车灯光学组件的选择并进行相应的配光即可。
本发明第二方面提供的车辆照明模组包括沿出光方向自后向前依次设置的散热器3、电路板4、光源5以及上述的车灯光学元件组件,所述光源5电连接在所述电路板4上;所述车辆照明模组还包括用于支撑所述初级光学元件11的初级光学元件支架12a或初级光学元件支架12b或初级光学元件支架12c和用于支撑所述次级光学元件21的次级光学元件支架22a或次级光学元件支架22b或次级光学元件支架22c。
次级光学元件21和次级光学元件支架22a或次级光学元件支架22b或次级光学元件支架22c为一体成型件,进一步地,次级光学元件支架22a可以作为遮光罩使用,防止漏光,如图1所示的模组结构,其既有支撑作用也有遮光作用,其与次级光学元件21通过双色注塑成型,所述次级光学元件21选用透明材料(透明塑料、硅胶等),所述次级光学元件支架22a选用深色遮光材料(黑色PC等)。而对于图52、图59中所示的次级光学元件支架22b和次级光学元件支架22c,其仅具有支撑作用。
如图6和图7所示,所述次级光学元件21的上下两端与所述次级光学元件支架22a之间形成有开口225。该开口225用于增加进入次级光学元件21的光线,提高光效。如图8和图9所示,不设开口的话,射至该位置的光线会被具有吸光功能的次级光学元件支架22a吸收,而不能进入次级光学元件21。当然,该开口也可以不用设置。
本发明的车辆照明模组的初级光学元件11和次级光学元件21的相对位置固定至少有两种表现形式,一种是所述初级光学元件支架12a能够和所述次级光学元件支架22a插接或所述初级光学元件支架12c能够和所述次级光学元件支架22c插接以将所述初级光学元件11和次级光学元件21的相对位置固定,所述次级光学元件支架22a或次级光学元件支架22c与所述散热器3固定连接;另一种是所述初级光学元件支架12b和所述次级光学元件支架22b均与所述散热器3固定连接,以将所述初级光学元件11和次级光学元件21的相对位置固定。
以下通过三种具体实施例来详细说明上述车辆照明模组的两种表现形式。
【车辆照明模组的第一种实施例】
如图6、图8、图11和图14所示,所述初级光学元件支架12a包括形成于所述初级光学元件11两侧的***定位部1101,所述次级光学元件支架22a上设有能够与所述***定位部1101插接的插槽221a。
具体地,所述插槽221a贯通所述次级光学元件支架22a的后端且从后向前延伸,初级光学元件11可由后方从插槽221a的开口向前***。所述***定位部1101的前端面与所述插槽221a内侧的前表面2211a(如图20所示)相接触,后端面与电路板4表面接触,以限制初级光学元件11相对次级光学元件支架22a前后移动;所述***定位部1101的顶面与所述插槽221a内侧的上表面2212a(如图21所示)相接触,所述***定位部1101的底面与所述插槽221a内侧的下表面2213a(如图20所示)相接触,以限制初级光学元件11相对次级光学元件支架22a上下移动。
初级光学元件11的材料为透明材质的塑料(PC、PMMA等)、硅胶或玻璃,材料优选硅胶。初级光学元件11的材料为硅胶时,参见图13、图16-图19以及图24-图27所示,在所述***定位部1101上与所述插槽221a相接触的表面上设置有凸起结构111。利用硅胶受力后的变形相比PC、PMMA等塑料较大的这一特性,使硅胶体的初级光学元件11在所述次级光学元件支架22a的接触力作用下被压紧,两者过盈配合,提高初级光学元件11的安装可靠性。
如图10-图11所示,所述次级光学元件支架22a的前端的左右内侧设有弧形挡板223,如图12所示,弧形挡板223用于遮挡进入次级光学元件21并出射后形成杂散光的光线,从而可以消除杂散光。也就是说该弧形挡板223遮掉的光线如果进入次级光学元件21并由次级光学元件21折射后会形成杂散光(照明光形以外的光,统称为无效光)。弧形挡板223设置为弧形的原因是:次级光学元件21中部的入射光线比上下两端多,弧形可以实现既能遮蔽形成杂散光的光线,又能避免过多地遮蔽用于形成照明光形的光线,也就是说,如果挡板为矩形,会过多地遮蔽次级光学元件21上下两端的入射光线,其中会包含用于形成照明光形的光线。
如图2和图6所示,所述次级光学元件支架22a的后端上设有次级光学元件支架安装孔222a,对应地,在所述散热器3和所述电路板4上设有与之对应的安装孔,散热器3上的安装孔为螺纹孔,采用螺钉6依次穿过次级光学元件支架安装孔222a、电路板4上的安装孔和散热器3上的安装孔以将所述次级光学元件支架22a安装在所述散热器3和所述电路板4上。
具体地,如图2和图3所示,所述散热器3上设有散热器定位销31,所述初级光学元件11上设有能够与所述散热器定位销31配合的初级光学元件定位孔122,对应地,所述电路板4上设有电路板初级定位孔41,所述散热器定位销31穿过所述电路板初级定位孔41并与所述初级光学元件定位孔122配合以将所述初级光学元件11限位于所述散热器3和所述电路板4上;如图2和图6所示,所述次级光学元件支架22a后端面上设有次级光学元件支架定位销224a、所述散热器3上设有散热器次级定位孔、所述电路板4上设有电路板次级定位孔42,所述散热器次级定位孔和所述电路板次级定位孔42与所述次级光学元件支架定位销224a配合以将所述次级光学元件21限位于所述散热器3和所述电路板4上。
如图3和图13所示,所述初级光学元件定位孔122的数量优选有两个,一个为与所述散热器定位销31周面接触的圆孔,另一个为与所述散热器定位销31间隙配合的腰形孔。如果两个初级光学元件定位孔122均为圆 孔,则散热器定位销31的位置需要非常精确才能顺利将散热器定位销31***初级光学元件定位孔122中,增加加工难度,而且很容易造成过定位,因此将其中一个初级光学元件定位孔122设为腰形孔,只要将其中一个散热器定位销31对准圆孔,另一个散热器定位销31将很容易***腰形孔,而定位精度并不会降低。所述初级光学元件11上开设有连通所述圆孔与外界的通气孔1221,以防止散热器定位销31***圆孔后压缩空气而引起初级光学元件11变形,影响其光学***的精度,进一步影响光形效果。
所述次级光学元件21的出光面的上下和左右两个方向中至少有一个方向的尺寸≤35mm,优选≤15mm,以实现次级光学元件21小开口的要求。次级光学元件21优选透镜。
该实施例的车辆照明模组可以是主近光模组、辅助近光模组、主远光模组或辅助远光模组,不同在于根据各自的光形要求进行不同结构的车灯光学组件的选择并进行相应的配光即可。
主近光模组
如图14、图15所示,所述主近光模组的出光部114的下边界设置为截止部115,该截止部115的形状与近光明暗截止线的形状相匹配。
如图16所示,所述主近光模组的出光部114为内凹弧面,与次级光学元件21的焦面相适应,使光形中心区域的光形清晰。
如图14-图15所示,所述主近光模组的初级光学元件11的下表面靠近所述出光部114的位置开设有向上凹陷、用于形成50L暗区光形的凹陷部116,用于改变部分光线的光路,实现降低50L暗区亮度的功能,即原本射至该位置处的光线会因为凹陷部116的存在改变光传输方向,不会射至50L暗区,从而使50L暗区亮度达到法规要求。
所述主近光模组的次级光学元件21的焦距为10~30mm,优选15mm、20mm、25mm、30mm。
所述主近光模组的整体尺寸为:前后方向(长)70~120mm,左右方向(宽)50~80mm,上下方向(高)20~40mm。
为了做到在次级光学元件21左右宽度很小的情况下,初级光学元件11的出射光线尽可能多地进入次级光学元件21,同时还能实现光形中心区域亮度高,所述主近光模组位于两侧的所述入光部112的光轴向靠近次级光学元件光轴211方向倾斜,以使其光线向中间集中,保证初级光学元件11的光线基本都能进入次级光学元件21。
上述主近光模组投射形成的光形如图5所示。
辅助近光模组
参见图30-图39所示,辅助近光模组与上述主近光模组安装结构相同,不同在于辅助近光模组投射形成的光形的展宽角度很大,为了形成展宽角度很大的近光展宽区域光形,需要初级光学元件11和次级光学元件21各个光学面的配合,经过两者配光得到合适展宽角度的光形。下面是其中一种实现方式。
上述主近光模组中的初级光学元件11中,为了做到在次级光学元件21左右宽度很小的情况下,初级光学元件11的出射光线尽可能多地进入次级光学元件21,同时还能实现光形中心区域亮度高,如图38中的上图位于两侧的入光部112的光轴相对于次级光学元件光轴211倾斜设置,均向靠近次级光学元件光轴211的方向倾斜,以使其光线向中间集中,保证初级光学元件11的光线基本都能进入次级光学元件21。由于各光源5设置在同一电路板4上,光源5的光轴与位于两侧的入光部112的光轴之间具有一定的角度,这导致光效不够高。因此,为了实现在次级光学元件21较小宽度的情况下还不损失光效,如图38中的下图所示,将所述辅助近光模组的所有入光部112配置为其光轴方向均与次级光学元件光轴211方向相同,同时,将初级光学元件11的出光部114的横向截线设置为向前凸出的弧线,以使出射光线向中间集中,实现光线基本都能进入小宽度的次级光学元件21。同样,如图39所示,可将初级光学元件11的出光部114的纵向截线也设置为向前凸出的弧线,使得该方向上出射光线向中间集中,可以将次级光学元件21的高度做小。如图33-图39所示,辅助近光模组的纵向截线由初级光学元件11的出光部114的下边界处向上向后逐渐弯曲,次级光学元件21焦点优选设置在该下边界上,该初级光学元件11的下表面相对于次级光学元件光轴211向后下方倾斜,倾斜角度小于等于15°,优选5°~10°,可以进一步使更多出射光线射入次级光学元件21,提高光效。
所述辅助近光模组的初级光学元件11的出光部114上的任一点的半径为5~150mm,优选7~25mm,具体数值根据实际配光情况来定。
如图38-图39所示(图38的上图是主近光模组横向剖面示意图、下图是辅助近光模组横向剖面示意图,图39的上图是主近光模组纵向剖面示意图、下图是辅助近光模组纵向剖面示意图),为了实现大展宽角度的近光展宽区域光形,该辅助近光模组的次级光学元件21的出光面相比主近光模组的次级光学元件21的出光面的凸出程度更大,以使由进入透镜的光线能够发生更大角度的折射,以得到更宽的展宽角度。
由于该辅助近光模组的次级光学元件21可以使该模组形成大展宽角度的光形,因此,如图34和图37所示,可在所述辅助近光模组的初级光学元件11的下表面设有用于形成近光III区光形的III区结构117,该III区结构117与次级光学元件21配合可形成宽度较大的近光III区光形。所述III区结构117设置于所述通光部113中段,具有楔形结构并且厚度由后向前逐渐增大。
所述III区结构117的出光面为平面或者曲面,其左右方向上的宽度为2~5mm,优选3mm,上下方向的高度为0.2~1mm,优选0.4mm。
由于该辅助近光模组用于形成近光展宽光形,其初级光学元件11的下边界形状无需与近光明暗截止线的形状相匹配。
主近光模组和辅助近光模组的初级光学元件11也可以互换使用,只要通过配光调节各光学面参数满足所要光形即可。
含III区结构117的辅助近光模组投射形成的光形如图40所示;不含III区结构117的辅助近光模组投射形成的光形如图41所示;不含III区结构117的辅助近光模组叠加主近光模组投射形成的光形如图42所示。
主远光模组、辅助远光模组与上述主近光模组区别点是现有技术中根据远光特性而具有的常规区别结构,在此不一一列举。
【车辆照明模组的第二种实施例】
参见图59-图68所示,所述初级光学元件支架12c包括支撑架1201和限位件1202,所述限位件1202固设于所述初级光学元件11上,所述支撑架1201上设有限位槽1203,所述限位件1202与所述限位槽1203配合连接并与所述支撑架1201相对固定;通过限位件1202与支撑架1201的配合连接,使得初级光学元件11与支撑架1201相对固定,实现了将初级光学元件11定位支撑在初级光学元件支架12c上,即,限位件1202和支撑架1201装配在一起构成支撑初级光学元件11的初级光学元件支架12c。在一种较佳的实施方式中,支撑架1201的上表面部分下沉形成限位槽1203,使得限位槽1203的底面朝上且为水平面,限位件1202的下表面为水平面,限位件1202置于限位槽1203中,且限位件1202的下表面与限位槽1203的底面接触配合。
为增加限位件1202与支撑架1201之间装配定位的准确性,所述限位件1202上设有限位件定位孔1204,所述限位槽1203内设有与所述限位件定位孔1204插接配合的初级光学元件支架定位销1205。在将限位件1202安装到支撑架1201上时,通过初级光学元件支架定位销1205与限位件定位孔1204的插接配合,可以限定限位件1202与支撑架1201的相对位置,对限位件1202进行准确定位,从而实现初级光学元件11与初级光学元件支架12c之间的准确定位。
参见图59、图60、图65和图66所示,所述次级光学元件支架22c上设有插槽221c,所述初级光学元件支架12c与所述插槽221c插接配合,且所述初级光学元件支架12c具有与所述插槽221c内侧的表面相接触的定位面。通过初级光学元件支架12c的定位面与插槽221c内侧表面的接触配合,可以限定初级光学元件支架12c与次级光学元件支架22c的相对位置,使得初级光学元件支架12c与次级光学元件支架22c相对固定,实现初级光学元件支架12c与次级光学元件支架22c之间的装配定位,具有安装方便、定位可靠的优点。
与初级光学元件11的左、右两侧分别设有一个限位件1202,相匹配地,次级光学元件支架22c的左、右两侧分别设有一个插槽221c,两个插槽221c之间为供初级光学元件11***的装配空间。两个限位件1202分别装配到支撑架1201上对应的限位槽1203内后,与支撑架1201构成整体***相应的插槽221c中,从而实现初级光学元件支架12c与次级光学元件支架22c的装配,初级光学元件11则位于两个插槽221c之间的装配空间内。
为便于初级光学元件支架12c与次级光学元件支架22c的装配,并使得次级光学元件21位于初级光学元件11的前方,优选地,次级光学元件21设于次级光学元件支架22c的前端,所述插槽221c贯通所述次级光学元件支架22c的后端且从后向前延伸,由此,使得初级光学元件支架12c能够从插槽221c的后端***插槽221c内并沿图61中直线箭头所示方向向前进入插槽221c内,直至初级光学元件支架12c的定位面与插槽221c内侧的表面接触配合到位,支撑在初级光学元件支架12c上的初级光学元件11则位于次级光学元件21的后方。
所述插槽221c贯通所述次级光学元件支架22c的后端且从后向前延伸,为保证初级光学元件支架12c的定位面与插槽221c内侧表面的接触配合能够有效限定初级光学元件支架12c与次级光学元件支架22c的相对位置,所述支撑架1201的前端面与所述插槽221c内侧的前表面2211c相接触,所述支撑架1201的后端面与所述电路板4的表面相接触,以限制初级光学元件支架12c相对次级光学元件支架22c向前移动;所述限位件1202的顶面与与所述插槽221c内侧的上表面2212c相接触,以限制初级光学元件支架12c相对次级光学元件支架22c向上移动;所述支撑架1201的底面与所述插槽221c内侧的下表面2213c相接触,以限制初级光学元件支架12c相对次级光学元件支架22c向下移动。本实施例中,支撑架1201位于限位槽1203正前方的前端面构成初级光学元件支架12c的前定位面;限位件1202装配到支撑架1201上的限位槽1203内后,限位件1202的顶面高于支撑架1201的顶面,因此限位件1202的顶面构成初级光学元件支架12c的上定位面;支撑架1201的底面构成初级光学元件支架12c的下定位面。参见图60所示,在一种较佳的实施方式中,插槽221c内侧的上表面有部分凹陷而不与限位件1202的上表面接触配合,插槽221c内侧的下表面有部分凹陷而不与支撑架1201的下表面接触配合,由此可以减小插槽221c内侧的上表面与限位件1202的上表面的接触面积、插槽221c内侧的下表面与支撑架1201的下表面的接触面积,形成小面积接触定位,小面积的接触面的加工精度更容易保证,可使得初级光学元件支架12c的定位面与插槽221c内侧的表面之间更好地接触,从而使定位更精准。
进一步,插槽221c沿左右方向贯通次级光学元件支架22c,所述次级光学元件支架22c设于或者一体形成于所述次级光学元件21的左右两侧,所述支撑架1201的左、右两侧分别设有一个卡合部1206,两个所述卡合部1206相对的内侧面分别与所述次级光学元件支架22c的左、右侧面相接触,以限制初级光学元件支架12c相对次级光学元件支架22c左右移动。在一种较佳的实施方式中,两个卡合部1206分别设于支撑架1201的左、右两侧侧面上且均向前延伸至支撑架1201前端面的前方,装配后,支撑架1201的前端面与插槽221c内侧的前表面相接触,两个卡合部1206则位于次级光学元件支架22c的外侧,且两个卡合部1206的内侧面分别与次级光学元件支架22c的左侧面、右侧面位于插槽221c前方的区域相接触配合。为使初级光学元件支架12c的卡合部1206能够通过插槽221c的后端到达插槽221c前方外侧,如图66所示,次级光学元件支架22c的后端设有前后贯通次级光学元件支架22c的通槽226,通槽226的开口朝向插槽221c并在插槽221c的外侧与插槽221c的后端相连通,当支撑架1201和限位件1202***插槽221c内时,位于支撑架1201侧面的卡合部1206从通槽226通 过并到达插槽221c前方外侧。
参见图62、图66和图68所示,优选地,初级光学元件支架12c的后端具有用于与电路板4的表面相接触的后定位面,次级光学元件支架22c的后端面上设有用于与电路板4的表面相接触的突出部227。在将车灯光学元件组件安装在电路板4上时,通过初级光学元件支架12c的后定位面与电路板4的表面接触配合、次级光学元件支架22c后端的突出部227与电路板4的表面接触配合,可以限制初级光学元件支架12c相对次级光学元件支架22c向后移动,并将车灯光学元件组件定位在电路板4的表面上。支撑架1201的后端面构成初级光学元件支架12c的后定位面。优选地,可以在次级光学元件支架22c的后端面上的左、右两侧分别设置一个突出部227。通过在次级光学元件支架22c的后端面上设置与电路板4的表面相接触的突出部227,避免了次级光学元件支架22c的后端面整体与电路板4的表面相接触,减小了次级光学元件支架22c后端与电路板4表面的接触面积,形成小面积接触定位,小面积的接触面的加工精度更容易保证,可使得突出部227与电路板4的表面之间更好地接触,从而使定位更精准。
综上,本实施例的车灯光学元件组件,通过初级光学元件支架12c与次级光学元件支架22c的配合连接,将初级光学元件11与次级光学元件21装配成一整体结构而直接确定了两者的相对位置,实现了初级光学元件11与次级光学元件21之间的直接定位。并且,通过初级光学元件支架12c的前定位面(支撑架1201的前端面)与次级光学元件支架22c插槽221c内侧的前表面2211c相接触,限制了初级光学元件支架12c相对次级光学元件支架22c向前移动,通过初级光学元件支架12c的上定位面(限位件1202的顶面)与插槽221c内侧的上表面2212c相接触,限制了初级光学元件支架12c相对次级光学元件支架22c向上移动,通过初级光学元件支架12c的下定位面(支撑架1201的底面)与插槽221c内侧的下表面2213c相接触,限制了初级光学元件支架12c相对次级光学元件支架22c向下移动,通过初级光学元件支架12c上两个卡合部1206相对的内侧面分别与次级光学元件支架22c的左侧面、右侧面相接触,限制了初级光学元件支架12c相对次级光学元件支架22c左右移动,通过初级光学元件支架12c的后定位面(支撑架1201的后端面)与电路板4的表面接触配合、次级光学元件支架22c后端的突出部227与电路板4的表面接触配合,限制了初级光学元件支架12c相对次级光学元件支架22c向后移动,由此,实现了初级光学元件支架12c与次级光学元件支架22c在前后、上下、左右方向上的相对固定,保证了初级光学元件支架12c与次级光学元件支架22c全方位定位精度以及安装稳定性,即保证了初级光学元件11与次级光学元件21的定位精度以及安装稳固性,使得车灯光学元件组件在长时间使用后仍能保持初级光学元件11与次级光学元件21的相对位置不变,从而保证车灯光形的准确性和稳定性。此外,将初级光学元件11和次级光学元件21装配成一整体结构、确定了初级光学元件11与次级光学元件21的相对位置后,再将该整体结构安装到电路板4和散热器3上,可降低电路板4与散热器3的定位精度要求,使得安装过程更为简单便捷。
初级光学元件支架12c、次级光学元件支架22c与散热器3、电路板4、光源5的定位安装结构属于现有技术,在此不作赘述。
另外,需要说明的是,本实施例中的初级光学元件11设置于其后端面上的至少一个入光部未在图中示出。
【车辆照明模组的第三种实施例】
所述初级光学元件支架12b和所述次级光学元件支架22b均与所述散热器3固定连接。所述初级光学元件支架12b设于或一体形成于所述初级光学元件11的上表面或者下表面,所述次级光学元件支架22b设于或一体形成于所述次级光学元件21的上下两端。
该实施例的车辆照明模组可以是近光模组、远光模组或双光模组,不同在于根据各自的光形要求进行不同结构的车灯光学组件的选择并进行相应的配光即可。
近光模组
参见图43-图49并结合图56所示,近光模组的初级光学元件支架12b和所述散热器3之间通过初级定位装置定位,次级光学元件支架22b和散热器3之间通过次级定位装置定位,所述初级光学元件支架12b的后端面上设有初级光学元件支架安装孔121以将所述初级光学元件支架12b安装在所述散热器3和所述电路板4上,所述次级光学元件支架22b的后端面上设有次级光学元件支架安装孔222b以将所述次级光学元件支架22b安装在所述散热器3上。
具体地,所述初级定位装置包括设在所述散热器3上的散热器初级定位孔、设在所述电路板4上的电路板初级定位孔和设在所述初级光学元件支架12b上的初级光学元件定位销123b,所述初级光学元件定位销123b穿过所述电路板初级定位孔并与所述散热器初级定位孔配合以将所述初级光学元件11限位于所述散热器3和所述电路板上4;所述次级定位装置包括设在所述次级光学元件支架22b后端面上的次级光学元件支架定位销224b和设在所述散热器3上的散热器次级定位孔,所述次级光学元件支架定位销224b与所述散热器次级定位孔配合以将次级光学元件21限位于所述散热器3上。
如图56所示,所述散热器3的轮廓呈直角U型,所述初级光学元件支架12b安装在呈直角U型的所述散热器3的内底面上,所述次级光学元件支架22b安装在呈直角U型的所述散热器3的两个端头上。
该近光模组可用于主近光,也可用于辅助近光,其初级光学元件11与上述辅助近光模组中的初级光学元件11的结构相同。所述近光模组的初级光学元件支架12b位于所述初级光学元件11的上表面,所述近光模组的初级光学元件11的出光面114的横向截线设置为向前凸出的弧线、纵向截线设置为直线或者向前凸出的弧线。
近光模组投射形成的光形如图50所示。
远光模组
参见图51-图54并结合图56所示,远光模组结构与近光模组基本相同,不同点在于:其初级光学元件支 架12b位于所述初级光学元件11的下表面;其述初级光学元件11的上下表面之间的间距由后向前逐渐减小,以使光线在上下方向上汇聚,形成高亮度的远光光形;其初级光学元件没有III区结构117。
上述远光模组投射形成的光形如图55所示。
双光模组
参见图56-图57所示,双光模组包括一个上述近光模组的初级光学元件11、一个上述远光模组的初级光学元件11以及一个次级光学元件21以及沿出光方向自后向前依次设置的散热器3、电路板4、光源5,两个初级光学元件11上设有与电路板4定位的定位销,次级光学元件21上设有与散热器3定位的定位销,两个初级光学元件11和一个次级光学元件21分别与散热器3固定连接。模组的整体尺寸为:前后方向70~120mm,左右方向10~40mm,上下方向40~80mm。
上述双光模组投射形成的光形如图58所示。
此外,本发明还提供了车辆照明模组的第四种实施例,参见图69-图78所示,该车辆照明模组包括散热器(图中未示出)、电路板(图中未示出)以及模组单元,所述模组单元包括沿出光方向自后向前依次设置的光源5、初级光学元件11、次级光学元件21;单个模组单元内的光源设置为1-5个。
所述车辆照明模组具有至少两个模组单元:一主光型模组单元和一辅助光型模组单元;所述主光型模组单元的光型覆盖光型的核心区域即形成近光中心区域光形,所述辅助光型模组单元的光型覆盖所述核心区域并形成近光展宽区域光形;所述主光型模组单元和所述辅助光型模组单元相互配合形成完整光型的照明***。
所述主光型模组单元具有若干个,所述辅助光型模组单元具有若干个;各个模组单元之间相互作用,作为一个整体能够实现照明功能;作为模组单元个体也能够单独实现部分照明的功能。
各模组单元中:所述次级光学元件21为平凸透镜,所述平凸透镜开口的高和宽均为5~20mm;所述初级光学元件11的前后距离为10~20mm。
所述初级光学元件11沿出光方向依次设置有入光部112、通光部113和出光部114,所述通光部113的上表面或下表面设置为反射部,所述出光部114的上边界或下边界设置为截止部115,所述光源5发出的光线首先由所述入光部112进入所述初级光学元件11,然后向所述出光部114照射。
所述通光部113的长度为10~20mm。
所述出光部114设置为无段差、顺滑的内凹圆弧面。
所述圆弧的弧度Fs的半径R≤20mm,用于与所述次级光学元件21的透镜相配合,所述截止部115设置于所述出光部114的边界,所述透镜的焦点设置于该边界处,或者距离该边界的距离不超过2mm。
用于形成近光III区光形区域和50L光形区域的结构设置于近光模组的初级光学元件11的反射部,其中,50L结构为凹状空腔(即凹陷部116),靠近所述截止部115进行设置;III区结构117设置于反射部中段,具有楔形结构、厚度由后向前逐渐增大,其出光面为内凹曲面,内凹指的是向后端凹。
所述主光型模组单元包括两种:主近光模组一、主近光模组二,下面对本实施例中各个光型模组单元分别说明:
主近光模组一:
主近光模组一设置为两个,如图69和图70所示,光源5和初级光学元件11的入光部112均设置为一个,次级光学元件21为平凸透镜,透镜开口尺寸的高(上下方向)和宽(左右方向)尺寸均约5-20mm(优选为10mm),光源5是单芯片的LED光源,入光部112为聚光杯状结构,通光部113的下表面设置为反射部,反射部设置为具有左右段差的分段面,出光部114设置为半径R=10mm的圆弧面,反射部和出光部114相交处设置为截止部115,截止部115的形状为近光截止线的具有左、右高度差的形状,用于形成具有截止线形状的主近光光形,如图71所示。
主近光模组二:
主近光模组二设置为两个,如图72-图76所示,和主近光模组一的不同之处在于:其光源5和初级光学元件11的入光部112均设置为两个,所述次级光学元件21为透镜,所述透镜开口的高(上下方向)约为8~12mm,宽(左右方向)约为13~17mm,所述光源5和所述初级光学元件11的入光部112相对中轴线具有倾斜角度,所述初级光学元件11两侧的光源5和初级光学元件11的入光部112倾斜指向中间,也就是说,初级光学元件11位于两侧的入光部112的光轴向靠近次级光学元件光轴211方向倾斜,形成的光形如图77所示。
上述主近光模组一和主近光模组二叠加形成的光形如图78所示。
辅助光型模组与主光型模组的区别为现有技术的常规设置,不是本发明的创新点,在此不作赘述。
本发明第三方面提供了一种车灯,该车灯包括上述任意一种车辆照明模组。
本发明第四方面提供了一种车辆,该车辆包括上述任意一种车灯。
上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (21)

  1. 一种车灯光学元件组件,包括初级光学元件(11)和次级光学元件(21),光线能够依次经过所述初级光学元件(11)和所述次级光学元件(21)后投射形成照明光形,所述初级光学元件(11)包括沿出光方向依次设置的至少一个入光部(112)、通光部(113)和出光部(114),其特征在于,所述初级光学元件(11)位于两侧的所述入光部(112)的光轴向靠近次级光学元件光轴(211)方向倾斜,所述出光部(114)为内凹弧面;或者,
    所述入光部(112)的光轴方向与所述次级光学元件光轴(211)方向相同,所述出光部(114)的横向截线和/或纵向截线配置为向前凸出的弧线。
  2. 根据权利要求1所述的车灯光学元件组件,其特征在于,所述出光部(114)的纵向截线由所述初级光学元件(11)的出光部(114)的下边界向上、向后逐渐弯曲。
  3. 根据权利要求1所述的车灯光学元件组件,其特征在于,所述初级光学元件(11)的下表面相对于所述次级光学元件光轴(211)向后下方倾斜,倾斜角度≤15°。
  4. 根据权利要求1所述的车灯光学元件组件,其特征在于,所述初级光学元件(11)的上下表面之间的间距由后向前逐渐减小。
  5. 一种车辆照明模组,其特征在于,包括沿出光方向自后向前依次设置的散热器(3)、电路板(4)、光源(5)以及根据权利要求1至4中任一项所述的车灯光学元件组件,所述光源(5)电连接在所述电路板(4)上;所述车辆照明模组还包括用于支撑所述初级光学元件(11)的初级光学元件支架(12a,12b,12c)和用于支撑所述次级光学元件(21)的次级光学元件支架(22a,22b,22c)。
  6. 根据权利要求5所述的车辆照明模组,其特征在于,所述次级光学元件(21)和所述次级光学元件支架(22a,22b,22c)为一体成型件。
  7. 根据权利要求6所述的车辆照明模组,其特征在于,所述次级光学元件支架(22a)配置为遮光罩,其与所述次级光学元件(21)为双色注塑一体件。
  8. 根据权利要求7所述的车辆照明模组,其特征在于,所述次级光学元件(21)的上下两端与所述次级光学元件支架(22a)之间形成有开口(225)。
  9. 根据权利要求5至8任一项所述的车辆照明模组,其特征在于,所述初级光学元件支架(12a,12c)能够和所述次级光学元件支架(22a,22c)插接以将所述初级光学元件(11)和次级光学元件(21)的相对位置固定,所述次级光学元件支架(22a,22c)与所述散热器(3)固定连接。
  10. 根据权利要求9所述的车辆照明模组,其特征在于,所述初级光学元件支架(12a)包括形成于所述初级光学元件(11)两侧的***定位部(1101),所述次级光学元件支架(22a)上设有能够与所述***定位部(1101)插接的插槽(221a)。
  11. 根据权利要求10所述的车辆照明模组,其特征在于,所述插槽(221a)贯通所述次级光学元件支架(22a)的后端且从后向前延伸,所述***定位部(1101)的前端面与所述插槽(221a)内侧的前表面(2211a)相接触,所述***定位部(1101)的后端面与所述电路板(4)表面接触,所述***定位部(1101)的顶面与所述插槽(221a)内侧的上表面(2212a)相接触,所述***定位部(1101)的底面与所述插槽(221a)内侧的下表面(2213a)相接触。
  12. 根据权利要求11所述的车辆照明模组,其特征在于,所述***定位部(1101)上与所述插槽(221a)相接触的表面上设置有凸起结构(111)。
  13. 根据权利要求10所述的车辆照明模组,其特征在于,所述次级光学元件支架(22a)的前端的左右内侧设有弧形挡板(223)。
  14. 根据权利要求10所述的车辆照明模组,其特征在于,所述散热器(3)上设有散热器定位销(31),所述初级光学元件(11)上设有能够与所述散热器定位销(31)配合的初级光学元件定位孔(122),所述初级光学元件定位孔(122)的数量有两个,其中一个为与所述散热器定位销(31)周面接触的圆孔,所述初级光学 元件(11)上开设有连通所述圆孔与外界的通气孔(1221)。
  15. 根据权利要求10所述的车辆照明模组,其特征在于,所述次级光学元件(21)的出光面的上下和左右两个方向中至少有一个方向的尺寸≤35mm。
  16. 根据权利要求9所述的车辆照明模组,其特征在于,所述初级光学元件支架(12c)包括支撑架(1201)和限位件(1202),所述限位件(1202)固设于所述初级光学元件(11)上,所述支撑架(1201)上设有限位槽(1203),所述限位件(1202)与所述限位槽(1203)配合连接并与所述支撑架(1201)相对固定;所述次级光学元件支架(22c)上设有插槽(221c),所述初级光学元件支架(12c)与所述插槽(221c)插接配合。
  17. 根据权利要求16所述的车辆照明模组,其特征在于,所述插槽(221c)贯通所述次级光学元件支架(22c)的后端且从后向前延伸,所述支撑架(1201)的前端面与所述插槽(221c)内侧的前表面(2211c)相接触,所述支撑架(1201)的后端面与所述电路板(4)的表面相接触,所述限位件(1202)的顶面与所述插槽(221c)内侧的上表面(2212c)相接触,所述支撑架(1201)的底面与所述插槽(221c)内侧的下表面(2213c)相接触。
  18. 根据权利要求17所述的车辆照明模组,其特征在于,所述支撑架(1201)的左、右两侧分别设有一个卡合部(1206),两个所述卡合部(1206)相对的内侧面分别与所述次级光学元件支架(22c)的左、右侧面相接触。
  19. 根据权利要求5至8任一项所述的车辆照明模组,其特征在于,所述初级光学元件支架(12b)和所述次级光学元件支架(22b)均与所述散热器(3)固定连接。
  20. 一种车灯,其特征在于,包括至少一个根据权利要求5至19中任一项所述的车辆照明模组。
  21. 一种车辆,其特征在于,包括根据权利要求20所述的车灯。
PCT/CN2020/085171 2019-05-20 2020-04-16 车灯光学元件组件、车辆照明模组、车灯及车辆 WO2020233297A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/415,864 US11391429B2 (en) 2019-05-20 2020-04-16 Vehicle lamp optical element assembly, vehicle illumination module, vehicle lamp, and vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910417075.2A CN111964000A (zh) 2019-05-20 2019-05-20 车辆照明模组、车灯及汽车
CN201910417075.2 2019-05-20
CN201910556042.6 2019-06-25
CN201910556042.6A CN110173669B (zh) 2019-06-25 2019-06-25 车灯光学元件总成、车灯及汽车

Publications (1)

Publication Number Publication Date
WO2020233297A1 true WO2020233297A1 (zh) 2020-11-26

Family

ID=73458938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085171 WO2020233297A1 (zh) 2019-05-20 2020-04-16 车灯光学元件组件、车辆照明模组、车灯及车辆

Country Status (2)

Country Link
US (1) US11391429B2 (zh)
WO (1) WO2020233297A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022188089A1 (zh) * 2021-03-11 2022-09-15 华域视觉科技(上海)有限公司 光学组件安装结构、车灯照明装置、车灯及车辆
EP4265960A4 (en) * 2020-12-15 2023-10-25 Koito Manufacturing Co., Ltd. VEHICLE LENS AND LAMP ASSEMBLY

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104272013A (zh) * 2012-05-09 2015-01-07 齐扎拉光***有限责任公司 机动车前大灯的照明设备
CN104421714A (zh) * 2013-09-06 2015-03-18 汽车照明罗伊特林根有限公司 用在机动车前照灯的led模块中的投射光学器件以及具有该投射光学器件的led模块和机动车前照灯
CN107101154A (zh) * 2016-02-22 2017-08-29 法雷奥照明公司 设有光源矩阵的光束投射装置、照明和前照灯模块
CN107289395A (zh) * 2016-04-11 2017-10-24 法雷奥照明公司 用于发射光束的机动车辆的前照灯模块
CN108397743A (zh) * 2018-04-13 2018-08-14 华域视觉科技(上海)有限公司 光学模组及车灯
CN108506885A (zh) * 2017-02-27 2018-09-07 松下知识产权经营株式会社 照明装置、照明***以及移动体
CN109268774A (zh) * 2018-10-25 2019-01-25 华域视觉科技(上海)有限公司 一种双排矩阵式照明模组及其辅助照明方法
CN109340693A (zh) * 2018-12-13 2019-02-15 上海晶合光电科技有限公司 准直透镜及车用矩阵式光学***
US20190063715A1 (en) * 2017-08-24 2019-02-28 Ford Global Technologies, Llc Automotive headlamp with s-polarizer filter to reduce glare
CN109681838A (zh) * 2019-03-05 2019-04-26 华域视觉科技(上海)有限公司 一种光学模组的初级光学单元及车灯
CN110173669A (zh) * 2019-06-25 2019-08-27 华域视觉科技(上海)有限公司 车灯光学元件总成、车灯及汽车
CN210179518U (zh) * 2019-05-14 2020-03-24 华域视觉科技(上海)有限公司 一种车辆照明装置用初级光学元件、远光照明装置及汽车

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2792710B1 (fr) 1999-04-23 2001-08-03 Valeo Vision Ensemble de projecteurs pour vehicule automobile, capable d'emettre un faisceau a coupure selectivement enrichi
JP4413839B2 (ja) 2005-09-13 2010-02-10 株式会社小糸製作所 車両用前照灯の灯具ユニット
DE102006006634A1 (de) * 2006-02-14 2007-08-16 Schefenacker Vision Systems Germany Gmbh Abblendlichtscheinwerfer mit Hot-Spot-Erzeugung
DE102006044641A1 (de) 2006-09-19 2008-03-27 Schefenacker Vision Systems Germany Gmbh Leuchteinheit mit Leuchtdiode, Lichtleitkörper und Sekundärlinse
JP5077543B2 (ja) * 2007-09-07 2012-11-21 スタンレー電気株式会社 車両用灯具ユニット
CN201561363U (zh) 2009-10-26 2010-08-25 上海小糸车灯有限公司 Led照明车灯远近灯切换装置总成结构
AT510931B1 (de) * 2010-12-22 2013-09-15 Zizala Lichtsysteme Gmbh Fahrzeugscheinwerfer mit led-lichtmodul
WO2012162927A1 (zh) * 2011-06-02 2012-12-06 天津方合科技发展有限公司 近光带有明暗截止线的汽车前照灯led光学组件
AT511760B1 (de) * 2011-08-08 2013-12-15 Zizala Lichtsysteme Gmbh Led-lichtquellenmodul für einen led-kraftfahrzeugscheinwerfer sowie led-kraftfahrzeugscheinwerfer und scheinwerfersystem
US9939122B2 (en) * 2013-05-17 2018-04-10 Ichikoh Industries, Ltd. Vehicle headlamp
JP6214446B2 (ja) 2014-03-26 2017-10-18 三菱電機株式会社 車載用前照灯
DE102014207750A1 (de) 2014-04-24 2015-10-29 Osram Opto Semiconductors Gmbh Beleuchtungsanordnung
CN204005632U (zh) 2014-07-01 2014-12-10 上海汽车集团股份有限公司 一种车用近光灯
FR3028004B1 (fr) 2014-10-30 2019-08-02 Aml Systems Projecteur semi-elliptique comprenant un radiateur
CN204372757U (zh) 2015-01-28 2015-06-03 长城汽车股份有限公司 车灯
TWI551811B (zh) 2015-06-03 2016-10-01 中強光電股份有限公司 車用照明裝置
US10108087B2 (en) 2016-03-11 2018-10-23 Macdermid Graphics Solutions Llc Method of improving light stability of flexographic printing plates featuring flat top dots
CN205640631U (zh) 2016-04-26 2016-10-12 曹红曲 一种汽车近光灯照明组件及汽车近光灯
CN206001356U (zh) 2016-07-29 2017-03-08 浙江金驹汽车零部件有限公司 一种远近光合一的led照明模组
CN208107675U (zh) 2018-03-29 2018-11-16 华域视觉科技(上海)有限公司 一种带自适应功能的led光学模组
US10663131B1 (en) * 2018-07-06 2020-05-26 H.A. Automotive Systems, Inc. Condenser for low-beam vehicle light module
CN208846328U (zh) 2018-07-24 2019-05-10 常州九鼎车业股份有限公司 汽车大灯总成
CN208804624U (zh) 2018-11-15 2019-04-30 浙江嘀视科技有限公司 一种双光透镜及车灯
CN109404856A (zh) 2018-12-11 2019-03-01 重庆舜辉庆驰光电科技有限公司 Led双色温汽车大灯
CN109539168A (zh) 2019-01-11 2019-03-29 华域视觉科技(上海)有限公司 远光亮度提升装置、led模组单元、车灯、汽车
CN111964000A (zh) 2019-05-20 2020-11-20 华域视觉科技(上海)有限公司 车辆照明模组、车灯及汽车
US11781721B2 (en) 2019-06-25 2023-10-10 Hasco Vision Technology Co., Ltd. Vehicle lamp optical element assembly, vehicle lamp and automobile

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104272013A (zh) * 2012-05-09 2015-01-07 齐扎拉光***有限责任公司 机动车前大灯的照明设备
CN104421714A (zh) * 2013-09-06 2015-03-18 汽车照明罗伊特林根有限公司 用在机动车前照灯的led模块中的投射光学器件以及具有该投射光学器件的led模块和机动车前照灯
CN107101154A (zh) * 2016-02-22 2017-08-29 法雷奥照明公司 设有光源矩阵的光束投射装置、照明和前照灯模块
CN107289395A (zh) * 2016-04-11 2017-10-24 法雷奥照明公司 用于发射光束的机动车辆的前照灯模块
CN108506885A (zh) * 2017-02-27 2018-09-07 松下知识产权经营株式会社 照明装置、照明***以及移动体
US20190063715A1 (en) * 2017-08-24 2019-02-28 Ford Global Technologies, Llc Automotive headlamp with s-polarizer filter to reduce glare
CN108397743A (zh) * 2018-04-13 2018-08-14 华域视觉科技(上海)有限公司 光学模组及车灯
CN109268774A (zh) * 2018-10-25 2019-01-25 华域视觉科技(上海)有限公司 一种双排矩阵式照明模组及其辅助照明方法
CN109340693A (zh) * 2018-12-13 2019-02-15 上海晶合光电科技有限公司 准直透镜及车用矩阵式光学***
CN109681838A (zh) * 2019-03-05 2019-04-26 华域视觉科技(上海)有限公司 一种光学模组的初级光学单元及车灯
CN210179518U (zh) * 2019-05-14 2020-03-24 华域视觉科技(上海)有限公司 一种车辆照明装置用初级光学元件、远光照明装置及汽车
CN110173669A (zh) * 2019-06-25 2019-08-27 华域视觉科技(上海)有限公司 车灯光学元件总成、车灯及汽车

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265960A4 (en) * 2020-12-15 2023-10-25 Koito Manufacturing Co., Ltd. VEHICLE LENS AND LAMP ASSEMBLY
WO2022188089A1 (zh) * 2021-03-11 2022-09-15 华域视觉科技(上海)有限公司 光学组件安装结构、车灯照明装置、车灯及车辆

Also Published As

Publication number Publication date
US11391429B2 (en) 2022-07-19
US20220074564A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
JP7340041B2 (ja) 車両用ランプ光学素子及び車両用前照灯
US7798691B2 (en) Lighting device and method for directing light
WO2020233297A1 (zh) 车灯光学元件组件、车辆照明模组、车灯及车辆
WO2020156455A1 (zh) 车灯照明模组、车灯及车辆
US10976021B2 (en) Light projecting device having high light utilization efficiency
WO2022100058A1 (zh) 远近光一体车灯光学元件、车灯模组、车灯及车辆
KR20210096126A (ko) 전조등 광학 소자, 전조등 모듈, 차량용 램프 및 차량
CN210219619U (zh) 一种近光iii区照明模块、遮光板、照明装置及车辆
CN112944276B (zh) 远近光一体光学装置、汽车照明装置及汽车
CN210462861U (zh) 车灯模组及反射结构
WO2022068212A1 (zh) 车灯光学元件、车灯模组及车灯
CN213777579U (zh) 车灯用光学装置、汽车照明装置及汽车
US20230043186A1 (en) Headlamp optical element, vehicle lamp module, vehicle lamp, and vehicle
CN212390299U (zh) 用于车辆近光灯的光学元件、近光照明装置、车灯和车辆
WO2021036218A1 (zh) 微型车灯模组及反射结构
WO2020199838A1 (zh) 车辆近光配光结构
WO2021036216A1 (zh) 一种微型车灯模组
CN112781001A (zh) 车灯光学元件、车灯模组和车辆
CN213810430U (zh) 聚光器、车辆前照灯模组、车灯及车辆
EP4006408A1 (en) Vehicle light optical element assembly, vehicle lighting device, vehicle light and vehicle
CN220749902U (zh) 一种光导与厚壁结合的光学结构及包含其的车灯和车辆
CN210219615U (zh) 一种微型车灯模组
CN211875914U (zh) 用于车辆远光灯的光学元件、远光照明装置、车灯和车辆
CN220249742U (zh) 一种车灯用新型透镜灯模块
WO2022166139A1 (zh) 车灯光学元件、车灯照明装置、车灯及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809081

Country of ref document: EP

Kind code of ref document: A1