WO2020226158A1 - Apparatus for processing copper surface - Google Patents

Apparatus for processing copper surface Download PDF

Info

Publication number
WO2020226158A1
WO2020226158A1 PCT/JP2020/018576 JP2020018576W WO2020226158A1 WO 2020226158 A1 WO2020226158 A1 WO 2020226158A1 JP 2020018576 W JP2020018576 W JP 2020018576W WO 2020226158 A1 WO2020226158 A1 WO 2020226158A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
tank
treatment
copper foil
metal
Prior art date
Application number
PCT/JP2020/018576
Other languages
French (fr)
Japanese (ja)
Inventor
快允 小鍛冶
牧子 佐藤
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to CN202080013480.9A priority Critical patent/CN113412348A/en
Priority to KR1020217026926A priority patent/KR20220006033A/en
Publication of WO2020226158A1 publication Critical patent/WO2020226158A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/63Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/385Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by conversion of the surface of the metal, e.g. by oxidation, whether or not followed by reaction or removal of the converted layer

Definitions

  • the present invention relates to a copper surface processing apparatus.
  • Copper foil used for printed wiring boards is required to have good adhesion to resin.
  • a method has been used in which the surface of the copper foil is roughened by etching or the like to increase the physical adhesive force.
  • flattening of the copper foil surface has been required.
  • copper surface treatment methods such as performing an oxidation step and a reduction step have been developed (WO2014 / 126193 Publication).
  • the copper foil is pre-conditioned and immersed in a chemical solution containing an oxidizing agent to oxidize the surface of the copper foil to form irregularities of copper oxide, and then immersed in a chemical solution containing a reducing agent to obtain copper oxide.
  • a chemical solution containing an oxidizing agent to oxidize the surface of the copper foil to form irregularities of copper oxide
  • a chemical solution containing a reducing agent to obtain copper oxide.
  • the unevenness of the surface is adjusted and the roughness of the surface is adjusted.
  • a method for improving the adhesion in the treatment of copper foil using oxidation / reduction a method of adding a surface active molecule in the oxidation step (Japanese Patent Laid-Open No. 2013-534054), an aminothiazole compound after the reduction step, etc.
  • a method of forming a protective film on the surface of a copper foil using the above Japanese Patent Laid-Open No. 8-97559 has been developed. Another method is to roughen the surface of the copper conductor pattern on the insulating substrate and form a plating film having metal particles discretely distributed by chemical plating on the surface on which the copper oxide layer is formed (see Patent Document 4). It is being developed.
  • metal oxides have higher electrical resistance than unoxidized metals.
  • the specific resistance value of pure copper is 1.7 ⁇ 10 -8 ( ⁇ m), while that of copper oxide is 1 to 10 ( ⁇ m) and that of cuprous oxide is 1 ⁇ 10 6 to 1 ⁇ 10 7 ( ⁇ m).
  • Copper oxide and cuprous oxide are inferior in electrical conductivity to pure copper. Therefore, when an oxidation treatment is used to roughen the surface of the copper foil, chemical plating is used as the plating method instead of electrolytic plating (Japanese Patent Laid-Open No. 2000-151096).
  • the surface of the copper foil is roughened by adhering copper particles to the copper foil by electroplating, there is no oxide on the surface of the copper foil. Therefore, the copper foil is roughened by electroplating again.
  • Other metals can be plated on the treated surface (Japanese Patent No. 5674700; Japanese Patent No. 4948579).
  • the plating film is required to withstand its use and environment and to have a level of adhesion that does not hinder practical use.
  • a method it is known that the metal bond is strengthened by removing the oxide layer on the metal surface, and the stress is dispersed and the adhesion is secured by roughening the surface (Morikawa Tsutomu, Nakade Takuo, Yokoi). Masayuki, "Adhesion of plating film and its improvement method").
  • An object of the present invention is to provide a novel copper surface processing apparatus.
  • the present inventors have succeeded in coating the surface of the oxide layer with a metal by electroplating by reducing the average oxide layer formed on the copper surface to 400 nm or less by the processing apparatus of the present disclosure. As a result, it is possible to minimize the influence of inferior electrical conductivity and inhibition of metal bonding, and to have a fine uneven shape, thereby enhancing the adhesion between the metal and the plated metal by the anchor effect.
  • One embodiment of the present invention is an apparatus for processing the surface of an object having a surface covered with copper, wherein a first tank for oxidizing the surface and the oxidized surface are electroplated. It is provided with a second tank for performing.
  • the second tank may include an anode and a power source.
  • a third tank may be provided for performing an alkaline treatment on the surface with an alkaline aqueous solution before oxidizing the surface.
  • a fourth tank for reducing the oxidized surface with a reducing agent and / or a first for dissolving the oxidized surface with a dissolving agent may be provided with 5 tanks.
  • FIG. 1 is a schematic view showing a first tank for oxidizing a surface and a second tank for electroplating the oxidized surface in one embodiment of the present invention.
  • FIG. 2 is a schematic view of the entire processing apparatus according to the embodiment of the present invention.
  • FIG. 3 is a schematic view of a transport roll provided between the tanks in one embodiment of the present invention.
  • FIG. 4 is a schematic view of a squeeze roll provided on the transport roll in one embodiment of the present invention.
  • FIG. 5 is a schematic view of a guide roll provided on the transport roll in one embodiment of the present invention.
  • FIG. 6 is a diagram showing the relationship between the thickness of the oxide layer and the peel strength in Examples and Comparative Examples.
  • FIG. 1 is a schematic view showing a first tank for oxidizing a surface and a second tank for electroplating the oxidized surface in one embodiment of the present invention.
  • FIG. 2 is a schematic view of the entire processing apparatus according to the embodiment of the present invention.
  • FIG. 3 is
  • FIG. 7 is a diagram showing the relationship between the thickness of the oxide layer and the heat deterioration rate in Examples and Comparative Examples.
  • FIG. 8 is a diagram showing the relationship between the thickness of the oxide layer and the heat-resistant discoloration ⁇ E * ab in Examples and Comparative Examples.
  • One embodiment of the present invention is an apparatus (100) for processing the surface of an object having a surface covered with copper, which is oxidized with at least a first tank (4) for oxidizing the surface.
  • a second tank (7) for performing electrolytic plating on the surface is provided.
  • a third tank (1) for performing alkaline treatment on the copper surface with an alkaline aqueous solution may be provided.
  • a sixth tank (2) for performing a cleaning treatment with an acid and a seventh tank (3) for performing a weak alkaline treatment may be provided.
  • the first tank (4) follows, and then, between the second tank (7) and the eighth tank (5) and / or oxidation for reducing the oxidized copper surface with a reducing agent.
  • a ninth tank (6) may be provided to dissolve the copper surface with a dissolving agent.
  • One or more flush tanks may be provided between each tank and / or at the beginning and end of the entire treatment. Further, each tank is preferably provided with a heating unit and a timer, whereby the temperature and time of processing in each tank can be set.
  • FIG. 2 is a schematic view of the entire apparatus when all the tanks other than the flush tank are provided one by one and the roll-to-roll transfer system is used.
  • the copper member when the copper member is continuously processed as in a roll-to-roll transfer system, the copper member is energized from the roll for electrolytic plating, but the energized part is electroplated. It is not limited to immediately before and after the second tank (7) of the above, and electricity may be supplied from the roll of another tank.
  • the copper surface is subjected to alkaline treatment using an alkaline aqueous solution. Therefore, the third tank (1) is made of a material that is resistant to the alkali used. This alkaline treatment is performed for the purpose of degreasing.
  • the sixth tank (2) the copper surface is cleaned with an acid in order to remove the natural oxide film and reduce the treatment unevenness. Therefore, the sixth tank (2) is made of a material resistant to the acid used.
  • the copper surface is subjected to alkaline treatment using a weak alkaline solution in order to reduce uneven treatment and prevent the acid used in the cleaning treatment from being mixed into the oxidizing agent. Therefore, the third tank (1) is made of a material that is resistant to the alkali used.
  • the first tank (4) In the first tank (4), an oxidation treatment is performed in which the copper surface is oxidized using an alkaline solution containing an oxidizing agent to form an oxide on the copper surface. Therefore, the first tank (4) is made of a material that is resistant to the oxidizing agents and alkalis used.
  • the first tank (4) may have a mechanism in which only a part of the surface of the copper member is oxidized. For example, the copper member may be transported horizontally with respect to the solution surface so that the untreated surface does not come into contact with the liquid.
  • a liquid-retaining member for example, sponge
  • the copper member does not directly infiltrate the solution. Only a part of the surface may come into contact with the liquid retaining member to be oxidized.
  • the eighth tank (5) a reducing treatment is performed on the oxidized copper surface using an alkaline solution containing a reducing agent. This is to reduce the copper oxide formed on the copper foil and adjust the number and length of the irregularities. Therefore, the eighth tank (5) is made of the reducing agent used and the material resistant to alkali.
  • the ninth tank (6) a dissolution treatment is performed in which the oxidized copper surface is dissolved with a dissolving agent. Therefore, the ninth tank (6) is made of a material resistant to the solubilizer used. The purpose of the melting process is to adjust the protrusions on the oxidized copper surface.
  • the copper surface is electrolytically plated with a metal other than copper.
  • the second tank (7) includes an anode and a power source for electrolysis.
  • the type of the anode is not particularly limited, and an insoluble anode such as a pB plate or a noble metal oxide film Ti may be used, but a soluble anode which is itself dissolved and electrodeposited on a copper foil or the like may be used.
  • the water in the flush tank may be heated to the same or close temperature as the front and rear tanks, thereby preventing wrinkles due to the difference in thermal expansion.
  • the solution used in a tank other than the second tank may be stored in the tank and immersed in the copper surface, or may be sprayed on the copper surface by a shower device provided in the tank.
  • a shower device provided in the tank.
  • FIG. 2 assuming the case of processing a copper surface such as copper foil, a roll-to-roll transport system is used for transporting the copper foil between tanks.
  • FIG. 3 shows an enlarged view of the roll (11).
  • the transport conditions in this case are not particularly limited, but for example, the line speed of the copper foil may be 50 to 3000 m / hr, and the tension of the copper foil may be 1 to 130 kgf / m.
  • a squeeze roll (12) as shown in FIG. 4 may be provided. This allows the liquid to be squeezed out of the copper foil, reducing the amount of liquid brought into the next tank.
  • a guide roll (13) as shown in FIG. 5 may be provided. This makes it possible to prevent the occurrence of vertical wrinkles and the breakage of the copper foil.
  • the transfer of the object having the copper surface to be processed between the tanks is not limited to the roll-to-roll transfer system, and may be performed manually or by a conveyor such as a belt conveyor.
  • a drying device may be provided to dry the copper surface after all the steps have been completed.
  • the drying temperature is not particularly limited, but the copper surface may be dried at room temperature to about 230 ° C.
  • the copper surface is subjected to alkaline treatment using an alkaline aqueous solution.
  • the method of alkaline treatment is not particularly limited, but it is preferably treated with an alkaline aqueous solution of 30 to 50 g / L, more preferably 40 g / L, for example, a sodium hydroxide aqueous solution at 30 to 50 ° C. for about 0.5 to 2 minutes. Good. After this, it is preferable to wash the copper surface with water.
  • the alkali-treated copper surface may be cleaned with an acid.
  • the copper surface may be immersed in sulfuric acid having a liquid temperature of 20 to 50 ° C. and 5 to 20% by weight for 1 to 5 minutes. After this, it is preferable to wash the copper surface with water.
  • the copper surface may be subjected to a weak alkaline treatment.
  • the method of this alkaline treatment is not particularly limited, but is preferably 0.1 to 10 g / L, more preferably 1 to 2 g / L in an alkaline aqueous solution, for example, a sodium hydroxide aqueous solution at 30 to 50 ° C. and 0.5 to 2
  • the copper surface may be treated for about a minute. After this, it is preferable to wash the copper surface with water. Further, before oxidizing the copper surface, the copper surface may be physically roughened by etching or the like as a pretreatment.
  • an oxidizing treatment is performed using an oxidizing agent to oxidize a part or all of the copper surface to form an oxide on the copper surface.
  • the oxidizing agent is not particularly limited, and for example, an aqueous solution of sodium chlorite, sodium hypochlorite, potassium chlorate, potassium perchlorate or the like can be used.
  • Various additives for example, phosphates such as trisodium phosphate dodecahydrate
  • surface active molecules may be added to the oxidizing agent.
  • Surface active molecules include porphyrin, porphyrin-membered ring, expanded porphyrin, ring-reduced porphyrin, linear porphyrin polymer, porphyrin sandwich coordination complex, porphyrin sequence, silane, tetraorgano-silane, aminoethyl-aminopropyl-trimethoxysilane.
  • a solvent such as alcohol, ketone or carboxylic acid can be used in combination as the oxidizing agent.
  • the oxidation reaction conditions are not particularly limited, but the liquid temperature of the oxidizing agent is preferably 40 to 95 ° C, more preferably 40 to 90 ° C.
  • the reaction time is preferably 0.5 to 30 minutes, more preferably 1 to 10 minutes.
  • the average is reduced to 400 nm or less.
  • the average is preferably 200 nm or less, and more preferably 160 nm or less.
  • the thickness of the oxide layer is preferably 20 nm or more on average, more preferably 30 nm or more on average, and further preferably 40 nm or more on average.
  • the proportion of the region where the thickness of the oxide layer is 400 nm or less is not particularly limited, but 50% or more is preferably 400 nm or less, 70% or more is more preferably 400 nm or less, and 90% or more. Is more preferably 400 nm or less, 95% or more is further preferably 400 nm or less, and almost 100% is further preferably 400 nm or less.
  • the ratio of the thickness of the oxide layer can be calculated, for example, by continuous electrochemical reduction (SERA) at 10 measurement points in an area of 10 ⁇ 10 cm.
  • the arithmetic mean roughness (Ra) of copper oxide is preferably 0.02 ⁇ m or more, more preferably 0.04 ⁇ m or more, preferably 0.20 ⁇ m or less, and more preferably 0.060 ⁇ m or less.
  • the maximum height roughness (Rz) of copper oxide is preferably 0.2 ⁇ m or more, more preferably 0.4 ⁇ m or more, preferably 1.0 ⁇ m or less, and more preferably 0.50 ⁇ m or less.
  • the surface roughness Ra and Rz can be calculated by the method specified in JIS B 0601: 2001 (based on international standard ISO4287-197).
  • a reducing agent may be used to reduce the oxidized copper surface.
  • DMAB dimethylamine borane
  • diborane sodium borohydride, hydrazine and the like
  • a reducing agent an alkaline compound (for example, sodium hydroxide, potassium hydroxide), and a solvent (for example, pure)
  • a solution containing water or buffer
  • water or buffer can be used for reduction treatment by a well-known method.
  • a dissolution treatment is performed in which the oxidized copper surface is dissolved with a dissolving agent.
  • the solubilizer is not particularly limited, and examples thereof include a chelating agent and a biodegradable chelating agent.
  • EDTA ethylenediaminetetraacetic acid
  • DHEG diethanolglycine
  • GLDA L-glutamate diacetate / tetrasodium
  • EDDS ethylenediamine-N, N'-disuccinic acid
  • HIDS 3-hydroxy-2,2'-sodium iminodisuccinate
  • MGDA methylglycine diacetate 3 sodium
  • ASDA diacetic acid aspartate, tetrasodium
  • HIDA N-2-hydroxyethyliminodiacetic acid disodium salt
  • sodium gluconate ethidronic acid (hydroxyethandiphosphonic acid) and the like
  • a solvent such as alcohol, ketone, or carboxylic acid can be used in combination with the dissolving agent used in this step.
  • the pH of the solubilizer is not particularly limited, but it is alkaline because the amount of dissolution is large in acidic conditions, it is difficult to control the treatment, uneven treatment is likely to occur, and convex portions having an optimum Cu / O ratio are not formed.
  • the pH is preferably 9.0 to 14.0, more preferably 9.0 to 10.5, and even more preferably 9.8 to 10.2.
  • the copper surface is melted until the solubility of copper oxide is 35 to 99%, preferably 77 to 99%, and the thickness of CuO is 4 to 150 nm, preferably 8 to 50 nm. Is preferable.
  • the copper surface is electroplated with a metal other than copper.
  • a metal other than copper Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au, Pt, etc.
  • those alloys can be used.
  • metals having higher heat resistance than copper such as Ni, Pd, Au and Pt, or alloys thereof are preferable in order to have heat resistance.
  • plating may be performed on one side or both sides.
  • the average thickness of the metal layer formed by electroplating in the vertical direction is not particularly limited, but is preferably 10 nm or more, more preferably 15 nm or more, and even more preferably 20 nm or more. Then, it is preferably 100 nm or less, more preferably 70 nm or less, and further preferably 50 nm or less.
  • the amount of metal in the metal layer formed by electroplating is expressed as the weight of the metal per unit area, it is preferably 15 ⁇ g / cm 2 or more, more preferably 18 ⁇ g / cm 2 , and 20 ⁇ g / cm 2. It is more preferably cm 2 or more.
  • the average vertical thickness of the metal layer can be calculated by dissolving the metal forming the metal layer in an acidic solution, measuring the amount of metal by ICP analysis, and dividing the measured amount by the area of the object. Alternatively, it can be calculated by melting the object itself and detecting and measuring only the amount of metal forming the metal layer.
  • Electroplating also requires an electric charge to partially reduce the oxide in the oxide layer. Therefore, for example, when nickel plating is applied to a copper foil, electrolytic plating is performed in order to keep the thickness within a preferable range. It is preferable to give an electric charge of 15 C / dm 2 or more to 90 C / dm 2 or less per area of the object.
  • the current density is preferably 5 A / dm 2 or less. If the current density is too high, uniform plating is difficult, for example, plating is concentrated on the convex portions. The current in the plating may be changed until a part of the oxide in the oxide layer is reduced. Further, the thickness is appropriately adjusted depending on the metal to be coated.
  • Nickel plating and nickel alloy plating include pure nickel, Ni-Cu alloy, Ni-Cr alloy, Ni-Co alloy, Ni-Zn alloy, Ni-Mn alloy, Ni-Pb alloy, Ni-P alloy and the like. ..
  • As a filler of plating ions for example, nickel sulfate, nickel sulfamate, nickel chloride, nickel bromide, zinc oxide, zinc chloride, diammine dichloropalladium, iron sulfate, iron chloride, chromic anhydride, chromium chloride, sodium chromium sulfate, Copper sulfate, copper pyrophosphate, cobalt sulfate, manganese sulfate, sodium hypophosphite, and the like can be used.
  • pH buffers and brighteners include, for example, boric acid, nickel acetate, citric acid, sodium citrate, ammonium citrate, potassium formate, malic acid, sodium malate, sodium hydroxide, potassium hydroxide, etc.
  • the bath composition thereof is, for example, nickel sulfate (100 g / L or more to 350 g / L or less), sulfamine nickel (100 g / L or more to 600 g / L or less), nickel chloride (0 g / L or more to 300 g / L or less).
  • nickel sulfate 100 g / L or more to 350 g / L or less
  • sulfamine nickel 100 g / L or more to 600 g / L or less
  • nickel chloride 0. g / L or more to 300 g / L or less.
  • sodium citrate (0 g / L or more and 100 g / L or less
  • boric acid (0 g / L or more and 60 g / L or less
  • the ratio of the metal in the metal layer other than copper is not particularly limited, but the ratio of Cu to the total metal amount at a depth of 6 nm is preferably 80% by weight or less, more preferably 50% by weight or less, and 30% by weight. More preferably, it is less than%. Further, the ratio of Cu to the total amount of metal at a depth not containing oxygen is preferably 90% or more by weight, more preferably 95% or more by weight, and further preferably 99% by weight or more. Further, the Cu / O ratio at a depth where the ratio of the atomic composition of Cu is 40% is preferably 1 or more, more preferably 2 or more, and further preferably 5 or more. The ratio of Cu to the total amount of metal at a given depth can be measured using, for example, ion sputtering and X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the metal layer is preferably a uniform layer without particles.
  • uniform means 95% or more, preferably 98% or more, more preferably 99% or more, and the thickness of the layer is five times the average thickness of the layer. It means that it does not exceed, preferably does not exceed 3 times, or more preferably does not exceed 2 times.
  • a coupling treatment using a silane coupling agent or the like or a rust preventive treatment using benzotriazoles or the like may be performed.
  • the object having a copper surface to be processed may be an object made of copper, an object made of a material other than copper may be provided with a copper layer, or may be copper-plated.
  • the shape of is not particularly limited, but may be, for example, foil-like, particle-like, or powder-like, and copper foil such as electrolytic copper foil or rolled copper foil containing copper as a main component, copper particles, copper grains, and copper wire. It may be a copper plate or a copper lead frame.
  • convex portions are formed on the surface of at least a part of the metal layer.
  • the average height of the convex portions is preferably 10 nm or more, more preferably 50 nm or more, further preferably 100 nm or more, preferably 1000 nm or less, and preferably 500 nm or less. Is more preferable, and 200 nm or less is further preferable.
  • the height of the convex portion is, for example, the minimum point of the concave portion adjacent to the convex portion in the scanning electron microscope (SEM) image obtained by observing the cross section of the composite copper foil created by the focused ion beam (FIB). It can be the distance between the midpoint of the connected line segment and the maximum point of the convex portion between the concave portions.
  • the number of convex portions having a height of 50 nm or more is preferably 15 or more, more preferably 30 or more, and further preferably 50 or more per 3.8 ⁇ m. Further, the number is preferably 100 or less, more preferably 80 or less, and further preferably 60 or less.
  • the number of protrusions is, for example, the number per 3.8 ⁇ m of a scanning electron microscope (SEM) image obtained by observing a cross section of a composite copper foil created by a focused ion beam (FIB) and having a height of 50 nm or more. It can be counted by measuring.
  • SEM scanning electron microscope
  • the arithmetic mean roughness (Ra) of the metal layer is preferably 0.02 ⁇ m or more, more preferably 0.04 ⁇ m or more, preferably 0.20 ⁇ m or less, and more preferably 0.060 ⁇ m or less.
  • the maximum height roughness (Rz) of the metal layer is preferably 0.2 ⁇ m or more, more preferably 0.4 ⁇ m or more, preferably 1.4 ⁇ m or less, and more preferably 0.50 ⁇ m or less.
  • the ratio of Ra after the oxidation treatment to Ra after the metal plating treatment is preferably 0.7 or more and 1.3 or less, and Rz after the oxidation treatment and the metal.
  • the ratio of Rz after the plating treatment is preferably 0.8 or more and 1.2 or less. The closer the value of this ratio is to 1, the more uniform the thickness of the metal layer formed by electroplating.
  • Objects having a copper surface roughened using the processing apparatus of the present disclosure can be applied to copper foil used for printed wiring boards, copper wires wired to substrates, copper foil for LIB negative electrode current collectors, and the like. Can be used.
  • a laminated board by roughening the surface of a copper foil used for a printed wiring board using the processing apparatus of the present disclosure and adhering it to a resin in a layered manner to manufacture a printed wiring board.
  • the type of resin in this case is not particularly limited, but is preferably polyphenylene ether, epoxy, PPO, PBO, PTFE, LCP, or TPPI.
  • the negative electrode current collector for a lithium ion battery can be manufactured according to a known method. For example, a negative electrode material containing a carbon-based active material is prepared and dispersed in a solvent or water to prepare an active material slurry. After applying this active material slurry to the copper foil, it is dried to evaporate the solvent and water. Then, it is pressed, dried again, and then the negative electrode current collector is formed into a desired shape.
  • the negative electrode material may contain silicon, a silicon compound, germanium, tin, lead, etc., which have a theoretical capacity larger than that of the carbon-based active material.
  • the electrolyte not only an organic electrolytic solution in which a lithium salt is dissolved in an organic solvent, but also a polymer composed of polyethylene oxide, polyvinylidene fluoride or the like may be used.
  • the copper foil whose surface is processed by using the processing apparatus of the present disclosure can be applied not only to a lithium ion battery but also to a lithium ion polymer battery.
  • Pretreatment The copper foil was immersed in a sodium hydroxide aqueous solution at a liquid temperature of 50 ° C. and 40 g / L for 1 minute, and then washed with water.
  • acid cleaning treatment The copper foil subjected to the alkaline degreasing treatment was immersed in a sulfuric acid aqueous solution having a liquid temperature of 25 ° C. and 10% by weight for 2 minutes, and then washed with water.
  • Pre-dip processing The acid-washed copper foil was immersed in a chemical solution for predip at a solution temperature of 40 ° C. and 1.2 g / L of sodium hydroxide (NaOH) for 1 minute.
  • Ra and Rz The surface shape of the copper foil after electroplating and coupling treatment was measured using a confocal scanning electron microscope OPTELICS H1200 (manufactured by Laser Tech Co., Ltd.), and JIS B 0601: 2001 Ra and Rz were calculated by the method specified in 1.
  • the scan width was 100 ⁇ m
  • the scan type was area
  • the light source was Blue
  • the cutoff value was 1/5.
  • the object lens was set to x100
  • the contact lens was set to x14
  • the digital zoom was set to x1
  • the Z pitch was set to 10 nm
  • data was acquired at three locations
  • Ra and Rz were set to the average values of the three locations.

Abstract

The purpose of the present invention is to provide a novel apparatus for processing a copper surface. The processing apparatus according to the present invention is an apparatus for processing a copper-coated surface of an article, the apparatus comprising: a first bath for oxidizing the surface; and a second bath for performing electroplating treatment on the oxidized surface.

Description

銅表面の加工装置Copper surface processing equipment
 本発明は銅表面の加工装置に関する。 The present invention relates to a copper surface processing apparatus.
 プリント配線板に使用される銅箔は、樹脂との密着性が要求される。この密着性を向上させるため、エッチングなどで銅箔の表面を粗面化処理し、物理的接着力を上げる方法が用いられてきた。しかし、プリント配線板の高密度化や高周波帯域での伝送損失の観点から、銅箔表面の平坦化が要求されるようになってきた。それらの相反する要求を満たすため、酸化工程と還元工程を行うなどの銅表面処理方法が開発されている(WO2014/126193公開公報)。それによると、銅箔をプリコンディショニングし、酸化剤を含有する薬液に浸漬することで銅箔表面を酸化させて酸化銅の凹凸を形成した後、還元剤を含有する薬液に浸漬し、酸化銅を還元することで表面の凹凸を調整して表面の粗さを整える。さらに、酸化・還元を利用した銅箔の処理における密着性の改善方法として、酸化工程において表面活性分子を添加する方法(特表2013-534054号公報)や、還元工程の後にアミノチアゾール系化合物等を用いて銅箔の表面に保護皮膜を形成する方法(特開平8-97559号公報)が開発されている。また、絶縁基板上の銅導体パターンの表面を粗化し、酸化銅層を形成した表面上に、化学めっきによって離散的に分布する金属粒子を有するめっき膜を形成する方法(特許文献4参照)が開発されている。 Copper foil used for printed wiring boards is required to have good adhesion to resin. In order to improve this adhesiveness, a method has been used in which the surface of the copper foil is roughened by etching or the like to increase the physical adhesive force. However, from the viewpoint of increasing the density of printed wiring boards and transmission loss in the high frequency band, flattening of the copper foil surface has been required. In order to satisfy these conflicting requirements, copper surface treatment methods such as performing an oxidation step and a reduction step have been developed (WO2014 / 126193 Publication). According to the report, the copper foil is pre-conditioned and immersed in a chemical solution containing an oxidizing agent to oxidize the surface of the copper foil to form irregularities of copper oxide, and then immersed in a chemical solution containing a reducing agent to obtain copper oxide. By reducing the amount of water, the unevenness of the surface is adjusted and the roughness of the surface is adjusted. Further, as a method for improving the adhesion in the treatment of copper foil using oxidation / reduction, a method of adding a surface active molecule in the oxidation step (Japanese Patent Laid-Open No. 2013-534054), an aminothiazole compound after the reduction step, etc. A method of forming a protective film on the surface of a copper foil using the above (Japanese Patent Laid-Open No. 8-97559) has been developed. Another method is to roughen the surface of the copper conductor pattern on the insulating substrate and form a plating film having metal particles discretely distributed by chemical plating on the surface on which the copper oxide layer is formed (see Patent Document 4). It is being developed.
 一般に金属の酸化物は酸化されていない金属と比べると電気抵抗が大きい。例えば、純銅の比抵抗値が1.7×10-8(Ωm)なのに対して、酸化銅は1~10(Ωm)、亜酸化銅は1×10~1×10(Ωm)であり、酸化銅、亜酸化銅ともに純銅に比べて通電性が劣る。そのため、銅箔表面を粗化するために酸化処理を用いた場合、そのめっき方法は、電解めっきではなく、化学めっきが用いられていた(特開2000-151096号公報)。一方、銅箔に電解めっきで銅粒子を付着させることによって銅箔表面を粗面化した場合には、銅箔表面に酸化物が存在しないため、再度電解めっきすることにより、銅箔の粗化処置面に他の金属をめっきすることができる(特許5764700号公報;特許4948579号公報)。 In general, metal oxides have higher electrical resistance than unoxidized metals. For example, the specific resistance value of pure copper is 1.7 × 10 -8 (Ωm), while that of copper oxide is 1 to 10 (Ωm) and that of cuprous oxide is 1 × 10 6 to 1 × 10 7 (Ωm). , Copper oxide and cuprous oxide are inferior in electrical conductivity to pure copper. Therefore, when an oxidation treatment is used to roughen the surface of the copper foil, chemical plating is used as the plating method instead of electrolytic plating (Japanese Patent Laid-Open No. 2000-151096). On the other hand, when the surface of the copper foil is roughened by adhering copper particles to the copper foil by electroplating, there is no oxide on the surface of the copper foil. Therefore, the copper foil is roughened by electroplating again. Other metals can be plated on the treated surface (Japanese Patent No. 5674700; Japanese Patent No. 4948579).
 めっき皮膜はその使用や環境に耐え、実用上支障がないレベルの密着性を有することが求められている。その手法として金属表面の酸化物層の除去することで金属結合を強め、且つ表面粗化することで応力を分散させ密着性を確保することが知られている(森河務、中出卓男、横井昌幸著「めっき被膜の密着性とその改善方法」)。 The plating film is required to withstand its use and environment and to have a level of adhesion that does not hinder practical use. As a method, it is known that the metal bond is strengthened by removing the oxide layer on the metal surface, and the stress is dispersed and the adhesion is secured by roughening the surface (Morikawa Tsutomu, Nakade Takuo, Yokoi). Masayuki, "Adhesion of plating film and its improvement method").
 本発明は、新規な銅表面の加工装置を提供することを目的とする。 An object of the present invention is to provide a novel copper surface processing apparatus.
 通常、金属表面に酸化物層が存在する場合、通電性が劣ることや金属箔とめっき金属層の密着性が得られにくいなどの理由から、直接電解めっきを行う事はなく、酸処理等で酸化物を取り除いてから行う。なぜなら、一般的に金属とめっき金属層の密着性は、金属結合によって密着性を確保することが知られており、金属の界面に酸化物層が存在すると、金属とめっき金属の金属結合を阻害し密着性が得られにくくなるからである。また、金属が平滑であると金属とめっき金属の界面に応力が集中するように伝搬し、界面剥離が起こりやすい。
 一方、凹凸のある界面においては、平滑な表面とは異なり、応力を伝達する明瞭な面は存在しない。エネルギーの伝搬にあたって、その一部がめっき金属あるいは金属を変形するように働くことが考えられ、それにエネルギーが消費され密着力は高くなる。
 本発明者らは鋭意研究の結果、本開示の加工装置により銅表面に形成する酸化物層を平均400nm以下にすることにより、その酸化物層表面に電解めっきで金属を被膜することに成功し、それによって、通電性の劣りや、金属結合の阻害の影響を最小限に抑え、且つ微細凹凸形状を有することでアンカー効果によって金属とめっき金属の密着力を高めることが可能となった。従来、銅表面に対して、酸化処理や還元処理、または電解めっき処理を行う技術及び装置は既に存在するが、酸化処理を行った後に電解めっき処理を行う処理技術は存在せず、またその加工装置も存在しない。こうして、本発明者らは、新規な銅表面の加工装置の発明の完成に至った。
 本発明の一実施態様は、銅で覆われた表面を有する物体に対する、前記表面の加工装置であって、前記表面を酸化するための第1の槽と、酸化された前記表面に電解めっき処理をするための第2の槽と、を備える。前記第2の槽が、アノードと、電源と、を備えてもよい。前記表面を酸化する前にアルカリ水溶液を用いて前記表面にアルカリ処理を行うための第3の槽を備えてもよい。前記表面を酸化した後で、電解めっき処理をする前に、酸化された前記表面を還元剤で還元するための第4の槽および/または酸化された前記表面を溶解剤で溶解するための第5の槽を備えてもよい。前記物体が、銅箔、銅粒子、銅粉または銅めっきされた物体であってもよい。
==関連文献とのクロスリファレンス==
 本出願は、令和元年5月9日付で出願した日本国特許出願特願2019-089118に基づく優先権を主張するものであり、当該基礎出願を引用することにより、本明細書に含めるものとする。
Normally, when an oxide layer is present on the metal surface, direct electrolytic plating is not performed because of poor electrical conductivity and difficulty in obtaining adhesion between the metal foil and the plated metal layer. This is done after removing the oxide. This is because it is generally known that the adhesion between a metal and a plated metal layer is ensured by a metal bond, and the presence of an oxide layer at the metal interface hinders the metal bond between the metal and the plated metal. This is because it becomes difficult to obtain adhesion. Further, when the metal is smooth, the stress propagates so as to be concentrated at the interface between the metal and the plated metal, and the interface peeling is likely to occur.
On the other hand, at an uneven interface, unlike a smooth surface, there is no clear surface for transmitting stress. In the propagation of energy, it is considered that a part of it works to deform the plated metal or the metal, and the energy is consumed by it and the adhesion becomes high.
As a result of diligent research, the present inventors have succeeded in coating the surface of the oxide layer with a metal by electroplating by reducing the average oxide layer formed on the copper surface to 400 nm or less by the processing apparatus of the present disclosure. As a result, it is possible to minimize the influence of inferior electrical conductivity and inhibition of metal bonding, and to have a fine uneven shape, thereby enhancing the adhesion between the metal and the plated metal by the anchor effect. Conventionally, there are already technologies and devices for performing oxidation treatment, reduction treatment, or electroplating treatment on a copper surface, but there is no treatment technology for performing electroplating treatment after oxidation treatment, and the processing thereof. There is no device either. In this way, the present inventors have completed the invention of a new copper surface processing apparatus.
One embodiment of the present invention is an apparatus for processing the surface of an object having a surface covered with copper, wherein a first tank for oxidizing the surface and the oxidized surface are electroplated. It is provided with a second tank for performing. The second tank may include an anode and a power source. A third tank may be provided for performing an alkaline treatment on the surface with an alkaline aqueous solution before oxidizing the surface. After oxidizing the surface and before electroplating, a fourth tank for reducing the oxidized surface with a reducing agent and / or a first for dissolving the oxidized surface with a dissolving agent. It may be provided with 5 tanks. The object may be a copper foil, copper particles, copper powder or a copper-plated object.
== Cross-reference with related literature ==
This application claims priority based on Japanese Patent Application No. 2019-089118 filed on May 9, 1945, and is included in the present specification by quoting the basic application. And.
図1は、本発明の一実施形態における、表面を酸化するための第1の槽と、酸化された表面に電解めっき処理をするための第2の槽を表す模式図である。FIG. 1 is a schematic view showing a first tank for oxidizing a surface and a second tank for electroplating the oxidized surface in one embodiment of the present invention. 図2は、本発明の一実施形態の加工装置全体の模式図である。FIG. 2 is a schematic view of the entire processing apparatus according to the embodiment of the present invention. 図3は、本発明の一実施形態において、各槽間に設けた搬送用ロールの模式図である。FIG. 3 is a schematic view of a transport roll provided between the tanks in one embodiment of the present invention. 図4は、本発明の一実施形態において、搬送用ロールに設けたスクイズロールの模式図である。FIG. 4 is a schematic view of a squeeze roll provided on the transport roll in one embodiment of the present invention. 図5は、本発明の一実施形態において、搬送用ロールに設けたガイドロールの模式図である。FIG. 5 is a schematic view of a guide roll provided on the transport roll in one embodiment of the present invention. 図6は、実施例及び比較例における、酸化物層の厚さとピール強度の関係を示す図である。FIG. 6 is a diagram showing the relationship between the thickness of the oxide layer and the peel strength in Examples and Comparative Examples. 図7は、実施例及び比較例における、酸化物層の厚さと耐熱劣化率の関係を示す図である。FIG. 7 is a diagram showing the relationship between the thickness of the oxide layer and the heat deterioration rate in Examples and Comparative Examples. 図8は、実施例及び比較例における、酸化物層の厚さと耐熱変色ΔEabの関係を示す図である。FIG. 8 is a diagram showing the relationship between the thickness of the oxide layer and the heat-resistant discoloration ΔE * ab in Examples and Comparative Examples.
 以下、本発明の実施の形態を、実施例を挙げながら詳細に説明する。なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図ならびに範囲内で、本明細書の記載に基づき、様々に修飾ができることは、当業者にとって明らかである。 Hereinafter, embodiments of the present invention will be described in detail with reference to examples. The object, feature, advantage, and idea thereof of the present invention will be apparent to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification. it can. The embodiments and specific examples of the invention described below show preferred embodiments of the present invention and are shown for illustration or explanation purposes, and the present invention is described in them. It is not limited. It will be apparent to those skilled in the art that various modifications can be made based on the description of the present specification within the intent and scope of the present invention disclosed herein.
==銅表面を加工するための装置の構成==
 本発明の一実施形態は、銅で覆われた表面を有する物体に対する、その表面の加工装置(100)であって、少なくとも、表面を酸化するための第1の槽(4)と、酸化された表面に電解めっき処理をするための第2の槽(7)と、を備える。第1の槽(4)の前に、アルカリ水溶液を用いて銅表面にアルカリ処理を行うための第3の槽(1)を設けてもよい。さらに、第3の槽(1)に続いて、酸による洗浄処理を行うための第6の槽(2)および弱いアルカリ処理を行うための第7の槽(3)を設けてもよい。そして、第1の槽(4)が続き、その後、第2の槽(7)までの間に、酸化された銅表面を還元剤で還元するための第8の槽(5)および/または酸化された銅表面を溶解剤で溶解するための第9の槽(6)を設けてもよい。各槽の間および/または全処理の最初と最後には、1つ以上の水洗槽を設けてもよい。さらに、各槽には、加熱部およびタイマーを備えているのが好ましく、それらによって、各槽における処理の温度や時間が設定できる。以下、水洗槽以外の全ての槽を1つずつ備え、ロール・ツー・ロール搬送システムを用いた場合の装置全体の模式図である図2を参照しながら、銅表面の加工における各槽の役割を説明する。なお、この装置構成は一例であって、当業者が本開示から理解できる構成は、全て本発明の技術的範囲に含まれるものとする。例えば、図2では、各種類の槽を1つ設けたが、それぞれ複数個設けても構わない。
== Configuration of equipment for processing copper surface ==
One embodiment of the present invention is an apparatus (100) for processing the surface of an object having a surface covered with copper, which is oxidized with at least a first tank (4) for oxidizing the surface. A second tank (7) for performing electrolytic plating on the surface is provided. In front of the first tank (4), a third tank (1) for performing alkaline treatment on the copper surface with an alkaline aqueous solution may be provided. Further, following the third tank (1), a sixth tank (2) for performing a cleaning treatment with an acid and a seventh tank (3) for performing a weak alkaline treatment may be provided. Then, the first tank (4) follows, and then, between the second tank (7) and the eighth tank (5) and / or oxidation for reducing the oxidized copper surface with a reducing agent. A ninth tank (6) may be provided to dissolve the copper surface with a dissolving agent. One or more flush tanks may be provided between each tank and / or at the beginning and end of the entire treatment. Further, each tank is preferably provided with a heating unit and a timer, whereby the temperature and time of processing in each tank can be set. Hereinafter, the role of each tank in processing the copper surface will be referred to with reference to FIG. 2, which is a schematic view of the entire apparatus when all the tanks other than the flush tank are provided one by one and the roll-to-roll transfer system is used. Will be explained. It should be noted that this device configuration is an example, and all configurations that can be understood by those skilled in the art from the present disclosure are included in the technical scope of the present invention. For example, in FIG. 2, one tank of each type is provided, but a plurality of tanks may be provided for each.
 また、ロール・ツー・ロール搬送システムなどのように銅部材を連続して処理をする場合、電解めっきのために銅部材への通電はロールから行うが、その通電箇所は電解めっき処理をするための第2の槽(7)の直前直後に限定されず、その他の槽のロールから通電しても良い。 In addition, when the copper member is continuously processed as in a roll-to-roll transfer system, the copper member is energized from the roll for electrolytic plating, but the energized part is electroplated. It is not limited to immediately before and after the second tank (7) of the above, and electricity may be supplied from the roll of another tank.
 第3の槽(1)では、アルカリ水溶液を用いて銅表面に対するアルカリ処理が行われる。そのため、第3の槽(1)は、用いられるアルカリに耐性のある材料で作製されている。このアルカリ処理は脱脂を目的として行われる。 In the third tank (1), the copper surface is subjected to alkaline treatment using an alkaline aqueous solution. Therefore, the third tank (1) is made of a material that is resistant to the alkali used. This alkaline treatment is performed for the purpose of degreasing.
 第6の槽(2)では、自然酸化被膜を除去して処理ムラを軽減するため、銅表面に対して酸による洗浄処理が行われる。そのため、第6の槽(2)は、用いられる酸に耐性のある材料で作製されている。 In the sixth tank (2), the copper surface is cleaned with an acid in order to remove the natural oxide film and reduce the treatment unevenness. Therefore, the sixth tank (2) is made of a material resistant to the acid used.
 第7の槽(3)では、処理ムラを軽減し、洗浄処理に用いた酸の酸化剤への混入を防ぐため、弱いアルカリ溶液を用いて、銅表面に対してアルカリ処理が行われる。そのため、第3の槽(1)は、用いられるアルカリに耐性のある材料で作製されている。 In the seventh tank (3), the copper surface is subjected to alkaline treatment using a weak alkaline solution in order to reduce uneven treatment and prevent the acid used in the cleaning treatment from being mixed into the oxidizing agent. Therefore, the third tank (1) is made of a material that is resistant to the alkali used.
 第1の槽(4)では、酸化剤を含有したアルカリ溶液を用いて銅表面を酸化し、銅表面に酸化物を形成する酸化処理が行われる。そのため、第1の槽(4)は、用いられる酸化剤及びアルカリに耐性のある材料で作製されている。第1の槽(4)は銅部材の一部表面のみが酸化処理される仕組みを有してもよい。たとえば、溶液面に対して水平に銅部材を搬送し、非処理面が液に触れないようにしてもよい。あるいは、第1の槽(4)内に酸化剤を含有したアルカリ溶液を含むことが可能な保液部材(たとえばスポンジ)を配置し、銅部材が、溶液に直接浸潤することなく、銅部材の一部表面のみ保液部材に接触し、酸化処理されるようにしてもよい。 In the first tank (4), an oxidation treatment is performed in which the copper surface is oxidized using an alkaline solution containing an oxidizing agent to form an oxide on the copper surface. Therefore, the first tank (4) is made of a material that is resistant to the oxidizing agents and alkalis used. The first tank (4) may have a mechanism in which only a part of the surface of the copper member is oxidized. For example, the copper member may be transported horizontally with respect to the solution surface so that the untreated surface does not come into contact with the liquid. Alternatively, a liquid-retaining member (for example, sponge) capable of containing an alkaline solution containing an oxidizing agent is arranged in the first tank (4), and the copper member does not directly infiltrate the solution. Only a part of the surface may come into contact with the liquid retaining member to be oxidized.
 第8の槽(5)では、還元剤を含有したアルカリ溶液を用い、酸化された銅表面に対して還元処理が行われる。これは、銅箔に形成された酸化銅を還元し、凹凸の数や長さを調整するためである。そのため、第8の槽(5)は、用いられる還元剤及びアルカリに耐性のある材料で作製されている。 In the eighth tank (5), a reducing treatment is performed on the oxidized copper surface using an alkaline solution containing a reducing agent. This is to reduce the copper oxide formed on the copper foil and adjust the number and length of the irregularities. Therefore, the eighth tank (5) is made of the reducing agent used and the material resistant to alkali.
 第9の槽(6)では、酸化した銅表面を溶解剤で溶解する溶解処理が行われる。そのため、第9の槽(6)は、用いられる溶解剤に耐性のある材料で作製されている。溶解処理の目的は、酸化された銅表面の凸部を調整することである。 In the ninth tank (6), a dissolution treatment is performed in which the oxidized copper surface is dissolved with a dissolving agent. Therefore, the ninth tank (6) is made of a material resistant to the solubilizer used. The purpose of the melting process is to adjust the protrusions on the oxidized copper surface.
 第2の槽(7)では、銅表面に対し、銅以外の金属で電解めっきが行われる。第2の槽(7)は、電気分解のためのアノードと電源を備える。アノードの種類は特に限定されず、pB板、貴金属酸化皮膜Ti等の不溶性アノードでもよいが、それ自体が溶解し、銅箔などに電着する溶解性アノードでもよい。 In the second tank (7), the copper surface is electrolytically plated with a metal other than copper. The second tank (7) includes an anode and a power source for electrolysis. The type of the anode is not particularly limited, and an insoluble anode such as a pB plate or a noble metal oxide film Ti may be used, but a soluble anode which is itself dissolved and electrodeposited on a copper foil or the like may be used.
 水洗槽の水は、前後の槽と同じか、近い温度にまで加温してもよく、それによって熱膨張差によるシワを防止できる。 The water in the flush tank may be heated to the same or close temperature as the front and rear tanks, thereby preventing wrinkles due to the difference in thermal expansion.
 第2の槽以外の槽で用いる溶液は、槽内に貯めて銅表面を浸漬してもよく、槽に設けられたシャワー装置によって銅表面に噴霧してもよい。溶液を槽内に貯める場合、槽には液循環装置を設けることが好ましい。それによって、溶液による処理ムラを減らすことができる。 The solution used in a tank other than the second tank may be stored in the tank and immersed in the copper surface, or may be sprayed on the copper surface by a shower device provided in the tank. When the solution is stored in the tank, it is preferable to provide a liquid circulation device in the tank. Thereby, the treatment unevenness due to the solution can be reduced.
 図2では、銅箔などの銅表面を加工する場合を想定し、銅箔の槽間の搬送は、ロール・ツー・ロール搬送システムを利用している。図3にロール(11)の拡大図を示す。この場合の搬送条件は特に限定されないが、例えば、銅箔のライン速度を50~3000m/hrとし、銅箔のテンションを1~130kgf/mとしてもよい。このシステムにおいて、図4に示すようなスクイズロール(12)を設けてもよい。これによって、銅箔から液体を搾り取ることができ、次の槽への液体の持ち込みが減少する。また、図5に示すようなガイドロール(13)を設けてもよい。これによって、縦しわの発生や銅箔の破断を防止することができる。 In FIG. 2, assuming the case of processing a copper surface such as copper foil, a roll-to-roll transport system is used for transporting the copper foil between tanks. FIG. 3 shows an enlarged view of the roll (11). The transport conditions in this case are not particularly limited, but for example, the line speed of the copper foil may be 50 to 3000 m / hr, and the tension of the copper foil may be 1 to 130 kgf / m. In this system, a squeeze roll (12) as shown in FIG. 4 may be provided. This allows the liquid to be squeezed out of the copper foil, reducing the amount of liquid brought into the next tank. Further, a guide roll (13) as shown in FIG. 5 may be provided. This makes it possible to prevent the occurrence of vertical wrinkles and the breakage of the copper foil.
 処理する銅表面を有する物体の槽間の搬送は、ロール・ツー・ロール搬送システムに限定されず、手動で行ってもよく、ベルトコンベアなどのコンベアで行ってもよい。
 全工程を終えた銅表面を乾燥させるための乾燥装置を設けてもよい。乾燥温度は特に限定されないが、室温~約230℃で銅表面を乾燥してもよい。
The transfer of the object having the copper surface to be processed between the tanks is not limited to the roll-to-roll transfer system, and may be performed manually or by a conveyor such as a belt conveyor.
A drying device may be provided to dry the copper surface after all the steps have been completed. The drying temperature is not particularly limited, but the copper surface may be dried at room temperature to about 230 ° C.
==銅表面の加工方法==
 上述した加工装置を用いて、銅表面を加工する方法を述べる。ここで、加工する必要のある部分だけ銅表面を加工するためには、その部分だけを各液体に浸すなどによって、その部分だけを処理すればよい。また、銅箔などの片面だけを電解めっき処理するためには、公知の方法を用いればよい(特開2010-236037;特開2004-232063)。
== Copper surface processing method ==
A method of processing a copper surface using the above-mentioned processing apparatus will be described. Here, in order to process only the copper surface of the portion that needs to be processed, it is sufficient to process only that portion by immersing only that portion in each liquid. Further, in order to perform electroplating treatment on only one side of a copper foil or the like, a known method may be used (Japanese Patent Laid-Open No. 2010-236037; JP-A-2004-232063).
 まず、第3の槽(1)において、アルカリ水溶液を用いて銅表面に対してアルカリ処理を行う。アルカリ処理の方法は特に限定されないが、好ましくは30~50g/L、より好ましくは40g/Lのアルカリ水溶液、例えば水酸化ナトリウム水溶液で、30~50℃、0.5~2分間程度処理すればよい。この後、銅表面を水洗することが好ましい。 First, in the third tank (1), the copper surface is subjected to alkaline treatment using an alkaline aqueous solution. The method of alkaline treatment is not particularly limited, but it is preferably treated with an alkaline aqueous solution of 30 to 50 g / L, more preferably 40 g / L, for example, a sodium hydroxide aqueous solution at 30 to 50 ° C. for about 0.5 to 2 minutes. Good. After this, it is preferable to wash the copper surface with water.
 次に、第6の槽(2)において、アルカリ処理した銅表面に対して酸による洗浄処理を行ってもよい。たとえば、銅表面を液温20~50℃、5~20重量%の硫酸に1~5分間浸漬すればよい。この後、銅表面を水洗することが好ましい。 Next, in the sixth tank (2), the alkali-treated copper surface may be cleaned with an acid. For example, the copper surface may be immersed in sulfuric acid having a liquid temperature of 20 to 50 ° C. and 5 to 20% by weight for 1 to 5 minutes. After this, it is preferable to wash the copper surface with water.
 次に、第7の槽(3)において、銅表面に対して弱いアルカリ処理を行ってもよい。このアルカリ処理の方法は特に限定されないが、好ましくは0.1~10g/L、より好ましくは1~2g/Lのアルカリ水溶液、例えば水酸化ナトリウム水溶液で、30~50℃、0.5~2分間程度、銅表面を処理すればよい。この後、銅表面を水洗することが好ましい。
 また、銅表面を酸化する前に、前処理としてエッチングなどの物理的に銅表面を粗面化してもよい。
Next, in the seventh tank (3), the copper surface may be subjected to a weak alkaline treatment. The method of this alkaline treatment is not particularly limited, but is preferably 0.1 to 10 g / L, more preferably 1 to 2 g / L in an alkaline aqueous solution, for example, a sodium hydroxide aqueous solution at 30 to 50 ° C. and 0.5 to 2 The copper surface may be treated for about a minute. After this, it is preferable to wash the copper surface with water.
Further, before oxidizing the copper surface, the copper surface may be physically roughened by etching or the like as a pretreatment.
 その後、第1の槽(4)において、酸化剤を用いて、一部又は全部の銅表面を酸化し、銅表面に酸化物を形成する酸化処理を行う。酸化剤は特に限定されず、例えば、亜塩素酸ナトリウム、次亜塩素酸ナトリウム、塩素酸カリウム、過塩素酸カリウム等の水溶液を用いることができる。酸化剤には、各種添加剤(たとえば、リン酸三ナトリウム十二水和物のようなリン酸塩)や表面活性分子を添加してもよい。表面活性分子としては、ポルフィリン、ポルフィリン大員環、拡張ポルフィリン、環縮小ポルフィリン、直鎖ポルフィリンポリマー、ポルフィリンサンドイッチ配位錯体、ポルフィリン配列、シラン、テトラオルガノ‐シラン、アミノエチル‐アミノプロピルートリメトキシシラン、(3‐アミノプロピル)トリメトキシシラン、1‐[3‐(トリメトキシシリル)プロピル]ウレア(l-[3-(Trimethoxysilyl)propyl]urea)、(3‐アミノプロピル)トリエトキシシラン、((3‐グリシジルオキシプロピル)トリメトキシシラン)、(3‐クロロプロピル)トリメトキシシラン、(3‐グリシジルオキシプロピル)トリメトキシシラン、ジメチルジクロロシラン、3‐(トリメトキシシリル)プロピルメタクリレート、エチルトリアセトキシシラン、トリエトキシ(イソブチル)シラン、トリエトキシ(オクチル)シラン、トリス(2‐メトキシエトキシ)(ビニル)シラン、クロロトリメチルシラン、メチルトリクロロシラン、四塩化ケイ素、テトラエトキシシラン、フェニルトリメトキシシラン、クロロトリエトキシシラン、エチレン‐トリメトキシシラン、アミン、糖などを例示できる。また、酸化剤にはアルコール、ケトン、カルボン酸などの溶媒を併用することができる。酸化反応条件は特に限定されないが、酸化剤の液温は40~95℃であることが好ましく、40~90℃であることがより好ましい。反応時間は0.5~30分であることが好ましく、1~10分であることがより好ましい。 After that, in the first tank (4), an oxidizing treatment is performed using an oxidizing agent to oxidize a part or all of the copper surface to form an oxide on the copper surface. The oxidizing agent is not particularly limited, and for example, an aqueous solution of sodium chlorite, sodium hypochlorite, potassium chlorate, potassium perchlorate or the like can be used. Various additives (for example, phosphates such as trisodium phosphate dodecahydrate) and surface active molecules may be added to the oxidizing agent. Surface active molecules include porphyrin, porphyrin-membered ring, expanded porphyrin, ring-reduced porphyrin, linear porphyrin polymer, porphyrin sandwich coordination complex, porphyrin sequence, silane, tetraorgano-silane, aminoethyl-aminopropyl-trimethoxysilane. , (3-Aminopropyl) trimethoxysilane, 1- [3- (Trimethoxysilyl) propyl] urea (l- [3- (Trimethoxysilyl) propyl] urea), (3-aminopropyl) triethoxysilane, (( 3-Glysidyloxypropyl) trimethoxysilane), (3-chloropropyl) trimethoxysilane, (3-glycidyloxypropyl) trimethoxysilane, dimethyldichlorosilane, 3- (trimethoxysilyl) propylmethacrylate, ethyltriacetoxysilane , Triethoxy (isobutyl) silane, triethoxy (octyl) silane, tris (2-methoxyethoxy) (vinyl) silane, chlorotrimethylsilane, methyltrichlorosilane, silicon tetrachloride, tetraethoxysilane, phenyltrimethoxysilane, chlorotriethoxysilane , Ethylene-trimethoxysilane, amine, sugar and the like can be exemplified. Further, a solvent such as alcohol, ketone or carboxylic acid can be used in combination as the oxidizing agent. The oxidation reaction conditions are not particularly limited, but the liquid temperature of the oxidizing agent is preferably 40 to 95 ° C, more preferably 40 to 90 ° C. The reaction time is preferably 0.5 to 30 minutes, more preferably 1 to 10 minutes.
 この酸化処理によって、平均400nm以下にする。好ましくは平均200nm以下にし、より好ましくは平均160nm以下にする。さらに酸化物層の厚さは、好ましくは平均20nm以上にし、より好ましくは平均30nm以上にし、さらに好ましくは平均40nm以上にする。なお、酸化物層の厚さが400nm以下である領域の割合は特に限定されないが、50%以上が400nm以下であることが好ましく、70%以上が400nm以下であることがより好ましく、90%以上が400nm以下であることがさらに好ましく、95%以上が400nm以下であることがさらに好ましく、ほぼ100%が400nm以下であることがさらに好ましい。
 酸化物層の厚さの割合は、例えば、10×10cmの面積中の10測定点における連続電気化学還元法(SERA)により算出することができる。
By this oxidation treatment, the average is reduced to 400 nm or less. The average is preferably 200 nm or less, and more preferably 160 nm or less. Further, the thickness of the oxide layer is preferably 20 nm or more on average, more preferably 30 nm or more on average, and further preferably 40 nm or more on average. The proportion of the region where the thickness of the oxide layer is 400 nm or less is not particularly limited, but 50% or more is preferably 400 nm or less, 70% or more is more preferably 400 nm or less, and 90% or more. Is more preferably 400 nm or less, 95% or more is further preferably 400 nm or less, and almost 100% is further preferably 400 nm or less.
The ratio of the thickness of the oxide layer can be calculated, for example, by continuous electrochemical reduction (SERA) at 10 measurement points in an area of 10 × 10 cm.
 酸化銅の算術平均粗さ(Ra)は0.02μm以上が好ましく、0.04μm以上がより好ましく、また、0.20μm以下であることが好ましく、0.060μm以下であることがより好ましい。
 酸化銅の最大高さ粗さ(Rz)は0.2μm以上が好ましく、0.4μm以上がより好ましく、また、1.0μm以下であることが好ましく、0.50μm以下であることがより好ましい。
 ここで、最大高さ粗さ(Rz)とは基準長さlにおいて、輪郭曲線(y=Z(x))の山高さZpの最大値と谷深さZvの最大値の和を表す。
 算術平均粗さ(Ra)とは基準長さlにおいて、以下の式で表される輪郭曲線(y=Z(x))におけるZ(x)(すなわち山の高さと谷の深さ)の絶対値の平均を表す。
The arithmetic mean roughness (Ra) of copper oxide is preferably 0.02 μm or more, more preferably 0.04 μm or more, preferably 0.20 μm or less, and more preferably 0.060 μm or less.
The maximum height roughness (Rz) of copper oxide is preferably 0.2 μm or more, more preferably 0.4 μm or more, preferably 1.0 μm or less, and more preferably 0.50 μm or less.
Here, the maximum height roughness (Rz) represents the sum of the maximum value of the peak height Zp and the maximum value of the valley depth Zv of the contour curve (y = Z (x)) at the reference length l.
Arithmetic mean roughness (Ra) is the absolute value of Z (x) (that is, the height of the peak and the depth of the valley) on the contour curve (y = Z (x)) expressed by the following equation at the reference length l. Represents the average of the values.
Figure JPOXMLDOC01-appb-M000001
 表面粗さRa、RzはJIS B 0601:2001(国際基準ISO4287-1997準拠)に定められた方法により算出できる。
Figure JPOXMLDOC01-appb-M000001
The surface roughness Ra and Rz can be calculated by the method specified in JIS B 0601: 2001 (based on international standard ISO4287-197).
 次に、第8の槽(5)において、還元剤を用い、酸化された銅表面に対して還元処理を行ってもよい。還元剤としては、DMAB(ジメチルアミンボラン)、ジボラン、水素化ホウ素ナトリウム、ヒドラジン等を用いることができ、還元剤、アルカリ性化合物(例えば、水酸化ナトリウム、水酸化カリウム)、及び溶媒(例えば、純水や緩衝液)を含む溶液を用いて、周知の方法で還元処理できる。 Next, in the eighth tank (5), a reducing agent may be used to reduce the oxidized copper surface. As the reducing agent, DMAB (dimethylamine borane), diborane, sodium borohydride, hydrazine and the like can be used, and a reducing agent, an alkaline compound (for example, sodium hydroxide, potassium hydroxide), and a solvent (for example, pure) can be used. A solution containing (water or buffer) can be used for reduction treatment by a well-known method.
 次に、第9の槽(6)において、酸化した銅表面を溶解剤で溶解する溶解処理を行う。溶解剤は特に限定されないが、キレート剤、生分解性キレート剤などが例示でき、具体的には、EDTA(エチレンジアミン四酢酸)、DHEG(ジエタノールグリシン)、GLDA(L-グルタミン酸二酢酸・四ナトリウム)、EDDS(エチレンジアミン-N,N’-ジコハク酸)、HIDS(3-ヒドロキシ-2,2’-イミノジコハク酸ナトリウム)、MGDA(メチルグリシン2酢酸3ナトリウム)、ASDA(アスパラギン酸ジ酢酸・四ナトリウム)、HIDA(N-2-hydroxyethyliminodiacetic acid disodium salt)、グルコン酸ナトリウム、エチドロン酸(ヒドロキシエタンジホスホン酸)などが例示できる。本工程で用いる溶解剤にはアルコール、ケトン、カルボン酸などの溶媒を併用することができる。溶解剤のpHは特に限定されないが、酸性では溶解量が大きいため、処理のコントロールが難しいこと、処理ムラが生じやすいこと、最適なCu/O比からなる凸部が形成されないことなどからアルカリ性であることが好ましく、pH9.0~14.0であることがより好ましく、pH9.0~10.5であることがさらに好ましく、pH9.8~10.2であることがさらに好ましい。第9の槽(6)において、酸化銅の溶解率が35~99%、好ましくは77~99%かつCuOの厚さが4~150nm、好ましくは8~50nmになるまで、銅表面を溶解することが好ましい。 Next, in the ninth tank (6), a dissolution treatment is performed in which the oxidized copper surface is dissolved with a dissolving agent. The solubilizer is not particularly limited, and examples thereof include a chelating agent and a biodegradable chelating agent. Specifically, EDTA (ethylenediaminetetraacetic acid), DHEG (diethanolglycine), GLDA (L-glutamate diacetate / tetrasodium) , EDDS (ethylenediamine-N, N'-disuccinic acid), HIDS (3-hydroxy-2,2'-sodium iminodisuccinate), MGDA (methylglycine diacetate 3 sodium), ASDA (diacetic acid aspartate, tetrasodium) , HIDA (N-2-hydroxyethyliminodiacetic acid disodium salt), sodium gluconate, ethidronic acid (hydroxyethandiphosphonic acid) and the like can be exemplified. A solvent such as alcohol, ketone, or carboxylic acid can be used in combination with the dissolving agent used in this step. The pH of the solubilizer is not particularly limited, but it is alkaline because the amount of dissolution is large in acidic conditions, it is difficult to control the treatment, uneven treatment is likely to occur, and convex portions having an optimum Cu / O ratio are not formed. The pH is preferably 9.0 to 14.0, more preferably 9.0 to 10.5, and even more preferably 9.8 to 10.2. In the ninth tank (6), the copper surface is melted until the solubility of copper oxide is 35 to 99%, preferably 77 to 99%, and the thickness of CuO is 4 to 150 nm, preferably 8 to 50 nm. Is preferable.
 その後、第2の槽(7)において、銅表面に対し、銅以外の金属で電解めっき処理をする。電解めっき処理方法は、公知の技術を使うことができるが、例えば、銅以外の金属として、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、Au、Pt、またはそれらの合金を用いることができる。特に、銅で覆われた表面を有する物体が銅箔の場合、耐熱性を有するためには銅よりも耐熱性の高い金属、例えばNi、Pd、AuおよびPtあるいはその合金が好ましい。なお、銅箔などの場合、めっきされるのは、片面でも両面でも構わない。 After that, in the second tank (7), the copper surface is electroplated with a metal other than copper. As a method for electroplating, a known technique can be used. For example, as a metal other than copper, Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au, Pt, etc. Alternatively, those alloys can be used. In particular, when the object having a surface covered with copper is a copper foil, metals having higher heat resistance than copper, such as Ni, Pd, Au and Pt, or alloys thereof are preferable in order to have heat resistance. In the case of copper foil or the like, plating may be performed on one side or both sides.
 電解めっきで形成される金属層の垂直方向の平均の厚さは特に限定されないが、10nm以上であることが好ましく、15nm以上であることがより好ましく、20nm以上であることがさらに好ましい。そして、100nm以下であることが好ましく、70nm以下であることがより好ましく、50nm以下であることがさらに好ましい。
 あるいは、電解めっきで形成される金属層の金属量を単位面積あたりの金属の重量として表した場合、15μg/cm以上であることが好ましく、18μg/cmであることがより好ましく、20μg/cm以上であることがさらに好ましい。また、100μg/cm以下であることが好ましく、80μg/cm以下であることがより好ましく、50μg/cm以下であることがさらに好ましい。
 金属層の垂直方向の平均の厚さは、金属層を形成する金属を、酸性溶液で溶解し、ICP分析によって金属量を測定し、その測定量を物体の面積で除して算出できる。あるいは、物体そのものを溶解し、金属層を形成する金属の量のみを検出測定することにより、算出できる。
The average thickness of the metal layer formed by electroplating in the vertical direction is not particularly limited, but is preferably 10 nm or more, more preferably 15 nm or more, and even more preferably 20 nm or more. Then, it is preferably 100 nm or less, more preferably 70 nm or less, and further preferably 50 nm or less.
Alternatively, when the amount of metal in the metal layer formed by electroplating is expressed as the weight of the metal per unit area, it is preferably 15 μg / cm 2 or more, more preferably 18 μg / cm 2 , and 20 μg / cm 2. It is more preferably cm 2 or more. Further, it is preferably 100 μg / cm 2 or less, more preferably 80 μg / cm 2 or less, and further preferably 50 μg / cm 2 or less.
The average vertical thickness of the metal layer can be calculated by dissolving the metal forming the metal layer in an acidic solution, measuring the amount of metal by ICP analysis, and dividing the measured amount by the area of the object. Alternatively, it can be calculated by melting the object itself and detecting and measuring only the amount of metal forming the metal layer.
 電解めっきは、酸化物層の酸化物を一部還元するのにも電荷が必要であるため、例えばニッケルめっきを銅箔に施す場合、その厚さを好ましい範囲に収めるためには電解めっき処理する物体の面積あたり、15C/dm以上~90C/dm以下の電荷を与えることが好ましい。
 また、電流密度は5A/dm以下が好ましい。電流密度が高すぎると、凸部にめっきが集中するなど、均一めっきが困難である。なお、酸化物層の酸化物を一部還元するまでと、めっきを被覆中の電流を変えてもよい。また、被覆する金属により所定の厚さになるよう適宜調整する。
 ニッケルめっきを及びニッケル合金めっきは、純ニッケル、Ni-Cu合金、Ni-Cr合金、Ni-Co合金 、Ni-Zn合金、Ni-Mn合金、Ni-Pb合金、Ni-P合金等が挙げられる。
 めっきイオンの供給剤として、例えば、硫酸ニッケル、スルファミン酸ニッケル、塩化ニッケル、臭化ニッケル、酸化亜鉛、塩化亜鉛、ジアンミンジクロロパラジウム、硫酸鉄、塩化鉄、無水クロム酸、塩化クロム、硫酸クロムナトリウム、硫酸銅、ピロリン酸銅、硫酸コバルト、硫酸マンガン、次亜リン酸ナトリウム、などが用いることができる。
 pH緩衝剤や光沢剤などを含むその他添加剤として、例えば、ほう酸、酢酸ニッケル、クエン酸、クエン酸ナトリウム、クエン酸アンモニウム、ギ酸カリウム、リンゴ酸、リンゴ酸ナトリウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、塩化アンモニウム、シアン化ナトリウム、酒石酸カリウムナトリウム、チオシアン酸カリウム、硫酸、塩酸、塩化カリウム、硫酸アンモニウム、塩化アンモニウム、硫酸カリウム、硫酸ナトリウム、チオシアンナトリウム、チオ硫酸ナトリウム、臭酸カリウム、ピロリン酸カリウム、エチレンジアミン、硫酸ニッケルアンモニウム、チオ硫酸ナトリウム、ケイフッ酸、ケイフッ化ナトリウム、硫酸ストロンチウム、クレゾールスルホン酸、β-ナフトール、サッカリン、1,3,6-ナフタレントリスルホン酸、ナフタレン(ジ、トリ)、スルホン酸ナトリウム、スルホンアミド、スルフィン酸など1-4ブチンジオール、クマリン、ラウリル硫酸ナトリウムが使用される。
 ニッケルめっきにおいて、その浴組成は、例えば、硫酸ニッケル(100g/L以上~350g/L以下)、スルファミンニッケル(100g/L以上~600g/L以下)、塩化ニッケル(0g/L以上~300g/L以下)及びこれらの混合物を含むものが好ましいが、添加剤としてクエン酸ナトリウム(0g/L以上~100g/L以下)やホウ酸(0g/L以上~60g/L以下)が含まれていてもよい。
Electroplating also requires an electric charge to partially reduce the oxide in the oxide layer. Therefore, for example, when nickel plating is applied to a copper foil, electrolytic plating is performed in order to keep the thickness within a preferable range. It is preferable to give an electric charge of 15 C / dm 2 or more to 90 C / dm 2 or less per area of the object.
The current density is preferably 5 A / dm 2 or less. If the current density is too high, uniform plating is difficult, for example, plating is concentrated on the convex portions. The current in the plating may be changed until a part of the oxide in the oxide layer is reduced. Further, the thickness is appropriately adjusted depending on the metal to be coated.
Nickel plating and nickel alloy plating include pure nickel, Ni-Cu alloy, Ni-Cr alloy, Ni-Co alloy, Ni-Zn alloy, Ni-Mn alloy, Ni-Pb alloy, Ni-P alloy and the like. ..
As a filler of plating ions, for example, nickel sulfate, nickel sulfamate, nickel chloride, nickel bromide, zinc oxide, zinc chloride, diammine dichloropalladium, iron sulfate, iron chloride, chromic anhydride, chromium chloride, sodium chromium sulfate, Copper sulfate, copper pyrophosphate, cobalt sulfate, manganese sulfate, sodium hypophosphite, and the like can be used.
Other additives, including pH buffers and brighteners, include, for example, boric acid, nickel acetate, citric acid, sodium citrate, ammonium citrate, potassium formate, malic acid, sodium malate, sodium hydroxide, potassium hydroxide, etc. Sodium carbonate, ammonium chloride, sodium cyanide, potassium potassium tartrate, potassium thiosocyanate, sulfuric acid, hydrochloric acid, potassium chloride, ammonium sulfate, ammonium chloride, potassium sulfate, sodium sulfate, sodium thiosian, sodium thiosulfate, potassium bromide, potassium pyrophosphate , Ethylenediamine, nickel ammonium sulfate, sodium thiosulfate, silicic acid, sodium silicate, strontium sulfate, cresolsulfonic acid, β-naphthol, saccharin, 1,3,6-naphthalentrisulfonic acid, naphthalene (di, tri), sulfone 1-4 Butindiol such as sodium acid, sulfonamide, sulfinic acid, coumarin, sodium lauryl sulfate is used.
In nickel plating, the bath composition thereof is, for example, nickel sulfate (100 g / L or more to 350 g / L or less), sulfamine nickel (100 g / L or more to 600 g / L or less), nickel chloride (0 g / L or more to 300 g / L or less). The following) and a mixture thereof are preferable, but even if sodium citrate (0 g / L or more and 100 g / L or less) or boric acid (0 g / L or more and 60 g / L or less) is contained as an additive. Good.
 銅以外の金属層における金属の割合は特に限定されないが、深さ6nmにおける全金属量に対するCuの割合が80重量%以下であることが好ましく、50重量%以下であることがより好ましく、30重量%以下であることがより好ましい。また、酸素を含まない深さにおける全金属量に対するCuの割合が重量90%以上であることが好ましく、重量95%以上であることがより好ましく、99%重量%以上であることがさらに好ましい。また、Cuの原子組成の割合が40%である深さにおけるCu/O比は、1以上であることが好ましく、2以上であることがより好ましく、5以上であることがさらに好ましい。所定の深さにおける全金属量に対するCuの割合は、例えば、イオンスパッタリングとX線光電子分光法(XPS)を用いて測定することができる。 The ratio of the metal in the metal layer other than copper is not particularly limited, but the ratio of Cu to the total metal amount at a depth of 6 nm is preferably 80% by weight or less, more preferably 50% by weight or less, and 30% by weight. More preferably, it is less than%. Further, the ratio of Cu to the total amount of metal at a depth not containing oxygen is preferably 90% or more by weight, more preferably 95% or more by weight, and further preferably 99% by weight or more. Further, the Cu / O ratio at a depth where the ratio of the atomic composition of Cu is 40% is preferably 1 or more, more preferably 2 or more, and further preferably 5 or more. The ratio of Cu to the total amount of metal at a given depth can be measured using, for example, ion sputtering and X-ray photoelectron spectroscopy (XPS).
 金属層は、粒子のない一様な層であることが好ましい。ここで、一様とは、95%以上の面で、好ましくは98%以上の面で、より好ましくは99%以上の面で、その層の厚さが、層の平均の厚さの5倍を超えないか、好ましくは3倍を超えないか、より好ましくは2倍を超えないものをいうこととする。粒子のない一様な金属層を形成することで、熱処理後の密着性を高めることができる。
 なお、これらの工程の後にシランカップリング剤などを用いたカップリング処理やベンゾトリアゾール類などを用いた防錆処理を行ってもよい。
The metal layer is preferably a uniform layer without particles. Here, "uniform" means 95% or more, preferably 98% or more, more preferably 99% or more, and the thickness of the layer is five times the average thickness of the layer. It means that it does not exceed, preferably does not exceed 3 times, or more preferably does not exceed 2 times. By forming a uniform metal layer without particles, the adhesion after heat treatment can be improved.
After these steps, a coupling treatment using a silane coupling agent or the like or a rust preventive treatment using benzotriazoles or the like may be performed.
 これら一連の工程によって酸化物の使用目的に好適な酸化物の層が得られるように、予めパイロット実験を行い、温度、時間などの条件を設定するのが好ましい。 It is preferable to conduct a pilot experiment in advance and set conditions such as temperature and time so that an oxide layer suitable for the purpose of use of the oxide can be obtained by these series of steps.
==物体とその表面形状==
 加工すべき銅表面を有する物体は、銅からなる物体でもよく、銅以外の物からなる物体の表面に、銅の層を設けたものでもよく、銅めっきを施したものでもよいが、この物体の形状は特に限定されないが、例えば、箔状でも、粒子状でも、粉状でもよく、銅を主成分とした電解銅箔や圧延銅箔等の銅箔、銅粒子、銅粒、銅線、銅板、銅製リードフレームであってもよい。
== Object and its surface shape ==
The object having a copper surface to be processed may be an object made of copper, an object made of a material other than copper may be provided with a copper layer, or may be copper-plated. The shape of is not particularly limited, but may be, for example, foil-like, particle-like, or powder-like, and copper foil such as electrolytic copper foil or rolled copper foil containing copper as a main component, copper particles, copper grains, and copper wire. It may be a copper plate or a copper lead frame.
 この銅表面を上述した加工装置で加工することにより、少なくとも一部の金属層の表面に凸部が形成される。
 この凸部の高さの平均が、10nm以上であることが好ましく、50nm以上であることがより好ましく、100nm以上であることがさらに好ましく、また1000nm以下であることが好ましく、500nm以下であることがより好ましく、200nm以下であることがさらに好ましい。この凸部の高さは、例えば、集束イオンビーム(FIB)によって作成された複合銅箔の断面を観察した走査型電子顕微鏡(SEM)像において、凸部を挟んで隣り合う凹部の極小点を結んだ線分の中点と、凹部の間にある凸部の極大点との距離とすることができる。
By processing the copper surface with the processing apparatus described above, convex portions are formed on the surface of at least a part of the metal layer.
The average height of the convex portions is preferably 10 nm or more, more preferably 50 nm or more, further preferably 100 nm or more, preferably 1000 nm or less, and preferably 500 nm or less. Is more preferable, and 200 nm or less is further preferable. The height of the convex portion is, for example, the minimum point of the concave portion adjacent to the convex portion in the scanning electron microscope (SEM) image obtained by observing the cross section of the composite copper foil created by the focused ion beam (FIB). It can be the distance between the midpoint of the connected line segment and the maximum point of the convex portion between the concave portions.
 物体の表面に、高さ50nm以上の凸部が3.8μmあたり、平均15個以上であることが好ましく、30個以上であることがより好ましく、50個以上であることがさらに好ましい。また、100個以下であることが好ましく、80個以下であることがより好ましく、60個以下であることがさらに好ましい。凸部の数は、例えば、集束イオンビーム(FIB)によって作成された複合銅箔の断面を観察した走査型電子顕微鏡(SEM)像において、高さが50nm以上のものの3.8μmあたりの数を計測することによって数えることができる。 On the surface of the object, the number of convex portions having a height of 50 nm or more is preferably 15 or more, more preferably 30 or more, and further preferably 50 or more per 3.8 μm. Further, the number is preferably 100 or less, more preferably 80 or less, and further preferably 60 or less. The number of protrusions is, for example, the number per 3.8 μm of a scanning electron microscope (SEM) image obtained by observing a cross section of a composite copper foil created by a focused ion beam (FIB) and having a height of 50 nm or more. It can be counted by measuring.
 金属層の算術平均粗さ(Ra)は0.02μm以上が好ましく、0.04μm以上がより好ましく、また、0.20μm以下であることが好ましく、0.060μm以下であることがより好ましい。
 金属層の最大高さ粗さ(Rz)は0.2μm以上が好ましく、0.4μm以上がより好ましく、また、1.4μm以下であることが好ましく、0.50μm以下であることがより好ましい。
The arithmetic mean roughness (Ra) of the metal layer is preferably 0.02 μm or more, more preferably 0.04 μm or more, preferably 0.20 μm or less, and more preferably 0.060 μm or less.
The maximum height roughness (Rz) of the metal layer is preferably 0.2 μm or more, more preferably 0.4 μm or more, preferably 1.4 μm or less, and more preferably 0.50 μm or less.
 また、酸化処理後のRaと金属めっき処理後のRaの比(酸化処理後のRa/金属めっき処理後のRa)は0.7以上~1.3以下が好ましく、酸化処理後のRzと金属めっき処理後のRzの比(酸化処理後のRz/金属めっき処理後のRz)は0.8以上~1.2以下が好ましい。この比の値が1に近いほど、電解めっきで形成された金属層の厚さの均一性を示している。 The ratio of Ra after the oxidation treatment to Ra after the metal plating treatment (Ra after the oxidation treatment / Ra after the metal plating treatment) is preferably 0.7 or more and 1.3 or less, and Rz after the oxidation treatment and the metal. The ratio of Rz after the plating treatment (Rz after the oxidation treatment / Rz after the metal plating treatment) is preferably 0.8 or more and 1.2 or less. The closer the value of this ratio is to 1, the more uniform the thickness of the metal layer formed by electroplating.
==粗面化処理された銅表面を有する物体の利用方法==
 本開示の加工装置を用いて粗面化処理された銅表面を有する物体は、プリント配線板に使用される銅箔、基板に配線される銅線、LIB負極集電体用の銅箔などに用いることができる。
 例えば、プリント配線板に使用される銅箔の表面を本開示の加工装置を用いて粗面化処理し、樹脂と層状に接着させることによって積層板を作製し、プリント配線板を製造するのに用いることができる。この場合の樹脂の種類は特に限定されないが、ポリフェニレンエーテル、エポキシ、PPO、PBO、PTFE、LCP、またはTPPIであることが好ましい。
 また、例えばLIB負極集電体用に使用される銅箔の表面を本開示の加工装置を用いて粗化することで、銅箔と負極材料の密着性が向上し、容量劣化の小さい良好なリチウムイオン電池を得ることができる。リチウムイオン電池用の負極集電体は公知の方法に従って製造することができる。例えば、カーボン系活物質を含有する負極材料を調製し、溶剤もしくは水に分散させて活物質スラリーとする。この活物質スラリーを銅箔に塗布した後、溶剤や水を蒸発させるため乾燥させる。その後、プレスし、再度乾燥した後に所望の形になるよう負極集電体を成形する。なお、負極材料には、カーボン系活物質よりも理論容量の大きいシリコンやシリコン化合物、ゲルマニウム、スズ、鉛などを含んでもよい。また、電解質として有機溶媒にリチウム塩を溶解させた有機電解液だけでなく、ポリエチレンオキシドやポリフッ化ビニリデンなどからなるポリマーを用いたものであってもよい。本開示の加工装置を用いて表面を加工した銅箔は、リチウムイオン電池だけでなく、リチウムイオンポリマー電池にも適用できる。
== How to use an object with a roughened copper surface ==
Objects having a copper surface roughened using the processing apparatus of the present disclosure can be applied to copper foil used for printed wiring boards, copper wires wired to substrates, copper foil for LIB negative electrode current collectors, and the like. Can be used.
For example, in order to manufacture a laminated board by roughening the surface of a copper foil used for a printed wiring board using the processing apparatus of the present disclosure and adhering it to a resin in a layered manner to manufacture a printed wiring board. Can be used. The type of resin in this case is not particularly limited, but is preferably polyphenylene ether, epoxy, PPO, PBO, PTFE, LCP, or TPPI.
Further, for example, by roughening the surface of the copper foil used for the LIB negative electrode current collector using the processing apparatus of the present disclosure, the adhesion between the copper foil and the negative electrode material is improved, and the capacity deterioration is small. A lithium ion battery can be obtained. The negative electrode current collector for a lithium ion battery can be manufactured according to a known method. For example, a negative electrode material containing a carbon-based active material is prepared and dispersed in a solvent or water to prepare an active material slurry. After applying this active material slurry to the copper foil, it is dried to evaporate the solvent and water. Then, it is pressed, dried again, and then the negative electrode current collector is formed into a desired shape. The negative electrode material may contain silicon, a silicon compound, germanium, tin, lead, etc., which have a theoretical capacity larger than that of the carbon-based active material. Further, as the electrolyte, not only an organic electrolytic solution in which a lithium salt is dissolved in an organic solvent, but also a polymer composed of polyethylene oxide, polyvinylidene fluoride or the like may be used. The copper foil whose surface is processed by using the processing apparatus of the present disclosure can be applied not only to a lithium ion battery but also to a lithium ion polymer battery.
<1.粗面化処理された銅表面を有する物体の製造>
 実施例1~9及び比較例1~4は、DR-WS(古河電工株式会社製、厚さ:18μm)の銅箔を用いた。なお、実施例及び比較例について、各々同じ条件で複数の試験片を作製した。
<1. Manufacture of objects with roughened copper surfaces>
In Examples 1 to 9 and Comparative Examples 1 to 4, DR-WS (manufactured by Furukawa Electric Co., Ltd., thickness: 18 μm) copper foil was used. For Examples and Comparative Examples, a plurality of test pieces were prepared under the same conditions.
(1)前処理
 [アルカリ脱脂処理]
 銅箔を、液温50℃、40g/Lの水酸化ナトリウム水溶液に1分間浸漬した後、水洗を行った。
 [酸洗浄処理]
 アルカリ脱脂処理を行った銅箔を、液温25℃、10重量%の硫酸水溶液に2分間浸漬した後、水洗を行った。
 [プレディップ処理]
 酸洗浄処理を行った銅箔を、液温40℃、水酸化ナトリウム(NaOH)1.2g/Lのプレディップ用薬液に1分間浸漬した。
(1) Pretreatment [Alkaline degreasing treatment]
The copper foil was immersed in a sodium hydroxide aqueous solution at a liquid temperature of 50 ° C. and 40 g / L for 1 minute, and then washed with water.
[Acid cleaning treatment]
The copper foil subjected to the alkaline degreasing treatment was immersed in a sulfuric acid aqueous solution having a liquid temperature of 25 ° C. and 10% by weight for 2 minutes, and then washed with water.
[Pre-dip processing]
The acid-washed copper foil was immersed in a chemical solution for predip at a solution temperature of 40 ° C. and 1.2 g / L of sodium hydroxide (NaOH) for 1 minute.
(2)酸化処理
 アルカリ処理を行った銅箔を、表1に記載の条件に基づき、酸化処理用水溶液を用いて酸化処理を行った。これらの処理後、銅箔を水洗した。
 評価方法は<2.酸化処理後の試料の評価>で後述する。
(2) Oxidation Treatment The alkali-treated copper foil was subjected to an oxidation treatment using an aqueous solution for oxidation treatment based on the conditions shown in Table 1. After these treatments, the copper foil was washed with water.
The evaluation method is <2. Evaluation of the sample after the oxidation treatment> will be described later.
(3)電解めっき処理
 酸化処理を行った銅箔に対し、表1に記載の条件に基づき、電解めっき処理を行った。比較例2及び3は、3分間電解めっきを行ってもニッケルは析出しなかった。
(3) Electroplating Treatment The oxidized copper foil was subjected to electroplating treatment based on the conditions shown in Table 1. In Comparative Examples 2 and 3, nickel did not precipitate even after electroplating for 3 minutes.
(4)カップリング処理
 電解めっき処理を行った銅箔に対し、表1に記載の条件に基づき、カップリング処理を行った。
(4) Coupling Treatment The copper foil subjected to the electrolytic plating treatment was subjected to a coupling treatment based on the conditions shown in Table 1.
<2.酸化処理後の試料の評価>
(1)酸化銅の厚さの測定
 銅箔表面の酸化銅の厚さを、QC-100(ECI製)を用い、以下の電解液を用いて連続電気化学還元法(SERA)法により測定を行った。
電解液(pH=8.4)
ほう酸 6.18g/L;四ほう酸ナトリウム 9.55g/L
 具体的には、ガスケット径:0.32cmを用いて電流密度:90μA/cmにて上記電解液を用いたとき、電位が-0.85V以上から-0.6Vまでを酸化銅(CuO)のピークと判断した。
<2. Evaluation of sample after oxidation treatment>
(1) Measurement of copper oxide thickness The thickness of copper oxide on the surface of the copper foil is measured by the continuous electrochemical reduction method (SERA) using QC-100 (manufactured by ECI) and the following electrolytic solution. went.
Electrolyte (pH = 8.4)
Boric acid 6.18 g / L; Sodium tetraborate 9.55 g / L
Specifically, when the above electrolytic solution is used at a gasket diameter of 0.32 cm and a current density of 90 μA / cm 2, copper oxide (CuO) has a potential of -0.85 V or higher to -0.6 V. It was judged to be the peak of.
(2)Ra及びRzの算出
 酸化処理後の銅箔を、共焦点走査電子顕微鏡 OPTELICS H1200(レーザーテック株式会社製)を用いて銅箔の表面形状を測定し、JIS B 0601:2001に定められた方法によりRa及びRzを算出した。測定条件として、スキャン幅は100μm、スキャンタイプはエリアとし、Light sourceはBlue、カットオフ値は1/5とした。オブジェクトレンズはx100、コンタクトレンズはx14、デジタルズームはx1、Zピッチは10nmの設定とし、3箇所のデータを取得し、それらの平均値を各実施例及び比較例のRa、Rzとした。実施例6及び比較例1~3は算出できなかったため、表にはN.D.と記載した。
(2) Calculation of Ra and Rz The surface shape of the copper foil after the oxidation treatment was measured using a confocal scanning electron microscope OPTELICS H1200 (manufactured by Laser Tech Co., Ltd.), and the surface shape of the copper foil was determined in JIS B 0601: 2001. Ra and Rz were calculated by the method. As the measurement conditions, the scan width was 100 μm, the scan type was area, the light source was Blue, and the cutoff value was 1/5. The object lens was set to x100, the contact lens was set to x14, the digital zoom was set to x1, and the Z pitch was set to 10 nm. Data at three locations were acquired, and the average values thereof were Ra and Rz of each Example and Comparative Example. Since Examples 6 and Comparative Examples 1 to 3 could not be calculated, N.I. D. It was described.
<3.電解めっき及びカップリング処理後の試料の評価>
(1)ニッケル量の算出
 ニッケルの垂直方向の平均の厚さの測定方法としては、例えば、12%硝酸に銅部材を溶解させ、得た液をICP発光分析装置5100 SVDV ICP-OES(アジレント・テクノロジー社製)を用いて金属成分の濃度を測定し、金属の密度、金属層の表面積を考慮することで層状としての金属層の厚さを算出した。
<3. Evaluation of samples after electroplating and coupling treatment>
(1) Calculation of the amount of nickel As a method for measuring the average thickness of nickel in the vertical direction, for example, a copper member is dissolved in 12% nitric acid, and the obtained liquid is used for ICP emission spectrometer 5100 SVDV ICP-OES (Agile). The concentration of the metal component was measured using (manufactured by Technology), and the thickness of the metal layer as a layer was calculated by considering the density of the metal and the surface area of the metal layer.
(2)Ra及びRzの算出
 電解めっき及びカップリング処理後の銅箔を、共焦点走査電子顕微鏡 OPTELICS H1200(レーザーテック株式会社製)を用いて銅箔の表面形状を測定し、JIS B 0601:2001に定められた方法によりRa及びRzを算出した。測定条件として、スキャン幅は100μm、スキャンタイプはエリアとし、Light sourceはBlue、カットオフ値は1/5とした。オブジェクトレンズはx100、コンタクトレンズはx14、デジタルズームはx1、Zピッチは10nmの設定とし、3箇所のデータを取得し、Ra、Rzは3箇所の平均値とした。
(2) Calculation of Ra and Rz The surface shape of the copper foil after electroplating and coupling treatment was measured using a confocal scanning electron microscope OPTELICS H1200 (manufactured by Laser Tech Co., Ltd.), and JIS B 0601: 2001 Ra and Rz were calculated by the method specified in 1. As the measurement conditions, the scan width was 100 μm, the scan type was area, the light source was Blue, and the cutoff value was 1/5. The object lens was set to x100, the contact lens was set to x14, the digital zoom was set to x1, the Z pitch was set to 10 nm, data was acquired at three locations, and Ra and Rz were set to the average values of the three locations.
(3)積層体の熱処理前後のピール強度の測定
 電解めっき及びカップリング処理後の銅箔について、積層体を作製し熱処理前後のピール強度を測定した。また、ピール強度測定時に剥離面を目視で確認し、めっき層の剥離の有無を確認した。まず、各銅箔に対し、PPEを樹脂として含むMEGTRON6(パナソニック社製)を真空中でプレス圧2.9MPa、温度210℃、プレス時間120分の条件で加熱圧着して積層し、各々2つの測定試料を得た。各々1つの測定試料に対し、熱に対する耐性を調べるため、耐熱処理(177℃10日)を行った。その後、各々熱処理を行った試料と行っていない試料に対して90°剥離試験(日本工業規格(JIS)C5016)を行い、ピール強度(kgf/cm)を求めた。耐熱劣化率は測定された耐熱試験前後のピール強度の差を耐熱試験前のピール強度で除した割合として算出された。
 MEGTRON6をプリプレグとして用いたが、MEGTRON4など、その他市販プリプレグにおいても銅箔起因の劣化はほとんどなく、同様な熱処理前後の密着性が得られる。
(3) Measurement of Peel Strength of Laminated Body Before and After Heat Treatment For the copper foil after electroplating and coupling treatment, a laminated body was prepared and the peel strength before and after heat treatment was measured. In addition, when measuring the peel strength, the peeled surface was visually confirmed to confirm the presence or absence of peeling of the plating layer. First, MEGTRON6 (manufactured by Panasonic Corporation) containing PPE as a resin was heat-bonded to each copper foil under the conditions of a press pressure of 2.9 MPa, a temperature of 210 ° C., and a press time of 120 minutes, and laminated. A measurement sample was obtained. Each one of the measurement samples was subjected to heat resistance treatment (177 ° C. for 10 days) in order to examine the resistance to heat. Then, a 90 ° peeling test (Japanese Industrial Standards (JIS) C5016) was performed on the sample subjected to heat treatment and the sample not subjected to heat treatment, respectively, to determine the peel strength (kgf / cm). The heat resistance deterioration rate was calculated as a ratio obtained by dividing the difference in peel strength before and after the measured heat resistance test by the peel strength before the heat resistance test.
Although MEGTRON6 was used as the prepreg, there is almost no deterioration due to the copper foil in other commercially available prepregs such as MEGTRON4, and the same adhesion before and after the heat treatment can be obtained.
(4)銅箔の熱処理前後の色変化の算出
 電解めっき及びカップリング処理後の銅箔の耐熱性は色変化でも評価した。具体的には225℃のオーブンで30分熱処理を行い、前後の色変化をΔEabにて評価した。熱処理前の銅箔の色差(L、a、b)を測定後、225℃のオーブンに30分投入し、熱処理後の銅箔の色差を測定し、以下の式に従い、ΔEabを算出した。
 [数2]
ΔEab = [(ΔL + (Δa + (Δb ]1/2
(4) Calculation of color change before and after heat treatment of copper foil The heat resistance of copper foil after electroplating and coupling treatment was also evaluated by color change. Specifically, heat treatment was performed in an oven at 225 ° C. for 30 minutes, and the color change before and after was evaluated by ΔE * ab. After measuring the color difference (L * , a * , b * ) of the copper foil before the heat treatment, put it in an oven at 225 ° C. for 30 minutes, measure the color difference of the copper foil after the heat treatment, and according to the following formula, ΔE * ab. Was calculated.
[Number 2]
ΔE * ab = [(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ] 1/2
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 このように、酸化銅の厚さが502nm以上の場合、電解めっきをすることができない(比較例2,比較例3)。また、電解めっきが可能な酸化銅の厚さであっても、酸化銅の厚さが400nmより厚い場合、めっき層と金属部材の密着性が得られずに剥離が発生する(比較例1)。それに対して、酸化銅の厚さが400nm以下である実施例1~9では、めっき層と金属部材の密着性が得られており、且つ、樹脂との密着性並びに耐熱性が優れている。
 また、電流密度が5A/dmより大きい場合、耐熱性が低い(比較例4)のに対して電流密度が5A/dm以下である実施例1~9では樹脂との密着性並びに耐熱性が優れている。
As described above, when the thickness of copper oxide is 502 nm or more, electrolytic plating cannot be performed (Comparative Example 2 and Comparative Example 3). Further, even if the thickness of copper oxide is such that electrolytic plating is possible, if the thickness of copper oxide is thicker than 400 nm, adhesion between the plating layer and the metal member cannot be obtained and peeling occurs (Comparative Example 1). .. On the other hand, in Examples 1 to 9 in which the thickness of copper oxide is 400 nm or less, the adhesion between the plating layer and the metal member is obtained, and the adhesion to the resin and the heat resistance are excellent.
Further, when the current density is larger than 5 A / dm 2 , the heat resistance is low (Comparative Example 4), whereas in Examples 1 to 9 where the current density is 5 A / dm 2 or less, the adhesion to the resin and the heat resistance are high. Is excellent.
 本発明によって、新規な銅表面の加工装置を提供することができるようになった。 According to the present invention, it has become possible to provide a novel copper surface processing apparatus.

Claims (6)

  1.  銅で覆われた表面を有する物体に対する、前記表面の加工装置であって、
     前記表面を酸化するための第1の槽と、
     酸化された前記表面に電解めっき処理をするための第2の槽と、
    を備える加工装置。
    A surface processing device for an object having a copper-covered surface.
    A first tank for oxidizing the surface and
    A second tank for electroplating the oxidized surface,
    A processing device equipped with.
  2.  前記第2の槽における電解めっき処理の電流密度が5A/dm以下であることを特徴とする請求項1に記載の加工装置。 The processing apparatus according to claim 1, wherein the current density of the electrolytic plating treatment in the second tank is 5 A / dm 2 or less.
  3.  前記第2の槽が、アノードと、電源と、を備える、請求項1又は2に記載の加工装置。 The processing apparatus according to claim 1 or 2, wherein the second tank includes an anode and a power source.
  4.  前記表面を酸化する前にアルカリ水溶液を用いて前記表面にアルカリ処理を行うための第3の槽を備える、請求項1~3のいずれか1項に記載の加工装置。 The processing apparatus according to any one of claims 1 to 3, further comprising a third tank for performing an alkaline treatment on the surface with an alkaline aqueous solution before oxidizing the surface.
  5.  前記表面を酸化した後で、電解めっき処理をする前に、酸化された前記表面を還元剤で還元するための第4の槽および/または酸化された前記表面を溶解剤で溶解するための第5の槽を備える、請求項1~4のいずれか1項に記載の加工装置。 After oxidizing the surface and before electroplating, a fourth tank for reducing the oxidized surface with a reducing agent and / or a first for dissolving the oxidized surface with a dissolving agent. The processing apparatus according to any one of claims 1 to 4, further comprising a tank of 5.
  6.  前記物体が、銅箔、銅粒子、銅粉、銅線、銅板、銅製リードフレームまたは銅めっきされた物体である、請求項1~5のいずれか1項に記載の物体。 The object according to any one of claims 1 to 5, wherein the object is a copper foil, copper particles, copper powder, a copper wire, a copper plate, a copper lead frame, or a copper-plated object.
PCT/JP2020/018576 2019-05-09 2020-05-07 Apparatus for processing copper surface WO2020226158A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080013480.9A CN113412348A (en) 2019-05-09 2020-05-07 Processing device for copper surface
KR1020217026926A KR20220006033A (en) 2019-05-09 2020-05-07 Copper surface processing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-089118 2019-05-09
JP2019089118A JP7456578B2 (en) 2019-05-09 2019-05-09 Copper surface processing equipment

Publications (1)

Publication Number Publication Date
WO2020226158A1 true WO2020226158A1 (en) 2020-11-12

Family

ID=73044295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018576 WO2020226158A1 (en) 2019-05-09 2020-05-07 Apparatus for processing copper surface

Country Status (5)

Country Link
JP (1) JP7456578B2 (en)
KR (1) KR20220006033A (en)
CN (1) CN113412348A (en)
TW (1) TW202041723A (en)
WO (1) WO2020226158A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230170898A (en) * 2021-04-20 2023-12-19 나믹스 가부시끼가이샤 Manufacturing system for composite copper members

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4015327B1 (en) * 1960-08-01 1965-07-19
JPS5271348A (en) * 1975-12-12 1977-06-14 Nippon Mining Co Surface treatment for copper foil of printed circuits
JPS6194756A (en) * 1984-10-17 1986-05-13 株式会社日立製作所 Composite body of metal and resin and manufacture thereof
JPH05247666A (en) * 1992-03-06 1993-09-24 Hitachi Chem Co Ltd Surface treatment of steel
JP2013534054A (en) * 2010-07-06 2013-08-29 イーサイオニック・スリーサウザンド・インコーポレーテッド Method for treating copper surfaces to enhance adhesion to organic substrates for use in printed wiring boards

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259611A (en) * 1992-03-12 1993-10-08 Hitachi Chem Co Ltd Production of printed wiring board
JP5024930B2 (en) * 2006-10-31 2012-09-12 三井金属鉱業株式会社 Surface-treated copper foil, surface-treated copper foil with ultra-thin primer resin layer, method for producing the surface-treated copper foil, and method for producing surface-treated copper foil with an ultra-thin primer resin layer
JP2008248269A (en) * 2007-03-29 2008-10-16 Hitachi Chem Co Ltd Copper surface treatment method, and wiring board using the method
CN107881505A (en) * 2013-02-14 2018-04-06 三井金属矿业株式会社 Surface treatment copper foil and the copper clad laminate obtained with surface treatment copper foil
KR102116928B1 (en) 2013-02-28 2020-05-29 미쓰이금속광업주식회사 Blackened surface-treated copper foil, method for manufacturing blackened surface-treated copper foil, copper-clad laminate and flexible printed circuit board
KR101920976B1 (en) * 2013-09-20 2018-11-21 미쓰이금속광업주식회사 Copper foil, copper foil with carrier foil, and copper-clad laminate
JP6110581B2 (en) * 2014-12-05 2017-04-05 三井金属鉱業株式会社 Surface-treated copper foil, copper-clad laminate and printed wiring board for high-frequency signal transmission circuit formation
MY186397A (en) * 2015-07-29 2021-07-22 Namics Corp Roughened copper foil, copper-clad laminate, and printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4015327B1 (en) * 1960-08-01 1965-07-19
JPS5271348A (en) * 1975-12-12 1977-06-14 Nippon Mining Co Surface treatment for copper foil of printed circuits
JPS6194756A (en) * 1984-10-17 1986-05-13 株式会社日立製作所 Composite body of metal and resin and manufacture thereof
JPH05247666A (en) * 1992-03-06 1993-09-24 Hitachi Chem Co Ltd Surface treatment of steel
JP2013534054A (en) * 2010-07-06 2013-08-29 イーサイオニック・スリーサウザンド・インコーポレーテッド Method for treating copper surfaces to enhance adhesion to organic substrates for use in printed wiring boards

Also Published As

Publication number Publication date
JP2020183571A (en) 2020-11-12
KR20220006033A (en) 2022-01-14
TW202041723A (en) 2020-11-16
JP7456578B2 (en) 2024-03-27
CN113412348A (en) 2021-09-17

Similar Documents

Publication Publication Date Title
CN105358741B (en) The manufacture method and plating laminated body of plating laminated body
US11781236B2 (en) Composite copper foil
KR20230007390A (en) composite copper member
WO2020226158A1 (en) Apparatus for processing copper surface
WO2021079952A1 (en) Composite copper member
WO2021172096A1 (en) Composite copper member having voids
WO2020226159A1 (en) Method for manufacturing metal member having metal layer
TW202311563A (en) Copper member
JP7352939B2 (en) composite copper parts
JP7409602B2 (en) composite copper parts
WO2020226160A1 (en) Composite copper member
WO2022224683A1 (en) System for producing composite copper member
KR102641511B1 (en) Electroless plating solution and method of copper electroplating
WO2021261348A1 (en) Corrosion-resistant terminal material for aluminum core wire, method for manufacturing same, corrosion-resistant terminal, and electric wire terminal structure
TW202330256A (en) Metal member
TW202248460A (en) Method for manufacturing laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802753

Country of ref document: EP

Kind code of ref document: A1