JP6110581B2 - Surface-treated copper foil, copper-clad laminate and printed wiring board for high-frequency signal transmission circuit formation - Google Patents

Surface-treated copper foil, copper-clad laminate and printed wiring board for high-frequency signal transmission circuit formation Download PDF

Info

Publication number
JP6110581B2
JP6110581B2 JP2016562598A JP2016562598A JP6110581B2 JP 6110581 B2 JP6110581 B2 JP 6110581B2 JP 2016562598 A JP2016562598 A JP 2016562598A JP 2016562598 A JP2016562598 A JP 2016562598A JP 6110581 B2 JP6110581 B2 JP 6110581B2
Authority
JP
Japan
Prior art keywords
copper
copper foil
frequency signal
signal transmission
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016562598A
Other languages
Japanese (ja)
Other versions
JPWO2016088884A1 (en
Inventor
裕昭 津吉
裕昭 津吉
俊宏 細井
俊宏 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Application granted granted Critical
Publication of JP6110581B2 publication Critical patent/JP6110581B2/en
Publication of JPWO2016088884A1 publication Critical patent/JPWO2016088884A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Description

本件出願は、高周波信号伝送回路形成用表面処理銅箔、その表面処理銅箔を用いて得られる高周波信号伝送プリント配線板製造用銅張積層板及びプリント配線板に関する。   The present application relates to a surface-treated copper foil for forming a high-frequency signal transmission circuit, a copper-clad laminate for producing a high-frequency signal transmission printed wiring board, and a printed wiring board obtained using the surface-treated copper foil.

従来から、コンピュータ、携帯通信端末、その他電子機器のデータ処理速度・通信速度を向上させ、ストレスの無い大容量データ処理を可能にするため、データ処理速度・通信速度の高速化が要求されている。この要求に対応するためプリント配線板の分野では、高周波信号の伝送損失を可能な限り低くする努力が行われてきた。   Conventionally, in order to improve the data processing speed and communication speed of computers, portable communication terminals, and other electronic devices, and to enable large-capacity data processing without stress, it is required to increase the data processing speed and communication speed. . In order to meet this demand, efforts have been made in the field of printed wiring boards to make transmission loss of high-frequency signals as low as possible.

そして、この伝送損失の一因である導体損失は、伝送信号の周波数が高くなるほど、伝送信号が回路の表面を流れるという表皮効果が現れ、電気信号である伝送信号が流れる断面積が減少して抵抗が高くなるため、信号遅延が起こり、設計どおりの演算速度が得られなくなったり、信号のノックオン現象による誤動作を引き起こす要因となる。   The conductor loss that contributes to this transmission loss has a skin effect that the transmission signal flows on the surface of the circuit as the frequency of the transmission signal increases, and the cross-sectional area through which the transmission signal that is an electrical signal flows decreases. Since the resistance becomes high, a signal delay occurs, resulting in a failure to obtain a calculation speed as designed or a malfunction due to a signal knock-on phenomenon.

このような問題を解決するため、特許文献1では、表面付近の電気抵抗が小さく、高周波回路用導体として用いた場合に伝送損失を小さくすることのできる高周波回路用銅箔として、「電解銅箔の少なくとも片面を粗化処理した高周波用銅箔であって、該高周波用銅箔と樹脂基材とを該粗化処理面が樹脂基材と接するようにして積層成形して銅張積層板とし、ハーフエッチングにより該高周波用銅箔を重量換算厚さで3μm厚の銅層としたときの該銅層の抵抗率が2.2×10−8Ωm以下、好ましくは2.0×10−8Ωm以下であることを特徴とする高周波用銅箔」が開示されている。In order to solve such a problem, Patent Document 1 discloses an “electrolytic copper foil” as a copper foil for a high-frequency circuit that has a small electrical resistance near the surface and can reduce transmission loss when used as a conductor for a high-frequency circuit. A copper foil for high frequency, wherein at least one surface is roughened, and the high frequency copper foil and a resin base material are laminated and formed so that the roughened surface is in contact with the resin base material. When the copper foil for high frequency is made into a copper layer having a thickness of 3 μm by weight by half etching, the resistivity of the copper layer is 2.2 × 10 −8 Ωm or less, preferably 2.0 × 10 −8. A high-frequency copper foil characterized by being Ωm or less is disclosed.

この特許文献1に開示の高周波用銅箔の粗化処理は、粗化処理後の銅箔の抵抗率が2.2×10−8Ωm以下になる方法であれば特に制限はなく、電解銅箔表面に銅からなる粗化層を形成したものと把握できる。The roughening treatment of the high-frequency copper foil disclosed in Patent Document 1 is not particularly limited as long as the resistivity of the copper foil after the roughening treatment is 2.2 × 10 −8 Ωm or less. It can be understood that a roughened layer made of copper is formed on the foil surface.

日本特許出願 特開2011−138980号公報Japanese Patent Application No. 2011-138980

しかしながら、特許文献1に開示の高周波用銅箔のように銅箔の抵抗率を制御しても、信号の周波数が10GHz以上、特に15GHz以上になると表皮効果が顕著になり、粗化処理面が存在することによる伝送損失が大きくなる。   However, even if the resistivity of the copper foil is controlled as in the high frequency copper foil disclosed in Patent Document 1, the skin effect becomes significant when the signal frequency is 10 GHz or more, particularly 15 GHz or more, and the roughened surface is reduced. The transmission loss due to the presence increases.

一方、銅箔の粗化処理面は、銅箔と絶縁樹脂基材との張り合わせの際の密着性を向上させるためには必要不可欠なものであり、銅箔から粗化処理を省略することは非常に困難である。   On the other hand, the roughening surface of the copper foil is indispensable for improving the adhesion when the copper foil and the insulating resin base material are bonded together, and it is not necessary to omit the roughening treatment from the copper foil. It is very difficult.

従って、市場では、粗化処理面の表皮効果をできる限り発現させず、設計どおりの信号伝達速度を得ることのできる回路の形成可能な表面処理銅箔が望まれてきた。   Accordingly, a surface-treated copper foil capable of forming a circuit capable of obtaining a signal transmission speed as designed without causing the skin effect of the roughened surface as much as possible has been desired in the market.

そこで、本件発明者等の鋭意研究の結果、以下に示す粗化処理層を備えた表面処理銅箔を採用することで、上述の課題を達成できることに想到した。以下、本件出願に係る銅箔について説明する。   Therefore, as a result of intensive studies by the present inventors, it has been conceived that the above-described problems can be achieved by employing a surface-treated copper foil having a roughening treatment layer shown below. Hereinafter, the copper foil according to the present application will be described.

高周波信号伝送回路形成用表面処理銅箔: 本件出願に係る高周波信号伝送回路形成用表面処理銅箔は、銅箔の表面に粗化処理層を備える表面処理銅箔であって、当該粗化処理層は酸化銅及び亜酸化銅を含有し不導体の銅複合化合物からなる針状又は板状の微細凹凸からなり、かつ、当該銅箔は断面で観察したときの平均結晶粒径が2.5μm以上であることを特徴とする。 Surface-treated copper foil for forming a high-frequency signal transmission circuit: The surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application is a surface-treated copper foil having a roughened layer on the surface of the copper foil. The layer is composed of needle-like or plate-like fine irregularities containing copper oxide and cuprous oxide and made of a non-conductive copper composite compound, and the copper foil has an average crystal grain size of 2.5 μm when observed in cross section. It is the above.

高周波信号伝送プリント配線板製造用銅張積層板: 本件出願に係る高周波信号伝送プリント配線板製造用銅張積層板は、粗化処理層及び銅層を含む表面処理銅箔を積層した銅張積層板であって、当該表面処理銅箔は、粗化処理層が酸化銅及び亜酸化銅を含有し不導体の銅複合化合物からなる針状又は板状の微細凹凸からなり、かつ、当該銅層は断面で観察したときの平均結晶粒径が2.5μm以上であることを特徴とする。 Copper-clad laminate for high-frequency signal transmission printed wiring board manufacture: A copper-clad laminate for high-frequency signal transmission printed wiring board manufacture according to the present application is a copper-clad laminate in which a surface-treated copper foil including a roughened layer and a copper layer is laminated. The surface-treated copper foil is made of needle-like or plate-like fine irregularities in which the roughened layer contains copper oxide and cuprous oxide and is made of a non-conductive copper composite compound, and the copper layer Is characterized in that the average crystal grain size when observed in a cross section is 2.5 μm or more.

高周波信号伝送プリント配線板: 本件出願に係る高周波信号伝送プリント配線板は、粗化処理層及び銅層を含む高周波信号伝送回路を備えるプリント配線板であって、当該高周波信号伝送回路は、粗化処理層が酸化銅及び亜酸化銅を含有し不導体の銅複合化合物からなる針状又は板状の微細凹凸からなり、かつ、当該銅層は断面で観察したときの平均結晶粒径が2.5μm以上であることを特徴とする。 High-frequency signal transmission printed wiring board: The high-frequency signal transmission printed wiring board according to the present application is a printed wiring board including a high-frequency signal transmission circuit including a roughening treatment layer and a copper layer, and the high-frequency signal transmission circuit is roughened. The treatment layer is composed of needle-like or plate-like fine irregularities containing copper oxide and cuprous oxide and made of a non-conductor copper composite compound, and the copper layer has an average crystal grain size of 2. It is 5 μm or more.

本件出願に係る高周波信号伝送回路形成用表面処理銅箔は、粗化処理層を構成する針状又は板状の微細凹凸が、電気を通さない不導体成分である「酸化銅及び亜酸化銅」で構成されている。よって、本件出願に係る高周波信号伝送回路形成用表面処理銅箔の粗化処理層は、電気信号を流さず、絶縁樹脂基材との密着性を向上させるための役割を果たすのみである。また、本件出願に係る高周波信号伝送回路形成用表面処理銅箔を構成する銅箔は、平均結晶粒径が2.5μm以上の結晶組織を備えるため、通常の銅箔に比べて極めて低い電気抵抗の良導体である。   The surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application is a "copper oxide and cuprous oxide" in which the needle-like or plate-like fine irregularities constituting the roughened layer are non-conductive components that do not conduct electricity. It consists of Therefore, the roughened layer of the surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application only plays a role for improving the adhesion with the insulating resin base material without flowing an electric signal. In addition, the copper foil constituting the surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application has a crystal structure having an average crystal grain size of 2.5 μm or more, and therefore has an extremely low electric resistance as compared with a normal copper foil. It is a good conductor.

そして、本件出願に係る高周波信号伝送プリント配線板製造用銅張積層板を用いて得られる高周波信号伝送プリント配線板が備える回路は、伝送信号の周波数が高く表皮効果が発現するレベルになっても、粗化処理層を構成する針状又は板状の微細凹凸が不導体であるため表皮効果による信号電流が流れない。この結果、信号電流は、平均結晶粒径が2.5μm以上の低電気抵抗の銅層を流れることになり、設計どおりの信号伝達速度を得ることが可能になる。   And the circuit with which the high frequency signal transmission printed wiring board obtained using the copper clad laminate for manufacturing the high frequency signal transmission printed wiring board according to the present application has a high frequency of the transmission signal and a level at which the skin effect is manifested. In addition, since the needle-like or plate-like fine irregularities constituting the roughening layer are nonconductors, a signal current due to the skin effect does not flow. As a result, the signal current flows through a low electrical resistance copper layer having an average crystal grain size of 2.5 μm or more, and a signal transmission speed as designed can be obtained.

本件出願に係る銅箔の粗化処理層を構成する微細凹凸の断面を示す走査型電子顕微鏡観察像である。It is a scanning electron microscope observation image which shows the cross section of the fine unevenness | corrugation which comprises the roughening process layer of the copper foil which concerns on this application. 特性インピーダンスが50Ωとなるように設計したシングルのマイクロストリップラインを用いた伝送損失と信号の周波数との関係を示す図である。It is a figure which shows the relationship between the transmission loss and signal frequency using the single microstrip line designed so that characteristic impedance may be set to 50Ω. 特性インピーダンスが50Ωのシングルのマイクロストリップラインを、2本並列に配置して、差動が100Ωになるよう設計したマイクロストリップラインを用いた伝送損失と信号の周波数との関係を示す図である。It is a figure which shows the relationship between the transmission loss and the frequency of a signal using the microstrip line designed so that a differential may be set to 100 ohms by arranging two single microstrip lines with characteristic impedance of 50 ohms in parallel.

以下、本件出願に係る「高周波信号伝送回路形成用表面処理銅箔の形態」、「高周波信号伝送プリント配線板製造用銅張積層板の形態」及び「高周波信号伝送プリント配線板の形態」に関して説明する。   Hereinafter, description will be given regarding “form of surface-treated copper foil for forming a high-frequency signal transmission circuit”, “form of copper-clad laminate for manufacturing a high-frequency signal transmission printed wiring board” and “form of a high-frequency signal transmission printed wiring board” according to the present application. To do.

1.高周波信号伝送回路形成用表面処理銅箔の形態
本件出願に係る高周波信号伝送回路形成用表面処理銅箔は、銅箔の表面に粗化処理層を備える表面処理銅箔であって、当該粗化処理層は酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状又は板状の微細凹凸からなり、かつ、当該銅箔は断面で観察したときの平均結晶粒径が2.5μm以上であることを特徴とする。この「高周波信号伝送回路形成用表面処理銅箔」は、信号の周波数が1GHz以上、より好ましくは5GHz以上、さらに好ましくは10GHz以上、もっとも好ましくは15GHz以上の帯域で使用するプリント配線板等の用途に好適なものである。
1. Form of surface-treated copper foil for forming a high-frequency signal transmission circuit The surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application is a surface-treated copper foil having a roughened layer on the surface of the copper foil, The treatment layer is made of needle-like or plate-like fine irregularities made of a copper composite compound containing copper oxide and cuprous oxide, and the copper foil has an average crystal grain size of 2.5 μm or more when observed in cross section. It is characterized by being. This “surface-treated copper foil for forming a high-frequency signal transmission circuit” is used for a printed wiring board or the like having a signal frequency of 1 GHz or more, more preferably 5 GHz or more, more preferably 10 GHz or more, and most preferably 15 GHz or more. It is suitable for.

従来から、銅箔と絶縁樹脂基材との密着性を向上させるため、銅箔表面に「微細銅粒の付着」、「エッチングによる凹凸形成」等の粗化処理が施されてきた。しかし、この従来の粗化処理が施された銅箔を、高周波信号伝送回路の形成に用いると、銅箔表面に設けた粗化処理層が導体であるため、表皮効果による高周波信号の伝送損失が生じる。これに対し、本件出願に係る高周波信号伝送回路形成用表面処理銅箔は、粗化処理層を構成する針状又は板状の微細凹凸が、電気を通さない不導体成分である「酸化銅及び亜酸化銅」で構成されている。従って、銅箔の粗化処理層の針状又は板状の微細凹凸には高周波信号が流れず、銅層にのみ高周波信号が流れるため、粗化処理層を備えていない無粗化銅箔を用いたと同様の高周波特性が得られる。そして、本件出願に係る高周波信号伝送回路形成用表面処理銅箔の場合、高周波信号が流れる銅層の平均結晶粒径が2.5μm以上という低電気抵抗の結晶組織を備えるため、良好な高周波特性が得られる。

以下に、当該高周波信号伝送回路形成用表面処理銅箔を構成する「銅箔」、「粗化処理層」の順で説明する。
Conventionally, in order to improve the adhesion between the copper foil and the insulating resin base material, roughening treatments such as “adhesion of fine copper particles” and “unevenness formation by etching” have been performed on the surface of the copper foil. However, when this conventional roughened copper foil is used to form a high-frequency signal transmission circuit, the roughened layer provided on the copper foil surface is a conductor, so transmission loss of high-frequency signals due to the skin effect Occurs. In contrast, in the surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application, the needle-like or plate-like fine irregularities constituting the roughened layer are non-conductive components that do not conduct electricity "copper oxide and It is composed of “cuprous oxide”. Therefore, since the high frequency signal does not flow through the needle-like or plate-like fine irregularities of the roughened layer of copper foil, and the high frequency signal flows only through the copper layer, the non-roughened copper foil without the roughened layer is used. High frequency characteristics similar to those used can be obtained. In the case of the surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application, since the copper layer through which the high-frequency signal flows has a crystal structure with a low electrical resistance of 2.5 μm or more, good high-frequency characteristics Is obtained.

Below, the "copper foil" and the "roughening process layer" which comprise the surface treatment copper foil for the said high frequency signal transmission circuit formation are demonstrated in order.

銅箔: 銅箔として、断面で観察したときの平均結晶粒径が2.5μm以上のものを用いる。平均結晶粒径が2.5μm以上になると、結晶粒界が少なく、各結晶粒の粒内歪みも少なく、格段に優れた低電気抵抗を備える。なお、本件出願に係る高周波信号伝送回路形成用表面処理銅箔は、銅張積層板への積層段階、プリント配線板への加工段階で種々の熱負荷を受けるが、少なくとも最終製品であるプリント配線板となった時点で回路を構成する銅層の結晶組織の平均結晶粒径が2.5μm以上であればよい。 Copper foil: As the copper foil, one having an average crystal grain size of 2.5 μm or more when observed in a cross section is used. When the average crystal grain size is 2.5 μm or more, the crystal grain boundaries are few, the intra-granular distortion of each crystal grain is small, and a remarkably excellent low electrical resistance is provided. The surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application is subjected to various thermal loads at the stage of lamination to the copper-clad laminate and the stage of processing to the printed wiring board, but at least the printed wiring that is the final product The average crystal grain size of the crystal structure of the copper layer constituting the circuit when it becomes a plate may be 2.5 μm or more.

そして、本件出願に係る高周波信号伝送回路形成用表面処理銅箔を用いて、マイクロストリップライン、ストリップライン用途に用いる場合を想定すると、銅箔の含有する不純物濃度が100ppm以下であることが好ましい。ここでいう不純物とはS、N、C、Clであり、この総含有量を不純物濃度としている。この不純物濃度が100ppmを超えると導電率及び平均結晶粒径にバラツキが生じやすくなる。また、銅箔の銅純度は99.8質量%以上であることが好ましい。銅箔の銅純度は99.8質量%以上であると、良好な導電性能を備えることが確実となる。   Then, assuming that the surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application is used for microstripline and stripline applications, the impurity concentration contained in the copper foil is preferably 100 ppm or less. The impurities here are S, N, C, and Cl, and the total content is the impurity concentration. When this impurity concentration exceeds 100 ppm, the conductivity and the average crystal grain size tend to vary. Moreover, it is preferable that the copper purity of copper foil is 99.8 mass% or more. When the copper purity of the copper foil is 99.8% by mass or more, it is ensured that good conductive performance is provided.

また、上述のマイクロストリップライン、あるいはストリップライン用途を考慮すると、それぞれ絶縁樹脂基材と密着する側の面の表面粗さ(Ra)、光沢度(Gs60°)が次の範囲であることが好ましい。特に、ストリップライン用途の場合、表面処理銅箔を用いて形成した回路の両面に絶縁樹脂基材を密着させるため、当該回路の両面の表面特性が高周波伝送特性に影響を与えることから、銅箔の両面が次の範囲であることが好ましい。銅箔の表面粗さは、表面粗さ(Ra)が0.3μm以下、より好ましくは0.2μm以下である。そして、絶縁樹脂基材を密着させるための銅箔表面の光沢度(Gs60°)は、40以上であることが好ましく、より好ましくは100以上である。これらの特性を満たすと、銅箔の表面は、凹凸が少なく、うねりが少なく滑らかな表面となり、伝送損失を抑えることができる。   In consideration of the above-described microstripline or stripline application, the surface roughness (Ra) and glossiness (Gs60 °) of the surface in close contact with the insulating resin substrate are preferably in the following ranges. . In particular, in the case of stripline applications, since the insulating resin base material is adhered to both surfaces of the circuit formed using the surface-treated copper foil, the surface characteristics of both surfaces of the circuit affect the high-frequency transmission characteristics. It is preferable that both surfaces are in the following range. The copper foil has a surface roughness (Ra) of 0.3 μm or less, more preferably 0.2 μm or less. And the glossiness (Gs60 degree) of the copper foil surface for closely_contact | adhering an insulating resin base material is preferable 40 or more, More preferably, it is 100 or more. When these characteristics are satisfied, the surface of the copper foil has a smooth surface with less irregularities and less waviness, and transmission loss can be suppressed.

以上に述べた銅箔は、例えば、銅濃度が50g/L〜120g/L、フリー硫酸濃度が60g/L〜250g/Lの硫酸酸性銅溶液を活性炭処理して用い、溶液温度20℃〜70℃、電流密度40A/dm〜100A/dm の条件で電解して得ることができる。なお、銅箔の平均結晶粒径が2.5μm以上という条件を満たす限り、電解銅箔、キャリア付銅箔、圧延銅箔であっても構わない。そして、銅箔の厚さに関しても特段の限定はない。The copper foil described above uses, for example, an acid-treated sulfuric acid copper solution having a copper concentration of 50 g / L to 120 g / L and a free sulfuric acid concentration of 60 g / L to 250 g / L, and a solution temperature of 20 ° C. to 70 ° C. It can be obtained by electrolysis under the conditions of ° C. and current density of 40 A / dm 2 to 100 A / dm 2 . As long as the average crystal grain size of the copper foil satisfies the condition of 2.5 μm or more, an electrolytic copper foil, a copper foil with a carrier, or a rolled copper foil may be used. And there is no special limitation regarding the thickness of copper foil.

粗化処理層: 本件出願に係る高周波信号伝送回路形成用表面処理銅箔の粗化処理層を構成する「酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状又は板状の微細凹凸」は、高周波基板に使用される低誘電率、低誘電正接の絶縁樹脂基材に対する密着性を良好とするアンカー効果を発揮する。しかし、従来の粗化処理した表面処理銅箔と異なり、本件出願に係る高周波信号伝送回路形成用表面処理銅箔の粗化処理層には、高周波信号が流れない。よって、本件出願に係る銅箔を用いれば、高周波信号の伝送損失に関して、粗化処理層を備えていない無粗化銅箔と同等の高周波特性を示す。即ち、導電特性に優れた銅箔に対し、ここでいう「酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状又は板状の微細凹凸」からなる粗化処理層備える表面処理銅箔は、高周波信号伝送回路形成材料として好適なものになる。なお、本件出願に係る高周波信号伝送回路形成用表面処理銅箔は、「銅箔の少なくとも絶縁樹脂基材と密着する側」に粗化処理層を備えていればよく、銅箔の両面に粗化処理層を備えた両面粗化処理銅箔であってもよい。 Roughening treatment layer: “Neutral or plate-like fine irregularities made of a copper composite compound containing copper oxide and cuprous oxide, constituting the roughening treatment layer of the surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application” "Exhibits an anchor effect that improves the adhesion to an insulating resin base material having a low dielectric constant and low dielectric loss tangent used for a high-frequency substrate. However, unlike the conventional roughened surface-treated copper foil, no high-frequency signal flows in the roughened layer of the surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application. Therefore, if the copper foil which concerns on this application is used, the high frequency characteristic equivalent to the non-roughened copper foil which is not equipped with the roughening process layer will be shown regarding the transmission loss of a high frequency signal. That is, the surface-treated copper foil provided with a roughening treatment layer composed of “a needle-like or plate-like fine irregularity made of a copper composite compound containing copper oxide and cuprous oxide” as opposed to a copper foil having excellent conductive properties. Becomes suitable as a high-frequency signal transmission circuit forming material. Note that the surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application only needs to have a roughened layer on “at least the side of the copper foil that is in close contact with the insulating resin substrate”, and roughened on both sides of the copper foil. It may be a double-sided roughened copper foil provided with a surface treatment layer.

次に、当該粗化処理層の微細凹凸を構成する「酸化銅及び亜酸化銅を含有する銅複合化合物」に関して述べる。「酸化銅及び亜酸化銅を含有する銅複合化合物」としているのは、酸化銅及び亜酸化銅以外の不純物を含む成分が含まれる場合があるからである。そして、当該粗化処理層は、図1に示す本件出願に係る高周波信号伝送回路形成用表面処理銅箔の断面観察から明らかなように、細い線状に観察される針状又は板状の銅複合化合物で構成された微細凹凸を有する。   Next, the “copper composite compound containing copper oxide and cuprous oxide” constituting the fine irregularities of the roughened layer will be described. The reason why the “copper composite compound containing copper oxide and cuprous oxide” is used is that a component containing impurities other than copper oxide and cuprous oxide may be contained. And the said roughening process layer is a needle-like or plate-like copper observed in the shape of a thin line so that it may become clear from cross-sectional observation of the surface treatment copper foil for high frequency signal transmission circuit formation concerning this application shown in FIG. It has fine irregularities composed of a composite compound.

そして、このときの「酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状又は板状の微細凹凸」の最大長さが500nm以下であることが好ましく、より好ましくは400nm以下、更に好ましくは300nm以下である。このような最大長さが500nm以下の「酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状又は板状の微細凹凸」は、微細なナノアンカー効果を発揮し、高周波信号伝送回路形成用表面処理銅箔と絶縁樹脂基材との良好な密着性を得ることができ、且つ、無粗化銅箔を用いた場合と同等の良好な回路形状を備えたファインピッチ回路の形成が可能になる。また、「酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状又は板状の微細凹凸」の最大長さが小さくなるほど、銅箔の表面から長く突出する凸状部が存在しなくなり、当該粗化処理層の表面に他の物体が接触しても、折れにくくなり、耐擦傷性の高い粗化処理層となる。従って、本件出願に係る高周波信号伝送回路形成用表面処理銅箔の粗化処理層からの粉落ちが生じにくく、表面の微細凹凸に損傷が生じにくくなる。   The maximum length of the “needle-like or plate-like fine irregularities made of a copper composite compound containing copper oxide and cuprous oxide” at this time is preferably 500 nm or less, more preferably 400 nm or less, still more preferably Is 300 nm or less. Such a maximum length of 500 nm or less “acicular or plate-like fine irregularities made of a copper composite compound containing copper oxide and cuprous oxide” exhibits a fine nano-anchor effect and forms a high-frequency signal transmission circuit. It is possible to obtain good adhesion between the surface treated copper foil and insulating resin base material and to form fine pitch circuits with the same good circuit shape as when using non-roughened copper foil. become. In addition, as the maximum length of the “needle-like or plate-like fine irregularities made of a copper composite compound containing copper oxide and cuprous oxide” becomes smaller, there is no convex portion protruding longer from the surface of the copper foil, Even if another object comes into contact with the surface of the roughened layer, the roughened layer is hardly broken and has a high scratch resistance. Therefore, the powder from the roughened layer of the surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application is less likely to fall off, and the fine irregularities on the surface are less likely to be damaged.

ここでいう「最大長さ」とは、図1から分かるように、当該高周波信号伝送回路形成用表面処理銅箔の断面において、線状に観察される銅箔表面側の基端から先端までの長さを測定したときの最大値をいう。この「最大長さ」が短くなるほど、銅箔の表面に対して、より微細な凹凸構造を付与できていることになり、且つ、粗化処理前の銅箔表面の形状を維持することができるため、粗化処理前の銅箔の表面粗さの変動を抑制できる。   As can be seen from FIG. 1, the “maximum length” referred to here is a cross-section of the surface-treated copper foil for forming a high-frequency signal transmission circuit, from the base end to the tip on the copper foil surface side observed in a linear shape. The maximum value when the length is measured. As this “maximum length” becomes shorter, a finer uneven structure can be imparted to the surface of the copper foil, and the shape of the copper foil surface before the roughening treatment can be maintained. Therefore, the fluctuation | variation of the surface roughness of the copper foil before a roughening process can be suppressed.

更に、本件出願に係る高周波信号伝送回路形成用表面処理銅箔の「酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状又は板状の微細凹凸」は、X線光電子分光分析法(X−ray Photoelectron Spectroscopy;以下、「XPS」と称する。)におけるCu(I)及びCu(II)の各ピーク面積の合計面積を100%としたとき、Cu(I)ピークの占有面積率が50%以上であることが好ましい。   Furthermore, the “needle-like or plate-like fine irregularities made of a copper composite compound containing copper oxide and cuprous oxide” of the surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application is an X-ray photoelectron spectroscopy ( X-ray Photoelectron Spectroscopy (hereinafter referred to as “XPS”)) When the total area of each peak area of Cu (I) and Cu (II) in 100% is 100%, the occupied area ratio of the Cu (I) peak is 50 % Or more is preferable.

まず、XPSによる「酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状又は板状の微細凹凸」の構成元素の分析方法について述べる。XPSにより粗化処理層の構成元素を分析すると、Cu(I)及びCu(II)の各ピークを分離検出できる。但し、Cu(I)及びCu(II)の各ピークを分離して検出した場合、大きなCu(I)ピークのショルダー部分に、Cu(0)ピークが重複して観測される場合がある。このようにCu(0)のピークが重複して観察された場合は、このショルダー部分を含めてCu(I)ピークとみなした。即ち、本件出願では、XPSを用いて当該微細凹凸の構成元素を分析し、Cu 2p 3/2の結合エネルギーに対応する932.4eVに現れるCu(I)、及び934.3eVに現れるCu(II)の光電子を検出して得られる各ピークを波形分離して、各成分のピーク面積からCu(I)ピークの占有面積率を特定する。本件出願においては、XPSの分析装置としてアルバック・ファイ株式会社製のQuantum2000(ビーム条件:40W、200μm径)を用い、解析ソフトウェアとして「MultiPack ver.6.1A」を用いて状態・半定量用ナロー測定を行う。   First, a method for analyzing constituent elements of “acicular or plate-like fine irregularities made of a copper composite compound containing copper oxide and cuprous oxide” by XPS will be described. When the constituent elements of the roughened layer are analyzed by XPS, each peak of Cu (I) and Cu (II) can be separated and detected. However, when the Cu (I) and Cu (II) peaks are separated and detected, the Cu (0) peak may be observed overlapping the shoulder portion of the large Cu (I) peak. Thus, when the peak of Cu (0) was observed in duplicate, it was considered as a Cu (I) peak including this shoulder part. That is, in this application, the constituent elements of the fine unevenness are analyzed using XPS, Cu (I) appearing at 932.4 eV corresponding to the binding energy of Cu 2p 3/2, and Cu (II appearing at 934.3 eV ) Is obtained by waveform separation, and the occupied area ratio of the Cu (I) peak is specified from the peak area of each component. In the present application, Quantum 2000 (beam condition: 40 W, 200 μm diameter) manufactured by ULVAC-PHI Co., Ltd. is used as an XPS analyzer, and “MultiPack ver. 6.1A” is used as analysis software. Measure.

以上のようにして得られたCu(I)ピークは、亜酸化銅(酸化第一銅:Cu2O)を構成する1価の銅に由来すると考えられる。そして、Cu(II)ピークは、酸化銅(酸化第二銅:CuO)を構成する2価の銅に由来すると考えられる。更に、Cu(0)ピークは、金属銅を構成する0価の銅に由来すると考えられる。従って、Cu(I)ピークの占有面積率が50%未満の場合には、当該微細凹凸における亜酸化銅の占有割合が、酸化銅の占有割合よりも小さい。酸化銅は、亜酸化銅と比較すると、エッチング液等の酸に対する溶解性が高い。従って、Cu(I)ピークの占有面積率が50%未満の場合には、当該高周波信号伝送回路形成用表面処理銅箔の粗化処理層側を絶縁樹脂基材に張り合わせ、エッチング法により回路形成を行った場合、エッチング液に粗化処理層が溶解し易く、回路と絶縁樹脂基材との間の密着性が低下する場合がある。この観点から、XPSにより当該微細凹凸の構成元素を分析したときの、Cu(I)ピークの占有面積率が70%以上であることがより好ましく、80%以上であることが更に好ましい。Cu(I)ピークの占有面積率が増加するほど、酸化銅よりもエッチング液等に対する耐酸溶解性の高い亜酸化銅の成分比が高くなる。従って、粗化処理層のエッチング液等に対する耐酸溶解性が向上し、回路形成時におけるエッチング液の差し込みを低減することが可能になり、絶縁樹脂基材と密着性の良好な回路形成ができる。一方、Cu(I)ピークの占有面積率の上限値は特に限定されるものではないが、99%以下とする。Cu(I)ピークの占有面積率が低くなるほど、絶縁樹脂基材に対して高周波信号伝送回路形成用表面処理銅箔の粗化処理面側を張り合わせたときの両者の密着性が向上する傾向にあるからである。従って、良好な密着性を得るためには、Cu(I)ピークの専有面積率は98%以下が好ましく、95%以下がより好ましい。なお、Cu(I)ピークの占有面積率は、Cu(I)/{Cu(I)+Cu(II)} ×100(%)の計算式で算出した。   The Cu (I) peak obtained as described above is considered to be derived from monovalent copper constituting cuprous oxide (cuprous oxide: Cu2O). And it is thought that a Cu (II) peak originates in the bivalent copper which comprises copper oxide (cupric oxide: CuO). Furthermore, it is considered that the Cu (0) peak is derived from zero-valent copper constituting metallic copper. Therefore, when the occupation area ratio of the Cu (I) peak is less than 50%, the occupation ratio of cuprous oxide in the fine irregularities is smaller than the occupation ratio of copper oxide. Copper oxide has higher solubility in acids such as an etchant than cuprous oxide. Therefore, when the occupied area ratio of the Cu (I) peak is less than 50%, the roughened layer side of the surface-treated copper foil for forming the high-frequency signal transmission circuit is bonded to the insulating resin substrate, and the circuit is formed by etching. When the process is performed, the roughening treatment layer is easily dissolved in the etching solution, and the adhesion between the circuit and the insulating resin base material may be lowered. From this viewpoint, the occupied area ratio of the Cu (I) peak when the constituent elements of the fine unevenness are analyzed by XPS is more preferably 70% or more, and further preferably 80% or more. As the occupation area ratio of the Cu (I) peak increases, the component ratio of cuprous oxide having higher acid solubility resistance to the etching solution or the like becomes higher than that of copper oxide. Accordingly, the acid solubility resistance of the roughened layer to the etching solution is improved, and the insertion of the etching solution at the time of circuit formation can be reduced, and a circuit having good adhesion to the insulating resin substrate can be formed. On the other hand, the upper limit value of the occupied area ratio of the Cu (I) peak is not particularly limited, but is 99% or less. The lower the occupied area ratio of the Cu (I) peak, the more the adhesiveness between the two is improved when the roughened surface side of the surface-treated copper foil for forming a high-frequency signal transmission circuit is bonded to the insulating resin substrate. Because there is. Therefore, in order to obtain good adhesion, the exclusive area ratio of the Cu (I) peak is preferably 98% or less, and more preferably 95% or less. In addition, the occupation area ratio of the Cu (I) peak was calculated by a calculation formula of Cu (I) / {Cu (I) + Cu (II)} × 100 (%).

以上述べた本件出願に係る粗化処理層は、一例として、次のような湿式法により形成できる。まず、溶液を用いた湿式法で銅箔の表面に酸化処理を施すことで、銅箔表面に酸化銅(酸化第二銅)を含有する銅化合物を形成する。その後、当該銅化合物を還元処理して酸化銅の一部を亜酸化銅(酸化第一銅)に転換させることにより、酸化銅及び亜酸化銅を含有する銅複合化合物からなる「針状又は板状の微細凹凸」を銅箔の表面に形成することができる。ここで、本件出願にいう「微細凹凸」自体は、銅箔の表面を湿式法で酸化処理した段階で、酸化銅を含有する銅化合物により形成される。そして、当該銅化合物を還元処理したときに、この銅化合物により形成された微細凹凸の形状をほぼ維持したまま、酸化銅の一部が亜酸化銅に転換されて、「酸化銅及び亜酸化銅を含有する銅複合化合物」が「微細凹凸」となる。このように銅箔の表面に湿式法で適正な酸化処理を施した後に、還元処理を施すことで、上述の「微細凹凸」の形成が可能となる。なお、「酸化銅及び亜酸化銅を含有する銅複合化合物」に金属銅が少量含有されていてもよい。   The roughening process layer which concerns on this application described above can be formed by the following wet methods as an example. First, a copper compound containing copper oxide (cupric oxide) is formed on the surface of the copper foil by oxidizing the surface of the copper foil by a wet method using a solution. Thereafter, the copper compound is reduced, and a part of the copper oxide is converted into cuprous oxide (cuprous oxide), thereby forming a “needle or plate comprising a copper composite compound containing copper oxide and cuprous oxide. Shaped fine irregularities "can be formed on the surface of the copper foil. Here, the “fine unevenness” itself referred to in the present application is formed of a copper compound containing copper oxide at the stage where the surface of the copper foil is oxidized by a wet method. And when the said copper compound was reduce | restored, a part of copper oxide was converted into cuprous oxide, maintaining the shape of the fine unevenness | corrugation formed with this copper compound substantially, "Copper oxide and cuprous oxide. The “copper composite compound containing” becomes “fine irregularities”. Thus, after performing the appropriate oxidation process by the wet method on the surface of copper foil, the above-mentioned "fine unevenness | corrugation" can be formed by performing a reduction process. A small amount of metallic copper may be contained in the “copper composite compound containing copper oxide and cuprous oxide”.

そして、上記湿式法によって粗化処理層を設けるには、水酸化ナトリウム溶液等のアルカリ溶液を用いることが好ましい。アルカリ溶液により、銅箔の表面を酸化することにより、銅箔の表面に針状又は板状の酸化銅を含有する銅化合物からなる微細凹凸を形成することができる。しかし、単純な組成のアルカリ溶液で銅箔表面に酸化処理を施すと、当該微細凹凸が過剰に成長するため、銅箔表面の酸化を適正に制御するための酸化抑制剤を含むアルカリ溶液を用いることが好ましい。   And in order to provide a roughening process layer by the said wet method, it is preferable to use alkaline solutions, such as a sodium hydroxide solution. By oxidizing the surface of the copper foil with an alkaline solution, fine irregularities made of a copper compound containing needle-like or plate-like copper oxide can be formed on the surface of the copper foil. However, when the copper foil surface is oxidized with an alkaline solution having a simple composition, the fine unevenness grows excessively, so an alkaline solution containing an oxidation inhibitor for properly controlling the oxidation of the copper foil surface is used. It is preferable.

このような酸化抑制剤として、アミノ系シランカップリング剤である、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン等を用いることができる。これらのアミノ系シランカップリング剤は、いずれもアルカリ性溶液に溶解可能であり、アルカリ性溶液中で安定であるため、銅箔の表面に吸着し、銅箔表面の酸化を精度良く制御する効果を発揮する。その結果、酸化銅の針状結晶の過剰な成長を抑制でき、最大長さが500nm以下の微細凹凸を備える粗化処理層を形成できる。   As such an oxidation inhibitor, amino-2-silane coupling agents such as N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane and N-2- (aminoethyl) -3-aminopropyltrimethoxysilane 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, etc. Can be used. All of these amino silane coupling agents can be dissolved in an alkaline solution and are stable in an alkaline solution. Therefore, the amino silane coupling agent is adsorbed on the surface of the copper foil and exhibits an effect of accurately controlling the oxidation of the copper foil surface. To do. As a result, excessive growth of copper oxide needle-like crystals can be suppressed, and a roughened layer having fine irregularities with a maximum length of 500 nm or less can be formed.

以上のように、アミノ系シランカップリング剤を含むアルカリ溶液を用いて、銅箔の表面に設けた微細凹凸は、その後、還元処理を施してもその形状がほぼ維持される。その結果、酸化銅及び亜酸化銅を含む銅複合化合物からなる針状又は板状の最大長さが500nm以下の微細凹凸を有する粗化処理層が安定的に得られる。なお、還元処理において、還元剤濃度、溶液pH、溶液温度等を調整することにより、粗化処理層を構成する微細凹凸の構成元素をXPSで定性分析したときに得られるCu(I)のピーク面積と、Cu(II)のピーク面積との合計面積に対して、Cu(I)のピークの占有面積率を適宜調整できる。また、上記方法で形成した粗化処理層の微細凹凸の構成元素をXPSにより分析すると、「−COOH」の存在が検出される場合がある。   As described above, the fine irregularities provided on the surface of the copper foil using the alkaline solution containing the amino-based silane coupling agent are substantially maintained even after the reduction treatment. As a result, a roughened layer having fine irregularities with a needle-like or plate-like maximum length of 500 nm or less made of a copper composite compound containing copper oxide and cuprous oxide can be stably obtained. In the reduction treatment, by adjusting the reducing agent concentration, solution pH, solution temperature, etc., the peak of Cu (I) obtained when XPS qualitatively analyzes the constituent elements of the fine irregularities constituting the roughening treatment layer. The occupied area ratio of the Cu (I) peak can be appropriately adjusted with respect to the total area of the area and the peak area of Cu (II). Further, when the constituent elements of the fine irregularities of the roughened layer formed by the above method are analyzed by XPS, the presence of “—COOH” may be detected.

上述のように、銅箔表面の酸化処理及び還元処理は、処理溶液を用いた湿式法により行うことができる。従って、処理溶液中に銅箔を浸漬する等の方法により、銅箔の両面に上記粗化処理層を簡易に形成することもできるため、多層プリント配線板の内層回路の形成に適した両面粗化処理銅箔を容易に得ることが可能となる。   As described above, the oxidation treatment and reduction treatment of the copper foil surface can be performed by a wet method using a treatment solution. Accordingly, the roughened layer can be easily formed on both sides of the copper foil by a method such as immersing the copper foil in the treatment solution. Therefore, the double-sided roughened layer suitable for forming the inner layer circuit of the multilayer printed wiring board can be used. It becomes possible to easily obtain a heat-treated copper foil.

その他の表面処理: 本件出願に係る高周波信号伝送回路形成用表面処理銅箔の場合、粗化処理層の特性を損なわない限り、いかなる表面処理を施しても構わない。例えば、上述の粗化処理層の表面に、シランカップリング剤処理層を設けることにより、プリント配線板に加工したときの耐吸湿劣化特性を改善することができる。このシランカップリング剤処理層は、シランカップリング剤としてオレフィン官能性シラン、エポキシ官能性シラン、ビニル官能性シラン、アクリル官能性シラン、アミノ官能性シラン及びメルカプト官能性シランのいずれかを使用して形成することが好ましい。これらのシランカップリング剤は、一般式 R−Si(OR’)nで表記される(ここで、R:アミノ基やビニル基などに代表される有機官能基、OR’:メトキシ基またはエトキシ基などに代表される加水分解基、n:2または3である。)。 Other surface treatment: In the case of the surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application, any surface treatment may be performed as long as the characteristics of the roughened layer are not impaired. For example, by providing a silane coupling agent treatment layer on the surface of the roughening treatment layer described above, it is possible to improve the moisture absorption resistance deterioration characteristics when processed into a printed wiring board. This silane coupling agent treatment layer uses any one of olefin functional silane, epoxy functional silane, vinyl functional silane, acrylic functional silane, amino functional silane and mercapto functional silane as the silane coupling agent. It is preferable to form. These silane coupling agents are represented by the general formula R—Si (OR ′) n (where R: an organic functional group represented by an amino group, a vinyl group, etc., OR ′: a methoxy group or an ethoxy group) And the like, n: 2 or 3.

使用可能なシランカップリング剤を、より具体的に示すと、プリント配線板用にプリプレグのガラスクロスに用いられると同様のカップリング剤を中心にビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、4−グリシジルブチルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−3−(4−(3−アミノプロポキシ)プトキシ)プロピル−3−アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、3−アクリロキシプロピルメトキシシラン、γ−メルカプトプロピルトリメトキシシラン等である。   More specifically, usable silane coupling agents include vinyltrimethoxysilane, vinylphenyltrimethoxylane, γ-, mainly used as a coupling agent used for glass cloth of prepreg for printed wiring boards. Methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N- 3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazole silane, triazine silane, 3-acryloxypropylmethoxysilane, γ-mercaptopropyltrimethoxysilane and the like.

ここに列挙したシランカップリング剤は、銅箔の絶縁樹脂基材と密着する側の表面に使用しても、後のエッチング工程及びプリント配線板となった後の特性に悪影響を与えないものである。このシランカップリング剤の中でいずれの種類を使用するかは、絶縁樹脂基材の種類、銅箔の使用方法等に応じて、適宜選択が可能である。そして、シランカップリング剤処理層の形成方法に関して、特段の限定は無く、浸漬法、シャワーリング法、噴霧法等を採用して、最も均一に粗化処理層とシランカップリング剤処理液とを接触させ、吸着できる方法であればよい。   Even if the silane coupling agents listed here are used on the surface of the copper foil that is in close contact with the insulating resin base material, they do not adversely affect the characteristics after the subsequent etching process and printed wiring board. is there. Which type is used in the silane coupling agent can be appropriately selected according to the type of the insulating resin base material, the method of using the copper foil, and the like. And there is no special limitation regarding the method of forming the silane coupling agent treatment layer, and the roughening treatment layer and the silane coupling agent treatment liquid are most uniformly applied by employing an immersion method, a showering method, a spraying method, or the like. Any method that can be brought into contact and adsorbed may be used.

2.高周波信号伝送プリント配線板製造用銅張積層板の形態
本件出願に係る高周波信号伝送プリント配線板製造用銅張積層板は、粗化処理層及び銅層を含む表面処理銅箔を積層した銅張積層板であって、当該表面処理銅箔は、粗化処理層が酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状又は板状の微細凹凸からなり、かつ、当該銅層は断面で観察したときの平均結晶粒径が2.5μm以上であることを特徴とする。ここで用いる表面処理銅箔は、上述の高周波信号伝送回路形成用表面処理銅箔を意味するものであり、この高周波信号伝送回路形成用表面処理銅箔と絶縁樹脂基材とを積層して得られるものである。そして、本件出願に係る高周波信号伝送プリント配線板製造用銅張積層板は、積層した表面処理銅箔の粗化処理層に不導体成分である「酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状又は板状の微細凹凸」が存在するため、絶縁樹脂基材と良好な密着性を確保しつつ、銅箔の粗化処理層の針状又は板状の微細凹凸には高周波信号が流れないため無粗化銅箔を用いたと同様の表皮効果を低減する効果が得られる。そして、本件出願に係る高周波信号伝送プリント配線板製造用銅張積層板を用いて形成した高周波信号伝送回路の場合、銅層に平均結晶粒径が2.5μm以上の低電気抵抗の結晶組織を備えるため、優れた高周波特性を示すことになる。なお、このときの絶縁樹脂基材に関して特段の限定は無く、リジッド基板用絶縁樹脂基材、フレキシブル基板用樹脂基材等のプリント配線板製造に使用可能なあらゆるものの使用が可能である。また、積層方法に関しても、プレス成形法、連続ラミネート法、キャスティング法等のあらゆる方法の使用が可能である。
2. Form of copper clad laminate for high frequency signal transmission printed wiring board manufacture Copper clad laminate for high frequency signal transmission printed wiring board manufacture according to the present application is a copper clad laminated with a surface-treated copper foil including a roughened layer and a copper layer. The surface-treated copper foil is a laminate, and the roughened layer is made of needle-like or plate-like fine irregularities made of a copper composite compound containing copper oxide and cuprous oxide, and the copper layer has a cross-section The average crystal grain size when observed with the above is 2.5 μm or more. The surface-treated copper foil used here means the above-mentioned surface-treated copper foil for forming a high-frequency signal transmission circuit, and is obtained by laminating the surface-treated copper foil for forming a high-frequency signal transmission circuit and an insulating resin base material. It is what And the copper clad laminated board for high frequency signal transmission printed wiring board manufacture which concerns on this application is "a copper compound compound containing a copper oxide and a cuprous oxide which is a non-conductor component in the roughening process layer of the laminated surface treatment copper foil. Therefore, high-frequency signals are present on the needle-like or plate-like fine irregularities of the roughened layer of the copper foil while ensuring good adhesion to the insulating resin substrate. Therefore, the effect of reducing the skin effect similar to the case of using the non-roughened copper foil is obtained. In the case of a high-frequency signal transmission circuit formed using the copper-clad laminate for manufacturing a high-frequency signal transmission printed wiring board according to the present application, a low electrical resistance crystal structure having an average crystal grain size of 2.5 μm or more is formed on the copper layer. Therefore, it exhibits excellent high frequency characteristics. In addition, there is no particular limitation regarding the insulating resin base material at this time, and any material that can be used for manufacturing a printed wiring board such as an insulating resin base material for a rigid substrate and a resin base material for a flexible substrate can be used. In addition, regarding the lamination method, any method such as a press molding method, a continuous laminating method, and a casting method can be used.

3.高周波信号伝送プリント配線板の形態
本件出願に係る高周波信号伝送プリント配線板は、粗化処理層及び銅層を含む高周波信号伝送回路を備えるプリント配線板であって、当該高周波信号伝送回路は、粗化処理層が酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状又は板状の微細凹凸からなり、かつ、当該銅層は断面で観察したときの平均結晶粒径が2.5μm以上であることを特徴とする。ここでいう「高周波信号伝送プリント配線板」は、上述の「高周波信号伝送プリント配線板製造用銅張積層板」を用いて、エッチング加工等のプリント配線板製造プロセスを経て得られるものである。この本件出願に係る高周波信号伝送プリント配線板の備える高周波信号伝送回路は、粗化処理層が不導体成分である「酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状又は板状の微細凹凸」を備えるため、表皮効果が発現するレベルの周波数の信号が流れても、粗化処理層に電流が流れず、平均結晶粒径が2.5μm以上の低電気抵抗の銅層の内部を流れるため伝送損失が少なくなる。
3. Form of high-frequency signal transmission printed wiring board The high-frequency signal transmission printed wiring board according to the present application is a printed wiring board including a high-frequency signal transmission circuit including a roughening treatment layer and a copper layer, and the high-frequency signal transmission circuit The treatment layer is composed of needle-like or plate-like fine irregularities made of a copper composite compound containing copper oxide and cuprous oxide, and the copper layer has an average crystal grain size of 2.5 μm or more when observed in cross section It is characterized by being. The “high-frequency signal transmission printed wiring board” here is obtained through a printed wiring board manufacturing process such as etching using the above-mentioned “copper-clad laminate for manufacturing a high-frequency signal transmission printed wiring board”. The high-frequency signal transmission circuit provided in the high-frequency signal transmission printed wiring board according to the present application is a needle-like or plate-like made of a copper composite compound containing copper oxide and cuprous oxide whose roughening layer is a non-conductive component. Because it has `` fine irregularities '', no current flows through the roughened layer even if a signal with a frequency at which the skin effect appears, and the inside of the low electrical resistance copper layer with an average crystal grain size of 2.5 μm or more The transmission loss is reduced.

銅箔: 実施例では、陰極として表面を#2000の研磨紙を用いて研磨を行ったチタン板電極を、陽極にはDSAを用いて、銅濃度80g/L、フリー硫酸濃度150g/Lに調整した硫酸酸性銅電解液を調製し、この硫酸酸性銅電解液1リットルに対し約3.0gの活性炭が20秒程度接触するように活性炭処理した後、液温50℃、電流密度100A/dm の条件で電解し、厚さ18μmの電解銅箔を製造した。表1における表面粗さの「電極面」とは電解銅箔の陰極と接していた面のことであり、「析出面」とは銅が析出した側の面のことである。この電解銅箔の表面粗さ(Ra)、光沢度、不純物濃度、銅純度の結果を表1に示す。以下に、評価方法に関して述べる。Copper foil: In the examples, a titanium plate electrode whose surface was polished with # 2000 polishing paper as the cathode and DSA as the anode was adjusted to a copper concentration of 80 g / L and a free sulfuric acid concentration of 150 g / L. After preparing an acid-sulfuric acid copper electrolytic solution and treating the activated carbon so that about 3.0 g of activated carbon is in contact with 1 liter of the acid-sulfuric acid copper electrolyte for about 20 seconds, the liquid temperature is 50 ° C., and the current density is 100 A / dm 2. Then, an electrolytic copper foil having a thickness of 18 μm was produced. The “electrode surface” of the surface roughness in Table 1 is the surface in contact with the cathode of the electrolytic copper foil, and the “deposition surface” is the surface on the side where copper is deposited. Table 1 shows the results of surface roughness (Ra), glossiness, impurity concentration, and copper purity of this electrolytic copper foil. The evaluation method will be described below.

[銅箔に関する評価方法]
光沢度: 日本電色工業株式会社製光沢計PG−1M型を用い、光沢度の測定方法であるJIS Z 8741−1997に準拠して測定した。
表面粗さ(Ra): 小坂研究所製の触針式表面粗さ計 SE3500(触針曲率半径:2μm)を用い、JIS B0601に準拠して測定した。
銅箔中の微量元素分析: 炭素および硫黄の含有量は、堀場製作所製EMIA−920V 炭素・硫黄分析装置を用いて分析した。そして、窒素の含有量は、堀場製作所製 EMGA−620 酸素・窒素分析装置を用いて分析した。また、銅箔中の塩素の含有量は、塩化銀比濁法により 日立ハイテクフィールディング製 U−3310 分光光度計を用いて分析した。
銅純度分析: JIS H1101に準拠して行った。
[Evaluation method for copper foil]
Glossiness: Using a gloss meter PG-1M manufactured by Nippon Denshoku Industries Co., Ltd., the glossiness was measured according to JIS Z 8741-1997, which is a method for measuring glossiness.
Surface roughness (Ra): Measured in accordance with JIS B0601, using a stylus type surface roughness meter SE3500 (stylus curvature radius: 2 μm) manufactured by Kosaka Laboratory.
Trace element analysis in copper foil: The carbon and sulfur contents were analyzed using an EMIA-920V carbon / sulfur analyzer manufactured by Horiba. The nitrogen content was analyzed using an EMGA-620 oxygen / nitrogen analyzer manufactured by Horiba. Moreover, the content of chlorine in the copper foil was analyzed by a silver chloride turbidimetric method using a U-3310 spectrophotometer manufactured by Hitachi High-Tech Fielding.
Copper purity analysis: Performed according to JIS H1101.

粗化処理層の形成: 上述の電解銅箔を、硫酸濃度が5質量%の硫酸系溶液に1分間浸漬した後、水洗を行った。そして、この酸洗処理の終了した電解銅箔を、水酸化ナトリウム水溶液に浸漬して、アルカリ脱脂処理を行い、水洗を行った。 Formation of roughening treatment layer: The above-mentioned electrolytic copper foil was immersed in a sulfuric acid solution having a sulfuric acid concentration of 5 mass% for 1 minute, and then washed with water. And the electrolytic copper foil which this pickling process was complete | finished was immersed in sodium hydroxide aqueous solution, the alkali degreasing process was performed, and the water washing was performed.

前記予備処理の終了した電解銅箔の電極面に対して、酸化処理を施した。酸化処理では、当該電解銅箔を、液温70℃、pH12、亜塩素酸濃度150g/L、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン濃度10g/Lを含む水酸化ナトリウム溶液に2分間浸漬して電解銅箔の表面に銅化合物からなる微細凹凸を形成した。このときの銅化合物の主成分は酸化銅である。   The electrode surface of the electrolytic copper foil that had been subjected to the preliminary treatment was subjected to an oxidation treatment. In the oxidation treatment, the electrolytic copper foil is treated with sodium hydroxide containing a liquid temperature of 70 ° C., pH 12, chlorous acid concentration of 150 g / L, and N-2- (aminoethyl) -3-aminopropyltrimethoxysilane concentration of 10 g / L. It was immersed in the solution for 2 minutes to form fine irregularities made of a copper compound on the surface of the electrolytic copper foil. The main component of the copper compound at this time is copper oxide.

次に、酸化処理の終了した電解銅箔に対して、還元処理を施した。還元処理では、酸化処理の終了した電解銅箔を、炭酸ナトリウムと水酸化ナトリウムを用いてpH=12に調整したジメチルアミンボラン濃度20g/Lの水溶液(室温)中に1分間浸漬して還元処理を行い、その後、水洗し、乾燥した。これらの工程により、電解銅箔の表面に上記酸化銅の一部を還元して亜酸化銅にすることにより、「酸化銅及び亜酸化銅を含む銅複合化合物」からなる最大長さ500nmの微細凹凸を有する粗化処理層を形成した。   Next, a reduction treatment was performed on the electrolytic copper foil that had undergone the oxidation treatment. In the reduction treatment, the electrolytic copper foil after the oxidation treatment is immersed in an aqueous solution (room temperature) having a dimethylamine borane concentration of 20 g / L adjusted to pH = 12 using sodium carbonate and sodium hydroxide for 1 minute. And then washed with water and dried. By these steps, a part of the copper oxide is reduced to the cuprous oxide by reducing a part of the copper oxide on the surface of the electrolytic copper foil, so that the maximum length of 500 nm composed of “copper composite compound containing copper oxide and cuprous oxide” can be obtained. A roughening treatment layer having irregularities was formed.

シランカップリング剤処理: 還元処理が完了すると、水洗後、シランカップリング剤処理液(イオン交換水を溶媒として、γ−グリシドキシプロピルトリメトキシシランを5g/L濃度含有させた水溶液)を、シャワーリング法で上記粗化処理後の電解銅箔の粗化処理面に吹き付け、シランカップリング剤の吸着を行った。そして、シランカップリングの吸着が終了すると、電熱器を用いて雰囲気温度120℃とした雰囲気中で、表面の水分を蒸発させ、当該粗化処理面にある−OH基とシランカップリング剤との縮合反応を促進させ、粗化処理層の表面にシランカップリング剤処理層を備えた本件出願に係る高周波信号伝送回路形成用表面処理銅箔を得た。 Silane coupling agent treatment: When the reduction treatment is completed, after washing with water, a silane coupling agent treatment liquid (an aqueous solution containing 5 g / L of γ-glycidoxypropyltrimethoxysilane using ion-exchanged water as a solvent) It sprayed on the roughening surface of the electrolytic copper foil after the said roughening process by the showering method, and adsorption | suction of the silane coupling agent was performed. And when adsorption | suction of silane coupling is complete | finished, the water | moisture content of the surface is evaporated in the atmosphere which made the atmospheric temperature 120 degreeC using the electric heater, and the -OH group and the silane coupling agent in the said roughening process surface of The condensation reaction was promoted to obtain a surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application, which was provided with a silane coupling agent treatment layer on the surface of the roughening treatment layer.

粗化処理面の定性分析結果: XPSを用いて、この粗化処理面の定性分析をすると、「酸化銅」、「亜酸化銅」の存在が明瞭に確認され、Cu(I)のピーク面積と、Cu(II)のピーク面積との合計面積に対する、Cu(I)のピークの占有面積率は95%であった。 Results of qualitative analysis of roughened surface: When XPS was used to perform a qualitative analysis of this roughened surface, the presence of “copper oxide” and “cuprous oxide” was clearly confirmed, and the peak area of Cu (I) And the occupied area ratio of the peak of Cu (I) with respect to the total area of the peak area of Cu (II) was 95%.

高周波特性測定用基板の作製: 当該高周波信号伝送回路形成用表面処理銅箔と、高周波用のプリプレグ(パナソニック製MEGTRON6)を用いて、当該高周波信号伝送回路形成用表面処理銅箔のシランカップリング剤処理した粗化処理面を当該プリプレグに当接させて、真空プレス機を使用して、温度190℃、プレス時間120分の条件で積層し、絶縁厚0.2mmの銅張積層板を得た。その後、当該銅張積層板にエッチング加工を施し、特性インピーダンスがシングルは50Ω、差動は100Ωになるようマイクロストリップラインを形成したプリント配線板である高周波特性測定用基板を得た。この高周波特性測定用基板に設けた高周波信号伝送回路は、銅層の平均結晶粒径が3.09μmであった。平均結晶粒径の測定は、以下のようにして行った。銅箔断面をセイコーインスツル株式会社製の収束イオンビーム加工観察装置(SIM2050)を用いて加工し、EBSD(Electron Backscatter Diffraction)法で結晶方位解析して、結晶粒界を検出し、この結晶粒界に囲まれた領域を結晶粒と定義し、当該領域の面積と同じ面積の円の径を各結晶粒の結晶粒径とする。そして、平均結晶粒径とは、所定の測定視野内に存在する各結晶粒の結晶粒径の平均値をいう。 Production of substrate for high-frequency signal measurement: Silane coupling agent for surface-treated copper foil for forming a high-frequency signal transmission circuit, using the surface-treated copper foil for forming a high-frequency signal transmission circuit and a high-frequency prepreg (MEGTRON 6 manufactured by Panasonic) The treated roughened surface was brought into contact with the prepreg and laminated using a vacuum press at a temperature of 190 ° C. and a pressing time of 120 minutes to obtain a copper-clad laminate having an insulation thickness of 0.2 mm. . Thereafter, the copper-clad laminate was etched to obtain a high-frequency characteristic measurement substrate which is a printed wiring board in which microstrip lines are formed so that the characteristic impedance is 50Ω for single and 100Ω for differential. In the high-frequency signal transmission circuit provided on this high-frequency characteristic measurement substrate, the average crystal grain size of the copper layer was 3.09 μm. The average crystal grain size was measured as follows. The copper foil cross section is processed using a focused ion beam processing and observation apparatus (SIM2050) manufactured by Seiko Instruments Inc., crystal orientation analysis is performed by an EBSD (Electron Backscatter Diffraction) method, and a grain boundary is detected. A region surrounded by the boundary is defined as a crystal grain, and the diameter of a circle having the same area as the area of the region is defined as the crystal grain size of each crystal grain. The average crystal grain size means an average value of crystal grain sizes of crystal grains existing within a predetermined measurement field.

高周波特性の測定: Agilent社製のベクターネットワークアナライザーVNA E5071Cを用いて、上述の高周波特性測定用基板の周波数20GHzまでの伝送損失を測定した。この結果は、後述する比較例との対比が可能なように図2及び図3に示す。 Measurement of high-frequency characteristics: Using a vector network analyzer VNA E5071C manufactured by Agilent, transmission loss up to a frequency of 20 GHz of the above-described high-frequency characteristics measurement substrate was measured. This result is shown in FIG. 2 and FIG. 3 so that the comparison with the comparative example mentioned later is possible.

比較例Comparative example

比較例では、実施例で用いた電解銅箔に代えて、銅濃度80g/L、フリー硫酸濃度250g/L、塩素濃度1.1ppm、ゼラチン2ppm含む硫酸酸性銅電解液を用いて、液温50℃、電流密度60A/dm の条件で電解し、厚さ18μmの銅箔を製造した。その他、実施例と同様にして、高周波特性測定用基板を得た。In the comparative example, instead of the electrolytic copper foil used in the example, an acidic copper electrolytic solution containing a copper concentration of 80 g / L, a free sulfuric acid concentration of 250 g / L, a chlorine concentration of 1.1 ppm and gelatin of 2 ppm was used. Electrolysis was performed at a temperature of 60 ° C./dm 2 and a copper foil having a thickness of 18 μm was produced. In addition, the high frequency characteristic measuring substrate was obtained in the same manner as in the example.

そして、この比較例1で得られた高周波特性測定用基板に形成した高周波信号伝送回路は、銅層の平均結晶粒径が0.73μmであった。また、高周波特性の測定結果を図2及び図3に示す。   The high frequency signal transmission circuit formed on the high frequency characteristic measurement substrate obtained in Comparative Example 1 had an average crystal grain size of the copper layer of 0.73 μm. Moreover, the measurement result of a high frequency characteristic is shown in FIG.2 and FIG.3.

[実施例と比較例との対比]
以下に、実施例と比較例との対比結果を、使用した銅箔の差異及び平均結晶粒径の差異が明瞭となるよう表1に示す。
[Contrast between Example and Comparative Example]
The results of comparison between the examples and the comparative examples are shown in Table 1 so that the difference in the used copper foil and the difference in the average crystal grain size become clear.

Figure 0006110581
Figure 0006110581

図2は、特性インピーダンスが50Ωとなるように設計したシングルのマイクロストリップラインを用いた伝送損失と信号の周波数との関係を示すものである。そして、この図2の上段は、周波数0GHz〜20GHzの範囲を示し、下段に周波数15GHz〜20GHzの範囲を拡大表示している。この図2において、周波数0GHz〜20GHzの全域において、比較例に比べて実施例の伝送損失が少なく、特に、周波数15GHz〜20GHzの範囲において実施例の伝送損失の少ないことが分かる。   FIG. 2 shows the relationship between transmission loss and signal frequency using a single microstrip line designed to have a characteristic impedance of 50Ω. And the upper stage of this FIG. 2 shows the range of frequency 0 GHz-20 GHz, and expands and displays the range of frequency 15 GHz-20 GHz in the lower stage. In FIG. 2, it can be seen that the transmission loss of the example is small in the entire frequency range of 0 GHz to 20 GHz as compared with the comparative example, and in particular, the transmission loss of the example is small in the frequency range of 15 GHz to 20 GHz.

図3は、特性インピーダンスが50Ωのシングルのマイクロストリップラインを、2本並列に配置して、差動が100Ωになるよう設計したマイクロストリップラインを用いた伝送損失と伝送周波数との関係を示すものである。そして、この図3の上段は、周波数0GHz〜20GHzの範囲を示し、下段に周波数15GHz〜20GHzの範囲を拡大表示している。この図3において、周波数0GHz〜20GHzの全域において、7GHzあたりから実施例の伝送損失が明らかに少なくなり始め、周波数15GHz〜20GHzの範囲においては、比較例に比べて、実施例の伝送損失が顕著に少なくなることが理解できる。そして、当該周波数が高くなるほど、比較例に比べ、実施例の伝送損失との差が広がる傾向が確認できる。   Fig. 3 shows the relationship between transmission loss and transmission frequency using a microstrip line designed so that the differential is 100Ω by arranging two single microstrip lines with a characteristic impedance of 50Ω in parallel. It is. And the upper stage of this FIG. 3 shows the range of frequency 0 GHz-20 GHz, and expands and displays the range of frequency 15 GHz-20 GHz in the lower stage. In FIG. 3, the transmission loss of the example clearly starts to decrease from around 7 GHz in the entire frequency range of 0 GHz to 20 GHz. In the range of the frequency of 15 GHz to 20 GHz, the transmission loss of the example is remarkable compared to the comparative example. It can be understood that it will be less. Then, as the frequency becomes higher, it can be confirmed that the difference from the transmission loss of the embodiment is widened as compared with the comparative example.

本件出願に係る高周波信号伝送回路形成用表面処理銅箔は、粗化処理層を構成する針状又は板状の微細凹凸が電気を通さない不導体成分である「酸化銅及び亜酸化銅」で構成され、銅箔が平均結晶粒径が2.5μm以上の低電気抵抗の結晶組織を備えている。従って、本件出願に係る高周波信号伝送回路形成用表面処理銅箔の粗化処理層は、電気信号を流さず、絶縁樹脂基材との密着性を向上させるための役割を果たし、良好な品質の高周波信号伝送プリント配線板製造用銅張積層板を提供できる。そして、このような高周波信号伝送プリント配線板製造用銅張積層板を用いて得られる高周波信号伝送プリント配線板が備える回路は、伝送信号の周波数が高く表皮効果が発現するレベルになっても、粗化処理層を構成する銅複合化合物が不導体であるため、粗化処理層には表皮効果による信号電流が流れず、信号電流は回路内部の平均結晶粒径が2.5μm以上の低電気抵抗の銅層のみを流れるため、設計どおりの信号伝達速度を得ることが可能になる。   The surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application is a “copper oxide and cuprous oxide” which is a non-conductive component in which the needle-like or plate-like fine irregularities constituting the roughening treatment layer do not conduct electricity. The copper foil has a low electrical resistance crystal structure having an average crystal grain size of 2.5 μm or more. Therefore, the roughened layer of the surface-treated copper foil for forming a high-frequency signal transmission circuit according to the present application does not flow an electrical signal, plays a role for improving the adhesion with the insulating resin base material, and has a good quality. A copper clad laminate for manufacturing a high-frequency signal transmission printed wiring board can be provided. And the circuit with the high-frequency signal transmission printed wiring board obtained by using such a copper-clad laminate for high-frequency signal transmission printed wiring board manufacture, even if the frequency of the transmission signal is high and the skin effect level is achieved, Since the copper composite compound constituting the roughening layer is a non-conductor, no signal current due to the skin effect flows through the roughening layer, and the signal current is a low electric current with an average crystal grain size of 2.5 μm or more inside the circuit. Since only the copper layer of the resistor flows, it is possible to obtain a signal transmission speed as designed.

Claims (7)

銅箔の表面に粗化処理層を備える表面処理銅箔であって、
当該粗化処理層は酸化銅及び亜酸化銅を含有し不導体の銅複合化合物からなる針状又は板状の微細凹凸からなり、かつ、
当該銅箔は断面で観察したときの平均結晶粒径が2.5μm以上であることを特徴とする高周波信号伝送回路形成用表面処理銅箔。
A surface-treated copper foil having a roughened layer on the surface of the copper foil,
The roughening treatment layer is composed of needle-like or plate-like fine irregularities containing copper oxide and cuprous oxide and made of a non-conductive copper composite compound, and
A surface-treated copper foil for forming a high-frequency signal transmission circuit, wherein the copper foil has an average crystal grain size of 2.5 μm or more when observed in a cross section.
前記銅箔の粗化処理層を設ける表面は、Ra≦0.3μmである請求項1に記載の高周波信号伝送回路形成用表面処理銅箔。   The surface-treated copper foil for forming a high-frequency signal transmission circuit according to claim 1, wherein the surface on which the roughened layer of the copper foil is provided satisfies Ra ≦ 0.3 μm. 前記粗化処理層を構成する針状又は板状の微細凹凸は、最大長さが500nm以下である請求項1又は請求項2に記載の高周波信号伝送回路形成用表面処理銅箔。   3. The surface-treated copper foil for forming a high-frequency signal transmission circuit according to claim 1, wherein a maximum length of the needle-like or plate-like fine irregularities constituting the roughening treatment layer is 500 nm or less. 前記酸化銅及び亜酸化銅を含有する銅複合化合物は、XPS分析におけるCu(I)及びCu(II)の各ピーク面積の合計面積を100%としたとき、Cu(I)ピークの占有面積率が50%以上である請求項1〜請求項3のいずれかに記載の高周波信号伝送回路形成用表面処理銅箔。   The copper composite compound containing copper oxide and cuprous oxide has an occupied area ratio of Cu (I) peak when the total area of each peak area of Cu (I) and Cu (II) in XPS analysis is 100%. The surface-treated copper foil for forming a high-frequency signal transmission circuit according to any one of claims 1 to 3, wherein the surface-treated copper foil is 50% or more. 前記銅箔は、銅純度が99.8質量%以上である請求項1〜請求項4のいずれかに記載の高周波信号伝送回路形成用表面処理銅箔。   5. The surface-treated copper foil for forming a high-frequency signal transmission circuit according to claim 1, wherein the copper foil has a copper purity of 99.8% by mass or more. 粗化処理層及び銅層を含む表面処理銅箔を積層した銅張積層板であって、
当該表面処理銅箔は、粗化処理層が酸化銅及び亜酸化銅を含有し不導体の銅複合化合物からなる針状又は板状の微細凹凸からなり、かつ、当該銅層は断面で観察したときの平均結晶粒径が2.5μm以上であることを特徴とする高周波信号伝送プリント配線板製造用銅張積層板。
A copper clad laminate in which a surface-treated copper foil including a roughened layer and a copper layer is laminated,
The surface-treated copper foil is composed of needle-like or plate-like fine irregularities in which the roughened layer contains copper oxide and cuprous oxide and is made of a non-conductive copper composite compound, and the copper layer was observed in cross section. A copper clad laminate for producing a high-frequency signal transmission printed wiring board, wherein the average crystal grain size is 2.5 μm or more.
粗化処理層及び銅層を含む高周波信号伝送回路を備えるプリント配線板であって、
当該高周波信号伝送回路は、粗化処理層が酸化銅及び亜酸化銅を含有し不導体の銅複合化合物からなる針状又は板状の微細凹凸からなり、かつ、当該銅層は断面で観察したときの平均結晶粒径が2.5μm以上であることを特徴とする高周波信号伝送プリント配線板。
A printed wiring board including a high-frequency signal transmission circuit including a roughened layer and a copper layer,
In the high-frequency signal transmission circuit, the roughening layer is composed of needle-like or plate-like fine irregularities made of a non-conductive copper composite compound containing copper oxide and cuprous oxide, and the copper layer was observed in cross section A high-frequency signal transmission printed wiring board, wherein the average crystal grain size is 2.5 μm or more.
JP2016562598A 2014-12-05 2015-12-04 Surface-treated copper foil, copper-clad laminate and printed wiring board for high-frequency signal transmission circuit formation Active JP6110581B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014247460 2014-12-05
JP2014247460 2014-12-05
PCT/JP2015/084186 WO2016088884A1 (en) 2014-12-05 2015-12-04 Surface-treated copper foil for forming high frequency signal transmission circuit, copper clad laminate board and printed wiring board

Publications (2)

Publication Number Publication Date
JP6110581B2 true JP6110581B2 (en) 2017-04-05
JPWO2016088884A1 JPWO2016088884A1 (en) 2017-04-27

Family

ID=56091819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016562598A Active JP6110581B2 (en) 2014-12-05 2015-12-04 Surface-treated copper foil, copper-clad laminate and printed wiring board for high-frequency signal transmission circuit formation

Country Status (5)

Country Link
JP (1) JP6110581B2 (en)
KR (1) KR101931895B1 (en)
CN (1) CN107109663B (en)
TW (1) TWI611738B (en)
WO (1) WO2016088884A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187558A1 (en) * 2018-03-30 2019-10-03 住友大阪セメント株式会社 Optical waveguide element
US11770904B2 (en) 2019-02-04 2023-09-26 Panasonic Intellectual Property Management Co., Ltd. Surface-treated copper foil, and copper-clad laminate plate, resin-attached copper foil and circuit board each using same
US11866536B2 (en) 2019-02-04 2024-01-09 Panasonic Intellectual Property Management Co., Ltd. Copper-clad laminate plate, resin-attached copper foil, and circuit board using same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6832581B2 (en) * 2016-07-15 2021-02-24 ナミックス株式会社 Manufacturing method of copper foil used for printed wiring boards
JP7013003B2 (en) * 2017-11-10 2022-01-31 ナミックス株式会社 Objects with a roughened copper surface
JP7456578B2 (en) * 2019-05-09 2024-03-27 ナミックス株式会社 Copper surface processing equipment
CN110029336B (en) * 2019-05-24 2021-05-14 电子科技大学 Copper surface treatment liquid for manufacturing multilayer printed circuit board and treatment method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916154B2 (en) * 2005-10-12 2012-04-11 Jx日鉱日石金属株式会社 Copper or copper alloy foil for circuit
CN102884660A (en) * 2010-03-01 2013-01-16 古河电气工业株式会社 Surface treatment method for copper foil, surface treated copper foil and copper foil for negative electrode collector of lithium ion secondary battery
JP5901066B2 (en) * 2012-04-27 2016-04-06 三井金属鉱業株式会社 Resin composition, metal foil with resin layer, metal-clad laminate and printed wiring board
CN107881505A (en) * 2013-02-14 2018-04-06 三井金属矿业株式会社 Surface treatment copper foil and the copper clad laminate obtained with surface treatment copper foil
KR101920976B1 (en) * 2013-09-20 2018-11-21 미쓰이금속광업주식회사 Copper foil, copper foil with carrier foil, and copper-clad laminate
TWI579137B (en) * 2014-01-27 2017-04-21 Mitsui Mining & Smelting Co Coarse copper foil, copper clad laminate and printed circuit board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187558A1 (en) * 2018-03-30 2019-10-03 住友大阪セメント株式会社 Optical waveguide element
JP2019179122A (en) * 2018-03-30 2019-10-17 住友大阪セメント株式会社 Optical waveguide element
US11327347B2 (en) 2018-03-30 2022-05-10 Sumitomo Osaka Cement Co., Ltd. Optical waveguide element
JP7135384B2 (en) 2018-03-30 2022-09-13 住友大阪セメント株式会社 optical waveguide element
US11770904B2 (en) 2019-02-04 2023-09-26 Panasonic Intellectual Property Management Co., Ltd. Surface-treated copper foil, and copper-clad laminate plate, resin-attached copper foil and circuit board each using same
US11866536B2 (en) 2019-02-04 2024-01-09 Panasonic Intellectual Property Management Co., Ltd. Copper-clad laminate plate, resin-attached copper foil, and circuit board using same

Also Published As

Publication number Publication date
CN107109663A (en) 2017-08-29
CN107109663B (en) 2020-03-10
KR101931895B1 (en) 2018-12-21
TW201640964A (en) 2016-11-16
TWI611738B (en) 2018-01-11
WO2016088884A1 (en) 2016-06-09
KR20170078798A (en) 2017-07-07
JPWO2016088884A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6110581B2 (en) Surface-treated copper foil, copper-clad laminate and printed wiring board for high-frequency signal transmission circuit formation
JP6297124B2 (en) Copper foil, copper foil with carrier foil and copper clad laminate
JP6342078B2 (en) Roughening copper foil, copper clad laminate and printed wiring board
JP5129642B2 (en) Surface treated copper foil, copper clad laminate obtained using the surface treated copper foil, and printed wiring board obtained using the copper clad laminate
TWI627307B (en) Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
TWI434965B (en) A roughening method for copper foil, and a copper foil for a printed wiring board which is obtained by the roughening method
JP5871426B2 (en) Surface treated copper foil for high frequency transmission, laminated plate for high frequency transmission and printed wiring board for high frequency transmission
US20120285734A1 (en) Roughened copper foil, method for producing same, copper clad laminated board, and printed circuit board
KR101998923B1 (en) Treated copper foil for low dielectric resin substrate, and copper-clad laminate and printed writing board using the same
WO2021193246A1 (en) Roughened copper foil, copper-cladded laminate board, and printed wiring board
WO2013187420A1 (en) Surface-treated copper foil and laminated sheet, printed wiring board, and electronic device using same, as well as method for producing printed wiring board
JP4296250B2 (en) Copper foil for high frequency circuit and manufacturing method thereof
WO2022176648A1 (en) Surface-treated copper foil
TWI647096B (en) Surface-treated copper foil and method of manufacturing the same
WO2021131359A1 (en) Surface-treated copper foil and method for manufacturing same
JP5443157B2 (en) High frequency copper foil, copper clad laminate using the same, and method for producing the same
TWI808700B (en) Coarse treatment of copper foil, copper foil laminates and printed wiring boards
JP6827083B2 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2022050001A1 (en) Copper foil and laminate, and manufacturing methods therefor
WO2022209990A1 (en) Roughened copper foil, copper-clad laminate and printed wiring board
KR20230095677A (en) Surface-treated copper foil with heat resistance, copper clad laminate comprising the same, and printed wiring board comprising the same
TWM560998U (en) Copper foil and circuit board assembly for high frequency signal transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161012

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161012

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170309

R150 Certificate of patent or registration of utility model

Ref document number: 6110581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250