WO2020224701A1 - Stator für eine elektrische maschine - Google Patents

Stator für eine elektrische maschine Download PDF

Info

Publication number
WO2020224701A1
WO2020224701A1 PCT/DE2020/100310 DE2020100310W WO2020224701A1 WO 2020224701 A1 WO2020224701 A1 WO 2020224701A1 DE 2020100310 W DE2020100310 W DE 2020100310W WO 2020224701 A1 WO2020224701 A1 WO 2020224701A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
temperature sensor
stator
conductors
ring
Prior art date
Application number
PCT/DE2020/100310
Other languages
English (en)
French (fr)
Inventor
Andreas Bexel
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to US17/608,762 priority Critical patent/US20220278591A1/en
Priority to CN202080033894.8A priority patent/CN113812073A/zh
Priority to EP20722454.4A priority patent/EP3966916A1/de
Publication of WO2020224701A1 publication Critical patent/WO2020224701A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/021Particular circuit arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/09Machines characterised by wiring elements other than wires, e.g. bus rings, for connecting the winding terminations

Definitions

  • the invention relates to a stator for an electrical machine, with a winding comprising a plurality of conductors assigned to one or more phases, which are interconnected.
  • Electrical machines comprising a rotor and a stator are used in different areas of application.
  • the use of electrical machines for electric hybrid vehicles and electric vehicles or for hub drives is only mentioned as an example. If such an electrical machine is used as a drive machine, it is mostly designed as an internal rotor, which means that the stator surrounds the internal rotor. A wandering magnetic field is generated via the stator, which causes the rotor to rotate.
  • the stator has a winding consisting of a multiplicity of conductors, the conductors being assigned to one or usually several phases.
  • circumferential conductors To form quasi-meandering, circumferential conductors, they are to be connected accordingly at their ends, which is usually done by welding the conductor ends that are adjacent to one another.
  • the conductor ends converge at one point or one winding side in the form of a so-called star, where they are connected to one another.
  • This area also includes the connection of the individual phases to an external power supply, often also called a high-voltage terminal, which is used to generate power. tion of the magnetic field is used, which is often very complicated to implement for reasons of space.
  • a temperature sensor usually an NTC or PTC resistance element
  • the thermal coupling of this temperature sensor with the winding turns out to be difficult, since the winding is wound very tightly or is fitted with pieces so that the temperature sensor cannot be inserted into the winding or inserted between adjacent wires. Therefore, mostly temperature sensors with an outer protective cover, in particular a plastic cover such as a shrink tube, are used, which protective cover completely surrounds the sensor head and a connection conductor at least over part of its length, the end section of the plastic cover on the sensor head being closed.
  • the temperature sensor usually a two-pole sensor, also contains a cable that is connected to the power electronics in a suitable manner. The cable often has to bridge a long way from the sensor to the power electronics, since a suitable connection conductor to which the temperature sensor can be connected at all is spaced relatively far from the power electronics.
  • the invention is based on the problem of specifying a stator that is improved in comparison and has the most compact structure possible.
  • a stator of the type mentioned inven tion provided that the ends of at least part of the conductor on the inner circumference and / or on the outer circumference of the winding protrude axially or radially over the winding, with a connection ring axially or radially on the Winding is set to which the conductors are connected, and wherein at least one temperature sensor in thermal contact with the winding is arranged on the interconnection ring.
  • the actual conductor connection and the arrangement of the temperature sensor are integrated into a common structural unit, namely in a connection ring that is axially frontal or radially inside or outside is placed on the winding, and which serves the conductor connection, but at the same time the temperature sensor is arranged, which is thermally coupled to the winding and is preferably axially, radially or tangentially on the winding.
  • the interconnection ring itself makes it possible to separate the actual conductor interconnection, i.e. the interconnection of the individual conductors to form the corresponding phase-specific meander structures, and the interconnection for coupling with the power supply via a high-voltage terminal, with the interconnection virtually radially inward and the Connection to the power supply can be provided radially on the outside, for example if the ends of at least two conductors assigned to one phase protrude radially or axially outward and are connected to a power connection located radially outside the winding.
  • the interconnection ring that is, a conductor ring that is placed separately on the winding and placed axially or radially on the turn, is used for the actual conductor connection.
  • This interconnection ring engages in the area of axially or radially protruding conductor ends on the inner circumference and / or on the outer circumference of the winding, e.g. when placed axially between the area of the inner and outer circumference of the winding, conductor ends protruding axially over the windings.
  • the conductor ends are the individual conductor sections, unless they are on other, z. B. are further connected to each other in the radial planes lying, assigned.
  • the conductor ends are connected to the interconnection ring, usually welded to it, so that the corresponding phase-specific Lei terstructures are generated via the interconnection ring.
  • the temperature sensor is also connected to this interconnection ring, that is to say integrated on the ring, so that a common structural unit results, which is used on the one hand for the conductor connection and on the other hand for temperature detection.
  • the temperature sensor is also positioned at the same time and brought into thermal contact with the winding.
  • the connection ring is placed axially, the temperature sensor also rests axially on the winding; with a radial arrangement of the connection ring, it would sit radially.
  • the inventive, combined assembly of interconnection ring including temperature sensor allows the construction of a very compact stator while ver simplified assembly. Due to the quasi-nested, z. B. axial and radial arrangement of interconnection ring and power supply terminal results in a very compact, space-saving structure. In addition, assembly is also simplified, since the conductors or wires to be connected via the interconnection ring only have to be cut to length and brought into the appropriate position when the winding cage is plugged together in order to be connected to the corresponding connection terminals of the interconnection ring, which are of course positioned accordingly . Both the cutting to length and the assembling can take place in an automated assembly process, as can of course also be compensated for due to the simple connec tion of conductor ends and connection ring. This is not least due to the fact that the interconnection ring and the power supply or the HV terminal are two separate assemblies that are connected to the stator and then also to the finished electrical machine in different process steps.
  • connection ring At the same time as the connection ring is put on, however, the temperature sensor is also installed and thermally coupled, which means that no additional, separate installation steps are required for sensor installation. Rather, If the connection ring is set and assembled automatically, the temperature sensor assembly is also automated, which simplifies the entire assembly process. In addition, due to the integration of the temperature sensor in the interconnection ring, a very compact design is possible, since no separate lines and the like are required for the electrical connection of the temperature sensor, since the line connection to the power electronics can also be routed through the interconnection ring.
  • connection ring itself expediently has a housing in which a plurality of separate line bridges are arranged, the temperature sensor being arranged in or on the housing and protruding towards the winding.
  • the integrated structural unit thus has a housing that closes it off from the outside, which makes it possible to completely prefabricate the structural unit and to assemble it as a compact housing component.
  • several cable bridges which are stable metal sheets that are geometrically shaped so that they reach the conductor ends to be connected, are grouped to form the corresponding circuit ring and allow easy bridging of corresponding distances both in circumferential and in Radial direction. These cable bridges, like the individual conductors, are of course insulated from one another.
  • the temperature sensor is arranged in or on the housing in such a way that it protrudes from or on the housing towards the winding.
  • the housing thus offers a simple, standardized interface for positioning and mounting the temperature sensor, so that it is ensured that the temperature sensor is always positioned in a way that enables reliable thermal contact with the winding.
  • the housing in which the bridges and on which the temperature sensor is arranged preferably has corresponding radial openings for the protruding connections of the individual conductor bridges that emerge here, and one or more, corresponding number of temperature sensors to be mounted, axial openings through which the temperature sensor or sensors, of which several can of course also be provided, protrude from the housing and protrude towards the winding, or through which the connecting lines of the temperature sensors arranged on the outside of the housing run.
  • This configuration is with an axial placement of the Connection ring useful.
  • connection ring If the connection ring is placed radially, the openings and the protruding conductor bridge sections can project axially, while the openings for the temperature sensors are aligned radially so that the temperature sensors rest radially on the outer circumference of the winding.
  • the housing is preferably a plastic housing, which enables simple manufacture.
  • the temperature sensor is spring-loaded against the winding via an elastic element.
  • This elastic element and the resilience ensure that the tem perature sensor is pressed firmly against the winding, on the one hand, and is therefore brought into firm thermal contact.
  • any tolerances between the interconnection ring or the housing and the winding surface can also be compensated for.
  • the temperature sensor can also be arranged in a fixed position, ie not flexibly on the housing via an elastic cal element, if it is ensured that it comes into defined thermal contact with the contact surface of the winding.
  • a plastic component in particular a silicone or elastomer component
  • a spring element can also be provided.
  • the elastic element can also have a metal element, in particular a copper core, which is thermally coupled to the temperature sensor so that the metal element is practically in contact with the winding and thermally with the temperature sensor, which is then virtually indirectly coupled to the winding , connected is. This enables the temperature to be sent more directly and better to the temperature sensor or the so-called "sensor bead".
  • the temperature sensor and / or the metal element is, of course, both embedded in the plastic component, that is to say, for example, injected or poured into the silicone or elastomer component.
  • This results in a compact temperature sensor component that has flexibility or spring properties provides so that the embedded temperature sensor, which is designed for example in the form of a sensor bead and for example protrudes slightly from the plastic material, can be spring-loaded accordingly.
  • the metal element for example in the form of one or more suitable metal strips or the like, is also embedded, this joint embedding can bring it into extensive thermal contact with the adjacent winding, that is to say that a larger area Temperature sensor component results.
  • the temperature sensor itself is preferably a thermocouple, e.g. B. an NTC or a PTC sensor. While it is sufficient to provide only one temperature sensor on the interconnection ring, it is of course also conceivable to arrange several temperature sensors or temperature sensor component distributed on the interconnection ring.
  • the invention also relates to an electrical machine to include a stator of the type described above.
  • FIG. 1 shows a basic illustration in the form of a partial view of a stator according to the invention
  • Figure 2 is a partial view of the interconnection ring
  • FIG. 3 shows a basic representation of various line bridges of the connection ring from FIG. 2 together with two temperature sensor components
  • FIG. 4 shows an enlarged basic illustration in perspective view of a temperature sensor component
  • Figure 5 is a perspective view of the actual temperature sensor
  • FIG. 6 shows a partial view of the stator with the connecting ring attached and the temperature sensor component in thermal contact.
  • FIG. 1 shows, in the form of a partial view, a basic illustration of a stator 1 according to the invention of an electrical machine, with a winding 2 comprising a plurality of conductors 3, which are assigned to three separate phases in the example shown. More or fewer phases can also be provided.
  • Each conductor 3 is designed as a U-shaped bracket, with a large number of such U-shaped Lei ter, often also called hairpins, are plugged together to form the winding 2, which can also be referred to as a winding basket.
  • the plurality of conductors 3 define different radial planes R, as shown in FIG.
  • the conductors 3 extend, depending on the winding scheme, from one radial plane to another radial plane, for example an adjacent radial plane, in the area in which they are connected to the conductor ends of corresponding adjacent conductors continuing the phase conductor.
  • the conductors are guided or bent and laid in such a way that corresponding recesses 4 result, which extend radially so that corresponding
  • Stator teeth 5 engage in these recesses 4 or the corresponding conductors are wound between the corresponding grooves of the stator teeth 5.
  • the basic structure of such a stator or a winding 2 wound from the separate brackets described is basically known.
  • the ends 6 of the conductors 3 protrude axially, as long as the ends 6 end or are positioned at the inner circumference and the outer circumference of the annular winding 2, that is, they protrude axially from the winding 2.
  • These ends are associated with individual conductors, which in turn are assigned to different phases, which is why the conductor ends are to be connected according to the routing diagram of the conductor 3.
  • a connection ring 7 is used for this, which is placed axially on the end face of the winding 2 and is arranged between the conductor ends 6 or engages between them.
  • the interconnection ring 7 comprises, as will be discussed below, a plurality of corresponding power bridges and connection sections 8, which protrude to the side from the housing 9 of the interconnection ring 7 and after inserting the interconnection ring 7 between the conductor ends 6 in the exact position next to the corresponding one Conductor end 6 are positioned with which they are to be connected.
  • the connection is made e.g. B. by simple welding, so that all conductors 3 are correctly and phase-specifically connected to each other when they are connected. Other connection methods are also conceivable.
  • a power supply 14 is provided, which is arranged radially next to the winding 2 in the area of its axial end.
  • This power supply 14, also called HV terminal, comprises a housing 10 in which corresponding busbars 11 are arranged, which ra gene with their connection terminals 12 from the housing.
  • connection terminals 12 are also provided in the example shown.
  • connection terminal 12 is to be connected to one phase of the winding 2. This is implemented in a simple manner in that two conductor ends 6a per phase are guided radially outward or are bent, as FIG. 1 clearly shows.
  • the at the arranged on the outer circumference of the winding 2 conductor ends 6a are relatively short and can be bent directly outwards, while the two conductor ends 6a arranged on the réelleum are longer and the interconnection ring 7 overgrei fen. They run above the connection terminals 12, so that a simple welded connection for contacting is possible there as well.
  • the connection to the power supply 14 is only made when the conductors 3 are interconnected via the interconnection ring 7 miteinan.
  • FIG. 2 shows a partial view of the interconnection ring 7 from FIG. 1.
  • the housing 9 is shown, which is accordingly in several parts and also made a radial encapsulation light. It is preferably made of plastic. It can be seen that the corresponding connection sections 8, which are assigned under different phases, protrude from the housing 9 through corresponding openings 15. As already described, the individual connection sections are assigned to different phases, i.e. they connect different conductor ends. In the example shown, two temperature sensor components 16, which are used to detect the winding temperature, are also arranged or integrated on the connection ring 7. The temperature sensor components 16 are arranged in or on the housing and are received in corresponding openings 15 of the housing 9, through which they protrude axially in the example shown, or through which the connection lines are guided when the temperature sensor components 16 are arranged on the outside.
  • the temperature sensor components 16 (instead of the two temperature sensor components shown, only one temperature sensor component 16 or more than two temperature sensor components 16 can be provided) are arranged on the housing 9 together with the line bridges 13, resulting in a combined structural unit which, on the one hand, is the Conductor interconnection, on the other hand, serves to record the temperature.
  • the Conductor interconnection serves to record the temperature.
  • FIG. 3 shows various separate line bridges 13 in the form of a schematic diagram, with six line bridges 13 being shown in the example shown, which are arranged axially and radially offset from one another.
  • the corresponding connection sections 8 are formed, which in their entirety form a corresponding star distributor.
  • Corresponding circumferentially offset conductor ends can be connected accordingly on the inner and outer circumference via the line bridges 13 extending in the circumferential direction, so that the corresponding meander structures of the individual phase conductors are formed or the like.
  • the two temperature sensor components 16 which are arranged at suitable positions where there is appropriate space for integration between the line bridges 13.
  • the arrangement of the line bridges 13 shown corresponds to that as received in the housing 9 according to FIG.
  • FIG 4 shows in the form of a perspective schematic representation of a temperature sensor component 16.
  • This includes a temperature sensor 17 shown in Figure 5 with the actual NTC or PTC sensor 18, often also called sensor bead, and two signal lines 19, via which the temperature sensor component 16 with the to the connection ring 7 external power electronics is connected.
  • the corresponding signal lines 19 are led through the connection ring 7 or the housing 9 to the corresponding connections of the power electronics.
  • the temperature sensor 17 is embedded in an elastic element 20, preferably an elastic plastic component made of silicone or an elastomer, as FIG. 4 shows.
  • a metal element 21 or a metal core which is in thermal contact with the sensor element 17 and which metal element 21 can be used to increase the contact area to the actual winding 2, can also be embedded in this elastic element 20.
  • the metal element would be exposed on the flat underside 22, so that it would come into thermal contact with the winding 2 immediately when the connection ring 7 is mounted.
  • such a metal element 21 is optional.
  • the elastic element 20 represents a pretensioning means by means of which the temperature sensor 17 is spring-loaded against the winding surface, that is to say is pressed against it, the elastic element 20 being able to be counter-supported on the housing 9. This ensures that even if the distance between the lower side of the housing and the upper side of the winding varies slightly, the temperature sensor 17 is always in thermal contact with the winding surface.
  • the elastic element 20 therefore represents a compensation element.
  • FIG. 6 shows a partial view of the stator 1 according to the invention and the winding 2 as well as the connection ring 7.
  • the temperature sensor component 16 is clearly arranged on the underside 23 of the housing 9 or supported there.
  • the signal lines 19 are led through the opening 15 into the interior of the housing.
  • the temperature sensor component 16 is pressed with its underside 22 against the winding 2, so that the temperature sensor 17 is in thermal contact with the winding 2 and can therefore detect its temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)

Abstract

Stator für eine elektrische Maschine, mit einer Wicklung (2) umfassend eine Mehrzahl an einer oder mehreren Phasen zugeordneten Leitern (3), die untereinander verschaltet sind, wobei die Enden (6) zumindest eines Teils der Leiter (3) am Innenumfang und/oder am Außenumfang der Wicklung (2) axial oder radial über die Wicklung (2) hervorstehen, wobei ein Verschaltungsring (7) axial oder radial auf die Wicklung (2) aufgesetzt ist, an welchem die Leiter (3) angeschlossen sind, und wobei am Verschaltungsring (7) wenigstens ein in thermischem Kontakt mit der Wicklung (2) stehender Temperatursensor (16) angeordnet ist.

Description

Stator für eine elektrische Maschine
Die Erfindung betrifft einen Stator für eine elektrische Maschine, mit einer Wicklung umfassend eine Mehrzahl an einer oder mehreren Phasen zugeordneten Leitern, die untereinander verschaltet sind.
Elektrische Maschinen umfassend einen Rotor und einen Stator kommen in unter schiedlichen Anwendungsbereichen zum Einsatz. Lediglich exemplarisch ist die Ver wendung von elektrischen Maschinen für elektrische Hybridfahrzeuge und Elektro fahrzeuge oder für Nabenantriebe zu nennen. Wird eine solche elektrische Maschine als Antriebsmaschine verwendet, ist sie zumeist als Innenläufer ausgeführt, das heißt, dass der Stator den innenliegenden Rotor umgibt. Über den Stator wird ein wandern des Magnetfeld erzeugt, über das die Rotation des Rotors erwirkt wird. Hierzu weist der Stator eine Wicklung auf, bestehend aus einer Vielzahl an Leitern, wobei die Leiter einer oder üblicherweise mehreren Phasen zugeordnet sind.
Nicht nur die Anzahl der Phasen geht in die Auslegung der Wicklungsgeometrie ein, sondern auch die Anzahl der Drähte pro Phase sowie die Anzahl der Drähte pro Nut innerhalb der Statorverzahnung und die Anzahl der Polpaare. Durch diese Vielfalt an Leitern und Wickelparametern entsteht ein komplexes Geflecht an Leitern, das in un terschiedlichen Wicklungstechnologien aufgebaut wird. Zu nennen sind beispielsweise die sogenannte Hairpin- oder Stabwellenwicklung. Hierbei werden die Leitern mittels U-förmig gebogener Stäbe, die zur Bildung eines Wicklungskorbes zusammengesetzt werden, gebildet. Die Leiter sind auf einer Mehrzahl von Radialebenen verlegt, wobei die Leiter quasi von Ebene zu Ebene wandern. Sie sind zur Bildung quasi mäander förmiger, umlaufender Leiter an ihren Enden entsprechend zu verbinden, was übli cherweise durch Verschweißen der Leiterenden, die benachbart zueinander liegen, erfolgt. Die Leiterenden laufen an einem Punkt respektive an einer Wicklungsseite in Form eines sogenannten Sterns zusammen, wo sie miteinander verbunden werden. In diesem Bereich ist auch die Anbindung der einzelnen Phasen an eine externe Strom versorgung, oft auch Hochvolt-Terminal genannt, welche Stromversorgung zur Erzeu- gung des Magnetfelds dient, vorzunehmen, was oft aus Bauraumgründen nur sehr kompliziert zu realisieren ist.
Im Betrieb der elektrischen Maschine ist des Weiteren die Wicklungstemperatur zu er fassen, wozu ein Temperatursensor verwendet wird, zumeist ein NTC- oder PTC- Widerstandselement. Die thermische Kopplung dieses Temperatursensors mit der Wicklung gestaltet sich schwierig, da die Wicklung sehr eng gewickelt respektive be stückt ist, so dass der Temperatursensor nicht in die Wicklung eingesetzt respektive zwischen benachbarte Drähte eingebracht werden kann. Daher werden zumeist Tem peratursensoren mit einer äußeren Schutzhülle, insbesondere einer Kunststoffhülle wie beispielsweise ein Schrumpfschlauch, verwendet, welche Schutzhülle den Sen sorkopf vollständig und einen Anschlussleiter zumindest auf einem Teil seiner Länge umgibt, wobei der sensorkopfseitige Endabschnitt der Kunststoffhülle verschlossen ist. Der Temperatursensor, meist ein zweipoliger Sensor, enthält ebenfalls ein Kabel, das in geeigneter Art und Weise mit der Leistungselektronik verbunden wird. Oftmals muss das Kabel einen weiten Weg vom Sensor bis hin zur Leistungselektronik über brücken, da ein geeigneter Anschlussleiter, an dem der Temperatursensor überhaupt angeschlossen werden kann, relativ weit von der Leistungselektronik beabstandet ist.
Der Erfindung liegt das Problem zugrunde, einen demgegenüber verbesserten, mög lichst kompakt aufgebauten Stator anzugeben.
Zur Lösung dieses Problems ist bei einem Stator der eingangs genannten Art erfin dungsgemäß vorgesehen, dass die Enden zumindest eines Teils der Leiter am Innen umfang und/oder am Außenumfang der Wicklung axial oder radial über die Wicklung hervorstehen, wobei ein Verschaltungsring axial oder radial auf die Wicklung aufge setzt ist, an welchem die Leiter angeschlossen sind, und wobei am Verschaltungsring wenigstens ein in thermischem Kontakt mit der Wicklung stehender Temperatursensor angeordnet ist.
Erfindungsgemäß ist vorgesehen, die eigentliche Leiterverschaltung sowie die Anord nung des Temperatursensors quasi in einer gemeinsamen Baueinheit zu integrieren, nämlich in einem Verschaltungsring, der axial stirnseitig oder radial innen oder außen auf die Wicklung aufgesetzt ist, und der der Leiterverschaltung dient, an dem aber auch gleichzeitig der Temperatursensor angeordnet ist, der mit der Wicklung ther misch gekoppelt ist und bevorzugt axial, radial oder tangential an der Wicklung an liegt. Das heißt, dass die beiden Systeme„Verschaltung“ und„Temperaturerfassung“ nicht mehr unabhängig voneinander respektive nacheinander zu montieren sind, son dern über eine gemeinsame Baueinheit montiert werden können.
Der Verschaltungsring selbst ermöglicht es, die eigentliche Leiterverschaltung, also die Verschaltung der einzelnen Leiter zur Bildung der entsprechenden phasenspezifi schen Mäanderstrukturen, und die Verschaltung zur Kopplung mit der Stromversor gung über ein Hochvolt-Terminal zu trennen, wobei die Verschaltung quasi radial in nenliegend und der Anschluss an die Stromversorgung radial außenliegend vorgese hen werden kann, beispielsweise wenn die Enden wenigstens zweier einer Phase zu geordneter Leiter radial oder axial nach außen hervorstehen und mit einem radial au ßerhalb der Wicklung angeordneten Stromanschluss verbunden sind. Zur eigentlichen Leiterverschaltung dient demzufolge der Verschaltungsring, also ein separat auf die Wicklung aufgesetzter Leiterring, der axial oder radial auf die Windung aufgesetzt wird. Dieser Verschaltungsring greift in den Bereich von am Innenumfang und/oder am Außenumfang der Wicklung axial oder radial hervorstehender Leiterenden z.B. beim axialen Aufsetzen radial zwischen den Bereich des Innen- und Außenumfangs der Wicklung axial über die Wicklungen hervorstehender Leiterenden. Die Leiterenden sind den einzelnen Leiterabschnitten, soweit diese nicht auf anderen, z. B. weiter in nenliegenden Radialebenen miteinander verbunden sind, zugeordnet. Die Leiterenden werden an dem Verschaltungsring angeschlossen, üblicherweise mit ihm verschweißt, so dass über den Verschaltungsring die entsprechenden phasenspezifischen Lei terstrukturen erzeugt werden.
Zur Verbindung der Wicklung mit dem eigentlichen Stromanschluss sind beispielswei se entsprechende Leiterenden, die einer Phase zugeordnet sind, radial oder axial nach außen hervorstehend geführt. Ein radial neben dem Wicklungskopf angeordne ter Stromanschluss kann nun mit diesen radial oder axial nach außen geführten Lei terenden entsprechend verbunden werden, so dass der HV-Stromanschluss respekti- ve die einzelnen phasenbezogenen Terminals mit den entsprechenden phasenspezi fischen Leiterenden verbunden, auch hier natürlich verschweißt werden können.
An diesem Verschaltungsring ist nun erfindungsgemäß des Weiteren der Temperatur sensor angeschlossen, also am Ring integriert, so dass sich eine gemeinsame Bau einheit ergibt, die einerseits der Leiterverschaltung, andererseits der Temperaturer fassung dient. Das heißt, dass durch Anbringung des Verschaltungsrings, beispiels weise axiales Aufsetzen des Verschaltungsrings, gleichzeitig auch der Temperatur sensor positioniert ist und in thermischen Kontakt mit der Wicklung gebracht ist. Hier zu sitzt der Temperatursensor beispielsweise bei axialem Aufsetzen des Verschal tungsrings auch axial anliegend auf der Wicklung auf, bei einer radialen Anordnung des Verschaltungsrings würde er radial aufsitzen.
Die erfindungsgemäße, kombinierte Baueinheit aus Verschaltungsring samt Tempera tursensor ermöglicht den Aufbau eines sehr kompakten Stators bei gleichzeitiger ver einfachter Montage. Aufgrund der quasi verschachtelten, z. B. axialen und radialen Anordnung von Verschaltungsring und Stromversorgungsterminal ergibt sich ein sehr kompakter, platzsparender Aufbau. Darüber hinaus ist auch die Montage vereinfacht, da die über den Verschaltungsring zu verbindenden Leiter respektive Drähte lediglich abgelängt und in die entsprechende Position beim Zusammenstecken des Wicklungs korbs gebracht werden müssen, um mit den entsprechenden Verbindungsterminals des Verschaltungsrings verbunden zu werden, die natürlich entsprechend positioniert sind. Sowohl das Ablängen als auch das Zusammensetzen kann in einem automati sierten Montageprozess erfolgen, wie natürlich auch aufgrund der einfachen Verbin dung von Leiterenden und Verschaltungsring entsprechende Toleranzen ausgeglichen werden können. Dies nicht zuletzt auch durch den Umstand, dass der Verschaltungs ring und die Stromversorgung respektive das HV-Terminal zwei separate Baugruppen sind, die in unterschiedlichen Prozessschritten mit dem Stator respektive dann auch der fertigen elektrischen Maschine verbunden werden.
Gleichzeitig mit dem Aufsetzen des Verschaltungsrings erfolgt aber auch die Montage und thermische Kopplung des Temperatursensors, das heißt, dass zur Sensormonta ge keine zusätzlichen, separaten Montageschritte erforderlich sind. Vielmehr kann, wenn der Verschaltungsring automatisch gesetzt und montiert wird, auch die Tempe ratursensormontage automatisiert werden, was den gesamten Montageprozess ver einfacht. Darüber hinaus ist aufgrund der Integration des Temperatursensors in den Verschaltungsring eine sehr kompakte Bauweise möglich, da keine separaten Leitun gen und dergleichen zur elektrischen Verbindung des Temperatursensors erforderlich sind, nachdem die Leitungsverbindung zur Leistungselektronik ebenfalls durch den Verschaltungsring geführt werden kann.
Der Verschaltungsring selbst weist zweckmäßigerweise ein Gehäuse auf, in dem mehrere separate Leitungsbrücken angeordnet sind, wobei der Temperatursensor im oder am Gehäuse, sowie zur Wicklung hin vorspringen, angeordnet ist. Die integrierte Baueinheit weist also ein sie nach außen hin abschließendes Gehäuse auf, was es ermöglicht, die Baueinheit komplett vorzufertigen und als kompaktes Gehäusebauteil zu montieren. In dem Gehäuse sind mehrere Leitungsbrücken, bei denen es sich um stabile Bleche handelt, die geometrisch so geformt sind, dass sie die zu verbindenden Leiterenden erreichen, zu dem entsprechenden Schaltungsring gruppiert und ermögli chen ein einfaches Überbrücken entsprechender Abstände sowohl in Umfangs- als auch in Radialrichtung. Diese Leitungsbrücken sind natürlich, ebenso wie die einzel nen Leiter, gegeneinander isoliert. In oder an dem Gehäuse ist des Weiteren der Temperatursensor angeordnet, derart, dass er aus dem oder am Gehäuse zur Wick lung hin vorspringt. Das Gehäuse bietet also eine einfache, standardisierte Schnittstel le zur Positionierung und Montage des Temperatursensors, so dass sichergestellt ist, dass der Temperatursensor stets in einer Weise positioniert ist, die eine sichere ther mische Kontaktierung mit der Wicklung ermöglicht.
Das Gehäuse, in dem die Brücken und an dem der Temperatursensor angeordnet ist, weist bevorzugt entsprechende radiale Durchbrechungen für die hier austretenden, vorspringenden Anschlüsse der einzelnen Leiterbrücken auf, und eine oder mehrere, entsprechende Anzahl an zu montierender Temperatursensoren, axiale Durchbre chungen, durch die der oder die Temperatursensoren, von denen natürlich auch meh rere vorgesehen sein können, aus dem Gehäuse vorspringen und zur Wicklung hin ragen, oder durch die die Anschlussleitungen der außen am Gehäuse angeordneten Temperatursensoren laufen. Diese Ausgestaltung ist bei einem axialen Aufsetzen des Verschaltungsrings zweckmäßig. Wird der Verschaltungsring radial aufgesetzt, so können die Durchbrechungen und die vorspringenden Leiterbrückenabschnitte axial vorspringen, während die Durchbrechungen für die Temperatursensoren radial ausge richtet sind, so dass die Temperatursensoren radial an dem Außenumfang der Wick lung anliegen. Das Gehäuse ist bevorzugt ein Kunststoffgehäuse, was eine einfache Herstellung ermöglicht.
Gemäß einer zweckmäßigen Weiterbildung der Erfindung ist vorgesehen, dass der Temperatursensor über ein elastisches Element gegen die Wicklung angefedert ist. Über dieses elastische Element und die Anfederung ist sichergestellt, dass der Tem peratursensor einerseits fest gegen die Wicklung gedrückt wird, mithin also in einen festen thermischen Kontakt gebracht wird. Andererseits können hierüber auch etwaige Toleranzen zwischen dem Verschaltungsring respektive dem Gehäuse und der Wick lungsoberfläche ausgeglichen werden.
Natürlich kann der Temperatursensor auch positionsfest, also nicht über ein elasti sches Element flexibel am Gehäuse angeordnet sein, wenn sichergestellt ist, dass er in definierten thermischen Kontakt mit der Kontaktfläche der Wicklung kommt.
Kommt ein solches elastisches Element zum Einsatz, so wird als ein solches bevor zugt ein Kunststoffbauteil, insbesondere ein Silikon- oder Elastomerbauteil verwendet, alternativ kann auch ein Federelement vorgesehen werden. Für eine bessere Tempe raturleitfähigkeit kann das elastische Element auch ein Metallelement, insbesondere einen Kupferkern aufweisen, das mit dem Temperatursensor thermisch gekoppelt ist, so dass das Metallelement quasi an der Wicklung anliegt und thermisch mit dem Temperatursensor, der dann quasi indirekt mit der Wicklung gekoppelt ist, verbunden ist. Dies ermöglicht es, die Temperatur direkter und besser an den Temperatursensor bzw. die sogenannte„Sensorperle“ geleitet werden.
Besonders bevorzugt wird der Temperatursensor und/oder das Metallelement bevor zugt natürlich beide, in das Kunststoffbauteil eingebettet, also beispielsweise in das Silikon- oder Elastomerbauteil eingespritzt oder eingegossen. Hieraus ergibt sich ein kompaktes Temperatursensorbauteil, das die Flexibilität respektive Federeigenschaft zur Verfügung stellt, so dass der eingebettete Temperatursensor, der beispielsweise in Form einer Sensorperle ausgeführt ist und beispielsweise geringfügig aus dem Kunststoffmaterial herausragt, entsprechend angefedert werden kann. Darüber hinaus kann, wenn auch das Metallelement, beispielsweise in Form eines oder mehrerer ge eigneter Metallstreifen oder dergleichen, mit eingebettet ist, durch dieses gemeinsame Einbetten in großflächigen thermischen Kontakt mit der benachbarten Wicklung ge bracht werden, das heißt, dass sich mithin ein größeres flächiges Temperatursensor bauteil ergibt.
Der Temperatursensor bzw. das Temperatursensorbauteil kann, wie bereits beschrie ben, axial, radial oder tangential an der Wicklung anliegen. Letztlich hängt die Ausrich tung und thermische Kopplung des Sensors davon ab, wie der Verschaltungsring auf die Wicklung auf- respektive an diese angesetzt wird.
Der Temperatursensor selbst ist bevorzugt ein Thermoelement, z. B. ein NTC- oder ein PTC-Sensor. Während es bereits ausreichend ist, nur einen Temperatursensor am Verschaltungsring vorzusehen, ist es natürlich auch denkbar, mehrere Temperatur sensoren bzw. Temperatursensorbauteil am Verschaltungsring verteilt anzuordnen.
Neben dem Stator selbst betrifft die Erfindung ferner eine elektrische Maschine, um fassend einen Stator der vorstehend beschriebenen Art.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Bezugnah me auf die Zeichnungen erläutert. Die Zeichnungen sind schematische Darstellungen und zeigen:
Figur 1 eine Prinzipdarstellung in Form einer Teilansicht eines erfindungsgemä ßen Stators,
Figur 2 eine Teilansicht des Verschaltungsrings,
Figur 3 eine Prinzipdarstellung verschiedener Leitungsbrücken des Verschal tungsrings aus Figur 2 nebst zweier Temperatursensorbauteilen, Figur 4 eine vergrößerte Prinzipdarstellung in Perspektivansicht eines Tempera tursensorbauteils,
Figur 5 eine Perspektivansicht des eigentlichen Temperatursensors, und
Figur 6 eine Teilansicht des Stators mit aufgesetztem Verschaltungsring und in thermischem Kontakt befindlichen Temperatursensorbauteil.
Figur 1 zeigt in Form einer Teilansicht eine Prinzipdarstellung eines erfindungsgemä ßen Stators 1 einer elektrischen Maschine, mit einer Wicklung 2 umfassend eine Mehrzahl an Leitern 3, die im gezeigten Beispiel drei separaten Phasen zugeordnet sind. Es können auch mehr oder weniger Phasen vorgesehen sein. Jeder Leiter 3 ist quasi als U-förmige Klammer ausgeführt, wobei eine Vielzahl solcher U-förmiger Lei ter, oft auch Hairpins genannt, zu der Wicklung 2, die auch als Wicklungskorb be zeichnet werden kann, zusammengesteckt sind. Die Vielzahl der Leiter 3 definieren verschiedene Radialebenen R, wie in Figur 1 dargestellt. Hierzu erstrecken sich die Leiter 3 je nach Wicklungsschema von einer Radialebene zu einer anderen Radial ebene, beispielsweise einer benachbarten Radialebene, im Bereich welcher sie die mit den Leiterenden von entsprechenden benachbarten, den Phasenleiter weiterfüh renden Leitern verbunden sind.
Die Leiter sind so geführt respektive gebogen und verlegt, dass sich entsprechende Ausnehmungen 4 ergeben, die sich radial erstrecken, so dass entsprechende
Statorzähne 5 in diese Ausnehmungen 4 greifen respektive die entsprechenden Leiter zwischen die entsprechenden Nuten der Statorzähne 5 gewickelt sind. Der grundsätz liche Aufbau eines solchen Stators respektive einer aus den beschriebenen separaten Klammern gewickelten Wicklung 2 ist dem Grunde nach bekannt.
Bei dem erfindungsgemäßen Stator 1 sind die Enden 6 der Leiter 3, soweit die Enden 6 an dem Innenumfang und dem Außenumfang der ringförmigen Wicklung 2 enden respektive positioniert sind, axial vorspringend, das heißt, sie stehen axial von der Wicklung 2 ab. Diese Enden sind einzelnen Leitern zugehörig, die wiederum unter- schiedlichen Phasen zugeordnet sind, weshalb die Leiterenden dem Verlegeschema der Leiter 3 entsprechend zu verschalten sind. Hierzu dient ein Verschaltungsring 7, der axial auf die Stirnseite der Wicklung 2 gesetzt wird und zwischen den Leiterenden 6 angeordnet ist, respektive zwischen diese eingreift. Der Verschaltungsring 7 um fasst, worauf nachfolgend noch eingegangen wird, eine Mehrzahl an entsprechenden Leistungsbrücken sowie an Anschlussabschnitten 8, die zur Seite hin aus dem Ge häuse 9 des Verschaltungsrings 7 hervorstehen und nach Einsetzen des Verschal tungsrings 7 zwischen die Leiterenden 6 positionsgenau neben dem entsprechenden Leiterende 6 positioniert sind, mit dem sie zu verbinden sind. Die Verbindung erfolgt z. B. durch einfaches Verschweißen, so dass mit dem Verbinden auch sämtliche Leiter 3 korrekt und phasenspezifisch miteinander verschaltet sind. Auch andere Verbin dungsverfahren sind denkbar.
Vorgesehen ist des Weiteren eine Stromversorgung 14, die radial neben der Wicklung 2 im Bereich deren axialen Endes angeordnet ist. Diese Stromversorgung 14, auch HV-Terminal genannt, umfasst ein Gehäuse 10, in dem entsprechende Stromschie nen 11 angeordnet sind, die mit ihren Anschlussterminals 12 aus dem Gehäuse ra gen.
Vorliegend ist wie beschrieben ein 3-Phasen-Stator gezeigt, weshalb im gezeigten Beispiel auch drei solcher Anschlussterminals 12 vorgesehen sind.
Jedes Anschlussterminal 12 ist mit einer Phase der Wicklung 2 zu verbinden. Dies ist auf einfache Weise dadurch realisiert, dass pro Phase zwei Leiterenden 6a radial nach außen geführt respektive gebogen sind, wie Figur 1 anschaulich zeigt. Die bei den am Außenumfang der Wicklung 2 angeordneten Leiterenden 6a sind relativ kurz und können direkt nach außen gebogen werden, während die beiden am Innenum fang angeordneten Leiterenden 6a länger sind und den Verschaltungsring 7 übergrei fen. Sie verlaufen oberhalb der Anschlussterminals 12, so dass auch dort eine einfa che Schweißverbindung zur Kontaktierung möglich ist. Der Anschluss an die Strom versorgung 14 erfolgt erst, wenn die Leiter 3 über den Verschaltungsring 7 miteinan der verschaltet sind. Figur 2 zeigt eine Teilansicht des Verschaltungsrings 7 aus Figur 1 . Gezeigt ist das Gehäuse 9, das entsprechend mehrteilig ist und auch eine radiale Kapselung ermög licht. Es ist bevorzugt aus Kunststoff. Ersichtlich ragen aus dem Gehäuse 9 durch ent sprechende Öffnungen 15 die entsprechenden Anschlussabschnitte 8, die unter schiedlichen Phasen zugeordnet, hervor. Die einzelnen Anschlussabschnitte sind, wie bereits beschrieben, unterschiedlichen Phasen zugeordnet, verbinden also unter schiedliche Leiterenden. Am Verschaltungsring 7 angeordnet respektive integriert sind des Weiteren im gezeigten Beispiel zwei Temperatursensorbauteile 16, die der Erfas sung der Wicklungstemperatur dienen. Die Temperatursensorbauteile 16 sind in oder am Gehäuse angeordnet und in entsprechenden Öffnungen 15 des Gehäuses 9 auf genommen, durch die sie im gezeigten Beispiel axial herausragen, oder durch die die Anschlussleitungen bei außenseitiger Anordnung der Temperatursensorbauteile 16 geführt sind. In der Montagestellung kommen sie, worauf nachfolgend noch einge gangen wird, axial an der Wicklungsstirnfläche zu liegen, so dass sie in thermischem Kontakt zur Wicklung 2 stehen. Dadurch, dass die Temperatursensorbauteile 16 (an stelle der zwei gezeigten Temperatursensorbauteile kann auch nur ein Temperatur sensorbauteil 16 oder mehr als zwei Temperatursensorbauteile 16 vorgesehen sein) am Gehäuse 9 zusammen mit den Leitungsbrücken 13 angeordnet sind, ergibt sich demzufolge eine kombinierte Baueinheit, die einerseits der Leiterverschaltung, ande rerseits der Temperaturerfassung dient. Durch Ansetzen nur dieses einen, kompakten Verschaltungsrings 7 sind demzufolge sämtliche Leitungsverbindungen schließbar, wie aber auch gleichzeitig die thermische Kontaktierung und damit die Montage der Temperaturerfassungseinrichtung möglich ist.
Figur 3 zeigt in Form einer Prinzipdarstellung verschiedene separate Leitungsbrücken 13, wobei im gezeigten Beispiel sechs Leitungsbrücken 13 gezeigt sind, die axial und radial versetz zueinander angeordnet sind. Am jeweiligen Innen- oder Außenumfang der Leitungsbrücken 13 sind die entsprechenden Anschlussabschnitte 8 ausgebildet, die in ihrer Gesamtheit einen entsprechenden Sternverteiler bilden. Über die sich in Umfangsrichtung erstreckenden Leitungsbrücken 13 können demzufolge entspre chende in Umfangsrichtung versetzt angeordnete Leiterenden am Innen- und Außen umfang entsprechend verbunden werden, so dass die entsprechenden Mäanderstruk turen der einzelnen Phasenleiter hierüber gebildet werden oder dergleichen versehen. Gezeigt sind ferner die beiden Temperatursensorbauteile 16, die an geeigneten Posi tionen, wo entsprechender Freiraum für die Integration zwischen den Leitungsbrücken 13 gegeben ist, angeordnet werden. Die gezeigte Anordnung der Leitungsbrücken 13 entspricht derjenigen, wie sie im Gehäuse 9 gemäß Figur 2 aufgenommen sind.
Figur 4 zeigt in Form einer perspektivischen Prinzipdarstellung ein Temperatursensor bauteil 16. Dieses umfasst einen in Figur 5 gezeigten Temperatursensor 17 mit dem eigentlichen NTC- oder PTC-Sensor 18, oft auch Sensorperle genannt, sowie zwei Signalleitungen 19, über die das Temperatursensorbauteil 16 mit der zum Verschal tungsring 7 externen Leistungselektronik verbunden wird. Die entsprechenden Signal leitungen 19 werden durch den Verschaltungsring 7 respektive das Gehäuse 9 zu den entsprechenden Anschlüssen der Leistungselektronik geführt.
Der Temperatursensor 17 ist zur Bildung des Temperatursensorbauteils 16 in ein elastisches Element 20, vorzugsweise ein elastisches Kunststoffbauteil aus Silikon oder einem Elastomer, eingebettet, wie Figur 4 zeigt. In dieses elastisches Element 20 kann auch ein hier nur gestrichelt gezeigtes Metallelement 21 respektive ein Metall kern eingebettet werden, der in thermischem Kontakt mit dem Sensorelement 17 steht, und über welches Metallelement 21 die Kontaktfläche zur eigentlichen Wicklung 2 noch vergrößert werden kann. Das Metallelement würde an der flächigen Unterseite 22 freiliegen, so dass es unmittelbar beim Montieren des Verschaltungsrings 7 in thermischen Kontakt mit der Wicklung 2 kommen würde. Ein solches Metallelement 21 ist jedoch optional.
Das elastische Element 20 stellt ein Vorspannmittel dar, über das der Temperatur sensor 17 gegen die Wicklungsoberfläche angefedert wird, mithin also gegen diese gepresst wird, wobei das elastische Element 20 am Gehäuse 9 gegengelagert sein kann. Hierüber wird sichergestellt, dass, selbst wenn der Abstand zwischen Gehäuse unterseite und Wicklungsoberseite leicht variiert, der Temperatursensor 17 stets im thermischen Kontakt mit der Wicklungsoberfläche steht. Das elastische Element 20 stellt demzufolge ein Ausgleichselement dar. Figur 6 zeigt schließlich eine Teilansicht des erfindungsgemäßen Stators 1 und der Wicklung 2 sowie des Verschaltungsrings 7. Ersichtlich ist das Temperatursensorbau teil 16 an der Unterseite 23 des Gehäuses 9 angeordnet respektive dort abgestützt. Die Signalleitungen 19 sind durch die Öffnung 15 in das Gehäuseinnere geführt. Der Temperatursensorbauteil 16 ist mit seiner Unterseite 22 gegen die Wicklung 2 ange drückt, so dass der Temperatursensor 17 in thermischem Kontakt mit der Wicklung 2 steht und demzufolge deren Temperatur erfassen kann.
Bezuqszeichenliste Stator
Wicklung
Leiter
Ausnehmung
Statorzahn
Leiterende
Verschaltungsring
Anschlusselement
Gehäuse
Gehäuse
Stromschiene
Anschlussterminal
Leitungsbrücke
Stromversorgung
Öffnung
Temperatursensorbauteil
Tem peratursensor
NTC- oder PTC-Sensor
Signalleitung
Element
Metallelement
Unterseite
Unterseite

Claims

Patentansprüche
1. Stator für eine elektrische Maschine, mit einer Wicklung (2) umfassend eine Mehrzahl an einer oder mehreren Phasen zugeordneten Leitern (3), die unter einander verschaltet sind, dadurch gekennzeichnet, dass die Enden (6) zumin dest eines Teils der Leiter (3) am Innenumfang und/oder am Außenumfang der Wicklung (2) axial oder radial über die Wicklung (2) hervorstehen, wobei ein Verschaltungsring (7) axial oder radial auf die Wicklung (2) aufgesetzt ist, an welchem die Leiter (3) angeschlossen sind, und wobei am Verschaltungsring (7) wenigstens ein in thermischem Kontakt mit der Wicklung (2) stehender Temperatursensor (16) angeordnet ist.
2. Stator nach Anspruch 1 , dadurch gekennzeichnet, dass der Verschaltungsring (7) ein Gehäuse (9) aufweist, in dem mehrere Leitungsbrücken (13) angeordnet sind, wobei der Temperatursensor (17) im oder am Gehäuse (9), zur Wicklung (2) hin vorspringend, angeordnet ist.
3. Stator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Tempera tursensor (17) über ein elastisches Element (20) gegen die Wicklung (2) ange federt ist.
4. Stator nach Anspruch 3, dadurch gekennzeichnet, dass das elastische Element (20) ein Kunststoffbauteil, insbesondere ein Silikon- oder Elastomerbauteil, o- der ein Federelement ist.
5. Stator nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das elastische Element (20) ein Metallelement (21 ), insbesondere einen Kupferkern aufweist, der mit dem Temperatursensor (17) thermisch gekoppelt ist.
6. Stator nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Tempera tursensor (17) und/oder das Metallelement (21 ) in das Kunststoff baute il einge bettet.
7. Stator nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Temperatursensor (17) axial, radial oder tangential an der Wicklung (2) anliegt.
8. Stator nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Temperatursensor (17) ein Thermoelement ist.
9. Stator nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mehrere Temperatursensoren (17) am Verschaltungsring (7) verteilt an- geordnet sind.
10. Elektrische Maschine, umfassend einen Stator (1 ) nach einem der vorange henden Ansprüche.
PCT/DE2020/100310 2019-05-07 2020-04-16 Stator für eine elektrische maschine WO2020224701A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/608,762 US20220278591A1 (en) 2019-05-07 2020-04-16 Stator for an electric machine
CN202080033894.8A CN113812073A (zh) 2019-05-07 2020-04-16 用于电机的定子
EP20722454.4A EP3966916A1 (de) 2019-05-07 2020-04-16 Stator für eine elektrische maschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019111825.5 2019-05-07
DE102019111825.5A DE102019111825A1 (de) 2019-05-07 2019-05-07 Stator für eine elektrische Maschine

Publications (1)

Publication Number Publication Date
WO2020224701A1 true WO2020224701A1 (de) 2020-11-12

Family

ID=70475921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2020/100310 WO2020224701A1 (de) 2019-05-07 2020-04-16 Stator für eine elektrische maschine

Country Status (5)

Country Link
US (1) US20220278591A1 (de)
EP (1) EP3966916A1 (de)
CN (1) CN113812073A (de)
DE (1) DE102019111825A1 (de)
WO (1) WO2020224701A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020132455A1 (de) 2020-12-07 2022-06-09 Schaeffler Technologies AG & Co. KG Stator
DE102021100731B4 (de) 2021-01-15 2023-03-30 Schaeffler Technologies AG & Co. KG Hochvoltterminal
DE102021101149A1 (de) 2021-01-20 2022-07-21 Schaeffler Technologies AG & Co. KG Hochvoltterminal
DE102021111001A1 (de) 2021-04-29 2022-11-03 Schaeffler Technologies AG & Co. KG Abschirmkappe gegen Luft-&Kriechstreckenbildung für Schweißstellen am E-Motor
DE102021111000A1 (de) 2021-04-29 2022-11-03 Schaeffler Technologies AG & Co. KG Verschaltungseinheit für einen E-Motor Stator
DE102021117109B3 (de) 2021-07-02 2022-09-29 Schaeffler Technologies AG & Co. KG Schlankes, simples HV-Terminal für E-Motoren
DE102021119870A1 (de) 2021-07-30 2023-02-02 Schaeffler Technologies AG & Co. KG Hochvolt-Terminal mit aufgesetzter Sternschiene und Toleranzausgleich
DE102021131561A1 (de) 2021-12-01 2023-06-01 Schaeffler Technologies AG & Co. KG Elektrische Maschine und Verfahren zur Montage einer elektrischen Maschine
EP4254745A1 (de) * 2022-03-31 2023-10-04 Valeo eAutomotive Germany GmbH Statorvorrichtung für eine elektrische maschine
DE102022121650A1 (de) 2022-08-26 2024-02-29 Schaeffler Technologies AG & Co. KG Stator und Verfahren zur Herstellung eines Stators
DE102022126516A1 (de) 2022-10-12 2024-04-18 Schaeffler Technologies AG & Co. KG Stator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1278291A2 (de) * 2001-07-17 2003-01-22 Fanuc Ltd Elektromotor mit Wicklungsüberhitzungsdetektor
DE112015000996T5 (de) * 2014-05-30 2016-12-01 Kyb Corporation Rotierende elektrische Maschine

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921752B2 (ja) * 1996-09-18 1999-07-19 ファナック株式会社 電動機の巻線温度検出素子の取付け方法および取付け具
JP4237075B2 (ja) * 2004-02-17 2009-03-11 三菱電機株式会社 回転電機
WO2006100839A1 (ja) * 2005-03-23 2006-09-28 Toyota Jidosha Kabushiki Kaisha 温度検出器および固着材伝達抑制構造
EP1727261B2 (de) * 2005-05-23 2013-06-26 ebm-papst Mulfingen GmbH & Co. KG Stator für einen Elektromotor
TWI257903B (en) * 2005-08-31 2006-07-11 Teng-Wen Huang Tire pressure detector
DE202007007391U1 (de) * 2007-05-24 2008-10-02 Ebm-Papst Mulfingen Gmbh & Co. Kg Stator für einen Elektromotor
EP2066008B1 (de) * 2007-11-29 2011-08-03 Siemens Aktiengesellschaft Stator einer dynamoelektrischen Maschine mit Mitteln zur Temperaturerfassung
IT1394272B1 (it) * 2009-05-25 2012-06-06 Spal Automotive Srl Metodo per la realizzazione di una macchina elettrica.
JP4751942B2 (ja) * 2009-06-17 2011-08-17 アイシン精機株式会社 ステータ
EP2306622B1 (de) * 2009-10-01 2013-04-24 ebm-papst Mulfingen GmbH & Co. KG Stator-Anordnung für einen Elektromotor
CN102695569B (zh) * 2009-11-09 2015-04-15 丰田自动车株式会社 热压用金属模具与温度测定装置、以及热压成型方法
DE102011077294A1 (de) * 2011-06-09 2012-12-13 Zf Friedrichshafen Ag Elektrische Maschine mit einer Leistungsanschlusseinheit
DE102012202131A1 (de) * 2012-02-13 2013-08-14 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Statoranordnung und elektrische Maschine
JP5328969B2 (ja) * 2012-03-12 2013-10-30 日立電線株式会社 電動機及び集中配電部材
JP5991172B2 (ja) * 2012-06-07 2016-09-14 日立金属株式会社 電動機の製造方法
DE102013003024A1 (de) * 2013-02-22 2014-08-28 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektromotor, insbesondere einer Fahrzeugkomponente
CN206516597U (zh) * 2017-02-15 2017-09-22 福建飞创电子科技有限公司 一种绕线型温度电阻式保险丝
CN208423354U (zh) * 2018-07-26 2019-01-22 江苏华彤电气股份有限公司 一种智能测温母线槽的取电器温控装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1278291A2 (de) * 2001-07-17 2003-01-22 Fanuc Ltd Elektromotor mit Wicklungsüberhitzungsdetektor
DE112015000996T5 (de) * 2014-05-30 2016-12-01 Kyb Corporation Rotierende elektrische Maschine

Also Published As

Publication number Publication date
US20220278591A1 (en) 2022-09-01
CN113812073A (zh) 2021-12-17
EP3966916A1 (de) 2022-03-16
DE102019111825A1 (de) 2020-11-12

Similar Documents

Publication Publication Date Title
WO2020224701A1 (de) Stator für eine elektrische maschine
EP2306622B1 (de) Stator-Anordnung für einen Elektromotor
EP1705776B1 (de) Stator für eine elektrische Maschine
EP3078099B1 (de) Stator für einen elektronisch kommutierten gleichstrommotor
EP2327138B1 (de) Stator für einen innenläufermotor
DE102016204958A1 (de) Elektrische Maschine sowie Verfahren zum Herstellen einer elektrischen Maschine
EP2302218A2 (de) Pumpenaggregat
DE102014201191A1 (de) Leistungsanschlusseinheit für eine elektrische Maschine
EP3959804A1 (de) Elektrische maschine
DE102017214957A1 (de) Verschaltungsanordnung für eine elektrische Maschine
DE102012024581A1 (de) Elektromotor mit einem Stator und Verfahren zur Herstellung eines Elektromotors
EP3921925A1 (de) Stator für eine elektrische maschine
WO2020216401A1 (de) Elektrische maschine
WO2018192817A1 (de) Polzahnmodul für eine elektrische maschine, aktivteil mit einem polzahnmodul und elektrische maschine
DE102013001990A1 (de) Baugruppenkühlsystem und -Verfahren einer elektrischen Maschine
EP4010962A1 (de) Elektrische maschine
WO2020216404A1 (de) Elektrische maschine
EP1016199B1 (de) Stator für einen elektromotor, insbesondere bürstenlosen gleichstrommotor
DE102019004591A1 (de) Elektromotor mit einer Verschaltungseinheit und Verfahren zur Herstellung eines Elektromotors mit einer Verschaltungseinheit
EP3959802A1 (de) Elektrische maschine
DE102009001830A1 (de) Stator für eine elektrische Maschine mit einer Verschaltungseinrichtung
DE102006033433A1 (de) Kommutator und Anker
DE102016204971A1 (de) Federring, sowie eine elektrische Maschine beinhaltend einen solchen, sowie Verfahren zum Herstellen einer elektrischen Maschine
WO2020216400A1 (de) Elektrische maschine
DE102019004590A1 (de) Elektromotor mit einer Verschaltungseinheit und Verfahren zur Herstellung eines Elektromotors mit einer Verschaltungseinheit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20722454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020722454

Country of ref document: EP

Effective date: 20211207