WO2020224653A1 - 一种负载型三中心催化剂及其制备方法和应用 - Google Patents

一种负载型三中心催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2020224653A1
WO2020224653A1 PCT/CN2020/089296 CN2020089296W WO2020224653A1 WO 2020224653 A1 WO2020224653 A1 WO 2020224653A1 CN 2020089296 W CN2020089296 W CN 2020089296W WO 2020224653 A1 WO2020224653 A1 WO 2020224653A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
chromium
precursor
temperature
active component
Prior art date
Application number
PCT/CN2020/089296
Other languages
English (en)
French (fr)
Inventor
金玉龙
刘柏平
Original Assignee
华南农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南农业大学 filed Critical 华南农业大学
Priority to US17/434,892 priority Critical patent/US20220056165A1/en
Publication of WO2020224653A1 publication Critical patent/WO2020224653A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/69Chromium, molybdenum, tungsten or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/68Vanadium, niobium, tantalum or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/01Additive used together with the catalyst, excluding compounds containing Al or B

Definitions

  • the present invention belongs to the field of catalysts, and particularly relates to a supported three-site catalyst and its preparation method and application.
  • polyethylene As a general-purpose plastic, polyethylene is widely used in various fields of industry, agriculture, automobile, communication and daily life due to its excellent mechanical properties, electrical insulation, chemical resistance and low temperature resistance. These excellent The performance mainly depends on the production technology of polyethylene, catalyst technology and post-processing technology, among which catalyst technology is the most critical technology, so it has received extensive attention and research from industry and academia.
  • polyethylene catalysts widely used in industry mainly include the following three categories: Ziegler-Natta titanium-based catalysts, chromium-based catalysts (mainly including inorganic chromium Phillip catalyst and organic chromium S-2 catalyst), and metallocene catalysts.
  • chromium-based catalysts mainly including inorganic chromium Phillip catalyst and organic chromium S-2 catalyst
  • metallocene catalysts metallocene catalysts.
  • composite two-site catalysts that is, two catalysts are blended or co-supported on a carrier.
  • the starting point of their research is to make this type of catalyst It can have the characteristics of two active centers at the same time, and even utilize the synergistic effect between the two active centers to show more excellent catalytic properties.
  • it was found that the development of this type of catalyst is relatively difficult.
  • the two active centers after compounding, usually exhibit anti-synergism, that is, mutual poisoning and weakening of the catalytic performance.
  • the bimetallic centers of the bimetallic centers show excellent catalytic synergistic effects under most conditions, so that the catalyst has polymerization activity and copolymerization performance.
  • the molecular weight of the synthetic polymer has a broad peak or bimodal distribution, and the comonomers are also concentrated in high molecular weight components.
  • this series of catalysts are synthesized in a single-pot method with high performance Bimodal polyethylene has huge advantages, and it may partially replace the two-tank series process for synthesizing high-performance bimodal polyethylene materials commonly used in the industry, because compared with the latter, dual-center catalytic technology is used to synthesize high-performance in a single reactor
  • the equipment investment of bimodal polyethylene is lower, the operation is less difficult, and the energy consumption is lower.
  • the polymer contains lower molecular weight ethylene homopolymer A, medium molecular weight ethylene copolymer B and high molecular weight or ultra-high molecular weight ethylene Copolymer C, where the A component mainly provides higher rigidity and processing properties of the polymer, and the B component provides good toughness and long-term mechanical properties of the polymer.
  • the C component makes the polymer creep resistance and Long-term mechanical properties have been further improved.
  • the relative content of A, B, and C components can be adjusted by the relative residence time of the catalyst in each reactor.
  • the polyethylene with a trimodal molecular weight distribution synthesized by this process has obvious advantages in producing higher-grade pipes and films.
  • the primary purpose of the present invention is to provide a supported three-site catalyst. It can be used for the homopolymerization of ethylene and the copolymerization of ethylene and ⁇ -olefin.
  • the synthesized polymer has a wide molecular weight distribution, some of which have a trimodal distribution, including low molecular weight ethylene homopolymer, medium molecular weight ethylene copolymer, and high molecular weight or ultra-high molecular weight.
  • Molecular weight ethylene copolymer is a supported three-site catalyst. It can be used for the homopolymerization of ethylene and the copolymerization of ethylene and ⁇ -olefin.
  • the synthesized polymer has a wide molecular weight distribution, some of which have a trimodal distribution, including low molecular weight ethylene homopolymer, medium molecular weight ethylene copolymer, and high molecular weight or ultra-high molecular weight.
  • Molecular weight ethylene copolymer is a
  • Another object of the present invention is to provide a method for preparing the above-mentioned supported three-site catalyst.
  • Another object of the present invention is to provide the application of the above-mentioned supported three-site catalyst in catalyzing olefin polymerization.
  • a supported three-site catalyst which includes a porous inorganic carrier and three catalyst active centers, namely organic chromium active component, inorganic chromium active component and inorganic vanadium active component; or, the catalyst includes porous inorganic carrier, organic
  • a catalyst modification component may also be included.
  • the porous inorganic carrier is silicon oxide, aluminum oxide, aluminosilicate, inorganic clay, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, iron oxide, tin oxide, zinc oxide, boron oxide, tungsten oxide, niobium oxide
  • the inorganic clay is preferably montmorillonite, and the silica is preferably amorphous porous silica gel.
  • the specific surface area of the porous inorganic carrier is 50-800 m 2 /g, the pore volume is 0.1-5.0 cm 3 /g, and the average pore size is 1-50 nm;
  • the organic chromium active component is obtained after the organic chromium active component precursor is activated by an organometallic promoter or polymerized monomer, and the organic chromium active component precursor is composed of a cyclopentadienyl ligand, indene
  • the organochromium chromium source of at least one of the base ligand, fluorenyl ligand, cyclopentadienyl derivative ligand, indenyl derivative ligand, and fluorenyl derivative ligand is supported on the surface of the porous inorganic carrier ;
  • the inorganic chromium active component is obtained after the inorganic chromium active component precursor is activated by an organometallic promoter or polymerized monomer, and the inorganic chromium active component precursor is the high temperature of the chromium source on the surface of the porous inorganic carrier.
  • Roasted product is obtained after the inorganic chromium active component precursor is activated by an organometallic promoter or polymerized monomer, and the inorganic chromium active component precursor is the high temperature of the chromium source on the surface of the porous inorganic carrier.
  • the inorganic vanadium active component is obtained after the inorganic vanadium active component precursor is activated by an organometallic promoter or polymerized monomer, and the inorganic vanadium catalyst precursor is a high-temperature calcination product of a vanadium source on the surface of a porous inorganic carrier ;
  • the catalyst modification component is a high-temperature calcined product of a compound containing sulfur, phosphorus or halogen element on the surface of a porous inorganic carrier, wherein the compound containing sulfur, phosphorus or halogen element is referred to as component Q for short;
  • the polymerized monomer is ethylene or common ⁇ -olefins, and common ⁇ -olefins include propylene, 1-butene, 1-hexene and the like.
  • the organometallic promoters include organoaluminum compounds, organolithium compounds, organoboron compounds, etc., which are commonly used as promoters for olefin polymerization reactions, or any combination thereof.
  • the organoaluminum compound may include trialkyl aluminum AlR 3 , dialkyl aluminum alkoxide AlR 2 OR, dialkyl aluminum halide AlR 2 X, aluminoxane, ethyl sesquialuminum chloride, etc., where R is an alkane Groups, such as alkyl groups having 1-12 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, n-hexyl, n-heptyl, n- Octyl, n-nonyl, n-dodecyl, etc., X is halogen, such as fluorine,
  • the aluminoxane may include all alkyl aluminum and water reactants such as methyl aluminum.
  • the organoaluminum compounds as organometallic promoters can be used alone or in combination of two or more.
  • the aluminum compound may be at least one of triethylaluminum, triisobutylaluminum, diethylaluminum ethoxide, diethylaluminum chloride, and methylaluminoxane.
  • the precursor of the organic chromium active component is obtained by supporting the organic chromium chromium source on the surface of the porous inorganic carrier.
  • the structure of the organic chromium chromium source can be expressed as follows: CrCp* 1 Cp* 2 , where Cp* 1 and Cp* 2 Both can be cyclopentadienyl and its derivatives, indenyl and its derivatives, fluorenyl and its derivatives, and whether the structure of Cp* 1 and Cp* 2 are the same is not limited.
  • Cp* 1 and Cp* 2 may be one of the following structures:
  • R is a hydrocarbon group with 1-20 carbon atoms.
  • the hydrocarbon group can be saturated or unsaturated, including aliphatic, alicyclic and aromatic, such as methyl, ethyl, propyl, butyl, pentyl , Cyclopentyl, allyl, phenyl, naphthyl, etc.; n is an integer value of 0-5; multiple Rs connected to the aromatic ring are independent of each other and may be the same or different;
  • Ra and Ra' are hydrocarbon groups with 1-10 carbon atoms.
  • the hydrocarbon groups can be saturated or unsaturated, including aliphatic, alicyclic and aromatic, such as methyl, ethyl, propyl, butyl, pentane Group, cyclopentyl, allyl, phenyl, naphthyl, etc.; m, an integer from 0 to 4; x, an integer from 0 to 3; multiple Ras and multiple Ra's connected to the aromatic ring are independent of each other , Can be the same or different;
  • Rb and Rb' are hydrocarbon groups with 1-10 carbon atoms.
  • the hydrocarbon groups can be saturated or unsaturated, including aliphatic, alicyclic and aromatic, such as methyl, ethyl, propyl, butyl, pentane Functional groups such as group, cyclopentyl, allyl, phenyl and naphthyl; m', m", taking an integer value of 0 to 4; Y can be H, Rb or Rb'; z, taking the value 0 or 1;
  • the multiple Rbs and multiple Rb's connected to the aromatic ring are all independent of each other and may be the same or different.
  • the precursor of the inorganic chromium active component is a high-temperature roasting product of a chromium source (chromium-containing compound) on the surface of an inorganic carrier;
  • the chromium source (chromium-containing compound) is selected from chromium trioxide, chromium nitrate, chromium acetate, chromium chloride, Chromium sulfate, ammonium chromate, ammonium dichromate, basic chromium acetate, other suitable soluble chromium salts, and any combination between them.
  • the precursor of the inorganic vanadium active component is a high-temperature calcination product of a vanadium source (vanadium-containing compound) on the surface of an inorganic carrier;
  • the vanadium source (vanadium-containing compound) can be selected from the following: ammonium hexafluorovanadate, vanadium nitrate, and oxygen oxalate Vanadium, ammonium metavanadate, vanadyl sulfate, vanadium sulfate (IV) hydrate, vanadium sulfate (III), vanadium trichloride, sodium orthovanadate, sodium metavanadate, etc., and non-water-soluble vanadium-containing salts :
  • the catalyst modification component is a high-temperature roasted product of the Q component on the surface of the inorganic carrier;
  • the Q component can be selected from the following: sulfuric acid, persulfuric acid, pyrosulfuric acid, sulfurous acid, taurine, ammonium sulfate, ammonium sulfite , Ammonium persulfate, titanium sulfate, zirconium sulfate, vanadium sulfate, iron sulfate, ferrous sulfate, ferrous ammonium sulfate, nickel sulfate, zinc sulfate, aluminum sulfate, tin sulfate, antimony sulfate, phosphoric acid, pyrophosphoric acid, perphosphoric acid, Phosphoric acid, hypophosphorous acid, metaphosphoric acid, ammonium phosphate, ammonium pyrophosphate, ammonium superphosphate, ammonium phosphite, ammonium
  • the active center precursor structure of the supported three-site catalyst is as follows, wherein a structure is an inorganic chromium active component precursor, b structure is an inorganic vanadium active component precursor, and c component is an organic chromium active component Precursor (where L is one of cyclopentadienyl and its derivatives, indenyl and its derivatives, fluorenyl and its derivatives):
  • the content of Cr in the organic chromium active component is 0.1-12 wt% (based on the weight of Cr) of the total weight of the catalyst; the content of Cr in the inorganic chromium active component is the total weight of the catalyst 0.05 ⁇ 12wt%, (based on the weight of Cr); the content of V in the inorganic vanadium active component is 0.05 ⁇ 10wt% of the total weight of the catalyst, (based on the weight of V); the sulfur, phosphorus and The content of halogen elements is 0.1-20 wt% of the total weight of the catalyst (based on the total weight of sulfur, phosphorus and halogen elements).
  • a method for preparing the above-mentioned supported three-site catalyst includes the preparation of the supported three-site catalyst precursor and the activation of the supported three-site catalyst precursor.
  • the supported three-site catalyst includes a porous inorganic carrier and an organic chromium active component
  • the preparation of the supported three-center catalyst precursor includes the following steps:
  • the chromium source, the vanadium source and the Q component are respectively converted into the precursor of the inorganic chromium active component, the precursor of the inorganic vanadium active component and the catalyst modification supported on the surface of the porous inorganic carrier through the procedures of impregnation, drying and high-temperature roasting.
  • the organic chromium chromium source is converted into the precursor of the organic chromium active component supported on the surface of the supported two-center catalyst in step (1) through the impregnation and drying procedures, to obtain the supported three-center catalyst precursor;
  • the preparation of the supported three-site catalyst precursor includes the following steps:
  • the chromium source and the vanadium source are respectively converted into the precursor of the inorganic chromium active component and the precursor of the inorganic vanadium active component supported on the surface of the porous inorganic carrier through the impregnation, drying and high-temperature roasting procedures to obtain the supported two-center catalyst precursor
  • the loading sequence of the two components, the precursor of the inorganic chromium active component and the precursor of the inorganic vanadium active component is arbitrary;
  • the activation of the supported three-site catalyst precursor includes the following steps: take the supported three-site catalyst precursor prepared by any of the above two methods, add an organometallic promoter for pretreatment and activation, and then dry to obtain the target Catalyst; or take the above-mentioned supported three-site catalyst precursor and place it in a reactor before polymerization to react with the organometallic promoter to form the target catalyst in situ; or take the above-mentioned supported three-site catalyst precursor and place it in the high-pressure polymerization monomer,
  • the target catalyst is formed by in-situ activation of polymerized monomers.
  • the loading order is arbitrary, which means that these active ingredient precursors can be loaded in any order.
  • co-impregnation can be used
  • the chromium source, vanadium source and Q component are simultaneously loaded on the surface of the porous inorganic carrier, and then the supported two-center catalyst precursor is obtained by drying and high-temperature roasting.
  • the chromium source, vanadium source and Q can also be co-impregnated.
  • any two of the components are loaded on the surface of the porous inorganic carrier at the same time, and then dried and high-temperature roasted to obtain the porous inorganic carrier loaded with the corresponding active component precursor or modified component, and then impregnated, dried and high-temperature roasted
  • the procedure converts the remaining one component into the corresponding active component precursor or modified component supported on the surface of the modified porous inorganic carrier to obtain the target catalyst precursor; the chromium can also be processed through impregnation, drying and high-temperature roasting procedures.
  • Any one of the source, the vanadium source and the Q component is converted into the active component precursor or modified component supported on the surface of the porous inorganic carrier, and then the remaining two components are loaded to the modified component by co-impregnation.
  • the remaining two components are converted into active component precursors supported on the surface of the porous inorganic carrier through drying and high-temperature roasting procedures to obtain the target catalyst precursor; it can also be impregnated, dried and The high-temperature calcination process sequentially converts the chromium source, vanadium source and Q component into the inorganic chromium active component precursor, inorganic vanadium active component precursor and catalyst modification component supported on the surface of the porous inorganic carrier to obtain the target catalyst Precursor;
  • the chromium source, vanadium source and Q component are all inert solvent as the medium, enter the porous inorganic carrier pores by dipping and stirring, and adsorb on the surface, where the inert solvent is water, At least one of methanol, ethanol, n-hexane, n-heptane, n-octane, benzene, toluene, xylene, etc.; the amount of chromium source, vanadium source and Q component meets: the content of Cr in the inorganic chromium active component 0.05-12wt% of the total weight of the catalyst, (based on the weight of Cr); the content of V in the inorganic vanadium active component is 0.05-10wt% of the total weight of the catalyst, (based on the weight of V); catalyst modified components The content of sulfur, phosphorus and halogen elements is 0.1-20wt% of the total weight of the catalyst (based on the total weight of sulfur, phosphordioxane,
  • the drying refers to drying at 60-150°C. It is preferably dried at 80-130°C, and the drying time is 2-24h, preferably 6-16h; the high-temperature roasting process of the chromium source, vanadium source and Q component on the surface of the porous inorganic carrier is in nitrogen or inert gas such as Argon and helium, or oxygen-containing atmosphere such as oxygen, dry air, the temperature of the high-temperature roasting is 300-900°C, preferably 400-800°C, and the heating rate of the roasting process is 0.1-5°C/min , Preferably 0.5-2°C/min, and the roasting time is 2-24h, preferably 4-12h; during the roasting process, before the temperature rises to 150°C, roasting is carried out under nitrogen or inert atmosphere such as argon and helium.
  • nitrogen or inert atmosphere such as argon and helium
  • the calcination temperature exceeds 150°C
  • the calcination is carried out in an oxygen-containing atmosphere such as oxygen or dry air.
  • an oxygen-containing atmosphere such as oxygen or dry air.
  • the roasting process can generally be carried out in a fluidized state or a non-fluidized state, but it is preferably carried out in a fluidized state.
  • the roasting process is mainly divided into four stages.
  • the first stage is from room temperature to 150°C, this stage mainly removes the water components physically adsorbed on the surface of the inorganic carrier;
  • the second stage is from 150°C to the calcination temperature, this stage mainly condenses the hydroxyl groups on the surface of the inorganic carrier, and the formation of Moisture is removed and at the same time the chromium source, vanadium source or Q component impregnated and adsorbed on the surface is partially decomposed;
  • the third stage is the roasting temperature, this stage makes the chromium source, vanadium source or Q component almost completely decompose and form respectively Inorganic chromium active component precursor, inorganic vanadium active component precursor and catalyst modification component;
  • the fourth stage is the cooling stage, in which the inorganic
  • the first stage is carried out in an inert gas in order to fully remove the moisture content
  • the second and third stages are carried out in an oxygen-containing atmosphere
  • the fourth stage changes the working atmosphere from an oxygen-containing atmosphere when the temperature drops to 300 ⁇ 400°C.
  • the atmosphere is switched to inert gas.
  • the organic chromium chromium source uses an inert organic solvent as a medium, and reacts with the remaining hydroxyl groups on the surface of the porous inorganic carrier by dipping and stirring to be supported on the surface of the organic chromium chromium source.
  • the content of Cr in the organic chromium active component is 0.1-12wt% of the total weight of the catalyst (calculated by the weight of Cr);
  • the inert organic solvent can choose common organic hydrocarbon compounds, such as n-hexane, n-heptane, n-octane , Benzene, toluene, xylene, etc.
  • the immersion temperature is 20 ⁇ 120°C, preferably 45 ⁇ 80°C
  • the immersion time is 1 ⁇ 24h, preferably 4 ⁇ 8h
  • the organic solvent in the system is removed by high temperature evaporation
  • the drying temperature is 60-150°C, preferably 80-130°C, and the drying time is 2-24h, preferably 6-16h; the whole process is carried out under the protection of nitrogen or inert gases such as argon and helium .
  • the organometallic promoter pre-reduction and activation treatment of the supported three-site catalyst precursor is performed under an inert atmosphere, and the molar amount of the organometallic promoter is The ratio with the total molar amount of chromium in the supported three-site catalyst precursor is 0-1000, preferably 0-100, more preferably 0-50;
  • the pre-reduction activation treatment temperature is between room temperature and 100°C, Preferably room temperature to 60°C, reduction activation treatment time 0.5-20 hours, preferably 0.5-10 hours, reduction activation treatment adopts stirring mode, preferably continuous stirring, after the treatment is completed, dry at 60-120°C for 2-8 hours , Drying is carried out under nitrogen or inert gas atmosphere, such as nitrogen, helium, argon, etc., preferably under nitrogen atmosphere.
  • the drying process can also be carried out under vacuum conditions to obtain the pre-reduction activated
  • the supported three-site catalyst is stored in an inert gas atmosphere for later use.
  • the reaction between the supported three-site catalyst precursor and the organometallic promoter to form the target catalyst in situ refers to the in-situ reduction activation treatment in a solvent medium
  • the solvent medium can be selected From isopentane, n-pentane, n-hexane, isohexane, n-heptane, n-octane, toluene, xylene, preferably at least one of isopentane, n-hexane, isohexane and n-heptane;
  • the ratio of the molar amount of the metal element in the organometallic promoter to the total molar amount of the chromium element in the supported three-site catalyst precursor is 0-1000, preferably 0-100, more preferably 0-50; said in-situ reduction
  • the temperature of activation treatment is 20 ⁇ 120°C, and the time of in-situ reduction activation treatment is 0.5 ⁇
  • the in-situ activation of the supported three-site catalyst precursor by polymerizing monomers to form the target catalyst refers to in-situ reduction activation treatment in a solvent medium, which can be selected from isopentane , N-pentane, n-hexane, isohexane, n-heptane, n-octane, toluene, xylene, preferably at least one of isopentane, n-hexane, isohexane and n-heptane; the partial pressure of the polymerized monomer is 1-5MPa, preferably 1.5-3.5MPa; the temperature of the in-situ reduction activation treatment is 50-120°C;
  • the present invention provides a method for preparing a supported three-site catalyst, one of which includes the following steps:
  • the porous inorganic carrier is immersed in a solution containing a chromium source and a vanadium source, then dried, and then fired and activated at a high temperature of 300 to 900°C;
  • the method comprises the following steps:
  • the immersion time is 1-24h, preferably 4-12h, and the immersion temperature is 20-120°C, preferably 45-90°C, then Drying between 60 ⁇ 150°C, preferably 80 ⁇ 130°C, drying time 2 ⁇ 24h, preferably 6 ⁇ 16h, vacuum can also be used during drying, and then the dried mixture is placed in inert gas or oxygen-containing atmosphere for high temperature Roasting activation, the calcination temperature is 300 ⁇ 900°C, preferably 400 ⁇ 800°C, the calcination time is 2 ⁇ 24h, preferably 4 ⁇ 12h, and then it is cooled. When cooling to 300 ⁇ 400°C, the atmosphere is switched to inert gas and naturally cooled Store at room temperature for later use.
  • the immersion reaction time is 1-24h, preferably 4-8h, and the immersion temperature is 20-120°C, preferably 45-80°C, and then Drying at 60-150°C, preferably 80-130°C, drying time 2-24h, preferably 6-16h, vacuum can also be used in the drying process, and the catalyst precursor can be obtained after drying.
  • the medium can be selected from isopentane, n-hexane, n-heptane, n-octane and toluene, preferably isopentane or n-hexane, the catalyst activation and polymerization temperature is 50-110°C, preferably 60-80°C, the ethylene monomer pressure It is 1-5 MPa, preferably 1-3 MPa.
  • the specific operations for preparing the catalyst of the present invention include:
  • the porous amorphous silica gel is immersed in an aqueous solution of a certain concentration of ammonium metavanadate and basic chromium acetate, the loading amount of vanadium and chromium relative to the total weight of the catalyst meets the requirements of the present invention (for example, V is 0.1-10wt%, Cr is 0.1-2wt%); after stirring for a certain period of time (for example, 4-8 hours), heating and drying; then high-temperature calcination in a fluidized bed.
  • the first stage of calcination is the heating stage (for example, 100-150°C).
  • roasting in a nitrogen atmosphere removes the physical water adsorbed in the carrier;
  • the second stage of the calcination is the heating stage (for example, 150-800°C), and the partial hydroxyl on the surface of the silica gel is removed by the calcination in dry air, while ammonium metavanadate and basic acetic acid Chromium is partially oxidized and decomposed;
  • the third stage of calcination is a constant temperature stage (for example, the temperature is 4-12h at 800°C), which is roasted in dry air to further remove the hydroxyl groups on the surface of the silica gel, while making ammonium metavanadate and basic chromium acetate almost Complete oxidation and decomposition;
  • the fourth stage of roasting is a natural cooling stage, which is switched to nitrogen protection when it is cooled to 300-400°C, and transferred and stored under nitrogen protection for later use.
  • the above-mentioned calcined product is immersed in a certain concentration of dicyclopentadienyl chromium n-hexane solution, the loading amount of organic chromium relative to the total weight of the catalyst meets the requirements of the present invention (for example, Cr is 0.5-2wt%), and the immersion temperature is 45-50 °C, the immersion time is 4-8h, after the immersion is finished, heat up and dry, the drying temperature is 75-90°C, the drying time is 4-8h, the whole impregnation and drying process can be stirred, after drying, the catalyst precursor is driven under nitrogen protection The body is transferred to anhydrous and oxygen-free conditions for storage.
  • n-hexane 1L of n-hexane was introduced into the autoclave with a volume of 2L, and then 0.1g of catalyst precursor was added to the polymerization vessel under the protection of nitrogen. At the same time, an ethylene partial pressure of 2MPa was introduced, and the catalyst precursor was in situ at 90°C Activation and subsequent polymerization.
  • the present invention provides a method for preparing a supported three-site catalyst, one of which includes the following steps:
  • the porous inorganic carrier is immersed in a solution containing a vanadium source, then dried, and then fired and activated at a high temperature of 300-900°C;
  • the method comprises the following steps:
  • the solution containing the vanadium source is adsorbed on the surface of the porous inorganic support by dipping.
  • the dipping time is 1-24h, preferably 4-12h, and the dipping temperature is 20-120°C, preferably 45-90°C, and then 60-150 Drying between °C, preferably 80-130°C, drying time 2-24h, preferably 6-16h, vacuum can also be used in the drying process, and then the dried mixture is placed in an inert gas or oxygen-containing atmosphere for high-temperature roasting activation, roasting
  • the temperature is 300-900°C, preferably 400-600°C, and the calcination time is 2-24h, preferably 4-12h, and then it is naturally cooled to room temperature and stored for later use.
  • the immersion time is 1-24h, preferably 4-12h, and the immersion temperature is 20-120°C, preferably 45-90°C, and then dried at 60-150°C, Preferably 80 ⁇ 130°C, the drying time is 2 ⁇ 24h, preferably 6 ⁇ 16h.
  • Vacuum can also be used during the drying process, and then the dried mixture is placed in an inert gas or oxygen-containing atmosphere for high-temperature roasting activation, and the roasting temperature is 300-900 °C, preferably 400-800°C, the calcination time is 2-24h, preferably 4-12h, then cool, switch the atmosphere to an inert gas when it cools to 300-400°C, cool naturally to room temperature and store for later use.
  • c) Place the above-mentioned calcined product in a solution containing organic chromium and chromium source for immersion reaction.
  • the immersion reaction time is 1-24h, preferably 4-8h, and the immersion temperature is 20-120°C, preferably 45-80°C, and then at 60°C. Drying between ⁇ 150°C, preferably 80 ⁇ 130°C, drying time 2 ⁇ 24h, preferably 6 ⁇ 16h, vacuum can also be used in the drying process, and the catalyst precursor can be obtained after drying.
  • the medium can be selected from isopentane, n-hexane, n-heptane, n-octane and toluene, preferably isopentane or n-hexane, the catalyst activation and polymerization temperature is 50-110°C, preferably 60-80°C, the ethylene monomer pressure It is 1-5 MPa, preferably 1-3 MPa.
  • the specific operations for preparing the catalyst of the present invention include:
  • the porous amorphous alumina is immersed in a certain concentration of ammonium metavanadate aqueous solution, and the loading amount of vanadium relative to the total weight of the catalyst meets the requirements of the present invention (for example, V is 0.1-10wt%); after continuous stirring for a certain time (for example, 4 ⁇ 8 hours), heat up and dry; then perform high-temperature calcination in a fluidized bed, where the first stage of calcination is the temperature-raising stage (for example, 100-150°C), roasting in a nitrogen atmosphere to remove physical water adsorbed in the carrier; calcination The second stage is the heating stage (for example, 150 ⁇ 500°C), roasting in dry air to remove part of the hydroxyl on the surface of the silica gel, and at the same time ammonium metavanadate is partially oxidized and decomposed; the third stage of roasting is the constant temperature stage (for example, constant temperature at 500°C ⁇ 12h), roasting in dry air to further remove the hydroxy
  • the above-mentioned calcined product is immersed in a certain concentration of chromium nitrate aqueous solution, the chromium loading relative to the total weight of the catalyst meets the requirements of the present invention (for example, chromium is 0.2 to 1 wt%); continuously stirring for a certain period of time (for example, 4 to 8 hours) Afterwards, it is heated and dried; then it is roasted at a high temperature in a fluidized bed.
  • the first stage of roasting is a heating stage (for example, 100-150°C).
  • the adsorbed physical water in the carrier is removed by roasting in a nitrogen atmosphere; the second stage of roasting is In the heating stage (for example, 150 ⁇ 800°C), roasting in dry air removes part of the hydroxyl groups on the surface of the silica gel, and at the same time, the chromium nitrate is partially oxidized and decomposed; the third stage of roasting is a constant temperature stage (for example, constant temperature at 800°C for 4 ⁇ 12h).
  • the fourth stage of the calcination is the natural cooling stage, when it is cooled to 300 ⁇ 400°C, it is switched to nitrogen protection and transferred under nitrogen protection Save it for later use.
  • the above-mentioned calcined product is immersed in a certain concentration of dicyclopentadienyl chromium n-hexane solution, the loading amount of organic chromium relative to the total weight of the catalyst meets the requirements of the present invention (for example, Cr is 0.5-2wt%), and the immersion temperature is 45-50 °C, the immersion time is 4-8h, after the immersion is finished, heat up and dry, the drying temperature is 75-90°C, the drying time is 4-8h, the whole immersion and drying process can be stirred, after the drying, the catalyst is transferred under the protection of nitrogen Store under anhydrous and oxygen-free conditions.
  • the present invention provides a method for preparing a supported three-site catalyst, one of which includes the following steps:
  • the porous inorganic carrier is immersed in a solution containing a chromium source, then dried, and then fired and activated at a high temperature of 300-900°C;
  • the method comprises the following steps:
  • the solution containing the chromium source is adsorbed on the surface of the porous inorganic carrier by dipping.
  • the dipping time is 1-24h, preferably 4-12h, and the dipping temperature is 20-120°C, preferably 45-90°C, and then 60-150 Drying between °C, preferably 80-130°C, drying time 2-24h, preferably 6-16h, vacuum can also be used in the drying process, and then the dried mixture is placed in an inert gas or oxygen-containing atmosphere for high-temperature roasting activation, roasting
  • the temperature is 300-900°C, preferably 400-600°C, and the calcination time is 2-24h, preferably 4-12h, and then it is naturally cooled to room temperature and stored for later use.
  • the immersion time is 1-24h, preferably 4-12h, and the immersion temperature is 20-120°C, preferably 45-90°C, and then dried at 60-150°C, Preferably 80 ⁇ 130°C, the drying time is 2 ⁇ 24h, preferably 6 ⁇ 16h.
  • Vacuum can also be used during the drying process, and then the dried mixture is placed in an inert gas or oxygen-containing atmosphere for high-temperature roasting activation, and the roasting temperature is 300-900 °C, preferably 400-800°C, the calcination time is 2-24h, preferably 4-12h, then cool, switch the atmosphere to an inert gas when it cools to 300-400°C, cool naturally to room temperature and store for later use.
  • c) Place the above-mentioned calcined product in a solution containing organic chromium and chromium source for immersion reaction.
  • the immersion reaction time is 1-24h, preferably 4-8h, and the immersion temperature is 20-120°C, preferably 45-80°C, and then at 60°C. Drying between ⁇ 150°C, preferably 80 ⁇ 130°C, drying time 2 ⁇ 24h, preferably 6 ⁇ 16h, vacuum can also be used in the drying process, and the catalyst precursor can be obtained after drying.
  • the catalyst precursor is placed in a solution containing an organometallic promoter for the immersion reaction.
  • the immersion is carried out with an organic solvent as a medium under the protection of an inert gas.
  • the temperature of the pre-reduction activation treatment is between room temperature and 100°C, preferably Between room temperature and 60°C; the pre-reduction activation treatment time is 0.5-20h, preferably 0.5-10h; the pre-reduction activation treatment adopts agitation method, preferably continuous stirring, after the treatment is completed, it is dried at 60 ⁇ 120°C for 2-8h , Drying is also carried out under nitrogen or inert gas atmosphere, such as nitrogen, helium, argon, etc., preferably under nitrogen atmosphere, the drying process can also be carried out under vacuum conditions; the addition of organometallic promoter The amount satisfies the organometallic promoter/total chromium molar ratio between 0 and 1000, preferably 0 to 100, more preferably 0 to 50;
  • the specific operations for preparing the catalyst of the present invention include:
  • the porous amorphous SiO 2 /Al 2 O 3 support is immersed in a certain concentration of chromium acetate aqueous solution, the chromium loading relative to the total weight of the catalyst meets the requirements of the present invention (for example, Cr is 0.2 to 0.8 wt%); After a certain period of time (for example, 4-8 hours), heat up and dry; then perform high-temperature calcination in a fluidized bed, where the first stage of calcination is the temperature-raising stage (for example, 100-150°C), and calcination in a nitrogen atmosphere removes the adsorption from the carrier
  • the second stage of calcination is the heating stage (for example, 150 ⁇ 500°C), in the dry air to remove part of the hydroxyl groups on the surface of the silica gel, while the chromium acetate is partially oxidized and decomposed; the third stage of calcination is the constant temperature stage (for example, 500°C) 4-12h), roasting in dry
  • the above-mentioned calcined product is immersed in a certain concentration of ammonium metavanadate aqueous solution, and the loading amount of vanadium relative to the total weight of the catalyst meets the requirements of the present invention (for example, V is 0.5-3wt%); in continuous stirring for a certain period of time (for example, 4-8 Hours), heat up and dry; then high-temperature calcination in a fluidized bed, wherein the first stage of calcination is the temperature-raising stage (for example, 100-150°C), roasting in a nitrogen atmosphere to remove the physical water adsorbed in the carrier; roasting the second The stage is a heating stage (for example, 150 ⁇ 800°C), roasting in dry air to remove part of the hydroxyl groups on the surface of the silica gel, and at the same time ammonium metavanadate is partially oxidized and decomposed; the third stage of roasting is a constant temperature stage (for example, constant temperature at 800°C for 4 ⁇ 12h ), roasting
  • the above-mentioned calcined product is immersed in a certain concentration of indene chromium n-heptane solution, the loading amount of organic chromium relative to the total weight of the catalyst meets the requirements of the present invention (for example, Cr is 0.5-2wt%), and the immersion temperature is 45-60°C.
  • the immersion time is 4 ⁇ 8h. After the immersion is completed, the temperature is increased and dried. The drying temperature is 90 ⁇ 100°C, and the drying time is 4 ⁇ 8h. The entire immersion and drying process can be stirred. After drying, the catalyst is transferred to 1mol under the protection of nitrogen.
  • the temperature of pre-reduction activation treatment is 50°C; the time of pre-reduction activation treatment is 2h; the pre-reduction activation treatment adopts Stir continuously to strengthen the reaction, and after the treatment is completed, it is dried in a nitrogen atmosphere at 80° C. for 4 hours to finally obtain the target catalyst.
  • the present invention provides a method for preparing a supported three-site catalyst, one of which includes the following steps:
  • porous inorganic carrier is immersed in a solution containing chromium source, vanadium source and Q component, then dried, and then fired and activated at a high temperature of 300-900°C;
  • the method comprises the following steps:
  • the solution containing the chromium source, vanadium source and Q component is adsorbed on the surface of the porous inorganic carrier by co-impregnation.
  • the immersion time is 1-24h, preferably 4-12h, and the immersion temperature is 20-120°C, preferably 45- 90°C, then dry at 60 ⁇ 150°C, preferably 80 ⁇ 130°C, drying time 2 ⁇ 24h, preferably 6 ⁇ 16h, vacuum can also be used in the drying process, and then the dried mixture is placed in inert gas or oxygen
  • High-temperature calcination activation is performed in the atmosphere, the calcination temperature is 300 ⁇ 900°C, preferably 400 ⁇ 800°C, the calcination time is 2 ⁇ 24h, preferably 4 ⁇ 12h, then it is cooled, and the atmosphere is switched to inert when it is cooled to 300 ⁇ 400°C Gas, cool to room temperature and store for later use.
  • the immersion reaction time is 1-24h, preferably 4-8h, and the immersion temperature is 20-120°C, preferably 45-80°C, and then at 60°C. Drying between ⁇ 150°C, preferably 80 ⁇ 130°C, drying time 2 ⁇ 24h, preferably 6 ⁇ 16h, vacuum can also be used in the drying process, and the catalyst precursor can be obtained after drying.
  • the pre-reduction activation treatment is between room temperature and 100°C, preferably Between room temperature and 60°C; the pre-reduction activation treatment time is 0.5-20h, preferably 0.5-10h; the pre-reduction activation treatment adopts agitation method, preferably continuous stirring, after the treatment is completed, it is dried at 60 ⁇ 120°C for 2-8h , Drying is also carried out under nitrogen or inert gas atmosphere, such as nitrogen, helium, argon, etc., preferably under nitrogen atmosphere, the drying process can also be carried out under vacuum conditions; the addition of organometallic promoter The amount satisfies the organometallic promoter/total chromium molar ratio between 0 and 1000, preferably 0 to 100, more preferably 0 to 50;
  • the specific operations for preparing the catalyst of the present invention include:
  • the porous amorphous SiO 2 /TiO 2 support is immersed in an aqueous solution of a certain concentration of vanadium nitrate, basic chromium acetate and sulfuric acid.
  • the loading amount of vanadium, chromium and sulfur relative to the total weight of the catalyst meets the requirements of the present invention (for example, V is 0.1-10wt%, Cr is 0.1-2wt%, S is 1-5wt%); after continuous stirring for a certain period of time (for example, 4-8 hours), it is heated and dried; then high-temperature calcination is carried out in a fluidized bed.
  • the first stage is the heating stage (for example, 100 ⁇ 150°C), roasting in a nitrogen atmosphere to remove the physical water adsorbed in the carrier;
  • the second stage of roasting is the heating stage (for example, 150 ⁇ 800°C), roasting in dry air to remove the silica gel Part of the hydroxyl groups on the surface, at the same time, vanadium nitrate, basic chromium acetate and sulfuric acid are partially oxidized and decomposed;
  • the third stage of roasting is a constant temperature stage (for example, a constant temperature of 4-12h at 800°C), which is roasted in dry air to further remove the surface of the silica gel.
  • Hydroxyl group also oxidizes and decomposes vanadium nitrate, basic chromium acetate and sulfuric acid almost completely; the fourth stage of roasting is a natural cooling stage, which is switched to nitrogen protection when it is cooled to 300-400°C, and transferred and stored under nitrogen protection for later use.
  • the above-mentioned calcined product is immersed in a certain concentration of dicyclopentadienyl chromium n-hexane solution, the loading amount of organic chromium relative to the total weight of the catalyst meets the requirements of the present invention (for example, Cr is 0.3-1wt%), and the immersion temperature is 45-50 °C, the immersion time is 4-8h, after the immersion, add 1mol/L of diethylaluminum chloride in n-hexane solution to make the molar ratio of aluminum to total chromium content 3/1, and the temperature of pre-reduction activation treatment is 50°C; the pre-reduction activation treatment time is 2h; the pre-reduction activation treatment adopts continuous stirring to strengthen the reaction, and after the treatment is completed, it is dried in a nitrogen atmosphere at 80°C for 4 hours, and finally the target catalyst is obtained.
  • the present invention provides a method for preparing a supported three-site catalyst, one of which includes the following steps:
  • the porous inorganic carrier is immersed in the solution containing the vanadium source and the Q component, then dried, and then calcined and activated at a high temperature of 300-900°C;
  • the method comprises the following steps:
  • the solution containing the vanadium source and the Q component is adsorbed on the surface of the porous inorganic carrier by dipping.
  • the dipping time is 1-24h, preferably 4-12h, and the dipping temperature is 20-120°C, preferably 45-90°C, and then Drying between 60 ⁇ 150°C, preferably 80 ⁇ 130°C, drying time 2 ⁇ 24h, preferably 6 ⁇ 16h, vacuum can also be used during drying, and then the dried mixture is placed in inert gas or oxygen-containing atmosphere for high temperature
  • the roasting temperature is 300-900°C, preferably 400-600°C
  • the roasting time is 2-24h, preferably 4-12h, and then it is naturally cooled to room temperature and stored for later use.
  • the immersion time is 1-24h, preferably 4-12h, and the immersion temperature is 20-120°C, preferably 45-90°C, and then dried at 60-150°C, Preferably 80 ⁇ 130°C, the drying time is 2 ⁇ 24h, preferably 6 ⁇ 16h.
  • Vacuum can also be used during the drying process, and then the dried mixture is placed in an inert gas or oxygen-containing atmosphere for high-temperature roasting activation, and the roasting temperature is 300-900 °C, preferably 400-800°C, the calcination time is 2-24h, preferably 4-12h, then cool, switch the atmosphere to an inert gas when it cools to 300-400°C, cool naturally to room temperature and store for later use.
  • c) Place the above-mentioned calcined product in a solution containing organic chromium and chromium source for immersion reaction.
  • the immersion reaction time is 1-24h, preferably 4-8h, and the immersion temperature is 20-120°C, preferably 45-80°C, and then at 60°C. Drying between ⁇ 150°C, preferably 80 ⁇ 130°C, drying time 2 ⁇ 24h, preferably 6 ⁇ 16h, vacuum can also be used in the drying process, and the catalyst precursor can be obtained after drying.
  • the catalyst precursor is placed in a solution containing an organometallic promoter for the immersion reaction.
  • the immersion is carried out with an organic solvent as a medium under the protection of an inert gas.
  • the temperature of the pre-reduction activation treatment is between room temperature and 100°C, preferably Between room temperature and 60°C; the pre-reduction activation treatment time is 0.5-20h, preferably 0.5-10h; the pre-reduction activation treatment adopts agitation method, preferably continuous stirring, after the treatment is completed, it is dried at 60 ⁇ 120°C for 2-8h , Drying is also carried out under nitrogen or inert gas atmosphere, such as nitrogen, helium, argon, etc., preferably under nitrogen atmosphere, the drying process can also be carried out under vacuum conditions; the addition of organometallic promoter The amount satisfies the organometallic promoter/total chromium molar ratio between 0 and 1000, preferably 0 to 100, more preferably 0 to 50;
  • the specific operations for preparing the catalyst of the present invention include:
  • the porous amorphous SiO 2 /Nb 2 O 5 support is immersed in a certain concentration of ammonium metavanadate and ammonium sulfate aqueous solution, and the loading amount of vanadium and sulfur relative to the total weight of the catalyst meets the requirements of the present invention (for example, V is 0.1-10wt %, S is 1 ⁇ 3wt%); after stirring continuously for a certain period of time (for example, 4-8 hours), heating and drying; then high-temperature roasting is carried out in a fluidized bed, and the first stage of roasting is the heating stage (for example, 100-150 °C), roasting in a nitrogen atmosphere to remove the physical water adsorbed in the carrier; the second stage of roasting is a heating stage (such as 150-500°C), roasting in dry air to remove part of the hydroxyl groups on the surface of the silica gel, and ammonium metavanadate Partial oxidation and decomposition of ammonium sulfate and ammonium sul
  • the above-mentioned calcined product is immersed in a certain concentration of chromium nitrate aqueous solution, the chromium loading relative to the total weight of the catalyst meets the requirements of the present invention (for example, chromium is 0.2 to 1 wt%); continuously stirring for a certain period of time (for example, 4 to 8 hours) Afterwards, it is heated and dried; then it is roasted at a high temperature in a fluidized bed.
  • the first stage of roasting is a heating stage (for example, 100-150°C).
  • the adsorbed physical water in the carrier is removed by roasting in a nitrogen atmosphere; the second stage of roasting is In the heating stage (for example, 150 ⁇ 800°C), roasting in dry air removes part of the hydroxyl groups on the surface of the silica gel, and at the same time, the chromium nitrate is partially oxidized and decomposed; the third stage of roasting is a constant temperature stage (for example, constant temperature at 800°C for 4 ⁇ 12h).
  • the fourth stage of calcination is the natural cooling stage, when it is cooled to 300 ⁇ 400°C, it is switched to nitrogen protection and transferred under nitrogen protection Save it for later use.
  • the above-mentioned calcined product is immersed in a certain concentration of diindenyl chromium n-hexane solution, the loading of organic chromium relative to the total weight of the catalyst meets the requirements of the present invention (for example, Cr is 0.5-2wt%), and the immersion temperature is 45-50°C.
  • the immersion time is 4-8h.
  • the present invention provides a method for preparing a supported three-site catalyst, one of which includes the following steps:
  • the porous inorganic carrier is immersed in the solution containing the chromium source and the Q component, then dried, and then fired and activated at a high temperature of 300 to 900°C;
  • the method comprises the following steps:
  • the immersion time is 1-24h, preferably 4-12h, and the immersion temperature is 20-120°C, preferably 45-90°C, and then dried at 60-150°C, Preferably 80 ⁇ 130°C, the drying time is 2 ⁇ 24h, preferably 6 ⁇ 16h.
  • Vacuum can also be used during the drying process, and then the dried mixture is placed in an inert gas or oxygen-containing atmosphere for high-temperature roasting activation, and the roasting temperature is 300-900 °C, preferably 400-800°C, the calcination time is 2-24h, preferably 4-12h, then cool, switch the atmosphere to an inert gas when it cools to 300-400°C, cool naturally to room temperature and store for later use.
  • c) Place the above-mentioned calcined product in a solution containing organic chromium and chromium source for immersion reaction.
  • the immersion reaction time is 1-24h, preferably 4-8h, and the immersion temperature is 20-120°C, preferably 45-80°C, and then at 60°C. Drying between ⁇ 150°C, preferably 80 ⁇ 130°C, drying time 2 ⁇ 24h, preferably 6 ⁇ 16h, vacuum can also be used in the drying process, and the catalyst precursor can be obtained after drying.
  • a certain amount of solvent, organometallic co-catalyst, ethylene monomer and (c) the catalyst precursor are sequentially introduced into the autoclave to initiate catalyst activation and ethylene polymerization.
  • the solvent medium can be selected from isopentane, n-hexane, N-heptane, n-octane and toluene, preferably isopentane or n-hexane
  • the organometallic co-catalyst can be selected from alkyl aluminum and its derivatives, alkyl lithium, alkyl boron, preferably alkyl aluminum
  • organic metal co-catalyst The molar ratio to the total amount of chromium is 0-1000, preferably 10-30
  • the catalyst activation and polymerization temperature is 50-110°C, preferably 60-80°C
  • the ethylene monomer pressure is 0.5-5 MPa, preferably 1-3 MPa.
  • the specific operations for preparing the catalyst of the present invention include:
  • the porous amorphous SiO 2 /Al 2 O 3 support is immersed in a certain concentration of chromium acetate and ammonium silicofluoride aqueous solution, the loading amount of chromium and fluorine relative to the total weight of the catalyst meets the requirements of the present invention (for example, Cr is 0.2 ⁇ 0.8 wt%, F is 0.5-2wt%); after continuous stirring for a certain period of time (for example, 4-8 hours), heating and drying; then high-temperature calcination in a fluidized bed, wherein the first stage of calcination is the heating stage (for example, 100- 150°C), roasting in a nitrogen atmosphere to remove the physical water adsorbed in the carrier; the second stage of roasting is a heating stage (such as 150-500°C), roasting in dry air to remove part of the hydroxyl groups on the surface of the silica gel, and at the same time chromium acetate and Ammonium silicofluoride is partially oxidized and de
  • the fourth stage of roasting is a natural cooling stage, and the roasted products are collected for use when cooled to room temperature.
  • the above-mentioned calcined product is immersed in a certain concentration of ammonium metavanadate aqueous solution, and the loading amount of vanadium relative to the total weight of the catalyst meets the requirements of the present invention (for example, V is 0.5-3wt%); in continuous stirring for a certain period of time (for example, 4-8 Hours), heat up and dry; then high-temperature calcination in a fluidized bed, wherein the first stage of calcination is the temperature-raising stage (for example, 100-150°C), roasting in a nitrogen atmosphere to remove the physical water adsorbed in the carrier; roasting the second The stage is a heating stage (for example, 150 ⁇ 800°C), roasting in dry air to remove part of the hydroxyl groups on the surface of the silica gel, and at the same time ammonium metavanadate is partially oxidized and decomposed; the third stage of roasting is a constant temperature stage (for example, constant temperature at 800°C for 4 ⁇ 12h ), roasting in
  • the above-mentioned calcined product is immersed in a certain concentration of indene chromium n-heptane solution, the loading amount of organic chromium relative to the total weight of the catalyst meets the requirements of the present invention (for example, Cr is 0.5-2wt%), and the immersion temperature is 45-60°C.
  • the immersion time is 4 ⁇ 8h. After the immersion is completed, the temperature is increased to dry.
  • the drying temperature is 90 ⁇ 100°C, and the drying time is 4 ⁇ 8h. Stirring can be applied throughout the immersion and drying process. After the drying, the catalyst is transferred to no Store water under anaerobic conditions.
  • the present invention provides a method for preparing a supported three-site catalyst, one of which includes the following steps:
  • the porous inorganic carrier is immersed in a solution containing a vanadium source, then dried, and then fired and activated at a high temperature of 300-900°C;
  • the method comprises the following steps:
  • the solution containing the vanadium source is adsorbed on the surface of the porous inorganic support by dipping.
  • the dipping time is 1-24h, preferably 4-12h, and the dipping temperature is 20-120°C, preferably 45-90°C, and then 60-150 Drying between °C, preferably 80-130°C, drying time 2-24h, preferably 6-16h, vacuum can also be used in the drying process, and then the dried mixture is placed in an inert gas or oxygen-containing atmosphere for high-temperature roasting activation, roasting
  • the temperature is 300-900°C, preferably 400-600°C, and the calcination time is 2-24h, preferably 4-12h, and then it is naturally cooled to room temperature and stored for later use.
  • the immersion time is 1 ⁇ 24h, preferably 4 ⁇ 12h
  • the immersion temperature is 20 ⁇ 120°C, preferably 45 ⁇ 90°C, and then at 60 ⁇ 150°C Dry in between, preferably at 80 ⁇ 130°C, drying time is 2 ⁇ 24h, preferably 6 ⁇ 16h.
  • Vacuum can also be used in the drying process, and then the dried mixture is placed in an inert gas or oxygen-containing atmosphere for high-temperature roasting activation, roasting temperature At 300 ⁇ 900°C, preferably 400 ⁇ 800°C, the calcination time is 2 ⁇ 24h, preferably 4 ⁇ 12h, and then cool down. When cooling to 300 ⁇ 400°C, switch the atmosphere to an inert gas, naturally cool to room temperature and store for later use .
  • c) Place the above-mentioned calcined product in a solution containing organic chromium and chromium source for immersion reaction.
  • the immersion reaction time is 1-24h, preferably 4-8h, and the immersion temperature is 20-120°C, preferably 45-80°C, and then at 60°C. Drying between ⁇ 150°C, preferably 80 ⁇ 130°C, drying time 2 ⁇ 24h, preferably 6 ⁇ 16h, vacuum can also be used in the drying process, and the catalyst precursor can be obtained after drying.
  • a certain amount of solvent, organometallic co-catalyst, ethylene monomer and (c) the catalyst precursor are sequentially introduced into the autoclave to initiate catalyst activation and ethylene polymerization.
  • the solvent medium can be selected from isopentane, n-hexane, N-heptane, n-octane and toluene, preferably isopentane or n-hexane
  • the organometallic co-catalyst can be selected from alkyl aluminum and its derivatives, alkyl lithium, alkyl boron, preferably alkyl aluminum
  • organic metal co-catalyst The molar ratio to the total amount of chromium is 0-1000, preferably 10-30
  • the catalyst activation and polymerization temperature is 50-110°C, preferably 60-80°C
  • the ethylene monomer pressure is 0.5-5 MPa, preferably 1-3 MPa.
  • the specific operations for preparing the catalyst of the present invention include:
  • the porous amorphous silica gel is immersed in a certain concentration of ammonium metavanadate aqueous solution, and the loading amount of vanadium relative to the total weight of the catalyst meets the requirements of the present invention (for example, V is 0.1-10wt%); in continuous stirring for a certain period of time (for example, 4 ⁇ After 8 hours), it is heated and dried; then it is roasted at a high temperature in a fluidized bed.
  • the first stage of roasting is the heating stage (for example, 100-150°C).
  • the second stage is the heating stage (for example, 150 ⁇ 500°C), roasting in dry air to remove part of the hydroxyl groups on the surface of the silica gel, and at the same time partial oxidation and decomposition of ammonium metavanadate; 12h), roasting in dry air to further remove the hydroxyl on the surface of the silica gel, and at the same time make the ammonium metavanadate almost completely oxidized and decompose;
  • the fourth stage of roasting is a natural cooling stage, and the roasted products are collected for use when cooled to room temperature.
  • the above-mentioned calcined product is immersed in a certain concentration of chromium nitrate and ammonium phosphate aqueous solution, and the loading amount of chromium and phosphorus relative to the total weight of the catalyst meets the requirements of the present invention (for example, chromium is 0.2-1wt%, P is 0.5-2wt%); After continuous stirring for a certain period of time (for example, 4-8 hours), the temperature is increased for drying; then the high-temperature calcination is carried out in a fluidized bed.
  • the first stage of calcination is the temperature-rising stage (for example, 100-150°C), which is roasted in a nitrogen atmosphere.
  • the second stage of roasting is the heating stage (for example, 150 ⁇ 800°C), roasting in dry air removes part of the hydroxyl groups on the surface of the silica gel, while the partial oxidation and decomposition of chromium nitrate and ammonium phosphate;
  • the third stage of roasting is Constant temperature stage (for example, constant temperature at 800°C for 4-12 hours), roasting in dry air to further remove the hydroxyl on the surface of silica gel, while making chromium nitrate and ammonium phosphate almost completely oxidized and decomposed;
  • the fourth stage of roasting is a natural cooling stage, Switch to nitrogen protection when cooled to 300 ⁇ 400°C, transfer and save under nitrogen protection for later use.
  • the above-mentioned calcined product is immersed in a certain concentration of difluorenyl chromium n-hexane solution, the loading amount of organic chromium relative to the total weight of the catalyst meets the requirements of the present invention (for example, Cr is 0.5-2wt%), and the immersion temperature is 45-50°C, The immersion time is 4-8h. After the immersion is completed, the temperature is increased to dry. The drying temperature is 75-90°C, and the drying time is 4-8h. The entire immersion and drying process can be stirred. After the drying is completed, the catalyst is transferred to the Store water under anaerobic conditions.
  • the present invention provides a method for preparing a supported three-site catalyst, one of which includes the following steps:
  • the porous inorganic carrier is immersed in a solution containing a chromium source, then dried, and then fired and activated at a high temperature of 300-900°C;
  • the method comprises the following steps:
  • the solution containing the chromium source is adsorbed on the surface of the porous inorganic carrier by dipping.
  • the dipping time is 1-24h, preferably 4-12h, and the dipping temperature is 20-120°C, preferably 45-90°C, and then 60-150 Drying between °C, preferably 80-130°C, drying time 2-24h, preferably 6-16h, vacuum can also be used in the drying process, and then the dried mixture is placed in an inert gas or oxygen-containing atmosphere for high-temperature roasting activation, roasting
  • the temperature is 300-900°C, preferably 400-600°C, and the calcination time is 2-24h, preferably 4-12h, and then it is naturally cooled to room temperature and stored for later use.
  • the immersion time is 1 ⁇ 24h, preferably 4 ⁇ 12h
  • the immersion temperature is 20 ⁇ 120°C, preferably 45 ⁇ 90°C, and then at 60 ⁇ 150°C Dry in between, preferably at 80 ⁇ 130°C, drying time is 2 ⁇ 24h, preferably 6 ⁇ 16h.
  • Vacuum can also be used in the drying process, and then the dried mixture is placed in an inert gas or oxygen-containing atmosphere for high-temperature roasting activation, roasting temperature At 300 ⁇ 900°C, preferably 400 ⁇ 800°C, the calcination time is 2 ⁇ 24h, preferably 4 ⁇ 12h, and then cool down. When cooling to 300 ⁇ 400°C, switch the atmosphere to an inert gas, naturally cool to room temperature and store for later use .
  • c) Place the above-mentioned calcined product in a solution containing organic chromium chromium source for immersion reaction.
  • the immersion reaction time is 1-24h, preferably 4-8h, and the immersion temperature is 20-120°C, preferably 45-80°C, and then at 60- Drying at 150°C, preferably 80-130°C, drying time 2-24h, preferably 6-16h, vacuum can also be used in the drying process, and the catalyst precursor can be obtained after drying.
  • a certain amount of solvent, organometallic co-catalyst, ethylene monomer and (c) the catalyst precursor are sequentially introduced into the autoclave to initiate catalyst activation and ethylene polymerization.
  • the solvent medium can be selected from isopentane, n-hexane, N-heptane, n-octane and toluene, preferably isopentane or n-hexane
  • the organometallic co-catalyst can be selected from alkyl aluminum and its derivatives, alkyl lithium, alkyl boron, preferably alkyl aluminum
  • organic metal co-catalyst The molar ratio to the total amount of chromium is 0-1000, preferably 10-30
  • the catalyst activation and polymerization temperature is 50-110°C, preferably 60-80°C
  • the ethylene monomer pressure is 0.5-5 MPa, preferably 1-3 MPa.
  • the specific operations for preparing the catalyst of the present invention include:
  • the porous amorphous SiO 2 /Al 2 O 3 support is immersed in a certain concentration of chromium acetate aqueous solution, the chromium loading relative to the total weight of the catalyst meets the requirements of the present invention (for example, Cr is 0.2 to 0.8 wt%); After a certain period of time (for example, 4-8 hours), heat up and dry; then perform high-temperature calcination in a fluidized bed, where the first stage of calcination is the temperature-raising stage (for example, 100-150°C), and calcination in a nitrogen atmosphere removes the adsorption from the carrier
  • the second stage of calcination is the heating stage (for example, 150 ⁇ 500°C), in the dry air to remove part of the hydroxyl groups on the surface of the silica gel, while the chromium acetate is partially oxidized and decomposed; the third stage of calcination is the constant temperature stage (for example, 500°C) 4-12h), roasting in dry
  • the above-mentioned calcined product is immersed in a certain concentration of ammonium metavanadate and ammonium silicofluoride aqueous solution, the loading amount of vanadium and fluorine relative to the total weight of the catalyst meets the requirements of the present invention (for example, V is 0.5-3wt%, F is 1 ⁇ 3wt%); after continuous stirring for a certain period of time (for example, 4-8 hours), heating and drying; then high-temperature calcination in a fluidized bed, wherein the first stage of calcination is the heating stage (for example, 100-150°C), in a nitrogen atmosphere Medium roasting removes the physical water adsorbed in the carrier; the second stage of roasting is the heating stage (such as 150-800°C), roasting in dry air to remove part of the hydroxyl groups on the surface of the silica gel, and at the same time the ammonium metavanadate and ammonium silicofluoride parts Oxidative decomposition; the third stage of
  • the above-mentioned calcined product is immersed in a certain concentration of dicyclopentadienyl chromium n-heptane solution, the loading amount of organic chromium relative to the total weight of the catalyst meets the requirements of the present invention (for example, Cr is 0.5-2wt%), and the immersion temperature is 45- 60°C, the immersion time is 4-8h, after immersion, the temperature is increased to dry, the drying temperature is 90-100°C, the drying time is 4-8h, the whole immersion and drying process can be stirred, after drying, the catalyst is protected under nitrogen Transfer to anhydrous and oxygen-free conditions for storage.
  • the present invention provides a method for preparing a supported three-site catalyst, one of which includes the following steps:
  • (V) Sequentially introduce a certain amount of solvent, organometallic promoter solution and ethylene monomer into the autoclave, and then weigh a certain amount of the catalyst precursor described in (IV), and introduce it into the polymerizer to reduce the promoter in situ
  • the catalyst precursor obtains the target catalyst, and then catalyzes the polymerization of ethylene.
  • the method comprises the following steps:
  • the dipping time is 1-24h, preferably 4-12h, and the dipping temperature is 20-120°C, preferably 45-90°C, and then at 60- Drying at 150°C, preferably 80-130°C, drying time 2-24h, preferably 6-16h, vacuum can also be used in the drying process, and then the dried mixture is placed in an inert gas or oxygen-containing atmosphere for high-temperature roasting activation.
  • the calcination temperature is 300-900°C, preferably 350-500°C, and the calcination time is 2-24h, preferably 4-12h, and then it is naturally cooled to room temperature and stored for later use.
  • the immersion time is 1-24h, preferably 4-12h
  • the immersion temperature is 20-120°C, preferably 45-90°C, and then dried at 60-150°C , Preferably 80 ⁇ 130 °C, drying time 2 ⁇ 24h, preferably 6 ⁇ 16h, vacuum can also be used in the drying process, and then the dried mixture is placed in an inert gas or oxygen-containing atmosphere for high temperature roasting activation, the roasting temperature is 300 ⁇ 900°C, preferably 400-600°C
  • the calcination time is 2-24h, preferably 4-12h, and then naturally cooled to room temperature and stored for later use.
  • the immersion time is 1-24h, preferably 4-12h
  • the immersion temperature is 20-120°C, preferably 45-90°C
  • the drying time is 2 ⁇ 24h, preferably 6 ⁇ 16h.
  • Vacuum can also be used during the drying process, and then the dried mixture is placed in an inert gas or oxygen-containing atmosphere for high-temperature roasting activation, and the roasting temperature is 300-900 °C, preferably 400-800°C, the calcination time is 2-24h, preferably 4-12h, then cool, switch the atmosphere to an inert gas when it cools to 300-400°C, cool naturally to room temperature and store for later use.
  • d) Place the above-mentioned calcined product in a solution containing organic chromium and chromium source for immersion reaction.
  • the immersion reaction time is 1-24h, preferably 4-8h, and the immersion temperature is 20-120°C, preferably 45-80°C, and then at 60°C. Drying between ⁇ 150°C, preferably 80 ⁇ 130°C, drying time 2 ⁇ 24h, preferably 6 ⁇ 16h, vacuum can also be used in the drying process, and the catalyst precursor can be obtained after drying.
  • a certain amount of solvent, organometallic co-catalyst, ethylene monomer and (d) the catalyst precursor are sequentially introduced into the autoclave to initiate catalyst activation and ethylene polymerization.
  • the solvent medium can be selected from isopentane, n-hexane, N-heptane, n-octane and toluene, preferably isopentane or n-hexane
  • the organometallic co-catalyst can be selected from alkyl aluminum and its derivatives, alkyl lithium, alkyl boron, preferably alkyl aluminum
  • organic metal co-catalyst The molar ratio to the total amount of chromium is 0-1000, preferably 10-30
  • the catalyst activation and polymerization temperature is 50-110°C, preferably 60-80°C
  • the ethylene monomer pressure is 0.5-5 MPa, preferably 1-3 MPa.
  • the specific operations for preparing the catalyst of the present invention include:
  • the porous amorphous SiO 2 support is immersed in a certain concentration of ammonium phosphate aqueous solution, and the phosphorus loading relative to the total weight of the catalyst meets the requirements of the present invention (for example, phosphorus is 1 to 2 wt%); in continuous stirring for a certain period of time (for example, 4 ⁇ After 8 hours), it is heated and dried; then it is roasted at a high temperature in a fluidized bed.
  • the first stage of roasting is the heating stage (for example, 100-150°C).
  • the second stage is the heating stage (for example, 150 ⁇ 500°C), roasting in dry air to remove part of the hydroxyl on the surface of the silica gel, and at the same time ammonium phosphate is decomposed into the catalyst modification component;
  • the third stage of roasting is the constant temperature stage (for example, constant temperature at 500°C) 4-12h), roasting in dry air to further remove the hydroxyl on the surface of the silica gel and further decompose the ammonium phosphate;
  • the fourth stage of roasting is a natural cooling stage, and the roasted products are collected for use when cooled to room temperature.
  • the above-mentioned calcined product is immersed in a certain concentration of ammonium metavanadate aqueous solution, and the loading amount of vanadium relative to the total weight of the catalyst meets the requirements of the present invention (for example, V is 0.5-3wt%); in continuous stirring for a certain period of time (for example, 4-8 Hours), heat up and dry; then high-temperature calcination in a fluidized bed, wherein the first stage of calcination is the temperature-raising stage (for example, 100-150°C), roasting in a nitrogen atmosphere to remove the physical water adsorbed in the carrier; roasting the second The stage is a heating stage (for example, 150 ⁇ 500°C), roasting in dry air to remove part of the hydroxyl groups on the surface of the silica gel, and at the same time ammonium metavanadate is partially oxidized and decomposed; the third stage of roasting is a constant temperature stage (for example, constant temperature at 500°C for 4 ⁇ 12h ), roasting in
  • the above-mentioned calcined product is immersed in a certain concentration of basic chromium acetate aqueous solution, the chromium loading relative to the total weight of the catalyst meets the requirements of the present invention (for example, Cr is 0.5 to 1 wt%); in continuous stirring for a certain period of time (for example, 4 to 8 Hours), heat up and dry; then high-temperature calcination in a fluidized bed, wherein the first stage of calcination is the temperature-raising stage (for example, 100-150°C), roasting in a nitrogen atmosphere to remove the physical water adsorbed in the carrier; roasting the second The stage is a heating stage (for example, 150 ⁇ 500°C), roasting in dry air to remove part of the hydroxyl groups on the surface of the silica gel, and at the same time, the basic chromium acetate is partially oxidized and decomposed; the third stage of roasting is a constant temperature stage (for example, a constant temperature at 500°C for 4-12
  • the above-mentioned calcined product is immersed in a certain concentration of diindenyl chromium n-heptane solution, the loading amount of organic chromium relative to the total weight of the catalyst meets the requirements of the present invention (for example, Cr is 0.5-2wt%), and the immersion temperature is 45-60°C
  • the immersion time is 4-8h. After the immersion, the temperature is increased to dry, the drying temperature is 90-100°C, and the drying time is 4-8h. The entire immersion and drying process can be stirred. After drying, the catalyst is transferred to Store under anhydrous and oxygen-free conditions.
  • the olefin generally contains ethylene monomers and may also contain comonomers; the comonomers may be ⁇ -olefins with 3 to 20 carbon atoms, such as propylene, 1-butene, 1-pentene, and 1 -Hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-methyl-1-pentene, 4-methyl-1-hexene Etc., these can be used alone or in combination of two or more.
  • comonomers may be ⁇ -olefins with 3 to 20 carbon atoms, such as propylene, 1-butene, 1-pentene, and 1 -Hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-methyl-1-pentene, 4-methyl-1-hexene Etc., these can be used alone or in combination of two or more.
  • the comonomer is preferably at least one of 1-butene, 1-hexene, 1-octene and 1-decene; when the comonomer is present, the amount of the comonomer is generally 0-30 vol% , Preferably 0-10 vol%, the amount of comonomer added is calculated based on its volume concentration relative to the solvent during polymerization.
  • the produced polyethylene product has the following characteristics: when ethylene homopolymerization is carried out, the molecular weight distribution is relatively wide, and some have a trimodal distribution. ; When the copolymerization of ethylene and ⁇ -olefin is carried out, the molecular weight distribution is broad, and some of them are trimodal, and contain low molecular weight ethylene homopolymer, medium and high molecular weight ethylene and ⁇ -olefin copolymer, and high molecular weight or ultrahigh molecular weight ethylene and ⁇ -Copolymers of olefins.
  • the organometallic co-catalyst can be an organoaluminum compound, such as triethyl Aluminum, triisobutyl aluminum, diethyl aluminum ethoxide, diethyl aluminum monochloride, methylaluminoxane, etc.
  • the amount of the organometallic aluminum compound meets: the molar ratio of aluminum element to total chromium element is 0-1000, preferably 0-70, more preferably 0-50; the molecular weight adjustment may be hydrogen;
  • the polymerization method may include gas phase Polymerization process, slurry polymerization process, suspension polymerization process, bulk polymerization process, solution polymerization process, etc. In addition, it also includes various combinations of two-pot series polymerization processes.
  • the method for producing olefin polymers using the catalyst of the present invention is not particularly limited, and gas-phase polymerization processes, slurry polymerization processes, suspension polymerization processes, bulk polymerization processes, and other processes known in the art can be used.
  • the solution polymerization process and the two-tank tandem polymerization process in various combinations are implemented under conventional embodiments and polymerization conditions.
  • the slurry polymerization process when used for polymerization, it includes adding ethylene to the reactor, then adding solvent and co-catalyst (organoaluminum compound), optionally adding hydrogen and comonomer, and finally adding the supported type of the present invention.
  • the three-site catalyst starts to polymerize.
  • the solvent used is generally any solvent known in the art for olefin polymerization, and can be an alkane with 3 to 20 carbon atoms, such as propane, n-butane, isobutane, n-pentane, isopentane , Neopentane, n-hexane, cyclohexane, n-heptane, n-octane, etc.; these solvents can be used alone or in combination of two or more.
  • the solvent used is preferably isobutane, isopentane, n-hexane, cyclohexane, n-heptane and the like.
  • the specific operation is as follows: the polymerization reactor is vacuum heated to remove impurities, then replaced with high-purity nitrogen, repeated three times, and replaced with a small amount of ethylene monomer.
  • the reaction proceeds at a temperature (for example, 35°C to 100°C) for a certain period of time (for example, 1 hour), the reaction is terminated by adding a mixed solution of hydrochloric acid/ethanol; the polymer is washed, dried in vacuum, and weighed and analyzed.
  • a temperature for example, 35°C to 100°C
  • a certain period of time for example, 1 hour
  • the present invention has the following advantages and beneficial effects:
  • the present invention develops a supported three-site catalyst and uses it for ethylene polymerization.
  • the three active centers in the catalyst can better show their respective catalytic performance, and even show a good catalytic synergistic effect.
  • the main feature is that the polymer molecular weight distribution is wider. , Presenting a trimodal or multimodal distribution, containing low molecular weight ethylene homopolymer A synthesized from organic chromium active centers, medium molecular weight ethylene copolymer B synthesized from inorganic chromium active centers, and high molecular weight or ultra-high molecular weight synthesized from inorganic vanadium active centers.
  • High molecular weight ethylene copolymer C, and the relative content of the three components of A, B, C can be adjusted mainly by adjusting the relative content of the three active centers in the catalyst, and can be adjusted by changing the amount of co-catalyst, polymerization temperature, and molecular weight regulator It is convenient to adjust the molecular weight and molecular weight distribution of ethylene homopolymer and ethylene/ ⁇ -olefin copolymer, as well as the content and distribution of comonomer in the polymerization conditions. Obviously, compared with the three-pot series process, the use of the supported three-site catalyst of the present invention to synthesize polyethylene with a broad peak or three-peak distribution in a single tank or a series double tank is more economical, green and efficient.
  • the supported three-site catalyst of the present invention has the following characteristics, that is, the catalyst of the present invention can produce a wider molecular weight distribution in a single reactor or two reactors in series, even Trimodal ethylene homopolymers and ethylene/ ⁇ -olefin copolymers, which contain lower molecular weight ethylene homopolymers, medium-high molecular weight ethylene and ⁇ -olefin copolymers, and copolymers of high molecular weight or ultra-high molecular weight ethylene and ⁇ -olefins Things.
  • the catalyst also has high ethylene homopolymerization and ethylene and ⁇ -olefin copolymerization reaction activity.
  • Figure 1 shows the high-temperature GPC curve of the three-pot polyethylene product prepared by the three-pot series technology
  • Figure 2 is a high temperature GPC curve of the supported three-site catalyst polyethylene product prepared in Example 16 of the present invention
  • Figure 3 is the GPC-FTIR characterization curve of the polymers obtained in Examples 31 and 32 of the present invention.
  • Figure 4 is a GPC-FTIR characterization curve of the polymer obtained in Example 28-2 of the present invention.
  • Figure 5 is a GPC-FTIR characterization curve of the polymer obtained in Example 30 of the present invention.
  • Example 6 is the high temperature GPC curve of the polymers obtained in Example 14, Comparative Example 1, Comparative Example 2, and Comparative Example 3 of the present invention.
  • reagents used in the examples can be conventionally purchased from the market unless otherwise specified.
  • the weight average molecular weight and molecular weight distribution are measured by high temperature gel chromatography:
  • the PL-220 high temperature gel permeation chromatograph Polymer Laboratories
  • IR4 infrared detector
  • HT-GPC HT-GPC
  • 1,2,4-trichlorobenzene was used as the solvent, and it was measured at 160°C.
  • the data was processed by the universal correction method using narrow-distributed polystyrene as the standard.
  • the short-chain branch content of the polymer is measured by high-temperature NMR carbon spectroscopy: In this experiment, a Bruker Avance III 500 nuclear magnetic resonance instrument was used to determine the content of polyethylene short-chain branch. In the experiment, deuterated p-dichlorobenzene was used as the solvent and measured at 110°C. The carbon signal on the polyethylene main chain (displacement at 30.00 ppm) was used as the internal standard to calculate the short-chain branch content.
  • silica gel (specific surface area 500m 2 /g, pore volume 1.3ml/g, pore diameter 20nm) immersed in the aqueous solution of vanadyl oxalate and basic chromium acetate (the loading amount of V and Cr relative to the total weight of the catalyst is 0.25wt. % And 0.7wt%), continuous stirring and immersion for about 4 hours, the immersion temperature is 60°C, then the temperature is raised to 120°C, and the stirring and drying are continued for 8 hours. Place the dried mixture in a fluidized bed and start heating and roasting from room temperature at a heating rate of 1°C/min. When it reaches 600°C, it will be kept at a constant temperature for 4 hours.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used for the heating stage from 150 to 600°C
  • a dry air atmosphere is used for a constant temperature stage of 600°C
  • a dry air atmosphere is used when the temperature is reduced from 600°C to 300°C during natural cooling. Switch to nitrogen atmosphere when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in the n-hexane solution of biscyclopentadienyl chromium (the loading amount of Cr is 1.5wt% relative to the total weight of the catalyst), the immersion temperature was 45°C, the immersion time was 6h, and then heated and dried. The temperature is 80°C, and the drying time is 4 hours. Stirring is applied during the immersion and drying process. After the drying is completed, the catalyst precursor is transferred to anhydrous and oxygen-free conditions for storage.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-500°C
  • a dry air atmosphere is used when the temperature is reduced from 500°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in an aqueous solution of basic chromium acetate (Cr loading amount is 0.7wt% relative to the total weight of the catalyst), continuously stirred and immersed for about 4 hours, the immersion temperature was 45°C, then the temperature was raised to 120°C, and the stirring and drying were continued for 8 hours .
  • the above-mentioned calcined product was immersed in the n-hexane solution of biscyclopentadienyl chromium (the loading amount of Cr is 1.5wt% relative to the total weight of the catalyst), the immersion temperature was 45°C, the immersion time was 6h, and then heated and dried. The temperature is 80°C, and the drying time is 4 hours. Stirring is applied during the immersion and drying process. After the drying is completed, the catalyst precursor is transferred to anhydrous and oxygen-free conditions for storage.
  • the mixture was naturally cooled to room temperature and transferred to dry conditions for storage.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-450°C
  • a dry air atmosphere is used when the temperature is reduced from 450°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in an aqueous solution of ammonium metavanadate (the V loading is 0.27% by weight relative to the total weight of the catalyst), continuously stirred and immersed for about 4 hours, the immersion temperature was 45°C, then the temperature was raised to 120°C, and the stirring and drying were continued for 8 hours.
  • the above-mentioned calcined product was immersed in the n-hexane solution of biscyclopentadienyl chromium (the loading amount of Cr is 1.5wt% relative to the total weight of the catalyst), the immersion temperature was 45°C, the immersion time was 6h, and then heated and dried. The temperature is 80°C, and the drying time is 4 hours. Stirring is applied during the immersion and drying process. After the drying is completed, the catalyst precursor is transferred to anhydrous and oxygen-free conditions for storage.
  • the above-mentioned calcined product was immersed in the n-hexane solution of biscyclopentadienyl chromium (the loading amount of Cr is 1.5wt% relative to the total weight of the catalyst), the immersion temperature was 45°C, the immersion time was 6h, and then heated and dried. The temperature is 80°C, and the drying time is 4 hours. Stirring is applied during the immersion and drying process. After the drying is completed, the catalyst precursor is transferred to anhydrous and oxygen-free conditions for storage.
  • the temperature When it reaches 500°C, the temperature is kept constant for 4 hours. After the roasting is completed, the mixture is naturally cooled to room temperature and stored in a dry environment for later use.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-500°C
  • a dry air atmosphere is used when the temperature is reduced from 500°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in an aqueous solution of basic chromium acetate (Cr loading amount is 0.7wt% relative to the total weight of the catalyst), continuously stirred and immersed for about 4 hours, the immersion temperature was 45°C, then the temperature was raised to 120°C, and the stirring and drying were continued for 8 hours . Place the dried mixture in a fluidized bed and start from room temperature for heating and roasting at a heating rate of 1°C/min. When it reaches 600°C, it will be kept at a constant temperature for 6 hours. After roasting, it will be naturally cooled to room temperature and transferred to anhydrous and oxygen-free conditions. Save it.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-600°C
  • a dry air atmosphere is used when the temperature is reduced from 600°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in the n-hexane solution of biscyclopentadienyl chromium (the loading amount of Cr is 1.5wt% relative to the total weight of the catalyst), the immersion temperature was 45°C, the immersion time was 6h, and then heated and dried. The temperature is 80°C, and the drying time is 4 hours. Stirring is applied during the immersion and drying process. After the drying is completed, the catalyst precursor is transferred to anhydrous and oxygen-free conditions for storage.
  • the mixture was naturally cooled to room temperature and transferred to dry conditions for storage.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-450°C
  • a dry air atmosphere is used when the temperature is reduced from 450°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in an ammonium metavanadate aqueous solution (the V loading amount was 0.25 wt% relative to the total weight of the catalyst), and the impregnation was continuously stirred for about 4 hours.
  • the immersion temperature was 45° C., then the temperature was raised to 120° C., and the stirring and drying were continued for 8 hours. Place the dried mixture in a fluidized bed and start from room temperature for heating and roasting at a heating rate of 1°C/min. When it reaches 600°C, it will be kept at a constant temperature for 6 hours. After roasting, it will be naturally cooled to room temperature and transferred to anhydrous and oxygen-free conditions. Save it.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-600°C
  • a dry air atmosphere is used when the temperature is reduced from 600°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in the n-hexane solution of dicyclopentadienyl chromium (the loading amount of Cr is 1.6wt% relative to the total weight of the catalyst), the immersion temperature was 45°C, the immersion time was 6h, and then heated and dried. The temperature is 80°C, and the drying time is 4 hours. Stirring is applied during the immersion and drying process. After the drying is completed, the catalyst precursor is transferred to anhydrous and oxygen-free conditions for storage.
  • the mixture is naturally cooled to room temperature and stored in a dry environment for later use.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-500°C
  • a dry air atmosphere is used when the temperature is reduced from 500°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in an aqueous solution of basic chromium acetate and sulfuric acid (the loading amounts of Cr and S were 0.7wt% and 2.7wt%, respectively, relative to the total weight of the catalyst), and the impregnation was continuously stirred for about 4h.
  • the immersion temperature was 45°C.
  • the temperature was raised to 120°C, and the stirring and drying were continued for 8 hours. Place the dried mixture in a fluidized bed and start from room temperature for heating and roasting at a heating rate of 1°C/min. When it reaches 600°C, it will be kept at a constant temperature for 6 hours. After roasting, it will be naturally cooled to room temperature and transferred to anhydrous and oxygen-free conditions. Save it.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-600°C
  • a dry air atmosphere is used when the temperature is reduced from 600°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in the n-hexane solution of biscyclopentadienyl chromium (the loading amount of Cr is 1.5wt% relative to the total weight of the catalyst), the immersion temperature was 45°C, the immersion time was 6h, and then heated and dried. The temperature is 80°C, and the drying time is 4 hours. Stirring is applied during the immersion and drying process. After the drying is completed, the catalyst precursor is transferred to anhydrous and oxygen-free conditions for storage.
  • the mixture was naturally cooled to room temperature and transferred to dry conditions for storage.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-450°C
  • a dry air atmosphere is used when the temperature is reduced from 450°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in aqueous solutions of ammonium metavanadate and ammonium phosphate (loading amounts of V and P were 0.25wt% and 4wt%, respectively, relative to the total weight of the catalyst), and continuously stirred and dipped for about 4 hours. The immersion temperature was 45°C, and then the temperature was raised.
  • the above-mentioned calcined product was immersed in the n-hexane solution of biscyclopentadienyl chromium (the loading amount of Cr is 1.5wt% relative to the total weight of the catalyst), the immersion temperature was 45°C, the immersion time was 6h, and then heated and dried. The temperature is 80°C, and the drying time is 4 hours. Stirring is applied during the immersion and drying process. After the drying is completed, the catalyst precursor is transferred to anhydrous and oxygen-free conditions for storage.
  • the mixture was naturally cooled to room temperature and transferred to dry conditions for storage.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-450°C
  • a dry air atmosphere is used when the temperature is reduced from 450°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in an aqueous chromium nitrate solution (the Cr loading amount was 0.7wt% relative to the total weight of the catalyst), continuously stirred and immersed for about 4 hours, the immersion temperature was 40°C, then the temperature was raised to 120°C, and the stirring and drying were continued for 8 hours.
  • the dried mixture was placed in a fluidized bed and started from room temperature for heating and roasting at a heating rate of 1°C/min. When it reached 450°C, the temperature was kept constant for 4 hours. After roasting, the mixture was naturally cooled to room temperature and transferred to dry conditions for storage.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-450°C
  • a dry air atmosphere is used when the temperature is reduced from 450°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in an aqueous solution of ammonium metavanadate (the loading amount of V is 0.25wt% relative to the total weight of the catalyst), and the impregnation was continuously stirred for about 4 hours.
  • the immersion temperature was 45°C, then the temperature was raised to 120°C, and the stirring and drying were continued for 8 hours. .
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-600°C
  • a dry air atmosphere is used when the temperature is reduced from 600°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in the n-hexane solution of biscyclopentadienyl chromium (the loading amount of Cr is 1.5wt% relative to the total weight of the catalyst), the immersion temperature was 45°C, the immersion time was 6h, and then heated and dried. The temperature is 80°C, and the drying time is 4 hours. Stirring is applied during the immersion and drying process. After the drying is completed, the catalyst precursor is transferred to anhydrous and oxygen-free conditions for storage.
  • silica gel (specific surface area 500m 2 /g, pore volume 1.3ml/g, pore diameter 20nm) immersed in the aqueous solution of vanadyl oxalate and basic chromium acetate (the loading amount of V and Cr relative to the total weight of the catalyst is 0.25wt. % And 0.7wt%), continuous stirring and immersion for about 4 hours, the immersion temperature is 60°C, then the temperature is raised to 120°C, and the stirring and drying are continued for 8 hours. Place the dried mixture in a fluidized bed and start heating and roasting from room temperature at a heating rate of 1°C/min. When it reaches 600°C, it will be kept at a constant temperature for 4 hours.
  • the temperature is 80°C, and the drying time is 4h. Stirring is applied during the impregnation and drying process. After drying, the catalyst is transferred to the triisobutylaluminum n-hexane solution under the protection of nitrogen.
  • the moles of triisobutylaluminum and Cr in the catalyst Ratio Al/Cr 7, stirring and impregnation reaction for 2h, impregnation reaction temperature is 30°C, then heating and drying, drying temperature is 80°C, drying time is 4h, after drying, the catalyst precursor which has been pre-reduced by triisobutyl aluminum
  • the body is transferred to anhydrous and oxygen-free conditions and stored for later use.
  • silica gel (specific surface area 500m 2 /g, pore volume 1.3ml/g, pore diameter 20nm) immersed in the aqueous solution of vanadyl oxalate and basic chromium acetate (the loading amount of V and Cr relative to the total weight of the catalyst is 0.25wt. % And 0.7wt%), continuous stirring and immersion for about 4 hours, the immersion temperature is 60°C, then the temperature is raised to 120°C, and the stirring and drying are continued for 8 hours. Place the dried mixture in a fluidized bed and start heating and roasting from room temperature at a heating rate of 1°C/min. When it reaches 600°C, it will be kept at a constant temperature for 4 hours.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used for the heating stage from 150 to 600°C
  • a dry air atmosphere is used for a constant temperature stage of 600°C
  • a dry air atmosphere is used when the temperature is reduced from 600°C to 300°C during natural cooling. Switch to nitrogen atmosphere when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in a n-hexane solution of diindenyl chromium (the loading amount of Cr relative to the total weight of the catalyst is 1.0wt%), the immersion temperature is 45°C, the immersion time is 6h, and then the temperature is increased and dried.
  • the drying temperature is 80°C, the drying time is 4h, stirring is applied during the immersion and drying process, and the catalyst precursor is transferred to anhydrous and oxygen-free storage under the protection of nitrogen after the drying.
  • silica gel (specific surface area 500m 2 /g, pore volume 1.3ml/g, pore diameter 20nm) immersed in the aqueous solution of vanadyl oxalate and basic chromium acetate (the loading amount of V and Cr relative to the total weight of the catalyst is 0.25wt. % And 0.7wt%), continuous stirring and immersion for about 4 hours, the immersion temperature is 60°C, then the temperature is raised to 120°C, and the stirring and drying are continued for 8 hours. Place the dried mixture in a fluidized bed and start heating and roasting from room temperature at a heating rate of 1°C/min. When it reaches 600°C, it will be kept at a constant temperature for 4 hours.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used for the heating stage from 150 to 600°C
  • a dry air atmosphere is used for a constant temperature stage of 600°C
  • a dry air atmosphere is used when the temperature is reduced from 600°C to 300°C during natural cooling. Switch to nitrogen atmosphere when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in the n-hexane solution of difluorenyl chromium (the loading amount of Cr relative to the total weight of the catalyst is 1.5wt%), the immersion temperature is 45°C, the immersion time is 6h, and then the temperature is increased and the drying temperature is 80°C, the drying time is 4h, stirring is applied during the immersion and drying process, and the catalyst precursor is transferred to anhydrous and oxygen-free storage under the protection of nitrogen after the drying.
  • silica gel (specific surface area 500m 2 /g, pore volume 1.3ml/g, pore diameter 20nm) immersed in the aqueous solution of vanadyl oxalate and basic chromium acetate (the loading amount of V and Cr relative to the total weight of the catalyst is 0.25wt. % And 0.7wt%), continuous stirring and immersion for about 4 hours, the immersion temperature is 60°C, then the temperature is raised to 120°C, and the stirring and drying are continued for 8 hours. Place the dried mixture in a fluidized bed and start heating and roasting from room temperature at a heating rate of 1°C/min. When it reaches 600°C, it will be kept at a constant temperature for 4 hours.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-600°C
  • a dry air atmosphere is used when the temperature is reduced from 600°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in the n-hexane solution of dicyclopentadienyl chromium, the loading amount of Cr relative to the total weight of the catalyst was 0.2wt%, 0.5wt%, 1wt%, 1.5wt%, 2wt% or 3wt%, respectively Marked as Examples 13-1, 13-2, 13-3, 13-4, 13-5 and 13-6, the immersion temperature is 45°C, the immersion time is 6h, and then the temperature is increased to dry, the drying temperature is 80°C, The drying time is 4 hours. Stirring is applied during the immersion and drying process. After the drying is completed, the catalyst precursor is transferred to anhydrous and oxygen-free conditions for storage.
  • Example 1 Weigh 100 mg of the catalyst precursor in Example 1 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • TIBA triisobutyl aluminum
  • n-heptane solvent Adjust the ethylene pressure to 1MPa, and after the temperature in the kettle is constant at 80°C, use high-pressure nitrogen to suspend the catalyst precursor into the polymerization kettle to start the reaction.
  • the instantaneous consumption of monomer ethylene was collected online and recorded by a computer.
  • a mixed solution of hydrochloric acid/ethanol was added to terminate the reaction.
  • the obtained polymer was dried in a vacuum drying oven at 60° C. for 4 hours, then weighed and analyzed.
  • Example 2 Weigh 100 mg of the catalyst precursor in Example 2 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • TIBA triisobutyl aluminum
  • n-heptane solvent Adjust the ethylene pressure to 1MPa, and after the temperature in the kettle is constant at 80°C, use high-pressure nitrogen to suspend the catalyst precursor into the polymerization kettle to start the reaction.
  • the instantaneous consumption of monomer ethylene was collected online and recorded by a computer.
  • a mixed solution of hydrochloric acid/ethanol was added to terminate the reaction.
  • the obtained polymer was dried in a vacuum drying oven at 60° C. for 4 hours, then weighed and analyzed.
  • Example 3 Weigh 100 mg of the catalyst precursor in Example 3 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • TIBA triisobutyl aluminum
  • Example 4 Weigh 100 mg of the catalyst precursor in Example 4 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • TIBA triisobutyl aluminum
  • n-heptane solvent Adjust the ethylene pressure to 1MPa, and after the temperature in the kettle is constant at 80°C, use high-pressure nitrogen to suspend the catalyst precursor into the polymerization kettle to start the reaction.
  • the instantaneous consumption of monomer ethylene was collected online and recorded by a computer.
  • a mixed solution of hydrochloric acid/ethanol was added to terminate the reaction.
  • the obtained polymer was dried in a vacuum drying oven at 60° C. for 4 hours, then weighed and analyzed.
  • Example 5 Weigh 100 mg of the catalyst precursor in Example 5 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • TIBA triisobutyl aluminum
  • n-heptane solvent Adjust the ethylene pressure to 1MPa, and after the temperature in the kettle is constant at 80°C, use high-pressure nitrogen to suspend the catalyst precursor into the polymerization kettle to start the reaction.
  • the instantaneous consumption of monomer ethylene was collected online and recorded by a computer.
  • a mixed solution of hydrochloric acid/ethanol was added to terminate the reaction.
  • the obtained polymer was dried in a vacuum drying oven at 60° C. for 4 hours, then weighed and analyzed.
  • Example 6 Weigh 100 mg of the catalyst precursor in Example 6 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • Al/Cr Ce is the total moles of chromium
  • TIBA triisobutyl aluminum
  • the instantaneous consumption of monomer ethylene was collected online and recorded by a computer.
  • a mixed solution of hydrochloric acid/ethanol was added to terminate the reaction.
  • the obtained polymer was dried in a vacuum drying oven at 60° C. for 4 hours, then weighed and analyzed.
  • Example 7 Weigh 100 mg of the catalyst precursor in Example 7 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • TIBA triisobutyl aluminum
  • n-heptane solvent Adjust the ethylene pressure to 1MPa, and after the temperature in the kettle is constant at 80°C, use high-pressure nitrogen to suspend the catalyst precursor into the polymerization kettle to start the reaction.
  • the instantaneous consumption of monomer ethylene was collected online and recorded by a computer.
  • a mixed solution of hydrochloric acid/ethanol was added to terminate the reaction.
  • the obtained polymer was dried in a vacuum drying oven at 60° C. for 4 hours, then weighed and analyzed.
  • Example 8 Weigh 100 mg of the catalyst precursor in Example 8 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • TIBA triisobutyl aluminum
  • n-heptane solvent Adjust the ethylene pressure to 1MPa, and after the temperature in the kettle is constant at 80°C, use high-pressure nitrogen to suspend the catalyst precursor into the polymerization kettle to start the reaction.
  • the instantaneous consumption of monomer ethylene was collected online and recorded by a computer.
  • a mixed solution of hydrochloric acid/ethanol was added to terminate the reaction.
  • the obtained polymer was dried in a vacuum drying oven at 60° C. for 4 hours, then weighed and analyzed.
  • Example 9 Weigh 100 mg of the catalyst precursor in Example 9 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • TIBA triisobutyl aluminum
  • n-heptane solvent Adjust the ethylene pressure to 1MPa, and after the temperature in the kettle is constant at 80°C, use high-pressure nitrogen to suspend the catalyst precursor into the polymerization kettle to start the reaction.
  • the instantaneous consumption of monomer ethylene was collected online and recorded by a computer.
  • a mixed solution of hydrochloric acid/ethanol was added to terminate the reaction.
  • the obtained polymer was dried in a vacuum drying oven at 60° C. for 4 hours, then weighed and analyzed.
  • Example 10 Weigh 100 mg of the catalyst precursor in Example 10 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • the 2L stainless steel high-pressure polymerization reactor is vacuum heated to remove impurities, and is pumped three times with high-purity nitrogen. Finally, the reactor is filled with a trace amount of refined ethylene to 0.12 MPa. Then sequentially add 1000ml of refined n-heptane solvent to the reaction kettle, adjust the ethylene pressure to 1MPa, and after the temperature in the kettle is constant at 80°C, use high-pressure nitrogen to suspend the catalyst precursor into the polymerization kettle to start the reaction.
  • the instantaneous consumption of monomer ethylene was collected online and recorded by a computer. After 1 h, a mixed solution of hydrochloric acid/ethanol was added to terminate the reaction. After filtration, the obtained polymer was dried in a vacuum drying oven at 60° C. for 4 hours, then weighed and analyzed.
  • Example 11 Weigh 100 mg of the catalyst precursor in Example 11 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • TIBA triisobutyl aluminum
  • n-heptane solvent Adjust the ethylene pressure to 1MPa, and after the temperature in the kettle is constant at 80°C, use high-pressure nitrogen to suspend the catalyst precursor into the polymerization kettle to start the reaction.
  • the instantaneous consumption of monomer ethylene was collected online and recorded by a computer.
  • a mixed solution of hydrochloric acid/ethanol was added to terminate the reaction.
  • the obtained polymer was dried in a vacuum drying oven at 60° C. for 4 hours, then weighed and analyzed.
  • Example 12 Weigh 100 mg of the catalyst precursor in Example 12 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • TIBA triisobutyl aluminum
  • n-heptane solvent Adjust the ethylene pressure to 1MPa, and after the temperature in the kettle is constant at 80°C, use high-pressure nitrogen to suspend the catalyst precursor into the polymerization kettle to start the reaction.
  • the instantaneous consumption of monomer ethylene was collected online and recorded by a computer.
  • a mixed solution of hydrochloric acid/ethanol was added to terminate the reaction.
  • the obtained polymer was dried in a vacuum drying oven at 60° C. for 4 hours, then weighed and analyzed.
  • the catalyst precursors prepared in Examples 13-1, 13-2, 13-3, 13-4, 13-5 or 13-6 were taken as the research objects, and they were recorded as Examples 26-1, 26-2, and 26-3, respectively. , 26-4, 26-5 or 26-6.
  • the 2L stainless steel high-pressure polymerization reactor is vacuum heated to remove impurities, and is pumped three times with high-purity nitrogen. Finally, the reactor is filled with a trace amount of refined ethylene to 0.12 MPa.
  • Example 4 Weigh 100 mg of the catalyst precursor in Example 4 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • the 2L stainless steel high-pressure polymerization reactor is vacuum heated to remove impurities, and is pumped three times with high-purity nitrogen. Finally, the reactor is filled with a trace amount of refined ethylene to 0.12 MPa.
  • Example 4 Weigh 100 mg of the catalyst precursor in Example 4 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • the 2L stainless steel high-pressure polymerization reactor is vacuum heated to remove impurities, and is pumped three times with high-purity nitrogen. Finally, the reactor is filled with a trace amount of refined ethylene to 0.12 MPa.
  • the instantaneous consumption of monomer ethylene was collected online and recorded by a computer.
  • a mixed solution of hydrochloric acid/ethanol was added to terminate the reaction.
  • the obtained polymer was dried in a vacuum drying oven at 60° C. for 4 hours, then weighed and analyzed.
  • Example 4 Weigh 100 mg of the catalyst precursor in Example 4 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • the 2L stainless steel high-pressure polymerization reactor is vacuum heated to remove impurities, and is pumped three times with high-purity nitrogen. Finally, the reactor is filled with a trace amount of refined ethylene to 0.12 MPa.
  • Example 4 Weigh 100 mg of the catalyst precursor in Example 4 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • the 2L stainless steel high-pressure polymerization reactor is vacuum heated to remove impurities, and is pumped three times with high-purity nitrogen. Finally, the reactor is filled with a trace amount of refined ethylene to 0.12 MPa. Then add 1000ml of refined n-heptane solvent into the reaction kettle, then press in 0.3bar of hydrogen, and then adjust the ethylene partial pressure to 1MPa. After the temperature in the kettle is constant at 80°C, use high-pressure nitrogen to suspend the catalyst precursor Hydraulic pressure into the polymerization kettle to start the reaction.
  • TIBA triisobutylaluminum
  • Example 4 Weigh 100 mg of the catalyst precursor in Example 4 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • the 2L stainless steel high-pressure polymerization reactor is vacuum heated to remove impurities, and is pumped three times with high-purity nitrogen. Finally, the reactor is filled with a trace amount of refined ethylene to 0.12 MPa. Then add 1000ml of refined n-heptane solvent to the reactor, and then adjust the ethylene partial pressure to 3.5MPa. After the temperature in the reactor is constant at 80°C, use high-pressure nitrogen to suspend the catalyst precursor and hydraulically into the polymerization reactor to start the reaction .
  • Example 4 Weigh 100 mg of the catalyst precursor in Example 4 and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • the 2L stainless steel high-pressure polymerization reactor was vacuum heated to remove impurities, and was pumped with high-purity nitrogen three times. Finally, the reactor was filled with a trace amount of refined ethylene to 0.12 MPa. Then add 1000ml of refined n-heptane solvent to the reactor, and then adjust the ethylene partial pressure to 3.5MPa. After the temperature in the reactor is constant at 80°C, use high-pressure nitrogen to suspend the catalyst precursor and hydraulically into the polymerization reactor to start the reaction .
  • silica gel (specific surface area 500m 2 /g, pore volume 1.3ml/g) immersed in an aqueous solution of vanadyl oxalate and basic chromium acetate (the loading amounts of V and Cr relative to the total weight of the catalyst are 0.25wt% and 0.7, respectively) wt%), continuous stirring and immersion for about 4 hours, the immersion temperature is 60°C, then the temperature is raised to 120°C, and the stirring and drying are continued for 8 hours. Place the dried mixture in a fluidized bed and start heating and roasting from room temperature at a heating rate of 1°C/min. When it reaches 600°C, it will be kept at a constant temperature for 4 hours.
  • the reactor is filled with a trace amount of refined ethylene to 0.12 MPa.
  • TIBA triisobutyl aluminum
  • Al/Cr Al/Cr
  • 10 the total moles of chromium
  • 100ml for dehydration and deoxidation 100ml for dehydration and deoxidation.
  • the n-heptane solvent Adjust the ethylene pressure to 1MPa, and after the temperature in the kettle is constant at 80°C, use high-pressure nitrogen to suspend the catalyst precursor into the polymerization kettle to start the reaction.
  • the instantaneous consumption of monomer ethylene was collected online and recorded by a computer.
  • silica gel (specific surface area 500m 2 /g, pore volume 1.3ml/g) and immerse it in an aqueous solution of basic chromium acetate (the loading amount of Cr is 0.7wt% relative to the total weight of the catalyst), and continuously stir and immerse for about 4h.
  • the temperature was 60°C, then the temperature was raised to 120°C, and the stirring and drying were continued for 8 hours.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-600°C
  • a dry air atmosphere is used when the temperature is reduced from 600°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in the n-hexane solution of biscyclopentadienyl chromium (the loading amount of Cr is 1.5wt% relative to the total weight of the catalyst), the immersion temperature was 45°C, the immersion time was 6h, and then heated and dried. The temperature is 80°C, and the drying time is 4 hours. Stirring is applied during the immersion and drying process.
  • the catalyst precursor is transferred to anhydrous and oxygen-free conditions for storage. Weigh 100 mg of the above catalyst precursor and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • the 2L stainless steel high-pressure polymerization reactor is vacuum heated to remove impurities, and is pumped three times with high-purity nitrogen. Finally, the reactor is filled with a trace amount of refined ethylene to 0.12 MPa.
  • silica gel (specific surface area 500m 2 /g, pore volume 1.3ml/g) immersed in an aqueous solution of vanadyl oxalate (loading amount of V relative to the total weight of the catalyst is 0.25wt%), continuous stirring and immersion for about 4h, immersion temperature The temperature was 60°C, then the temperature was raised to 120°C, and the stirring and drying were continued for 8h. Place the dried mixture in a fluidized bed and start heating and roasting from room temperature at a heating rate of 1°C/min. When it reaches 600°C, it will be kept at a constant temperature for 4 hours. After roasting, it will be naturally cooled to room temperature and transferred to anhydrous and oxygen-free conditions. Save it.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-600°C
  • a dry air atmosphere is used when the temperature is reduced from 600°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • the above-mentioned calcined product was immersed in the n-hexane solution of biscyclopentadienyl chromium (the loading amount of Cr is 1.5wt% relative to the total weight of the catalyst), the immersion temperature was 45°C, the immersion time was 6h, and then heated and dried. The temperature is 80°C, and the drying time is 4 hours. Stirring is applied during the immersion and drying process.
  • the catalyst precursor is transferred to anhydrous and oxygen-free conditions for storage. Weigh 100 mg of the above catalyst precursor and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • the 2L stainless steel high-pressure polymerization reactor is vacuum heated to remove impurities, and is pumped three times with high-purity nitrogen. Finally, the reactor is filled with a trace amount of refined ethylene to 0.12 MPa.
  • silica gel (specific surface area 500m 2 /g, pore volume 1.3ml/g) and immerse it in an aqueous solution of basic chromium acetate (the loading amount of Cr is 0.7wt% relative to the total weight of the catalyst), and continuously stir and immerse for about 4h.
  • the immersion temperature was 60°C, then the temperature was raised to 120°C, and the stirring and drying were continued for 8h.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-600°C
  • a dry air atmosphere is used when the temperature is reduced from 600°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • a nitrogen atmosphere is used from room temperature to 150°C
  • a dry air atmosphere is used at 150-600°C
  • a dry air atmosphere is used when the temperature is reduced from 600°C to 300°C during natural cooling
  • a nitrogen atmosphere is switched to when it is lower than 300°C.
  • silica gel specific surface area 500m 2 /g, pore volume 1.3ml/g
  • a heating rate of 1°C/min When it reaches 600°C, the temperature is constant for 4 hours.
  • roasting After roasting is complete Begin to cool to room temperature naturally, and transfer to anhydrous and oxygen-free conditions for storage. The whole process of the above process is carried out under a nitrogen atmosphere.
  • the above-mentioned calcined product was immersed in the n-hexane solution of biscyclopentadienyl chromium (the loading amount of Cr is 1.5wt% relative to the total weight of the catalyst), the immersion temperature was 45°C, the immersion time was 6h, and then heated and dried. The temperature is 80°C, and the drying time is 4 hours. Stirring is applied during the immersion and drying process. After the drying is completed, the catalyst precursor is transferred to anhydrous and oxygen-free conditions for storage. Weigh 100 mg of the above catalyst precursor and mix it with 10 ml of refined n-heptane solution to form a catalyst precursor suspension for polymerization experiments.
  • TIBA triisobutyl aluminum
  • Example Polymerization activity (g polymer/g catalyst) Weight average relative molecular weight ⁇ 10 -5 Relative molecular weight distribution 1-Butyl short-chain branch content (mol%)
  • Example 14 9874 3.7 34 0
  • Example 15 10830 3.5 42 0
  • Example 16 11217 3.7 38 0
  • Example 17 14120 4.5 33 0
  • Example 18 15606 3.2 54 0
  • Example 19 14266 3.1 61 0
  • Example 20 14582 3.2 47 0
  • Example 21 14513 2.8 38 0
  • Example 22 13981 3.2 45 0
  • Example 23 12836 3.5 34 0
  • Example 24 8887 4.1 31 0
  • Example 25 8610 4.5 27 0
  • Example 14 and Examples 15-16 The main difference between Example 14 and Examples 15-16 is that the chromium and vanadium of the former are co-impregnated, while the latter two are impregnated step by step. It can be found that the catalyst prepared by the stepwise impregnation method has a slightly lower ethylene polymerization activity than the High, but the polymer molecular weight and molecular weight distribution are comparable. Comparing Examples 15 and 16 or Examples 18 and 20 respectively, it can be found that the loading sequence of the catalyst components has little effect on its ethylene polymerization performance.
  • the main difference between Examples 14-16 and Examples 17-23 is that the latter introduces a catalyst modification component during the catalyst preparation process. It can be found that the activity of the catalyst with the modification component added under the same polymerization conditions is generally improved.
  • Example 14 Comparing Example 14 with Examples 24 and 25, it can be seen that when the organochromium source in the three-site catalyst uses dicyclopentadienyl as the ligand, its activity is slightly higher than that of the organochromium source with bis-indenyl or fluorenyl as the ligand. But from the point of view of polymer molecular weight and molecular weight distribution, the difference between the three is not obvious.
  • Example Polymerization activity (g polymer/g catalyst) Weight average relative molecular weight ⁇ 10 -5 Relative molecular weight distribution 1-Butyl short-chain branch content (mol%)
  • Example 26-1 7406 7.7 25 0
  • Example 26-2 7899 6.5 29 0
  • Example 26-3 8985 4.8 31 0
  • Example 26-4 9874 3.7 34 0
  • Example 26-5 11849 2.9 37 0
  • Examples 26-1 to 26-6 lies in the difference in the added amount of the dicyclopentadienyl chromium component in the catalysts used, which accounted for 0.2wt% and 0.5wt% of the total mass of the catalyst based on the mass of Cr. , 1wt%, 1.5wt%, 2wt% and 3wt%. From Table 2 above, it can be seen that with the increase in the amount of dicyclopentadienyl chromium, the polymerization activity of the catalyst gradually increases, while the relative molecular weight of the polymer gradually decreases, and the molecular weight distribution increases. This is mainly because the active center formed after the biscyclopentadienyl chromium component is loaded tends to polymerize ethylene to form lower molecular weight polyethylene.
  • Example Polymerization activity (g polymer/g catalyst) Weight average relative molecular weight ⁇ 10 -5 Relative molecular weight distribution 1-Butyl short-chain branch content (mol%)
  • Example 27-1 7342 2.7 twenty one 0
  • Example 27-2 12002 3.9 30
  • Example 27-3 14120 4.5 37
  • Example 27-4 13131 4.9 40
  • Example 27-5 12425 5.1 42
  • Example 31 5134 2.5 56 0
  • Examples 27-1 to 27-5 The main difference between Examples 27-1 to 27-5 is that the co-catalyst triisobutyl aluminum added in the polymerization process is different, and the added amount is 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 3, 5, 5, 3, 5, 5, 3, 5, 5, 3, 5, 5, 3, 5, 5, 4, and 3, respectively. 10, 15, 20. It can be seen from Table 3 that when the promoter is added, the activity of the catalytic system is significantly improved, but when the value of Al/Cr is greater than a certain value, the catalytic activity begins to decrease, that is, for a supported three-site catalyst with a specific composition , It has the best Al/Cr ratio to make its polymerization activity the highest.
  • Examples 31 and 32 are the polymerization results under the condition that no organometallic co-catalyst is added, wherein the polymerization time of the former is 1h and the polymerization time of the latter is 2h.
  • the co-catalyst is not added, the three-site catalyst of the present invention still has a certain ethylene polymerization activity, but the activity is significantly reduced compared with the case of adding the co-catalyst.
  • Example Polymerization activity (g polymer/g catalyst) Weight average relative molecular weight ⁇ 10 -5 Relative molecular weight distribution 1-Butyl short-chain branch content (mol%)
  • Example 28-1 15532 4.1 37 0.45
  • Example 28-2 12990 3.8 41 0.77
  • Example 28-3 12284 3.7 43 0.98
  • Example 28-4 11578 3.6 40 1.16
  • Examples 28-1 to 28-4 The main difference between Examples 28-1 to 28-4 is that the amount of comonomer 1-hexene added during the polymerization process is different.
  • the amount added is 1% and 3% based on the volume fraction of 1-hexene in the solvent. , 5%, 10%.
  • Table 4 It can be seen from Table 4 above that with the addition of 1-hexene, the activity of the catalyst shows a tendency to increase first and then decrease. This has been reported in most olefin polymerization catalyst systems, the so-called comonomer effect.
  • the relative molecular weight of the polymer is reduced, and the molecular weight distribution is broadened.
  • Example Polymerization activity (g polymer/g catalyst) Weight average relative molecular weight ⁇ 10 -5 Relative molecular weight distribution 1-Butyl short-chain branch content (mol%)
  • Example 29-1 13414 3.5 27 0
  • Example 29-2 12708 2.9 twenty one 0
  • Example 29-3 11719 2.4 18 0
  • Examples 29-1 to 29-4 The main difference between Examples 29-1 to 29-4 is that the partial pressure of hydrogen added during the polymerization process is different, which are 0.3 bar, 0.5 bar, 1 bar and 1.5 bar hydrogen in sequence. From Table 5 above, it can be seen that the polymerization activity of the catalyst decreases successively after adding hydrogen during the polymerization process, but the relative molecular weight of the polymer decreases significantly, indicating that the catalyst has excellent hydrogen modulation sensitivity. At the same time, as the hydrogen partial pressure increases, the molecular weight distribution of the polymer becomes narrower.
  • Example Polymerization activity (g polymer/g catalyst) Weight average relative molecular weight ⁇ 10-5 Relative molecular weight distribution 1-Butyl short-chain branch content (mol%)
  • Example 30 9884 3.1 51 0.65
  • Example 30 a two-stage polymerization was used to simulate the industrially common tandem polymerization process for ethylene polymerization.
  • the organic chromium active component the catalyst component does not require co-catalyst activation to have ethylene polymerization activity
  • the precursors of the active components of inorganic chromium and inorganic vanadium are activated by the co-catalyst to carry out the copolymerization of ethylene-1hexene to form a large number of higher molecular weight copolymers. Because of its poor copolymerization performance, the main continued homopolymerization of ethylene. Therefore, the use of this tandem polymerization process can flexibly control the molecular weight of the polymer and the distribution of comonomers. For example, the amount of comonomer added in Example 30 and Example 28-2 is the same.
  • the polymer comonomer of the former is more concentrated in the higher molecular weight components (as shown in the figure). 4 and Figure 5), which is more conducive to improving the long-term mechanical properties of the polymer.
  • Example Polymerization activity (g polymer/g catalyst) Weight average relative molecular weight ⁇ 10 -5 Relative molecular weight distribution 1-Butyl short-chain branch content (mol%) Comparative Example 1 7406 8.5 twenty one 0 Comparative Example 2 8393 2.6 35 0 Comparative Example 3 5233 4.9 107 0 Comparative Example 4 3160 4 18 0 Comparative Example 5 987 twenty four 4 0 Comparative Example 6 2469 1 3 0

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Catalysts (AREA)

Abstract

本发明属于催化剂领域,公开了一种负载型三中心催化剂及其制法和应用。该催化剂包括多孔无机载体、有机铬活性组分、无机铬活性组分和无机钒活性组分;还可以包括催化剂改性组分。本发明通过一步或多步的浸渍、干燥或者浸渍、干燥、高温焙烧程序将有机铬铬源、铬源、钒源以及Q组分分别转化为负载于多孔无机载体表面的有机铬活性组分前驱体、无机铬活性组分前驱体、无机钒活性组分前驱体和催化剂改性组分,然后通过有机金属助催化剂或聚合单体活化得到负载型三中心催化剂。该催化剂聚合活性高、氢调敏感性和共聚性能好,可应用于现有的单釜乙烯聚合工艺或双釜串联乙烯聚合工艺,其特色在于可用于制备分子量分布宽、呈三峰或多峰分布的聚合物产品。

Description

一种负载型三中心催化剂及其制备方法和应用 技术领域
本发明属于催化剂领域,特别涉及一种负载型三中心催化剂及其制备方法和应用。
背景技术
聚乙烯作为一种通用的塑料,由于其优良的力学性能、电绝缘性、耐化学腐蚀性及耐低温性能,广泛应用于工业、农业、汽车、通讯以及日常生活的各个领域,而这些优良的性能主要取决于聚乙烯的生产工艺、催化剂技术以及后加工技术等,其中催化剂技术又是其中最为关键的技术,因此受到工业和学术界广泛的关注和研究。
目前,工业上广泛应用的聚乙烯催化剂主要包含如下三大类:Ziegler~Natta钛系催化剂、铬基催化剂(主要包括无机铬Phillip催化剂和有机铬S~2催化剂)以及茂金属催化剂。在上述三大类催化剂的基础上,研究人员又开发出一些新型的催化剂,如复合型双中心催化剂,即将两种催化剂共混或者共负载于某一载体,其研究的出发点在于使该类催化剂能够同时具备两种活性中心的特性,甚至利用两种活性中心间的协同效应,表现出更为优异的催化特性。但是实际研究过程中人们发现该类催化剂的开发难度较大,主要是复合之后,两种活性中心通常表现为反协同作用,即互相毒化使催化性能削弱。通过大量的筛选,前期我们开发了一系列负载型铬、钒双金属中心聚乙烯催化剂,其双金属中心间在大多数条件下表现出优良的催化协同效应,使催化剂的聚合活性、共聚性能等方面在原来单金属催化剂的基础上有明显改善,且合成聚合物的分子量呈宽峰或者双峰分布,共聚单体也集中分布于高分子量组分,因此该系列催化剂在单釜法合成高性能双峰聚乙烯方面拥有巨大优势,有可能部分取代工业上常用的合成高性能双峰聚乙烯料的双釜串联工艺,因为相对于后者,利用双中心催化技术于单一反应釜中合成高性能双峰聚乙烯的设备投资更低,操作难度更小,能耗也更低。
另一方面,近些年德国的利安德~巴塞尔公司以及日本的三井油化公司开发了三釜串联工艺,该工艺使用单金属中心催化剂通过改变三个聚合釜的工艺条件,如共聚单体浓度和氢气分压以实现分子量呈三峰分布聚乙烯的生产(如图1所示),其聚合物包含较低分子量乙烯均聚物A,中等分子量乙烯共聚物B以及高分子量或超高分子量乙烯共聚物C,其中A组分主要提供聚合物较高的刚性和加工性能,B组分提供聚合物良好的韧性和长期力学性能,在此基础上C组分使聚合物的耐蠕变性以及长期力学性能又有进一步的提高,A、B、C组分的相对含量可通过催化剂在各反应釜的相对停留时间调整。该工艺合成的分子量呈三峰分布的聚乙烯相比于市场上现有的聚乙烯,在生产更高等级的管材以及薄膜方面展现出明显的优势。
现有技术中还没有通过三中心催化剂利用单一反应釜合成高性能三峰分布聚乙烯的报道。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种负载型三中心催化剂。其可用于乙烯均聚以及乙烯与α-烯烃的共聚,其合成的聚合物分子量分布较宽,部分呈三峰分布,包含较低分子量乙烯均聚物、中等分子量乙烯共聚物以及高分子量或超高分子量乙烯共聚物。
本发明另一目的在于提供上述负载型三中心催化剂的制备方法。
本发明再一目的在于提供上述负载型三中心催化剂在催化烯烃聚合中的应用。
本发明的目的通过下述方案实现:
一种负载型三中心催化剂,其包括多孔无机载体和三种催化剂活性中心,即有机铬活性组分、无机铬活性组分和无机钒活性组分;或者,该催化剂除了包括多孔无机载体、有机铬活性组分、无机铬活性组分和无机钒活性组分外,还可以包括催化剂改性组分。
所述的多孔无机载体为氧化硅、氧化铝、硅铝酸盐、无机粘土、氧化钛、氧化锆、氧化镁、氧化钙、氧化铁、氧化锡、氧化锌、氧化硼、氧化钨、氧化铌中的至少一种;所述无机粘土优选为蒙脱石,所述的氧化硅优选为无定型多孔硅胶。所述的多孔无机载体的比表面积为50~800m 2/g,孔体积为0.1~5.0cm 3/g,平均孔径在1~50nm;
所述的有机铬活性组分为有机铬活性组分前驱体经有机金属助催化剂或聚合单体活化后得到,而所述有机铬活性组分前驱体由含有环戊二烯基配体、茚基配体、芴基配体、环戊二烯基衍生物配体、茚基衍生物配体、芴基 衍生物配体中至少一种配体的有机铬铬源负载于多孔无机载体表面获得;
所述的无机铬活性组分为无机铬活性组分前驱体经有机金属助催化剂或聚合单体活化后的得到,而所述无机铬活性组分前驱体为铬源在多孔无机载体表面的高温焙烧产物;
所述的无机钒活性组分为无机钒活性组分前驱体经有机金属助催化剂或聚合单体活化后的得到,而所述无机钒催化剂前驱体为钒源在多孔无机载体表面的高温焙烧产物;
所述的催化剂改性组分为含硫、磷或卤素元素的化合物在多孔无机载体表面的高温焙烧产物,其中含硫、磷或卤素元素的化合物简称为Q组分;
所述聚合单体为乙烯或常见α-烯烃,常见α-烯烃包括丙烯、1-丁烯、1-己烯等。
所述的有机金属助催化剂包括有机铝化合物、有机锂化合物、有机硼化合物等常用作烯烃聚合反应助催化剂中的任何一种或者是它们的组合。有机铝化合物可以包括三烷基铝AlR 3、二烷基烷氧基铝AlR 2OR、二烷基卤化铝AlR 2X、铝氧烷、乙基倍半铝氯化物等等,其中R是烷基,例如具有1-12个碳原子的烷基,例如是甲基、乙基、正丙基、异丙基、正丁基、异丁基、正戊基、正己基、正庚基、正辛基、正壬基、正十二烷基等,X是卤素,例如氟、氯、溴和碘,优选氯。所述铝氧烷可以包括甲基铝等所有烷基铝与水的反应物。所述作为有机金属助催化剂的有机铝化合物可以单独使用或两种或两种以上组合使用。作为具体例子,所述铝化合物可以为三乙基铝、三异丁基铝、二乙基乙氧基铝、一氯二乙基铝和甲基铝氧烷等中的至少一种。
有机铬活性组分前驱体由有机铬铬源负载于多孔无机载体表面获得,所述的有机铬铬源的结构简式可表示如下:CrCp* 1Cp* 2,其中Cp* 1与Cp* 2均可为环戊二烯基及其衍生物、茚基及其衍生物、芴基及其衍生物中的一种,且Cp* 1与Cp* 2结构是否相同不受限制。
具体地,Cp* 1与Cp* 2的结构可为如下结构中的一种:
Figure PCTCN2020089296-appb-000001
其中,R为1~20个碳原子的烃基,烃基可以是饱和或是不饱和的,包括脂肪族、脂环族和芳香族,如甲基、乙基、丙基、丁基、戊烷基、环戊烷基、烯丙基、苯基和萘基等;n,取整数值0~5;芳香环上连接的多个R相互独立,可以相同,也可以不同;
Ra和Ra'为1~10个碳原子的烃基,烃基可以是饱和或是不饱和的,包括脂肪族、脂环族和芳香族,如甲基、乙基、丙基、丁基、戊烷基、环戊烷基、烯丙基、苯基和萘基等;m,取整数0~4;x,取整数0~3;芳香环上连接的多个Ra以及多个Ra'均相互独立,可以相同,也可以不同;
Rb和Rb'为1~10个碳原子的烃基,烃基可以是饱和或是不饱和的,包括脂肪族、脂环族和芳香族,如甲基、乙基、丙基、丁基、戊烷基、环戊烷基、烯丙基、苯基和萘基等官能团;m'、m",取整数值0~4;Y可以为H、Rb或Rb';z,取值0或1;芳香环上连接的多个Rb以及多个Rb'均相互独立,可以相同,也可以不同。
无机铬活性组分前驱体为铬源(含铬化合物)在无机载体表面的高温焙烧产物;所述的铬源(含铬化合物)选自三氧化铬、硝酸铬、醋酸铬、氯化铬、硫酸铬、铬酸铵、重铬酸铵、碱式醋酸铬、其它合适的可溶性铬盐以及它们之间的任意的组合。
无机钒活性组分前驱体为钒源(含钒化合物)在无机载体表面的高温焙烧产物;所述的钒源(含钒化合物)可选自如下:六氟钒酸铵、硝酸钒、草酸氧钒、偏钒酸铵、硫酸氧钒、硫酸氧化钒(Ⅳ)水合物、硫酸钒(Ⅲ)、三氯代氧化钒、原钒酸钠、偏钒酸钠等,以及非水溶性含钒盐:如双乙酰丙酮氧化钒、三异丙醇氧钒、三丙醇氧化钒、乙酰丙酮钒、氧化三乙氧基钒、氯化氧钒、硅化三钒、其它合适的可溶性钒盐以及它们的任意组合。
催化剂改性组分为Q组分在无机载体表面的高温焙烧产物;所述的Q组分可选自如下:硫酸、过硫酸、焦硫酸、亚硫酸、牛磺酸、硫酸铵、亚硫酸铵、过硫酸铵、硫酸钛、硫酸锆、硫酸钒、硫酸铁、硫酸亚铁、硫酸亚铁铵、硫酸镍、硫酸锌、硫酸铝、硫酸锡、硫酸锑、磷酸、焦磷酸、过磷酸、亚磷酸、次磷酸、偏磷酸、磷酸铵、焦磷酸铵、过磷酸铵、亚磷酸铵、次磷酸铵、偏磷酸铵、磷酸钛、磷酸锆、磷酸铁、磷酸镍、磷酸锌、磷酸铝、磷酸锡、磷酸锑、氢氟酸、氟化铵、氟硅酸、氟硼酸、氟硼酸铵、氟化氢铵、六氟硅酸铵、三氟化硼、氟化铝、氟化锑、六氟磷酸铵、六氟钛酸铵、盐酸、氯磺酸、氯化铵、氯化亚铁、氯化铁、氯化铝、四氯化钛、氢溴酸、溴化铵、溴化铁、溴化亚铁或溴化铝以及它们的任意组合。
所述的负载型三中心催化剂的活性中心前驱体结构如下所示,其中a结构为无机铬活性组分前驱体,b结构为无机钒活性组分前驱体,c组分为有机铬活性组分前驱体(其中L为环戊二烯基及其衍生物、茚基及其衍生物、芴基及其衍生物中的一种):
Figure PCTCN2020089296-appb-000002
所述的负载型三中心催化剂中,有机铬活性组分中Cr的含量为催化剂总重量的0.1~12wt%(按Cr的重量计);无机铬活性组分中Cr的含量为催化剂总重量的0.05~12wt%,(按Cr的重量计);无机钒活性组分中V的含量为催化剂总重量的0.05~10wt%,(按V的重量计);催化剂改性组分中硫、磷和卤素元素的含量为催化剂总重量的0.1~20wt%(按硫、磷和卤素元素的总重量计)。
一种上述负载型三中心催化剂的制备方法,包括负载型三中心催化剂前驱体的制备以及负载型三中心催化剂前驱体的活化,当负载型三中心催化剂中包括多孔无机载体、有机铬活性组分、无机铬活性组分、无机钒活性组分和催化剂改性组分时,负载型三中心催化剂前驱体的制备包括以下步骤:
(1.1)通过浸渍、干燥和高温焙烧程序将铬源、钒源以及Q组分分别转化为负载于多孔无机载体表面的无机铬活性组分前驱体、无机钒活性组分前驱体以及催化剂改性组分,得到负载型两中心催化剂前驱体,其中无机铬活性组分前驱体、无机钒活性组分前驱体以及催化剂改性组分这三种组分的负载顺序是任意的;
(1.2)通过浸渍、干燥程序将有机铬铬源转化为负载于步骤(1)中负载型两中心催化剂表面的有机铬活性组分前驱体,即得到负载型三中心催化剂前驱体;
当负载型三中心催化剂中包括多孔无机载体、有机铬活性组分、无机铬活性组分和无机钒活性组分时,负载型三中心催化剂前驱体的制备包括以下步骤:
(2.1)通过浸渍、干燥和高温焙烧程序将铬源和钒源分别转化为负载于多孔无机载体表面的无机铬活性组分前驱体和无机钒活性组分前驱体,得到负载型两中心催化剂前驱体,其中无机铬活性组分前驱体和无机钒活性组分前驱体这两种组分的负载顺序是任意的;
(2.2)通过浸渍、干燥程序将有机铬催化剂铬源转化为负载于步骤(1)中负载型两中心催化剂前驱体表面的有机铬活性组分前驱体,即得到负载型三中心催化剂前驱体;
负载型三中心催化剂前驱体的活化包括以下步骤:取上述两种方法中任意一种方法制备的负载型三中心催化剂前驱体,加入有机金属助催化剂对其进行预处理活化,然后干燥即得目标催化剂;或取上述负载型三中心催化剂前驱体,聚合前置于反应釜中与有机金属助催化剂反应原位形成目标催化剂;或取上述负载型三中心催化剂前驱体置于高压聚合单体中,经聚合单体原位活化形成目标催化剂。
上述两种制备三中心催化剂前驱体的方法中,所述的负载顺序是任意的是指以任何顺序负载这几种活性成分前驱体都是可以的,例如步骤(1.1)中,可以通过共浸渍的方法将铬源、钒源以及Q组分同时负载到多孔无机载体表面,然后通过干燥和高温焙烧得到负载型两中心催化剂前驱体;也可以通过共浸渍的方法将铬源、钒源以及Q组分中的任意两种组分同时负载到多孔无机载体表面,然后通过干燥和高温焙烧得到负载有相应活性组分前驱体或改性组分的多孔无机载体,再通过浸渍、干燥和高温焙烧程序将剩下一种组分转化为负载于改性多孔无机载体表面的相应活性组分前驱体或改性组分,即得到目标催化剂前驱体;也可以通过浸渍、干燥和高温焙烧程序将铬源、钒源以及Q组分中的任意一种转化为负载于多孔无机载体表面的活性组分前驱体或改性组分,再通过共浸渍的方法将剩下两种组分负载到改性的多孔无机载体上,然后再通过干燥和高温焙烧程序将剩下两种组分转化为负载于多孔无机载体表面的活性组分前驱体,即得到目标催化剂前驱体;还可以通过浸渍、干燥和高温焙烧程序依次将铬源、钒源以及Q组分分别转化为负载于多孔无机载体表面的无机铬活性组分前驱体、无机钒活性组分前驱体以及催化剂改性组分,即得到目标催化剂前驱体;
步骤(1.1)和步骤(2.1)中,铬源、钒源以及Q组分均以惰性溶剂为介质,通过浸渍搅拌的方法进入多孔无机载体孔道,并吸附于其表面,其中惰性溶剂为水、甲醇、乙醇、正己烷、正庚烷、正辛烷、苯、甲苯、二甲苯等中的至少一种;铬源、钒源以及Q组分的用量满足:无机铬活性组分中Cr的含量为催化剂总重量的0.05~12wt%,(按Cr的重量计);无机钒活性组分中V的含量为催化剂总重量的0.05~10wt%,(按V的重量计);催化剂改性组分中硫、磷和卤素元素的含量为催化剂总重量的0.1~20wt%,(按硫、磷和卤素元素的总重量计);所述的浸渍的温度为20~120℃,优选为45~90℃,所述的浸渍时间为1~24h,优选为4~12h;浸渍结束后通过高温将体系中的溶剂蒸发脱除以达到干燥的目的,所述的干燥是指在60~150℃干燥,优选在80~130℃干燥,所述的干燥时间为2~24h,优选为6~16h;铬源、钒源以及Q组分在多孔无机载体表面的高温焙烧过程是在氮气,或惰性气体如氩气和氦气,或者含氧气氛如氧气、干空气中进行,所述的高温焙烧的温度为300~900℃,优选为400~800℃,焙烧过程的升温速率为0.1~5℃/min,优选0.5~2℃/min,焙烧时间为2~24h,优选为4~12h;焙烧过程中,当温度升至150℃之前,焙烧在氮气或惰性气氛如氩气和氦气下进行,当焙烧温度超过150℃后,焙烧在含氧气氛如氧气或干空气中进行,当焙烧结束并且温度降至300~400℃以下后,将含氧气氛替换为惰性气氛;
步骤(1.1)和步骤(2.1)中,所述的焙烧过程一般在流化状态或非流化状态下均可进行,但优选在流化状 态下进行,焙烧主要分为四个阶段,其中第一阶段为室温至150℃,该阶段主要使物理吸附于无机载体表面的水组分脱除;第二阶段为150℃至焙烧温度,该阶段主要使无机载体表面的羟基缩合,并使形成的水分脱除,同时使浸渍吸附于其表面的铬源、钒源或Q组分部分分解;第三阶段为焙烧温度,该阶段使铬源、钒源或Q组分几乎完全分解,并分别形成无机铬活性组分前驱体、无机钒活性组分前驱体以及催化剂改性组分;第四阶段为冷却阶段,该阶段无机铬活性组分前驱体、无机钒活性组分前驱体或催化剂改性组分已在无机载体表面形成,但是需要继续通入气体使催化剂冷却至室温,以便于收集。其中第一阶段在惰性气体中进行以便使所含水分被充分脱除,第二和第三阶段在含氧气氛中进行,第四阶段当温度降低至300~400℃时将工作气氛由含氧气氛切换至惰性气体。
步骤(1.2)和步骤(2.2)中,有机铬铬源以惰性有机溶剂为介质,通过浸渍搅拌的方法与多孔无机载体表面的剩余羟基反应从而负载于其表面,其中有机铬铬源的用量满足:有机铬活性组分中Cr的含量为催化剂总重量的0.1~12wt%(按Cr的重量计);惰性有机溶剂可选用常用的有机烃类化合物,如正己烷、正庚烷、正辛烷、苯、甲苯、二甲苯等,浸渍温度为20~120℃,优选为45~80℃,浸渍时间1~24h,优选为4~8h;浸渍结束后通过高温将体系中的有机溶剂蒸发脱除以达到干燥的目的,干燥温度为60~150℃,优选为80~130℃,干燥时间为2~24h,优选为6~16h;整个过程在氮气或惰性气体如氩气以及氦气保护下进行。
负载型三中心催化剂前驱体的活化步骤中,所述有机金属助催化剂对该负载型三活性中心催化剂前驱体进行预还原活化处理是在惰性气氛下进行,所述的有机金属助催化剂的摩尔量和负载型三中心催化剂前驱体中铬元素的总摩尔量的比值为0~1000,优选为0-100,更优选0-50;所述的预还原活化处理温度在室温~100℃之间,优选室温~60℃之间,还原活化处理时间0.5~20小时,优选0.5~10小时,还原活化处理采用搅拌方式,优选连续搅拌,处理完毕后再在60~120℃之间干燥2~8小时,干燥在氮气或惰性气体气氛下进行,例如在氮气、氦气、氩气等气氛下进行,优选在氮气气氛下进行,该干燥过程也可在真空条件下进行,得到的经过预还原活化的负载型三活性中心催化剂在惰性气体气氛下保存待用。
负载型三中心催化剂前驱体的活化步骤中,负载型三中心催化剂前驱体与有机金属助催化剂反应原位形成目标催化剂是指在溶剂介质中进行原位还原活化处理,所述的溶剂介质可以选自异戊烷、正戊烷、正己烷、异己烷、正庚烷、正辛烷、甲苯、二甲苯,优选异戊烷、正己烷、异己烷和正庚烷中的至少一种;所述的有机金属助催化剂中金属元素的摩尔量和负载型三中心催化剂前驱体中铬元素的总摩尔量的比值为0~1000,优选为0-100,更优选0-50;所述的原位还原活化处理的温度为20~120℃,原位还原活化处理的时间为0.5~5h;
负载型三中心催化剂前驱体的活化步骤中,负载型三中心催化剂前驱体经聚合单体原位活化形成目标催化剂是指在溶剂介质中进行原位还原活化处理,溶剂介质可选自异戊烷、正戊烷、正己烷、异己烷、正庚烷、正辛烷、甲苯、二甲苯,优选异戊烷、正己烷、异己烷和正庚烷中的至少一种;聚合单体的分压为1-5MPa,优选1.5-3.5MPa;所述的原位还原活化处理的温度为50~120℃;
本发明提供制备负载型三中心催化剂的方法,其中一种方法包含如下步骤:
(I)将多孔无机载体浸渍于含铬源和钒源的溶液,然后干燥,接着在高温300~900℃下焙烧活化;
(II)将(I)中所得焙烧产物浸渍于含有机铬铬源的溶液,然后干燥,得到所述催化剂前驱体保存备用。
(III)称取一定量(II)中所得催化剂前驱体置于高压聚合釜中,原位通过聚合单体的活化作用形成具有催化剂活性的目标催化剂,随后开始聚合反应。
根据一个优选的制备负载型三活性中心乙烯聚合催化剂的方法包含步骤:
a)将含铬源和钒源的溶液通过共浸渍的方法吸附于多孔无机载体表面,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选400~800℃,焙烧时间为2~24h,优选4~12h,然后进行冷却,在冷却至300~400℃时将气氛切换成惰性气体,自然冷却至室温后保存备用。
b)将上述焙烧产物置于含有机铬催化剂前驱体的溶液中进行浸渍反应,浸渍反应时间为1~24h,优选4~8h,浸渍温度为20~120℃,优选45~80℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,干燥结束后即得所述催化剂前驱体。
c)称取一定量(II)中所得催化剂前驱体置于装有一定量溶剂的高压聚合釜中,原位通过乙烯单体的活化作用形成具有催化剂活性的目标催化剂,随后开始乙烯聚合反应,溶剂介质可选自异戊烷、正己烷、正庚烷、正辛烷和甲苯,优选异戊烷或正己烷,催化剂活化与聚合温度为50-110℃,优选60-80℃,乙烯单体压力为1-5MPa,优选1-3MPa。
作为一个实例,制备本发明催化剂的具体操作包括:
将多孔无定形硅胶浸渍在一定浓度的偏钒酸铵和碱式醋酸铬的水溶液中,钒和铬的负载量相对于催化剂总重量符合本发明的要求(例如V为0.1~10wt%,Cr为0.1~2wt%);在连续搅拌一定时间(例如4~8小时)后,升 温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~800℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时偏钒酸铵和碱式醋酸铬部分氧化分解;焙烧第三阶段为恒温阶段(例如800℃下恒温4~12h),在干燥空气中焙烧,以进一步脱除硅胶表面的羟基,同时使偏钒酸铵和碱式醋酸铬几乎完全氧化分解;焙烧第四阶段为自然降温冷却阶段,在冷却至300~400℃时切换为氮气保护,在氮气保护下转移保存备用。将上述焙烧产物浸渍于一定浓度的双环戊二烯基铬正己烷溶液中,有机铬的负载量相对于催化剂总重量符合本发明要求(例如Cr为0.5~2wt%),浸渍温度为45~50℃,浸渍时间为4~8h,浸渍结束后进行升温干燥,干燥温度为75~90℃,干燥时间为4~8h,整个浸渍和干燥过程可施加搅拌,干燥结束后在氮气保护下将催化剂前驱体转移至无水无氧条件下保存。往容积为2L的高压聚合釜中导入1L正己烷,随后在氮气保护下往聚合釜中加入0.1g催化剂前驱体,同时导入2MPa的乙烯分压,并在90℃下进行催化剂前驱体的原位活化和后续的聚合反应。
本发明提供制备负载型三中心催化剂的方法,其中一种方法包含如下步骤:
(I)将多孔无机载体浸渍于含钒源的溶液,然后干燥,接着在高温300~900℃下焙烧活化;
(II)将(I)中所得焙烧产物浸渍于含铬源的溶液,然后干燥,接着在高温300~900℃下焙烧活化;
(III)将(II)中所得焙烧产物浸渍于含有机铬铬源的溶液,然后干燥,得到所述催化剂前驱体保存备用。
(IV)称取一定量(III)中所得催化剂前驱体置于高压聚合釜中,通过聚合单体的原位活化作用形成具有催化剂活性的目标催化剂,随后开始聚合反应。
根据一个优选的制备负载型三活性中心乙烯聚合催化剂的方法包含步骤:
a)将含钒源的溶液通过浸渍的方法吸附于多孔无机载体表面,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选400~600℃,焙烧时间为2~24h,优选4~12h,然后自然冷却至室温后保存备用。
b)将上述焙烧产物浸渍于含铬源的溶液,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选400~800℃,焙烧时间为2~24h,优选4~12h,然后进行冷却,在冷却至300~400℃时将气氛切换成惰性气体,自然冷却至室温后保存备用。
c)将上述焙烧产物置于含有机铬铬源的溶液中进行浸渍反应,浸渍反应时间为1~24h,优选4~8h,浸渍温度为20~120℃,优选45~80℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,干燥结束后即得所述催化剂前驱体。
d)称取一定量(c)中所得催化剂前驱体置于装有一定量溶剂的高压聚合釜中,原位通过乙烯单体的活化作用形成具有催化剂活性的目标催化剂,随后开始乙烯聚合反应,溶剂介质可选自异戊烷、正己烷、正庚烷、正辛烷和甲苯,优选异戊烷或正己烷,催化剂活化与聚合温度为50-110℃,优选60-80℃,乙烯单体压力为1-5MPa,优选1-3MPa。
作为一个实例,制备本发明催化剂的具体操作包括:
将多孔无定形氧化铝浸渍在一定浓度的偏钒酸铵水溶液中,钒的负载量相对于催化剂总重量符合本发明的要求(例如V为0.1~10wt%);在连续搅拌一定时间(例如4~8小时)后,升温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~500℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时偏钒酸铵部分氧化分解;焙烧第三阶段为恒温阶段(例如500℃下恒温4~12h),在干燥空气中焙烧,以进一步脱除硅胶表面的羟基,同时使偏钒酸铵几乎完全氧化分解;焙烧第四阶段为自然降温冷却阶段,冷却至室温时将焙烧产物收集备用。将上述焙烧产物浸渍在一定浓度的硝酸铬水溶液中,铬的负载量相对于催化剂总重量符合本发明的要求(例如铬为0.2~1wt%);在连续搅拌一定时间(例如4~8小时)后,升温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~800℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时硝酸铬部分氧化分解;焙烧第三阶段为恒温阶段(例如800℃下恒温4~12h),在干燥空气中焙烧,以进一步脱除硅胶表面的羟基,同时使硝酸铬几乎完全氧化分解;焙烧第四阶段为自然降温冷却阶段,在冷却至300~400℃时切换为氮气保护,在氮气保护下转移保存备用。将上述焙烧产物浸渍于一定浓度的双环戊二烯基铬正己烷溶液中,有机铬的负载量相对于催化剂总重量符合本发明要求(例如Cr为0.5~2wt%),浸渍温度为45~50℃,浸渍时间为4~8h,浸渍结束后进行升温干燥,干燥温度为75~90℃,干燥时间为4~8h,整个浸渍和干燥过程可施加搅拌,干燥结束后在氮气保护下将催化剂转移至无水无氧条件下保存。往容积为2L的高压聚合釜中导入1L异戊烷,随后在氮气保护下往聚合釜中加入0.1g催化剂前驱体,同时导入3MPa的乙烯分压,并在100℃下进行催化剂前驱体的原位活化和后续的聚合反应。
本发明提供制备负载型三中心催化剂的方法,其中一种方法包含如下步骤:
(I)将多孔无机载体浸渍于含铬源的溶液,然后干燥,接着在高温300~900℃下焙烧活化;
(II)将(I)中所得焙烧产物浸渍于含钒源的溶液,然后干燥,接着在高温300~900℃下焙烧活化;
(III)将(II)中所得焙烧产物浸渍于含有机铬铬源的溶液,然后干燥,得到所述催化剂前驱体保存备用;
(IV)将(III)中所得催化剂前驱体浸渍于金属有机助催化剂溶液中进行预还原活化,得到所述催化剂。
根据一个优选的制备负载型三活性中心乙烯聚合催化剂的方法包含步骤:
a)将含铬源的溶液通过浸渍的方法吸附于多孔无机载体表面,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选400~600℃,焙烧时间为2~24h,优选4~12h,然后自然冷却至室温后保存备用。
b)将上述焙烧产物浸渍于含钒源的溶液,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选400~800℃,焙烧时间为2~24h,优选4~12h,然后进行冷却,在冷却至300~400℃时将气氛切换成惰性气体,自然冷却至室温后保存备用。
c)将上述焙烧产物置于含有机铬铬源的溶液中进行浸渍反应,浸渍反应时间为1~24h,优选4~8h,浸渍温度为20~120℃,优选45~80℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,干燥结束后即得所述催化剂前驱体。
d)将上述催化剂前驱体置于含有有机金属助催化剂的溶液中进行浸渍反应,浸渍是在惰性气体保护下以有机溶剂为介质进行,预还原活化处理的温度为室温~100℃之间,优选室温~60℃之间;预还原活化处理的时间为0.5~20h,优选0.5~10h;预还原活化处理采用搅拌方式,优选连续搅拌,处理完毕后再在60~120℃之间干燥2~8h,干燥也在氮气或惰性气体气氛下进行,例如在氮气、氦气、氩气等气氛下进行,优选在氮气气氛下进行,该干燥过程也可在真空条件下进行;有机金属助催化剂的加入量满足有机金属助催化剂/总铬摩尔比在0~1000之间,优选0~100,更优选0~50;
作为一个实例,制备本发明催化剂的具体操作包括:
将多孔无定形SiO 2/Al 2O 3载体浸渍在一定浓度的醋酸铬水溶液中,铬的负载量相对于催化剂总重量符合本发明的要求(例如Cr为0.2~0.8wt%);在连续搅拌一定时间(例如4~8小时)后,升温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~500℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时醋酸铬部分氧化分解;焙烧第三阶段为恒温阶段(例如500℃下恒温4~12h),在干燥空气中焙烧,以进一步脱除硅胶表面的羟基,同时使醋酸铬几乎完全氧化分解;焙烧第四阶段为自然降温冷却阶段,冷却至室温时将焙烧产物收集备用。将上述焙烧产物浸渍在一定浓度的偏钒酸铵水溶液中,钒的负载量相对于催化剂总重量符合本发明的要求(例如V为0.5~3wt%);在连续搅拌一定时间(例如4~8小时)后,升温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~800℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时偏钒酸铵部分氧化分解;焙烧第三阶段为恒温阶段(例如800℃下恒温4~12h),在干燥空气中焙烧,以进一步脱除硅胶表面的羟基,同时使偏钒酸铵几乎完全氧化分解;焙烧第四阶段为自然降温冷却阶段,在冷却至300~400℃时切换为氮气保护,在氮气保护下转移保存备用。将上述焙烧产物浸渍于一定浓度的二茚铬正庚烷溶液中,有机铬的负载量相对于催化剂总重量符合本发明要求(例如Cr为0.5~2wt%),浸渍温度为45~60℃,浸渍时间为4~8h,浸渍结束后进行升温干燥,干燥温度为90~100℃,干燥时间为4~8h,整个浸渍和干燥过程可施加搅拌,干燥结束后在氮气保护下将催化剂转移至1mol/L的三乙基铝正己烷溶液中,并且铝与总铬含量的摩尔比为5/1,预还原活化处理的温度为50℃;预还原活化处理的时间为2h;预还原活化处理采用连续搅拌加强反应,处理完毕后再在80℃下氮气氛围中干燥4h,最终得到所述目标催化剂。
本发明提供制备负载型三中心催化剂的方法,其中一种方法包含如下步骤:
(I)将多孔无机载体浸渍于含铬源、钒源和Q组分的溶液,然后干燥,接着在高温300~900℃下焙烧活化;
(II)将(I)中所得焙烧产物浸渍于含有机铬铬源的溶液,然后干燥,得到所述催化剂前驱体保存备用。
(III)将(II)中所得催化剂前驱体浸渍于金属有机助催化剂溶液中进行预还原活化,得到所述催化剂。
根据一个优选的制备负载型三活性中心乙烯聚合催化剂的方法包含步骤:
a)将含铬源、钒源和Q组分的溶液通过共浸渍的方法吸附于多孔无机载体表面,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选400~800℃,焙烧时间为2~24h,优选4~12h,然后进行冷却,在冷却至300~400℃时将气氛切换成惰性气体,自然冷却至室温后保存备用。
b)将上述焙烧产物置于含有机铬铬源的溶液中进行浸渍反应,浸渍反应时间为1~24h,优选4~8h,浸渍温度为20~120℃,优选45~80℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,干燥结束后即得所述催化剂前驱体。
c)将上述催化剂前驱体置于含有有机金属助催化剂的溶液中进行浸渍反应,浸渍是在惰性气体保护下以有 机溶剂为介质进行,预还原活化处理的温度为室温~100℃之间,优选室温~60℃之间;预还原活化处理的时间为0.5~20h,优选0.5~10h;预还原活化处理采用搅拌方式,优选连续搅拌,处理完毕后再在60~120℃之间干燥2~8h,干燥也在氮气或惰性气体气氛下进行,例如在氮气、氦气、氩气等气氛下进行,优选在氮气气氛下进行,该干燥过程也可在真空条件下进行;有机金属助催化剂的加入量满足有机金属助催化剂/总铬摩尔比在0~1000之间,优选0~100,更优选0~50;
作为一个实例,制备本发明催化剂的具体操作包括:
将多孔无定形SiO 2/TiO 2载体浸渍在一定浓度的硝酸钒、碱式醋酸铬和硫酸的水溶液中,钒、铬和硫的负载量相对于催化剂总重量符合本发明的要求(例如V为0.1~10wt%,Cr为0.1~2wt%,S为1~5wt%);在连续搅拌一定时间(例如4~8小时)后,升温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~800℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时硝酸钒、碱式醋酸铬和硫酸部分氧化分解;焙烧第三阶段为恒温阶段(例如800℃下恒温4~12h),在干燥空气中焙烧,以进一步脱除硅胶表面的羟基,同时使硝酸钒、碱式醋酸铬和硫酸几乎完全氧化分解;焙烧第四阶段为自然降温冷却阶段,在冷却至300~400℃时切换为氮气保护,在氮气保护下转移保存备用。将上述焙烧产物浸渍于一定浓度的双环戊二烯基铬正己烷溶液中,有机铬的负载量相对于催化剂总重量符合本发明要求(例如Cr为0.3~1wt%),浸渍温度为45~50℃,浸渍时间为4~8h,浸渍结束后再加入1mol/L的一氯二乙基铝的正己烷溶液,使铝与总铬含量的摩尔比为3/1,预还原活化处理的温度为50℃;预还原活化处理的时间为2h;预还原活化处理采用连续搅拌加强反应,处理完毕后再在80℃下氮气氛围中干燥4h,最终得到所述目标催化剂。
本发明提供制备负载型三中心催化剂的方法,其中一种方法包含如下步骤:
(I)将多孔无机载体浸渍于含钒源和Q组分的溶液,然后干燥,接着在高温300~900℃下焙烧活化;
(II)将(I)中所得焙烧产物浸渍于含铬源的溶液,然后干燥,接着在高温300~900℃下焙烧活化;
(III)将(II)中所得焙烧产物浸渍于含有机铬铬源的溶液,然后干燥,得到所述催化剂前驱体保存备用。
(IV)将(III)中所得催化剂前驱体浸渍于金属有机助催化剂溶液中进行预还原活化,得到所述催化剂。
根据一个优选的制备负载型三活性中心乙烯聚合催化剂的方法包含步骤:
a)将含钒源和Q组分的溶液通过浸渍的方法吸附于多孔无机载体表面,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选400~600℃,焙烧时间为2~24h,优选4~12h,然后自然冷却至室温后保存备用。
b)将上述焙烧产物浸渍于含铬源的溶液,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选400~800℃,焙烧时间为2~24h,优选4~12h,然后进行冷却,在冷却至300~400℃时将气氛切换成惰性气体,自然冷却至室温后保存备用。
c)将上述焙烧产物置于含有机铬铬源的溶液中进行浸渍反应,浸渍反应时间为1~24h,优选4~8h,浸渍温度为20~120℃,优选45~80℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,干燥结束后即得所述催化剂前驱体。
d)将上述催化剂前驱体置于含有有机金属助催化剂的溶液中进行浸渍反应,浸渍是在惰性气体保护下以有机溶剂为介质进行,预还原活化处理的温度为室温~100℃之间,优选室温~60℃之间;预还原活化处理的时间为0.5~20h,优选0.5~10h;预还原活化处理采用搅拌方式,优选连续搅拌,处理完毕后再在60~120℃之间干燥2~8h,干燥也在氮气或惰性气体气氛下进行,例如在氮气、氦气、氩气等气氛下进行,优选在氮气气氛下进行,该干燥过程也可在真空条件下进行;有机金属助催化剂的加入量满足有机金属助催化剂/总铬摩尔比在0~1000之间,优选0~100,更优选0~50;
作为一个实例,制备本发明催化剂的具体操作包括:
将多孔无定形SiO 2/Nb 2O 5载体浸渍在一定浓度的偏钒酸铵和硫酸铵水溶液中,钒和硫的负载量相对于催化剂总重量符合本发明的要求(例如V为0.1~10wt%,S为1~3wt%);在连续搅拌一定时间(例如4~8小时)后,升温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~500℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时偏钒酸铵和硫酸铵部分氧化分解;焙烧第三阶段为恒温阶段(例如500℃下恒温4~12h),在干燥空气中焙烧,以进一步脱除硅胶表面的羟基,同时使偏钒酸铵和硫酸铵几乎完全氧化分解;焙烧第四阶段为自然降温冷却阶段,冷却至室温时将焙烧产物收集备用。将上述焙烧产物浸渍在一定浓度的硝酸铬水溶液中,铬的负载量相对于催化剂总重量符合本发明的要求(例如铬为0.2~1wt%);在连续搅拌一定时间(例如4~8小时)后,升温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~800℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时硝酸铬部分氧化分解;焙烧第三阶段为恒温阶段(例如800℃下恒温4~12h),在干燥空气中焙烧, 以进一步脱除硅胶表面的羟基,同时使硝酸铬几乎完全氧化分解;焙烧第四阶段为自然降温冷却阶段,在冷却至300~400℃时切换为氮气保护,在氮气保护下转移保存备用。将上述焙烧产物浸渍于一定浓度的二茚基铬正己烷溶液中,有机铬的负载量相对于催化剂总重量符合本发明要求(例如Cr为0.5~2wt%),浸渍温度为45~50℃,浸渍时间为4~8h,浸渍结束后再加入1mol/L的甲基铝氧烷的甲苯溶液,使铝与总铬含量的摩尔比为300/1,预还原活化处理的温度为50℃;预还原活化处理的时间为2h;预还原活化处理采用连续搅拌加强反应,处理完毕后再在120℃下氮气氛围中干燥4h,最终得到所述目标催化剂。
本发明提供制备负载型三中心催化剂的方法,其中一种方法包含如下步骤:
(I)将多孔无机载体浸渍于含铬源和Q组分的溶液,然后干燥,接着在高温300~900℃下焙烧活化;
(II)将(I)中所得焙烧产物浸渍于含钒源的溶液,然后干燥,接着在高温300~900℃下焙烧活化;
(III)将(II)中所得焙烧产物浸渍于含有机铬铬源的溶液,然后干燥,得到所述催化剂前驱体保存备用。
(IV)往高压聚合釜中依次引入一定量溶剂、有机金属助催化剂溶液和乙烯单体,随后称取一定量(III)中所述催化剂前驱体,并导入聚合釜中,助催化剂原位还原催化剂前驱体得到所述目标催化剂,随后催化乙烯聚合。
根据一个优选的制备负载型三活性中心乙烯聚合催化剂的方法包含步骤:
a)将含铬源和Q组分的溶液通过浸渍的方法吸附于多孔无机载体表面,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选400~600℃,焙烧时间为2~24h,优选4~12h,然后自然冷却至室温后保存备用。
b)将上述焙烧产物浸渍于含钒源的溶液,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选400~800℃,焙烧时间为2~24h,优选4~12h,然后进行冷却,在冷却至300~400℃时将气氛切换成惰性气体,自然冷却至室温后保存备用。
c)将上述焙烧产物置于含有机铬铬源的溶液中进行浸渍反应,浸渍反应时间为1~24h,优选4~8h,浸渍温度为20~120℃,优选45~80℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,干燥结束后即得所述催化剂前驱体。
d)往高压聚合釜中依次导入一定量溶剂、有机金属助催化剂、乙烯单体和(c)所述催化剂前驱体开始催化剂活化以及乙烯聚合反应,溶剂介质可选自异戊烷、正己烷、正庚烷、正辛烷和甲苯,优选异戊烷或正己烷,有机金属助催化剂可选自烷基铝及其衍生物、烷基锂、烷基硼,优选烷基铝,有机金属助催化剂与铬总量的摩尔比为0-1000,优选10-30,催化剂活化与聚合温度为50-110℃,优选60-80℃,乙烯单体压力为0.5-5MPa,优选1-3MPa。
作为一个实例,制备本发明催化剂的具体操作包括:
将多孔无定形SiO 2/Al 2O 3载体浸渍在一定浓度的醋酸铬和硅氟酸铵水溶液中,铬和氟的负载量相对于催化剂总重量符合本发明的要求(例如Cr为0.2~0.8wt%,F为0.5~2wt%);在连续搅拌一定时间(例如4~8小时)后,升温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~500℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时醋酸铬和硅氟酸铵部分氧化分解;焙烧第三阶段为恒温阶段(例如500℃下恒温4~12h),在干燥空气中焙烧,以进一步脱除硅胶表面的羟基,同时使醋酸铬和硅氟酸铵几乎完全氧化分解;焙烧第四阶段为自然降温冷却阶段,冷却至室温时将焙烧产物收集备用。将上述焙烧产物浸渍在一定浓度的偏钒酸铵水溶液中,钒的负载量相对于催化剂总重量符合本发明的要求(例如V为0.5~3wt%);在连续搅拌一定时间(例如4~8小时)后,升温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~800℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时偏钒酸铵部分氧化分解;焙烧第三阶段为恒温阶段(例如800℃下恒温4~12h),在干燥空气中焙烧,以进一步脱除硅胶表面的羟基,同时使偏钒酸铵几乎完全氧化分解;焙烧第四阶段为自然降温冷却阶段,在冷却至300~400℃时切换为氮气保护,在氮气保护下转移保存备用。将上述焙烧产物浸渍于一定浓度的二茚铬正庚烷溶液中,有机铬的负载量相对于催化剂总重量符合本发明要求(例如Cr为0.5~2wt%),浸渍温度为45~60℃,浸渍时间为4~8h,浸渍结束后进行升温干燥,干燥温度为90~100℃,干燥时间为4~8h,整个浸渍和干燥过程可施加搅拌,干燥结束后在氮气保护下将催化剂转移至无水无氧条件下保存。随后在氮气保护下依次往容积为2L的高压聚合釜中导入1L异戊烷、一定量1mol/L三异丁基铝正己烷溶液、3MPa乙烯分压和一定量催化剂前驱体,使铝与铬总量的摩尔比为10/1,并在100℃下进行催化剂前驱体的原位活化和后续的聚合反应。
本发明提供制备负载型三中心催化剂的方法,其中一种方法包含如下步骤:
(I)将多孔无机载体浸渍于含钒源的溶液,然后干燥,接着在高温300~900℃下焙烧活化;
(II)将(I)中所得焙烧产物浸渍于含铬源和Q组分的溶液,然后干燥,接着在高温300~900℃下焙烧活化;
(III)将(II)中所得焙烧产物浸渍于含有机铬铬源的溶液,然后干燥,得到所述催化剂前驱体。
(IV)往高压聚合釜中依次引入一定量溶剂、有机金属助催化剂溶液和乙烯单体,随后称取一定量(III)中所述催化剂前驱体,并导入聚合釜中,助催化剂原位还原催化剂前驱体得到所述目标催化剂,随后催化乙烯聚合。
根据一个优选的制备负载型三活性中心乙烯聚合催化剂的方法包含步骤:
a)将含钒源的溶液通过浸渍的方法吸附于多孔无机载体表面,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选400~600℃,焙烧时间为2~24h,优选4~12h,然后自然冷却至室温后保存备用。
b)将上述焙烧产物浸渍于含铬源和Q组分的溶液,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选400~800℃,焙烧时间为2~24h,优选4~12h,然后进行冷却,在冷却至300~400℃时将气氛切换成惰性气体,自然冷却至室温后保存备用。
c)将上述焙烧产物置于含有机铬铬源的溶液中进行浸渍反应,浸渍反应时间为1~24h,优选4~8h,浸渍温度为20~120℃,优选45~80℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,干燥结束后即得所述催化剂前驱体。
d)往高压聚合釜中依次导入一定量溶剂、有机金属助催化剂、乙烯单体和(c)所述催化剂前驱体开始催化剂活化以及乙烯聚合反应,溶剂介质可选自异戊烷、正己烷、正庚烷、正辛烷和甲苯,优选异戊烷或正己烷,有机金属助催化剂可选自烷基铝及其衍生物、烷基锂、烷基硼,优选烷基铝,有机金属助催化剂与铬总量的摩尔比为0-1000,优选10-30,催化剂活化与聚合温度为50-110℃,优选60-80℃,乙烯单体压力为0.5-5MPa,优选1-3MPa。
作为一个实例,制备本发明催化剂的具体操作包括:
将多孔无定形硅胶浸渍在一定浓度的偏钒酸铵水溶液中,钒的负载量相对于催化剂总重量符合本发明的要求(例如V为0.1~10wt%);在连续搅拌一定时间(例如4~8小时)后,升温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~500℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时偏钒酸铵部分氧化分解;焙烧第三阶段为恒温阶段(例如500℃下恒温4~12h),在干燥空气中焙烧,以进一步脱除硅胶表面的羟基,同时使偏钒酸铵几乎完全氧化分解;焙烧第四阶段为自然降温冷却阶段,冷却至室温时将焙烧产物收集备用。将上述焙烧产物浸渍在一定浓度的硝酸铬和磷酸铵水溶液中,铬和磷的负载量相对于催化剂总重量符合本发明的要求(例如铬为0.2~1wt%,P为0.5~2wt%);在连续搅拌一定时间(例如4~8小时)后,升温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~800℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时硝酸铬和磷酸铵部分氧化分解;焙烧第三阶段为恒温阶段(例如800℃下恒温4~12h),在干燥空气中焙烧,以进一步脱除硅胶表面的羟基,同时使硝酸铬和磷酸铵几乎完全氧化分解;焙烧第四阶段为自然降温冷却阶段,在冷却至300~400℃时切换为氮气保护,在氮气保护下转移保存备用。将上述焙烧产物浸渍于一定浓度的二芴基铬正己烷溶液中,有机铬的负载量相对于催化剂总重量符合本发明要求(例如Cr为0.5~2wt%),浸渍温度为45~50℃,浸渍时间为4~8h,浸渍结束后进行升温干燥,干燥温度为75~90℃,干燥时间为4~8h,整个浸渍和干燥过程可施加搅拌,干燥结束后在氮气保护下将催化剂转移至无水无氧条件下保存。随后在氮气保护下依次往容积为2L的高压聚合釜中导入1L异戊烷、一定量1mol/L三乙基基铝正己烷溶液、1MPa乙烯分压和一定量催化剂前驱体,使铝与铬总量的摩尔比为4/1,并在100℃下进行催化剂前驱体的原位活化和后续的聚合反应。
本发明提供制备负载型三中心催化剂的方法,其中一种方法包含如下步骤:
(I)将多孔无机载体浸渍于含铬源的溶液,然后干燥,接着在高温300~900℃下焙烧活化;
(II)将(I)中所得焙烧产物浸渍于含钒源和Q组分的溶液,然后干燥,接着在高温300~900℃下焙烧活化;
(III)将(II)中所得焙烧产物浸渍于含有机铬铬源的溶液,然后干燥,得到所述催化剂前驱体。
(IV)往高压聚合釜中依次引入一定量溶剂、有机金属助催化剂溶液和乙烯单体,随后称取一定量(III)中所述催化剂前驱体,并导入聚合釜中,助催化剂原位还原催化剂前驱体得到所述目标催化剂,随后催化乙烯聚合。
根据一个优选的制备负载型三活性中心乙烯聚合催化剂的方法包含步骤:
a)将含铬源的溶液通过浸渍的方法吸附于多孔无机载体表面,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选400~600℃,焙烧时间为2~24h,优选4~12h,然后自然冷却至室温后保存备用。
b)将上述焙烧产物浸渍于含钒源和Q组分的溶液,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选400~800℃,焙烧时间为2~24h,优选4~12h,然后进行冷却,在冷却至300~400℃时将气氛切换成惰性气体,自然冷却至室温后保存备用。
c)将上述焙烧产物置于含有机铬铬源溶液中进行浸渍反应,浸渍反应时间为1~24h,优选4~8h,浸渍温度为20~120℃,优选45~80℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程 中也可以采用真空,干燥结束后即得所述催化剂前驱体。
d)往高压聚合釜中依次导入一定量溶剂、有机金属助催化剂、乙烯单体和(c)所述催化剂前驱体开始催化剂活化以及乙烯聚合反应,溶剂介质可选自异戊烷、正己烷、正庚烷、正辛烷和甲苯,优选异戊烷或正己烷,有机金属助催化剂可选自烷基铝及其衍生物、烷基锂、烷基硼,优选烷基铝,有机金属助催化剂与铬总量的摩尔比为0-1000,优选10-30,催化剂活化与聚合温度为50-110℃,优选60-80℃,乙烯单体压力为0.5-5MPa,优选1-3MPa。
作为一个实例,制备本发明催化剂的具体操作包括:
将多孔无定形SiO 2/Al 2O 3载体浸渍在一定浓度的醋酸铬水溶液中,铬的负载量相对于催化剂总重量符合本发明的要求(例如Cr为0.2~0.8wt%);在连续搅拌一定时间(例如4~8小时)后,升温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~500℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时醋酸铬部分氧化分解;焙烧第三阶段为恒温阶段(例如500℃下恒温4~12h),在干燥空气中焙烧,以进一步脱除硅胶表面的羟基,同时使醋酸铬几乎完全氧化分解;焙烧第四阶段为自然降温冷却阶段,冷却至室温时将焙烧产物收集备用。将上述焙烧产物浸渍在一定浓度的偏钒酸铵和硅氟酸铵水溶液中,钒和氟的负载量相对于催化剂总重量符合本发明的要求(例如V为0.5~3wt%,F为1~3wt%);在连续搅拌一定时间(例如4~8小时)后,升温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~800℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时偏钒酸铵和硅氟酸铵部分氧化分解;焙烧第三阶段为恒温阶段(例如800℃下恒温4~12h),在干燥空气中焙烧,以进一步脱除硅胶表面的羟基,同时使偏钒酸铵和硅氟酸铵几乎完全氧化分解;焙烧第四阶段为自然降温冷却阶段,在冷却至300~400℃时切换为氮气保护,在氮气保护下转移保存备用。将上述焙烧产物浸渍于一定浓度的双环戊二烯基铬正庚烷溶液中,有机铬的负载量相对于催化剂总重量符合本发明要求(例如Cr为0.5~2wt%),浸渍温度为45~60℃,浸渍时间为4~8h,浸渍结束后进行升温干燥,干燥温度为90~100℃,干燥时间为4~8h,整个浸渍和干燥过程可施加搅拌,干燥结束后在氮气保护下将催化剂转移至无水无氧条件下保存。随后在氮气保护下依次往容积为2L的高压聚合釜中导入1L异戊烷、一定量1mol/L三异丁基铝正己烷溶液、1MPa乙烯分压和一定量催化剂前驱体,使铝与铬总量的摩尔比为15/1,并在95℃下进行催化剂前驱体的原位活化和后续的聚合反应。
本发明提供制备负载型三中心催化剂的方法,其中一种方法包含如下步骤:
(I)将多孔无机载体浸渍于含Q组分的溶液,干燥,接着在300~900℃下焙烧活化;
(II)将(I)中所得焙烧产物浸渍于含钒源的溶液,然后干燥,接着在300~900℃下焙烧活化;
(III)将(II)中所得焙烧产物浸渍于含铬源的溶液,干燥,接着在300~900℃下焙烧活化;
(IV)将(III)中所得焙烧产物浸渍于含有机铬铬源的溶液,然后干燥,得到所述催化剂前驱体。
(V)往高压聚合釜中依次引入一定量溶剂、有机金属助催化剂溶液和乙烯单体,随后称取一定量(IV)中所述催化剂前驱体,并导入聚合釜中,助催化剂原位还原催化剂前驱体得到所述目标催化剂,随后催化乙烯聚合。
根据一个优选的制备负载型三活性中心乙烯聚合催化剂的方法包含步骤:
a)将含Q组分的溶液通过浸渍的方法吸附于多孔无机载体表面,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选350~500℃,焙烧时间为2~24h,优选4~12h,然后自然冷却至室温后保存备用。
b)将上述焙烧产物与含钒源的溶液进行浸渍,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选400~600℃,焙烧时间为2~24h,优选4~12h,然后自然冷却至室温后保存备用。
c)将上述焙烧产物浸渍于含铬源的溶液,浸渍时间为1~24h,优选4~12h,浸渍温度为20~120℃,优选45~90℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,然后将干燥后混合物置于惰性气体或者含氧气氛中进行高温焙烧活化,焙烧温度在300~900℃,优选400~800℃,焙烧时间为2~24h,优选4~12h,然后进行冷却,在冷却至300~400℃时将气氛切换成惰性气体,自然冷却至室温后保存备用。
d)将上述焙烧产物置于含有机铬铬源的溶液中进行浸渍反应,浸渍反应时间为1~24h,优选4~8h,浸渍温度为20~120℃,优选45~80℃,然后在60~150℃之间干燥,优选80~130℃,干燥时间2~24h,优选6~16h,干燥过程中也可以采用真空,干燥结束后即得所述催化剂前驱体。
e)往高压聚合釜中依次导入一定量溶剂、有机金属助催化剂、乙烯单体和(d)所述催化剂前驱体开始催化剂活化以及乙烯聚合反应,溶剂介质可选自异戊烷、正己烷、正庚烷、正辛烷和甲苯,优选异戊烷或正己烷,有机金属助催化剂可选自烷基铝及其衍生物、烷基锂、烷基硼,优选烷基铝,有机金属助催化剂与铬总量的摩尔比为0-1000,优选10-30,催化剂活化与聚合温度为50-110℃,优选60-80℃,乙烯单体压力为0.5-5MPa,优选1-3MPa。
作为一个实例,制备本发明催化剂的具体操作包括:
将多孔无定形SiO 2载体浸渍在一定浓度的磷酸铵水溶液中,磷的负载量相对于催化剂总重量符合本发明的 要求(例如磷为1~2wt%);在连续搅拌一定时间(例如4~8小时)后,升温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~500℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时磷酸铵分解为催化剂改性组分;焙烧第三阶段为恒温阶段(例如500℃下恒温4~12h),在干燥空气中焙烧,以进一步脱除硅胶表面的羟基,同时使磷酸铵进一步分解;焙烧第四阶段为自然降温冷却阶段,冷却至室温时将焙烧产物收集备用。将上述焙烧产物浸渍在一定浓度的偏钒酸铵水溶液中,钒的负载量相对于催化剂总重量符合本发明的要求(例如V为0.5~3wt%);在连续搅拌一定时间(例如4~8小时)后,升温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~500℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时偏钒酸铵部分氧化分解;焙烧第三阶段为恒温阶段(例如500℃下恒温4~12h),在干燥空气中焙烧,以进一步脱除硅胶表面的羟基,同时使偏钒酸铵几乎完全氧化分解;焙烧第四阶段为自然降温冷却阶段,冷却至室温时保存在干燥环境下备用。将上述焙烧产物浸渍在一定浓度的碱式醋酸铬水溶液中,铬的负载量相对于催化剂总重量符合本发明的要求(例如Cr为0.5~1wt%);在连续搅拌一定时间(例如4~8小时)后,升温干燥;然后在流化床内进行高温焙烧,其中焙烧第一阶段为升温阶段(例如100~150℃),在氮气气氛中焙烧脱除载体中吸附的物理水;焙烧第二阶段为升温阶段(例如150~500℃),在干燥空气中焙烧脱除硅胶表面的部分羟基,同时碱式醋酸铬部分氧化分解;焙烧第三阶段为恒温阶段(例如500℃下恒温4~12h),在干燥空气中焙烧,以进一步脱除硅胶表面的羟基,同时使碱式醋酸铬几乎完全氧化分解;焙烧第四阶段为自然降温冷却阶段,在冷却至200~300℃时切换为氮气保护,在氮气保护下转移保存备用。将上述焙烧产物浸渍于一定浓度的二茚基铬正庚烷溶液中,有机铬的负载量相对于催化剂总重量符合本发明要求(例如Cr为0.5~2wt%),浸渍温度为45~60℃,浸渍时间为4~8h,浸渍结束后进行升温干燥,干燥温度为90~100℃,干燥时间为4~8h,整个浸渍和干燥过程可施加搅拌,干燥结束后在氮气保护下将催化剂转移至无水无氧条件下保存。随后在氮气保护下依次往容积为2L的高压聚合釜中导入1L异戊烷、一定量1mol/L三异丁基铝正己烷溶液、2MPa乙烯分压和一定量催化剂前驱体,使铝与铬总量的摩尔比为10/1,并在105℃下进行催化剂前驱体的原位活化和后续的聚合反应。
上述的负载型三中心催化剂乙烯在催化烯烃聚合中的应用,尤其是在催化乙烯的均聚或乙烯与α-烯烃的共聚中的应用。
所述的烯烃一般包含乙烯单体,还可以包含共聚单体;所述共聚单体可以是具有3~20个碳原子的α-烯烃,例如丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、1-壬烯、1-癸烯、1-十二碳烯、1-甲基-1-戊烯、4-甲基-1-己烯等,这些可以单独使用或两种或更多种组合使用。所述共聚单体优选为1-丁烯、1-己烯、1-辛烯和1-癸烯中的至少一种;当共聚单体存在时,共聚单体的量一般为0~30vol%,优选0~10vol%,共聚单体的加入量是基于聚合时其相对于溶剂的体积浓度计算。
当所述的负载型三中心催化剂用于催化乙烯的均聚或乙烯与α-烯烃的共聚时,所生产的聚乙烯产品具有如下特点:进行乙烯均聚时分子量分布较宽,部分呈三峰分布;进行乙烯与α-烯烃的共聚时,分子量分布较宽,部分呈三峰分布,且含有较低分子量乙烯均聚物、中高分子量乙烯与α-烯烃共聚物以及高分子量或超高分子量乙烯与α-烯烃的共聚物。
所述的负载型三中心催化剂乙烯在催化烯烃聚合中的应用,聚合过程中可根据需要添加有机金属助催化剂以及分子量调节剂等;所述有机金属助催化剂可以为有机铝化合物,如三乙基铝、三异丁基铝、二乙基乙氧基铝、一氯二乙基铝和甲基铝氧烷等。所述有机金属铝化合物的用量满足:铝元素和总铬元素的摩尔比为0-1000,优选0-70,更优选0-50;所述的分子量调节可为氢气;
所述的负载型三中心催化剂在催化烯烃聚合中的应用,其对聚合的方法没有任何特别的限制,当用于催化乙烯的均聚或乙烯与α-烯烃的共聚时,聚合方法可以包括气相聚合工艺、淤浆聚合工艺、悬浮聚合工艺、本体聚合工艺、溶液聚合工艺等,另外还包括各种形式组合的双釜串联聚合工艺。如本领域技术人员所理解的那样,对采用本发明催化剂的生产烯烃聚合物的方法没有特别限制,可以采用本领域已知的气相聚合工艺、淤浆聚合工艺、悬浮聚合工艺、本体聚合工艺、溶液聚合工艺以及各种形式组合的双釜串联聚合工艺等在常规实施方案和聚合条件下实施。
优选的,当使用淤浆聚合工艺进行聚合时,包括向反应釜内加入乙烯,然后加入溶剂和助催化剂(有机铝化合物)并任选地加入氢气和共聚单体,最后加入本发明的负载型三中心催化剂开始聚合。其中所使用的溶剂一般为本领域所公知的用于烯烃聚合的任何溶剂,可为具有3~20个碳原子的烷烃,例如丙烷、正丁烷、异丁烷、正戊烷、异戊烷、新戊烷、正己烷、环己烷、正庚烷、正辛烷等;这些溶剂可以单独使用或可以两种或更多种组合使用。所使用的溶剂优选为异丁烷、异戊烷、正己烷、环己烷、正庚烷等。
更优选的,当采用传统的淤浆聚合工艺实施聚合时,具体操作如下:先将聚合反应釜进行真空加热除杂,然后置换为高纯氮气,反复操作三次,再用少量乙烯单体置换一次,并最后将反应釜内充满乙烯至微正压(0.12MPa);向反应釜内加入脱水脱氧处理后的精制溶剂如正庚烷,一定量的烷基铝作为助催化剂,在氢调和共聚实验中还需分别加入一定量的氢气和共聚单体,待乙烯压力调至1MPa,最后加入本发明的催化剂开始聚合反应;反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录,在一定温度下(例如35℃-100℃)反应进行一 定时间(例如1小时)后,加入盐酸/乙醇混合溶液终止反应;聚合物经洗涤,真空干燥后称重并分析。
本发明相对于现有技术,具有如下的优点及有益效果:
本发明开发了一种负载型的三中心催化剂并用于乙烯聚合。该催化剂中三种活性中心能够较好地表现各自的催化性能,甚至表现出良好的催化协同效应,其相比于传统的单、双中心催化剂而言,主要特征表现为聚合物分子量分布更宽,呈三峰或多峰分布,包含由有机铬活性中心合成的较低分子量乙烯均聚物A,由无机铬活性中心合成的中等分子量乙烯共聚物B以及由无机钒活性中心合成的高分子量或超高分子量乙烯共聚物C,且A、B、C三种组分的相对含量可主要地通过调整催化剂中三种活性中心的相对含量进行调节,可通过改变助催化剂用量、聚合温度、分子量调节剂等聚合条件方便地调整乙烯均聚物和乙烯/α-烯烃共聚物的分子量和分子量分布以及共聚单体含量及分布。显然,相比于三釜串联工艺,利用本发明的负载型三中心催化剂于单釜或串联双釜中合成分子量呈宽峰或三峰分布聚乙烯更加经济、绿色、高效。
本发明所述负载型三活性中心催化剂相比于现有的大多数催化剂而言具有如下特点,即本发明的催化剂可在单一反应器或两个串联反应器中生产分子量分布较宽,甚至呈三峰分布的乙烯均聚物和乙烯/α-烯烃共聚物,其含有较低分子量的乙烯均聚物、中高分子量乙烯与α-烯烃共聚物以及高分子量或超高分子量乙烯与α-烯烃的共聚物。该催化剂还具有较高的乙烯均聚和乙烯与α-烯烃共聚反应活性。
附图说明
图1为三釜串联技术制备三峰聚乙烯产品的高温GPC曲线;
图2为本发明实施例16制备的负载型三中心催化剂聚乙烯产品的高温GPC曲线;
图3为本发明实施例31与32所得聚合物的GPC-FTIR表征曲线;
图4为本发明实施例28-2所得聚合物的GPC-FTIR表征曲线;
图5为本发明实施例30所得聚合物的GPC-FTIR表征曲线;
图6为本发明实施例14、对比实施例1、对比实施例2和对比实施例3所得聚合物的高温GPC曲线。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例中所用试剂如无特殊说明均可从市场常规购得。
实施例中的各种聚合物性质根据以下方法测量:
高温凝胶色谱(HT-GPC)
重均分子量和分子量分布用高温凝胶色谱测定:本实验采用PL-220型高温凝胶渗透色谱仪(Polymer Laboratories公司)来测定聚乙烯分子量及其分子量分布。对于需要分析短支链分布的情况,将采用红外检测器(IR4,PolymerChar公司)与HT-GPC联用测定。实验中以1,2,4-三氯苯为溶剂,在160℃下测定。采用窄分布聚苯乙烯作为标样的普适校正法处理数据。
13C高温核磁共振谱(HT- 13CNMR)
聚合物的短支链含量采用高温核磁碳谱测定:本实验采用BrukerAvance III 500型核磁共振仪来测定聚乙烯短支链含量。实验中以氘代对二氯苯为溶剂,在110℃下测定,采用聚乙烯主链上的碳信号(位移在30.00ppm)为内标计算短支链含量。
实施例1:
取10g硅胶(比表面积500m 2/g,孔容1.3ml/g,孔径20nm)浸渍在草酸氧钒和碱式醋酸铬的水溶液中(V与Cr的负载量相对于催化剂总重量分别为0.25wt%和0.7wt%),连续搅拌浸渍约4h,浸渍温度为60℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150~600℃的升温阶段采用干空气气氛,600℃的恒温阶段,采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于双环戊二烯基铬的正己烷溶液中(Cr的负载量相对于催化剂总重量为1.5wt%),浸渍温度为45℃,浸渍时间为6h,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,浸渍和干燥过程施加搅拌,干燥结束后将催化剂前驱体在氮气保护下转移至无水无氧条件下保存。
实施例2:
取10gSiO 2/Al 2O 3(比表面积600m 2/g,孔容1.1ml/g,铝含量为5wt%,孔径17nm)浸渍在乙酰丙酮氧钒的乙醇溶液中(V负载量相对于催化剂总重量为0.25wt%),连续搅拌浸渍约4h,浸渍温度为40℃,随后升温至100℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到500℃ 时恒温4h,焙烧结束后开始自然冷却至室温并保存至干燥环境中待用。上述过程中室温至150℃采用氮气气氛,150~500℃采用干空气气氛,自然冷却时由500℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于碱式醋酸铬的水溶液中(Cr负载量相对于催化剂总重量为0.7wt%),连续搅拌浸渍约4h,浸渍温度为45℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温6h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150~600℃采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于双环戊二烯基铬的正己烷溶液中(Cr的负载量相对于催化剂总重量为1.5wt%),浸渍温度为45℃,浸渍时间为6h,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,浸渍和干燥过程施加搅拌,干燥结束后将催化剂前驱体在氮气保护下转移至无水无氧条件下保存。
实施例3:
取10gSiO 2/TiO 2(比表面积500m 2/g,孔容1.2ml/g,钛含量为5wt%,孔径25nm)浸渍在硝酸铬水溶液中(Cr负载量相对于催化剂总重量为0.7wt%),连续搅拌浸渍约4h,浸渍温度为40℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到450℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至干燥条件下保存。上述过程中室温至150℃采用氮气气氛,150-450℃采用干空气气氛,自然冷却时由450℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于偏钒酸铵水溶液中(V负载量相对于催化剂总重量为0.27wt%),连续搅拌浸渍约4h,浸渍温度为45℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温6h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150~600℃采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于双环戊二烯基铬的正己烷溶液中(Cr的负载量相对于催化剂总重量为1.5wt%),浸渍温度为45℃,浸渍时间为6h,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,浸渍和干燥过程施加搅拌,干燥结束后将催化剂前驱体在氮气保护下转移至无水无氧条件下保存。
实施例4:
取10gSiO 2/Al 2O 3(比表面积600m 2/g,孔容1.1ml/g,铝含量为5wt%,孔径17nm)浸渍在草酸氧钒、碱式醋酸铬和六氟硅酸铵的水溶液中(V、Cr和F的负载量相对于催化剂总重量分别为0.25wt%、0.7wt%和2wt%),连续搅拌浸渍约4h,浸渍温度为60℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150~600℃采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于双环戊二烯基铬的正己烷溶液中(Cr的负载量相对于催化剂总重量为1.5wt%),浸渍温度为45℃,浸渍时间为6h,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,浸渍和干燥过程施加搅拌,干燥结束后将催化剂前驱体在氮气保护下转移至无水无氧条件下保存。
实施例5:
取10gSiO 2/Al 2O 3(比表面积600m 2/g,孔容1.1ml/g,铝含量为5wt%,孔径17nm)浸渍在乙酰丙酮氧钒和甲基磺酸的乙醇溶液中(V和S负载量相对于催化剂总重量分别为0.25wt%和1.7wt%),连续搅拌浸渍约4h,浸渍温度为40℃,随后升温至100℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到500℃时恒温4h,焙烧结束后开始自然冷却至室温并保存至干燥环境中待用。上述过程中室温至150℃采用氮气气氛,150~500℃采用干空气气氛,自然冷却时由500℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于碱式醋酸铬的水溶液中(Cr负载量相对于催化剂总重量为0.7wt%),连续搅拌浸渍约4h,浸渍温度为45℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温6h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150-600℃采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于双环戊二烯基铬的正己烷溶液中(Cr的负载量相对于催化剂总重量为1.5wt%),浸渍温度为45℃,浸渍时间为6h,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,浸渍和干燥过程施加搅拌,干燥结束后将催化剂前驱体在氮气保护下转移至无水无氧条件下保存。
实施例6
取10gSiO 2/TiO 2(比表面积500m 2/g,孔容1.2ml/g,钛含量为5wt%,孔径25nm)浸渍在硝酸铬和磷酸铵水溶液中(Cr和P负载量相对于催化剂总重量分别为0.7wt%和2.2wt%),连续搅拌浸渍约4h,浸渍温度为40℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到450℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至干燥条件下保存。上述过程中室温至150℃采用氮气气氛,150-450℃采用干空气气氛,自然冷却时由450℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于偏钒酸铵水溶液中(V负载量相对于催化剂总重量为0.25wt%),连续搅拌浸渍约4h,浸渍温度为45℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温6h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150~600℃采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于双环戊二烯基铬的正己烷溶液中(Cr的负载量相对于催化剂总重量为1.6wt%),浸渍温度为45℃,浸渍时间为6h,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,浸渍和干燥过程施加搅拌,干燥结束后将催化剂前驱体在氮气保护下转移至无水无氧条件下保存。
实施例7:
取10gSiO 2/Al 2O 3(比表面积600m 2/g,孔容1.1ml/g,铝含量为5wt%,孔径17nm)浸渍在乙酰丙酮氧钒的乙醇溶液中(V负载量相对于催化剂总重量为0.25wt%),连续搅拌浸渍约4h,浸渍温度为40℃,随后升温至100℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到500℃时恒温4h,焙烧结束后开始自然冷却至室温并保存至干燥环境中待用。上述过程中室温至150℃采用氮气气氛,150~500℃采用干空气气氛,自然冷却时由500℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于碱式醋酸铬和硫酸的水溶液中(Cr和S负载量相对于催化剂总重量分别为0.7wt%和2.7wt%),连续搅拌浸渍约4h,浸渍温度为45℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温6h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150~600℃采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于双环戊二烯基铬的正己烷溶液中(Cr的负载量相对于催化剂总重量为1.5wt%),浸渍温度为45℃,浸渍时间为6h,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,浸渍和干燥过程施加搅拌,干燥结束后将催化剂前驱体在氮气保护下转移至无水无氧条件下保存。
实施例8:
取10gSiO 2/TiO 2(比表面积500m 2/g,孔容1.2ml/g,钛含量为5wt%,孔径25nm)浸渍在硝酸铬水溶液中(Cr负载量相对于催化剂总重量为0.7wt%),连续搅拌浸渍约4h,浸渍温度为40℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到450℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至干燥条件下保存。上述过程中室温至150℃采用氮气气氛,150~450℃采用干空气气氛,自然冷却时由450℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于偏钒酸铵和磷酸铵水溶液中(V和P负载量相对于催化剂总重量分别为0.25wt%和4wt%),连续搅拌浸渍约4h,浸渍温度为45℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温6h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150~600℃采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于双环戊二烯基铬的正己烷溶液中(Cr的负载量相对于催化剂总重量为1.5wt%),浸渍温度为45℃,浸渍时间为6h,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,浸渍和干燥过程施加搅拌,干燥结束后将催化剂前驱体在氮气保护下转移至无水无氧条件下保存。
实施例9:
取10gSiO 2/ZrO 2(比表面积550m 2/g,孔容1.4ml/g,锆含量为5wt%,孔径13nm)浸渍在硫代硫酸铵水溶液中(S负载量相对于催化剂总重量为2wt%),连续搅拌浸渍约4h,浸渍温度为40℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到450℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至干燥条件下保存。上述过程中室温至150℃采用氮气气氛, 150~450℃采用干空气气氛,自然冷却时由450℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于硝酸铬水溶液中(Cr负载量相对于催化剂总重量为0.7wt%),连续搅拌浸渍约4h,浸渍温度为40℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到450℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至干燥条件下保存。上述过程中室温至150℃采用氮气气氛,150~450℃采用干空气气氛,自然冷却时由450℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于偏钒酸铵水溶液中(V的负载量相对于催化剂总重量为0.25wt%),连续搅拌浸渍约4h,浸渍温度为45℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温6h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150~600℃采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于双环戊二烯基铬的正己烷溶液中(Cr的负载量相对于催化剂总重量为1.5wt%),浸渍温度为45℃,浸渍时间为6h,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,浸渍和干燥过程施加搅拌,干燥结束后将催化剂前驱体在氮气保护下转移至无水无氧条件下保存。
实施例10
取10g硅胶(比表面积500m 2/g,孔容1.3ml/g,孔径20nm)浸渍在草酸氧钒和碱式醋酸铬的水溶液中(V与Cr的负载量相对于催化剂总重量分别为0.25wt%和0.7wt%),连续搅拌浸渍约4h,浸渍温度为60℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150~600℃采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于双环戊二烯基铬的正己烷溶液中(Cr的负载量相对于催化剂总重量为1.5wt%),浸渍温度为45℃,浸渍时间为6h,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,浸渍和干燥过程施加搅拌,干燥结束后将催化剂在氮气保护下转移至三异丁基铝正己烷溶液中,三异丁基铝与催化剂中Cr元素的摩尔比Al/Cr=7,搅拌浸渍反应2h,浸渍反应温度为30℃,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,干燥结束后将经过三异丁基铝预还原的催化剂前驱体转移至无水无氧条件下保存待用。
实施例11
取10g硅胶(比表面积500m 2/g,孔容1.3ml/g,孔径20nm)浸渍在草酸氧钒和碱式醋酸铬的水溶液中(V与Cr的负载量相对于催化剂总重量分别为0.25wt%和0.7wt%),连续搅拌浸渍约4h,浸渍温度为60℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150~600℃的升温阶段采用干空气气氛,600℃的恒温阶段,采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于二茚基铬的正己烷溶液中(Cr的负载量相对于催化剂总重量为1.0wt%),浸渍温度为45℃,浸渍时间为6h,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,浸渍和干燥过程施加搅拌,干燥结束后将催化剂前驱体在氮气保护下转移至无水无氧条件下保存。
实施例12
取10g硅胶(比表面积500m 2/g,孔容1.3ml/g,孔径20nm)浸渍在草酸氧钒和碱式醋酸铬的水溶液中(V与Cr的负载量相对于催化剂总重量分别为0.25wt%和0.7wt%),连续搅拌浸渍约4h,浸渍温度为60℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150~600℃的升温阶段采用干空气气氛,600℃的恒温阶段,采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于二芴基铬的正己烷溶液中(Cr的负载量相对于催化剂总重量为1.5wt%),浸渍温度为45℃,浸渍时间为6h,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,浸渍和干燥过程施加搅拌,干燥结束后将催化剂前驱体在氮气保护下转移至无水无氧条件下保存。
实施例13-1至13-6:
取10g硅胶(比表面积500m 2/g,孔容1.3ml/g,孔径20nm)浸渍在草酸氧钒和碱式醋酸铬的水溶液中(V与Cr的负载量相对于催化剂总重量分别为0.25wt%和0.7wt%),连续搅拌浸渍约4h,浸渍温度为60℃,随后升 温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150~600℃采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于双环戊二烯基铬的正己烷溶液中,Cr的负载量相对于催化剂总重量为0.2wt%、0.5wt%、1wt%、1.5wt%、2wt%或3wt%,分别记为实施例13-1、13-2、13-3、13-4、13-5和13-6,浸渍温度为45℃,浸渍时间为6h,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,浸渍和干燥过程施加搅拌,干燥结束后将催化剂前驱体在氮气保护下转移至无水无氧条件下保存。
实施例14
称取实施例1中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例15
称取实施例2中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例16
称取实施例3中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。所得聚烯烃产品的高温GPC曲线如图2所示。
实施例17
称取实施例4中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例18
称取实施例5中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例19
称取实施例6中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量) =10的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例20
称取实施例7中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例21
称取实施例8中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例22
称取实施例9中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例23
称取实施例10中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入1000ml精制的正庚烷溶剂,调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例24
称取实施例11中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例25
称取实施例12中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例26-1至26-6
以实施例13-1、13-2、13-3、13-4、13-5或13-6制备催化剂前驱体为研究对象,分别记为实施例26-1、26-2、26-3、26-4、26-5或26-6。称取催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例27
称取实施例4中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,分别加入用量为Al/Cr(Cr为总铬摩尔量)=0,5,10,15,20的三异丁基铝(TIBA)作助催化剂(依次对应于实施例27-1,27-2,27-3,27-4,27-5),再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例28
称取实施例4中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,然后再分别加入10ml、30ml、50ml和100ml的1-己烯(共聚单体1-己烯占加入的溶剂总体积的百分率依次为1%、3%、5%和10%,依次对应于实施例28-1,28-2,28-3,28-4),再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例29
称取实施例4中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,然后加入30ml的1-己烯,再加入100mL脱水脱氧精制后的正庚烷溶剂,随后分别压入0.3bar、0.5bar、1bar和1.5bar的氢气(依次对应于实施例29-1,29-2,29-3,29-4),最后调节乙烯分压为1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例30
称取实施例4中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着向反应釜内加入1000ml精制的正庚烷溶剂,随后压入0.3bar的氢气,再将乙烯分压调节为1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。0.5h后利用高压氮气加入用量为Al/Cr(Cr为总铬摩尔量)=5的三异丁基铝(TIBA)和30ml的1-己烯,继续反应0.5h,同时利用电脑在线采集单体乙烯的瞬时消耗量。反应结束后往聚合物淤浆液中加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例31
称取实施例4中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着向反应釜内加入1000ml精制的正庚烷溶剂,随后将乙烯分压调节为3.5MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。反应1h后往聚合物淤浆液中加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
实施例32
称取实施例4中催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量 精制乙烯至0.12MPa。接着向反应釜内加入1000ml精制的正庚烷溶剂,随后将乙烯分压调节为3.5MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。反应2h后往聚合物淤浆液中加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
对比实施例1
取10g硅胶(比表面积500m 2/g,孔容1.3ml/g)浸渍在草酸氧钒和碱式醋酸铬的水溶液中(V与Cr的负载量相对于催化剂总重量分别为0.25wt%和0.7wt%),连续搅拌浸渍约4h,浸渍温度为60℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150~600℃采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。称取上述催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
对比实施例2
取10g硅胶(比表面积500m 2/g,孔容1.3ml/g)浸渍在碱式醋酸铬的水溶液中(Cr的负载量相对于催化剂总重量为0.7wt%),连续搅拌浸渍约4h,浸渍温度为60℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150-600℃采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于双环戊二烯基铬的正己烷溶液中(Cr的负载量相对于催化剂总重量为1.5wt%),浸渍温度为45℃,浸渍时间为6h,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,浸渍和干燥过程施加搅拌,干燥结束后将催化剂前驱体在氮气保护下转移至无水无氧条件下保存。称取上述催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
对比实施例3
取10g硅胶(比表面积500m 2/g,孔容1.3ml/g)浸渍在草酸氧钒的水溶液中(V的负载量相对于催化剂总重量为0.25wt%),连续搅拌浸渍约4h,浸渍温度为60℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150-600℃采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。将上述焙烧产物浸渍于双环戊二烯基铬的正己烷溶液中(Cr的负载量相对于催化剂总重量为1.5wt%),浸渍温度为45℃,浸渍时间为6h,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,浸渍和干燥过程施加搅拌,干燥结束后将催化剂前驱体在氮气保护下转移至无水无氧条件下保存。称取上述催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
对比实施例4
取10g硅胶(比表面积500m 2/g,孔容1.3ml/g)浸渍在碱式醋酸铬的水溶液中(Cr的负载量相对于催化剂总重量分别为0.7wt%),连续搅拌浸渍约4h,浸渍温度为60℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150~600℃采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。称取上述催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=5的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
对比实施例5
取10g硅胶(比表面积500m 2/g,孔容1.3ml/g)浸渍在偏钒酸铵的水溶液中(V的负载量相对于催化剂总重量分别为0.25wt%),连续搅拌浸渍约4h,浸渍温度为60℃,随后升温至120℃,继续搅拌干燥8h。将干燥的混合物置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程中室温至150℃采用氮气气氛,150~600℃采用干空气气氛,自然冷却时由600℃降低至300℃时为干空气气氛,当低于300℃时切换至氮气气氛。称取上述催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=5的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂前驱体悬浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
对比实施例6
取10g硅胶(比表面积500m 2/g,孔容1.3ml/g)置于流化床中从室温开始进行升温焙烧,升温速率为1℃/min,当达到600℃时恒温4h,焙烧结束后开始自然冷却至室温,并转移至无水无氧条件下保存。上述过程整个过程在氮气氛围下进行。将上述焙烧产物浸渍于双环戊二烯基铬的正己烷溶液中(Cr的负载量相对于催化剂总重量为1.5wt%),浸渍温度为45℃,浸渍时间为6h,随后进行升温干燥,干燥温度为80℃,干燥时间为4h,浸渍和干燥过程施加搅拌,干燥结束后将催化剂前驱体在氮气保护下转移至无水无氧条件下保存。称取上述催化剂前驱体100mg,并混合于10ml经过精制的正庚烷溶液中形成催化剂前驱体悬浊液进行聚合实验。将2L不锈钢高压聚合反应釜进行真空加热除杂,并用高纯氮气抽排三次,最后向反应釜内充微量精制乙烯至0.12MPa。接着依次向反应釜内加入900ml精制的正庚烷溶剂,加入用量为Al/Cr(Cr为总铬摩尔量)=10的三异丁基铝(TIBA)作助催化剂,再加入100mL脱水脱氧精制后的正庚烷溶剂。调节乙烯压力至1MPa,待釜内温度恒定在80℃后,利用高压氮气将催化剂悬前驱体浊液压入聚合釜中开始反应。反应过程中在线采集单体乙烯的瞬时消耗量并由电脑记录。1h后加入盐酸/乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱中60℃下干燥4h后称重并分析。
表1 不同制备方式制得的负载型三中心催化剂乙烯聚合结果
实施例 聚合活性(g聚合物/g催化剂) 重均相对分子量×10 -5 相对分子量分布 1-丁基短支链含量(mol%)
实施例14 9874 3.7 34 0
实施例15 10830 3.5 42 0
实施例16 11217 3.7 38 0
实施例17 14120 4.5 33 0
实施例18 15606 3.2 54 0
实施例19 14266 3.1 61 0
实施例20 14582 3.2 47 0
实施例21 14513 2.8 38 0
实施例22 13981 3.2 45 0
实施例23 12836 3.5 34 0
实施例24 8887 4.1 31 0
实施例25 8610 4.5 27 0
实施例14与实施例15~16的主要区别在于前者的铬、钒是共浸渍的,而后两者是分步浸渍的,可发现分步浸渍法比共浸渍法制得的催化剂其乙烯聚合活性略高,而聚合物分子量与分子量分布却相当。分别对比实施例15与16或实施例18与20可发现催化剂各组分的负载顺序对其乙烯聚合性能影响甚微。实施例14~16与实施例17~23的主要区别在于后者在催化剂制备过程中引入了催化剂改性组分,可发现在相同聚合条件下加入改性组分的催化剂其活性普遍有所提高,且聚合物的相对分子量整体有所降低,相对分子量分布有所拓宽。对比实施例14与实施例24和25可知,三中心催化剂中的有机铬源以双环戊二烯基为配体时其活性略高于以双茚基或芴基为配体的有机铬源,但是从聚合物分子量和分子量分布来看,三者的差异不明显。
表2 不同配比组成的催化剂乙烯聚合结果
实施例 聚合活性(g聚合物/g催化剂) 重均相对分子量×10 -5 相对分子量分布 1-丁基短支链含量(mol%)
实施例26-1 7406 7.7 25 0
实施例26-2 7899 6.5 29 0
实施例26-3 8985 4.8 31 0
实施例26-4 9874 3.7 34 0
实施例26-5 11849 2.9 37 0
实施例26-6 13824 2.1 43 0
实施例26-1至26-6的主要区别在于其所采用的催化剂中双环戊二烯基铬组分加入量的不同,其按照Cr质量计算分别占催化剂总质量的0.2wt%、0.5wt%、1wt%、1.5wt%、2wt%与3wt%。由上表2可知随着双环戊二烯基铬加入量的增加,催化剂的聚合活性逐渐提升,而聚合物相对分子量逐渐降低,分子量分布则有所提升。这主要是因为双环戊二烯基铬组分负载后形成的活性中心趋向于聚合乙烯形成较低分子量聚乙烯。
表3 不同助催化剂浓度下催化剂的乙烯聚合结果
实施例 聚合活性(g聚合物/g催化剂) 重均相对分子量×10 -5 相对分子量分布 1-丁基短支链含量(mol%)
实施例27-1 7342 2.7 21 0
实施例27-2 12002 3.9 30 0
实施例27-3 14120 4.5 37 0
实施例27-4 13131 4.9 40 0
实施例27-5 12425 5.1 42 0
实施例31 5134 2.5 56 0
实施例32 9094 3.9 27 0
实施例27-1至27-5的主要区别在于其聚合过程中助催化剂三异丁基铝的加入量不同,其加入量按助催化剂与金属中心的摩尔比Al/Cr分别为0、5、10、15、20。由表3可知,当加入助催化剂后,催化体系的活性有明显提高,但是当Al/Cr的值大于某一定值后,其催化活性开始有所下降,即对于特定组成的负载型三中心催化剂,其具有最优的Al/Cr比使其聚合活性最高。同时可知随着Al/Cr值的提高,聚合物的相对分子量逐渐提高,而其聚合物相对分子量分布也相应有所提高。实施例31与32为未加入有机金属助催化剂条件下的聚合结果,其中前者的聚合时间是1h,后者的聚合时间是2h。显然,未加入助催化剂时本发明的三中心催化剂依然具有一定的乙烯聚合活性,但是相比于加入助催化剂的情况则活性有明显降低,这体现了一定量助催化剂对催化剂中心,特别是无机铬、无机钒活性中心的活性促进作用(见图3,其中a代表实施例31,b代表实施例32)。
表4 不同1-己烯加入量下催化剂的乙烯聚合结果
实施例 聚合活性(g聚合物/g催化剂) 重均相对分子量×10 -5 相对分子量分布 1-丁基短支链含量(mol%)
实施例28-1 15532 4.1 37 0.45
实施例28-2 12990 3.8 41 0.77
实施例28-3 12284 3.7 43 0.98
实施例28-4 11578 3.6 40 1.16
实施例28-1至28-4的主要区别在于其聚合过程中共聚单体1-己烯的加入量不同,其加入量按1-己烯占溶 剂体积分率百分比分别为1%、3%、5%、10%。由上表4可知,随着1-己烯加入量的加入,催化剂的活性呈现先上升后降低的趋势,这在大多数烯烃聚合催化体系均有所报道,即所谓的共聚单体效应。此外随着1-己烯的加入,聚合物的相对分子量有所降低,且分子量分布有所拓宽,这是由于1-己烯对催化剂的链转移反应有一定的促进作用所致。同时,由聚合物中1-丁烯短支链的含量可知,当加入1-己烯后,其能有效地***至聚乙烯链中。同时通过GPC-FTIR表征结果(见图4)可知聚合物的短支链呈逆分布,即短支链主要集中分布于高分子量部分。这是由于催化剂中V活性组分相比于其他两种活性组分具有明显更优的共聚性能。
表5 不同氢气分压下催化剂的乙烯聚合结果
实施例 聚合活性(g聚合物/g催化剂) 重均相对分子量×10 -5 相对分子量分布 1-丁基短支链含量(mol%)
实施例29-1 13414 3.5 27 0
实施例29-2 12708 2.9 21 0
实施例29-3 11719 2.4 18 0
实施例29-4 11013 1.8 16 0
实施例29-1至29-4的主要区别在于其聚合过程中加入的氢气分压不同,其依次为0.3bar、0.5bar、1bar和1.5bar氢气。由上表5可知其聚合过程中加入氢气后催化剂的聚合活性依次降低,但是聚合物的相对分子量明显降低,说明该催化剂具有较优异的氢调敏感性。同时随着氢气分压的增加,聚合物的分子量分布随之变窄。
表6 负载型三中心催化剂两段乙烯聚合结果
实施例 聚合活性(g聚合物/g催化剂) 重均相对分子量×10-5 相对分子量分布 1-丁基短支链含量(mol%)
实施例30 9884 3.1 51 0.65
实施例30采用两段聚合的形式模拟工业上常用的串联聚合工艺进行乙烯聚合。第一段聚合未加入助催化剂和共聚单体,因此主要由有机铬活性组分(该催化剂组分无需助催化剂活化即有乙烯聚合活性)聚合乙烯得到分子量较低的乙烯均聚物。第二段聚合加入助催化剂和共聚单体后,无机铬、无机钒活性组分前驱体被助催化剂大量活化,进行乙烯-1己烯共聚,形成大量较高分子量共聚物,同时有机铬活性组分因其较差的共聚性能而主要继续进行乙烯均聚。因此采用该种串联聚合工艺可灵活地对聚合物的分子量以及共聚单体的分布进行调控。如实施例30与实施例28-2的共聚单体加入量相同,尽管后者的共聚单体***量更高,但是前者的聚合物共聚单体更加集中分布于较高分子量组分(如图4和图5所示),这更有利于改善聚合物的长期力学性能。
表7 负载型三中心与双中心、单中心催化剂乙烯聚合结果
实施例 聚合活性(g聚合物/g催化剂) 重均相对分子量×10 -5 相对分子量分布 1-丁基短支链含量(mol%)
对比实施例1 7406 8.5 21 0
对比实施例2 8393 2.6 35 0
对比实施例3 5233 4.9 107 0
对比实施例4 3160 4 18 0
对比实施例5 987 24 4 0
对比实施例6 2469 1 3 0
将实施例14与对比实施例1-3对比可知,在相同聚合条件下,相比于负载型双中心催化剂,负载型三中心催化剂的乙烯聚合活性明显更高,同时聚合物的相对分子量及分子量分布均明显不同,并可通过高温GPC曲线观测到(见图6,其中a、b、c、d依次为实施例14、对比实施例1、对比实施例2和对比实施例3所得聚合物的高温GPC曲线),即当只负载本发明所述三中心催化剂中的两种催化剂活性组分前驱体,其经有机金属助催化剂活化后所得双中心催化剂的聚乙烯产物分子量只能呈单、双峰分布,而本发明所述负载型三中心催化剂的聚合物分子量可呈三峰分布,其主要是因为三种活性中心的乙烯***和链转移反应能垒有较大差异,其聚乙烯产物的分子量有较大差别。但是其相比于双中心催化剂而言,在调节聚合物分子量分布方面显然操作空间更大。同时比较对比实施例1-6和实施14可知本发明的三中心负载型催化剂其乙烯聚合活性明显高于单、双中心催化剂,且约高出三种单中心催化剂乙烯聚合活性加和的50%,充分说明三中心负载型催化剂中各活性中心间的催化协同效应。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种负载型三中心催化剂,其特征在于包括多孔无机载体、有机铬活性组分、无机铬活性组分和无机钒活性组分;或者,该催化剂除了包括多孔无机载体、有机铬活性组分、无机铬活性组分和无机钒活性组分外,还包括催化剂改性组分;
    所述的有机铬活性组分为有机铬活性组分前驱体经有机金属助催化剂或聚合单体活化后得到,而所述有机铬活性组分前驱体由含有环戊二烯基配体、茚基配体、芴基配体、环戊二烯基衍生物配体、茚基衍生物配体、芴基衍生物配体中至少一种配体的有机铬铬源负载于多孔无机载体表面获得;
    所述的无机铬活性组分为无机铬活性组分前驱体经有机金属助催化剂或聚合单体活化后得到,而所述无机铬活性组分前驱体为铬源在多孔无机载体表面的高温焙烧产物;
    所述的无机钒活性组分为无机钒活性组分前驱体经有机金属助催化剂或聚合单体活化后得到,而所述无机钒活性组分前驱体为钒源在多孔无机载体表面的高温焙烧产物;
    所述的催化剂改性组分为含硫、磷或卤素元素的化合物在多孔无机载体表面的高温焙烧产物,其中含硫、磷或卤素元素的化合物简称为Q组分;
    所述的有机金属助催化剂包括有机铝化合物、有机锂化合物、有机硼化合物中的至少一种,其中有机铝化合物为三烷基铝AlR 3、二烷基烷氧基铝AlR 2OR、二烷基卤化铝AlR 2X、铝氧烷、乙基倍半铝氯化物中的至少一种,其中R是烷基;
    所述的聚合单体为乙烯或α-烯烃。
  2. 根据权利要求1所述的负载型三中心催化剂,其特征在于:
    有机铬活性组分前驱体由有机铬铬源负载于多孔无机载体表面获得,所述的有机铬铬源的结构简式表示如下:CrCp* 1Cp* 2,其中Cp* 1与Cp* 2均为环戊二烯基及其衍生物、茚基及其衍生物、芴基及其衍生物中的一种,且Cp* 1与Cp* 2结构是否相同不受限制;
    具体地,Cp* 1与Cp* 2的结构为如下结构中的一种:
    Figure PCTCN2020089296-appb-100001
    其中,R为1~20个碳原子的烃基,且多个R之间相互独立,烃基为饱和或是不饱和的烃基,包括脂肪族、脂环族和芳香族;n,取整数值0~5;
    Ra和Ra'为1~10个碳原子的烃基,且多个Ra之间相互独立,多个Ra'之间也相互独立,烃基为饱和或是不饱和的烃基,包括脂肪族、脂环族和芳香族;m,取整数0~4;x,取整数0~3;
    Rb和Rb'为1~10个碳原子的烃基,且多个R b之间相互独立,多个R b'之间也相互独立,烃基为饱和或是不饱和的烃基,包括脂肪族、脂环族和芳香族;m'、m",取整数值0~4;Y为H、Rb或Rb';z,取值0或1;
    无机铬活性组分前驱体为铬源在无机载体表面的高温焙烧产物;所述的铬源选自三氧化铬、硝酸铬、醋酸铬、氯化铬、硫酸铬、铬酸铵、重铬酸铵、碱式醋酸铬中的至少一种;
    无机钒活性组分前驱体为钒源在无机载体表面的高温焙烧产物;所述的钒源选自如下:六氟钒酸铵、硝酸钒、草酸氧钒、偏钒酸铵、硫酸氧钒、硫酸氧化钒(Ⅳ)水合物、硫酸钒(Ⅲ)、三氯代氧化钒、原钒酸钠、偏钒酸钠、双乙酰丙酮氧化钒、三异丙醇氧钒、三丙醇氧化钒、乙酰丙酮钒、氧化三乙氧基钒、氯化氧钒、硅化三钒中的至少一种;
    催化剂改性组分为Q组分在无机载体表面的高温焙烧产物;所述的Q组分选自:硫酸、过硫酸、焦硫酸、亚硫酸、牛磺酸、硫酸铵、亚硫酸铵、过硫酸铵、硫酸钛、硫酸锆、硫酸钒、硫酸铁、硫酸亚铁、硫酸亚铁铵、硫酸镍、硫酸锌、硫酸铝、硫酸锡、硫酸锑、磷酸、焦磷酸、过磷酸、亚磷酸、次磷酸、偏磷酸、磷酸铵、焦磷酸铵、过磷酸铵、亚磷酸铵、次磷酸铵、偏磷酸铵、磷酸钛、磷酸锆、磷酸铁、磷酸镍、磷酸锌、磷酸铝、磷酸锡、磷酸锑、氢氟酸、氟化铵、氟硅酸、氟硼酸、氟硼酸铵、氟化氢铵、六氟硅酸铵、三氟化硼、氟化铝、氟化锑、六氟磷酸铵、六氟钛酸铵、盐酸、氯磺酸、氯化铵、氯化亚 铁、氯化铁、氯化铝、四氯化钛、氢溴酸、溴化铵、溴化铁、溴化亚铁或溴化铝以及它们的任意组合;
    所述的多孔无机载体为氧化硅、氧化铝、硅铝酸盐、无机粘土、氧化钛、氧化锆、氧化镁、氧化钙、氧化铁、氧化锡、氧化锌、氧化硼、氧化钨、氧化铌中的至少一种;所述的多孔无机载体的比表面积为50~800m 2/g,孔体积为0.1~5.0cm 3/g,平均孔径在1~50nm。
  3. 根据权利要求1~2任一项所述的负载型三中心催化剂,其特征在于:
    所述的负载型三中心催化剂中,有机铬活性组分前驱体中Cr的含量按Cr的重量计为催化剂总重量的0.1~12wt%;无机铬活性组分前驱体中Cr的含量按Cr的重量计为催化剂总重量的0.05~12wt%;无机钒活性组分前驱体中V的含量按V的重量计为催化剂总重量的0.05~10wt%;催化剂改性组分中硫、磷和卤素元素的含量按硫、磷和卤素元素的总重量计为催化剂总重量的0.1~20wt%。
  4. 根据权利要求1~2任一项所述的负载型三中心催化剂,其特征在于所述的负载型三中心催化剂的活性中心前驱体结构如下所示:
    Figure PCTCN2020089296-appb-100002
    其中a结构为无机铬活性组分前驱体,b结构为无机钒活性组分前驱体,c组分为有机铬活性组分前驱体,c中的L为环戊二烯基及其衍生物、茚基及其衍生物、芴基及其衍生物中的一种。
  5. 一种根据权利要求1~4任一项所述的负载型三中心催化剂的制备方法,其特征在于:
    催化剂的制备步骤包括催化剂前驱体的制备以及催化剂前驱体的活化;
    当负载型三中心催化剂中包括多孔无机载体、有机铬活性组分、无机铬活性组分、无机钒活性组分和催化剂改性组分时,负载型三中心催化剂前驱体的制备包括以下步骤:
    (1.1)通过浸渍、干燥和高温焙烧程序将铬源、钒源以及Q组分分别转化为负载于多孔无机载体表面的无机铬活性组分前驱体、无机钒活性组分前驱体以及催化剂改性组分,得到负载型两中心催化剂前驱体,其中无机铬活性组分前驱体、无机钒活性组分前驱体以及催化剂改性组分这三种组分的负载顺序是任意的;
    (1.2)通过浸渍、干燥程序将有机铬催化剂铬源转化为负载于步骤(1)中负载型两中心催化剂前驱体表面的有机铬活性组分前驱体,即得到所述的负载型三中心催化剂前驱体;
    当负载型三中心催化剂中包括多孔无机载体、有机铬活性组分、无机铬活性组分和无机钒活性组分,不包括催化剂改性组分时,负载型三中心催化剂前驱体的制备制备方法包括以下步骤:
    (2.1)通过浸渍、干燥和高温焙烧程序将铬源和钒源分别转化为负载于多孔无机载体表面的无机铬活性组分前驱体和无机钒活性组分前驱体,得到负载型两中心催化剂前驱体,其中无机铬活性组分前驱体和无机钒活性组分前驱体这两种组分的负载顺序是任意的;
    (2.2)通过浸渍、干燥程序将有机铬铬源转化为负载于步骤(1)中负载型两中心催化剂前驱体表面的有机铬活性组分前驱体,即得到所述的负载型三中心催化剂前驱体;
    负载型三中心催化剂前驱体的活化包括以下步骤:取任意一种方法制备的负载型三中心催化剂前驱体,加入有机金属助催化剂对其进行预处理活化,然后干燥即得目标催化剂;或取负载型三中心催化剂前驱体,聚合前置于反应釜中与有机金属助催化剂反应原位形成目标催化剂;或取上述三中心催化剂前驱体置于高压聚合单体中,经反应单体原位活化形成目标催化剂。
  6. 根据权利要求5所述的负载型三中心催化剂的制备方法,其特征在于:
    步骤(1.1)和步骤(2.1)中,铬源、钒源以及Q组分均以惰性溶剂为介质,通过浸渍搅拌的方法进入多孔无机载体孔道,并吸附于其表面,其中惰性溶剂为水、甲醇、乙醇、正己烷、正庚烷、正辛烷、苯、甲苯、二甲苯中的至少一种;铬源、钒源以及Q组分的用量满足:无机铬活性组分前驱体中Cr的含量按Cr的重量计为催化剂总重量的0.05~12wt%;无机钒活性组分前驱体中V的含量按V的重量计为催化剂总重量的0.05~10wt%;催化剂改性组分中硫、磷和卤素元素的含量按硫、磷和卤素元素的总重量计为催化剂总重量的0.1~20wt%;所述的浸渍的温度为20~120℃,所述的浸渍时间为1~24h;所述的干燥是指在60~150℃干燥,所述的干燥时间为2~24h;所述的高温焙烧的温度为300~900℃,焙烧过程的升温速率为0.1~5℃/min,焙烧时间为2~24h;
    步骤(1.2)和步骤(2.2)中,有机铬铬源以惰性有机溶剂为介质,通过浸渍搅拌的方法与多孔无机载体表面的剩余羟基反应从而负载于其表面,其中有机铬铬源的用量满足:有机铬活性组分前驱体中Cr的含量按有机铬铬源中Cr的重量计为催化剂总重量的0.1~12wt%;惰性有机溶剂选用有机烃类化合 物,浸渍温度为20~120℃,浸渍时间1~24h;干燥温度为60~150℃,干燥时间为2~24h。
  7. 根据权利要求5所述的负载型三中心催化剂的制备方法,其特征在于:
    负载型三中心催化剂前驱体的活化步骤中,所述有机金属助催化剂对负载型三活性中心催化剂前驱体进行预还原活化处理是在惰性气氛下进行,所述的有机金属助催化剂的金属元素的摩尔量和负载型三中心催化剂前驱体中铬元素的总摩尔量的比值为0~1000;所述的预还原活化处理温度在室温~100℃之间,还原活化处理时间0.5~20小时,处理完毕后再在60~120℃之间干燥2~8小时,干燥在氮气或惰性气体气氛下或者真空条件下进行;
    负载型三中心催化剂前驱体的活化步骤中,负载型三中心催化剂前驱体与有机金属助催化剂反应原位形成目标催化剂是指在溶剂介质中进行原位还原活化处理,所述的溶剂介质选自异戊烷、正戊烷、正己烷、异己烷、正庚烷、正辛烷、甲苯、二甲苯中的至少一种;所述的有机金属助催化剂的摩尔量和负载型三中心催化剂前驱体中铬元素的总摩尔量的比值为0~1000;所述的原位还原活化处理的温度为20~120℃,原位还原活化处理的时间为0.5~5h;
    负载型三中心催化剂前驱体的活化步骤中,负载型三中心催化剂前驱体经聚合单体原位活化形成目标催化剂是指在溶剂介质中进行原位还原活化处理,溶剂介质选自异戊烷、正戊烷、正己烷、异己烷、正庚烷、正辛烷、甲苯、二甲苯中的至少一种;聚合单体的分压为1-5MPa;所述的原位还原活化处理的温度为50~120℃。
  8. 根据权利要求1~4任一项所述的负载型三中心催化剂在催化烯烃聚合中的应用。
  9. 根据权利要求1~4任一项所述的负载型三中心催化剂在催化乙烯的均聚或乙烯与α-烯烃的共聚中的应用。
  10. 根据权利要求9所述的应用,其特征在于聚合过程中还添加了分子量调节剂和有机金属助催化剂中的至少一种;
    所述的分子量调节剂为氢气;
    所述的有机金属助催化剂为有机铝化合物、有机锂化合物、有机硼化合物中的至少一种,其中有机铝化合物为三烷基铝AlR 3、二烷基烷氧基铝AlR 2OR、二烷基卤化铝AlR 2X、铝氧烷、乙基倍半铝氯化物中的至少一种,其中R是烷基。
PCT/CN2020/089296 2019-05-09 2020-05-09 一种负载型三中心催化剂及其制备方法和应用 WO2020224653A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/434,892 US20220056165A1 (en) 2019-05-09 2020-05-09 Supported three-center catalyst and preparation method and application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910382436.4A CN110204636B (zh) 2019-05-09 2019-05-09 一种负载型三中心催化剂及其制备方法和应用
CN201910382436.4 2019-05-09

Publications (1)

Publication Number Publication Date
WO2020224653A1 true WO2020224653A1 (zh) 2020-11-12

Family

ID=67785625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089296 WO2020224653A1 (zh) 2019-05-09 2020-05-09 一种负载型三中心催化剂及其制备方法和应用

Country Status (3)

Country Link
US (1) US20220056165A1 (zh)
CN (1) CN110204636B (zh)
WO (1) WO2020224653A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110204636B (zh) * 2019-05-09 2020-07-31 华南农业大学 一种负载型三中心催化剂及其制备方法和应用
CN111019024B (zh) * 2019-11-28 2022-09-20 万华化学集团股份有限公司 一种生产宽分子量分布聚乙烯的催化剂及其制备方法和用途
CN110964141B (zh) * 2019-12-06 2022-04-01 中玺新材料(安徽)有限公司 一种负载铬锆钼三金属催化剂及其制备方法和应用
CN111205462B (zh) * 2020-01-10 2021-03-30 山东大学 一种含全氟环丁基芳基醚结构硅树脂的制备方法
CN115558048B (zh) * 2021-07-01 2024-01-30 中国石油天然气股份有限公司 一种三峰聚乙烯及其制备方法
CN116251728B (zh) * 2023-01-03 2023-09-19 万华化学集团股份有限公司 一种减少乙烯齐聚反应器中聚合物粘附的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275303A (ja) * 1985-05-30 1986-12-05 Mitsui Toatsu Chem Inc エチレンまたはα−オレフインの重合法
WO2013155982A1 (zh) * 2012-04-20 2013-10-24 华东理工大学 一种负载型金属氧化物双活性中心乙烯聚合催化剂及其制备方法与应用
WO2013155946A1 (zh) * 2012-04-16 2013-10-24 华东理工大学 一种新型负载型双中心复合聚乙烯催化剂及其制备方法与应用
CN103626899A (zh) * 2013-12-09 2014-03-12 华东理工大学 一种无机载体负载型铬钒双中心复合催化剂及其制备方法与应用
CN105199021A (zh) * 2014-06-06 2015-12-30 中国石油化工股份有限公司 钛氟改性的负载型铬钒双活性中心催化剂及其制备方法
CN107011485A (zh) * 2016-01-27 2017-08-04 中国石化扬子石油化工有限公司 一种三活性中心复合催化剂及利用其制备环烯烃共聚物的方法
CN107778387A (zh) * 2016-08-29 2018-03-09 中国石油化工股份有限公司 用于制备宽峰分布聚乙烯树脂的催化剂及其制备方法和制备的聚乙烯树脂
CN108203476A (zh) * 2016-12-20 2018-06-26 中国石油天然气股份有限公司 一种负载型聚乙烯催化剂及其制备方法
CN110204636A (zh) * 2019-05-09 2019-09-06 华南农业大学 一种负载型三中心催化剂及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331827A (en) * 1963-07-22 1967-07-18 Eastman Kodak Co Polymerization catalyst
US4285834A (en) * 1979-12-31 1981-08-25 The Dow Chemical Company Dual, independently supported catalyst mixtures
NL8103702A (nl) * 1981-08-06 1983-03-01 Stamicarbon Werkwijze voor de bereiding van een polymerisatiekatalysator en bereiding van etheenpolymeren daarmee.
NO300220B1 (no) * 1996-01-26 1997-04-28 Borealis As Fremgangsmåte og katalysatorsystem for polymerisering av etylen, eventuelt sammen med <alfa>-olefiner, og fremstilt polymermateriale
CN103145897B (zh) * 2012-04-20 2017-12-29 华东理工大学 一种负载型金属氧化物双活性中心乙烯聚合催化剂的制备及应用
EP3715385B1 (en) * 2019-03-26 2024-01-31 SABIC Global Technologies B.V. Chromium oxide catalyst for ethylene polymerization
CN115524340A (zh) * 2022-10-25 2022-12-27 广东台一精工机械有限公司 瓦楞纸板印刷缺陷检测设备及其检测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275303A (ja) * 1985-05-30 1986-12-05 Mitsui Toatsu Chem Inc エチレンまたはα−オレフインの重合法
WO2013155946A1 (zh) * 2012-04-16 2013-10-24 华东理工大学 一种新型负载型双中心复合聚乙烯催化剂及其制备方法与应用
WO2013155982A1 (zh) * 2012-04-20 2013-10-24 华东理工大学 一种负载型金属氧化物双活性中心乙烯聚合催化剂及其制备方法与应用
CN103626899A (zh) * 2013-12-09 2014-03-12 华东理工大学 一种无机载体负载型铬钒双中心复合催化剂及其制备方法与应用
CN105199021A (zh) * 2014-06-06 2015-12-30 中国石油化工股份有限公司 钛氟改性的负载型铬钒双活性中心催化剂及其制备方法
CN107011485A (zh) * 2016-01-27 2017-08-04 中国石化扬子石油化工有限公司 一种三活性中心复合催化剂及利用其制备环烯烃共聚物的方法
CN107778387A (zh) * 2016-08-29 2018-03-09 中国石油化工股份有限公司 用于制备宽峰分布聚乙烯树脂的催化剂及其制备方法和制备的聚乙烯树脂
CN108203476A (zh) * 2016-12-20 2018-06-26 中国石油天然气股份有限公司 一种负载型聚乙烯催化剂及其制备方法
CN110204636A (zh) * 2019-05-09 2019-09-06 华南农业大学 一种负载型三中心催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN110204636A (zh) 2019-09-06
US20220056165A1 (en) 2022-02-24
CN110204636B (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2020224653A1 (zh) 一种负载型三中心催化剂及其制备方法和应用
US6107230A (en) Compositions that can produce polymers
WO2013155982A1 (zh) 一种负载型金属氧化物双活性中心乙烯聚合催化剂及其制备方法与应用
BRPI1014665B1 (pt) Processo de polimerização de olefina e composição de catalisador
CN103145897A (zh) 一种负载型金属氧化物双活性中心乙烯聚合催化剂的制备及应用
CN110183556A (zh) 一种负载型钒、铬双中心复合催化剂及其制备方法和应用
US6790805B2 (en) Process for the in-situ preparation of single-site transition metal catalysts and polymerization process
CN105199021A (zh) 钛氟改性的负载型铬钒双活性中心催化剂及其制备方法
CN106366226B (zh) 一种过渡金属催化剂组合物及其应用
CN101113182B (zh) 一种催化剂组分、催化剂、其制备方法及其应用
US8298977B2 (en) Metallocene catalyst components supported on activating supports
CN115703853B (zh) 一种负载型双中心催化剂及其制备方法与应用
US8524627B2 (en) Activating supports with controlled distribution of OH groups
CN107540767B (zh) 双峰聚乙烯用双金属催化剂的制备方法
CN116410362A (zh) 双峰聚乙烯及其应用
CN112552434B (zh) 一种多中心负载型催化剂及其制备方法与应用
CN115703849A (zh) 负载型双中心催化剂及其制备方法和应用
CN112552437B (zh) 一种铬钼双中心负载型催化剂及其制备方法与应用
US20120065345A1 (en) Supported hybrid chromium-based catalysts, processes for preparing the same, and uses thereof
CN116410354A (zh) 一种负载型多中心催化剂及其制备方法
CN112552435A (zh) 双中心负载型催化剂及其制备方法与应用
CN1275578A (zh) 聚烯烃用复合载体负载型双金属催化剂及其制备方法
KR100466511B1 (ko) 폴리올레핀 제조용 고활성 실리카 담지 중합촉매의제조방법 및 그 제조방법에 의해 제조된 신규한 중합촉매
CN116410366A (zh) 聚乙烯及其制备方法
CN115703852A (zh) 负载型铬、钒双金属中心催化剂及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802926

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.05.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20802926

Country of ref document: EP

Kind code of ref document: A1