WO2020224056A1 - 一种非接触式天线阻抗测量方法及其测量*** - Google Patents

一种非接触式天线阻抗测量方法及其测量*** Download PDF

Info

Publication number
WO2020224056A1
WO2020224056A1 PCT/CN2019/097301 CN2019097301W WO2020224056A1 WO 2020224056 A1 WO2020224056 A1 WO 2020224056A1 CN 2019097301 W CN2019097301 W CN 2019097301W WO 2020224056 A1 WO2020224056 A1 WO 2020224056A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
antenna
chip
adjustable device
tag
Prior art date
Application number
PCT/CN2019/097301
Other languages
English (en)
French (fr)
Inventor
张俊
章国豪
黄国宏
唐浩
Original Assignee
河源广工大协同创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河源广工大协同创新研究院 filed Critical 河源广工大协同创新研究院
Publication of WO2020224056A1 publication Critical patent/WO2020224056A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant

Definitions

  • the invention relates to the technical field of radio frequency identification and antennas, in particular to a non-contact antenna impedance measurement method and a measurement system thereof.
  • RFID technology completes communication through radio frequency signals, and can obtain and identify related information of objects without physical contact with the object. It has the advantages of long sensing distance, high recognition accuracy, fast reading speed, and large amount of information storage. It is widely used Used in industrial production, transportation, logistics and other fields. With the development and improvement of RFID technology, RFID technology has shown great application potential and application scenarios have become more diverse.
  • impedance matching is very important. In actual tests, whether the antenna meets impedance matching depends on the measurement of its impedance.
  • the common antenna impedance measurement method is that the antenna is connected to the measuring instrument through the feeder, and the measuring instrument measures the antenna impedance.
  • the signal passes through the feeder and the insufficient calibration causes the measurement result to deviate from the actual result. Electric small antenna, the error caused by the measuring fixture will become more serious. Therefore, research on a non-contact antenna impedance measurement method and measurement system with simple measurement method, high efficiency and high accuracy is a problem that needs to be solved by those skilled in the art.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art and propose a non-contact antenna impedance measurement method, which effectively utilizes RFID technology to non-contact measurement antenna impedance, which is simple and convenient, simple in measurement method, high in measurement efficiency, and measurement accuracy. high.
  • Another object of the present invention is to provide a non-contact antenna impedance measurement system.
  • the present invention adopts the following technical solutions:
  • the impedance of the adjustable device and the impedance composed of the chip perform data processing calculations to obtain the impedance of the antenna at a specific frequency.
  • the electrical connection of the antenna, the adjustable device, and the chip specifically includes: sequentially connecting the antenna, the adjustable device, and the chip in series or connecting the adjustable device and the chip in parallel, and then connects the antenna in series.
  • the starting power of the reader tag is:
  • d is the distance between the reader and the antenna
  • ⁇ 0 is the free space wavelength
  • P th is the activation tag chip power
  • G R ( ⁇ , ⁇ ) is the gain of the tag reader
  • is the power transmission coefficient
  • ⁇ ⁇ is the polarization mismatch coefficient.
  • the power transmission coefficient between the tag antenna and the tag chip is:
  • S 11 is the reflection coefficient
  • R c is a real part of a chip impedance
  • X c is the imaginary portion of the chip impedance
  • R a is the real part of the antenna impedance
  • X a is the imaginary part of the antenna impedance
  • j is the imaginary part Said.
  • the data processing calculation specifically includes: substituting the reader tag activation power, tunable device impedance and chip impedance obtained from three measurements into the equation set, solving the equation, and obtaining the real impedance R of the antenna at a specific frequency a, the imaginary part X a, to obtain an antenna impedance Z a.
  • a non-contact antenna impedance measurement system includes an antenna, an adjustable device and a chip, wherein the antenna is connected in series with the adjustable device and the chip or the adjustable device is connected in parallel with the chip first, and then connected in series with the antenna.
  • the adjustable device is an adjustable capacitor.
  • the beneficial effects of the present invention sets a measurement system composed of an antenna, an adjustable device and a chip connection, places the measurement system within the reading distance range of the UHF RFID system, and changes the impedance of the adjustable device 3 times. In this way, the starting power of the reader tag, the impedance of the adjustable device and the impedance composed of the chip obtained by the three measurements are used to quickly and accurately obtain the impedance of the antenna at a specific frequency through data processing calculations.
  • the measurement operation is simple and fast, and it has measurement The advantages of high efficiency and high measurement accuracy.
  • Figure 1 is a schematic diagram of a non-contact antenna impedance measurement system according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of a non-contact antenna impedance measurement system according to an embodiment of the present invention
  • Fig. 3 is a graph showing the variation of the real part of the chip impedance with the adjustable capacitance according to an embodiment of the present invention
  • Fig. 5 is a comparison diagram of actual and extracted impedance real part values of an antenna according to an embodiment of the present invention.
  • Fig. 6 is a comparison diagram of actual and extracted imaginary impedance values of an antenna according to an embodiment of the present invention.
  • antenna 1 adjustable device 2
  • chip 3 adjustable capacitor 4.
  • a non-contact antenna impedance measurement method includes the following steps:
  • the antenna 1, the adjustable device 2 and the chip 3 are electrically connected to form a measurement system
  • the impedance of the adjustable device and the impedance composed of the chip perform data processing calculations to obtain the impedance of the antenna at a specific frequency.
  • the electrical connection of the antenna 1, the adjustable device 2 and the chip 3 specifically includes: connecting the antenna 1, the adjustable device 2, and the chip 3 in series or connecting the adjustable device 2 and the chip 3 in parallel, and then connect the antenna 1 in series.
  • the starting power of the reader tag is:
  • d is the distance between the reader and the antenna
  • ⁇ 0 is the free space wavelength
  • P th is the activation tag chip power
  • G R ( ⁇ , ⁇ ) is the gain of the tag reader
  • is the power transmission coefficient
  • ⁇ ⁇ is the polarization mismatch coefficient.
  • the power transmission coefficient between the tag antenna and the tag chip is:
  • S 11 is the reflection coefficient
  • R c is a real part of a chip impedance
  • X c is the imaginary portion of the chip impedance
  • R a is the real part of the antenna impedance
  • X a is the imaginary part of the antenna impedance
  • j is the imaginary part Said.
  • the data processing calculation specifically includes: substituting the reader tag activation power, tunable device impedance and chip impedance obtained from three measurements into the equation set, solving the equation, and obtaining the real impedance R of the antenna at a specific frequency a, the imaginary part X a, to obtain an antenna impedance Z a.
  • a non-contact antenna impedance measurement system comprising an antenna 1, an adjustable device 2 and a chip 3.
  • the antenna 1 is connected in series with the adjustable device 2 and the chip 3 or the adjustable device 2 is connected in parallel with the chip 3 first , And then in series with antenna 1, as shown in Figure 1 and Figure 2.
  • the adjustable device 2 is an adjustable capacitor 4.
  • a non-contact antenna impedance measurement method and measurement system thereof includes an antenna 1, an adjustable capacitor 4 and a chip 3.
  • the adjustable capacitor 4 is connected in parallel with the chip 3 first, and then with Antenna 1 is connected in series to form a measurement system, as shown in Figure 2.
  • the measurement method of the system includes the following steps:
  • the chip impedance used is 1.9k ⁇ ; the measurement system is placed within the reading distance of the UHF RFID system; the impedance of the adjustable capacitor 4 is changed 3 times, and the capacitance values are 0.76PF, 0.86PF, and 0.96PF, respectively, UHF RFID
  • the system software separately records the starting power of the reader tag and its corresponding frequency; by using the starting power of the reader tag obtained from three measurements, the impedance of the adjustable device and the impedance composed of the chip, the following data processing calculations are performed to obtain the impedance of the antenna at a specific frequency :
  • the starting power of the reader tag is:
  • d is the distance between the reader and the antenna
  • ⁇ 0 is the free space wavelength
  • P th is the activation tag chip power
  • G R ( ⁇ , ⁇ ) is the gain of the tag reader
  • is the power transmission coefficient
  • ⁇ ⁇ is the polarization mismatch coefficient
  • the power transfer coefficient is:
  • S 11 is the reflection coefficient
  • R c is a real part of a chip impedance
  • X c is the imaginary portion of the chip impedance
  • R a is the real part of the antenna impedance
  • X a is the imaginary part of the antenna impedance
  • j is the imaginary part Said.
  • the three measurements obtained starting power of the tag reader, the adjustable impedance device chips and the impedance is substituted into equation, solving the equation to obtain a specific frequency of the antenna impedance real part R a, imaginary part X a, to obtain an antenna impedance Z a.
  • the curve of the real part of the chip impedance with the adjustable capacitance is shown in Figure 3
  • the curve of the imaginary part of the chip impedance with the adjustable capacitance is shown in Figure 4
  • the comparison between the actual and extracted real impedance values of the antenna is shown in Figure 5.
  • the comparison diagram of the actual and extracted imaginary part of the impedance of the antenna is shown in Fig. 6. It can be seen that the real part and the imaginary part of the antenna impedance measurement in this embodiment are both close to the actual curve at 908-940MHz. Therefore, the non-contact antenna impedance measurement method proposed by the present invention has a higher accuracy rate.
  • the measuring operation of the invention is simple and quick, the measuring efficiency is high, the accuracy is high, and it has industrial practicability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种非接触式天线阻抗测量方法及其测量***,其测量方法包括如下步骤:(1)将天线、可调器件和芯片进行电连接,组成测量***;(2)将测量***放置于超高频RFID***阅读距离范围内;(3)将可调器件阻抗变化3次,由超高频RFID***软件分别记录阅读器标签启动功率及其对应频率;(4)利用3次测量获得的阅读器标签启动功率、可调器件阻抗和芯片组成的阻抗,进行数据处理计算,获得特定频率下天线的阻抗。本发明提出的非接触式天线阻抗测量方法,其测量操作简便快捷,并且具有测量效率高和测量的准确率高的优点。

Description

一种非接触式天线阻抗测量方法及其测量*** 技术领域
本发明涉及射频识别及天线技术领域,尤其涉及一种非接触式天线阻抗测量方法及其测量***。
背景技术
RFID技术通过无线射频信号完成通信,无需通过与物体的物理接触即可获取和识别物体的相关信息,具有感应距离远、识别准确率高、读取速度快、信息存储量大等优点,广泛应用于工业生产、交通、物流等领域。随着RFID技术的发展与完善,RFID技术表现出巨大的应用潜力,应用场景更加多样化。
技术问题
在天线性能研究中,阻抗匹配非常重要,在实际测试中,检测天线是否达到阻抗匹配取决于对其阻抗的测量。目前常见的天线阻抗测量方法是天线通过馈线连接到测量仪器,测量仪器测得天线阻抗,但往往存在信号经过馈线及校准的不充分导致测量结果与实际结果有较大偏差的缺点,特别是对于电小天线,由于测量夹具引起的误差将变得更严重。因此,研究一种测量方法简单、效率高且准确率高的非接触式天线阻抗测量方法及测量***是本领域技术人员目前需要解决的问题。
技术解决方案
本发明的目的在于克服上述已有技术的不足,提出一种非接触式天线阻抗测量方法,其有效利用RFID技术非接触式测量天线阻抗,简便快捷,测量方法简单,测量效率高,测量准确率高。
本发明的另一个目的在于提出一种非接触式天线阻抗的测量***。
为达此目的,本发明采用以下技术方案:
一种非接触式天线阻抗测量方法,其特征在于:包括如下步骤:
(1)将天线、可调器件和芯片进行电连接,组成测量***;
(2)将测量***放置于超高频RFID***阅读距离范围内;
(3)将可调器件阻抗变化3次,由超高频RFID***软件分别记录阅读器标签启动功率及其对应频率;
(4)利用3次测量获得的阅读器标签启动功率、可调器件阻抗和芯片组成的阻抗,进行数据处理计算,获得特定频率下天线的阻抗。
进一步说明,所述天线、可调器件和芯片进行电连接具体为:将天线、可调器件、芯片进行依次串联或先将可调器件和芯片并联,再与天线串联。
进一步说明,所述阅读器标签启动功率为:
Figure PCTCN2019097301-appb-000001
其中,d是阅读器与天线之间的距离,λ 0是自由空间波长,P th是标签芯片的激活功率,G R(Θ,Φ)是阅读器标签增益,
Figure PCTCN2019097301-appb-000002
是标签天线增益,τ是功率传输系数,η ρ是极化失配系数。
进一步说明,所述标签天线和标签芯片之间的功率传输系数为:
Figure PCTCN2019097301-appb-000003
其中,S 11是反射系数,可调器件和芯片连接组成的阻抗为 Z c=R c+jX c,天线阻抗为Z a=R a+jX a
Figure PCTCN2019097301-appb-000004
表示Z a的共轭阻抗,R c是芯片阻抗的实部,X c是芯片阻抗的虚部,R a是天线阻抗的实部,X a是天线阻抗的虚部,j为虚部的复数表示。
进一步说明,步骤(3)中,可调器件阻抗变化3次,设对应的阅读器标签启动功率分别为:P R1、P R1、P R1;可调器件和芯片连接组成的阻抗为:Z c1=R c1+jX c1、Z c2=R c2+jX c2、Z c3=R c3+jX c3,根据阅读器标签启动功率、标签天线和标签芯片之间的功率传输系数的关系表达式,得到以下方程组:
Figure PCTCN2019097301-appb-000005
Figure PCTCN2019097301-appb-000006
进一步说明,所述数据处理计算具体为:将3次测量获得的阅读器标签启动功率、可调器件阻抗和芯片组成的阻抗,代入方程组,解方程,得到特定频率下天线的阻抗实部R a,虚部X a,即可得到天线阻抗为Z a
一种非接触式天线阻抗的测量***,包括天线、可调器件和芯片,所述天线与可调器件和芯片进行依次串联或所述可调器件先与芯片并联,再与天线串联。
进一步说明,所述可调器件为可调电容。
有益效果
本发明的有益效果:本发明通过设置由天线、可调器件和芯片连接组成的测量***,将该测量***置于超高频RFID***阅读距离 范围内,并以可调器件阻抗变化3次的方式,从而利用3次测量获得的阅读器标签启动功率、可调器件阻抗和芯片组成的阻抗,经过数据处理计算来快速准确地获得特定频率下天线的阻抗,其测量操作简便快捷,而且具有测量效率高和测量的准确率高的优点。
附图说明
图1是本发明一个实施例的非接触式天线阻抗的测量***示意图;
图2是本发明一个实施例的非接触式天线阻抗的测量***示意图;
图3是本发明一个实施例的芯片阻抗实部随可调电容变化曲线图;
图4是本发明一个实施例的芯片阻抗虚部随可调电容变化曲线图;
图5是本发明一个实施例的天线实际和提取的阻抗实部值对比图;
图6是本发明一个实施例的天线实际和提取的阻抗虚部值对比图;
其中:天线1,可调器件2,芯片3,可调电容4。
本发明的最佳实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本专利的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺 寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
一种非接触式天线阻抗测量方法,包括如下步骤:
(1)将天线1、可调器件2和芯片3进行电连接,组成测量***;
(2)将测量***放置于超高频RFID***阅读距离范围内;
(3)将可调器件阻抗变化3次,由超高频RFID***软件分别记录阅读器标签启动功率及其对应频率;
(4)利用3次测量获得的阅读器标签启动功率、可调器件阻抗和芯片组成的阻抗,进行数据处理计算,获得特定频率下天线的阻抗。
进一步说明,所述天线1、可调器件2和芯片3进行电连接具体为:将天线1、可调器件2、芯片3进行依次串联或先将可调器件2和芯片3并联,再与天线1串联。
进一步说明,所述阅读器标签启动功率为:
Figure PCTCN2019097301-appb-000007
其中,d是阅读器与天线之间的距离,λ 0是自由空间波长,P th是标签芯片的激活功率,G R(Θ,Φ)是阅读器标签增益,
Figure PCTCN2019097301-appb-000008
是标签天线增益,τ是功率传输系数,η ρ是极化失配系数。
进一步说明,所述标签天线和标签芯片之间的功率传输系数为:
Figure PCTCN2019097301-appb-000009
其中,S 11是反射系数,可调器件和芯片连接组成的阻抗为Z c=R c+jX c,天线阻抗为Z a=R a+jX a
Figure PCTCN2019097301-appb-000010
表示Z a的共轭阻抗,R c是芯片阻抗的实部,X c是芯片阻抗的虚部,R a是天线阻抗的实部,X a是天线阻抗的虚部,j为虚部的复数表示。
进一步说明,步骤(3)中,可调器件阻抗变化3次,设对应的阅读器标签启动功率分别为:P R1、P R1、P R1;可调器件和芯片连接组成的阻抗为:Z c1=R c1+jX c1、Z c2=R c2+jX c2、Z c3=R c3+jX c3,根据阅读器标签启动功率、标签天线和标签芯片之间的功率传输系数的关系表达式,得到以下方程组:
Figure PCTCN2019097301-appb-000011
Figure PCTCN2019097301-appb-000012
进一步说明,所述数据处理计算具体为:将3次测量获得的阅读器标签启动功率、可调器件阻抗和芯片组成的阻抗,代入方程组,解方程,得到特定频率下天线的阻抗实部R a,虚部X a,即可得到天线 阻抗为Z a
一种非接触式天线阻抗的测量***,包括天线1、可调器件2和芯片3,所述天线1与可调器件2和芯片3进行依次串联或所述可调器件2先与芯片3并联,再与天线1串联,如图1和图2所示。
进一步说明,所述可调器件2为可调电容4。
本发明的实施方式
如图2-图6所示,一种非接触式天线阻抗测量方法及其测量***,测量***包括,天线1、可调电容4和芯片3;可调电容4先与芯片3并联,再与天线1串联,组成测量***,如图2所示。该***的测量方法包括如下步骤:
采用的芯片阻抗为1.9kΩ;将测量***放置于超高频RFID***阅读距离范围内;将可调电容4阻抗变化3次,电容值分别为0.76PF、0.86PF、0.96PF,超高频RFID***软件分别记录阅读器标签启动功率及其对应频率;通过利用3次测量获得的阅读器标签启动功率、可调器件阻抗和芯片组成的阻抗,进行如下数据处理计算,获得特定频率下天线的阻抗:
其中,阅读器标签启动功率为:
Figure PCTCN2019097301-appb-000013
其中,d是阅读器与天线之间的距离,λ 0是自由空间波长,P th是标签芯片的激活功率,G R(Θ,Φ)是阅读器标签增益,
Figure PCTCN2019097301-appb-000014
是标签天线增益,τ是功率传输系数,η ρ是极化失配系数;
另外,功率传输系数为:
Figure PCTCN2019097301-appb-000015
其中,S 11是反射系数,可调器件和芯片连接组成的阻抗为Z c=R c+jX c,天线阻抗为Z a=R a+jX a
Figure PCTCN2019097301-appb-000016
表示Z a的共轭阻抗,R c是芯片阻抗的实部,X c是芯片阻抗的虚部,R a是天线阻抗的实部,X a是天线阻抗的虚部,j为虚部的复数表示。
将可调器件阻抗变化3次,设对应的阅读器标签启动功率分别为:P R1、P R1、P R1;可调器件和芯片连接组成的阻抗为:Z c1=R c1+jX c1、Z c2=R c2+jX c2、Z c3=R c3+jX c3,根据上述(1)和(2)的关系表达式,得到以下方程组:
Figure PCTCN2019097301-appb-000017
Figure PCTCN2019097301-appb-000018
将3次测量获得的阅读器标签启动功率、可调器件阻抗和芯片组成的阻抗,代入方程组,解方程,得到特定频率下天线的阻抗实部R a,虚部X a,即可得到天线阻抗为Z a。其中,芯片阻抗实部随可调电容变化曲线情况如图3所示,芯片阻抗虚部随可调电容变化曲线情况如图4所示,天线实际和提取的阻抗实部值对比图如图5所示,天线实际和提取的阻抗虚部值对比图如图6所示,可以看出,本实施天线阻抗测量实部值和虚部值均在908-940MHz贴近于实际曲线。因此,本发明提出的非接触式天线阻抗测量方法具有较高的准确率。
工业实用性
本发明测量操作简便快捷,测量效率高,准确率高,具有工业实用性。

Claims (8)

  1. 一种非接触式天线阻抗测量方法,其特征在于:包括如下步骤:
    (1)将天线、可调器件和芯片进行电连接,组成测量***;
    (2)将测量***放置于超高频RFID***阅读距离范围内;
    (3)将可调器件阻抗变化3次,由超高频RFID***软件分别记录阅读器标签启动功率及其对应频率;
    (4)利用3次测量获得的阅读器标签启动功率、可调器件阻抗和芯片组成的阻抗,进行数据处理计算,获得特定频率下天线的阻抗。
  2. 根据权利要求1所述的一种非接触式天线阻抗测量方法,其特征在于:所述天线、可调器件和芯片进行电连接具体为:将天线、可调器件、芯片进行依次串联或先将可调器件和芯片并联,再与天线串联。
  3. 根据权利要求1所述的一种非接触式天线阻抗测量方法,其特征在于:所述阅读器标签启动功率为:
    Figure PCTCN2019097301-appb-100001
    其中,d是阅读器与天线之间的距离,λ 0是自由空间波长,P th是标签芯片的激活功率,G R(Θ,Φ)是阅读器标签增益,
    Figure PCTCN2019097301-appb-100002
    是标签天线增益,τ是功率传输系数,η ρ是极化失配系数。
  4. 根据权利要求3所述的一种非接触式天线阻抗测量方法,其特征在于:所述标签天线和标签芯片之间的功率传输系数为:
    Figure PCTCN2019097301-appb-100003
    其中,S 11是反射系数,可调器件和芯片连接组成的阻抗为Z c=R c+jX c,天线阻抗为Z a=R a+jX a
    Figure PCTCN2019097301-appb-100004
    表示Z a的共轭阻抗,R c是芯片阻抗的实部,X c是芯片阻抗的虚部,R a是天线阻抗的实部,X a是天线阻抗的虚部,j为虚部的复 数表示。
  5. 根据权利要求4所述的一种非接触式天线阻抗测量方法,其特征在于:步骤(3)中,可调器件阻抗变化3次,设对应的阅读器标签启动功率分别为:P R1、P R1、P R1;可调器件和芯片连接组成的阻抗为:Z c1=R c1+jX c1、Z c2=R c2+jX c2、Z c3=R c3+jX c3,根据阅读器标签启动功率、标签天线和标签芯片之间的功率传输系数的关系表达式,得到以下方程组:
    Figure PCTCN2019097301-appb-100005
    Figure PCTCN2019097301-appb-100006
  6. 根据权利要求5所述的一种非接触式天线阻抗测量方法,其特征在于:所述数据处理计算具体为:将3次测量获得的阅读器标签启动功率、可调器件阻抗和芯片组成的阻抗,代入方程组,解方程,得到特定频率下天线的阻抗实部R a,虚部X a,即可得到天线阻抗为Z a
  7. 一种如权利要求1~6中任意一项所述的非接触式天线阻抗的测量***,其特征在于:包括天线、可调器件和芯片,所述天线与可调器件和芯片进行依次串联或所述可调器件先与芯片并联,再与天线串联。
  8. 根据权利要求7所述的一种非接触式天线阻抗的测量***,其特征在于:所述可调器件为可调电容。
PCT/CN2019/097301 2019-05-09 2019-07-23 一种非接触式天线阻抗测量方法及其测量*** WO2020224056A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910386502.5 2019-05-09
CN201910386502.5A CN110018351B (zh) 2019-05-09 2019-05-09 一种非接触式天线阻抗测量方法及其测量***

Publications (1)

Publication Number Publication Date
WO2020224056A1 true WO2020224056A1 (zh) 2020-11-12

Family

ID=67193351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097301 WO2020224056A1 (zh) 2019-05-09 2019-07-23 一种非接触式天线阻抗测量方法及其测量***

Country Status (2)

Country Link
CN (1) CN110018351B (zh)
WO (1) WO2020224056A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018351B (zh) * 2019-05-09 2020-01-07 河源广工大协同创新研究院 一种非接触式天线阻抗测量方法及其测量***
CN114047385B (zh) * 2022-01-13 2022-07-08 北京智芯微电子科技有限公司 Rfid芯片阻抗及灵敏度的测试方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333269A (ja) * 1994-06-07 1995-12-22 Nippon Hoso Kyokai <Nhk> インピーダンス測定装置
CN102162824A (zh) * 2010-12-24 2011-08-24 中科院杭州射频识别技术研发中心 超高频射频识别电子标签天线大规模生产在线测试方法
CN103592517A (zh) * 2013-11-26 2014-02-19 中国船舶重工集团公司第七二二研究所 一种天线阻抗测试***及方法
CN110018351A (zh) * 2019-05-09 2019-07-16 河源广工大协同创新研究院 一种非接触式天线阻抗测量方法及其测量***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4477626B2 (ja) * 2003-05-12 2010-06-09 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 信号ループ試験のための方法および装置
CN101460698B (zh) * 2006-12-15 2013-01-02 哈里伯顿能源服务公司 具有旋转天线结构的天线耦合元件测量工具
CN100561238C (zh) * 2007-11-02 2009-11-18 武汉大学 一种利用工频干扰源带电测量互感线路零序阻抗参数的方法及装置
CN101609169B (zh) * 2009-04-08 2011-08-31 中国石油集团钻井工程技术研究院 一种提高电磁波电阻率测量精度和扩展其测量范围的方法
CN203376472U (zh) * 2013-07-15 2014-01-01 中国民用航空飞行学院 无线电自动定向仪天线信号模拟器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333269A (ja) * 1994-06-07 1995-12-22 Nippon Hoso Kyokai <Nhk> インピーダンス測定装置
CN102162824A (zh) * 2010-12-24 2011-08-24 中科院杭州射频识别技术研发中心 超高频射频识别电子标签天线大规模生产在线测试方法
CN103592517A (zh) * 2013-11-26 2014-02-19 中国船舶重工集团公司第七二二研究所 一种天线阻抗测试***及方法
CN110018351A (zh) * 2019-05-09 2019-07-16 河源广工大协同创新研究院 一种非接触式天线阻抗测量方法及其测量***

Also Published As

Publication number Publication date
CN110018351B (zh) 2020-01-07
CN110018351A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
US11080584B2 (en) Metal fastener with embedded RFID tag and method of production
US8947236B2 (en) Sensing properties of a material loading a UHF RFID tag by analysis of the complex reflection backscatter at different frequencies and power levels
CN102236069B (zh) 测试***及测试方法
WO2020224056A1 (zh) 一种非接触式天线阻抗测量方法及其测量***
Catarinucci et al. Design, development, and performance evaluation of a compact and long‐range passive UHF RFID tag
CN103941108B (zh) 闸门环境下基于识读距离测量的rfid标签方向图动态绘制方法
CN107808186A (zh) 长距离无线射频抗金属识别标签
CN110018438A (zh) 一种波达方向估计方法和装置
WO2023029914A1 (zh) 稀疏阵列解栅瓣方法、装置及相关设备
CN109284551A (zh) 一种基于神经网络空间映射的超高频rfid天线增益建模方法
Carnerero-Cano et al. A contactless dielectric constant sensing system based on a split-ring resonator-loaded monopole
CN103091556A (zh) 一种电子标签匹配阻抗的测量方法及***
CN104297566B (zh) 超高频射频识别电子标签上的天线阻抗测量方法
CN102162824B (zh) 超高频射频识别电子标签天线大规模生产在线测试方法
CN206349502U (zh) 一种薄型高增益uhf rfid抗金属标签天线
US20140306725A1 (en) System for Wireless Corrosion Monitoring
CN106785399B (zh) 一种薄型高增益uhf rfid抗金属标签天线
CN103050778B (zh) 集成平面阻抗匹配巴伦的射频识别近场天线
CN113567916B (zh) 一种相关干涉仪测向方法、***、设备及存储介质
Singh et al. A Nested Slot and T-Match Network Based Hybrid Antenna for UHF RFID Tag Applications.
Wickramasinghe et al. A Compact Energy Harvesting RFID Tag for Smart Traffic Law Enforcement Systems.
Vena et al. A RFID-enabled sensor platform for pervasive monitoring
TWI418494B (zh) 一種應用於塑膠棧板之rfid uhf標籤用平面迴路天線
TWI502812B (zh) Dual polarized antenna
CN114444635B (zh) 基于rfid标签的粮食含水量和温度的预测方法及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928112

Country of ref document: EP

Kind code of ref document: A1