WO2020222630A1 - Hollow core slab manufactured by vibration casting without formwork - Google Patents

Hollow core slab manufactured by vibration casting without formwork Download PDF

Info

Publication number
WO2020222630A1
WO2020222630A1 PCT/KZ2020/000007 KZ2020000007W WO2020222630A1 WO 2020222630 A1 WO2020222630 A1 WO 2020222630A1 KZ 2020000007 W KZ2020000007 W KZ 2020000007W WO 2020222630 A1 WO2020222630 A1 WO 2020222630A1
Authority
WO
WIPO (PCT)
Prior art keywords
slabs
formwork
ropes
round
vibrocompression
Prior art date
Application number
PCT/KZ2020/000007
Other languages
French (fr)
Russian (ru)
Inventor
Борис Николаевич Ким
Original Assignee
Борис Николаевич Ким
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Борис Николаевич Ким filed Critical Борис Николаевич Ким
Publication of WO2020222630A1 publication Critical patent/WO2020222630A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/0062Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects forcing the elements into the cast material, e.g. hooks into cast concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/08Load-carrying floor structures formed substantially of prefabricated units assembled of block-shaped elements, e.g. hollow stones
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/43Floor structures of extraordinary design; Features relating to the elastic stability; Floor structures specially designed for resting on columns only, e.g. mushroom floors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor

Definitions

  • the invention relates to the field of construction, namely to reinforced concrete floors of prefabricated girder-free frame buildings.
  • a reinforced concrete frame which is a girder-free, drip-free structure and contains above-column and inter-column slabs having loop outlets on the edges and grooves symmetrically located relative to each other, along which reinforcement is installed through the overlaps of the loop outlets of adjacent slabs, and passing through the holes in column slabs are prefabricated along the height of the column, in which longitudinal reinforcement is exposed in the places where the above column slabs are installed (AS USSR JM ° 1114749).
  • the disadvantage of this design is the low strength of the joints between floor slabs with columns and with each other under seismic influences.
  • the known system KUB-ZU in which the basic design solutions of the system of floor slabs with a column, a panel connection unit and a floor with columns are used.
  • the precast-monolithic reinforced concrete frame of buildings of the KUB-ZU series consists of vertical reinforced concrete columns and rigidly connected flat discs of interfloor and attic floors and coverings.
  • the disadvantage is the insufficient rigidity of the joints of the columns with the ceilings, created by welding through the connecting element, followed by monolithing with fine-grained concrete, which can easily collapse under seismic and other extreme influences; the disadvantage is also the need for a special conductor and a support table for installing the slab in the design position [www.kub3v.ru, patent holder SISTEMA STROY LLC, patents 100782, KP02020, JSTsl01065, 102652].
  • a hollow-core reinforced concrete slab designed to work in conditions of seismic activity which is a prototype.
  • the slab was obtained by the method of continuous non-formwork vibrocompression, contains oval voids, prestressed reinforcement in the form of parallel longitudinal bars and elements of transverse reinforcement, equipped with dowels on lateral surfaces.
  • the plate has reinforcing outlets of parallel longitudinal bars in the lower part from the side of its end, the plate is equipped with two pairs of additional longitudinal reinforcing bars placed in the bridges between the voids symmetrically relative to the longitudinal axis of the plate.
  • the disadvantages are: the absence of outlets on the sides and ends of the slabs, which makes it impossible to use in the SBK system, the absence of lifting loops in the slabs, which requires the purchase of additional expensive equipment, RF Patent 2363821.
  • the task to which the claimed invention is directed is achieved due to the fact that the design of the hollow-core slab without formwork and the compaction for the SBK system is made of concrete of a class not lower than B-25, is less labor-intensive in production and significantly reduces the production time, does not require alignment relative to the axes of the building, allows you to design and build multi-storey residential and public buildings according to the SBK system, reduces construction time, does not require racks, special conductors and support tables for installing slabs in the design position.
  • the technical result consists in reducing the construction time, reducing the production time of slabs dozens of times, reducing its cost by 1.5 times, in the installation of round-hollow slabs without formwork vibrocompression in earthquake-prone areas according to the SBK-SKF system of a prefabricated girder-free frame with seismic-insulating kinematic foundations, in the absence conductors, beams, girders and walls.
  • figure 1 shows a circular hollow-core slab 1 without formwork vibrocompression for the SBK system, which is formed with a "hidden girder" 2, with an embedded part 3, reinforced with high-strength wires 4, ropes 5, due to which the recommendations for preventing progressive collapse ...
  • the ropes are compressed with couplings 6 at the ends of the slabs 7 (shown in node A), which act as anchors in the concrete, and completely exclude the pulling in of the ropes after they are cut.
  • the couplings 6 can be installed after concreting, immediately before cutting the prestressed ropes 5, with tight support on the ends of the plates 1.
  • Ropes and wires can be replaced with composite reinforcement, while the anchoring at the ends of 7 plates 1 is carried out using adhesive joints.
  • Reinforcing rings 8 are driven into the hollow-core slab 1 without formwork, designed to support the precast bezel-less structure of the SBK.
  • the cut outlets of the ropes are crimped with double-length couplings 9 in a vertical position, as shown in section 2-2, high-strength wires 4 are welded together in order to create ring joints, which are formed in the “overderization joint”.
  • reinforcing half rings 10 are hammered into the freshly formed slab 1, followed by concreting of concrete of a class not lower than B-25.
  • ring rope slings 11 are used, fixed by the stranglehold method below the vertically located couplings 9, which squeeze the rope outlets 5.
  • Prestressed ropes, high-strength wires, or composite reinforcement are pulled over the stops.
  • Embedded parts 3 serving to install vertical ties of the building frame, and metal frames in order to form communication holes in slabs 1 are positioned with reinforcing pins so that when the slab is lifted after molding and cutting, the reinforcing pins remain in place.
  • the concreting is interrupted, the ropes are exposed, and a metal box with additional separate metal partitions is laid over the entire width of the bare ropes, to form blind ends.
  • the metal box is made with slots for installing reinforcing rings at the ends of the plates and passing the ropes.
  • Reinforcement rings and half rings are driven into the ends of the plates and side parts.
  • bare ropes, wires, or composite reinforcement are cut in the middle, formed into vertical half-rings, by crimping the joints of the ropes with couplings, welding wires, and composite reinforcement by gluing together.
  • the information confirming the possibility of carrying out the invention is the availability of the TENSYLAND EV5 model t-24 technological line worth $ 267,000 and a non-form vibrocompression unit with built-in vibrators and a heating system that allows the production of hollow core slabs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

The invention relates to the field of building, and more particularly to hollow core slabs manufactured by vibration casting without formwork and designed for use in composite beamless frames that can be erected in areas of seismic activity. The present slabs are configured with oval or circular voids. The slabs are reinforced with prestressed cables and high-tensile wires and are provided with transverse reinforcing members and lifting loops. The end faces of the slabs, having a width of not less than 130 mm, are configured without voids and are provided with reinforcing embedded articles in the form of rings and with prestressed cables constricted by sleeves in the end faces of the slabs.

Description

КРУГЛОПУСТОТНАЯ ПЛИТА БЕЗОПАЛУБОЧНОГО CIRCULAR PLATE
ВИБРОПРЕССОВАНИЯ Изобретение относится к области строительства, а именно к железобетонным перекрытиям сборных безригельных каркасных зданий. VIBRATION PRESSING The invention relates to the field of construction, namely to reinforced concrete floors of prefabricated girder-free frame buildings.
Из предшествующего уровня техники известен железобетонный каркас, представляющий собой безригельную, бескапительную конструкцию и содержащий надколонные и межколонные плиты, имеющие на ребрах петлевые выпуски и симметрично расположенные относительно друг друга пазы, вдоль которых сквозь перехлесты петлевых выпусков смежных плит установлена арматура, и проходящие сквозь отверстия в надколонных плитах сборные по высоте колонны, в которых в местах монтажа надколонных плит обнажена продольная арматура (А.С. СССР JM° 1114749). Недостатком данной конструкции является низкая прочность стыков плит перекрытий с колоннами и между собой при сейсмических воздействиях. From the prior art, a reinforced concrete frame is known, which is a girder-free, drip-free structure and contains above-column and inter-column slabs having loop outlets on the edges and grooves symmetrically located relative to each other, along which reinforcement is installed through the overlaps of the loop outlets of adjacent slabs, and passing through the holes in column slabs are prefabricated along the height of the column, in which longitudinal reinforcement is exposed in the places where the above column slabs are installed (AS USSR JM ° 1114749). The disadvantage of this design is the low strength of the joints between floor slabs with columns and with each other under seismic influences.
Известна система КУБ-ЗУ, в которой использованы основные конструктивные решения системы плит перекрытий с колонной, узел соединения панели и перекрытия с колоннами. Сборно -монолитный железобетонный каркас зданий серии КУБ-ЗУ состоит из вертикальных железобетонных колонн и жестко сопряженных с ними плоских дисков междуэтажных и чердачных перекрытий и покрытия. Недостатком является недостаточная жесткость узлов сопряжения колонн с перекрытиями, создаваемая за счет сварки через соединительный элемент с последующим замоноличиванием мелкозернистым бетоном, который легко может разрушиться, при сейсмических и других воздействиях чрезвычайного характера, недостатком также является необходимость специального кондуктора и опорного столика для установки плиты в проектное положение [www.kub3v.ru, патентообладатель ООО «СИСТЕМА СТРОЙ», патенты
Figure imgf000002_0001
100782, КП02020, JSTsl01065, 102652].
The known system KUB-ZU, in which the basic design solutions of the system of floor slabs with a column, a panel connection unit and a floor with columns are used. The precast-monolithic reinforced concrete frame of buildings of the KUB-ZU series consists of vertical reinforced concrete columns and rigidly connected flat discs of interfloor and attic floors and coverings. The disadvantage is the insufficient rigidity of the joints of the columns with the ceilings, created by welding through the connecting element, followed by monolithing with fine-grained concrete, which can easily collapse under seismic and other extreme influences; the disadvantage is also the need for a special conductor and a support table for installing the slab in the design position [www.kub3v.ru, patent holder SISTEMA STROY LLC, patents
Figure imgf000002_0001
100782, KP02020, JSTsl01065, 102652].
Известна система СБК сборного безригельного каркаса со сборной трехслойной плитой перекрытия, состоящая из двух несущих слоев нижнего и верхнего из легкого бетона класса не ниже В-60, объемным весом не ниже 1600 кг/мЗ среднего ненесущего слоя, выполненного из пенополистиролбетона объемным весом не более 200 кг/мЗ, со скрытым ригелем, закладными деталями из арматуры и П-образными выпусками по бокам и торцам плит с 4 петлями подъема по патенту N° 32706 РК. Недостатком является отсутствие возможности непрерывного безопалубочного вибропрессования, которая в десятки раз сокращает сроки производства плит. Known system SBK prefabricated girder-free frame with a prefabricated three-layer slab, consisting of two load-bearing layers of the lower and upper light concrete of class not lower than B-60, bulk density not less than 1600 kg / m3 of the middle non-bearing layer made of expanded polystyrene concrete with a bulk density of not more than 200 kg / m3, with a hidden crossbar, embedded parts from reinforcement and U-shaped outlets on the sides and ends of plates with 4 lifting loops according to patent N ° 32706 RK. The disadvantage is the lack of the possibility of continuous non-formwork vibrocompression, which reduces the production time of slabs tenfold.
Также известна многопустотная железобетонная плита, предназначенная для работы в условиях сейсмической активности, являющаяся прототипом. Плита получена методом непрерывного безопалубочного вибропрессования, содержит овальные пустоты, преднапряженную арматуру в виде параллельных продольных стержней и элементы поперечной арматуры, снабжена шпонками на боковых поверхностях. Плита имеет арматурные выпуски параллельных продольных стержней в нижней части со стороны ее торца, плита снабжена двумя парами дополнительных продольных арматурных стержней, размещенных в перемычках между пустотами симметрично относительно продольной оси плиты. Недостатками являются: отсутствие выпусков по бокам и торцам плит, что делает невозможным применение в системе СБК, отсутствие петель подъема в плитах, что требует приобретения дополнительного дорогостоящего оборудования, Патент РФ 2363821 . Also known is a hollow-core reinforced concrete slab designed to work in conditions of seismic activity, which is a prototype. The slab was obtained by the method of continuous non-formwork vibrocompression, contains oval voids, prestressed reinforcement in the form of parallel longitudinal bars and elements of transverse reinforcement, equipped with dowels on lateral surfaces. The plate has reinforcing outlets of parallel longitudinal bars in the lower part from the side of its end, the plate is equipped with two pairs of additional longitudinal reinforcing bars placed in the bridges between the voids symmetrically relative to the longitudinal axis of the plate. The disadvantages are: the absence of outlets on the sides and ends of the slabs, which makes it impossible to use in the SBK system, the absence of lifting loops in the slabs, which requires the purchase of additional expensive equipment, RF Patent 2363821.
Задача на решение которой направлено заявленное изобретение, достигается за счет того, что конструкция круглопустотной плиты безопалубочного ибропрессования для системы СБК выполняется из бетона класса не ниже В-25 , менее трудоемка в производстве и в разы сокращает сроки производства, не требует выверки относительно осей здания, позволяет проектировать и строить многоэтажные жилые и общественные здания по системе СБК, сокращает сроки строительства, не требует стоек, специальных кондукторов и опорных столиков для установки плит в проектное положение. Технический результат заключается в уменьшения сроков строительства, сокращении сроков производства плит в десятки раз, снижении ее себестоимости в 1,5 раза, в осуществлении монтажа круглопустотных плит безопалубочного вибропрессования в сейсмоопасных районах по системе СБК-СКФ сборного безригельного каркаса с сейсмоизолирующими кинематическими фундаментами, при отсутствии кондукторов, балок, ригелей и стен. The task to which the claimed invention is directed is achieved due to the fact that the design of the hollow-core slab without formwork and the compaction for the SBK system is made of concrete of a class not lower than B-25, is less labor-intensive in production and significantly reduces the production time, does not require alignment relative to the axes of the building, allows you to design and build multi-storey residential and public buildings according to the SBK system, reduces construction time, does not require racks, special conductors and support tables for installing slabs in the design position. The technical result consists in reducing the construction time, reducing the production time of slabs dozens of times, reducing its cost by 1.5 times, in the installation of round-hollow slabs without formwork vibrocompression in earthquake-prone areas according to the SBK-SKF system of a prefabricated girder-free frame with seismic-insulating kinematic foundations, in the absence conductors, beams, girders and walls.
Изобретение поясняется чертежами, где на фиг.1 показана круглопустотная плита 1 безопалубочного вибропрессования для системы СБК, которая сформирована со «скрытым ригелем» 2, с закладной деталью 3, заармированная высокопрочными проволоками 4, канатами 5, за счет которых выполняются рекомендации по предотвращению прогрессивного обрушения. До начала бетонирования канаты обжимаются муфтами 6 в торцах плит 7 (показано в узле А), которые выполняют роль анкеров в бетоне, и полностью исключают втягивание канатов после их разрезки. The invention is illustrated by drawings, where figure 1 shows a circular hollow-core slab 1 without formwork vibrocompression for the SBK system, which is formed with a "hidden girder" 2, with an embedded part 3, reinforced with high-strength wires 4, ropes 5, due to which the recommendations for preventing progressive collapse ... Before the start of concreting, the ropes are compressed with couplings 6 at the ends of the slabs 7 (shown in node A), which act as anchors in the concrete, and completely exclude the pulling in of the ropes after they are cut.
Как вариант муфты 6 могут устанавливаться после бетонирования, непосредственно, перед разрезкой преднапряженных канатов 5, с плотным опиранием на торцы плит 1. Alternatively, the couplings 6 can be installed after concreting, immediately before cutting the prestressed ropes 5, with tight support on the ends of the plates 1.
Канаты и проволоки могут быть заменены композитными арматурами, при этом анкеровка в торцах 7 плит 1 выполняется за счет клеевых соединений. Ropes and wires can be replaced with composite reinforcement, while the anchoring at the ends of 7 plates 1 is carried out using adhesive joints.
В круглопустотную плиту 1 безопалубочного формования забивают арматурные кольца 8, предназначенные для опирания на сборную безригельную конструкцию СБК. Разрезанные выпуски канатов обжимаются муфтами удвоенной длины 9 в вертикальном положении, как показано в сечении 2-2, высокопрочные проволоки 4 свариваются между собой, с целью создания кольцевых соединений, которые формируются в «стык Передерия». Для фиксации центральных плит с плитой 1 по бокам плиты сверху в свежеотформованную плиту 1 забивают арматурные полукольца 10 с последующим обетонированием из бетона класса не ниже В-25. Для подъема плиты 1 и ее монтажа используют кольцевые канатные стропы 11 , закрепленные методом удавки ниже вертикально расположенных муфт 9, обжимающих выпуски канатов 5. Reinforcing rings 8 are driven into the hollow-core slab 1 without formwork, designed to support the precast bezel-less structure of the SBK. The cut outlets of the ropes are crimped with double-length couplings 9 in a vertical position, as shown in section 2-2, high-strength wires 4 are welded together in order to create ring joints, which are formed in the “overderization joint”. To fix the central slabs with slab 1, on the sides of the slab, from above, reinforcing half rings 10 are hammered into the freshly formed slab 1, followed by concreting of concrete of a class not lower than B-25. To lift the slab 1 and install it, ring rope slings 11 are used, fixed by the stranglehold method below the vertically located couplings 9, which squeeze the rope outlets 5.
Процесс подготовки к бетонированию способом безопалубочного вибропрессования для системы СБК заключается в следующем: The process of preparing for concreting using the formless vibrocompression method for the SBK system is as follows:
Преднапряженные канаты, высокопрочные проволоки, или композитные арматуры натягивают на упоры. Prestressed ropes, high-strength wires, or composite reinforcement are pulled over the stops.
Закладные детали 3, служащие для установки вертикальных связей каркаса здания, и металлические рамки с целью формирования коммуникационных отверстий в плитах 1 позиционируют арматурными штырями так, чтобы при подъеме плиты после формования и разрезки, арматурные штыри остаются на месте. Embedded parts 3, serving to install vertical ties of the building frame, and metal frames in order to form communication holes in slabs 1 are positioned with reinforcing pins so that when the slab is lifted after molding and cutting, the reinforcing pins remain in place.
В процессе безопалубочного вибропрессования плит прерывают бетонирование, оголяют канаты, и укладывают на всю ширину оголенных канатов, металлический короб с дополнительными раздельными металлическими перегородками, для формования глухих торцов. In the process of formless vibrocompression of the slabs, the concreting is interrupted, the ropes are exposed, and a metal box with additional separate metal partitions is laid over the entire width of the bare ropes, to form blind ends.
Металлический короб изготавливают с прорезями, для установки арматурных колец в торцах плит и пропуска канатов. The metal box is made with slots for installing reinforcing rings at the ends of the plates and passing the ropes.
В торцы плит и боковые части забивают арматурные кольца и полукольца. Reinforcement rings and half rings are driven into the ends of the plates and side parts.
Извлекают раздельные перегородки, а стенки металлического короба дополнительно раздвигают на 10-20 мм для обжатия колец, преднапряженных канатов и торцов плит. Separate partitions are removed, and the walls of the metal box are additionally moved apart by 10-20 mm to compress the rings, prestressed ropes and plate ends.
После достижения 75 % прочности плиты оголенные канаты, проволоки, или композитные арматуры разрезают посередине, формируют в вертикальные полукольца, путем обжатия стыков канатов муфтами, проволок сваркой, а композитных арматур склеиванием между собой. After reaching 75% of the strength of the slab, bare ropes, wires, or composite reinforcement are cut in the middle, formed into vertical half-rings, by crimping the joints of the ropes with couplings, welding wires, and composite reinforcement by gluing together.
Для подъёма и монтажа плит используют кольцевые стропы, закрепляя методом удавки ниже вертикально расположенных муфт, обжимающих выпуски канатов. Вертикальные кольца и полукольца, стыкуемых плит, создают кольцевые соединения, которые формируются в «стык Передерия». For lifting and installation of slabs, ring slings are used, fixing by a stranglehold method below the vertically located couplings that squeeze the rope outlets. Vertical rings and half rings of the butted slabs create ring joints, which are formed into the "Rederization joint".
Сведениями подтверждающими возможность осуществления изобретения является, наличие технологической линии TENSYLAND EV5 model t-24 стоимостью $ 267,000 и установки безопалубочного вибропрессования со встроенными вибраторами и системой обогрева, позволяющей производить круглопустотные плиты. The information confirming the possibility of carrying out the invention is the availability of the TENSYLAND EV5 model t-24 technological line worth $ 267,000 and a non-form vibrocompression unit with built-in vibrators and a heating system that allows the production of hollow core slabs.

Claims

Формула изобретения Claim
1. Круглопустотная плита безопалубочного вибропрессования для системы СБК сборного безригельного каркаса, предназначенная для работы в обычных условиях и в условиях сейсмической активности, с овальными, или круглыми пустотами со скрытыми ригелями, или без, с преднапряженными канатами, высокопрочными проволоками, с элементами поперечной арматуры, петлями для подъема отличающаяся тем , что торцы плит шириной не менее 130 мм сформированы беспустотными, с арматурными закладными изделиями в виде колец, с преднапряженными канатами, обжатыми муфтами в торцах плит. 1. A round-hollow-core slab without formwork vibrocompression for the SBK system of a prefabricated bezel-less frame, designed to work under normal conditions and in conditions of seismic activity, with oval or round voids with hidden beams, or without, with prestressed ropes, high-strength wires, with elements of transverse reinforcement, lifting loops, characterized in that the ends of the slabs with a width of at least 130 mm are formed hollow, with reinforcement embedded products in the form of rings, with prestressed ropes, crimped couplings at the ends of the slabs.
2. Круглопустотная плита безопалубочного вибропрессования по п.1, отличающаяся тем, что края разрезанных канатов обжимаются вертикальными муфтами, края проволок привариваются, а края композитных волокон склеиваются, попарно между собой в вертикальной плоскости, с целью создания стыка Передерия. 2. A round-hollow plate without formwork vibrocompression according to claim 1, characterized in that the edges of the cut ropes are compressed with vertical couplings, the edges of the wires are welded, and the edges of the composite fibers are glued together, in pairs in a vertical plane, in order to create a Perederiya joint.
3. Круглопустотная плита безопалубочного вибропрессования по п.1, отличающаяся тем, что петли подъема выполнены многоразовыми в виде кольцевых канатных строп, закрепляющиеся методом удавки ниже вертикально расположенных муфт, обжимающих выпуски канатов. 3. A round-hollow plate without formwork vibrocompression according to claim 1, characterized in that the lifting loops are made reusable in the form of annular rope slings, fastened by a stranglehold method below the vertically arranged couplings that clamp the rope outlets.
PCT/KZ2020/000007 2019-05-02 2020-04-28 Hollow core slab manufactured by vibration casting without formwork WO2020222630A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KZ2019/0320.1 2019-05-02
KZ20190320 2019-05-02

Publications (1)

Publication Number Publication Date
WO2020222630A1 true WO2020222630A1 (en) 2020-11-05

Family

ID=73029007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KZ2020/000007 WO2020222630A1 (en) 2019-05-02 2020-04-28 Hollow core slab manufactured by vibration casting without formwork

Country Status (2)

Country Link
EA (1) EA202091103A3 (en)
WO (1) WO2020222630A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2363821C1 (en) * 2008-03-11 2009-08-10 Сергей Николаевич Кучихин Multi-cellular reinforced concrete board intended for operation under conditions of high seismic activity
RU2394970C1 (en) * 2009-04-28 2010-07-20 Государственное образовательное учреждение высшего профессионального образования "Самарский государственный архитектурно-строительный университет" (СГАСУ) Device for reinforcement of multi-cavity panel of building floor
RU133548U1 (en) * 2013-05-14 2013-10-20 Общество с ограниченной ответственностью "Стройтехинновации ТДСК" MULTI-HOUSING CERAMZY-CONCRETE FLOOR PLATE WITH AN INCREASED ANCHORING OF THE REINFORCEMENT
RU2521025C1 (en) * 2013-04-12 2014-06-27 Открытое акционерное общество "Центральный научно-исследовательский и проектный институт жилых и общественных зданий" (ОАО "ЦНИИЭП жилых и общественных зданий (ЦНИИЭП жилища)" Hollow core plate with interhollow amplifiers
UZ1347U (en) * 2017-04-17 2018-12-29

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2363821C1 (en) * 2008-03-11 2009-08-10 Сергей Николаевич Кучихин Multi-cellular reinforced concrete board intended for operation under conditions of high seismic activity
RU2394970C1 (en) * 2009-04-28 2010-07-20 Государственное образовательное учреждение высшего профессионального образования "Самарский государственный архитектурно-строительный университет" (СГАСУ) Device for reinforcement of multi-cavity panel of building floor
RU2521025C1 (en) * 2013-04-12 2014-06-27 Открытое акционерное общество "Центральный научно-исследовательский и проектный институт жилых и общественных зданий" (ОАО "ЦНИИЭП жилых и общественных зданий (ЦНИИЭП жилища)" Hollow core plate with interhollow amplifiers
RU133548U1 (en) * 2013-05-14 2013-10-20 Общество с ограниченной ответственностью "Стройтехинновации ТДСК" MULTI-HOUSING CERAMZY-CONCRETE FLOOR PLATE WITH AN INCREASED ANCHORING OF THE REINFORCEMENT
UZ1347U (en) * 2017-04-17 2018-12-29

Also Published As

Publication number Publication date
EA202091103A2 (en) 2020-11-30
EA202091103A3 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
CN107542190B (en) Composite structural wall and method of construction thereof
AU2020100658B4 (en) Building module and method for constructing a multistorey building
CN111576619B (en) Production method of high-strength concrete post-cast assembled frame system
CA2888614A1 (en) Methods, systems and components for multi-storey building construction
AU2011250662A1 (en) A building structure
KR101658648B1 (en) Beam-column joint and simultaneous construction method of upper and lower part of building using thereof
WO2002099208A1 (en) A composite precast cast insitue building system
JP2019526004A (en) Precast concrete formwork, floor system, and construction method
EA006995B1 (en) Method and apparatus for precast and framed block element construction
JP2018520285A (en) Prefabricated column and beam type construction
US4050213A (en) Method of erecting a multi-story building
CN212453065U (en) Assembled building frame structure member
US4228625A (en) Construction system
CN216475803U (en) Novel prefabricated floor slab structure applied to shear wall system
WO2020222630A1 (en) Hollow core slab manufactured by vibration casting without formwork
EA040697B1 (en) MULTI-HOLLOW-HOUSE PLATE FOR THE SBC SYSTEM OF A PREFABRICATED GAMBER-LESS FRAME
CN112482568A (en) Construction method and structure of connection joint of crossed primary and secondary beams with bonding prestress
RU96589U1 (en) BUILDING FRAME
RU2134751C1 (en) Framework of building and method of its erection
CN106760115B (en) Light assembled composite floor slab and construction method thereof
CN111566291A (en) Detachable floor structure
JPH0718734A (en) Constructing method for reinforced concrete building structure
CN215442343U (en) Can expand available building area's three-layer steel construction of encorbelmenting
JP2003013493A (en) Beam-column connection joint and beam-column connection method
RU2281362C1 (en) Composite reinforced concrete multistory building frame

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798514

Country of ref document: EP

Kind code of ref document: A1