WO2020222541A1 - 캐스파제 저해제의 프로드럭 - Google Patents

캐스파제 저해제의 프로드럭 Download PDF

Info

Publication number
WO2020222541A1
WO2020222541A1 PCT/KR2020/005709 KR2020005709W WO2020222541A1 WO 2020222541 A1 WO2020222541 A1 WO 2020222541A1 KR 2020005709 W KR2020005709 W KR 2020005709W WO 2020222541 A1 WO2020222541 A1 WO 2020222541A1
Authority
WO
WIPO (PCT)
Prior art keywords
isopropyl
fluoro
oxopentanoate
isoquinolin
dihydroisoxazole
Prior art date
Application number
PCT/KR2020/005709
Other languages
English (en)
French (fr)
Inventor
최세현
김성원
송정욱
백재욱
박현서
박아별
김정애
강소영
문희정
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2021564603A priority Critical patent/JP7442914B2/ja
Priority to EP20798715.7A priority patent/EP3954683A4/en
Priority to CN202080031870.9A priority patent/CN113767097A/zh
Priority to US17/607,733 priority patent/US20220227743A1/en
Publication of WO2020222541A1 publication Critical patent/WO2020222541A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • A61K31/4725Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]

Definitions

  • the present invention relates to a prodrug of a caspase inhibitor, an isoxazoline derivative having an ester moiety, and a pharmaceutical composition containing the same.
  • Caspase is a type of enzyme, cysteine protease that exists as an ⁇ 2 ⁇ 2 tetramer, and caspase inhibitors interfere with the activity of these caspases, thereby causing inflammation or cell death caused by caspase action. It is a compound that can control (apoptosis).
  • Diseases that can eliminate or alleviate symptoms by administering these compounds include osteoarthritis, rheumatoid arthritis, degenerative arthritis, destructive bone disorder, liver disease caused by hepatitis virus, acute hepatitis, liver cirrhosis, brain damage caused by hepatitis virus, human Sudden liver failure, sepsis, organ transplant rejection, ischemic heart disease, dementia, stroke, brain injury due to AIDS, diabetes, and stomach ulcers.
  • isoxazoline derivatives have been applied as Korean Patent Application Nos. 10-2004-0066726, 10-2006-0013107 and 10-2008-0025123.
  • a prodrug of a caspase inhibitor based on an isoxazoline derivative has been disclosed in International Publication No. WO 2007/015931 (applicant: Vertex Pharmaceuticals Incorporated, USA).
  • the present invention was intended to improve bioavailability by developing a prodrug of an isoxazoline derivative having the structure of Formula 2 as an effective inhibitor for caspase.
  • the caspase inhibitor of Formula 2 has high solubility in water and has high hydrophilicity, so it may be advantageous for the development of oral formulations, but there may be disadvantages in the development of long-lasting formulations.
  • the present invention provides a compound represented by the following Formula 1, or a pharmaceutically acceptable salt or isomer thereof.
  • R represents alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkoxy or alkoxyalkyl, wherein heteroaryl is one or more heteroatoms selected from N, O and S. Including,
  • alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl or alkoxyalkyl are optionally substituted, and the substituents are alkyl, halo, haloalkyl, cycloalkyl, hydroxy, acyl, amino , Alkoxy, carboalkoxy, oxo, carboxy, carboxyamino, cyano, nitro, thiol, aryloxy, sulfoxy and at least one selected from guanido groups,
  • R is not tert-butyl.
  • the compound of formula 1 according to the present invention can form a pharmaceutically acceptable salt.
  • Pharmaceutically acceptable salts include acids that form non-toxic acid addition salts containing pharmaceutically acceptable anions, such as inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrobromic acid, hydroiodic acid, and the like; Organic acids such as tartaric acid, formic acid, citric acid, acetic acid, trichloroacetic acid, trifluoroacetic acid, gluconic acid, benzoic acid, lactic acid, fumaric acid, maleic acid, salicylic acid, and the like; Acid addition salts formed by sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and the like are included.
  • carboxylic acid salts include, for example, alkali metal or alkaline earth metal salts formed of lithium, sodium, potassium, calcium, magnesium, and the like; Amino acid salts such as lysine, arginine, and guanidine; Organic salts such as dicyclohexylamine, N-methyl-D-glucamine, tris(hydroxymethyl)methylamine, diethanolamine, choline, triethylamine, and the like.
  • the compound of formula 1 according to the present invention can be converted to its salt by conventional methods.
  • the compounds according to the present invention may have an asymmetric carbon center and an asymmetric axis or an asymmetric plane, and thus may exist as E or Z isomers, R or S isomers, racemates, mixtures of diastereomers and individual diastereomers, All these isomers and mixtures are included within the scope of the present invention.
  • the compound of Formula 1 is used in the sense of including all of the compound of Formula 1, pharmaceutically acceptable salts and isomers thereof.
  • halogen or halo denotes fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
  • alkyl is a straight or branched hydrocarbon, which may contain single bonds, double bonds or triple bonds, with C 1 -C 18 alkyl being preferred.
  • the alkyl is methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, decyl, dodecyl, pentadecyl, octadecyl, Acetylene, vinyl, trifluoromethyl, and the like, but are not limited thereto.
  • cycloalkyl is a partially or wholly saturated mono or fused cyclic cyclic hydrocarbon, with C 3 -C 10 -cycloalkyl being preferred. Examples include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexynyl, and the like.
  • alkoxy unless otherwise defined means an alkyloxy having 1 to 10 carbon atoms.
  • aryl includes at least one ring having a covalent pi electron system, for example a monocyclic or fused ring polycyclic (ie, rings sharing adjacent pairs of carbon atoms) groups.
  • the fused ring polycyclic may include a C 3 -C 8 cycloalkyl ring fused with an aryl.
  • aryl is an aromatic monocyclic or polycyclic having 5 to 15 carbon atoms, preferably 6 to 10 carbon atoms, including phenyl, naphthyl, dihydroindene, etc., unless otherwise defined. It means a click ring.
  • aryl can be C 5 -C 12 aryl, preferably C 6 -C 10 aryl.
  • heteroaryl includes one or more heteroatoms selected from N, O and S as a reducing agent, and forms a single or fused cyclic ring that may be fused with benzo or C 3 -C 8 cycloalkyl, 3 to 10 members, More preferably, it means a 4 to 6 membered aromatic hydrocarbon.
  • the heteroaryl is pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, oxadiazolyl, isoxadiazolyl, tetrazolyl, triazolyl, indolyl, indazolyl, isoxazolyl, oxazolyl, thia Zolyl, isothiazolyl, furanyl, benzofuranyl, imidazolyl, thiophenyl, benzthiazole, benzimidazole, quinolinyl, indolinyl, 1,2,3,4-tetrahydroisoquinolyl, 3 ,4-dihydroisoquinolyl, thiazolopyridyl, 2,3-dihydrobenzofuran, 2,3-dihydrothiophene, 2,3-dihydroindole, benzo[1,3]dioxane, chroman , Thiochroman, 1,
  • Cycloalkylalkyl, arylalkyl, heteroarylalkyl and alkoxyalkyl refer to groups formed by bonding of cycloalkyl, aryl, heteroaryl, alkoxy and/or alkyl as defined above, for example, benzyl, thiophenemethyl, pyri Including, but not limited to, midinemethyl and the like.
  • R is C 1-20 alkyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-6 alkyl, C 6 -C 10 aryl, C 6 -C 10 aryl -C 1-6 alkyl, 3 to 10 membered heteroaryl, 3 to 10 membered heteroaryl-C 1-6 alkyl, halo-C 1-6 alkyl or C 1-6 alkoxy-C 1-6 alkyl, said hetero Aryl may include 1 to 4 heteroatoms selected from N, O and S, but is not limited thereto.
  • R is C 1-18 alkyl, C 3-6 cycloalkyl, C 3-6 cycloalkyl-C 1-3 alkyl, C 6 -C 10 aryl, C 6 -C 10 aryl -C 1-3 alkyl, 4-6 membered heteroaryl-C 1-3 alkyl, halo-C 1-3 alkyl, C 1-3 alkoxy-C 1-3 alkyl, wherein the heteroaryl is N, O and S It includes 1 or 2 heteroatoms selected from, and the substituent may be alkyl, halo, alkoxy or oxo, but is not limited thereto.
  • Representative of the compounds of Formula 1 according to the present invention may include the following compounds, but are not limited thereto:
  • the invention also provides a method of preparing the compound of formula 1.
  • a method of preparing the compound of Formula 1 will be described based on an exemplary reaction scheme to aid understanding of the present invention.
  • those of ordinary skill in the art can prepare the compound of Formula 1 by various methods based on the structure of Formula 1, and all of these methods are interpreted as being included in the scope of the present invention. Should be. That is, it is possible to prepare the compound of Formula 1 by arbitrarily combining several synthetic methods described herein or disclosed in the prior art, which is understood to fall within the scope of the present invention, and the method of preparing the compound of Formula 1 is described below. It is not limited.
  • the compound of Formula 1 of the present invention can be synthesized from the compound of Formula 2 according to the method of Scheme 1 below.
  • the compound of Formula 1, which is a prodrug is synthesized using a compound of Formula 2 and oxalyl chloride, dimethyl formamide (DMF), alcohol and a dichloromethane (DCM) solvent, or a compound of Formula 2 And alkyl halide, potassium carbonate and dimethyl formamide solvent, or the compound of Formula 2 and EDC (3-ethyliminomethyleneamino-N,N-dimethylpropan-1-amine) or EDCI (N-ethyl-N′-( 3-dimethylaminopropyl)carbodiimide hydrochloride), HOBt (1-Hydroxybenzotriazole), triethylamine (Et 3 N), alkyl alcohol and dichloromethane solvent can be used for synthesis.
  • a compound not specifically described in the preparation method of the present specification is a compound known per se or a compound that can be easily synthesized from a known compound by a known synthesis method or a similar method.
  • the compound of Formula 1 obtained through the above method may be separated or purified from a reaction product by various methods such as recrystallization, iontophoresis, silica gel column chromatography, or ion exchange resin chromatography.
  • the compounds according to the present invention can be synthesized by various methods, and these methods are included in the scope of the present invention in connection with the preparation of the compound of Formula 1 It must be interpreted.
  • the compound of formula 1 according to the present invention can be used as a caspase inhibitor prodrug. Accordingly, the present invention provides a pharmaceutical composition for the prevention or treatment of anti-inflammatory or apoptosis comprising a pharmaceutically acceptable carrier with a compound of Formula 1 as an active ingredient, or a pharmaceutically acceptable salt or isomer thereof. .
  • Diseases that can be prevented or treated with the pharmaceutical composition according to the present invention may be selected from apoptosis-mediated diseases, inflammatory diseases, osteoarthritis, rheumatoid arthritis, degenerative arthritis and destructive bone disorders, but are not limited thereto. .
  • the "pharmaceutical composition” may include other chemical components such as carriers, diluents, excipients, etc. in addition to the active compound according to the present invention. Accordingly, the pharmaceutical composition may include a pharmaceutically acceptable carrier, diluent, excipient, or a combination thereof, if necessary.
  • the pharmaceutical composition facilitates administration of the active compound into an organism. There are various techniques for administering the compound, including, but not limited to, oral, injection, aerosol, parenteral, and topical administration.
  • carrier refers to a compound that facilitates injection of the compound into cells or tissues.
  • DMSO dimethylsulfoxide
  • carrier facilitates the introduction of many organic compounds into cells or tissues of an organism.
  • the term "diluent” is defined as a compound that is diluted in water to dissolve the compound as well as stabilize the biologically active form of the target compound. Salts dissolved in buffer are used as diluents in the art. A commonly used buffer solution is a phosphate buffered saline solution that mimics the salt form of a human solution. Because buffer salts can control the pH of a solution at low concentrations, buffering diluents rarely alter the biological activity of a compound.
  • pharmaceutically acceptable means a property that does not impair the biological activity and physical properties of the compound.
  • the compounds of the present invention can be formulated into various pharmaceutical dosage forms depending on the purpose.
  • the active ingredient specifically the compound of Formula 1, a pharmaceutically acceptable salt or isomer thereof, various pharmaceutically acceptable carriers that can be selected according to the formulation to be prepared Mix with.
  • the pharmaceutical composition according to the present invention may be formulated as an injection formulation, an oral formulation, or the like, depending on the purpose.
  • the pharmaceutical composition of the present invention may be formulated in an oral dosage form, an injection form, or a patch form, but is not limited thereto.
  • the compounds of the present invention may be formulated by a known method using a known pharmaceutical carrier and excipient, and introduced into a unit dosage form or a multi-dose container.
  • the form of the formulation may be in the form of a solution, suspension or emulsion in an oil or aqueous medium, and may contain conventional dispersing, suspending or stabilizing agents.
  • it may be in the form of a dry powder that is used by dissolving in water from which a pyrogen has been removed and sterile before use.
  • the compounds of the present invention may also be formulated in suppository form using conventional suppository bases such as cocoa butter or other glycerides.
  • the solid dosage form for oral administration is available in capsules, tablets, pills, powders, and granules, and capsules and tablets are particularly useful. Tablets and pills are preferably prepared as enteric coatings.
  • the solid dosage form can be prepared by mixing the compound of the present invention with one or more inert diluents such as mannitol, sucrose, lactose, starch, etc., and a carrier such as a lubricant such as magnesium stearate, a disintegrant, a binder, and the like.
  • sterile water is usually used as a carrier, and other ingredients such as dissolution aids may be included.
  • Preparations for injection for example sterile aqueous or oily suspensions for injection, can be prepared according to known techniques using suitable dispersing, wetting, or suspending agents. Solvents that can be used for this include water, Ringer's solution and isotonic NaCl solution, and sterile fixed oil is also usually used as a solvent or suspension medium. Any non-irritating fixed oil, including mono- and di-glycerides, can be used for this purpose, and fatty acids such as oleic acid can also be used in the formulation for injection.
  • a penetration accelerator and/or a suitable wetting agent as a carrier may be optionally used together with a suitable additive that does not irritate the skin.
  • the additives are selected to facilitate administration through the skin and/or to assist in preparing the desired composition.
  • Transdermal preparations are administered in a variety of ways, such as transdermal patches, drops or ointments.
  • the compound according to the present invention or a pharmaceutical composition containing the same may be administered in combination with other drugs, for example, other caspase inhibitors and/or caspase inhibitor prodrugs.
  • the dosage of the compound of Formula 1 of the present invention is determined according to the doctor's prescription according to factors such as the patient's weight, age, and the specific nature and severity of the disease.
  • the total daily dose to be administered to the host as a single dose or as a separate dose is preferably in the range of about 5 to 500 mg per 1 kg body weight, but the specific dose level for a specific patient Body weight, sex, health status, diet, administration time of the drug, administration method, excretion rate, drug mixing and the severity of the disease may vary.
  • treatment means stopping, delaying or alleviating the progression of a disease when used in a subject showing onset symptoms.
  • the pharmaceutical composition may include the compound of Formula 1, or a pharmaceutically acceptable salt or isomer thereof, and microspheres including a biocompatible polymer, but is not limited thereto.
  • the biocompatible polymer may be selected from polylactide, polyglycolide, polylactide glycolide copolymer, poly(lactide-co-glycolide) glucose, polycaprolactone, gelatin, and hyaluronate.
  • polyglycolide, polylactide or polylactide glycolide copolymer (PLGA) may be preferred.
  • the biocompatible polymer may be a polylactide glycolide copolymer having a lactide to glycolide molar ratio of 10:90 to 90:10, but is not limited thereto.
  • the molar ratio may be preferably 50:50 to 75:25.
  • the weight ratio of the compound of Formula 1, or a pharmaceutically acceptable salt or isomer thereof and the biocompatible polymer in the microspheres may be 1:100 to 70:100, but is not limited thereto.
  • the weight ratio of the compound of Formula 1, or a pharmaceutically acceptable salt or isomer thereof, and the biocompatible polymer may be 1:100 to 17:100.
  • the compound of Formula 1, or a pharmaceutically acceptable salt or isomer thereof in the microspheres may be included in a weight ratio of 5% or more and less than 30% compared to the biocompatible polymer, and preferably 10% or more 17 It may be included in a weight ratio of less than %, more preferably, it may be included in a weight ratio of about 16.7%, but is not limited thereto.
  • the molecular weight range of the polylactide glycolide copolymer may be about 1 to 1000 kDa, preferably about 30 to 150 kDa, more preferably about 38 to 54 kDa, but is not limited thereto.
  • the end group of the polylactide glycolide copolymer may be an ester or an acid, preferably an ester, but is not limited thereto.
  • the weight ratio of the solid (drug and PLGA) to the solvent used in the preparation of the microspheres may be about 5% to 40%, preferably about 10% to 20%, more preferably about 10%. Not limited.
  • the diameter of the microspheres may be about 1 to 250 ⁇ m, preferably about 20 to 100 ⁇ m, more preferably about 30 to 70 ⁇ m, but is not limited thereto.
  • Solvents that can be used for the preparation of the microspheres are dichloromethane, dimethyl sulfoxide, dimethylformamide, acetic acid, hydrochloric acid, methanol, ethanol, acetone, ethanol, chloroform, acetonitrile, N-methyl-2-pyrrolidone, tetrahydro Furan, methylethylketone, propylacetate, ethylacetate and methyl acetate.
  • organic solvent removal can be performed by applying any commonly used solvent removal method, for example, solvent extraction and stirring, heating, solvent evaporation such as nitrogen purge (N 2 purge), etc. have.
  • solvent removal method for example, solvent extraction and stirring, heating, solvent evaporation such as nitrogen purge (N 2 purge), etc. have.
  • the present invention relates to a novel compound having the structure of formula 1, which is a prodrug of an isoxazoline derivative, which is a caspase inhibitor having the structure of formula 2. That is, the compound of Formula 1 acts as a prodrug for caspase inhibitors.
  • the prodrug compound having the structure of Formula 1 is converted into the active form of the caspase inhibitor of Formula 2 by an esterase isoenzyme in the body.
  • the prodrug compound of Formula 1 has increased drug persistence compared to the caspase inhibitor of Formula 2, and the prodrug compound of Formula 1 can be converted to Formula 2 by a degrading enzyme in the human body and at the same time Since it has hydrophobicity itself, it may be suitable for long-lasting formulations.
  • 1 is a graph showing the conversion of a caspase prodrug into an active form of caspase inhibitor by a hydrolytic enzyme in the plasma of a rat.
  • 2 is a graph showing the average concentration profile of drugs in the joints of a dog administered caspase prodrug.
  • FIG. 3 is an image obtained by observing the properties of PLGA microspheres encapsulating a caspase prodrug with a scanning electron microscope.
  • FIG. 4 is an image obtained by observing the properties of PLGA microspheres prepared by encapsulating a caspase inhibitor with a scanning electron microscope.
  • 5 is an image observing the properties of PLGA microspheres prepared by varying the weight ratio of caspase prodrug and polymer.
  • FIG. 6 is a graph of in vitro elution of PLGA microspheres encapsulated with caspase prodrugs in PBS and joint synovial solution.
  • 9 is a graph measuring the molecular weight change according to the dissolution test of microspheres.
  • FIG 10 is a graph showing the measurement of the concentration of a caspase inhibitor in synovial fluid according to intra-articular administration of PLGA microspheres prepared according to an embodiment of the present invention.
  • Example 1 Methyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxa Mido)-4-oxopentanoate [Methyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido) -4-oxopentanoate]
  • Example 2 Ethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxa Mido)-4-oxopentanoate [ethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido) -4-oxopentanoate]
  • Example 3 Propyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxa Mido)-4-oxopentanoate [Propyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido) -4-oxopentanoate]
  • Example 5 Isobutyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-car Radiation Mido)-4-oxopentanoate [isobutyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido )-4-oxopentanoate]
  • Example 6 Isopentyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-car Radiation Mido)-4-oxopentanoate [Isopentyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido )-4-oxopentanoate]
  • Example 7 Pentyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxa Mido)-4-oxopentanoate [Pentyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido) -4-oxopentanoate]
  • Example 8 Hexyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxa Mido)-4-oxopentanoate (hexyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido) -4-oxopentanoate]
  • Example 9 Heptyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxa Mido)-4-oxopentanoate [Heptyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido) -4-oxopentanoate]
  • Example 11 Decyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxa Mido)-4-oxopentanoate [Decyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido) -4-oxopentanoate]
  • Example 12 Dodecyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-car Radiation Mido)-4-oxopentanoate [Dodecyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido )-4-oxopentanoate]
  • Example 13 Pentadecyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-car Radiation Mido)-4-oxopentanoate [Pentadecyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido )-4-oxopentanoate]
  • Example 15 (9E,12E)-octadeca-9,12-dien-1-yl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinoline-1 -Yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate [(9E,12E)-octadeca-9,12-dien-1-yl (S)-5- fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
  • Example 17 Cyclobutylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5- Carboxamido)-4-oxopentanoate [Cyclobutylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5- carboxamido)-4-oxopentanoate]
  • Example 18 Cyclopentylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5- Carboxamido)-4-oxopentanoate [Cyclopentylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5- carboxamido)-4-oxopentanoate]
  • Example 20 Isopropyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-car Radiation Mido)-4-oxopentanoate [Isopropyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido )-4-oxopentanoate]
  • Example 21 Penta-3-yl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole- 5-carboxamido)-4-oxopentanoate [Penta-3-yl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4, 5 dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
  • Example 22 sec-butyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5- Carboxamido)-4-oxopentanoate [sec-butyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole- 5-carboxamido)-4-oxopentanoate]
  • Example 24 Heptan-2-yl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole- 5-carboxamido)-4-oxopentanoate [Heptan-2-yl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4, 5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
  • Example 27 Benzyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxa Mido)-4-oxopentanoate [Bezyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido) -4-oxopentanoate]
  • Example 28 (5-Methyl-2-oxo-1,3-dioxol-4-yl)methyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(iso Quinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate [(5-methyl-2-oxo-1,3-dioxol-4-yl)methyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
  • Example 29 2-methoxyphenyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole- 5-carboxamido)-4-oxopentanoate [2-methoxyphenyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5- dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
  • Example 30 2,3-dihydro-1 H -Inden-5-yl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-car Radiation Mido)-4-oxopentanoate [2,3-dihydro-1 H -inden-5-yl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
  • Example 31 Naphthalen-1-yl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole- 5-carboxamido)-4-oxopentanoate [Naphthalen-1-yl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4, 5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
  • Example 32 Phenyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxa Mido)-4-oxopentanoate [Phenyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido) -4-oxopentanoate]
  • Example 33 Naphthalen-1-ylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole -5-carboxamido)-4-oxopentanoate [Naphthalen-1-ylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4 ,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
  • Example 34 2,2,2-trifluoroethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5- Dihydroisoxazole-5-carboxamido)-4-oxopentanoate [2,2,2-trifluoroethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-) 1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
  • Example 35 2-methoxyethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole- 5-carboxamido)-4-oxopentanoate [2-Methoxyethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5- dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
  • Example 36 2-Fluoroethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole -5-carboxamido)4-oxopentanoate [2-fluoroethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5 -dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
  • Example 37 Neopentyl (S)-5-fluoro-3((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-ca Copyamido)4-oxopentanoate [neopentyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido )-4-oxopentanoate]
  • Example 38 Thiophen-2-ylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroi Sooxazole-5-carboxamido)-4-oxopentanoate [thiophen-2-ylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl) )-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
  • Example 39 Thiophen-3-ylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroi Sooxazole-5-carboxamido)-4-oxopentanoate [thiophen-3-ylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl) )-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
  • Example 40 Furan-3-ylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisooxy Sazol-5-carboxamido)-4-oxopentanoate [furan-3-ylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl) -4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
  • Example 2 Whole blood from 7-week-old male SD-rats was collected and centrifuged to obtain fresh plasma.
  • the compound of Example 2 was selected as the prodrug to be tested, and a 5 mg/mL DMSO stock thereof was used as a working solution.
  • This solution was diluted in acetonitrile at a ratio of 1/10 to make a concentration of 0.5 mg/mL, and then mixed (spike) with the fresh plasma obtained above at a ratio of 1/100 to make a final concentration of 1 ⁇ g/mL. It was taken as the starting concentration of the drug stability measurement.
  • the obtained peak region of the compound of Formula 2 was corrected to the peak region of IS to obtain the peak response at each sample collection point, and the generation and disappearance patterns over time were confirmed.
  • FIG. 1 The analysis results are shown in FIG. 1. According to FIG. 1, when the prodrug of Formula 1 is mixed with fresh plasma of a rat, most of it is lost within about 5 minutes, which is hydrolyzed by an esterase present in the plasma to be converted to a compound of Formula 2. It was analyzed to be because of.
  • PK pharmacokinetic
  • an acetonitrile solution including IS and 5% FA
  • concentrations 0.1, 0.5, 5, 50 and 500 ng/mL, respectively
  • the final calibration curve of 0.4 ⁇ 2,000 ng/mL was prepared by making protein with acetonitrile.
  • 0.5 ⁇ l of the supernatant obtained after protein removal was injected into LC-MS/MS, and then the peak area of the compound of Formula 2 was corrected to the peak area of IS to obtain the peak response at each sample collection point, and the concentration was converted through a calibration curve. .
  • Pharmacokinetic parameters (C max , T max , AUC last , t 1/2, etc.) were calculated through a non-compartmental analysis method using WinNonlin 8.1 for the value of the blood concentration according to the time of each administration group. The pharmacokinetic characteristics of each compound were compared by comparing exposure and half-life changes by drug administration group.
  • the parent drug the compound of Formula 2
  • the maximum drug concentration in the blood of the compound of Formula 2 reached decreased.
  • the disappearance half-life (t 1/2 ) of drugs in the body increased depending on the substance, and the characteristics observed in the administration of such prodrugated drugs are advantageous in terms of the appearance of side effects due to high blood concentrations.
  • the pharmacokinetic parameters of the parent drug, which is a metabolite, measured in the plasma of mice after administration of the compounds of Examples 2, 16 and 32, which are prodrugs of Formula 1, respectively, by subcutaneous injection are shown in Table 1 below.
  • FIG. 2 shows the mean plasma concentration profile over time of the compound of Formula 2 obtained after subcutaneous injection of the compounds of Examples 2, 16 and 32, which are prodrugs, into C57B0L/6 mice.
  • Example 41 Preparation of drug sustained-release microspheres for intraarticular administration using a caspase inhibitor prodrug
  • compositions described in Tables 2 and 3 below 16 kinds of drug sustained-release test microspheres for joint cavity administration in which the caspase inhibitor prodrug was encapsulated were prepared.
  • dichloromethane as an organic solvent was added and stirred to prepare a dispersion phase.
  • 150 mL of 2% polyvinyl alcohol polyvinyl alcohol, M.W. 31,000 to 50,000, hydrolysis degree 87 to 89%) was used, and an emulsion was prepared by membrane emulsification.
  • the prepared emulsion was stirred at room temperature overnight to remove the solvent (solvent evaporation), washed with sterilized purified water, and then freeze-dried to prepare microspheres.
  • Example 42 Preparation of drug sustained-release microspheres for joint cavity administration using a caspase inhibitor
  • composition shown in Table 4 two kinds of drug sustained-release control microspheres for intraarticular administration in which nivocasan, a caspase inhibitor, was enclosed were prepared.
  • the caspase inhibitor and PLGA were weighed in a weight ratio of 1:5, and dichloromethane as an organic solvent was added and stirred to prepare a dispersed phase.
  • the L/G ratio of the PLGA used at this time was changed into two types: 50:50 (M.W. 38,000 ⁇ 54,000) and 75:25 (M.W. 76,000 ⁇ 115,000).
  • 150 mL of 2% polyvinyl alcohol M.W.
  • Example 41 test microspheres 1 to 16
  • Example 42 control microspheres 1 and 2
  • the properties of the microspheres prepared by Example 41 (test microspheres 1 to 16) and Example 42 (control microspheres 1 and 2) were determined whether the drug was precipitated during manufacture, the properties of the freeze-dried microspheres, and floating in the aqueous phase when redispersed. It was confirmed by whether or not. Precipitation of the drug was confirmed through an optical microscope during manufacture, and the properties of the freeze-dried microspheres were confirmed using scanning electron microscopy. Whether the microspheres were suspended in the water was confirmed by re-dispersing the freeze-dried microspheres in water.
  • the amount of the drug encapsulated in the microspheres was determined by dissolving 30 mg of microspheres in 50 mL of acetonitrile, and the supernatant obtained by ultracentrifugation by HPLC (high performance liquid chromatography). In addition, a large amount of crystals of the caspase inhibitor precipitated during the preparation of the control microspheres 1 and 2 was confirmed using an optical microscope.
  • Table 5 shows the observation or measurement results of drug precipitation in test microspheres 1, 2, 12 to 14, and 16, microsphere properties, microsphere floating, and drug encapsulation rate (%, w/w).
  • the properties of these test microspheres were observed by scanning electron microscopy and shown in FIG. 3.
  • the microspheres had a diameter of about 50 ⁇ m, and all good surfaces were observed.
  • a substance that appears needle-like is a state in which drug crystals remain and can be removed by washing.
  • Table 6 shows the observation or measurement results of drug precipitation in control microspheres 1 and 2, microsphere properties, microsphere floating, and drug encapsulation rate (%, w/w).
  • the control microspheres containing the caspase inhibitor had good properties and no microsphere floating phenomenon, but a large amount of the drug was precipitated during the manufacturing process.
  • the drug encapsulation rate was observed at about 8% in both control microspheres 1 and 2, and was confirmed to be about half the drug encapsulation rate of the test microspheres measured in Table 5 above.
  • FIG. 4 it was confirmed that a large amount of crystals of the caspase inhibitor were precipitated in the control microspheres 1 and 2 in the curing step.
  • Example 43 Preparation of drug sustained-release microspheres for administration to the joint cavity containing the prodrug of Example 16
  • test microspheres 17 to 24, which are drug sustained-release microspheres for joint cavity administration, containing the caspase inhibitor prodrug, Example 16, were prepared.
  • the weight ratio of the prodrug compound and PLGA was weighed as 10, 13, 16, or 20% (w/w) as shown in Table 7 below, and the organic solvent dichloromethane was added and stirred to prepare a dispersed phase.
  • the L/G ratio of the used PLGA was different in two ways: 50:50 (M.W. 38,000 ⁇ 54,000) and 75:25 (M.W. 76,000 ⁇ 115,000).
  • 150 mL of 2% polyvinyl alcohol M.W.
  • test microspheres 17 to 24 The physical stability of the test microspheres 17 to 24 was determined by shaking for a day in PBS (Phosphate buffered saline, 37° C.) as a buffer solution to determine whether aggregation occurred.
  • Table 8 shows the physical stability and drug encapsulation rate analysis results of the test microspheres 17 to 24.
  • no aggregation of microspheres was found in PBS within one day, but it was found in the test microspheres 20.
  • test microspheres 21 to 23 a phenomenon of agglomeration of microspheres was not found in one day, but was found in test microspheres 24. Since it was confirmed that most of the load amount of the prodrug of Example 16 was enclosed in the manufacture of microspheres, the encapsulation rate was not separately measured in this test.
  • Fig. 5 shows the state in which the test microspheres 17 to 24 were dispersed in PBS one day later.
  • the microspheres in which the prodrug of Example 16 was enclosed in 10%, 13% and 16% (theoretical encapsulation rate) were well dispersed in PBS so that the particles were not visible, but the prodrug of Example 16 was 20% (theoretical encapsulation rate) It was confirmed that the enclosed microspheres were aggregated and lumped.
  • the prodrug of Example 16 was 20% (theoretical encapsulation rate)
  • microspheres were aggregated in PBS within one day when preparing the microspheres containing 20% or more of the prodrug of Example 16.
  • the dissolution test was performed with in vitro microspheres prepared by encapsulating the prodrug of Example 2. Specifically, the microspheres were shaken over a buffer solution of PBS (37° C. to collect and filter the eluate at specific times, and then the amount of drug released by HPLC was confirmed. Prodrugs were converted into parent drugs by hydrolysis in aqueous solution) drug), the amount of the released drug was confirmed through the amount of the caspase inhibitor measured by HPLC.
  • the in vitro dissolution graph of the PLGA microspheres encapsulated with the prodrug of Example 2 is shown in FIG. 6.
  • the elution of the caspase inhibitor lasted for about 12 weeks, and no difference was found in the dissolution patterns in the two dissolution test solutions of PBS and sSF.
  • no difference was found in the dissolution patterns in PBS and sSF, it was confirmed that there is no need to use sSF in the dissolution test later.
  • the in vitro dissolution test of the microspheres prepared to contain the prodrug of Example 16 according to the test microspheres 18 and 22 was performed. Specifically, the microspheres were shaken in PBS (37° C.) as a buffer solution to collect and filter the eluate at specific times, and then the amount of drug released by HPLC was confirmed. Since the prodrug is converted into the parent drug, the caspase inhibitor, by hydrolysis in the aqueous solution, the amount of the released drug was confirmed through the amount of the caspase inhibitor measured by HPLC. In addition, the properties of the microspheres that change as the hydrolysis proceeds were confirmed using a scanning electron microscope method. The molecular weight of PLGA, which changes as hydrolysis proceeds, was measured using GPC (Gel Permeation Chromatograhy).
  • FIG. 8 A photograph of observing the shape of the microspheres during the dissolution test is shown in FIG. 8.
  • Trial microsphere 18 (5050 PLGA) had many pores at about week 4, and microspheres swelled and became larger and larger at week 8.
  • the test microsphere 22 (7525 PLGA) was observed to gradually form pores at week 8, and at week 12, PLGA swelled and the shape of the sphere collapsed.
  • FIG. 9 A graph measuring the change in molecular weight of the test microsphere 18 (5050 PLGA) during the dissolution test is shown in FIG. 9. As the dissolution test started, the molecular weight decreased rapidly, and at week 4, the molecular weight dropped to about 1/5 of the original molecular weight, and then maintained a similar level.
  • PK test was carried out in dogs using the microspheres prepared to contain the prodrug of Example 2 according to the test microspheres 2.
  • the microspheres at a concentration of 300 mg/ml were administered to the joint cavity, and joint synovial fluid was collected at a specific time point to measure the concentration of the caspase inhibitor. The results are shown in FIG.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Dermatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 캐스파제 (Caspase) 저해제의 프로드럭 (prodrug)인, 에스테르 부분을 가지는 이소옥사졸린 유도체 및 이를 함유하는 약제학적 조성물에 관한 것이다.

Description

캐스파제 저해제의 프로드럭
본 발명은 캐스파제(caspase) 저해제의 프로드럭(prodrug)으로서, 에스테르 부분을 가지는 이소옥사졸린 유도체 및 이를 함유하는 약제학적 조성물에 관한 것이다.
캐스파제는 효소의 일종으로서 α2β2 형태의 테트라머(tetramer)로 존재하는 시스테인 프로테아제(cysteine protease)이며, 캐스파제 저해제는 이러한 캐스파제의 활동을 방해함으로써 캐스파제의 작용으로 인하여 유발되는 염증이나 세포사멸(apoptosis)을 조절할 수 있는 화합물이다. 이러한 화합물을 투여하여 증상을 없애거나 완화시킬 수 있는 질병으로는 골 관절염, 류마티스성 관절염, 퇴행성 관절염, 파괴성 골 장애, 간염바이러스에 의한 간질환, 급성 간염, 간경화, 간염바이러스에 의한 뇌손상, 인간 돌발성 간부전증, 패혈증, 장기이식 거부반응, 허혈성 심장질환, 치매, 뇌졸중, AIDS로 인한 뇌손상, 당뇨, 위궤양 등이 있다.
캐스파제 저해제로서 공지된 여러 구조의 화합물 중 이소옥사졸린 유도체가 대한민국 특허출원 제10-2004-0066726호, 제10-2006-0013107호 및 제10-2008-0025123호로 출원된 바 있다. 또한, 이소옥사졸린 유도체를 기초로 한 캐스파제 저해제의 프로드럭이 국제공개번호 WO 2007/015931호(출원인: Vertex Pharmaceuticals Incorporated, USA)에 개시된 바 있다.
본 발명은 캐스파제에 대한 효과적인 저해제로서 화학식 2의 구조를 갖는 이소옥사졸린 유도체의 프로드럭을 개발하여 생체이용률을 증진시키고자 하였다. 또한, 화학식 2의 캐스파제 저해제는 물에 대한 용해도가 높고 친수성이 커서 경구용 제제 개발에는 유리할 수 있으나, 장기지속 제형의 개발에 불리한 문제가 있을 수 있기에, 본 발명은 장기지속 제형에 유리하도록 소수성을 가지는 화학식 2의 캐스파제 저해제의 프로드럭 형태를 개발하고자 하였다.
상기 목적을 달성하기 위하여, 본 발명에서는 하기 화학식 1의 화합물, 또는 이의 약제학적으로 허용되는 염 또는 이성질체를 제공한다.
[화학식 1]
Figure PCTKR2020005709-appb-I000001
상기 식에서,
R은 알킬, 할로알킬, 사이클로알킬, 사이클로알킬알킬, 아릴, 아릴알킬, 헤테로아릴, 헤테로아릴알킬, 알콕시 또는 알콕시알킬을 나타내고, 상기 헤테로아릴은 N, O 및 S로부터 선택되는 하나 이상의 헤테로원자를 포함하고,
상기 알킬, 할로알킬, 사이클로알킬, 사이클로알킬알킬, 아릴, 아릴알킬, 헤테로아릴, 헤테로아릴알킬 또는 알콕시알킬은 임의로 치환되며, 치환기는 알킬, 할로, 할로알킬, 사이클로알킬, 하이드록시, 아실, 아미노, 알콕시, 카보알콕시, 옥소, 카복시, 카복시아미노, 시아노, 니트로, 티올, 아릴옥시, 설폭시 및 구아니도기로부터 선택되는 하나 이상이고,
단, R은 tert-부틸이 아니다.
본 발명에 따른 화학식 1의 화합물은 약제학적으로 허용되는 염을 형성할 수 있다. 약제학적으로 허용되는 염에는 약제학적으로 허용되는 음이온을 함유하는 무독성 산부가염을 형성하는 산, 예를 들면 염산, 황산, 질산, 인산, 브롬화수소산, 요오드화수소산 등과 같은 무기산; 타타르산, 포름산, 시트르산, 아세트산, 트리클로로아세트산, 트리플루오로아세트산, 글루콘산, 벤조산, 락트산, 푸마르산, 말레인산, 살리실산 등과 같은 유기산; 메탄설폰산, 에탄설폰산, 벤젠설폰산, p-톨루엔설폰산 등과 같은 설폰산 등에 의해 형성된 산부가염이 포함된다. 또한, 약제학적으로 허용되는 카복실산 염에는, 예를 들어 리튬, 나트륨, 칼륨, 칼슘, 마그네슘 등에 의해 형성된 알칼리 금속 또는 알칼리 토금속 염; 라이신, 아르기닌, 구아니딘 등의 아미노산 염; 디사이클로헥실아민, N-메틸-D-글루카민, 트리스(하이드록시메틸) 메틸아민, 디에탄올아민, 콜린, 트리에틸아민 등과 같은 유기염 등이 포함된다. 본 발명에 따른 화학식 1의 화합물은 통상적인 방법에 의해 그의 염으로 전환될 수 있다.
한편, 본 발명에 따른 화합물들은 비대칭 탄소중심과 비대칭축 또는 비대칭평면을 가질 수 있으므로 E 또는 Z 이성질체, R 또는 S 이성질체, 라세미체, 부분입체이성질체 혼합물 및 개개의 부분입체이성질체로서 존재할 수 있으며, 이들 모든 이성질체 및 혼합물은 본 발명의 범위에 포함된다.
본 명세서에서는 편의상 달리 명시되지 않는 한, 화학식 1의 화합물은 화학식 1의 화합물, 이의 약제학적으로 허용되는 염 및 이성질체를 모두 포함하는 의미로 사용된다.
본 명세서를 통하여 화학식 1의 화합물을 정의함에 있어서는 다음과 같은 치환체에 대해 정의된 개념들이 사용된다.
용어 "할로겐" 또는 "할로"는 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)를 나타낸다.
용어 "알킬"은 직쇄형 또는 분지형 탄화수소로서, 단일결합, 이중결합 또는 삼중결합을 포함할 수 있고, C1-C18 알킬이 바람직하다. 예를 들어, 상기 알킬은 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, tert-부틸, 펜틸, 헥실, 헵틸, 옥틸, 데실, 도데실, 펜타데실, 옥타데실, 아세틸렌, 비닐, 트리플루오로메틸 등을 포함하지만, 이에 한정되는 것은 아니다.
용어 "사이클로알킬"은 부분적 또는 전체적으로 포화된 단일 또는 융합환 고리형 탄화수소이며, C3-C10-사이클로알킬이 바람직하다. 예를 들어 사이클로프로필, 사이클로부틸, 사이클로펜틸, 사이클로헥실, 사이클로헥신일 등을 포함하지만, 이에 한정되는 것은 아니다.
용어 "알콕시"는 달리 정의하지 않는 한 1 내지 10개의 탄소원자를 가지는 알킬옥시를 의미한다.
용어 "아릴"은 공유 파이 전자계를 가지는 적어도 하나의 환을 포함하며, 예를 들어 모노사이클릭 또는 융합환 폴리사이클릭(즉, 탄소원자들의 인접한 쌍들을 나눠 가지는 링들) 그룹을 포함한다. 예를 들어, 상기 융합환 폴리사이클릭은 아릴과 융합된 C3-C8 사이클로알킬환을 포함할 수 있다. 즉, 본 명세서에서 아릴은 별도로 정의되지 않는 한 페닐, 나프틸, 디히드로인덴 등을 포함하는 5 내지 15 개의 탄소 원자, 바람직하게는 6 내지 10 개의 탄소 원자를 갖는 방향족 모노사이클릭 또는 폴리사이클릭환을 의미한다. 예를 들어, 아릴은 C5-C12 아릴, 바람직하게는 C6-C10 아릴일 수 있다.
용어 "헤테로아릴"은 N, O 및 S 중에서 선택된 하나 이상의 헤테로 원자를 환원자로서 포함하고, 벤조 또는 C3-C8 사이클로알킬과 융합될 수 있는 단일 또는 융합고리환을 이루는 3 내지 10원, 더 바람직하게는 4 내지 6원 방향족 탄화수소를 의미한다. 예를 들어 상기 헤테로아릴은 피리디닐, 피리미디닐, 피리다지닐, 피라지닐, 옥사디아졸릴, 이속사디아졸릴, 테트라졸릴, 트리아졸릴, 인돌릴, 인다졸릴, 이속사졸릴, 옥사졸릴, 티아졸릴, 아이소티아졸릴, 퓨라닐, 벤조퓨라닐, 이미다졸릴, 티오페닐, 벤즈티아졸, 벤즈이미다졸, 퀴놀리닐, 인돌리닐, 1,2,3,4-테트라하이드로이소퀴놀릴, 3,4-다이하이드로아이소퀴놀릴, 티아졸로피리딜, 2,3-다이하이드로벤조퓨란, 2,3-다이하이드로티오펜, 2,3-다이하이드로인돌, 벤조[1,3]다이옥산, 크로만, 싸이오크로만, 1,2,3,4-테트라하이드로퀴놀린, 4H-벤조[1,3]다이옥신, 2,3-다이하이드로벤조[1,4]다이옥신, 6,7-다이하이드로-5H-사이클로펜타[d]피리미딘 등을 포함하지만, 이에 한정되는 것은 아니다.
사이클로알킬알킬, 아릴알킬, 헤테로아릴알킬 및 알콕시알킬은 상기에 정의한 사이클로알킬, 아릴, 헤테로아릴, 알콕시 및/또는 알킬이 결합되어 형성한 그룹을 의미하며, 예를 들어 벤질, 티오펜메틸, 피리미딘메틸 등을 포함하지만, 이에 한정되는 것은 아니다.
본 발명의 일 구체예에 따르면, R이 C1-20 알킬, C3-10 사이클로알킬, C3-10 사이클로알킬-C1-6 알킬, C6-C10 아릴, C6-C10 아릴-C1-6 알킬, 3 내지 10원 헤테로아릴, 3 내지 10원 헤테로아릴-C1-6 알킬, 할로-C1-6 알킬 또는 C1-6 알콕시-C1-6 알킬이며, 상기 헤테로아릴은 N, O 및 S로부터 선택되는 1 내지 4 개의 헤테로원자를 포함할 수 있으나, 이에 제한되지 않는다.
본 발명의 일 구체예에 따르면, R이 C1-18 알킬, C3-6 사이클로알킬, C3-6 사이클로알킬-C1-3 알킬, C6-C10 아릴, C6-C10 아릴-C1-3 알킬, 4 내지 6원 헤테로아릴-C1-3 알킬, 할로-C1-3 알킬, C1-3 알콕시-C1-3 알킬이며, 상기 헤테로아릴은 N, O 및 S로부터 선택되는 1 또는 2 개의 헤테로원자를 포함하고, 치환기는 알킬, 할로, 알콕시 또는 옥소일 수 있으나, 이에 제한되지 않는다.
본 발명에 따른 상기 화학식 1의 화합물 중 대표적인 것에는 하기 화합물들이 포함될 수 있으나, 이들만으로 한정되는 것은 아니다:
메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
에틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
프로필 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
부틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
이소부틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
이소펜틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
펜틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
헥실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
헵틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
옥틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
데실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
도데실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
펜타데실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
옥타데실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
(9E,12E)-옥타데카-9,12-디엔-1-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
사이클로프로필메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
사이클로부틸메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
사이클로펜틸메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
알릴 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
이소프로필 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
펜타-3-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
sec-부틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
펜탄-2-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
헵탄-2-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
사이클로펜틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
사이클로헥실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
벤질 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
(5-메틸-2-옥소-1,3-디옥솔-4-일)메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
2-메톡시페닐 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
2,3-디히드로-1H-인덴-5-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
페닐 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
나프탈렌-1-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
나프탈렌-1-일메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
2,2,2-트리플루오로에틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
2-메톡시에틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
2-플루오로에틸 (S)-5-플루오로-3-((R)-5-아이소프로필-3-(아이소퀴놀린-1-일)-4,5-디히드로아이소옥사졸-5-카복사아미도)4-옥소펜타노에이트;
네오펜틸 (S)-5-플루오로-3((R)-5-아이소프로필-3-(아이소퀴놀린-1-일)-4,5-디히드로아이소옥사졸-5-카복사아미도)4-옥소펜타노에이트;
싸이오펜-2-일메틸 (S)-5-플루오로-3-((R)-5-아이소프로필-3-(아이소퀴놀린-1-일)-4,5-디히드로아이소옥사졸-5-카복사아미도)-4-옥소펜타노에이트;
싸이오펜-3-일메틸 (S)-5-플루오로-3-((R)-5-아이소프로필-3-(아이소퀴놀린-1-일)-4,5-디히드로아이소옥사졸-5-카복사아미도)-4-옥소펜타노에이트; 및
퓨란-3-일메틸 (S)-5-플루오로-3-((R)-5-아이소프로필-3-(아이소퀴놀린-1-일)-4,5-디히드로아이소옥사졸-5-카복사아미도)-4-옥소펜타노에이트.
본 명세서에서 사용된 용어와 약어들은 달리 정의되지 않는 한 그 본래의 의미를 갖는다.
본 발명은 또한 화학식 1의 화합물을 제조하는 방법을 제공한다. 이하에서는 본 발명에 대한 이해를 돕기 위해 화학식 1의 화합물의 제조방법을 예시적인 반응식에 기초하여 설명한다. 그러나, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자라면 화학식 1의 구조를 바탕으로 다양한 방법에 의해 화학식 1의 화합물을 제조할 수 있으며, 이러한 방법들은 모두 본 발명의 범주에 포함되는 것으로 해석되어야 한다. 즉, 본 명세서에 기재되거나 선행기술에 개시된 여러 합성법들을 임의로 조합하여 화학식 1의 화합물을 제조할 수 있으며, 이는 본 발명의 범위 내에 속하는 것으로 이해되고, 화학식 1의 화합물의 제조방법이 하기 설명된 것으로 제한되는 것은 아니다.
본 발명의 화학식 1의 화합물은 하기 반응식 1의 방법에 따라 화학식 2의 화합물로부터 합성될 수 있다. 프로드럭인 화학식 1의 화합물은 화학식 2의 화합물과 옥살릴클로라이드 (oxalyl chloride), 디메틸 포름아미드 (dimethyl formamide, DMF), 알코올류와 디클로로메탄 (DCM) 용매를 사용하여 합성하거나, 화학식 2의 화합물과 알킬할라이드, 포타슘 카보네이트와 디메틸 포름아미드 용매를 사용하여 합성하거나, 또는 화학식 2의 화합물과 EDC (3-ethyliminomethyleneamino-N,N-dimethylpropan-1-amine) 또는 EDCI (N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide hydrochloride), HOBt (1-Hydroxybenzotriazole), 트리에틸아민 (Et3N), 알킬알코올 및 디클로로메탄 용매를 사용하여 합성할 수 있다.
[화학식 1]
Figure PCTKR2020005709-appb-I000002
[화학식 2]
Figure PCTKR2020005709-appb-I000003
[반응식 1]
Figure PCTKR2020005709-appb-I000004
본 명세서의 제조방법에서 특별히 설명되지 않은 화합물은 그 자체로 공지된 화합물이거나, 공지 화합물로부터 공지의 합성법 또는 이와 유사한 방법으로 용이하게 합성할 수 있는 화합물이다.
상기 방법을 통해 얻어진 화학식 1의 화합물은 반응 생성물로부터 재결정화, 이온영동법, 실리카겔 칼럼 크로마토그래피 또는 이온교환수지 크로마토그래피 등과 같은 여러 방법에 의해 분리 또는 정제될 수 있다.
상기 설명한 바와 같이, 본 발명에 따른 화합물, 그의 제조를 위한 출발물질 또는 중간체 등은 다양한 방법에 의해 합성될 수 있으며, 이러한 방법들은 화학식 1의 화합물의 제조와 관련하여 본 발명의 범주에 포함되는 것으로 해석되어야 한다.
본 발명에 따른 화학식 1의 화합물은 캐스파제 저해제 프로드럭으로서 사용될 수 있다. 이에 따라 본 발명은 활성 성분으로 화학식 1의 화합물, 또는 이의 약제학적으로 허용되는 염 또는 이성질체와 함께 약제학적으로 허용되는 담체를 포함하는 소염 또는 세포사멸의 예방 또는 치료를 위한 약제학적 조성물을 제공한다.
본 발명에 따른 약제학적 조성물로 예방 또는 치료할 수 있는 질환은 세포사멸-매개 질환, 염증 질환, 골 관절염, 류마티스성 관절염, 퇴행성 관절염 및 파괴성 골 장애로부터 선택되는 것일 수 있으나, 이들만으로 한정되는 것은 아니다.
본 발명에서 "약제학적 조성물(pharmaceutical composition)"은 본 발명에 따른 활성 화합물에 추가하여 담체, 희석제, 부형제 등과 같은 다른 화학 성분들을 포함할 수 있다. 따라서, 상기 약제학적 조성물에는 필요에 따라 약제학적으로 허용되는 담체, 희석제, 부형제, 또는 이들의 조합이 포함될 수 있다. 약제학적 조성물은 생물체 내로 활성 화합물의 투여를 용이하게 한다. 화합물을 투여하는 다양한 기술이 존재하며, 여기에는 경구, 주사, 에어로졸, 비경구, 및 국소 투여 등이 포함되지만, 이들만으로 한정되는 것은 아니다.
본 명세서에서 "담체(carrier)"란 세포 또는 조직 내로 화합물의 투입을 용이하게 하는 화합물을 의미한다. 예를 들어, 디메틸설폭사이드(DMSO)는 생물체의 세포 또는 조직 내로 많은 유기 화합물의 투입을 용이하게 하는 통상의 담체이다.
본 명세서에서 "희석제(diluent)"란 대상 화합물의 생물학적 활성 형태를 안정화시킬 뿐만 아니라, 화합물을 용해시키는 물에서 희석되는 화합물로 정의된다. 완충액에 용해되어 있는 염은 당해 분야에서 희석제로 사용된다. 통상 사용되는 완충액은 인체 용액의 염 형태를 모방하고 있는 포스페이트 완충 식염수이다. 완충제 염은 낮은 농도에서 용액의 pH를 제어할 수 있기 때문에, 완충 희석제가 화합물의 생물학적 활성을 변형시키는 일은 드물다.
본 명세서에서 "약제학적으로 허용되는(pharmaceutically acceptable)"이란, 화합물의 생물학적 활성과 물성들을 손상시키지 않는 성질을 의미한다.
본 발명의 화합물은 목적하는 바에 따라 다양한 약제학적 투여 형태로 제형화될 수 있다. 본 발명에 따른 약제학적 조성물을 제조하는 경우, 활성 성분, 구체적으로 화학식 1의 화합물, 이의 약제학적으로 허용되는 염 또는 이성질체를, 제조하고자 하는 제형에 따라 선택될 수 있는 다양한 약제학적으로 허용되는 담체와 함께 혼합한다. 예를 들어, 본 발명에 따른 약제학적 조성물은 목적하는 바에 따라 주사용 제제, 경구용 제제 등으로 제형화될 수 있다.
본 발명의 약제학적 조성물은 경구 투여형, 주사제형 또는 패취형으로 제형화된 것일 수 있으나, 이에 제한되지 않는다.
본 발명의 화합물은 공지된 제약용 담체와 부형제를 이용하는 공지의 방법으로 제제화되어 단위 용량 형태 또는 다용량 용기에 내입될 수 있다. 제제의 형태는 오일 또는 수성 매질 중의 용액, 현탁액 또는 유화액 형태일 수 있으며, 통상의 분산제, 현탁제 또는 안정화제를 함유할 수 있다. 또한, 예를 들어, 사용 전에 무균, 발열물질이 제거된 물에 녹여 사용하는 건조 분말의 형태일 수도 있다. 본 발명의 화합물은 또한, 코코아버터 또는 기타 글리세리드와 같은 통상의 좌약 기제를 이용하여 좌약형으로 제제화될 수도 있다. 경구 투여용 고체투여 형태는 캅셀제, 정제, 환제, 산제 및 과립제가 가능하고, 특히 캅셀제와 정제가 유용하다. 정제 및 환제는 장용피제로 제조하는 것이 바람직하다. 고체투여 형태는 본 발명의 화합물을 만니톨, 수크로오즈, 락토오즈, 전분 등과 같은 하나 이상의 불활성 희석제 및 마그네슘 스테아레이트와 같은 윤활제, 붕해제, 결합제 등과 같은 담체와 혼합시킴으로써 제조할 수 있다.
비경구 제제의 경우 담체로는 통상 멸균수를 사용하며, 용해보조제와 같은 다른 성분도 포함시킬 수 있다. 주사용 제제, 예를 들면 멸균 주사용 수성 또는 유성 현탁액은 공지된 기술에 따라 적합한 분산제, 습윤제, 또는 현탁제를 사용하여 제조할 수 있다. 이를 위해 사용될 수 있는 용매에는 물, 링거액 및 등장성 NaCl 용액이 있으며, 멸균 고정오일도 통상적으로 용매 또는 현탁 매질로서 사용한다. 모노-, 디-글리세라이드를 포함하여 어떠한 무자극성 고정오일도 이러한 목적으로 사용될 수 있으며, 또한 올레산과 같은 지방산도 주사용 제제에 사용할 수 있다. 경피 제제의 경우에는 담체로서 침투촉진제 및/또는 적당한 습윤제를 임의로 피부에 대한 자극성이 없는 적당한 첨가제와 함께 사용할 수 있다. 첨가제로는 피부를 통한 투여를 촉진시키고/시키거나 목적하는 조성물을 제조하는데 도움이 되는 것을 선택한다. 경피 제제는 경피용 패취, 점적제 또는 연고와 같은 다양한 방식으로 투여된다.
필요에 따라, 본 발명에 따른 화합물 또는 이를 함유하는 약제학적 조성물은 기타의 약제, 예를 들어, 다른 캐스파제 저해제 및/또는 캐스파제 저해제 프로드럭과 조합하여 투여할 수 있다.
본 발명의 화학식 1의 화합물의 투여량은 환자의 체중, 나이 및 질병의 특수한 성질과 심각성과 같은 요인에 따라 의사의 처방에 따라 결정된다. 본 발명의 화합물을 임상적인 목적으로 투여시에 단일용량 또는 분리용량으로 숙주에게 투여될 총 일일용량은 체중 1㎏ 당 약 5 내지 500 ㎎의 범위가 바람직하나 특정 환자에 대한 특이 용량 수준은 환자의 체중, 성, 건강상태, 식이, 약제의 투여시간, 투여방법, 배설률, 약제혼합 및 질환의 중증도 등에 따라 변화될 수 있다.
본 명세서에서 "치료"란 발병 증상을 보이는 객체에 사용될 때 질병의 진행을 중단, 지연 또는 완화시키는 것을 의미한다.
본 발명의 일 구체예에 따르면, 상기 약제학적 조성물은 화학식 1의 화합물, 또는 이의 약제학적으로 허용되는 염 또는 이성질체, 및 생체적합성 고분자를 포함하는 미립구를 포함할 수 있으나, 이에 제한되지 않는다.
예를 들어, 상기 생체적합성 고분자는 폴리락타이드, 폴리글리콜라이드, 폴리락타이드글리콜라이드 공중합체, 폴리(락타이드-코-글리콜라이드)글루코즈, 폴리카프로락톤, 젤라틴 및 히알우로네이트 중에서 선택될 수 있으며, 폴리글리콜라이드, 폴리락타이드 또는 폴리락타이드글리콜라이드 공중합체 (PLGA) 등이 바람직할 수 있다.
본 발명의 일 구체예에 따르면, 상기 생체적합성 고분자는 락타이드 대 글리콜라이드의 몰비가 10:90 내지 90:10인 폴리락타이드글리콜라이드 공중합체일 수 있으나, 이에 제한되지 않는다. 예를 들어, 상기 몰비는 바람직하게는 50:50 내지 75:25일 수 있다.
본 발명의 일 구체예에 따르면, 상기 미립구 내의 화학식 1의 화합물, 또는 이의 약제학적으로 허용되는 염 또는 이성질체와 생체적합성 고분자의 중량비가 1:100 내지 70:100일 수 있으나, 이에 제한되지 않는다. 바람직하게는, 상기 화학식 1의 화합물, 또는 이의 약제학적으로 허용되는 염 또는 이성질체와 생체적합성 고분자의 중량비가 1:100 내지 17:100일 수 있다. 중량비가 상기 범위보다 낮거나 높을 경우에는, 약물이 미립구 내로 제대로 봉입되지 않거나 미립구가 응집되는 문제가 발생할 수 있다. 예를 들어, 상기 미립구 내의 상기 화학식 1의 화합물, 또는 이의 약제학적으로 허용되는 염 또는 이성질체는 상기 생체적합성 고분자에 비해 5%이상 30% 미만의 중량비로 포함될 수 있고, 바람직하게는 10% 이상 17% 미만의 중량비로 포함될 수 있으며, 더욱 바람직하게는 약 16.7%의 중량비로 포함될 수 있으나, 이에 제한되지 않는다.
예를 들어, 상기 폴리락타이드글리콜라이드 공중합체의 분자량 범위는 약 1 내지 1000 kDa, 바람직하게는 약 30 내지 150 kDa, 더욱 바람직하게는 약 38 내지 54 kDa일 수 있으나, 이에 제한되지 않는다.
예를 들어, 상기 폴리락타이드글리콜라이드 공중합체의 말단기 (end group)는 에스테르 또는 산일 수 있고, 바람직하게는 에스테르일 수 있으나, 이에 제한되지 않는다.
예를 들어, 상기 미립구 제조시 사용되는 용매 대비 고체 (약물 및 PLGA)의 중량비는 약 5% 내지 40%, 바람직하게는 약 10% 내지 20%, 더욱 바람직하게는 약 10%일 수 있으나, 이에 제한되지 않는다.
예를 들어, 상기 미립구의 지름은 약 1 내지 250 ㎛, 바람직하게는 약 20 내지 100 ㎛, 더욱 바람직하게는 약 30 내지 70 ㎛일 수 있으나, 이에 제한되지 않는다.
상기 미립구의 제조를 위해 사용 가능한 용매는 디클로로메탄, 디메틸설폭사이드, 디메틸포름아미드, 아세트산, 염산, 메탄올, 에탄올, 아세톤, 에탄올, 클로로포름, 아세토니트릴, N-메틸-2-피롤리돈, 테트라히드로퓨란, 메틸에틸케톤, 프로필아세테이트, 에틸아세테이트 및 메틸 아세테이트로부터 선택될 수 있다.
본 발명의 미립구 제조 단계에서, 유기용매 제거는 통상적으로 사용되는 임의의 용매 제거 방법, 예를 들어 용매추출 및 교반, 가열, 질소퍼지(N2 purge) 등의 용매증발 등을 적용하여 실시할 수 있다.
본 발명은, 화학식 2의 구조를 가지는 캐스파제 저해제인 이소옥사졸린 유도체의 프로드럭인, 화학식 1의 구조를 가지는 신규 화합물에 관한 것이다. 즉, 화학식 1의 화합물은 캐스파제 저해제의 프로드럭으로 작용한다. 화학식 1의 구조를 가지는 프로드럭 화합물은 체내에서 에스테르 분해효소(esterase isoenzyme)에 의해 활성 형태(active form)인 화학식 2의 캐스파제 저해제로 전환된다. 이러한 프로드럭 화합물은 화학식 2의 캐스파제 저해제에 비해 약동력학적 측면에서 장점을 가지고있다. 구체적으로, 화학식 1의 프로드럭 화합물은 화학식 2의 캐스파제 저해제에 비해 약물의 지속성이 증가되며, 또한 화학식 1의 프로드럭 화합물은 인체내에서 분해효소에 의해 화학식 2로 전환될 수 있음과 동시에 그 자체로 소수성을 가지기 때문에 장기지속 제형에 적합할 수 있다.
도 1은 캐스파제 프로드럭이 랫트의 혈장 내에서 가수분해 효소에 의해 활성 형태의 캐스파제 저해제로 전환되는 양상을 나타낸 그래프이다.
도 2는 캐스파제 프로드럭이 투여된 개의 관절 내 약물의 평균농도 프로파일을 나타내는 그래프이다.
도 3은 캐스파제 프로드럭을 봉입한 PLGA 미립구의 성상을 주사전자현미경으로 관찰한 이미지이다.
도 4는 캐스파제 저해제를 봉입하여 제조된 PLGA 미립구의 성상을 주사전자현미경으로 관찰한 이미지이다.
도 5는 캐스파제 프로드럭과 고분자의 중량비를 다양화하여 제조한 PLGA 미립구의 성상을 관찰한 이미지이다.
도 6은 캐스파제 프로드럭을 봉입한 PLGA 미립구의 PBS 및 관절활액 모사용액 내 인 비트로 용출 그래프이다.
도 7은 락타이드 대 글리콜라이드의 몰비를 달리하여 제조된 PLGA 미립구의 인 비트로 용출 그래프이다.
도 8은 락타이드 대 글리콜라이드의 몰비를 달리하여 제조된 PLGA 미립구의 용출시험 진행 중 미립구의 성상을 관찰한 사진이다.
도 9는 미립구의 용출시험 진행에 따른 분자랑 변화를 측정한 그래프이다.
도 10은 본 발명의 일 실시예에 따라 제조된 PLGA 미립구의 관절강 내 투여에 따른 관절활액 내 캐스파제 저해제의 농도를 측정하여 나타낸 그래프이다.
이하 제조예 및 실시예를 통하여 본 발명을 더욱 구체적으로 설명한다. 단, 이들 실시예는 본 발명의 예시일 뿐, 본 발명의 범위가 이들에 의해 한정되는 것은 아니다.
실시예 1: 메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Methyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000005
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 무수 메탄올 (2.0 mL, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 이소프로판올 중에서 재결정하여 표제 화합물을 2.4 g (수율: 46%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.13 (d, 1H), 8.56 (d, 1H), 7.87 (d, 1H), 7.75-7.67 (m, 4H), 5.21 (m, 2H), 4.95 (m, 1H), 4.05 (m, 2H), 4.01 (d, 1H), 3.82 (d, 1H), 3.59 (s, 3H), 3.01 (dd, 2H), 2.41 (m, 1H), 1.12 (dd, 6H)
실시예 2: 에틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [ethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000006
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 무수 에탄올 (2.8 mL, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에탄올과 헥산의 1:2 혼합물 (EtOH: hexane=1:2) 내에서 재결정하여 표제 화합물을 4.1 g (수율: 76%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.13 (d, 1H), 8.56 (d, 1H), 7.87 (d, 1H), 7.75-7.67 (m, 4H), 5.21 (m, 2H), 4.95 (m, 1H), 4.07 (m, 2H), 4.04 (d, 1H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.41 (m, 1H), 1.12 (dd, 6H)
실시예 3: 프로필 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Propyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000007
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 프로판올 (3.6 mL, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에탄올과 헥산의 1:4 혼합물 (EtOH: hexane=1:4) 내에서 재결정하여 표제 화합물을 4.2 g (수율: 76%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.14 (d, 1H), 8.56 (d, 1H), 7.87 (d, 1H), 7.75-7.67 (m, 4H), 5.21 (m, 2H), 4.95 (m, 1H), 4.05 (d, 1H), 3.94 (m, 2H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.41 (m, 1H), 1.54 (m, 2H), 1.11 (dd, 6H), 0.80 (t, 3H)
실시예 4: 부틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Butyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate)]
Figure PCTKR2020005709-appb-I000008
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 부탄올 (6.0 mL, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에탄올과 헥산의 1:4 혼합물 (EtOH: hexane=1:4) 내에서 재결정하여 표제 화합물을 4.1 g (수율: 73%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.75-7.67 (m, 4H), 5.21 (m, 2H), 4.95 (m, 1H), 4.04 (d, 1H), 3.95 (m, 2H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.41 (m, 1H), 1.51 (m, 2H), 1.24 (m, 2H), 1.11 (dd, 6H), 0.81 (t, 3H)
실시예 5: 이소부틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [isobutyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000009
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 이소부탄올 (3.7 mL, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에탄올과 헥산의 1:4 혼합물 (EtOH: hexane=1:4) 내에서 재결정하여 표제 화합물을 3.7g (수율: 66%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.14 (d, 1H), 8.55 (d, 1H), 7.88 (d, 1H), 7.75-7.67 (m, 4H), 5.20 (m, 2H), 4.95 (m, 1H), 4.03 (d, 1H), 3.81 (d, 1H), 3.77 (m, 2H), 3.01 (dd, 2H), 2.41 (m, 1H), 1.78 (m, 2H), 1.11 (dd, 6H), 0.77 (d, 6H)
실시예 6: 이소펜틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Isopentyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000010
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 무수 이소펜탄올 (5.3 mL, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에탄올과 헥산의 1:4 혼합물 (EtOH: hexane=1:4) 내에서 재결정하여 표제 화합물을 4.6 g (수율: 72%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.13 (d, 1H), 8.55 (d, 1H), 7.88 (d, 1H), 7.75-7.67 (m, 4H), 5.20 (m, 2H), 4.95 (m, 1H), 4.03 (d, 1H), 3.99 (m, 2H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.41 (m, 1H), 1.53 (m, 1H), 1.39 (m, 2H), 1.11 (dd, 6H), 0.79 (d, 6H)
실시예 7: 펜틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Pentyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000011
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 펜탄올 (2.6 mL, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에탄올과 헥산의 1:10 혼합물 (EtOH: hexane=1:10) 내에서 재결정하여 표제 화합물을 2.1 g (수율: 36%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.75-7.66 (m, 4H), 5.21 (m, 2H), 4.95 (m, 1H), 4.04 (d, 1H), 3.97 (m, 2H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.41 (m, 1H), 1.51 (m, 2H), 1.23 (m, 4H), 1.11 (dd, 6H), 0.83 (t, 3H)
실시예 8: 헥실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [hexyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000012
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 헥산올 (6.0 mL, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에탄올과 헥산의 1:4 혼합물 (EtOH: hexane=1:4) 내에서 재결정하여 표제 화합물을 4.4 g (수율: 73%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.75-7.66 (m, 4H), 5.21 (m, 2H), 4.95 (m, 1H), 4.04 (d, 1H), 3.97 (m, 2H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.41 (m, 1H), 1.50 (m, 2H), 1.23 (m, 6H), 1.11 (dd, 6H), 0.84 (t, 3H)
실시예 9: 헵틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Heptyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000013
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 무수 헵탄올 (6.8 mL, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에탄올과 헥산의 1:4 혼합물 (EtOH: hexane=1:4) 내에서 재결정하여 표제화합물을 4.9 g (수율: 79%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.14 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.75-7.67 (m, 4H), 5.21 (m, 2H), 4.95 (m, 1H), 4.04 (d, 1H), 3.98 (m, 2H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.41 (m, 1H), 1.49 (m, 2H), 1.20 (m, 8H), 1.11 (dd, 6H), 0.84 (t, 3H)
실시예 10: 옥틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [octyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000014
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 옥탄올 (7.6 mL, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에탄올과 헥산의 1:4 혼합물 (EtOH: hexane=1:4) 내에서 재결정하여 표제화합물을 4.2 g (수율: 68%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.75-7.66 (m, 4H), 5.21 (m, 2H), 4.95 (m, 1H), 4.05 (d, 1H), 3.98 (m, 2H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.41 (m, 1H), 1.49 (m, 2H), 1.25 (m, 10H), 1.11 (dd, 6H), 0.85 (t, 3H)
실시예 11: 데실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Decyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000015
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 데칸올 (9.2 mL, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에탄올과 헥산의 1:4 혼합물 (EtOH: hexane=1:4) 내에서 재결정하여 표제화합물을 1.71 g (수율: 27%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.14 (d, 1H), 8.55 (d, 1H), 7.88 (d, 1H), 7.75-7.66 (m, 4H), 5.20 (m, 2H), 4.95 (m, 1H), 4.04 (d, 1H), 3.98 (m, 2H), 3.81 (d, 1H), 3.00 (dd, 2H), 2.41 (m, 1H), 1.47 (m, 2H), 1.28-1.17 (m, 14H), 1.10 (dd, 6H), 0.87 (t, 3H)
실시예 12: 도데실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Dodecyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000016
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 도데칸올 (5.4 mL, 24.0 mmol, 2 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에탄올과 헥산의 1:4 혼합물 (EtOH: hexane=1:4) 내에서 재결정하여 표제화합물을 2.4 g (수율: 34%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.75-7.66 (m, 4H), 5.21 (m, 2H), 4.95 (m, 1H), 4.05 (d, 1H), 3.97 (m, 2H), 3.82 (d, 1H), 3.00 (dd, 2H), 2.41 (m, 1H), 1.48 (m, 2H), 1.30-1.18 (m, 18H), 1.11 (dd, 6H), 0.88 (t, 3H)
실시예 13: 펜타데실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Pentadecyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000017
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 펜타데칸올 (11.0 g, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용해 칼럼분리하여 표제화합물을 5.6 g (수율: 75%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.14 (d, 1H), 8.55 (d, 1H), 7.88 (d, 1H), 7.75-7.66 (m, 4H), 5.21 (m, 2H), 4.95 (m, 1H), 4.04 (d, 1H), 3.99 (m, 2H), 3.81 (d, 1H), 3.01 (dd, 2H), 2.41 (m, 1H), 1.48 (m, 2H), 1.30-1.13 (m, 24H), 1.11 (dd, 6H), 0.89 (t, 3H)
실시예 14: 옥타데실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Octadecyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000018
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 옥타데칸올 (6.5 g, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용하여 칼럼분리하여 표제화합물을 2.1 g (수율: 26%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.75-7.66 (m, 4H), 5.21 (m, 2H), 4.95 (m, 1H), 4.06 (d, 1H), 3.97 (m, 2H), 3.82 (d, 1H), 3.00 (dd, 2H), 2.41 (m, 1H), 1.48 (m, 2H), 1.30-1.18 (m, 30H), 1.10 (dd, 6H), 0.88 (t, 3H)
실시예 15: (9E,12E)-옥타데카-9,12-디엔-1-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [(9E,12E)-octadeca-9,12-dien-1-yl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000019
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 리놀레일 알코올 (11.0 g, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용하여 칼럼분리하여 표제화합물을 0.1 g 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.14 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.75-7.66 (m, 4H), 5.35 (m, 4H), 5.21 (m, 2H), 4.95 (m, 1H), 4.05 (d, 1H), 3.98 (m, 2H), 3.82 (d, 1H), 3.00 (dd, 2H), 2.78 (t, 2H), 2.41 (m, 1H), 2.04 (m, 4H), 1.48 (m, 2H), 1.33-1.18 (m, 16H), 1.11 (dd, 6H), 0.88 (t, 3H)
실시예 16: 사이클로프로필메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Cyclopropylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000020
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 사이클로프로필메탄올 (3.9 mL, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에탄올과 헥산의 1:4 혼합물 (EtOH: hexane=1:4) 내에서 재결정하여 표제화합물을 4.3 g (수율: 76%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.14 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.76-7.66 (m, 4H), 5.21 (m, 2H), 4.95 (m, 1H), 4.05 (d, 1H), 3.84 (m, 2H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.41 (m, 1H), 1.10 (dd, 6H), 0.98 (m, 1H), 0.45 (d, 2H), 0.15 (d, 2H)
실시예 17: 사이클로부틸메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Cyclobutylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000021
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 사이클로부틸메탄올 (5.1 mL, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에탄올과 헥산의 1:4 혼합물 (EtOH: hexane=1:4) 내에서 재결정하여 표제화합물을 3.9 g (수율: 67%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.75-7.66 (m, 4H), 5.21 (m, 2H), 4.95 (m, 1H), 4.05 (d, 1H), 3.96 (m, 2H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.42 (m, 2H), 1.92 (m, 2H), 1.75 (m, 2H), 1.58 (m, 2H) 1.10 (dd, 6H)
실시예 18: 사이클로펜틸메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Cyclopentylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000022
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 사이클로펜틸메탄올 (5.2 mL, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에탄올과 헥산의 1:4 혼합물 (EtOH: hexane=1:4) 내에서 재결정하여 표제화합물을 4.2 g (수율: 69%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.75-7.66 (m, 4H), 5.21 (m, 2H), 4.95 (m, 1H), 4.04 (d, 1H), 3.86 (m, 2H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.42 (m, 1H), 2.03 (m, 1H), 1.59 (m, 4H), 1.43 (m, 4H) 1.10 (dd, 6H)
실시예 19: 알릴 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Allyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000023
화학식 2의 화합물 (5 g, 12.0 mmol)을 디클로로메탄 (50 mL) 용매에 녹인 후 옥살릴클로라이드 (1.6 mL, 18.0 mmol, 1.5 당량)와 디메틸포름아미드 (0.04 mL, 0.6 mmol, 0.05 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 1 시간 교반한 후, 감압증류하였다. 디클로로메탄 (50 mL)용매에 녹인 후, 혼합물의 온도를 5℃로 조절하고, 알릴알코올 (2.0 mL, 48.0 mmol, 4 당량)을 투입하였다. 반응 혼합물을 25℃에서 2 시간 동안 교반한 후, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 반응을 종결하였다. 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에탄올과 헥산의 1:4 혼합물 (EtOH: hexane=1:4) 내에서 재결정하여 표제화합물을 4.3 g (수율: 78%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.14 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.75-7.66 (m, 4H), 5.75 (m, 1H), 5.21 (m, 4H), 4.95 (m, 1H), 4.50 (m, 2H), 4.04 (d, 1H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.42 (m, 1H), 1.10 (dd, 6H)
실시예 20: 이소프로필 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Isopropyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000024
화학식 2의 화합물 (0.5 g, 1.2 mmol)을 디메틸포름아미드 (5 mL) 용매에 녹인 후 이소프로필 프로마이드 (0.18 mL, 1.8 mmol, 1.5 당량)와 포타슘카보네이트 (0.2 g, 1.8 mmol, 1.2 당량)를 첨가하였다. 반응 혼합물을 25℃에서 약 18 시간 교반한 후, 에틸 아세테이트 (EtOAc, 30 mL) 용매에 희석하고, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 교반하면서 반응시켰다. 물 (30 mL)을 투입하고 교반한 후 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용하여 칼럼분리하여 표제화합물을 3.6 g (수율: 27%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.14 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.75-7.66 (m, 4H), 5.15 (m, 3H), 4.95 (m, 1H), 4.03 (d, 1H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.40 (m, 1H), 1.23 (m, 6H) 1.11 (dd, 6H)
실시예 21: 펜타-3-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Penta-3-yl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5 dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000025
화학식 2의 화합물 (0.5 g, 1.2 mmol)을 디메틸포름아미드 (5 mL) 용매에 녹인 후 3-브로모펜탄 (0.22 mL, 1.8 mmol, 1.5 당량)과 포타슘카보네이트 (0.2 g, 1.8 mmol, 1.2 당량)를 첨가하였다. 반응 혼합물을 25℃에서 약 18 시간 교반한 후, 에틸 아세테이트 (30 mL) 용매에 희석하고, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 교반하며 반응시켰다. 물 (30 mL)을 투입하고 교반한 후 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용하여 칼럼분리하여 표제화합물을 0.05 g (수율: 9%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.14 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.75-7.66 (m, 4H), 5.20 (m, 2H), 4.95 (m, 1H), 4.76 (m, 1H), 4.03 (d, 1H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.40 (m, 1H), 1.54 (m, 4H), 1.10 (dd, 6H), 0.86 (t, 6H)
실시예 22: sec-부틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [sec-butyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000026
화학식 2의 화합물 (0.5 g, 1.2 mmol)을 디메틸포름아미드 (5 mL) 용매에 녹인 후 2-브로모부탄 (0.18 mL, 1.8 mmol, 1.5 당량)과 포타슘카보네이트 (0.2 g, 1.8 mmol, 1.2 당량)를 첨가하였다. 반응 혼합물을 25℃에서 약 18 시간 교반한 후, 에틸 아세테이트 (30 mL) 용매에 희석하고, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 교반하며 반응시켰다. 물 (30 mL)을 투입하고 교반한 후 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용하여 칼럼분리하여 표제화합물을 0.5 g (수율: 88%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.75-7.66 (m, 4H), 5.20 (m, 2H), 4.96 (m, 1H), 4.86 (m, 1H), 4.03 (d, 1H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.40 (m, 1H), 1.54 (m, 2H), 1.21 (m, 3H), 1.10 (dd, 6H), 0.89 (t, 3H)
실시예 23: 펜탄-2-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Pentan-2-yl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000027
화학식 2의 화합물 (0.5 g, 1.2 mmol)을 디메틸포름아미드 (5 mL) 용매에 녹인 후 1-브로모펜탄 (0.19 mL, 1.8 mmol, 1.5 당량)과 포타슘카보네이트 (0.2 g, 1.8 mmol, 1.2 당량)를 첨가하였다. 반응 혼합물을 25℃에서 약 18 시간 교반한 후, 에틸 아세테이트 (30 mL) 용매에 희석하고, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 교반하며 반응시켰다. 물 (30 mL)을 투입하고 교반한 후 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용해 칼럼분리하여 표제화합물을 0.14 g (수율: 24%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.77-7.66 (m, 4H), 5.20 (m, 2H), 4.96 (m, 1H), 4.86 (m, 1H), 4.04 (d, 1H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.40 (m, 1H), 1.51 (m, 2H), 1.40 (m, 2H), 1.23 (m, 3H), 1.10 (dd, 6H), 0.89 (t, 3H)
실시예 24: 헵탄-2-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Heptan-2-yl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000028
화학식 2의 화합물 (0.5 g, 1.2 mmol)을 디메틸포름아미드 (5 mL) 용매에 녹인 후 3-브로모헵탄 (0.18 mL, 1.8 mmol, 1.5 당량)과 포타슘카보네이트 (0.2 g, 1.8 mmol, 1.2 당량)를 첨가하였다. 반응 혼합물을 25℃에서 약 18 시간 교반한 후, 에틸 아세테이트 (30 mL) 용매에 희석하고, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 교반하며 반응시켰다. 물 (30 mL)을 투입하고 교반한 후 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용해 칼럼분리하여 표제화합물을 0.12 g (수율: 20%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.77-7.66 (m, 4H), 5.21 (m, 2H), 4.96 (m, 1H), 4.84 (m, 1H), 4.05 (d, 1H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.41 (m, 1H), 1.49 (m, 2H), 1.30 (m, 4H), 1.22 (m, 3H), 1.11 (dd, 6H), 0.89 (t, 3H)
실시예 25: 사이클로펜틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Cyclopentyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000029
화학식 2의 화합물 (0.5 g, 1.2 mmol)을 디메틸포름아미드 (5 mL) 용매에 녹인 후 3-사이클로펜틸브로마이드 (0.19 mL, 1.8 mmol, 1.5 당량)와 포타슘카보네이트 (0.2 g, 1.8 mmol, 1.2 당량)를 첨가하였다. 반응 혼합물을 25℃에서 약 18 시간 교반한 후, 에틸 아세테이트 (30 mL) 용매에 희석하고, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 교반하며 반응시켰다. 물 (30 mL)을 투입하고 교반한 후 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용해 칼럼분리하여 표제화합물을 0.20 g (수율: 35%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.77-7.66 (m, 4H), 5.21 (m, 2H), 4.96 (m, 1H), 4.84 (m, 1H), 4.05 (d, 1H), 3.84 (d, 1H), 3.06 (dd, 2H), 2.41 (m, 1H), 1.72-1.23 (m, 8H), 1.11 (dd, 6H)
실시예 26: 사이클로헥실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Cyclohexyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000030
화학식 2의 화합물 (0.5 g, 1.2 mmol)을 디메틸포름아미드 (5 mL) 용매에 녹인 후 3-사이클로헥실아이오다이드 (0.23 mL, 1.8 mmol, 1.5 당량)와 포타슘카보네이트 (0.2 g, 1.8 mmol, 1.2 당량)를 첨가하였다. 반응 혼합물을 25℃에서 약 18 시간 교반한 후, 에틸 아세테이트 (30 mL) 용매에 희석하고, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 교반하며 반응시켰다. 물 (30 mL)을 투입하고 교반한 후 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용해 칼럼분리하여 표제화합물을 0.06 g (수율: 10%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.77-7.66 (m, 4H), 5.21 (m, 2H), 4.96 (m, 1H), 4.84 (m, 1H), 4.05 (d, 1H), 3.83 (d, 1H), 3.07 (dd, 2H), 2.41 (m, 1H), 1.73-1.22 (m, 10H), 1.11 (dd, 6H)
실시예 27: 벤질 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Bezyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000031
화학식 2의 화합물 (0.5 g, 1.2 mmol)을 디메틸포름아미드 (5 mL) 용매에 녹인 후 벤질브로마이드 (0.18 mL, 1.8 mmol, 1.5 당량)와 포타슘카보네이트 (0.2 g, 1.8 mmol, 1.2 당량)를 첨가하였다. 반응 혼합물을 25℃에서 약 18 시간 교반한 후, 에틸 아세테이트 (30 mL) 용매에 희석하고, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 교반하며 반응시켰다. 물 (30 mL)을 투입하고 교반한 후 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용해 칼럼분리하여 표제화합물을 0.5 g (수율: 78%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.14 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.75-7.66 (m, 4H), 7.36 (m, 3H), 7.22 (m, 2H), 5.17 (m, 2H), 5.05 (m, 2H), 4.95 (m, 1H), 4.05 (d, 1H), 3.82 (d, 1H), 3.01 (dd, 2H), 2.40 (m, 1H), 1.11 (dd, 6H)
실시예 28: (5-메틸-2-옥소-1,3-디옥솔-4-일)메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [(5-methyl-2-oxo-1,3-dioxol-4-yl)methyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000032
화학식 2의 화합물 (0.5 g, 1.2 mmol)을 디메틸포름아미드 (5 mL) 용매에 녹인 후 4-클로로메틸-5-메틸-1,3-디옥솔-2-온 (0.19 g, 1.8 mmol, 1.5 당량)과 포타슘카보네이트 (0.2 g, 1.8 mmol, 1.2 당량)를 첨가하였다. 반응 혼합물을 25℃에서 약 18 시간 교반한 후, 에틸 아세테이트 (30 mL) 용매에 희석하고, 10% 탄산수소나트륨 수용액 (30 mL)을 첨가하여 교반하며 반응시켰다. 물 (30 mL)을 투입하고 교반한 후 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용해 칼럼분리하여 표제화합물을 0.21 g (수율: 33%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.14 (d, 1H), 8.57 (d, 1H), 7.89 (d, 1H), 7.75-7.66 (m, 4H), 5.17 (m, 2H), 4.87 (m, 1H), 4.42 (s, 2H), 4.06 (d, 1H), 3.00 (dd, 2H), 2.39 (m, 1H), 2.18 (s, 3H), 1.11 (dd, 6H)
실시예 29: 2-메톡시페닐 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [2-methoxyphenyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000033
화학식 2의 화합물 (10 g, 24.0 mmol)을 디클로로메탄 (100 mL) 용매에 녹인 후, 2-메톡시페놀 (11.9 g, 96.0 mmol, 4 당량), 히드록시벤조트리아졸 (HOBt, 0.64 g, 0.48 mmol, 0.2 당량) 및 트리에틸아민 (0.6 mL, 0.48 mmol, 0.2 당량)을 투입하고, N-에틸-N'-(3-디메틸아미노프로필)카보디이미드 히드로클로라이드 (EDCI, 5.5 g, 28.8 mmol, 1.2 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 6 시간 교반하고, 10% 탄산수소나트륨 수용액 (50 mL)을 첨가하여 반응을 종결하였다. 물 (50 mL)을 투입하고 교반한 후 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용해 칼럼분리하여 표제화합물을 3.6 g (수율: 27%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.57 (d, 1H), 7.88 (d, 1H), 7.77-7.66 (m, 4H), 7.19 (m, 2H), 6.94 (m, 2H), 5.16 (m, 1H), 4.58 (m, 2H), 4.10 (d, 1H), 3.91 (s, 3H), 3.84 (d, 1H), 3.01 (dd, 2H), 2.44 (m, 1H), 1.11 (dd, 6H)
실시예 30: 2,3-디히드로-1 H -인덴-5-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [2,3-dihydro-1 H -inden-5-yl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000034
화학식 2의 화합물 (10 g, 24.0 mmol)을 디클로로메탄 (100 mL) 용매에 녹인 후, 5-인다졸 (12.8 g, 96.0 mmol, 4 당량), 히드록시벤조트리아졸 (0.64 g, 0.48 mmol, 0.2 당량) 및 트리에틸아민 (0.6 mL, 0.48 mmol, 0.2 당량)을 투입하고, EDCI (5.5 g, 28.8 mmol, 1.2 당량)을 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 6 시간 교반하고, 10% 탄산수소나트륨 수용액 (50 mL)을 첨가하여 반응을 종결하였다. 물 (50 mL)을 투입하고 교반한 후 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용해 칼럼분리하여 표제화합물을 3.4 g (수율: 28%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.57 (d, 1H), 7.88 (d, 1H), 7.77-7.66 (m, 4H), 7.18 (d, 1H), 7.03 (s, 1H), 6.93 (d, 1H), 5.17 (m, 1H), 4.63 (m, 2H), 4.15 (d, 1H), 3.85 (d, 1H), 3.04 (dd, 2H), 2.90 (m, 4H), 2.45 (m, 1H), 2.13 (m, 2H), 1.11 (dd, 6H)
실시예 31: 나프탈렌-1-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Naphthalen-1-yl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000035
화학식 2의 화합물 (0.5 g, 1.2 mmol)을 디클로로메탄 (10 mL) 용매에 녹인 후, 1-나프톨 (0.69 g, 4.8 mmol, 4 당량), 히드록시벤조트리아졸 (0.64 g, 0.24 mmol, 0.2 당량) 및 트리에틸아민 (0.6 mL, 0.24 mmol, 0.2 당량)을 투입하고, EDCI (0.28 g, 1.4 mmol, 1.2 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 6 시간 교반하고, 10% 탄산수소나트륨 수용액 (10 mL)을 첨가하여 반응을 종결하였다. 물 (10 mL)을 투입하고 교반한 후 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용해 칼럼분리하여 표제 화합물을 0.07 g (수율: 10%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.57 (d, 1H), 8.25 (d, 1H), 7.95 (d, 1H), 7.88 (d, 1H), 7.74-7.57 (m, 7H), 7.47 (m, 2H), 5.32 (m, 1H), 4.66 (m, 2H), 4.13 (d, 1H), 3.88 (d, 1H), 3.10 (dd, 2H), 2.54 (m, 1H), 1.11 (dd, 6H)
실시예 32: 페닐 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Phenyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000036
화학식 2의 화합물 (10 g, 24.0 mmol)을 디클로로메탄 (100 mL) 용매에 녹인 후, 페놀 (9.0 g, 96.0 mmol, 4 당량), 히드록시벤조트리아졸 (0.64 g, 0.48 mmol, 0.2 당량) 및 트리에틸아민 (0.6 mL, 0.48 mmol, 0.2 당량)을 투입하고, EDCI (5.5 g, 28.8 mmol, 1.2 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 6 시간 교반하고, 10% 탄산수소나트륨 수용액 (50 mL)을 첨가하여 반응을 종결하였다. 물 (50 mL)을 투입하고 교반한 후 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에탄올과 헥산의 1:5 혼합물 (EtOH: hexane=1:5) 내에서 재결정하여 표제 화합물을 2.9 g (수율: 25%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.57 (d, 1H), 7.88 (d, 1H), 7.77-7.66 (m, 4H), 7.38 (m, 2H), 7.20 (m, 3H), 5.19 (m, 1H), 4.62 (m, 2H), 4.11 (d, 1H), 3.82 (d, 1H), 3.03 (dd, 2H), 2.45 (m, 1H), 1.11 (dd, 6H)
실시예 33: 나프탈렌-1-일메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [Naphthalen-1-ylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000037
화학식 2의 화합물 (0.5 g, 1.2 mmol)을 디클로로메탄 (10 mL) 용매에 녹인 후, 1-나프탈렌메탄올 (0.38 g, 4.8 mmol, 4 당량), 4-디메틸아미노피리딘 (DMAP, 0.03 g, 0.24 mmol, 0.2 당량) 및 트리에틸아민 (0.6 mL, 0.24 mmol, 0.2 당량)을 투입하고, EDCI (0.28 g, 1.4 mmol, 1.2 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 6 시간 교반하고, 10% 탄산수소나트륨 수용액 (10 mL)을 첨가하여 반응을 종결하였다. 물 (10 mL)을 투입하고 교반한 후 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용하여 칼럼분리하여 표제 화합물을 0.2 g (수율: 33%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.16 (d, 1H), 8.57 (d, 1H), 7.88 (d, 1H), 7.81-7.55 (m, 7H), 7.52 (m, 2H), 7.43 (m, 2H), 5.58 (m, 2H), 5.17 (m, 1H), 5.02 (m, 2H), 4.08 (d, 1H), 3.85 (d, 1H), 3.03 (dd, 2H), 2.43 (m, 1H), 1.11 (dd, 6H)
실시예 34: 2,2,2-트리플루오로에틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [2,2,2-trifluoroethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000038
화학식 2의 화합물 (0.5 g, 1.2 mmol)을 디클로로메탄 (10 mL) 용매에 녹인 후, 트리플루오로에탄올 (0.35 mL, 4.8 mmol, 4 당량), 히드록시벤조트리아졸 (0.64 g, 0.24 mmol, 0.2 당량) 및 트리에틸아민 (0.6 mL, 0.24 mmol, 0.2 당량)을 투입하고, EDCI (0.28 g, 1.4 mmol, 1.2 당량)을 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 6 시간 교반하고, 10% 탄산수소나트륨 수용액 (10 mL)을 첨가하여 반응을 종결하였다. 물 (10 mL)을 투입하고 교반한 후 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트와 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용해 칼럼분리하여 표제 화합물을 0.1 g (수율: 17%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.14 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.76-7.65 (m, 4H), 4.88 (m, 1H), 4.70 (m, 2H), 4.12 (m, 2H), 4.06 (d, 1H), 3.82 (d, 1H), 3.06 (dd, 2H), 2.40 (m, 1H), 1.11 (dd, 6H)
실시예 35: 2-메톡시에틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트 [2-Methoxyethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000039
화학식 2의 화합물 (0.5 g, 1.2 mmol)을 디클로로메탄 (10 mL) 용매에 녹인 후, 메톡시에탄올 (0.37 mL, 4.8 mmol, 4 당량), 히드록시벤조트리아졸 (0.64 g, 0.24 mmol, 0.2 당량) 및 트리에틸아민 (0.6 mL, 0.24 mmol, 0.2 당량)을 투입하고, EDCI (0.28 g, 1.4 mmol, 1.2 당량)를 5℃ 이하를 유지하면서 첨가하였다. 반응 혼합물을 25℃에서 약 6 시간 교반하고, 10% 탄산수소나트륨 수용액 (10 mL)을 첨가하여 반응을 종결하였다. 물 (10 mL)을 투입하고 교반한 후 유기층을 분리하고, 감압증류하였다. 얻어진 혼합물을 에틸 아세테이트 및 헥산의 1:2 혼합물 (EtOAc: hexane=1:2)을 이용해 칼럼분리하여 표제 화합물을 0.14 g (수율: 25%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 9.15 (d, 1H), 8.56 (d, 1H), 7.88 (d, 1H), 7.75-7.65 (m, 4H), 5.21 (m, 2H), 4.92 (m, 1H), 4.17 (m, 2H), 4.05 (d, 1H), 3.82 (d, 1H), 3.47 (m, 2H), 3.30 (S, 3H), 3.05 (dd, 2H), 2.42 (m, 1H), 1.11 (dd, 6H)
실시예 36: 2-플루오로에틸 (S)-5-플루오로-3-((R)-5-아이소프로필-3-(아이소퀴놀린-1-일)-4,5-디히드로아이소옥사졸-5-카복사아미도)4-옥소펜타노에이트 [2-fluoroethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000040
화학식 2의 화합물 (100 mg, 0.24 mmol)을 EDCI (69 mg, 0.36 mmol), DMAP (3 mg, 0.02 mmol), 2-플루오로 에탄올(0.14 ml, 2.41 mmol) 과 디클로로메탄(4 ml)에서 상온 조건하에 2시간 동안 반응시켰다. 물을 첨가 한 후, EtOAc 로 추출하였다. 유기층을 소듐 설페이트로 건조시킨 후 농축하고 MPLC 를 이용하여 정제하여 표제 화합물 (76 mg, 68%)을 수득하였다.
1H NMR (CDCl3) δ 9.12 (t, 1H), 8.55 (d, 1H), 7.86 ~ 7.66 (m, 5H), 5.28 ~ 4.88 (m, 3H), 4.64 ~ 4.30 (m, 4H), 4.01 (dd, 1H), 3.79 (dd, 1H), 3.16 ~ 2.94(m, 2 H), 2.41(p, 1H), 1.08 ~ 1.07 (m, 6H)
실시예 37: 네오펜틸 (S)-5-플루오로-3((R)-5-아이소프로필-3-(아이소퀴놀린-1-일)-4,5-디히드로아이소옥사졸-5-카복사아미도)4-옥소펜타노에이트 [neopentyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000041
화학식 2의 화합물 (2.0 g, 4.81 mmol)를 EDCI (1.4 g, 7.22 mmol), DMAP (118 mg, 0.96 mmol), 2,2-디메틸프로판-1-올 (5.19 ml, 48.1 mmol) 및 디클로로메탄 (80 ml)에서 상온 조건하에 18 시간 동안 반응시켰다. 물을 첨가한 후, 에틸 아세테이트로 추출하였다. 유기층을 소듐 설페이트로 건조시킨 후 농축하고 중압 액체 크로마토그래피 (MPLC)를 이용하여 정제하여 표제 화합물 (0.94 g, 40%)을 수득하였다.
1H NMR (CDCl3) δ 9.13 (t, 1H), 8.54 (d, 1H), 7.86 ~ 7.66 (m, 5H), 5.28 ~ 4.91 (m, 3H), 4.01 (dd, 1H), 3.82 ~ 3.79 (m, 2H), 3.67 (q, 1H), 3.11 ~ 2.90 (m, 2H), 2.37(p, 1H), 1.10 ~ 1.04 (m, 6H), 0.91(s, 5H), 0.79(s, 4H)
실시예 38: 싸이오펜-2-일메틸 (S)-5-플루오로-3-((R)-5-아이소프로필-3-(아이소퀴놀린-1-일)-4,5-디히드로아이소옥사졸-5-카복사아미도)-4-옥소펜타노에이트 [thiophen-2-ylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000042
화학식 2의 화합물 (500 mg, 1.20 mmol)을 EDCI (277 mg, 1.44 mmol), DMAP (37 mg, 0.24 mmol), 싸이오펜-2-일메탄올 (550 mg, 4.81 mmol) 및 디클로로메탄 (4 ml)에서 상온 조건하에 12 시간 동안 반응시켰다. 물을 첨가한 후, 에틸 아세테이트로 추출하였다. 유기층을 소듐 설페이트로 건조시킨 후 농축하고 MPLC 를 이용하여 정제하여 표제 화합물 (306 mg, 50%)을 수득하였다.
1H NMR (CDCl3) δ 9.15 (t, 1H), 8.56 (d, 1H), 7.88 ~ 7.67 (m, 4H), 7.38 ~ 6.99 (m, 4H), 5.32 ~ 4.90 (m, 5H), 4.01 (dd, 1H), 3.80 (dd, 1H), 3.13 ~ 2.88(m, 2H), 2.42 ~ 2.32(m, 1H), 1.10 ~ 1.03 (m, 6H)
실시예 39: 싸이오펜-3-일메틸 (S)-5-플루오로-3-((R)-5-아이소프로필-3-(아이소퀴놀린-1-일)-4,5-디히드로아이소옥사졸-5-카복사아미도)-4-옥소펜타노에이트 [thiophen-3-ylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000043
화학식 2의 화합물 (500 mg, 1.20 mmol)을 EDCI (277 mg, 1.44 mmol), DMAP (37 mg, 0.24 mmol), 싸이오펜-3-일메탄올 (550 mg, 4.81 mmol) 및 디클로로메탄 (4 ml)에서 상온 조건하에 12 시간 동안 반응시켰다. 물을 첨가한 후, 에틸 아세테이트로 추출하였다. 유기층을 소듐 설페이트로 건조시킨 후 농축하고 MPLC를 이용하여 정제하여 표제 화합물 (243 mg, 40%)을 수득하였다.
1H NMR (CDCl3) δ 9.14 (t, 1H), 8.54 (d, 1H), 7.87 ~ 7.64 (m, 4H), 7.37 ~ 7.17 (m, 4H), 5.15 ~ 4.90 (m, 4H), 4.01 (dd, 1H), 3.78 (dd, 1H), 3.14 ~ 2.87(m, 2H), 2.40 ~ 2.33(m, 1H), 1.09 ~ 1.02 (m, 6H)
실시예 40: 퓨란-3-일메틸 (S)-5-플루오로-3-((R)-5-아이소프로필-3-(아이소퀴놀린-1-일)-4,5-디히드로아이소옥사졸-5-카복사아미도)-4-옥소펜타노에이트 [furan-3-ylmethyl (S)-5-fluoro-3-((R)-5-isopropyl-3-(isoquinolin-1-yl)-4,5-dihydroisoxazole-5-carboxamido)-4-oxopentanoate]
Figure PCTKR2020005709-appb-I000044
화학식 2의 화합물 (500 mg, 1.20 mmol)을 EDCI (277 mg, 1.44 mmol), DMAP (37 mg, 0.24 mmol), 퓨란-3-일메탄올 (472 mg, 4.81 mmol) 및 디클로로메탄 (4 ml)에서 상온 조건하에 12 시간 동안 반응시켰다. 물을 첨가한 후, 에틸 아세테이트로 추출하였다. 유기층을 소듐 설페이트로 건조시킨 후 농축하고 MPLC를 이용하여 정제하여 표제 화합물 (269 mg, 44%)을 수득하였다.
1H-NMR (CDCl3) δ 9.13 (t, 1H), 8.54 (d, 1H), 7.87 ~ 7.67 (m, 4H), 7.40 ~ 7.35 (m, 3H), 6.54 (m, 1H), 5.32 ~ 4.56 (m, 5H), 4.01 (dd, 1H), 3.77 (dd, 1H), 3.11 ~ 2.88(m, 2H), 2.40 ~ 2.33(m, 1H), 1.10 ~ 1.02 (m, 6H)
실험예 1: 화학식 1의 프로드럭의 혈장 내 가수분해 시험
7 주령의 수컷 SD-랫트의 전혈을 채취하고 원심분리하여 신선한 혈장(plasma)을 확보하였다. 시험 대상 프로드럭으로 실시예 2의 화합물을 선정하였으며, 이의 5 mg/mL DMSO 스톡 (stock)을 시험 용액 (working solution)으로 하였다. 이 용액을 아세토니트릴에 1/10 비율로 희석하여 0.5 mg/mL 농도로 만든 후, 이를 위에서 수득한 신선한 혈장에 1/100 비율로 혼합 (spike)하여 최종 농도 1 ㎍/mL으로 만들어 이를 혈장 내 약물 안정성 측정의 시작농도로 하였다. 이 후, 10 초, 5 분, 10 분, 20 분 및 30 분 시점에 각각 혈장 50 ㎕를 수집하여 내부 표준 (internal standard, IS)가 포함된 아세토니트릴로 제단백 후 원심분리하고 상층액을 LC-MS/MS에 주입하여 분석하였다. 프로드럭의 얻어진 피크 영역 (peak area)을 IS 의 피크 영역으로 보정하여 각 시료 수집 시점에서의 피크 응답 (peak response)을 구하고, 초기 (initial) 값 대비 잔존률 (% remaining) 을 환산하였다.
또한, 화학식 2의 화합물의 얻어진 피크 영역을 IS 의 피크 영역으로 보정하여 각 시료 수집시점 에서의 피크 응답을 구하고 시간에 따르는 생성 및 소실 양상을 확인하였다.
분석 결과는 도 1에 나타나 있다. 도 1에 따르면 화학식 1의 프로드럭을 랫트의 신선한 혈장에 혼합하는 경우 약 5 분 이내에 대부분이 소실되었으며, 이는 혈장 내 존재하는 가수분해 효소 (esterase)에 의해 가수분해되어 화학식 2의 화합물로 변환되기 때문인 것으로 분석되었다.
실험예 2: 마우스에서의 약물동력학 실험
화학식 1의 프로드럭 (실시예 2, 16 및 32의 화합물)에 대한 피하주사 (SC) 약물동력학 (PK) 시험을 실시하기 위하여 약 7 주령의 C57BL/6 마우스를 준비하고, 투여 물질당 3 마리의 마우스 개체를 배정하여 군분리를 실시하였다. 피하주사의 경우이므로 절식은 실시하지 아니하였다. 투여 당일 0.5% 메틸 셀룰로오스 (MC)를 비히클로 하여 5 mg/mL 의 농도로 약액을 준비하고, 이를 각 개체의 체중 kg 당 10 mL의 양으로 피하 주사하여 최종 투여용량을 50 mg/kg로 하였다. 투여 후 1, 2, 4, 6, 8, 24 및 48 시간 시점에서 각각 안와정맥을 통하여 채혈을 실시하고, 군별 3 마리 개체 각각의 혈액을 헤파린 튜브에 풀링 (pooling) 하였다. 얻어진 혈액 시료를 15000 rpm 에서 2 분간 원심 분리하여 혈장을 분리하고, 50 ㎕를 취하여 -20℃에서 냉동보관 하였다. 분석 당일 상온에서 해동하여 보관된 부피의 총 4 배인 200 ㎕의 아세토니트릴로 제단백을 실시하였다. 이 때의 아세토니트릴은 내부 표준과 5% 의 포름산 (FA)을 포함하였다. 검량선 작성을 위하여 0.1, 0.5, 5, 50 및 500 ng/mL을 각각 기지농도로 하는 아세토니트릴 용액 (IS 및 5% FA 포함)을 제조하고, 블랭크(blank) 혈장에 상술한 바와 같이 4 배 부피의 아세토니트릴로 제단백하여 최종 0.4 ~ 2,000 ng/mL의 검량선을 작성하였다. 제단백 이후 얻어진 상층액을 0.5 ㎕씩 LC-MS/MS 에 주입 후, 화학식 2의 화합물의 피크 영역을 IS의 피크 영역으로 보정하여 각 시료 수집시점 에서의 피크 응답을 구하고 검량선을 통해 농도환산하였다. 투여군별 시간에 따른 혈중농도의 값에 대해 WinNonlin 8.1을 사용하여 비구획적분석방법을 통해 약동학 파라미터 (Cmax, Tmax, AUClast, t1/2 등)를 산출하였다. 약물 투여군별 노출 및 반감기 변화 등을 비교하여 각 화합물의 약동학 특징을 비교하였다.
모체약물 (parent drug)인 화학식 2의 화합물을 프로드럭화 하여 피하주사하는 경우, 도달하는 화학식 2의 화합물의 혈중 최고약물농도 값이 감소하였다. 또한 물질에 따라 약물의 체내 소실반감기 (t1/2)가 증가하는 경향이 확인되었는데, 이렇게 프로드럭화 된 약물을 투여하는 경우에서 관찰된 특성은 높은 혈중 농도에 기인하는 부작용의 발현 측면에서 유리하며, 효능 발현에 필요한 유효농도를 유지하고 목적하는 효능을 달성하는데 있어서 모체약물을 직접 투여하는 것에 비해 장점을 가질 것으로 기대된다.
화학식 1의 프로드럭인 실시예 2, 16 및 32의 화합물을 각각 피하주사로 투여한 후 마우스의 혈장에서 측정된 대사물질인 모체약물의 약물동력학 파라미터는 하기 표 1에 나타나 있다.
Figure PCTKR2020005709-appb-T000001
도 2는 프로드럭인 실시예 2, 16 및 32의 화합물을 C57B0L/6 마우스에 피하주사한 후 얻어지는 화학식 2 화합물의 시간 경과에 따른 평균 혈장농도 (mean plasma concentration) 프로파일을 나타낸 것이다.
실시예 41: 캐스파제 저해제 프로드럭을 이용한 관절강 투여용 약물 지속방출형 미립구 제조
아래 표 2 및 표 3에 기재되어 있는 조성에 따라, 캐스파제 저해제 프로드럭이 봉입된 관절강 투여용 약물 지속방출형 시험 미립구를 16 종 제조하였다. 먼저 프로드럭과 PLGA (L/G 비율 = 50:50, M.W. 38,000~54,000)를 1:5의 중량비로 칭량하고 유기용매 디클로로메탄 (dichloromethane)을 넣은 후 교반하여 분산상 (disperse phase)을 제조하였다. 연속상은 2% 폴리비닐알코올 (polyvinyl alcohol, M.W. 31,000~50,000, 가수분해도 87~89 %) 150 mL을 사용하였고, 막유화법 (membrane emulsification)으로 에멀젼을 제조하였다. 제조된 에멀젼은 상온에서 하룻밤 교반하며 용매를 제거 (solvent evaporation)하였고, 멸균된 정제수로 세척을 반복한 후, 동결건조하여 미립구를 제조하였다.
Figure PCTKR2020005709-appb-T000002
Figure PCTKR2020005709-appb-T000003
실시예 42: 캐스파제 저해제를 이용한 관절강 투여용 약물 지속방출형 미립구 제조
아래 표 4에 기재되어 있는 조성에 따라, 캐스파제 저해제인 니보카산 (nivocasan)이 봉입된 관절강 투여용 약물 지속방출형 대조 미립구를 2 종 제조하였다. 캐스파제 저해제와 PLGA를 1:5의 중량비로 칭량하고 유기용매 디클로로메탄을 넣은 후 교반하여 분산상을 제조하였다. 이때 사용한 PLGA의 L/G 비율은 50:50 (M.W. 38,000~54,000)과 75:25 (M.W. 76,000~115,000)의 두 가지로 달리하였다. 연속상은 2% 폴리비닐알코올 (M.W. 31,000~50,000, 가수분해도 87~89 %) 150 mL을 사용하였고, 막유화법으로 에멀젼을 제조하였다. 제조된 에멀젼은 상온에서 하룻밤 교반하며 용매를 제거하였고, 멸균된 정제수로 세척을 반복한 후, 동결건조하여 미립구를 제조하였다.
Figure PCTKR2020005709-appb-T000004
실험예 3: 미립구 특성 및 약물 봉입율 분석
실시예 41 (시험 미립구 1 내지 16) 및 실시예 42 (대조 미립구 1 및 2)에 의해 제조된 미립구들의 특성은 제조 중 약물의 석출 여부 및 동결건조된 미립구의 성상과 재분산시 수상에서의 부유 여부로 확인하였다. 약물의 석출여부는 제조 중 광학현미경을 통해 확인하였으며, 동결건조된 미립구의 성상은 주사전자현미경법(scanning electron microscopy)을 이용하여 확인하였다. 미립구의 수상에서의 부유여부는 동결건조된 미립구를 물에 재분산하여 확인하였다. 미립구에 봉입된 약물의 양은 30 mg의 미립구를 50 mL의 아세토니트릴에 녹인 후, 초원심분리 (ultracentrifugation)한 상층액을 HPLC (high performance liquid chromatography)로 확인하였다. 또한, 대조 미립구 1 및 2에서 미립구 제조 중 캐스파제 저해제 결정이 다량 석출된 모습은 광학현미경을 이용하여 확인하였다.
아래 표 5에는 시험 미립구 1, 2, 12 내지 14 및 16에서의 약물 석출 여부, 미립구 성상, 미립구 부유여부 및 약물 봉입율 (%, w/w)의 관찰 또는 측정 결과가 나타나 있다. 또한, 이들 시험 미립구의 성상을 주사전자현미경법으로 관찰하여 도 3에 나타내었다. 미립구들은 약 50 μm 정도의 직경을 가지고 있었고, 모두 양호한 표면이 관찰되었다. 도 3의 시험 미립구 2에서 침상형으로 보이는 물질은 약물 결정이 남아있는 모습으로 세척에 의해 제거가 가능하다.
Figure PCTKR2020005709-appb-T000005
아래 표 6에는 대조 미립구 1 및 2 에서의 약물 석출 여부, 미립구 성상, 미립구 부유여부 및 약물 봉입율 (%, w/w)의 관찰 또는 측정 결과가 나타나 있다. 캐스파제 저해제를 함유한 대조 미립구들은 성상이 양호하고 미립구 부유현상도 없었으나 약물이 제조과정 중 다량 석출되었다. 약물 봉입율은 대조 미립구 1 및 2 모두에서 약 8% 정도로 관찰되어, 상기 표 5에서 측정된 시험 미립구들의 약물봉입률의 약 절반 정도 수준으로 확인되었다. 또한, 도 4에 따르면 대조 미립구 1 및 2는 경화 단계에서 캐스파제 저해제의 결정이 다량 석출되는 것이 확인되었다.
Figure PCTKR2020005709-appb-T000006
결과적으로, 캐스파제 저해제를 이용해 미립구를 제조시 약물 봉입 효율이 좋지 않았으나, 캐스파제 저해제 프로드럭을 이용하여 미립구 제조시 약물 봉입 효율이 크게 향상되는 것이 확인되었다.
실시예 43: 실시예 16의 프로드럭이 봉입된 관절강 투여용 약물 지속방출형 미립구 제조
아래 표 7에 기재되어 있는 조성에 따라 캐스파제 저해제 프로드럭인 실시예 16이 봉입된 관절강 투여용 약물 지속방출형 미립구들인 시험 미립구 17 내지 24를 제조하였다. 프로드럭 화합물과 PLGA의 중량비는 아래 표 7에 기재된 것과 같이 10, 13, 16 또는 20%(w/w)로 칭량하고, 유기용매 디클로로메탄을 넣은 후 교반하여 분산상을 제조하였다. 사용된 PLGA의 L/G 비율은 50:50 (M.W. 38,000~54,000)과 75:25 (M.W. 76,000~115,000)의 두 가지로 달리하였다. 연속상은 2% 폴리비닐알코올 (M.W. 31,000~50,000, 가수분해도 87~89 %) 150 mL을 사용하였고, 막유화법으로 에멀젼을 제조하였다. 제조된 에멀젼은 상온에서 하룻밤 교반하며 용매를 제거하였고, 멸균된 정제수로 세척을 반복한 후, 동결건조하여 미립구를 제조하였다.
Figure PCTKR2020005709-appb-T000007
실험예 4: 미립구의 물리적 안정성 및 약물 봉입율 분석
시험 미립구 17 내지 24의 물리적 안정성은 완충용액인 PBS (Phosphate buffered saline, 37℃) 상에서 하루 동안 진탕 (shaking)하여 응집이 발생하는지 여부로 판단하였다. 표 8에는 시험 미립구 17 내지 24의 물리적 안정성 및 약물 봉입율 분석 결과가 나타나 있다. 시험 미립구 17 내지 19 에서는 PBS 내에서 하루 만에 미립구가 응집되는 현상이 발견되지 않았지만 시험 미립구 20에서는 발견되었다. 또한, 시험 미립구 21 내지 23에서는 하루 만에 미립구가 응집되는 현상이 발견되지 않았지만 시험 미립구 24에서는 발견되었다. 미립구 제조시 실시예 16의 프로드럭은 부하량 대부분이 봉입되는 것을 확인되었으므로, 이번 시험에서는 봉입율을 별도로 측정하지 않았다.
Figure PCTKR2020005709-appb-T000008
시험 미립구 17 내지 24가 하루 뒤 PBS 내에서 분산된 상태가 도 5에 나타나 있다. 도 5의 a에 따르면 실시예 16의 프로드럭이 각각 10%, 13% 및 16% (이론적 봉입률) 봉입된 미립구는 PBS 내에 잘 분산되어 입자가 눈에 보이지 않았지만, 실시예 16의 프로드럭이 20% (이론적 봉입률) 봉입된 미립구는 응집되어 덩어리져 있는 것을 확인하였다. 도 5의 b에 따르면 실시예 16의 프로드럭이 각각 10%, 13% 및 16% (이론적 봉입률) 봉입된 미립구는 PBS 내에 잘 분산되어 입자가 눈에 보이지 않았지만, 실시예 16의 프로드럭이 20% (이론적 봉입률) 봉입된 미립구는 응집되어 덩어리져 있는 것을 확인하였다.
결과적으로, 실시예 16의 프로드럭이 20% 이상 봉입된 미립구를 제조시 하루 만에 PBS에서 미립구가 응집되는 것을 확인하였다.
실험예 5: 실시예 2의 프로드럭을 함유한 미립구의 인 비트로 (in-vitro) 용출시험
시험 미립구 2에 따라 실시예 2의 프로드럭을 봉입하여 제조된 미립구의 인 비트로 용출시험을 수행하였다. 구체적으로, 미립구를 완충용액인 PBS (37℃ 상에서 진탕하여 특정 시각마다 용출액을 수집 및 여과한 후, HPLC로 방출된 약물의 양을 확인하였다. 수용액에서 가수분해에 의해 프로드럭이 모체약물 (parent drug)인 캐스파제 저해제로 전환되므로, HPLC로 측정되는 캐스파제 저해제의 양을 통해 방출된 약물의 양을 확인하였다.
또한, 관절활액 (synovial fluid)을 모사한 히알루론산 1% 및 소혈청알부민 2.5%가 함유된 PBS에서도 동일한 실험을 반복하여 관절활액 모사용액 (sSF, simulated synovial fluid)에서 용출 패턴이 달라지는지를 확인하였다.
실시예 2의 프로드럭이 봉입된 PLGA 미립구의 인 비트로 용출 그래프가 도 6에 나타나 있다. 실험 결과, 캐스파제 저해제의 용출이 약 12 주 동안 지속됨을 확인하였으며, PBS와 sSF의 두 용출시험액에서의 용출패턴의 차이는 발견되지 않았다. 결론적으로 PBS와 sSF 내에서의 용출패턴에 차이가 발견되지 않았으므로, 추후 용출시험에서 굳이 sSF를 사용할 필요가 없음을 확인하였다.
실험예 6: 실시예 16의 프로드럭을 함유한 미립구의 인 비트로 용출시험
시험 미립구 18 및 22에 따라 실시예 16의 프로드럭을 함유하도록 제조된 미립구의 인 비트로 용출시험을 수행하였다. 구체적으로, 미립구를 완충용액인 PBS (37℃) 상에서 진탕하여 특정 시각마다 용출액을 수집 및 여과한 후, HPLC로 방출된 약물의 양을 확인하였다. 수용액에서 가수분해에 의해 프로드럭이 모체약물인 캐스파제 저해제로 전환되기 때문에, HPLC로 측정되는 캐스파제 저해제의 양을 통해 방출된 약물의 양을 확인하였다. 또한, 가수분해가 진행됨에 따라 변하는 미립구의 성상은 주사전자현미경법을 이용하여 확인하였다. 가수분해가 진행됨에 따라 변하는 PLGA의 분자량은 GPC (Gel Permeation Chromatograhy)를 이용하여 측정하였다.
시험 미립구 18 및 22에 따른 PLGA 미립구의 인 비트로 용출 그래프가 도 7에 나타나 있다. PLGA의 L/G 비율이 50:50인 시험 미립구 18은 약 6 주간 용출이 지속되었고, L/G 비율이 75:25인 시험 미립구 22는 약 14 주간 용출이 지속되었다. 두 종류의 미립구 모두 초기 방출 증가 (initial burst) 이후 완만한 기울기로 용출이 지속되다가 중간에 급격히 용출량이 많아지는 패턴을 보였다.
용출시험 진행 중 미립구의 형상을 관찰한 사진이 도 8에 나타나 있다. 시험 미립구 18 (5050 PLGA)은 약 4 주차에 기공이 많이 생겼고, 8 주차에는 미립구가 부풀어 오르며 (swelling) 더 커지고 기공도 더 커졌다. 시험 미립구 22 (7525 PLGA)는 8 주차에 서서히 기공이 형성되려고 하는 모습이 관찰되었고, 12 주차에는 PLGA가 부풀어 오르고 구의 형태가 붕괴된 모습이 관찰되었다.
용출시험 진행 중 시험 미립구 18 (5050 PLGA)의 분자랑 변화를 측정한 그래프가 도 9에 나타나 있다. 용출시험이 시작되면서 빠르게 분자량이 감소하였고, 4 주차에는 원래의 분자량보다 약 1/5 수준으로 떨어졌으며 이후 비슷한 수준을 유지하였다.
용출시험 결과, 용출 초반부터 가수분해에 의해 PLGA가 분해되면서 미립구 표면에 있던 약물이 빠르게 용출되었고, PLGA가 더 분해되면 기공이 형성되면서 특정 시점에서 약물의 방출이 활발히 일어나 확산되어 나오는 패턴을 보이는 것으로 분석되었다. 또한, L/G 비율이 50:50인 PLGA (5050PLGA) 사용시보다 L/G 비율이 75:25인 PLGA (7525PLGA) 사용시 더욱 지연된 방출패턴이 나타났으며, 가수분해에 의해 성상이 변하고 분자량이 작아짐을 확인하였다.
실험예 7: 실시예 2의 프로드럭을 함유한 미립구의 약물동력학 (PK) 시험
시험 미립구 2에 따라 실시예 2의 프로드럭을 함유하도록 제조된 미립구를 이용하여 개 (dog)에서 PK 시험을 진행하였다. 관절강에 300 mg/ml 의 농도의 미립구를 투약하고 특정 시점에서 관절활액을 채취하여 캐스파제 저해제의 농도를 측정하고 그 결과를 도 10에 나타내었다.
관절강 내 캐스파제 저해제 측정 결과, 24 시간 후 초기 증가가 크게 일어나고 이후 점차 농도가 줄어들었다. 2 주까지만 지속이 될 것으로 보였으나 추후 4 주차에 측정시 농도가 조금 올라간 것으로 보아 실시예 2의 프로드럭이 봉입된 시험 미립구 2 (5050PLGA)는 약 4 주간 캐스파제 저해제를 지속 방출하는 것으로 확인되었다. 결론적으로, 실시예 2의 프로드럭이 봉입된 시험 미립구 2에서 캐스파제 저해제가 약 4 주 동안 지속 방출됨을 확인하였다.

Claims (11)

  1. 하기 화학식 1의 화합물, 또는 이의 약제학적으로 허용되는 염 또는 이성질체:
    [화학식 1]
    Figure PCTKR2020005709-appb-I000045
    상기 식에서,
    R은 알킬, 할로알킬, 사이클로알킬, 사이클로알킬알킬, 아릴, 아릴알킬, 헤테로아릴, 헤테로아릴알킬, 알콕시 또는 알콕시알킬을 나타내고, 상기 헤테로아릴은 N, O 및 S로부터 선택되는 하나 이상의 헤테로원자를 포함하고,
    상기 알킬, 할로알킬, 사이클로알킬, 사이클로알킬알킬, 아릴, 아릴알킬, 헤테로아릴, 헤테로아릴알킬 또는 알콕시알킬은 임의로 치환되며, 치환기는 알킬, 할로, 할로알킬, 사이클로알킬, 하이드록시, 아실, 아미노, 알콕시, 카보알콕시, 옥소, 카복시, 카복시아미노, 시아노, 니트로, 티올, 아릴옥시, 설폭시 및 구아니도기로부터 선택되는 하나 이상이고,
    단, R은 tert-부틸이 아니다.
  2. 제1항에 있어서,
    R이 C1-20 알킬, C3-10 사이클로알킬, C3-10 사이클로알킬-C1-6 알킬, C6-C10 아릴, C6-C10 아릴-C1-6 알킬, 3 내지 10원 헤테로아릴, 3 내지 10원 헤테로아릴-C1-6 알킬, 할로-C1-6 알킬 또는 C1-6 알콕시-C1-6 알킬이며, 상기 헤테로아릴은 N, O 및 S로부터 선택되는 1 내지 4 개의 헤테로원자를 포함하는 화합물, 또는 이의 약제학적으로 허용되는 염 또는 이성질체.
  3. 제1항에 있어서,
    R이 C1-18 알킬, C3-6 사이클로알킬, C3-6 사이클로알킬-C1-3 알킬, C6-C10 아릴, C6-C10 아릴-C1-3 알킬, 4 내지 6원 헤테로아릴-C1-3 알킬, 할로-C1-3 알킬, C1-3 알콕시-C1-3 알킬이며, 상기 헤테로아릴은 N, O 및 S로부터 선택되는 1 또는 2 개의 헤테로원자를 포함하고,
    치환기는 알킬, 할로, 알콕시 또는 옥소인 화합물, 또는 이의 약제학적으로 허용되는 염 또는 이성질체.
  4. 제1항에 있어서, 다음으로부터 선택되는 화합물:
    메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    에틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    프로필 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    부틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    이소부틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    이소펜틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    펜틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    헥실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    헵틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    옥틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    데실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    도데실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    펜타데실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    옥타데실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    (9E,12E)-옥타데카-9,12-디엔-1-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    사이클로프로필메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    사이클로부틸메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    사이클로펜틸메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    알릴 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    이소프로필 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    펜타-3-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    sec-부틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    펜탄-2-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    헵탄-2-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    사이클로펜틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    사이클로헥실 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    벤질 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    (5-메틸-2-옥소-1,3-디옥솔-4-일)메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    2-메톡시페닐 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    2,3-디히드로-1H-인덴-5-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    페닐 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    나프탈렌-1-일 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    나프탈렌-1-일메틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    2,2,2-트리플루오로에틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    2-메톡시에틸 (S)-5-플루오로-3-((R)-5-이소프로필-3-(이소퀴놀린-1-일)-4,5-디히드로이소옥사졸-5-카르복사미도)-4-옥소펜타노에이트;
    2-플루오로에틸 (S)-5-플루오로-3-((R)-5-아이소프로필-3-(아이소퀴놀린-1-일)-4,5-디히드로아이소옥사졸-5-카복사아미도)4-옥소펜타노에이트;
    네오펜틸 (S)-5-플루오로-3((R)-5-아이소프로필-3-(아이소퀴놀린-1-일)-4,5-디히드로아이소옥사졸-5-카복사아미도)4-옥소펜타노에이트;
    싸이오펜-2-일메틸 (S)-5-플루오로-3-((R)-5-아이소프로필-3-(아이소퀴놀린-1-일)-4,5-디히드로아이소옥사졸-5-카복사아미도)-4-옥소펜타노에이트;
    싸이오펜-3-일메틸 (S)-5-플루오로-3-((R)-5-아이소프로필-3-(아이소퀴놀린-1-일)-4,5-디히드로아이소옥사졸-5-카복사아미도)-4-옥소펜타노에이트; 및
    퓨란-3-일메틸 (S)-5-플루오로-3-((R)-5-아이소프로필-3-(아이소퀴놀린-1-일)-4,5-디히드로아이소옥사졸-5-카복사아미도)-4-옥소펜타노에이트.
  5. 제1항에 있어서, 캐스파제 저해제 프로드럭으로서의 화합물, 또는 이의 약제학적으로 허용되는 염 또는 이성질체.
  6. 활성 성분으로 제1항 내지 제5항 중 어느 한 항의 화학식 1의 화합물, 또는 이의 약제학적으로 허용되는 염 또는 이성질체 및 약제학적으로 허용되는 담체를 포함하는, 소염 또는 세포사멸의 예방 또는 치료를 위한 약제학적 조성물.
  7. 제6항에 있어서, 경구 투여형, 주사제형 또는 패취형으로 제형화된, 약제학적 조성물.
  8. 제6항에 있어서, 화학식 1의 화합물, 또는 이의 약제학적으로 허용되는 염 또는 이성질체, 및 생체적합성 고분자를 포함하는 미립구를 포함하는, 약제학적 조성물.
  9. 제8항에 있어서, 상기 생체적합성 고분자는 락타이드 대 글리콜라이드의 몰비가 90:10 내지 10:90인 폴리락타이드글리콜라이드 공중합체인, 약제학적 조성물.
  10. 제8항에 있어서, 상기 미립구 내의 화학식 1의 화합물, 또는 이의 약제학적으로 허용되는 염 또는 이성질체와 생체적합성 고분자의 중량비가 1:100 내지 70:100인, 약제학적 조성물.
  11. 활성 성분으로 제1항 내지 제5항 중 어느 한 항의 화학식 1의 화합물, 또는 이의 약제학적으로 허용되는 염 또는 이성질체 및 약제학적으로 허용되는 담체를 포함하는, 세포사멸-매개 질환, 염증 질환, 골 관절염, 류마티스성 관절염, 퇴행성 관절염 및 파괴성 골 장애로부터 선택되는 질환의 예방 또는 치료를 위한 약제학적 조성물.
PCT/KR2020/005709 2019-04-30 2020-04-29 캐스파제 저해제의 프로드럭 WO2020222541A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021564603A JP7442914B2 (ja) 2019-04-30 2020-04-29 カスパーゼ阻害剤のプロドラッグ
EP20798715.7A EP3954683A4 (en) 2019-04-30 2020-04-29 CASPASE INHIBITOR PRODRUG
CN202080031870.9A CN113767097A (zh) 2019-04-30 2020-04-29 半胱天冬酶抑制剂的前药
US17/607,733 US20220227743A1 (en) 2019-04-30 2020-04-29 Prodrug of caspase inhibitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0051041 2019-04-30
KR20190051041 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020222541A1 true WO2020222541A1 (ko) 2020-11-05

Family

ID=73028875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005709 WO2020222541A1 (ko) 2019-04-30 2020-04-29 캐스파제 저해제의 프로드럭

Country Status (6)

Country Link
US (1) US20220227743A1 (ko)
EP (1) EP3954683A4 (ko)
JP (1) JP7442914B2 (ko)
KR (1) KR102442103B1 (ko)
CN (1) CN113767097A (ko)
WO (1) WO2020222541A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114876A1 (ko) * 2020-11-30 2022-06-02 주식회사 엘지화학 캐스파제 저해제를 함유하는 주사용 조성물 및 이의 제조 방법
KR20230126654A (ko) * 2022-02-23 2023-08-30 주식회사 엘지화학 이소옥사졸린 유도체를 포함하는 주사용 제제 및 이의 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040066726A (ko) 2003-01-17 2004-07-27 미쓰비시덴키 가부시키가이샤 밀폐형 개폐 장치
KR20050022364A (ko) * 2003-08-27 2005-03-07 주식회사 엘지생명과학 이소옥사졸린 구조를 갖는 캐스파제 저해제
KR20060013107A (ko) 2004-08-06 2006-02-09 비오이 하이디스 테크놀로지 주식회사 어레이 기판 불량 검출 장치
WO2007015931A2 (en) 2005-07-28 2007-02-08 Vertex Pharmaceuticals Incorporated Caspase inhibitor prodrugs
KR20080025123A (ko) 2005-07-08 2008-03-19 도호쿠 세이키 고교 가부시키카이샤 디바이스 위치결정대, 및 이 디바이스 위치결정대를 가지는핸들러
US20080207605A1 (en) * 2007-02-28 2008-08-28 Spada Alfred P Combination therapy for the treatment of liver diseases
WO2010005765A1 (en) * 2008-07-11 2010-01-14 Gilead Sciences, Inc. Method of treatment and pharmaceutical compositions
WO2010005766A1 (en) * 2008-07-11 2010-01-14 Gilead Sciences, Inc. Use of pharmaceutical compositions comprising a caspase inhibitor for treating interstitial lung diseases
KR20120032521A (ko) * 2009-06-09 2012-04-05 뉴로나노 아베 조직내로 약물을 방출하기 위한 수단을 포함하는 미소 전극 및 다중 미소 전극

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675628B2 (ja) * 2002-12-20 2011-04-27 バーテックス ファーマシューティカルズ インコーポレイテッド 4−オキソ−3−(1−オキソ−1h−イソキノリン−2−イルアセチルアミノ)−ペンタン酸のエステル誘導体およびアミド誘導体、ならびにカスパーゼインヒビターとしてのそれらの使用
KR100466637B1 (ko) * 2003-06-26 2005-01-13 주식회사 펩트론 서방성 미립구의 혼합 제형을 연속한 단일 공정으로제조하는 방법
KR100774999B1 (ko) * 2005-02-26 2007-11-09 주식회사 엘지생명과학 이소옥사졸린 유도체 및 그의 제조 방법
EP1954252B1 (en) * 2005-12-02 2016-02-03 GlaxoSmithKline Biologicals SA Nanoparticles for use in immunogenic compositions
US20100120843A1 (en) * 2008-11-13 2010-05-13 Lg Life Sciences Ltd. Pharmaceutical composition for treating alcohol-induced liver injury comprising (4s,5s)-5-fluoromethyl-5-hydroxy-4-(amino)-dihydrofuran-2-one or pharmaceutically acceptable salt thereof
US10525034B2 (en) * 2014-12-15 2020-01-07 The Johns Hopkins University Sunitinib formulations and methods for use thereof in treatment of glaucoma

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040066726A (ko) 2003-01-17 2004-07-27 미쓰비시덴키 가부시키가이샤 밀폐형 개폐 장치
KR20050022364A (ko) * 2003-08-27 2005-03-07 주식회사 엘지생명과학 이소옥사졸린 구조를 갖는 캐스파제 저해제
KR20060013107A (ko) 2004-08-06 2006-02-09 비오이 하이디스 테크놀로지 주식회사 어레이 기판 불량 검출 장치
KR20080025123A (ko) 2005-07-08 2008-03-19 도호쿠 세이키 고교 가부시키카이샤 디바이스 위치결정대, 및 이 디바이스 위치결정대를 가지는핸들러
WO2007015931A2 (en) 2005-07-28 2007-02-08 Vertex Pharmaceuticals Incorporated Caspase inhibitor prodrugs
US20080207605A1 (en) * 2007-02-28 2008-08-28 Spada Alfred P Combination therapy for the treatment of liver diseases
WO2010005765A1 (en) * 2008-07-11 2010-01-14 Gilead Sciences, Inc. Method of treatment and pharmaceutical compositions
WO2010005766A1 (en) * 2008-07-11 2010-01-14 Gilead Sciences, Inc. Use of pharmaceutical compositions comprising a caspase inhibitor for treating interstitial lung diseases
KR20120032521A (ko) * 2009-06-09 2012-04-05 뉴로나노 아베 조직내로 약물을 방출하기 위한 수단을 포함하는 미소 전극 및 다중 미소 전극

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3954683A4

Also Published As

Publication number Publication date
EP3954683A1 (en) 2022-02-16
EP3954683A4 (en) 2022-06-22
CN113767097A (zh) 2021-12-07
JP2022530546A (ja) 2022-06-29
KR20200126928A (ko) 2020-11-09
JP7442914B2 (ja) 2024-03-05
US20220227743A1 (en) 2022-07-21
KR102442103B1 (ko) 2022-09-08

Similar Documents

Publication Publication Date Title
WO2016064082A2 (ko) 신규한 아미노알킬벤조티아제핀 유도체 및 이의 용도
WO2021256861A1 (ko) 신규한 산 분비 억제제 및 이의 용도
WO2020222541A1 (ko) 캐스파제 저해제의 프로드럭
WO2017142325A1 (ko) 단백질 키나아제 저해제인 신규 2,3,5-치환된 싸이오펜 화합물
WO2014171801A1 (ko) 아미도피리딘올 유도체 또는 이의 약제학적 허용가능한 염 및 이를 유효성분으로 함유하는 약학조성물
WO2021145655A1 (ko) 신규한 피라졸 유도체
WO2021162493A1 (ko) 단백질 키나아제 분해 유도 화합물 및 이의 용도
WO2011021864A2 (ko) 신규한 항암제 보조용 화합물, 이의 제조방법, 이를 포함하는 항암제 보조용 조성물 및 이를 이용한 항암제에 대한 내성을 감소시키는 방법
WO2023080765A1 (ko) 신규 옥사다이아졸 유도체 및 이의 용도
WO2019168357A1 (en) Water soluble salts of lipidated peptides and methods for preparing and using the same
WO2021225233A1 (ko) 혈관 누출 차단제 화합물의 신규 결정형
WO2017115914A1 (ko) PPARγ 인산화 저해제 및 이를 포함하는 약학적 조성물
WO2020190073A1 (ko) 신규한 아졸로피리미딘 헤테로고리 화합물을 유효 성분으로 함유하는 약제학적 조성물
WO2022139304A1 (ko) Sos1 억제제로서의 신규한 퀴나졸린 유도체 화합물 및 이의 용도
WO2016108319A1 (ko) 신규 레바미피드 전구체의 염 및 이의 용도
EP3867249A1 (en) Novel (isopropyl-triazolyl)pyridinyl-substituted benzooxazinone or benzothiazinone derivatives and use thereof
WO2023113540A1 (ko) (2r, 3s)-2-(3-(4,5-디클로로-1h-벤조[d]이미다졸-1-일)프로필)피페리딘-3-올의 신규한 산부가염 및 결정형
WO2020242245A1 (ko) 프탈라진온 화합물 및 이들의 용도
WO2022177307A1 (ko) 벤즈이미다졸 유도체를 유효 성분으로 포함하는 인터페론 유전자 자극제 조성물
WO2019098785A1 (ko) 7-아미노-1h-인돌-5-카르복사미드 유도체 및 이의 용도
WO2024029877A1 (ko) A3 아데노신 수용체 작용제로서의 신규한 퓨린 유도체 화합물
WO2021194291A1 (ko) (-)-시벤졸린 숙신산염의 결정다형
WO2023055020A1 (ko) 피페론구민계 화합물을 유효성분으로 포함하는 혈관질환 예방 또는 치료용 약학적 조성물
WO2023121207A1 (ko) Aak1을 억제하는 바이러스성 질환 또는 뇌 질환의 예방 또는 치료용 약학적 조성물
WO2022245125A1 (ko) 트리사이클릭 유도체 화합물의 결정형 및 이의 제조방법 및 이를 포함하는 약학적 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021564603

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020798715

Country of ref document: EP

Effective date: 20211130