WO2020220585A1 - 一种强制循环快速浮选分离装置及方法 - Google Patents

一种强制循环快速浮选分离装置及方法 Download PDF

Info

Publication number
WO2020220585A1
WO2020220585A1 PCT/CN2019/109883 CN2019109883W WO2020220585A1 WO 2020220585 A1 WO2020220585 A1 WO 2020220585A1 CN 2019109883 W CN2019109883 W CN 2019109883W WO 2020220585 A1 WO2020220585 A1 WO 2020220585A1
Authority
WO
WIPO (PCT)
Prior art keywords
mineralization
wheel
centrifugal
discharge
bottom plate
Prior art date
Application number
PCT/CN2019/109883
Other languages
English (en)
French (fr)
Inventor
张海军
刘炯天
闫小康
王利军
刘清侠
马子龙
李丹龙
李鑫
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to CA3100768A priority Critical patent/CA3100768C/en
Publication of WO2020220585A1 publication Critical patent/WO2020220585A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines

Definitions

  • the invention relates to a separation device and method, and is particularly suitable for forced circulation fast flotation separation device and method used for flotation separation of easy-floating coarse particle minerals or coal.
  • the equipment used for mineral flotation separation mainly includes two types of equipment: flotation machine and flotation column.
  • the flotation machine is considered to be relatively suitable for the flotation of coarse-grained minerals, and is widely used in industrial practice. According to the working principle, it can be divided into mechanical stirring flotation machine and air flotation machine.
  • the self-absorption mechanical agitation flotation machine is a flotation machine that is aerated and agitated by the rotation of the impeller or the rotor; the aerated agitation flotation machine is a flotation machine that combines mechanical agitation and external air pressure.
  • Compressor flotation machine is a flotation machine that is fed with compressed air from an external compressor to inflate and agitate the slurry.
  • the gas-precipitating flotation machine is a method of changing the gas pressure in the slurry, so that the gas separates the dispersed bubbles from the slurry, and the slurry is stirred.
  • All of the above flotation machines lack an effective slurry circulation mineralization separation mechanism inside a single device, especially for difficult-to-float mineral particles; in addition, the flotation of coarse-particle minerals has weak suspension and dispersion capabilities and slow floating speed. , Its means to increase the recovery rate of mineral flotation mainly depends on increasing the number of flotation machines. Therefore, it is necessary to design a new type of flotation machine based on the design of a reasonable flotation separation process to make up for the above shortcomings.
  • the forced circulation fast flotation separation device of the present invention includes a transmission mechanism, a flotation tank, a fast flotation system and a forced circulation system;
  • the flotation tank body includes a cylinder, the bottom of the cylinder is an inverted platform with a funnel structure, the top of the cylinder is provided with a foam tank, the lowest part of the foam tank is provided with a concentrate discharge pipe, and the cylinder is located at the foam tank.
  • a forced circulation system is installed in the inverted platform of the flotation tank, and a plurality of deflectors are vertically arranged in the side wall of the flotation tank between the forced circulation system and the sieve plate, and the flotation tank is inverted
  • the bottom is equipped with a gas dispersion box, the side wall of the gas dispersion box is provided with a first microbubble generator at an angle of 45° to the vertical direction, the bottom of the gas dispersion box is provided with a tailings discharge pipe, and the top of the flotation tank is equipped with a transmission
  • the transmission mechanism is fixed on the flotation tank body through the support frame. Below the transmission mechanism is a stirring shaft extending into the flotation tank body and connected with the forced circulation system.
  • the stirring shaft is located between the sieve plate and the forced circulation system.
  • a feed sleeve is provided.
  • the side of the feed sleeve is provided with a feed pre-mineralization tube extending to the outside of the flotation tank.
  • the feed pre-mineralization tube is provided with a second micropipe at a 45° angle to the feeding direction.
  • a quick-floating cover plate is provided under the feeding sleeve, and the quick-floating cover plate is set in the middle of the flotation tank body, and a centrifugal dispersing wheel is provided on the stirring shaft under the fast floating cover plate.
  • the forced circulation includes an upper deflector, a propulsion wheel, a dispersing stator, a centrifugal mineralization wheel and a lower diversion device fixed under the centrifugal mineralization wheel and fixed at the bottom of the tank.
  • the dispersing stator matches the lower diversion device, and the propulsion wheel is arranged at In the upper diversion cylinder, the center of the advancing wheel is penetrated by the stirring shaft.
  • the lower diversion device includes a diversion inverted cone, a discharge bottom plate and a lower diversion cylinder set in the middle of the discharge bottom plate.
  • the discharging bottom plate is arranged in the inverted ladder platform
  • the diversion cylinder is disposed under the discharging bottom plate
  • the diversion inverted cone is arranged above the discharging bottom plate
  • the centrifugal mineralization wheel is set in the center of the diversion inverted cone
  • the dispersion stator It includes a plurality of rectangular pulp dispersing plates and mineralized cover plates, wherein a plurality of rectangular pulp dispersing plates are evenly distributed in the radial direction between the inner diameter of the inverted cone and the centrifugal mineralization wheel, and the circular mineralized cover plates are arranged Above the multiple rectangular pulp dispersion plates, the stirring shaft passes through the mineralization cover plate and is finally connected with a centrifugal mineralization wheel.
  • the quick-floating system is set above the forced circulation system;
  • the deflector is an open inverted cone structure, and the advancing wheel is arranged in the deflector and fixed on the stirring shaft;
  • the discharge bottom plate is set at the conical position of the bottom of the tank, tightly Next to the pulp dispersion plate, a pulp discharge hole is arranged between the discharge bottom plate and the groove wall of the inverted ladder;
  • the first microbubble generator and the second microbubble generator are provided with microporous ceramics.
  • a forced circulation fast flotation separation method includes the following steps:
  • a. close the tailings discharge pipe, and send the slurry after mixing into the pre-mineralization pipe through the inlet of the pre-mineralization pipe.
  • the compressed air passes through the inlet of the second micro-bubble generator through the second micro-bubble generator.
  • the slurry is fed into the pre-mineralization pipe and the slurry for mixing and pre-mineralization;
  • the mixed premineralized pulp enters the feeding sleeve, the pulp in the feeding sleeve is fed into the flotation tank under the action of the rotating centrifugal dispersing wheel, and the pulp enters the inverted ladder through the holes and gaps in the discharge bottom plate
  • compressed air is sent into the gas dispersion box through the first microbubble generator inlet of the first microbubble generator to mix with the slurry.
  • the mixed slurry enters the centrifugal mineralization wheel from the lower deflector and is The centrifugal mineralization wheel produces upward buoyancy in the continuously rising slurry surface along the rectangular slurry dispersion plate and the inverted diversion cone.
  • the fast floating cover starts to rise.
  • the distance from the overflow tank overflow surface is about 200mm
  • the fast-floating foam is formed through the fast-floating cover plate and the centrifugal dispersing wheel at this time. The easy-floating particles in the mixed pre-mineralized slurry mineralize with the fast-floating foam and rise rapidly.
  • the plate After the plate is rectified, it is discharged from the concentrate discharge pipe outlet of the concentrate discharge pipe on the foam tank.
  • the medium floatable particles are fed into the centrifugal mineralization wheel through the upper deflector of the middle mine forced circulation system under the action of the propeller wheel. In order to further increase the slurry circulation;
  • the difficult-to-float particles in the flotation tank flow out through the discharge hole in the center of the discharge bottom plate on the discharge bottom plate, and some of the particles are discharged from the tailings discharge pipe outlet of the tailings discharge pipe at the bottom of the tank, and the other part
  • the particles are sucked into the centrifugal mineralization wheel under the centrifugal suction force of the centrifugal mineralization wheel through the lower guide tube in the middle of the discharge bottom plate.
  • the fast floating cover plate, the discharge bottom plate and the centrifugal mineralization wheel are in the mineralization cover plate.
  • a space is formed between it and the discharge bottom plate, and the centrifugal force generated by the rotation of the centrifugal mineralization wheel is dispersed into the flotation tank body);
  • the compressed air is sent into the gas dispersion box through the first microbubble generator inlet of the first microbubble generator, and is sucked into the mineralization cover plate and the discharge bottom plate through the lower guide tube in the middle of the discharge bottom plate together with the pulp.
  • the slurry flow and flotation separation process when the present invention is used is more reasonable compared with the prior art.
  • the slurry after mixing and premineralization is fed into the tank through the fast floating system, and the easily floating particles float out quickly;
  • Floating particles and difficult-to-floating particles are strengthened by the forced circulation system under the action of the centrifugal mineralization wheel to intensify the collision between particles and bubbles, and are dispersed into the tank by the inverted cone that can produce upward flow, and the mineralized particles are together with the fast-floating foam
  • the tank body is discharged quickly, and the unmineralized particles are circulated and separated multiple times in the tank body; the upward flow generated by the bottom diversion cone further improves the suspension capacity and flotation speed of coarse-particle minerals, and the forced circulation system strengthens the
  • the mineralization effect of medium floatable and difficult-to-float particles improves the recovery capacity of mineral particles.
  • the recovery capacity of a single flotation machine for coarse-particle minerals is strengthened, so as to solve the problems of insufficient slurry circulation capacity in the existing tank flotation process and slow coarse-particle flotation speed.
  • the suspension capacity and flotation speed of coarse-particle minerals strengthen the recovery capacity of coarse-particle minerals, and improve the flotation energy efficiency of a single flotation machine.
  • Fig. 1 is a schematic diagram of the structure of the forced circulation fast flotation separation device of the present invention.
  • the forced circulation fast flotation separation device of the present invention includes a transmission mechanism 8, a flotation tank body 3, a fast flotation system and a forced circulation system;
  • the flotation tank body 3 includes a cylinder, the bottom of the cylinder is an inverted terrace with a funnel structure, the top of the cylinder is provided with a foam tank 1, and the lowest part of the foam tank 1 is provided with a concentrate discharge pipe 2, and the cylinder is located
  • the froth tank 1 is provided with a sieve plate 10
  • the flotation tank body 3 is equipped with a forced circulation system in the inverted stairway, and the side wall of the flotation tank body 3 between the forced circulation system and the sieve plate 10 is vertically provided with multiple diversions Plate 4
  • flotation tank body 3 is provided with a gas dispersion box 24 at the bottom of the inverted platform, the side wall of the gas dispersion box 24 is provided with a first microbubble generator 7 at an angle of 45° to the vertical, and the bottom of the gas dispersion box 24 is provided
  • a transmission mechanism 8 is provided on the top of the flotation tank body 3
  • the transmission mechanism 8 is fixed on the flotation
  • the stirring shaft 9 is located between the sieve plate 10 and the forced circulation system.
  • a feed sleeve 16 is provided on the side of the feed sleeve 16 to extend to the outside of the flotation tank 3
  • the feed pre-mineralization tube 22 is provided with a second microbubble generator 21 at an angle of 45° to the feeding direction, and a fast-floating cover plate 11 is provided under the feed sleeve 16,
  • the fast-floating cover plate 11 is arranged in the middle position of the flotation tank body 3.
  • Below the fast-floating cover plate 11 is provided a centrifugal dispersing wheel 12 on the stirring shaft 9.
  • the forced circulation system includes an upper deflector 17, a propulsion wheel 13,
  • the dispersing stator, the centrifugal mineralization wheel 19 and the lower flow guiding device fixed at the bottom of the tank body are arranged under the centrifugal mineralization wheel.
  • the dispersing stator is matched with the lower flow guiding device.
  • the propulsion wheel 13 is arranged in the upper flow guiding cylinder 17 to advance The center of the wheel 13 is penetrated by the stirring shaft 9.
  • the lower guide device includes a guide inverted cone 5, a discharge bottom plate 23, and a lower guide tube 6 arranged in the middle of the discharge bottom plate.
  • the dispersing stator includes a plurality of rectangular pulp dispersing plates 14 and a mineralization cover plate 18, wherein a plurality of rectangular pulp dispersing plates 14 are evenly distributed in the radial direction and arranged vertically on the inner diameter of the inverted flow guide cone 5 and the centrifugal mineralization wheel 19 In between, the circular mineralization cover plate 18 is arranged above the plurality of rectangular pulp dispersion plates 14, and the stirring shaft 9 passes through the mineralization cover plate 18 and is finally connected to a centrifugal mineralization wheel.
  • the quick-floating system is arranged above the forced circulation system;
  • the guide tube 17 is an open inverted cone structure, and the advancing wheel 17 is arranged in the guide tube 17 and fixed on the stirring shaft 9;
  • the discharge bottom plate 23 is arranged on the tank body At the bottom cone position, immediately below the slurry dispersing plate 14, a slurry discharge hole is provided between the discharge bottom plate 23 and the groove wall of the inverted terrace;
  • the first microbubble generator 7 and the second microbubble generator 21 are provided with micro Porous ceramics.
  • a forced circulation fast flotation separation method includes the following steps:
  • the mixed pre-mineralized pulp enters the feeding sleeve 16.
  • the pulp in the feeding sleeve 16 is fed into the flotation tank 3 under the action of the rotating centrifugal dispersing wheel 12, and the pulp passes through the discharge bottom plate 23
  • the holes and gaps enter the lower half of the inverted stairway.
  • the compressed air is sent into the gas dispersion box 24 through the first microbubble generator inlet C of the first microbubble generator 7 to mix with the slurry, and the mixed slurry flows from the lower guide tube 6 Enter into the centrifugal mineralization wheel 19, and under the action of the centrifugal mineralization wheel 19, follow the rectangular slurry dispersing plate 14 and the inverted cone 5 to produce upward buoyancy in the continuously rising slurry surface.
  • the fast-floating cover plate 11 When the slurry surface When it rises above the fast-floating cover plate 11, the fast-floating cover plate 11 starts to enhance the suction force generated by the rotation of the centrifugal dispersion wheel, thereby generating suction force on the supplied slurry, strengthening the circulation of the slurry and the mineralization of mineral particles.
  • the liquid level of the slurry exceeds the sieve plate 10 and is about 200mm away from the overflow surface of the overflow tank, the tailings discharge pipe 20 is opened. At this time, the fast-floating cover plate 11 and the centrifugal dispersing wheel 12 form a fast-floating foam and mix the pre-mineralized The easy-floating particles in the slurry mineralize with the fast-floating foam and rise rapidly.
  • Compressed air is fed into the gas dispersion box 24 through the first microbubble generator inlet C of the first microbubble generator 7, and is sucked into the mineralization cover through the lower guide tube 6 in the middle of the discharge bottom plate 23 together with the pulp The space formed between 18 and the discharge bottom plate 23;

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Physical Water Treatments (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

一种强制循环快速浮选分离装置及方法,该分离装置及方法包括传动机构(8)、浮选槽体(3)、快浮***和强制循环***;浮选槽体(3)下方为倒梯台,顶部设有泡沫槽(1),泡沫槽(1)的最低处设有精矿出料管(2),圆筒内位于泡沫槽(1)处设有筛板(10),浮选槽体(3)倒梯台内设有强制循环***,强制循环***与筛板(10)之间设有多个导流板(4),浮选槽体(3)顶部设有传动机构(8),强制循环***由上导流筒(17)、推进轮(13)、分散定子、离心矿化轮(19)和设置在离心矿化轮(19)下方固定在浮选槽体(3)底部的下导流装置组成。该强制循环快速浮选分离装置的结构简单,且强制循环快速浮选分离装置及方法的分选效率高。

Description

一种强制循环快速浮选分离装置及方法 技术领域
本发明涉及一种分离装置及方法,尤其适用于易浮粗颗粒矿物或煤炭浮选分离使用的强制循环快速浮选分离装置及方法。
背景技术
目前,用于矿物浮选分离的设备主要有浮选机和浮选柱两大类设备。其中,浮选机被认为是相对较适用于粗颗粒矿物浮选,并广泛应用与工业实践。根据工作原理,主要可分为机械搅拌式浮选机和空气式浮选机。自吸气机械搅拌浮选机是由叶轮或回转子的旋转使矿浆进行充气和搅拌;充气搅拌式浮选机是机械搅拌与外部压入空气相结合的浮选机。压气式浮选机浮选机是由外部压气机送入压缩空气,以使矿浆充气和搅拌。气体析出式浮选机是通过改变矿浆内气体压力的方法,使气体从矿浆内析出弥散气泡,并使矿浆搅拌。上述浮选机均存在单台设备内部缺乏有效的矿浆循环矿化分选机制,特别是对难浮矿物颗粒而言;此外对于粗颗粒矿物的浮选存在悬浮分散能力弱、上浮速度慢等不足,其提高矿物浮选回收率的手段主要是依靠增加浮选机的台数。因此,需要通过在合理浮选分离过程设计的基础上,设计新型浮选机以弥补上述不足。
发明内容
技术问题:针对上述技术问题,提供一种结构简单,通过快速浮选和强制循环矿化的实施,强化对粗颗粒矿物的回收能力,以解决现有槽浮选过程矿浆循环能力不足,粗颗粒浮选速度慢等问题,提高对粗颗粒矿物的悬浮能力和浮选速度,强化对粗颗粒矿物的回收能力的强制循环快速浮选分离装置及方法。
技术方案:为实现上述技术目的,本发明的强制循环快速浮选分离装置,包括传动机构、浮选槽体、快浮***和强制循环***;
所述浮选槽体包括圆筒,圆筒下方为漏斗结构的倒梯台,圆筒顶部设有泡沫槽,沫槽的最低处设有精矿出料管,圆筒内位于泡沫槽处设有筛板,浮选槽体倒梯台内设有强制循环***,强制循环***与筛板之间的浮选槽体侧壁内垂直设有多个导流板,浮选槽体倒梯台底部设有气体分散箱,气体分散箱侧壁设置有与竖直方向成45°角的第一微泡发生器,气体分散箱底部设置有尾矿出料管,浮选槽体顶部设有传动机构,传动机构通过支撑架固定在浮选槽体上,传动机构下方设有伸入浮选槽体并与强制循环***连接的搅拌轴,搅拌轴位于筛板和强制循环***之间的位置上设有进料套筒,进料套筒侧面设有延伸到浮选槽体外侧的进料预矿化管,进料预矿化管上设有与进料方向成45°角的第二微泡发生器,进料套筒下方设有快浮盖板,快浮盖板设置在浮选槽体的中部位置,,快浮盖板下方在搅拌轴上设有离心分散轮,所述强制循环***包括上导流筒、推进轮、分散定子、离心矿化轮和设置在离心矿化轮下方固定在槽体底部的下导流装置,分散定子与下导流装置相匹配,推进轮设置在上导流筒内,推进轮圆心被搅拌轴穿过,下导流装置包括导流倒锥、出料底板和设置在出料底板中部的下导流筒,其中出料底板的底板中心 和周边开孔,出料底板设置在倒梯台内,导流筒设置在出料底板下方,出料底板上方设有导流倒锥,离心矿化轮设置在导流倒锥中心,所述分散定子包括多个矩形矿浆分散板和矿化盖板,其中多个矩形矿浆分散板沿径向均布竖直设置在导流倒锥内径与离心矿化轮之间,圆形矿化盖板设置在多个矩形矿浆分散板上方,搅拌轴穿过矿化盖板最终连接有离心矿化轮。
快浮***设置在强制循环***的上方;导流筒为敞口倒锥形结构,推进轮设置在导流筒内,并固定在搅拌轴上;出料底板设置在槽体底部圆锥位置,紧挨矿浆分散板下方,出料底板与倒梯台的槽壁间设置有矿浆出料孔;第一微泡发生器和第二微泡发生器内设置有微孔陶瓷。
一种强制循环快速浮选分离方法,包括如下步骤:
a.首先关闭尾矿出料管,将调浆后的矿浆经进料预矿化管入口送入进料预矿化管,压缩空气经第二微泡发生器通过第二微泡发生器进口送入进料预矿化管与矿浆进行混合预矿化的矿浆;
b.混合预矿化后的矿浆进入进料套筒内,进料套筒内的矿浆在旋转的离心分散轮作用下给入浮选槽体内,矿浆通过出料底板的孔洞和间隙进入倒梯台的下半部分,压缩空气经第一微泡发生器的第一微泡发生器进口送入气体分散箱与矿浆混合,混合后的矿浆从下导流筒进入离心矿化轮内,并在离心矿化轮的作用下顺着矩形矿浆分散板和导流倒锥在不停上升的矿浆液面中产生向上的浮力,当矿浆液面上升超过快浮盖板时,快浮盖板开始起到增强离心分散轮旋转时产生的吸啜力,从而对给入的矿浆产生吸力,强化矿浆的循环和矿物颗粒的矿化,当矿浆的液面超过筛板距离溢流槽溢流面200mm左右时开启尾矿出料管,此时通过快浮盖板和离心分散轮形成快浮泡沫,混合预矿化后的矿浆中的易浮颗粒随着快浮泡沫矿化并快速升浮,经筛板整流后由泡沫槽上的精矿出料管的精矿出料管出口排出,中等可浮颗粒经中矿强制循环***的上导流筒在推进轮作用下给入离心矿化轮内,以便进一步增加矿浆循环量;
e.浮选槽体内的难浮颗粒经出料底板上的出料底板的中心位置的出料孔流出,一部分颗粒由槽体底部尾矿出料管的尾矿出料管出口排出,另一部分颗粒在离心矿化轮离心吸唑力作用下经出料底板中部的下导流筒被吸入离心矿化轮内,此时快浮盖板、出料底板及离心矿化轮在矿化盖板和出料底板之间形成一个空间,经离心矿化轮旋转时产生的离心力分散至浮选槽体内);
f.压缩空气经第一微泡发生器的第一微泡发生器进口送入气体分散箱,并和矿浆一起经出料底板中部的下导流筒被吸入矿化盖板和出料底板之间形成的空间;
g.中等可浮颗粒和难浮颗粒离心矿化轮作用下强化颗粒与气泡的碰撞,并由定子上的矩形矿浆分散板以及导流倒锥分散至槽体内,完成中等可浮和难浮矿化颗粒的升浮,与快浮泡沫一起排出槽体;未完成矿化的颗粒在槽体内多次循环分选,尾矿由槽体底部尾矿出料管出口排出。
有益效果:本发明使用时的矿浆流动和浮选分离过程与先有技术相比更合理,调浆预矿化后的矿浆经快浮***给入槽体内,易浮颗粒快速浮出;中等可浮颗粒和难浮颗粒经强制循环***在离心矿化轮作用下强化颗粒与气泡的碰撞,并由能产生向上流的导流倒锥分散至槽体内,完成矿化的颗粒与快浮泡沫 一起快速排出槽体,未完成矿化的颗粒在槽体内多次循环分选;底部导流倒锥产生的向上流进一步提高了对粗颗粒矿物的悬浮能力和浮选速度,强制循环***强化了对中等可浮及难浮颗粒的矿化效果,提高了对矿物颗粒的回收能力。
通过快速浮选和强制循环矿化的实施,来强化单台浮选机对粗颗粒矿物的回收能力,以解决现有槽浮选过程矿浆循环能力不足,粗颗粒浮选速度慢等问题,提高对粗颗粒矿物的悬浮能力和浮选速度,强化对粗颗粒矿物的回收能力,提升单台浮选机的浮选能效。
附图说明
图1是本发明的强制循环快速浮选分离装置结构示意图。
图中:1-泡沫槽,2-精矿出料管,3-浮选槽体,4-导流板,5-导流倒锥,6-下导流筒,7-第一微泡发生器,8-传动机构,9-搅拌轴,10-筛板,11-快浮盖板,12-离心分散轮,13-推进轮,14-矿浆分散板,15-支撑架,16-进料套筒,17-推进轮,18-矿化盖板,19-离心矿化轮,20-尾矿出料管,21-第二微泡发生器,22-进料预矿化管,23-出料底板,24-气体分散箱,A-进料预矿化管入口,B-第二微泡发生器进口,C-第一微泡发生器进口,D-尾矿出料管出口,E-精矿出料管出口。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步详细描述:
如图1所示,本发明的强制循环快速浮选分离装置,包括传动机构8、浮选槽体3、快浮***和强制循环***;
所述浮选槽体3包括圆筒,圆筒下方为漏斗结构的倒梯台,圆筒顶部设有泡沫槽1,沫槽1的最低处设有精矿出料管2,圆筒内位于泡沫槽1处设有筛板10,浮选槽体3倒梯台内设有强制循环***,强制循环***与筛板10之间的浮选槽体3侧壁内垂直设有多个导流板4,浮选槽体3倒梯台底部设有气体分散箱24,气体分散箱24侧壁设置有与竖直方向成45°角的第一微泡发生器7,气体分散箱24底部设置有尾矿出料管20,浮选槽体3顶部设有传动机构8,传动机构8通过支撑架15固定在浮选槽体3上,传动机构8下方设有伸入浮选槽体3并与强制循环***连接的搅拌轴9,搅拌轴9位于筛板10和强制循环***之间的位置上设有进料套筒16,进料套筒16侧面设有延伸到浮选槽体3外侧的进料预矿化管22,进料预矿化管22上设有与进料方向成45°角的第二微泡发生器21,进料套筒16下方设有快浮盖板11,快浮盖板11设置在浮选槽体3的中部位置,快浮盖板11下方在搅拌轴9上设有离心分散轮12,所述强制循环***包括上导流筒17、推进轮13、分散定子、离心矿化轮19和设置在离心矿化轮下方固定在槽体底部的下导流装置,分散定子与下导流装置相匹配,推进轮13设置在上导流筒17内,推进轮13圆心被搅拌轴9穿过,下导流装置包括导流倒锥5、出料底板23和设置在出料底板中部的下导流筒6,其中出料底板23的底板中心和周边开孔,出料底板23设置在倒梯台内,导流筒6设置在出料底板23下方,出料底板23上方设有导流倒锥5,离心矿化轮19设置在导流倒锥5中心,所述分散定子包括多个矩形 矿浆分散板14和矿化盖板18,其中多个矩形矿浆分散板14沿径向均布竖直设置在导流倒锥5内径与离心矿化轮19之间,圆形矿化盖板18设置在多个矩形矿浆分散板14上方,搅拌轴9穿过矿化盖板18最终连接有离心矿化轮。快浮***设置在强制循环***的上方;导流筒17为敞口倒锥形结构,推进轮17设置在导流筒17内,并固定在搅拌轴9上;出料底板23设置在槽体底部圆锥位置,紧挨矿浆分散板14下方,出料底板23与倒梯台的槽壁间设置有矿浆出料孔;第一微泡发生器7和第二微泡发生器21内设置有微孔陶瓷。
一种强制循环快速浮选分离方法,包括如下步骤:
a.首先关闭尾矿出料管20,将调浆后的矿浆经进料预矿化管入口A送入进料预矿化管22,压缩空气经第二微泡发生器21通过第二微泡发生器进口B送入进料预矿化管与矿浆进行混合预矿化的矿浆;
b.混合预矿化后的矿浆进入进料套筒16内,进料套筒16内的矿浆在旋转的离心分散轮12作用下给入浮选槽体3内,矿浆通过出料底板23的孔洞和间隙进入倒梯台的下半部分,压缩空气经第一微泡发生器7的第一微泡发生器进口C送入气体分散箱24与矿浆混合,混合后的矿浆从下导流筒6进入离心矿化轮19内,并在离心矿化轮19的作用下顺着矩形矿浆分散板14和导流倒锥5在不停上升的矿浆液面中产生向上的浮力,当矿浆液面上升超过快浮盖板11时,快浮盖板11开始起到增强离心分散轮旋转时产生的吸啜力,从而对给入的矿浆产生吸力,强化矿浆的循环和矿物颗粒的矿化,当矿浆的液面超过筛板10距离溢流槽溢流面200mm左右时开启尾矿出料管20,此时通过快浮盖板11和离心分散轮12形成快浮泡沫,混合预矿化后的矿浆中的易浮颗粒随着快浮泡沫矿化并快速升浮,经筛板10整流后由泡沫槽1上的精矿出料管2的精矿出料管出口E排出,中等可浮颗粒经中矿强制循环***的上导流筒17在推进轮13作用下给入离心矿化轮19内,以便进一步增加矿浆循环量;
e.浮选槽体3内的难浮颗粒经出料底板23上的出料底板的中心位置的出料孔流出,一部分颗粒由槽体底部尾矿出料管20的尾矿出料管出口D排出,另一部分颗粒在离心矿化轮19离心吸唑力作用下经出料底板23中部的下导流筒6被吸入离心矿化轮19内,此时快浮盖板11、出料底板23及离心矿化轮19在矿化盖板18和出料底板23之间形成一个空间,经离心矿化轮19旋转时产生的离心力分散至浮选槽体内;
f.压缩空气经第一微泡发生器7的第一微泡发生器进口C送入气体分散箱24,并和矿浆一起经出料底板23中部的下导流筒6被吸入矿化盖板18和出料底板23之间形成的空间;
g.中等可浮颗粒和难浮颗粒离心矿化轮19作用下强化颗粒与气泡的碰撞,并由定子上的矩形矿浆分散板14以及导流倒锥5分散至槽体内,完成中等可浮和难浮矿化颗粒的升浮,与快浮泡沫一起排出槽体;未完成矿化的颗粒在槽体内多次循环分选,尾矿由槽体底部尾矿出料管20出口D排出。

Claims (3)

  1. 一种强制循环快速浮选分离装置,其特征在于:它包括传动机构(8)、浮选槽体(3)、快浮***和强制循环***;
    所述浮选槽体(3)包括圆筒,圆筒下方为漏斗结构的倒梯台,圆筒顶部设有泡沫槽(1),沫槽(1)的最低处设有精矿出料管(2),圆筒内位于泡沫槽(1)处设有筛板(10),浮选槽体(3)倒梯台内设有强制循环***,强制循环***与筛板(10)之间的浮选槽体(3)侧壁内垂直设有多个导流板(4),浮选槽体(3)倒梯台底部设有气体分散箱(24),气体分散箱(24)侧壁设置有与竖直方向成45°角的第一微泡发生器(7),气体分散箱(24)底部设置有尾矿出料管(20),浮选槽体(3)顶部设有传动机构(8),传动机构(8)通过支撑架(15)固定在浮选槽体(3)上,传动机构(8)下方设有伸入浮选槽体(3)并与强制循环***连接的搅拌轴(9),搅拌轴(9)位于筛板(10)和强制循环***之间的位置上设有进料套筒(16),进料套筒(16)侧面设有延伸到浮选槽体(3)外侧的进料预矿化管(22),进料预矿化管(22)上设有与进料方向成45°角的第二微泡发生器(21),进料套筒(16)下方设有快浮盖板(11),快浮盖板(11)设置在浮选槽体(3)的中部位置,,快浮盖板(11)下方在搅拌轴(9)上设有离心分散轮(12),所述强制循环***包括上导流筒(17)、推进轮(13)、分散定子、离心矿化轮(19)和设置在离心矿化轮下方固定在槽体底部的下导流装置,分散定子与下导流装置相匹配,推进轮(13)设置在上导流筒(17)内,推进轮(13)圆心被搅拌轴(9)穿过,下导流装置包括导流倒锥(5)、出料底板(23)和设置在出料底板中部的下导流筒(6),其中出料底板(23)的底板中心和周边开孔,出料底板(23)设置在倒梯台内,导流筒(6)设置在出料底板(23)下方,出料底板(23)上方设有导流倒锥(5),离心矿化轮(19)设置在导流倒锥(5)中心,所述分散定子包括多个矩形矿浆分散板(14)和矿化盖板(18),其中多个矩形矿浆分散板(14)沿径向均布竖直设置在导流倒锥(5)内径与离心矿化轮(19)之间,圆形矿化盖板(18)设置在多个矩形矿浆分散板(14)上方,搅拌轴(9)穿过矿化盖板(18)最终连接有离心矿化轮。
  2. 根据权利要求1所述的强制循环快速浮选分离装置,其特征在于:快浮***设置在强制循环***的上方;导流筒(17)为敞口倒锥形结构,推进轮(17)设置在导流筒(17)内,并固定在搅拌轴(9)上;出料底板(23)设置在槽体底部圆锥位置,紧挨矿浆分散板(14)下方,出料底板(23)与倒梯台的槽壁间设置有矿浆出料孔;第一微泡发生器(7)和第二微泡发生器(21)内设置有微孔陶瓷。
  3. 一种使用权利要求1所述强制循环快速浮选分离装置的强制循环快速浮选分离方法,其特征在于包括如下步骤:
    a.首先关闭尾矿出料管(20),将调浆后的矿浆经进料预矿化管入口(A)送入进料预矿化管(22),压缩空气经第二微泡发生器(21)通过第二微泡发生器进口(B)送入进料预矿化管与矿浆进行混合预矿化的矿浆;
    b.混合预矿化后的矿浆进入进料套筒(16)内,进料套筒(16)内的矿浆在旋转的离心分散轮(12) 作用下给入浮选槽体(3)内,矿浆通过出料底板(23)的孔洞和间隙进入倒梯台的下半部分,压缩空气经第一微泡发生器(7)的第一微泡发生器进口(C)送入气体分散箱(24)与矿浆混合,混合后的矿浆从下导流筒(6)进入离心矿化轮(19)内,并在离心矿化轮(19)的作用下顺着矩形矿浆分散板(14)和导流倒锥(5)在不停上升的矿浆液面中产生向上的浮力,当矿浆液面上升超过快浮盖板(11)时,快浮盖板(11)开始起到增强离心分散轮旋转时产生的吸啜力,从而对给入的矿浆产生吸力,强化矿浆的循环和矿物颗粒的矿化,当矿浆的液面超过筛板(10)距离溢流槽溢流面200mm左右时开启尾矿出料管(20),此时通过快浮盖板(11)和离心分散轮(12)形成快浮泡沫,混合预矿化后的矿浆中的易浮颗粒随着快浮泡沫矿化并快速升浮,经筛板(10)整流后由泡沫槽(1)上的精矿出料管(2)的精矿出料管出口(E)排出,中等可浮颗粒经中矿强制循环***的上导流筒(17)在推进轮(13)作用下给入离心矿化轮(19)内,以便进一步增加矿浆循环量;
    e.浮选槽体(3)内的难浮颗粒经出料底板(23)上的出料底板的中心位置的出料孔流出,一部分颗粒由槽体底部尾矿出料管(20)的尾矿出料管出口(D)排出,另一部分颗粒在离心矿化轮(19)离心吸唑力作用下经出料底板(23)中部的下导流筒(6)被吸入离心矿化轮(19)内,此时快浮盖板(11)、出料底板(23)及离心矿化轮(19)在矿化盖板(18)和出料底板(23)之间形成一个空间,经离心矿化轮(19)旋转时产生的离心力分散至浮选槽体内);
    f.压缩空气经第一微泡发生器(7)的第一微泡发生器进口(C)送入气体分散箱(24),并和矿浆一起经出料底板(23)中部的下导流筒(6)被吸入矿化盖板(18)和出料底板(23)之间形成的空间;
    g.中等可浮颗粒和难浮颗粒离心矿化轮(19)作用下强化颗粒与气泡的碰撞,并由定子上的矩形矿浆分散板(14)以及导流倒锥(5)分散至槽体内,完成中等可浮和难浮矿化颗粒的升浮,与快浮泡沫一起排出槽体;未完成矿化的颗粒在槽体内多次循环分选,尾矿由槽体底部尾矿出料管(20)出口(D)排出。
PCT/CN2019/109883 2019-04-29 2019-10-08 一种强制循环快速浮选分离装置及方法 WO2020220585A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3100768A CA3100768C (en) 2019-04-29 2019-10-08 Device and method for forced circulation fast floatation separation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910354952.6A CN109939838B (zh) 2019-04-29 2019-04-29 一种强制循环快速浮选分离装置及方法
CN201910354952.6 2019-04-29

Publications (1)

Publication Number Publication Date
WO2020220585A1 true WO2020220585A1 (zh) 2020-11-05

Family

ID=67016560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109883 WO2020220585A1 (zh) 2019-04-29 2019-10-08 一种强制循环快速浮选分离装置及方法

Country Status (3)

Country Link
CN (1) CN109939838B (zh)
CA (1) CA3100768C (zh)
WO (1) WO2020220585A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161474A (zh) * 2022-08-05 2022-10-11 核工业北京化工冶金研究院 一种铀矿石浸出设备及方法
CN117142571A (zh) * 2023-11-01 2023-12-01 山东明潮环保科技有限公司 一种超声波污水处理装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109939838B (zh) * 2019-04-29 2023-06-20 中国矿业大学 一种强制循环快速浮选分离装置及方法
CN110639708A (zh) * 2019-10-09 2020-01-03 南京工业大学 一种基于多通道陶瓷膜分布器的细粒磷灰石浮选方法及浮选***
CN115007328B (zh) * 2022-05-19 2023-07-25 新疆鑫旺矿业股份有限公司 一种用于矿业选矿试验的浮选装置
CN116532246B (zh) * 2023-06-26 2023-11-14 内蒙古恒河科技有限公司 一种具备浮沫导流分离功能的煤块循环浮选设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2036864U (zh) * 1988-09-06 1989-05-03 冶金部长沙矿冶研究院 圆环式机械搅拌浮选机
KR20020092717A (ko) * 2001-06-05 2002-12-12 그린엔텍 주식회사 가압 부상조
KR20080092019A (ko) * 2007-04-10 2008-10-15 양재열 부선기
CN205462755U (zh) * 2016-02-29 2016-08-17 西安科技大学 一种选矿浮选装置
CN106269294A (zh) * 2016-08-17 2017-01-04 北矿机电科技有限责任公司 一种机械搅拌式浮选机的充气装置
CN106423586A (zh) * 2015-08-12 2017-02-22 王亚萍 一种矿浆快速浮选机
CN107971143A (zh) * 2017-11-16 2018-05-01 武汉工程大学 一种双叶轮机械搅拌自吸式浮选机及浮选方法
CN108906341A (zh) * 2018-06-19 2018-11-30 安徽枫雅轩科技信息服务有限公司 一种精矿筛选用浮选机
CN109939838A (zh) * 2019-04-29 2019-06-28 中国矿业大学 一种强制循环快速浮选分离装置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU664931A1 (ru) * 1976-01-28 1979-05-30 Московский Институт Химического Машиностроения Устройство дл очистки сточных вод
CN102284371B (zh) * 2011-06-22 2013-01-09 李冠东 机柱联合强化高效浮选方法及其浮选设备
CN102580861A (zh) * 2012-02-05 2012-07-18 任逸 多重循环柱外微泡矿化浮选柱
CN104289323A (zh) * 2014-10-09 2015-01-21 中国矿业大学 一种萤石矿分选装置及方法
CN108273668B (zh) * 2018-03-28 2024-03-01 中国矿业大学 一种基于强湍流混合矿化的快速浮选***及浮选方法
CN108246515B (zh) * 2018-03-28 2024-03-01 中国矿业大学 一种具有内部循环功能的调浆浮选一体化***及调浆浮选方法
CN210434689U (zh) * 2019-04-29 2020-05-01 中国矿业大学 一种强制循环快速浮选分离装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2036864U (zh) * 1988-09-06 1989-05-03 冶金部长沙矿冶研究院 圆环式机械搅拌浮选机
KR20020092717A (ko) * 2001-06-05 2002-12-12 그린엔텍 주식회사 가압 부상조
KR20080092019A (ko) * 2007-04-10 2008-10-15 양재열 부선기
CN106423586A (zh) * 2015-08-12 2017-02-22 王亚萍 一种矿浆快速浮选机
CN205462755U (zh) * 2016-02-29 2016-08-17 西安科技大学 一种选矿浮选装置
CN106269294A (zh) * 2016-08-17 2017-01-04 北矿机电科技有限责任公司 一种机械搅拌式浮选机的充气装置
CN107971143A (zh) * 2017-11-16 2018-05-01 武汉工程大学 一种双叶轮机械搅拌自吸式浮选机及浮选方法
CN108906341A (zh) * 2018-06-19 2018-11-30 安徽枫雅轩科技信息服务有限公司 一种精矿筛选用浮选机
CN109939838A (zh) * 2019-04-29 2019-06-28 中国矿业大学 一种强制循环快速浮选分离装置及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161474A (zh) * 2022-08-05 2022-10-11 核工业北京化工冶金研究院 一种铀矿石浸出设备及方法
CN115161474B (zh) * 2022-08-05 2024-03-08 核工业北京化工冶金研究院 一种铀矿石浸出设备及方法
CN117142571A (zh) * 2023-11-01 2023-12-01 山东明潮环保科技有限公司 一种超声波污水处理装置
CN117142571B (zh) * 2023-11-01 2024-01-30 山东明潮环保科技有限公司 一种超声波污水处理装置

Also Published As

Publication number Publication date
CA3100768C (en) 2023-08-15
CN109939838A (zh) 2019-06-28
CA3100768A1 (en) 2020-11-05
CN109939838B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
WO2020220585A1 (zh) 一种强制循环快速浮选分离装置及方法
CN108273668B (zh) 一种基于强湍流混合矿化的快速浮选***及浮选方法
CN109759243B (zh) 一种矿化-浮选分离的柱分选装置与方法
WO2020220586A1 (zh) 一种基于流体强化的混合分离***及方法
AU2007291152B2 (en) Equipment and method for flotating and classifying mineral slurry
WO2012090167A2 (en) Flotation machine
CN112452552B (zh) 抛尾解离一体化的粗粒矿物解离装置与方法
CN111871620B (zh) 一种适于宽粒级浮选的选前高效调浆方法
AU2019100828A4 (en) Flotation line
CN210434689U (zh) 一种强制循环快速浮选分离装置
US20210323002A1 (en) Flotation Cell
CN203044173U (zh) 新型浅槽双叶轮浮选机
WO2020220583A1 (zh) 一种复合流强化浮选分离装置及方法
CN109225657B (zh) 一种高浓度浮选机成套装置
CN208627554U (zh) 一种基于强湍流混合矿化的快速浮选***
AU2003276309B2 (en) Guiding device for a flotation machine
CN105537007B (zh) 一种矿物浮选***
CN110918269B (zh) 一种用于宽粒级预选、反浮选的重浮分选装置
CN101125312B (zh) 粗扫选浮选机
CN210146238U (zh) 一种基于流体强化的混合分离***
CN112090594A (zh) 纳米气泡浮选机
US20040089595A1 (en) Flotation machine
CN215940300U (zh) 一种高效机械搅拌式闪速浮选机
CN117299371A (zh) 一种涡流矿化-静态分离浮选装置及浮选方法
CN210545719U (zh) 一种低品位锌尾矿的充气搅拌式浮选装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3100768

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926825

Country of ref document: EP

Kind code of ref document: A1