WO2020218573A1 - Rotary pile construction method, pile group manufacturing method, and pile group - Google Patents

Rotary pile construction method, pile group manufacturing method, and pile group Download PDF

Info

Publication number
WO2020218573A1
WO2020218573A1 PCT/JP2020/017827 JP2020017827W WO2020218573A1 WO 2020218573 A1 WO2020218573 A1 WO 2020218573A1 JP 2020017827 W JP2020017827 W JP 2020017827W WO 2020218573 A1 WO2020218573 A1 WO 2020218573A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
rotary
rotary pile
sand
earth
Prior art date
Application number
PCT/JP2020/017827
Other languages
French (fr)
Japanese (ja)
Inventor
正道 澤石
大木 仁
孝佳 福村
智之 東海林
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to SG11202106109XA priority Critical patent/SG11202106109XA/en
Priority to JP2021516300A priority patent/JP7020589B2/en
Publication of WO2020218573A1 publication Critical patent/WO2020218573A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • E02D13/06Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers for observation while placing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/22Placing by screwing down

Definitions

  • the present invention relates to a method of constructing a rotary pile, a method of manufacturing a pile group, and a pile group.
  • Patent Document 1 in a method of measuring the height of the soil inside a steel pipe pile with an open tip, when a light wave range finder is provided by attaching it to a removable clamp inside the steel pipe pile and the steel pipe pile penetrates into the ground.
  • a technique for measuring the height of soil invading a pipe in a non-contact manner is disclosed.
  • Patent Document 2 is a method of constructing a rotary press-fit steel pipe pile having an opening at the tip of the pile and fixing spiral blades, and is constructed with a predetermined amount of granules such as sand compacted in the opening. However, it is disclosed that the sediment of the soft stratum is suppressed from entering the pile during the construction until the tip of the pile reaches the support layer.
  • Patent Document 3 discloses a rotary penetration type steel pipe pile in which a steel pipe pile main body is formed of a large-diameter upper steel pipe and a small-diameter lower steel pipe, and a construction method thereof.
  • the tip of the lower steel pipe is notched in a spiral shape, and a first spiral blade having at least one turn or less is provided corresponding to the notched shape of the spiral shape, and the steel pipe pile main body is provided. It is characterized in that a second spiral blade is provided at or near the enlarged diameter boundary portion L.
  • a rotary pile is used as a group of piles composed of a plurality of rotary piles. For example, as shown in FIG. 14, when a hard ground is formed in a shallow stratum at a part of a position where the rotary pile penetrates. It becomes difficult to construct the entire pile group fixed in the same support layer.
  • Patent Document 1 proposes a technique for continuously measuring the height of the soil inside the pipe in real time during the intrusion construction of the pile.
  • the direction of the rotary shaft may change due to an increase in the amount of eccentricity in the rotary pile.
  • the axis of the light wave beam changes with time and the tendency of the soil height data in the pipe is significantly deviated.
  • dust and earth and sand may be scattered in the pile due to the rotary press-fitting of the rotary pile for a long time.
  • an object of the present invention is to prevent earth and sand from being clogged in the rotary pile when the rotary pile is rotationally press-fitted into the ground. It is to provide a method of constructing a rotary pile that can be used, and a rotary pile.
  • the method for constructing a rotary pile according to the first invention is a construction method in which a rotary pile provided with blades is penetrated into the ground, and the load on the rotary pile is loaded while the rotary pile is rotationally press-fitted into the ground. It is characterized by including a measurement step for measuring the above and a determination step for determining whether or not to remove the clogging of the earth and sand accumulated in the rotary pile based on the measurement result obtained in the measurement step. ..
  • the method for constructing a rotary pile according to the second invention is characterized in that, in the first invention, the measurement step includes measuring at least one of the rotational torque and the penetration amount of the rotary pile.
  • the determination step is obtained by the past measurement result at the time of rotational press-fitting of the rotary pile constructed in the past and the measurement step. It is characterized by including comparing with the measurement result obtained and determining whether or not to clear the clogging of the earth and sand.
  • the method for constructing a rotary pile according to the fourth invention is the step of reversing the rotary pile and rotating it in the pulling direction while the rotary pile is rotationally press-fitted in any of the first to third inventions, and pulling out. Whether or not the clogging of the earth and sand accumulated in the rotary pile has been cleared based on the measurement result of the load on the rotary pile during rotation in the pulling direction, including the step of measuring the load on the rotary pile during rotation in the direction. It is characterized by judging.
  • the method for constructing a rotary pile according to a fifth invention is characterized in that, in the fourth invention, the step of reversing and rotating the rotary pile is performed when it is determined in the determination step that the clogging of the earth and sand is to be removed. ..
  • the method for constructing a rotary pile according to the sixth invention is to use a mining device to at least a part of the earth and sand when it is determined in the determination step that the earth and sand are to be clogged. It is characterized by further providing a clogging step of removing the clogging of the earth and sand.
  • the method for constructing a rotary pile according to the seventh invention is a movement in which the rotary pile is rotationally press-fitted to a support layer and then the earth and sand removed by the mining device is moved into the rotary pile. It is characterized by further providing a process.
  • the method for constructing a rotary pile according to the eighth invention includes, in any one of the fifth to seventh inventions, the measurement step of measuring the amount of the earth and sand deposited in the rotary pile. It is characterized by.
  • the method for constructing a rotary pile according to the ninth invention further includes, in the eighth invention, a confirmation step of measuring the accumulated amount and confirming whether or not the clogging of the earth and sand has been cleared after the clogging step. It is a feature.
  • the method for manufacturing a pile group in the tenth invention is to manufacture a pile group including a plurality of rotary piles penetrating to the support layer of the ground by the method for constructing a rotary pile in any one of the first to ninth inventions. It is a feature.
  • the pile group according to the eleventh invention is manufactured by the method for manufacturing a pile group according to the tenth invention, and is characterized by including a plurality of rotary piles penetrating to the support layer of the ground.
  • the rotary pile according to the twelfth invention is characterized in that, in the eleventh invention, earth and sand are clogged inside the rotary pile in a state of being stopped by the support layer of the ground.
  • the measuring process measures the load on the rotating pile while the rotating pile is rotationally press-fitted into the ground.
  • the determination process it is determined whether or not to remove the clogging of the earth and sand accumulated in the rotating pile based on the measurement result obtained in the measurement process. That is, the operator can determine whether or not to clear the clogging of the sediment accumulated in the rotating pile during the rotary press-fitting based on the measured loading load. This makes it possible to prevent the rotating pile from being clogged with earth and sand when the rotating pile is rotationally press-fitted into the ground.
  • the measuring step includes measuring at least one of the rotational torque and the penetration amount of the rotating pile. Therefore, the determination process can be performed based on the state of rotational press-fitting of the rotary pile, and the determination accuracy in the determination process can be improved.
  • the determination process compares the past measurement results with the measurement results in the measurement process, and determines whether or not to clear the clogging of earth and sand. Therefore, the optimum judgment can be made based on the characteristics of the ground, the construction results, and the like, and the judgment accuracy can be further improved.
  • a step of reversing the rotary pile and rotating it in the pulling direction is included in the process of rotationally press-fitting the rotary pile, and the pile is deposited in the rotary pile based on the loaded load measured at that time. It is possible to determine whether or not the clogging of the earth and sand that has been made has been cleared. As a result, it can be appropriately determined that the clogging of earth and sand has been cleared, and the timing for returning the rotation direction to the excavation direction can be appropriately determined.
  • the rotating pile in the clogging step, when it is determined in the determination step that the clogging of the earth and sand is to be removed, the rotating pile is controlled to be inverted and the clogging of the earth and sand is removed. Therefore, the timing of reversing the rotating pile and the reversing time with respect to the loading load can be left as data. As a result, the details of the construction conditions can be accumulated as data and can be used for future construction.
  • the earth and sand are removed by using a mining device to clear the clogging of the earth and sand. Therefore, it is possible to more reliably clear the clogging of the earth and sand, and it is possible to grasp the amount of the earth and sand removed from the rotating pile.
  • the moving step after the rotary pile is rotationally press-fitted to the support layer, the removed earth and sand are moved into the rotary pile. Therefore, it is possible to prevent the earth and sand from being discharged to the outside of the construction site. This makes it possible to reduce the man-hours and costs required for discharging earth and sand to the outside of the construction site.
  • the measuring step measures the amount of sediment deposited in the rotating pile. Therefore, for example, even when a light wave range finder or the like whose accuracy decreases due to rotational press-fitting of a rotating pile is used, it can be used as an aid in the determination process. This makes it possible to further improve the accuracy of determining the clogging of the earth and sand accumulated in the rotating pile.
  • the confirmation step after the clogging step, the accumulated amount is measured and it is confirmed whether or not the clogging of the earth and sand has been cleared. As a result, it is possible to more accurately determine whether or not the earth and sand have been cleared by the clogging step.
  • the pile group is composed of a plurality of rotating piles penetrating to the support layer of the ground by the method of manufacturing the pile group in the tenth invention. Therefore, it is possible to prevent clogging of earth and sand during rotary press-fitting, and to realize a pile group composed of a plurality of rotary piles that are surely penetrated to the support layer of the ground.
  • the rotating pile is clogged with earth and sand in a state where it is stopped by the support layer of the ground.
  • the stability of the rotating pile is improved because the bearing capacity is obtained by the clogged earth and sand.
  • (A) is a cross-sectional view showing an example of a method of constructing a rotary pile in the present embodiment
  • (b) is a cross-sectional view showing a state in which the rotary pile in the present embodiment is penetrated to a support layer
  • (A) and (b) are cross-sectional views showing an example when a rotary pile is rotationally press-fitted into a hard ground in the method of constructing a rotary pile in the present embodiment
  • (c) is a sectional view showing an example in the present embodiment. It is sectional drawing which shows the state which penetrated the rotary pile to a support layer through a hard ground. It is a block diagram which shows an example of the construction management system of a rotary pile in this embodiment.
  • (A) is a flowchart showing an example of a rotating pile construction method in the present embodiment
  • (b) is a flowchart showing an example of a clogging clearing process.
  • (A) is a cross-sectional view showing an example of a mining device used in a clogging step and a moving step
  • (b) is a cross-sectional view showing an example of earth and sand deposited in a rotating pile.
  • It is a flowchart which shows an example of a confirmation process.
  • It is a side view which shows an example of the rotary pile during rotary press-fitting.
  • (A) is a cross-sectional view showing an example of a light wave rangefinder
  • (b) is a cross-sectional view showing an example of a rangefinder.
  • It is a graph which shows an example of a construction record. It is a figure which shows typically the case where the hard ground exists at the position of a part of the rotary pile which constitutes a pile group.
  • the method of constructing the rotary pile in the present embodiment is carried out in order to penetrate the rotary pile 17 into the ground 91.
  • the rotary pile 17 is gripped by using a casing driver 21 or the like, the rotary pile 17 is rotationally press-fitted into the ground 91 in the pile axial direction Z, and the rotary pile 17 is penetrated to the support layer 92.
  • FIG. 1 (b) In the method of constructing a rotary pile, for example, the construction management system 100 described later is used.
  • the load measuring machine 1 shown in FIG. 3 is used to measure the load on the rotary pile 17. Then, the inventor has found that clogging of earth and sand in the rotary pile 17 can be prevented by measuring the loading load of the rotary pile 17 during the rotary press-fitting.
  • the rotary pile 17 is rotationally press-fitted into the hard ground 93, so that the earth and sand 91a deposited in the rotary pile 17 is inside the rotary pile 17.
  • the friction acting with the pile 17 is large, and the earth and sand 91a is likely to be clogged in the rotary pile 17.
  • the loading load tends to be gradually measured larger when the rotary press-fitting is performed in the excavation direction, or a suddenly large value may be shown.
  • the pile tip may be in contact with an underground obstacle such as a boulder or when the layer is changed from soft ground to hard ground.
  • the loading load is immediately reduced when the earth and sand are not clogged, and when the degree of clogging is loose, the rotary pile 17
  • the clogging of the earth and sand 91a deposited therein can be cleared (broken line arrow in FIG. 2B), and as a result, the loading load is reduced.
  • the loading load does not decrease and may hold a large value. Also in this case, by measuring the loading load, it is possible to estimate whether or not the clogging of the earth and sand 91a in the rotating pile 17 is cleared. If the loading load does not decrease, it can be determined that the clogging has not been cleared. Therefore, the operation of reversing and moving the rotating pile in the pulling direction is performed, and the same operation is repeated until the clogging is cleared.
  • the rotating pile 17 is supported even for the ground 91 including the hard ground 93 without causing clogging of the earth and sand 91a in the rotating pile 17. It is possible to penetrate up to layer 92.
  • the rotary pile 17 in the present embodiment is composed of a rotary pile main body and a spiral blade 16 provided at the tip thereof.
  • the rotary pile body is formed by, for example, a plurality of steel pipes welded and connected in the pile axial direction Z.
  • the rotary pile 17 penetrates into the ground 91, and for example, the tip of the pile penetrates into the support layer 92.
  • the shape of the blades of the rotary pile 17 is not limited to the spiral.
  • a pair of semicircular blades may be provided on the rotary pile main body.
  • the pile diameter of the rotary pile 17 is, for example, about ⁇ 100 mm to 1600 mm, and the pile plate thickness is, for example, about 4.2 mm to 25 mm.
  • the diameter of the spiral blade 16 is, for example, about 1.5 to 2.5 times the diameter of the pile.
  • the support layer 92 into which the tip of the rotary pile 17 is penetrated is, for example, sand, gravel ground, or cohesive soil, or a sandy soil or gravel soil layer, and has an N value of 15 or more.
  • FIG. 3 shows a schematic view in which various measuring machines 1 to 5 for measuring information (pile information) indicating a construction state of the rotary pile 17 and a construction management device 6 are arranged.
  • the construction management system 100 includes a loading load measuring machine 1 for measuring the loading load of the rotating pile 17, for example, at least a rotation angle measuring machine 2, a penetration amount measuring machine 3, a rotating torque measuring machine 4, and a fluctuation amount measuring machine 5. Any of them may be provided.
  • the construction management system 100 may include the various measuring instruments 1 to 5 described above, a data converter 7 capable of transmitting and receiving data, and an interface box 8 for connecting the data converter 7 and the construction management device 6.
  • the construction management system 100 may include, for example, a data input unit 9 capable of inputting N value data previously surveyed in a soil survey, or for example, N value data may be stored in the construction management device 6 in advance. ..
  • the construction management device 6 can acquire data from various measuring instruments 1 to 5, perform arithmetic processing as necessary, display it on the monitor screen 6b, and print it with the connected printer 6c.
  • the fluctuation amount of the rotary pile 17 is measured by using the fluctuation amount measuring machine 5.
  • the amount of fluctuation indicates at least one of the amount of movement (amount of displacement) and the amount of inclination (amount of change in inclination angle) in the horizontal plane from the initial setting position of the rotary pile 17 due to the rotational press-fitting of the rotary pile 17.
  • the amount of fluctuation of the rotary pile 17 can be obtained by using, for example, the support plate 41 sandwiched between the ground 91 and the casing driver 21 that grips the rotary pile 17. In this case, the amount of misalignment of the support plate 41 due to the rotational press-fitting of the rotary pile 17 can be measured as the amount of fluctuation of the rotary pile 17.
  • the amount of fluctuation of the rotary pile 17 during rotary press-fitting shows a tendency related to the degree of eccentricity (amount of eccentricity) of the rotary pile 17 in the direction X orthogonal to the pile axis.
  • the eccentricity of the rotary pile 17 occurs when the rotary pile 17 is rotationally press-fitted into the ground 91, and the amount of eccentricity of the rotary pile 17 is such that the spiral blade 16 of the rotary pile 17 has a hard ground 93. When it comes in contact with, it tends to grow larger. Therefore, the information obtained from the amount of fluctuation serves as an index indicating that the rotary pile 17 has reached the hard ground 93.
  • FIG. 5 is a perspective view showing an example of the pile driver leader 10 and the auger machine 15.
  • the pile driver main body 13 is provided on the swivel support base 12 supported by the endless track body 11.
  • the tilt support arm 14 extends upward from both ends of one end of the pile driver main body 13, and the auger machine 15 is supported by the upper end of the tilt support arm 14.
  • the auger machine 15 grips the pile head of the rotary pile 17.
  • the construction management device 6 is connected to, for example, a data converter 7 attached to the driver's cab 19 to acquire various data.
  • the loading load measuring machine 1 measures the loading load (pressure input) applied to the pile head of the rotating pile 17.
  • a load cell 1a is used as the loading load measuring machine 1.
  • the load cell 1a is attached between the upper end of the pile driver leader 10 and the end of the wire rope 3a suspending the auger machine 15, and measures the tensile force of the wire rope 3a. Therefore, the loading load acting on the rotary pile 17 is a value obtained by subtracting the measured value of the load cell 1a from the own weight of the auger machine 15. If the loading load is insufficient only by the weight of the auger machine 15, another wire rope that draws in the auger machine 15 may be provided by using the pile driver main body 13 as a reaction force. In this case, load cells 1a are also attached to other wire ropes, and the measurement data of the two load cells 1a are added to obtain the load.
  • the load cell 1a described above may be used, or a known pressure input measuring machine may be used.
  • a pressure sensor may be attached to the auger machine 15 as the loading load measuring machine 1.
  • the rotation angle measuring machine 2 measures the rotation angle of the rotating pile 17.
  • a rotation angle measuring sensor having a magnetic reaction proximity switch 2a and a metal piece 2b is used.
  • the magnetic reaction proximity switch 2a is provided on the non-rotating frame member 15b of the auger machine 15.
  • a plurality of metal pieces 2b are provided on the rotating body 15c in the main body portion 15a of the auger machine 15.
  • a pulse signal is generated every time the rotating pile 17 and the rotating body 15c rotate and the metal piece 2b approaches the magnetic reaction proximity switch 2a without contact, and the rotation angle can be measured. For example, when the metal pieces 2b are evenly provided at eight locations in the pile circumferential direction W, a pulse signal is generated every 45 degrees of rotation angle. Further, for example, when the metal pieces 2b are evenly provided at two locations in the pile circumferential direction W, a pulse signal is generated every 180 degrees of rotation angle.
  • the method using the rotation angle measuring sensor described above is the simplest and has few failures, but another contact switch method or a method using a known configuration such as an encoder angle sensor may be adopted. ..
  • the penetration amount measuring machine 3 measures the penetration amount of the rotary pile 17.
  • a penetration amount measuring sensor having a wire rope 3a and an encoder 3b is used.
  • the wire rope 3a is provided so that the tip end portion is connected to the auger machine 15 and the wire rope 3a is folded back at the upper end of the pile driver leader 10 and guided to the pile driver main body 13 to be wound up.
  • the encoder 3b is provided on the pile driver main body 13 and measures the amount of movement of the wire rope 3a as the amount of penetration of the rotary pile 17.
  • the above-mentioned penetration amount measuring sensor may be used, or a known measurement sensor or the like may be used.
  • the rotational torque measuring machine 4 measures the rotational torque when the rotary pile 17 is rotationally press-fitted.
  • the rotational torque measuring machine 4 for example, an auger ammeter 4a is used. In this case, it can be measured by the drive current of an auger, which is a conventionally known measuring means.
  • the fluctuation amount measuring device 5 is used in a state of being fixed on the ground 91.
  • the fluctuation amount measuring device 5 measures, for example, the distance to the rotary pile 17.
  • the fluctuation amount measuring device 5 measures the distance to the rotary pile 17 during the rotary press-fitting, using the distance to the rotary pile 17 before the rotary press-fitting into the ground 91 as an initial value, and the difference between the distances (initial state).
  • the amount of misalignment is measured as the amount of fluctuation.
  • the fluctuation amount measuring device 5 a known distance measuring device such as a laser range finder is used.
  • the fluctuation amount may be measured by using the construction management device 6 based on the distance to the rotary pile 17 measured by the fluctuation amount measuring device 5.
  • an inclinometer may be used as the fluctuation amount measuring device 5.
  • the fluctuation amount measuring device 5 is attached to the auger machine 15, the rotary pile 17, or the like.
  • the tilt angle in the initial state is used as the initial value
  • the tilt angle during rotational press-fitting is measured
  • the difference (change amount) of each tilt angle is measured as the fluctuation amount.
  • the fluctuation amount measuring device 5 for example, either a distance measuring device or an inclinometer may be used. In this case, the value obtained by combining the amount of misalignment and the amount of change is measured as the amount of fluctuation.
  • FIG. 6 is a top view showing an example of the casing driver 21.
  • FIG. 7 is a schematic view showing an example of the casing driver 21.
  • the construction management system 100 is the same as the main configuration shown in FIG. 3 described above.
  • a configuration different from that provided with the auger machine 15 will be described, and the same description will be omitted as appropriate.
  • the casing driver 21 is supported by the crawler crane 21a via the reaction force bar 21b, for example, as shown in FIG.
  • the rotary pile 17 is inserted into the casing driver 21 in a state of being suspended by the crawler crane 21a.
  • the casing driver 21 is provided on the support plate 41 and grips the rotary pile 17.
  • a known casing driver having a pedestal 26, a press-fitting hydraulic jack 24, a non-rotating frame member 27, a hydraulic motor 23, a swivel ring 22, and a grip portion 25 is used.
  • the pedestal 26 is provided on, for example, the support plate 41, or may be provided directly on the ground 91.
  • the press-fitting hydraulic jacks 24 are installed on the pedestal 26, and for example, four are used.
  • the non-rotating frame member 27 is attached to the press-fitting hydraulic jack 24.
  • the hydraulic motor 23 is supported by the non-rotating frame member 27, and a rotational torque is applied to the swivel ring 22.
  • the swivel ring 22 is rotated by a hydraulic motor 23 via a gear mechanism 28 and a bearing mechanism 29.
  • the grip portion 25 is connected to the upper portion of the swivel ring 22 so as to rotate integrally, and the rotary pile 17 is gripped by using the handle 30.
  • the support plate 41 when the support plate 41 is provided, the support plate 41 is sandwiched between the casing driver 21 and the ground 91.
  • the support plate 41 tends to be displaced from the position where it is installed together with the casing driver 21 and the rotary pile 17 as the amount of eccentricity in the rotary pile 17 during rotary press-fitting increases.
  • a known pressure sensor that measures the hydraulic pressure of the press-fitting hydraulic jack 24 can be used.
  • the above-mentioned rotation angle measuring sensor can be used.
  • the magnetic reaction proximity switch 2a is provided on the non-rotating frame member 27.
  • the metal piece 2b is provided on the swivel ring 22.
  • a stroke sensor 3c that measures the stroke of the press-fitting hydraulic jack 24 can be used.
  • the stroke sensor 3c is provided between the cylinder 24a of the press-fitting hydraulic jack 24 and the pedestal 26.
  • a known measurement method such as a linear displacement meter or a potentiometer method using a string or the like can be used.
  • a known pressure sensor that measures the hydraulic pressure of the hydraulic motor 23 that rotationally drives the swivel ring 22 can be used.
  • the fluctuation amount measuring device 5 is provided on the ground 91 at a distance from the support plate 41.
  • the fluctuation amount measuring device 5 measures the distance to the support plate 41 during the rotational press-fitting of the rotary pile 17, with the distance to the support plate 41 in the initial state as the initial value, and the difference between the distances (positional deviation). Is measured as the amount of fluctuation of the rotating pile 17.
  • the fluctuation range of the rotary pile 17 includes not only the fluctuation of the plane parallel to the ground 91 but also the fluctuation of the inclination. Therefore, it is preferable to measure at least one of the fluctuation of the plane and the fluctuation of the inclination.
  • the fluctuation range of the support plate 41 is only the fluctuation of the plane parallel to the ground 91 (the amount of movement in the horizontal plane). Therefore, when the amount of displacement of the support plate 41 is measured as the amount of fluctuation of the rotary pile 17 by using the fluctuation amount measuring machine 5, the fluctuation region is narrower than that of the case of directly measuring the amount of fluctuation of the rotary pile 17. .. Further, when directly measuring the fluctuation amount of the rotary pile 17, it is necessary to measure during the rotation of the rotary pile 17, and the variation in the measurement due to the rotation may become large. Based on these, by measuring the amount of misalignment of the support plate 41 as the amount of fluctuation of the rotating pile 17, it is possible to suppress the variation in the measured values.
  • the fluctuation amount measuring device 5 may be provided on the support plate 41, for example.
  • the measurement reference unit is provided on the ground 91 separated from the support plate 41 (for example, the position of the fluctuation amount measuring device 5 in FIG. 7A), and the distance to the measurement reference unit is measured.
  • the amount of fluctuation of the rotary pile 17 can be measured in the same manner as in the above.
  • FIG. 8 is a flowchart showing an example of the construction method of the rotary pile in the present embodiment.
  • the method for constructing a rotary pile in the present embodiment includes a rotary press-fitting step S100, a measuring step S110, and a determination step S120. For example, while performing the rotary press-fitting step S100, the measuring step S110 and the determining step S120 are appropriately repeated. To do.
  • the loading load on the rotary pile 17 is measured while the rotary pile 17 is rotationally press-fitted into the ground 91.
  • the loading load is periodically measured.
  • the cycle for measuring the loading load is, for example, a predetermined value of 1 second or more and 60 seconds or less, and can be arbitrarily set according to the construction conditions and the like.
  • the cycle for measuring the loading load is shortened, the state of the rotating pile 17 can be monitored with high accuracy.
  • the cycle for measuring the loading load is lengthened, the amount of accumulated data can be reduced.
  • the period for measuring the loading load is preferably 10 seconds or less.
  • the determination step S120 determines whether or not to clear the clogging of the earth and sand 91a deposited in the rotary pile 17 based on the measurement result obtained in the measurement step S110.
  • the determination step S120 for example, the reference pile information regarding the condition of rotational press-fitting of the rotary pile 17 set in advance is referred to as a determination standard, and it is determined whether or not to clear the clogging of the earth and sand 91a deposited in the rotary pile 17. ..
  • the reference pile information indicates, for example, the absolute value of the loaded load, the difference value from the immediately preceding value, the integrated value in a certain section, the average value, or the control value such as the threshold value or the allowable range based on the standard deviation.
  • the threshold value of the loading load and the like can be arbitrarily set according to the pile diameter of the rotary pile 17, the diameter of the spiral blade 16, the N value, the depth of the ground 91, and the like.
  • the reference pile information may include, for example, the past measurement results at the time of rotational press-fitting of the rotary pile 17 constructed in the past.
  • the determination step S120 compares the reference pile information including the past measurement result with the measurement result of the loading load in the measurement step S110, and determines whether or not to clear the clogging of the earth and sand 91a. Therefore, the optimum judgment can be made based on the characteristics of the ground 91, the construction results, and the like.
  • the method of constructing the rotary pile may include the clogging step S121.
  • the clogging step S121 is carried out when it is determined in the determination step S120 that the earth and sand 91a is to be unclogging.
  • the sediment 91a deposited in the rotary pile 17 is opposed to the rotary press-fitting direction.
  • the clogging of the earth and sand 91a deposited in the rotary pile 17 can be cleared only by controlling the rotation condition of the rotary pile 17, so that the time spent for clogging of the earth and sand 91a can be shortened.
  • the clogging step S121 for example, as shown in FIG. 9, at least a part of the earth and sand 91a deposited in the rotary pile 17 is removed by using the mining device 51, and the earth and sand 91a in the rotary pile 17 is removed. You may unclog.
  • the mining device 51 for example, a hammer grab suspended from a crane 50 or the like is used.
  • the earth and sand 91a since the earth and sand 91a is directly removed by using the mining device 51, the earth and sand 91a can be surely unclogging and the earth and sand 91a removed from the rotating pile 17 is removed. You can grasp the amount of.
  • the measurement step S110 is performed again after the clogging step S121, the measurement result of the loading load measured after the clogging step S121 and the loading load measured before the clogging step S121 By comparing with the measurement result, it can be confirmed whether or not the clogging of the earth and sand 91a has been cleared.
  • the rotary pile construction method may include a step of confirming whether or not the clogging of the earth and sand 91a is cleared as the confirmation step S123. Further, for the comparison of each measurement result, the result calculated by the construction management device 6 may be used.
  • the moving step S122 may be further provided.
  • the moving step S122 after the rotary pile 17 is rotationally press-fitted to the support layer 92, the earth and sand 91a removed by the mining device 51 is moved into the rotary pile 17.
  • the earth and sand 91a removed in the clogging step S121 is temporarily placed on the ground 91, for example, as shown in FIG. 9A, and is transferred into the rotary pile 17 in the moving step S122. Therefore, it is possible to prevent the earth and sand 91a from being discharged to the outside of the construction site.
  • the rotation angle of the rotary pile 17, the penetration amount of the rotary pile 17, the rotational torque of the rotary pile 17, and the fluctuation amount of the rotary pile 17 is measured as pile information. May be good.
  • the rotation angle of the rotary pile 17, the penetration amount of the rotary pile 17, and the rotational torque of the rotary pile 17 are, for example, the above-mentioned rotation angle measuring machine 2, the penetration amount measuring machine 3, and the rotating torque measuring machine. It is measured using 4.
  • the fluctuation amount is measured from the rotary pile 17 using, for example, the fluctuation amount measuring device 5.
  • the amount of misalignment of the support plate 41 is measured as the amount of fluctuation of the rotating pile 17.
  • the fluctuation amount may be measured by using a measuring tool such as a ruler or a gauge instead of the fluctuation amount measuring machine 5.
  • the operator uses a measuring tool to measure the amount of displacement of the support plate 41 from the initial value, so that the amount of fluctuation of the rotary pile 17 is measured.
  • the amount of fluctuation may be measured by inputting the value measured by the operator into the construction management device 6.
  • a portable small fluctuation amount measuring device 5 may be used by an operator to measure the fluctuation amount of the rotary pile 17.
  • the determination step S120 may include, for example, as shown in FIG. 10, comparing the above-mentioned reference pile information with the measurement result (pile information) such as the amount of fluctuation to determine normality or abnormality.
  • the condition of rotary press-fitting of the rotary pile 17 is controlled based on the determination result. Further, by considering the condition of the rotary press-fitting of the rotary pile 17, it is possible to improve the accuracy of determining whether or not the earth and sand 91a deposited in the rotary pile 17 is unclogging.
  • conditions are set so that the rotational torque is reduced or reversed when, for example, the amount of fluctuation exceeds the threshold value included in the reference pile information.
  • controlling the conditions for rotational press-fitting of the rotary pile 17 means that the conditions for rotationally press-fitting the rotary pile 17 are changed based on the pile information, and that the rotary press-fitting is performed without changing the conditions. This includes the case of advancing and the case of stopping the rotary press-fitting.
  • the construction management device 6 executes a comparison between the reference pile information and the fluctuation amount, etc., and classifies the fluctuation amount, etc. as normal or abnormal.
  • the result is displayed on the monitor screen 6b.
  • an alert may be displayed, for example, a sound may be emitted so that the operator can be surely recognized.
  • the operator may finally determine whether it is normal or abnormal.
  • the measurement step S110 is performed or the construction is completed after controlling the conditions for rotational press-fitting of the rotary pile 17.
  • the confirmation step S123 may be further provided.
  • the confirmation step S123 confirms the state of the rotary pile 17 when it is determined in the determination step S120 that the amount of fluctuation or the like is abnormal. At this time, for example, after stopping the rotation of the rotary pile 17, the state of the rotary pile 17 is confirmed.
  • the permissible range of the penetration amount S per rotation of the rotary pile 17 with respect to the pitch P of the spiral blade 16 may be included.
  • the penetration amount S per rotation is calculated by using the rotation angle included in the pile information measured by the measurement step S110 and the penetration amount. Then, the calculated penetration amount S per rotation is compared with the permissible range of the penetration amount S per rotation of the reference pile information, and the loading load N is controlled based on the comparison result.
  • the intrusion amount S per rotation is calculated by the construction management device 6 or may be calculated by the operator.
  • the load N is reduced to obtain the next measured rotation angle.
  • the penetration amount S per rotation calculated by using the penetration amount can be brought close to the penetration amount S per rotation set in the reference pile information. As a result, for example, an unreasonable load does not act on the spiral blade 16 and the earth and sand 91a at the tip of the rotary pile 17 is not disturbed, so that the construction can be carried out efficiently.
  • the amount of sediment 91a deposited may be measured.
  • the amount of sediment 91a deposited is measured using, for example, the distance meter 18 shown in FIG.
  • a light wave distance meter 81 is used as the distance meter 18.
  • the light wave distance meter 81 is fixedly attached to the clamp 83 provided above the rotary pile 17 so as to be removable.
  • the distance of the rotating pile 17 to the upper surface of the earth and sand 91a can be measured in a non-contact manner, and the amount of sediment 91a deposited can be measured. it can.
  • Any laser rangefinder can be used as the light wave rangefinder 81 used as the rangefinder 18.
  • the determination in the determination step S120 may be performed based on the time course of the accumulated amount of the earth and sand 91a to be measured. For example, in the measurement step S110, when there is no change in the amount of sediment 91a measured in advance, it can be estimated that the rotary pile 17 is clogged with sediment 91a. In this case, in the determination step S120, it can be determined that the earth and sand 91a deposited in the rotary pile 17 is unclogging.
  • the "pre-measured sedimentation amount of earth and sand 91a" may be, for example, a measurement result before a predetermined time in addition to the measurement result immediately before, and can be arbitrarily set according to the situation.
  • the confirmation step S123 by measuring the amount of deposit in the confirmation step S123 after the above-mentioned clogging step S121 is carried out, it is possible to more reliably determine whether or not the earth and sand 91a in the rotary pile 17 has been unclogging.
  • a rangefinder 18 with a weight 85 attached to the measuring rope 86 may be used.
  • the amount of sediment 91a deposited can be measured by placing the weight 85 on the upper surface of the sediment 91a and measuring the extending length of the measuring rope 86.
  • FIG. 13 shows an example of a construction record in which the N value of the ground 91, the rotational torque of the rotary pile 17, the penetration amount of the rotary pile 17, and the loading load of the rotary pile 17 are plotted for each depth of the ground 91. It is a graph.
  • the region corresponding to the hard ground 93 is indicated by the first region R1 and the second region R2, and the position corresponding to the upper surface of the support layer 92 is indicated by the position D1.
  • the loading load tends to increase as the depth increases (becomes deeper). Further, when the rotary pile 17 is rotationally press-fitted in the respective regions R1 and R2, the sudden rise points P1 and P2 of the loading load are detected. Then, when the measurement step S110 is carried out and the sudden rise points P1 and P2 are measured, it is determined in the determination step S120 that "the clogging of the earth and sand 91a is removed". Further, when the insides of the regions R1 and R2 are rotationally press-fitted, the rotational torque of the rotary pile 17 tends to increase. Therefore, by measuring the rotational torque in addition to the loading load, it can be used as an auxiliary index for the judgment in the judgment step S120.
  • the measured value of the loading load in the measuring process S110 at the time of the judgment target is compared with the average value of the loading load measured in the measuring step S110 before the time of the judgment target. If is more than twice, the measured value may be determined as a sudden rise point.
  • the construction management device 6 may execute the determination assistance. That is, when the construction management device 6 determines that it is necessary to clear the clogging of the earth and sand 91a, or when it determines that the amount of fluctuation or the like is abnormal, the construction management device 6 provides notification information (for example, an alert) for notifying the operator of the abnormality on the monitor screen 6b. It may be displayed in. As a result, the operator does not have to constantly check the monitor screen 6b, and the workability can be improved. In addition, it is possible to suppress variations in subjective judgment criteria for each worker. As a result, it is possible to prevent the earth and sand 91a from being clogged in the rotary pile 17 regardless of the work proficiency of the operator.
  • notification information for example, an alert
  • the measurement step S110 measures the load on the rotary pile 17 while the rotary pile 17 is rotationally press-fitted into the ground 91.
  • the determination step S120 determines whether or not to unclog the earth and sand 91a deposited in the rotary pile 17 based on the measurement result in the measurement step S110. That is, the operator can determine whether or not to unclog the earth and sand 91a accumulated in the rotary pile 17 during rotary press-fitting based on the measured loading load, and the rotary pile 17 is placed on the ground 91. It is possible to prevent the earth and sand 91a from being clogged in the rotary pile 17 when the rotary press-fitting is performed.
  • the measurement step S110 includes measuring at least one of the rotary torque and the penetration amount of the rotary pile 17. Therefore, the determination step S120 can be performed based on the state of rotational press-fitting of the rotary pile 17, and the determination accuracy in the determination step S120 can be improved.
  • the determination step S120 compares the past measurement result with the measurement result in the measurement step S110, and determines whether or not to clear the clogging of the earth and sand 91a. Therefore, the optimum judgment can be made based on the characteristics of the ground 91, the construction results, and the like, and the judgment accuracy can be further improved.
  • the rotary pile 17 is controlled to be inverted, and the earth and sand 91a is controlled. Unclogging. Therefore, the timing of reversing the rotary pile 17 with respect to the loading load, the reversing time, and the like can be left as data. As a result, the details of the construction conditions can be accumulated as data and can be used for future construction.
  • the earth and sand 91a is removed by using the mining device 51, and the earth and sand 91a is removed. Unclogging. Therefore, the clogging of the earth and sand 91a can be more reliably removed, and the amount of the earth and sand 91a removed from the rotating pile 17 can be grasped.
  • the rotary pile 17 is rotationally press-fitted to the support layer 92, and then the removed earth and sand 91a is moved into the rotary pile 17. Therefore, it is possible to prevent the earth and sand 91a from being discharged to the outside of the construction site. As a result, it is possible to reduce the man-hours and costs required for discharging the earth and sand 91a to the outside of the construction site.
  • the measurement step S110 measures the amount of sediment 91a deposited in the rotary pile 17. Therefore, for example, even when a light wave range finder 81 or the like whose accuracy decreases due to rotational press-fitting of the rotary pile 17 is used, it can be used as an auxiliary in the determination step S120. This makes it possible to further improve the accuracy of determining the clogging of the earth and sand 91a deposited in the rotary pile 17.
  • the confirmation step S123 after the clogging step S121, the accumulated amount is measured and it is confirmed whether or not the clogging of the earth and sand 91a is cleared. As a result, it is possible to more accurately determine whether or not the earth and sand 91a has been unclogging by the clogging step S121.
  • the rotary pile 17 is penetrated to the support layer 92 of the ground 91 by the above-mentioned construction method of the rotary pile. Therefore, it is possible to realize the rotary pile 17 constructed in a state where the clogging of the earth and sand 91a during the rotary press-fitting is prevented.
  • the rotation is rotated. It is preferable that the inside of the pile 17 is clogged with earth and sand 91a. In this case, since the bearing capacity is obtained by the clogged earth and sand 91a, the stability of the rotary pile 17 is improved.
  • earth and sand are put inside the rotary pile 17. May cause clogging. Further, it is more preferable that the earth and sand 91a is clogged inside the rotary pile 17 with a thickness equal to or larger than the pile diameter at least upward from the tip of the pile when the rotary pile 17 is stopped.
  • the construction management device 6 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a storage unit, an I / F, a keyboard 6a, and a monitor screen 6b.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • storage unit an I / F
  • I / F an I / F
  • keyboard 6a an input/ select various information or control commands of the construction management device 6 via the keyboard 6a.
  • the operator can recognize various information via a monitor screen 6b such as a liquid crystal display.
  • the CPU controls the entire construction management device 6.
  • the ROM stores the operation code of the CPU.
  • RAM is a work area used when the CPU operates.
  • Various information such as pile information and basic pile information is stored in the storage unit.
  • reference pile information and the like are stored in advance in the storage unit.
  • a known storage medium such as an HDD (Hard Disk Drive) or an SSD (solid state drive) is used.
  • Each function executed by the construction management device 6 is realized by the CPU executing a program stored in a storage unit or the like using the RAM as a work area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

Provided are a rotary pile construction method which can prevent sediment from clogging a rotary pile, when the rotary pile is rotatingly pressed into the ground, and a rotary pile. A construction method in which a rotary pile 17 provided with a blade 16 is penetrated into the ground 91 is characterized by including: a measurement step for measuring an vertical load in the rotary pile 17, while the rotary pile 17 is rotatingly pressed into the ground 91; and a determination step for determining whether to clear the clogging of sediment accumulated in the rotary pile 17 on the basis of the measurement result obtained from the measurement step. In addition, the measurement step is characterized by including measuring at least any one among the rotational torque and a penetration amount of the rotary pile 17.

Description

回転杭の施工方法、杭群の製造方法、及び杭群Construction method of rotating piles, manufacturing method of piles, and piles
 本発明は、回転杭の施工方法、杭群の製造方法、及び杭群に関する。 The present invention relates to a method of constructing a rotary pile, a method of manufacturing a pile group, and a pile group.
 従来、らせん羽根を設けた回転杭等を地盤に貫入するために、例えば特許文献1~3のような施工管理方法等が提案されている。 Conventionally, construction management methods such as those in Patent Documents 1 to 3 have been proposed in order to penetrate a rotating pile or the like provided with spiral blades into the ground.
 特許文献1では、先端を開放した開端鋼管杭の管内土の高さを計測する方法において、鋼管杭内に着脱可能なクランプに取り付けて光波距離計を設け、鋼管杭を地中に貫入する際に管内に侵入する土の高さを非接触で計測する技術が開示されている。 In Patent Document 1, in a method of measuring the height of the soil inside a steel pipe pile with an open tip, when a light wave range finder is provided by attaching it to a removable clamp inside the steel pipe pile and the steel pipe pile penetrates into the ground. A technique for measuring the height of soil invading a pipe in a non-contact manner is disclosed.
 特許文献2では、杭先端に開口を有すると共に螺旋状の羽根を固着してなる回転圧入鋼管杭の施工方法であって、開口部に所定量の砂などの粒状体を締め固めた状態で施工し、杭先端が支持層に達するまでの施工中に軟弱地層の土砂が杭内に進入するのを抑制する旨が開示されている。 Patent Document 2 is a method of constructing a rotary press-fit steel pipe pile having an opening at the tip of the pile and fixing spiral blades, and is constructed with a predetermined amount of granules such as sand compacted in the opening. However, it is disclosed that the sediment of the soft stratum is suppressed from entering the pile during the construction until the tip of the pile reaches the support layer.
 特許文献3では、鋼管杭本体を大径な上部側鋼管と小径な下部側鋼管とで形成する回転貫入式鋼管杭及びその施工法について開示されている。特許文献3の開示技術では、下部側鋼管の先端を螺旋形状に切欠き形成し、この螺旋形状の切欠き形態に対応させて少なくとも一巻き以下の第1の螺旋羽根を設け、鋼管杭本体の拡径境界部位Lもしくはその近傍に第2の螺旋羽根を設けることを特徴としている。 Patent Document 3 discloses a rotary penetration type steel pipe pile in which a steel pipe pile main body is formed of a large-diameter upper steel pipe and a small-diameter lower steel pipe, and a construction method thereof. In the technique disclosed in Patent Document 3, the tip of the lower steel pipe is notched in a spiral shape, and a first spiral blade having at least one turn or less is provided corresponding to the notched shape of the spiral shape, and the steel pipe pile main body is provided. It is characterized in that a second spiral blade is provided at or near the enlarged diameter boundary portion L.
特開2000-230234号公報Japanese Unexamined Patent Publication No. 2000-23234 特開2002-167760号公報JP-A-2002-167760 特開2002-061180号公報Japanese Unexamined Patent Publication No. 2002-061180
 ここで、地盤に対して回転杭を回転圧入する際、回転杭の中に土砂が詰まることで、杭打機を用いて回転杭に最大トルクを作用させても杭の貫入が困難となる場合がある。特に、支持層よりも浅い地層に硬質地盤が形成されている場合、上記のような土砂の詰まりが起こりやすい。通常、回転杭は複数の回転杭で構成される杭群として用いられるが、たとえば、図14に示すように、回転杭を貫入する位置の一部で浅い地層に硬質地盤が形成されている場合には、同一支持層に定着された杭群全体を構築するのが難しくなる。 Here, when the rotating pile is rotationally press-fitted into the ground, the rotating pile is clogged with earth and sand, which makes it difficult to penetrate the rotating pile even if the maximum torque is applied to the rotating pile using a pile driving machine. There is. In particular, when hard ground is formed in a stratum shallower than the support layer, the above-mentioned clogging of earth and sand is likely to occur. Normally, a rotary pile is used as a group of piles composed of a plurality of rotary piles. For example, as shown in FIG. 14, when a hard ground is formed in a shallow stratum at a part of a position where the rotary pile penetrates. It becomes difficult to construct the entire pile group fixed in the same support layer.
 この点、特許文献1では、杭の貫入施工中にリアルタイムで管内土の高さを連続して計測する技術が提案されている。しかしながら、回転杭を回転圧入する際、回転杭における偏心量の増大等に伴い、回転軸の方向が変化する可能性がある。この場合、特許文献1に記載された方法では、光波ビームの軸が経時変化し、管内土高さデータの傾向が大幅にずれる懸念が挙げられる。また、長時間に亘る回転杭の回転圧入に伴い、杭内に土埃や土砂の飛散が生ずる可能性がある。この場合においても、特許文献1に記載された方法では、光波距離計の汚れや破損等により、計測精度低下を引き起こす懸念が挙げられる。これらにより、特許文献1に記載された方法では、長時間に亘る定量的なモニタリングが難しく、上記のような土砂の詰まりを防ぐことが難しい。また、特許文献2、3の開示技術においても、土砂の詰まりを防ぐことが難しい。 In this regard, Patent Document 1 proposes a technique for continuously measuring the height of the soil inside the pipe in real time during the intrusion construction of the pile. However, when the rotary pile is rotationally press-fitted, the direction of the rotary shaft may change due to an increase in the amount of eccentricity in the rotary pile. In this case, in the method described in Patent Document 1, there is a concern that the axis of the light wave beam changes with time and the tendency of the soil height data in the pipe is significantly deviated. In addition, there is a possibility that dust and earth and sand may be scattered in the pile due to the rotary press-fitting of the rotary pile for a long time. Even in this case, in the method described in Patent Document 1, there is a concern that the measurement accuracy may be lowered due to dirt or damage of the light wave rangefinder. As a result, with the method described in Patent Document 1, it is difficult to perform quantitative monitoring over a long period of time, and it is difficult to prevent the above-mentioned clogging of earth and sand. Further, even in the disclosed techniques of Patent Documents 2 and 3, it is difficult to prevent clogging of earth and sand.
 そこで、本発明は、上述した問題に鑑みて案出されたものであって、その目的とするところは、回転杭を地盤に回転圧入する際に、回転杭の中に土砂が詰まることを防ぐことができる回転杭の施工方法、及び回転杭を提供することにある。 Therefore, the present invention has been devised in view of the above-mentioned problems, and an object of the present invention is to prevent earth and sand from being clogged in the rotary pile when the rotary pile is rotationally press-fitted into the ground. It is to provide a method of constructing a rotary pile that can be used, and a rotary pile.
 第1発明に係る回転杭の施工方法は、羽根を設けた回転杭を、地盤に貫入する施工方法であって、前記地盤に対して前記回転杭を回転圧入中に、前記回転杭における上載荷重を計測する計測工程と、前記計測工程で得られた計測結果に基づき、前記回転杭の中に堆積された土砂の詰まりを取るか否かを判断する判断工程と、を備えることを特徴とする。 The method for constructing a rotary pile according to the first invention is a construction method in which a rotary pile provided with blades is penetrated into the ground, and the load on the rotary pile is loaded while the rotary pile is rotationally press-fitted into the ground. It is characterized by including a measurement step for measuring the above and a determination step for determining whether or not to remove the clogging of the earth and sand accumulated in the rotary pile based on the measurement result obtained in the measurement step. ..
 第2発明に係る回転杭の施工方法は、第1発明において、前記計測工程は、前記回転杭の回転トルクおよび貫入量の少なくとも何れかを計測することを含むことを特徴とする。 The method for constructing a rotary pile according to the second invention is characterized in that, in the first invention, the measurement step includes measuring at least one of the rotational torque and the penetration amount of the rotary pile.
 第3発明に係る回転杭の施工方法は、第1発明または第2発明において、前記判断工程は、過去に施工された前記回転杭の回転圧入時における過去の計測結果と、前記計測工程で得られた前記計測結果とを比較し、前記土砂の詰まりを取るか否かを判断することを含むことを特徴とする。 Regarding the method for constructing a rotary pile according to the third invention, in the first invention or the second invention, the determination step is obtained by the past measurement result at the time of rotational press-fitting of the rotary pile constructed in the past and the measurement step. It is characterized by including comparing with the measurement result obtained and determining whether or not to clear the clogging of the earth and sand.
 第4発明に係る回転杭の施工方法は、第1~第3発明の何れかにおいて、前記回転杭を回転圧入する途中に、前記回転杭を反転して引抜き方向へ回転させる工程、及び、引抜き方向へ回転中に前記回転杭における上載荷重を計測する工程を含み、引抜き方向へ回転中の上載荷重の計測結果に基づき、前記回転杭の中に堆積された土砂の詰まりが解消されたか否かを判断することを特徴とする。 The method for constructing a rotary pile according to the fourth invention is the step of reversing the rotary pile and rotating it in the pulling direction while the rotary pile is rotationally press-fitted in any of the first to third inventions, and pulling out. Whether or not the clogging of the earth and sand accumulated in the rotary pile has been cleared based on the measurement result of the load on the rotary pile during rotation in the pulling direction, including the step of measuring the load on the rotary pile during rotation in the direction. It is characterized by judging.
 第5発明に係る回転杭の施工方法は、第4発明において、前記回転杭を反転して回転させる工程は、前記判断工程において前記土砂の詰まりを取ると判断した場合に行うことを特徴とする。 The method for constructing a rotary pile according to a fifth invention is characterized in that, in the fourth invention, the step of reversing and rotating the rotary pile is performed when it is determined in the determination step that the clogging of the earth and sand is to be removed. ..
 第6発明に係る回転杭の施工方法は、第1発明~第3発明の何れかにおいて、前記判断工程において前記土砂の詰まりを取ると判断した場合、採掘装置を用いて前記土砂の少なくとも一部を撤去し、前記土砂の詰まりを取る詰まり取り工程をさらに備えることを特徴とする。 In any of the first to third inventions, the method for constructing a rotary pile according to the sixth invention is to use a mining device to at least a part of the earth and sand when it is determined in the determination step that the earth and sand are to be clogged. It is characterized by further providing a clogging step of removing the clogging of the earth and sand.
 第7発明に係る回転杭の施工方法は、第6発明において、前記回転杭を支持層まで回転圧入したあと、前記採掘装置を用いて撤去した前記土砂を、前記回転杭の中に移動させる移動工程をさらに備えることを特徴とする。 In the sixth invention, the method for constructing a rotary pile according to the seventh invention is a movement in which the rotary pile is rotationally press-fitted to a support layer and then the earth and sand removed by the mining device is moved into the rotary pile. It is characterized by further providing a process.
 第8発明に係る回転杭の施工方法は、第5発明~第7発明の何れかにおいて、前記計測工程は、前記回転杭の中に堆積された前記土砂の堆積量を計測することを含むことを特徴とする。 The method for constructing a rotary pile according to the eighth invention includes, in any one of the fifth to seventh inventions, the measurement step of measuring the amount of the earth and sand deposited in the rotary pile. It is characterized by.
 第9発明に係る回転杭の施工方法は、第8発明において、前記詰まり取り工程のあと、前記堆積量を計測して前記土砂の詰まりが取れたか否かを確認する確認工程をさらに備えることを特徴とする。 The method for constructing a rotary pile according to the ninth invention further includes, in the eighth invention, a confirmation step of measuring the accumulated amount and confirming whether or not the clogging of the earth and sand has been cleared after the clogging step. It is a feature.
 第10発明における杭群の製造方法は、第1発明~第9発明の何れかにおける回転杭の施工方法により、前記地盤の支持層まで貫入された回転杭を複数含む杭群を製造することを特徴とする。 The method for manufacturing a pile group in the tenth invention is to manufacture a pile group including a plurality of rotary piles penetrating to the support layer of the ground by the method for constructing a rotary pile in any one of the first to ninth inventions. It is a feature.
 第11発明に係る杭群は、第10発明における杭群の製造方法により製造され、前記地盤の支持層まで貫入された回転杭を複数含むことを特徴とする。 The pile group according to the eleventh invention is manufactured by the method for manufacturing a pile group according to the tenth invention, and is characterized by including a plurality of rotary piles penetrating to the support layer of the ground.
 第12発明に係る回転杭は、第11発明において、前記地盤の支持層で打ち止められた状態において、土砂が前記回転杭の内部に詰まっていることを特徴とする。 The rotary pile according to the twelfth invention is characterized in that, in the eleventh invention, earth and sand are clogged inside the rotary pile in a state of being stopped by the support layer of the ground.
 第1発明~第9発明によれば、計測工程は、地盤に対して回転杭を回転圧入中に、回転杭の上載荷重を計測する。判断工程は、計測工程で得られた計測結果に基づき、回転杭の中に堆積された土砂の詰まりを取るか否かを判断する。すなわち、作業者は、計測された上載荷重に基づき、回転圧入中の回転杭の中に堆積された土砂の詰まりを取るか否かを判断することができる。これにより、回転杭を地盤に回転圧入する際に、回転杭の中に土砂が詰まることを防ぐことが可能となる。 According to the first to ninth inventions, the measuring process measures the load on the rotating pile while the rotating pile is rotationally press-fitted into the ground. In the determination process, it is determined whether or not to remove the clogging of the earth and sand accumulated in the rotating pile based on the measurement result obtained in the measurement process. That is, the operator can determine whether or not to clear the clogging of the sediment accumulated in the rotating pile during the rotary press-fitting based on the measured loading load. This makes it possible to prevent the rotating pile from being clogged with earth and sand when the rotating pile is rotationally press-fitted into the ground.
 特に、第2発明によれば、計測工程は、回転杭の回転トルクおよび貫入量の少なくとも何れかを計測することを含む。このため、回転杭の回転圧入の状態を踏まえた上で、判断工程を実施することができ、判断工程における判定精度を向上させることが可能となる。 In particular, according to the second invention, the measuring step includes measuring at least one of the rotational torque and the penetration amount of the rotating pile. Therefore, the determination process can be performed based on the state of rotational press-fitting of the rotary pile, and the determination accuracy in the determination process can be improved.
 特に、第3発明によれば、判断工程は、過去の計測結果と、計測工程における計測結果とを比較し、土砂の詰まりを取るか否かを判断する。このため、地盤の特徴や施工実績等を踏まえた最適な判断を実施することができ、判定精度をさらに向上させることが可能となる。 In particular, according to the third invention, the determination process compares the past measurement results with the measurement results in the measurement process, and determines whether or not to clear the clogging of earth and sand. Therefore, the optimum judgment can be made based on the characteristics of the ground, the construction results, and the like, and the judgment accuracy can be further improved.
 特に、第4発明によれば、回転杭を回転圧入する途中に、回転杭を反転して引抜き方向へ回転させる工程を含み、その際に計測された上載荷重に基づき、回転杭の中に堆積された土砂の詰まりが解消されたか否かを判断することができる。これにより、土砂の詰まりが解消されたことが適切に判断でき、回転方向を掘進方向に戻すタイミングを適切に判断することができる。 In particular, according to the fourth invention, a step of reversing the rotary pile and rotating it in the pulling direction is included in the process of rotationally press-fitting the rotary pile, and the pile is deposited in the rotary pile based on the loaded load measured at that time. It is possible to determine whether or not the clogging of the earth and sand that has been made has been cleared. As a result, it can be appropriately determined that the clogging of earth and sand has been cleared, and the timing for returning the rotation direction to the excavation direction can be appropriately determined.
 特に、第5発明によれば、詰まり取り工程は、判断工程において土砂の詰まりを取ると判断した場合、回転杭を反転するように制御し、土砂の詰まりを取る。このため、上載荷重に対する回転杭を反転するタイミングや反転時間等を、データとして残すことができる。これにより、施工条件の詳細をデータとして蓄積でき、今後の施工に利用することが可能となる。 In particular, according to the fifth invention, in the clogging step, when it is determined in the determination step that the clogging of the earth and sand is to be removed, the rotating pile is controlled to be inverted and the clogging of the earth and sand is removed. Therefore, the timing of reversing the rotating pile and the reversing time with respect to the loading load can be left as data. As a result, the details of the construction conditions can be accumulated as data and can be used for future construction.
 特に、第6発明によれば、詰まり取り工程は、判断工程において土砂の詰まりを取ると判断した場合、採掘装置を用いて土砂を撤去し、土砂の詰まりを取る。このため、土砂の詰まりをより確実に取ることができかつ、回転杭内から撤去された土砂の量を把握することができる。 In particular, according to the sixth invention, in the clogging step, when it is determined in the determination step that the clogging of the earth and sand is to be removed, the earth and sand are removed by using a mining device to clear the clogging of the earth and sand. Therefore, it is possible to more reliably clear the clogging of the earth and sand, and it is possible to grasp the amount of the earth and sand removed from the rotating pile.
 特に、第7発明によれば、移動工程では、回転杭を支持層まで回転圧入したあと、撤去した土砂を回転杭の中に移動させる。このため、施工現場の外へ土砂を排出することを防ぐことができる。これにより、施工現場の外への土砂の排出に必要な工数やコストを削減することが可能となる。 In particular, according to the seventh invention, in the moving step, after the rotary pile is rotationally press-fitted to the support layer, the removed earth and sand are moved into the rotary pile. Therefore, it is possible to prevent the earth and sand from being discharged to the outside of the construction site. This makes it possible to reduce the man-hours and costs required for discharging earth and sand to the outside of the construction site.
 特に、第8発明によれば、計測工程は、回転杭の中に堆積された土砂の堆積量を計測する。このため、例えば回転杭の回転圧入に伴い精度が低下する光波距離計等を用いた場合においても、判断工程の補助として利用することができる。これにより、回転杭の中に堆積された土砂の詰まりの判定精度をさらに向上させることが可能となる。 In particular, according to the eighth invention, the measuring step measures the amount of sediment deposited in the rotating pile. Therefore, for example, even when a light wave range finder or the like whose accuracy decreases due to rotational press-fitting of a rotating pile is used, it can be used as an aid in the determination process. This makes it possible to further improve the accuracy of determining the clogging of the earth and sand accumulated in the rotating pile.
 特に、第9発明によれば、確認工程は、詰まり取り工程のあと、堆積量を計測し、土砂の詰まりが取れたか否かを確認する。これにより、詰まり取り工程によって土砂の詰まりが取れたかをより正確に判断することができる。 In particular, according to the ninth invention, in the confirmation step, after the clogging step, the accumulated amount is measured and it is confirmed whether or not the clogging of the earth and sand has been cleared. As a result, it is possible to more accurately determine whether or not the earth and sand have been cleared by the clogging step.
 第10発明によれば、第1発明~第9発明の何れかにおける回転杭の施工方法により複数の回転杭を地盤の支持層まで貫入することにより、地盤の支持層まで貫入された複数の回転杭から構成される杭群を製造することが可能となる。 According to the tenth invention, a plurality of rotations penetrated to the support layer of the ground by penetrating the plurality of rotary piles to the support layer of the ground by the method of constructing the rotary pile according to any one of the first to ninth inventions. It becomes possible to manufacture a group of piles composed of piles.
 第11発明及び第12発明によれば、杭群は、第10発明における杭群の製造方法により、地盤の支持層まで貫入された複数の回転杭から構成される。このため、回転圧入中における土砂の詰まりを防止し、地盤の支持層まで確実に貫入された複数の回転杭から構成される杭群を実現することが可能となる。 According to the eleventh invention and the twelfth invention, the pile group is composed of a plurality of rotating piles penetrating to the support layer of the ground by the method of manufacturing the pile group in the tenth invention. Therefore, it is possible to prevent clogging of earth and sand during rotary press-fitting, and to realize a pile group composed of a plurality of rotary piles that are surely penetrated to the support layer of the ground.
 特に、第12発明によれば、回転杭は、地盤の支持層で打ち止められた状態において、土砂が内部に詰まっている。この場合、詰まった土砂により支持力が得られるため、回転杭の安定性が向上する。 In particular, according to the twelfth invention, the rotating pile is clogged with earth and sand in a state where it is stopped by the support layer of the ground. In this case, the stability of the rotating pile is improved because the bearing capacity is obtained by the clogged earth and sand.
(a)は、本実施形態における回転杭の施工方法の一例を示す断面図であり、(b)は、本実施形態における回転杭を支持層まで貫入した状態を示す断面図である。(A) is a cross-sectional view showing an example of a method of constructing a rotary pile in the present embodiment, and (b) is a cross-sectional view showing a state in which the rotary pile in the present embodiment is penetrated to a support layer. (a)および(b)は、本実施形態における回転杭の施工方法において、硬質地盤に対して回転杭を回転圧入するときの一例を示す断面図であり、(c)は、本実施形態における回転杭を、硬質地盤を介して支持層まで貫入した状態を示す断面図である。(A) and (b) are cross-sectional views showing an example when a rotary pile is rotationally press-fitted into a hard ground in the method of constructing a rotary pile in the present embodiment, and (c) is a sectional view showing an example in the present embodiment. It is sectional drawing which shows the state which penetrated the rotary pile to a support layer through a hard ground. 本実施形態における回転杭の施工管理システムの一例を示すブロック図である。It is a block diagram which shows an example of the construction management system of a rotary pile in this embodiment. 回転杭が偏心した状態で地盤に貫入された状態を示す断面図である。It is sectional drawing which shows the state which pierced into the ground in a state where a rotary pile is eccentric. 本実施形態における回転杭の施工方法に用いられるオーガーマシンおよび各種計測機の一例を示す斜視図である。It is a perspective view which shows an example of the auger machine and various measuring machines used in the construction method of the rotary pile in this embodiment. 本実施形態における回転杭の施工方法に用いられるケーシングドライバーの一例を示す上面図である。It is a top view which shows an example of the casing driver used in the construction method of the rotary pile in this embodiment. (a)は、本実施形態における回転杭の施工管理システムに用いられるケーシングドライバーおよび各種計測機の一例を示す断面図であり、(b)は、(a)における7B-7B線に沿った平面図である。(A) is a cross-sectional view showing an example of a casing driver and various measuring instruments used in the construction management system of the rotary pile in the present embodiment, and (b) is a plane along the line 7B-7B in (a). It is a figure. (a)は、本実施形態における回転杭の施工方法の一例を示すフローチャートであり、(b)は、詰まり取り工程の一例を示すフローチャートである。(A) is a flowchart showing an example of a rotating pile construction method in the present embodiment, and (b) is a flowchart showing an example of a clogging clearing process. (a)は、詰まり取り工程および移動工程に用いられる採掘装置の一例を示す断面図であり、(b)は、回転杭の中に堆積された土砂の一例を示す断面図である。(A) is a cross-sectional view showing an example of a mining device used in a clogging step and a moving step, and (b) is a cross-sectional view showing an example of earth and sand deposited in a rotating pile. 確認工程の一例を示すフローチャートである。It is a flowchart which shows an example of a confirmation process. 回転圧入中の回転杭の一例を示す側面図である。It is a side view which shows an example of the rotary pile during rotary press-fitting. (a)は、光波距離計の一例を示す断面図であり、(b)は、距離計の一例を示す断面図である。(A) is a cross-sectional view showing an example of a light wave rangefinder, and (b) is a cross-sectional view showing an example of a rangefinder. 施工記録の一例を示すグラフである。It is a graph which shows an example of a construction record. 杭群を構成する一部の回転杭の位置に硬質地盤が存在する場合を模式的に示す図である。It is a figure which shows typically the case where the hard ground exists at the position of a part of the rotary pile which constitutes a pile group.
 以下、本発明を適用した回転杭の施工方法、及び回転杭を実施するための形態について、図面を参照しながら詳細に説明する。 Hereinafter, the method of constructing a rotary pile to which the present invention is applied and the mode for carrying out the rotary pile will be described in detail with reference to the drawings.
(回転杭の施工方法、回転杭17)
 本実施形態における回転杭の施工方法は、図1(a)に示すように、回転杭17を地盤91に貫入するために実施される。回転杭の施工方法では、例えばケーシングドライバー21等を用いて回転杭17を把持し、地盤91に対して回転杭17を杭軸方向Zに回転圧入し、回転杭17を支持層92まで貫入する(例えば図1(b))。回転杭の施工方法では、例えば後述する施工管理システム100を用いて行われる。
(Construction method of rotary pile, rotary pile 17)
As shown in FIG. 1A, the method of constructing the rotary pile in the present embodiment is carried out in order to penetrate the rotary pile 17 into the ground 91. In the method of constructing a rotary pile, for example, the rotary pile 17 is gripped by using a casing driver 21 or the like, the rotary pile 17 is rotationally press-fitted into the ground 91 in the pile axial direction Z, and the rotary pile 17 is penetrated to the support layer 92. (For example, FIG. 1 (b)). In the method of constructing a rotary pile, for example, the construction management system 100 described later is used.
 回転杭の施工方法では、地盤91に対して回転杭17を回転圧入中に、例えば図3に示す上載荷重計測機1を用いて、回転杭17の上載荷重を計測する。そして、回転圧入中における回転杭17の上載荷重を計測することで、回転杭17の中における土砂の詰まりを防止できることを、発明者は見出した。 In the method of constructing a rotary pile, while the rotary pile 17 is rotationally press-fitted into the ground 91, for example, the load measuring machine 1 shown in FIG. 3 is used to measure the load on the rotary pile 17. Then, the inventor has found that clogging of earth and sand in the rotary pile 17 can be prevented by measuring the loading load of the rotary pile 17 during the rotary press-fitting.
 例えば図2(a)に示すように、地盤91に対して回転杭17を回転圧入するに従い、回転杭17の中に土砂91aが堆積され(図2(a)の破線矢印)、回転杭17内面と土砂91aとの周面摩擦や土砂91aの自重により、次第に回転杭17中に土砂の詰まり(回転杭17を回転圧入させても、回転杭17内の土砂91aが流動しない現象)が生じる。特に、支持層92よりも浅い地層に硬質地盤93等が形成される場合、回転杭17が硬質地盤93に回転圧入されることで、回転杭17の中に堆積した土砂91aは回転杭17内との間で作用する摩擦が大きく、回転杭17中に土砂91aが詰まり易くなる。上記のような場合、回転杭17の中に土砂91aが堆積するに従い、掘進方向へ回転圧入する際に上載荷重が次第に大きく計測される傾向や、突発的に大きい値を示すことがある。このため、上載荷重を計測することで、回転杭17の中における土砂91aの詰まりが生じているか否かを推定することができる。ただし、大きな上載荷重が計測される場合には、軟弱地盤から硬質地盤へ層替わりする時や巨礫等の地中障害に杭先端が接触している時もある。 For example, as shown in FIG. 2A, as the rotary pile 17 is rotationally press-fitted into the ground 91, earth and sand 91a is deposited in the rotary pile 17 (broken arrow in FIG. 2A), and the rotary pile 17 Due to the peripheral friction between the inner surface and the earth and sand 91a and the weight of the earth and sand 91a, clogging of earth and sand gradually occurs in the rotary pile 17 (a phenomenon in which the earth and sand 91a in the rotary pile 17 does not flow even if the rotary pile 17 is rotationally press-fitted). .. In particular, when a hard ground 93 or the like is formed in a stratum shallower than the support layer 92, the rotary pile 17 is rotationally press-fitted into the hard ground 93, so that the earth and sand 91a deposited in the rotary pile 17 is inside the rotary pile 17. The friction acting with the pile 17 is large, and the earth and sand 91a is likely to be clogged in the rotary pile 17. In the above case, as the earth and sand 91a is deposited in the rotary pile 17, the loading load tends to be gradually measured larger when the rotary press-fitting is performed in the excavation direction, or a suddenly large value may be shown. Therefore, by measuring the loading load, it is possible to estimate whether or not the earth and sand 91a is clogged in the rotary pile 17. However, when a large loading load is measured, the pile tip may be in contact with an underground obstacle such as a boulder or when the layer is changed from soft ground to hard ground.
 このとき、例えば図2(b)に示す実線矢印のように、回転杭17を反転させると、土砂の詰まりを生じていない時には直ぐに上載荷重が低下し、詰まりの程度が緩い時には回転杭17の中に堆積された土砂91aの詰まりを取ることができ(図2(b)の破線矢印)結果的に上載荷重が低下する。一方、反転して引抜き方向へ回転杭を移動する際に上載荷重が低下せず、大きい値を保持することがある。この場合も、上載荷重を計測することで、回転杭17の中における土砂91aの詰まりが解消している否かを推定することができる。上載荷重が低下しない場合は、詰まりが解消していないと判断できるので、再度反転して引抜き方向へ回転杭を移動する操作を行って、詰まりが解消するまで同様の操作を繰り返す。 At this time, for example, when the rotary pile 17 is inverted as shown by the solid line arrow shown in FIG. 2B, the loading load is immediately reduced when the earth and sand are not clogged, and when the degree of clogging is loose, the rotary pile 17 The clogging of the earth and sand 91a deposited therein can be cleared (broken line arrow in FIG. 2B), and as a result, the loading load is reduced. On the other hand, when the rotating pile is inverted and moved in the pulling direction, the loading load does not decrease and may hold a large value. Also in this case, by measuring the loading load, it is possible to estimate whether or not the clogging of the earth and sand 91a in the rotating pile 17 is cleared. If the loading load does not decrease, it can be determined that the clogging has not been cleared. Therefore, the operation of reversing and moving the rotating pile in the pulling direction is performed, and the same operation is repeated until the clogging is cleared.
 以下に、図13に示す計測結果から、回転杭の施工において、どのように土砂の詰まりを生じさせずに硬質地盤を貫通するための判断を行ったのか一例を、順を追って、以下の[1]~[7]に示す。 Below, from the measurement results shown in FIG. 13, an example of how the judgment for penetrating the hard ground without causing clogging of earth and sand was made in the construction of the rotary pile is shown in the following [ 1] to [7].
 [1]事前に杭打設近傍の位置で調査された図13のN値と深度との関係により、深度11~19mと深度26~33mに硬質地盤が存在することが予測される。 [1] It is predicted that hard ground exists at depths of 11 to 19 m and 26 to 33 m based on the relationship between the N value and the depth in FIG. 13, which was investigated in advance at a position near the pile driving.
 [2]杭貫入時に計測される図13の上載荷重と深度との関係により、深度11m付近で上載荷重が急増している。 [2] Due to the relationship between the loading load and the depth of FIG. 13 measured when the pile is penetrated, the loading load is rapidly increasing near the depth of 11 m.
 [3]ここで一旦反転した際に上載荷重が低下したため、通常の貫入方法で施工を継続したが、深度12m付近まで上載荷重が漸増する傾向であったため、反転して引抜き方向へ回転杭を移動する操作を開始している。 [3] Since the loading load decreased when the pile was turned over, the construction was continued by the normal penetration method, but the loading load tended to gradually increase to a depth of about 12 m, so the pile was turned over and the rotating pile was pulled out. The move operation has started.
 [4]杭を引抜き方向へ回転させて上載荷重が低下したら再び正回転で貫入するが、上載荷重の漸増傾向が続いているため、10cm程度貫入する毎に反転する操作を行っている。 [4] When the pile is rotated in the pulling direction and the loading load is reduced, the pile is pierced again in the forward rotation, but since the loading load continues to gradually increase, the operation is reversed every time the pile is penetrated by about 10 cm.
 [5]この操作を深度12~19mまで継続した所、深度19mで上載荷重が低位で安定したため、土砂の詰まりを生じさせずに硬質地盤を貫通したものと判断し、深度19mからは通常の貫入方法で施工を継続している。 [5] When this operation was continued from a depth of 12 to 19 m, it was judged that the load had penetrated the hard ground without causing clogging of earth and sand because the loading load was stable at a depth of 19 m. Construction is being continued by the penetration method.
 [6]再び、硬質地盤の開始が予測される深度26m付近において上載荷重が急増したため、深度26~33mまで前述の深度11~19mまでと同様の操作により、硬質地盤を貫通している。 [6] Again, since the loading load increased sharply near the depth of 26 m where the start of the hard ground was predicted, the hard ground was penetrated to the depth of 26 to 33 m by the same operation as the above-mentioned depth of 11 to 19 m.
 [7]深度33mからは通常の貫入方法で施工を行い、深度37mで杭を打ち止めている。 [7] From a depth of 33m, construction is carried out by the usual penetration method, and the piles are stopped at a depth of 37m.
 以上のようにして、例えば図2(c)に示すように、硬質地盤93を含む地盤91に対しても、回転杭17の中で土砂91aの詰まりを発生させずに、回転杭17を支持層92まで貫入することが可能となる。 As described above, for example, as shown in FIG. 2C, the rotating pile 17 is supported even for the ground 91 including the hard ground 93 without causing clogging of the earth and sand 91a in the rotating pile 17. It is possible to penetrate up to layer 92.
 本実施形態における回転杭17は、回転杭本体と、その先端に設けられた、らせん形状のらせん羽根16とから構成されている。回転杭本体は、例えば、複数の鋼管が杭軸方向Zに溶接接続されてなる。回転杭17は地盤91に貫入されると共に、例えば杭先端が支持層92に貫入される。なお、回転杭17の羽根の形状は、らせんに限定されるものではなく、例えば、らせん羽根16に代えて、一対の半円形状の羽根を回転杭本体に設けてもよい。 The rotary pile 17 in the present embodiment is composed of a rotary pile main body and a spiral blade 16 provided at the tip thereof. The rotary pile body is formed by, for example, a plurality of steel pipes welded and connected in the pile axial direction Z. The rotary pile 17 penetrates into the ground 91, and for example, the tip of the pile penetrates into the support layer 92. The shape of the blades of the rotary pile 17 is not limited to the spiral. For example, instead of the spiral blade 16, a pair of semicircular blades may be provided on the rotary pile main body.
 回転杭17の杭径は、例えばφ100mm~1600mm程度であり、杭板厚は、例えば4.2mm~25mm程度である。らせん羽根16の径は、例えば杭径の1.5倍~2.5倍程度である。回転杭17の杭先端が貫入される支持層92は、例えば砂、砂礫地盤、もしくは粘性土、または土質が砂質土、もしくは礫質土層であり、N値が15以上の地盤を示す。 The pile diameter of the rotary pile 17 is, for example, about φ100 mm to 1600 mm, and the pile plate thickness is, for example, about 4.2 mm to 25 mm. The diameter of the spiral blade 16 is, for example, about 1.5 to 2.5 times the diameter of the pile. The support layer 92 into which the tip of the rotary pile 17 is penetrated is, for example, sand, gravel ground, or cohesive soil, or a sandy soil or gravel soil layer, and has an N value of 15 or more.
 回転杭の施工方法では、例えば図3に示す施工管理システム100が用いられる。施工管理システム100は、施工管理装置6を備える。図3は、回転杭17の施工状態を示す情報(杭情報)を計測するための各種計測機1~5と、施工管理装置6とを配置した模式図を示す。 In the construction method of the rotary pile, for example, the construction management system 100 shown in FIG. 3 is used. The construction management system 100 includes a construction management device 6. FIG. 3 shows a schematic view in which various measuring machines 1 to 5 for measuring information (pile information) indicating a construction state of the rotary pile 17 and a construction management device 6 are arranged.
 施工管理システム100は、回転杭17の上載荷重を計測する上載荷重計測機1を備え、例えば回転角計測機2、貫入量計測機3、回転トルク計測機4、および変動量計測機5の少なくとも何れかを備えてもよい。施工管理システム100は、上述した各種計測機1~5とデータの送受信可能なデータ変換器7、およびデータ変換器7と施工管理装置6との間を接続するインターフェースボックス8を備えてもよい。なお、施工管理システム100は、例えば土質調査で事前調査したN値のデータを入力できるデータ入力部9を備えてもよいほか、例えばN値のデータが予め施工管理装置6に保存されてもよい。施工管理装置6は、各種計測機1~5等からデータを取得し、必要に応じて演算処理を行い、モニタ画面6bに表示するほか、接続されたプリンタ6cにより印刷することができる。 The construction management system 100 includes a loading load measuring machine 1 for measuring the loading load of the rotating pile 17, for example, at least a rotation angle measuring machine 2, a penetration amount measuring machine 3, a rotating torque measuring machine 4, and a fluctuation amount measuring machine 5. Any of them may be provided. The construction management system 100 may include the various measuring instruments 1 to 5 described above, a data converter 7 capable of transmitting and receiving data, and an interface box 8 for connecting the data converter 7 and the construction management device 6. The construction management system 100 may include, for example, a data input unit 9 capable of inputting N value data previously surveyed in a soil survey, or for example, N value data may be stored in the construction management device 6 in advance. .. The construction management device 6 can acquire data from various measuring instruments 1 to 5, perform arithmetic processing as necessary, display it on the monitor screen 6b, and print it with the connected printer 6c.
 回転杭の施工方法では、例えば図4に示すように、地盤91に対して回転杭17を回転圧入中に、変動量計測機5を用いて回転杭17の変動量を計測する。変動量は、回転杭17の回転圧入に伴う回転杭17の初期設定位置からの水平面における移動量(位置ずれの量)、および傾き量(傾斜角度の変化量)の少なくとも何れかを示す。なお、例えば地盤91と、回転杭17を把持するケーシングドライバー21との間に挟まれた支持板41を用いて、回転杭17の変動量を得ることができる。この場合、回転杭17の回転圧入に伴う支持板41の位置ずれの量を、回転杭17の変動量として計測することができる。 In the method of constructing a rotary pile, for example, as shown in FIG. 4, while the rotary pile 17 is rotationally press-fitted into the ground 91, the fluctuation amount of the rotary pile 17 is measured by using the fluctuation amount measuring machine 5. The amount of fluctuation indicates at least one of the amount of movement (amount of displacement) and the amount of inclination (amount of change in inclination angle) in the horizontal plane from the initial setting position of the rotary pile 17 due to the rotational press-fitting of the rotary pile 17. The amount of fluctuation of the rotary pile 17 can be obtained by using, for example, the support plate 41 sandwiched between the ground 91 and the casing driver 21 that grips the rotary pile 17. In this case, the amount of misalignment of the support plate 41 due to the rotational press-fitting of the rotary pile 17 can be measured as the amount of fluctuation of the rotary pile 17.
 ここで、回転圧入中における回転杭17の変動量は、杭軸直交方向Xにおける回転杭17の偏心の度合い(偏心量)と関連する傾向を示す。回転杭17の偏心は、例えば図4に示すように、回転杭17を地盤91に回転圧入させる際に生じるものであり、回転杭17の偏心量は回転杭17のらせん羽根16が硬質地盤93に接触すると、大きくなる傾向を示す。よって、変動量から得られる情報は、硬質地盤93に回転杭17が到達していることを示す一つの指標となる。 Here, the amount of fluctuation of the rotary pile 17 during rotary press-fitting shows a tendency related to the degree of eccentricity (amount of eccentricity) of the rotary pile 17 in the direction X orthogonal to the pile axis. As shown in FIG. 4, for example, the eccentricity of the rotary pile 17 occurs when the rotary pile 17 is rotationally press-fitted into the ground 91, and the amount of eccentricity of the rotary pile 17 is such that the spiral blade 16 of the rotary pile 17 has a hard ground 93. When it comes in contact with, it tends to grow larger. Therefore, the information obtained from the amount of fluctuation serves as an index indicating that the rotary pile 17 has reached the hard ground 93.
 <オーガーマシン15>
 回転杭の施工管理システム100では、回転杭17の回転圧入装置として、例えば杭打ち機リーダー10およびオーガーマシン15が用いられる。図5は、杭打ち機リーダー10およびオーガーマシン15の一例を示す斜視図である。
<Auger machine 15>
In the rotary pile construction management system 100, for example, a pile driver leader 10 and an auger machine 15 are used as a rotary press-fitting device for the rotary pile 17. FIG. 5 is a perspective view showing an example of the pile driver leader 10 and the auger machine 15.
 杭打ち機リーダー10は、例えば図5に示すように、無限軌道体11によって支持された旋回支持台12上に杭打ち機本体13が設けられる。杭打ち機本体13の一端両側部から傾斜支持アーム14が上方に延びた構成であって、この傾斜支持アーム14の上端でオーガーマシン15が支持される。オーガーマシン15は、回転杭17の杭頭部を把持する。施工管理装置6は、例えば運転室19に取り付けられたデータ変換器7と接続され、各種データを取得する。 In the pile driver leader 10, for example, as shown in FIG. 5, the pile driver main body 13 is provided on the swivel support base 12 supported by the endless track body 11. The tilt support arm 14 extends upward from both ends of one end of the pile driver main body 13, and the auger machine 15 is supported by the upper end of the tilt support arm 14. The auger machine 15 grips the pile head of the rotary pile 17. The construction management device 6 is connected to, for example, a data converter 7 attached to the driver's cab 19 to acquire various data.
 上載荷重計測機1は、回転杭17の杭頭部に与える上載荷重(圧入力)を計測する。上載荷重計測機1として、例えばロードセル1aが用いられる。ロードセル1aは、杭打ち機リーダー10の上端と、オーガーマシン15を吊っているワイヤロープ3aの端部との間に取り付けられ、ワイヤロープ3aの引張力を計測する。このため、回転杭17に作用する上載荷重は、オーガーマシン15の自重からロードセル1aの計測値を差し引いた値となる。なお、オーガーマシン15の自重だけでは上載荷重が不足する場合、杭打ち機本体13を反力体としてオーガーマシン15を引き込む他のワイヤロープを設ける場合がある。この場合、他のワイヤロープにもロードセル1aを取り付け、2つのロードセル1aの計測データを加算して上載荷重とする。 The loading load measuring machine 1 measures the loading load (pressure input) applied to the pile head of the rotating pile 17. As the loading load measuring machine 1, for example, a load cell 1a is used. The load cell 1a is attached between the upper end of the pile driver leader 10 and the end of the wire rope 3a suspending the auger machine 15, and measures the tensile force of the wire rope 3a. Therefore, the loading load acting on the rotary pile 17 is a value obtained by subtracting the measured value of the load cell 1a from the own weight of the auger machine 15. If the loading load is insufficient only by the weight of the auger machine 15, another wire rope that draws in the auger machine 15 may be provided by using the pile driver main body 13 as a reaction force. In this case, load cells 1a are also attached to other wire ropes, and the measurement data of the two load cells 1a are added to obtain the load.
 上載荷重計測機1として、上述したロードセル1aが用いられるほか、公知の圧入力計測機が用いられてもよい。例えば、杭打ち機リーダー10に直接、油圧式のオーガーマシン15が装着できるラックピニオン式の杭打ち機では、上載荷重計測機1として、オーガーマシン15に圧力センサを取り付けてもよい。 As the loading load measuring machine 1, the load cell 1a described above may be used, or a known pressure input measuring machine may be used. For example, in a rack and pinion type pile driver in which the hydraulic auger machine 15 can be directly mounted on the pile driver leader 10, a pressure sensor may be attached to the auger machine 15 as the loading load measuring machine 1.
 回転角計測機2は、回転杭17の回転角を計測する。回転角計測機2として、例えば磁気反応近接スイッチ2aと、金属片2bとを有する回転角計測センサが用いられる。磁気反応近接スイッチ2aは、オーガーマシン15の有する非回転枠材15bに設けられる。金属片2bは、オーガーマシン15の有する本体部15aにおける回転体15cに複数(例えば2~8箇所)設けられる。 The rotation angle measuring machine 2 measures the rotation angle of the rotating pile 17. As the rotation angle measuring device 2, for example, a rotation angle measuring sensor having a magnetic reaction proximity switch 2a and a metal piece 2b is used. The magnetic reaction proximity switch 2a is provided on the non-rotating frame member 15b of the auger machine 15. A plurality of metal pieces 2b (for example, 2 to 8 places) are provided on the rotating body 15c in the main body portion 15a of the auger machine 15.
 このような回転角計測センサでは、回転杭17と、回転体15cが回転し、金属片2bが非接触で磁気反応近接スイッチ2aに近接する毎にパルス信号が生成され、回転角を計測できる。例えば金属片2bを杭周方向Wにおける8箇所に対して均等に設けた場合、回転角45度毎にパルス信号が生成される。また、例えば金属片2bを杭周方向Wにおける2箇所に対して均等に設けた場合、回転角180度毎にパルス信号が生成される。 In such a rotation angle measurement sensor, a pulse signal is generated every time the rotating pile 17 and the rotating body 15c rotate and the metal piece 2b approaches the magnetic reaction proximity switch 2a without contact, and the rotation angle can be measured. For example, when the metal pieces 2b are evenly provided at eight locations in the pile circumferential direction W, a pulse signal is generated every 45 degrees of rotation angle. Further, for example, when the metal pieces 2b are evenly provided at two locations in the pile circumferential direction W, a pulse signal is generated every 180 degrees of rotation angle.
 回転角計測機2として、上述した回転角計測センサを用いる方式が最も簡単で故障も少ないが、他の接触スイッチ方式や、エンコーダ角度センサ等の公知の構成を用いた方式を採用してもよい。 As the rotation angle measuring device 2, the method using the rotation angle measuring sensor described above is the simplest and has few failures, but another contact switch method or a method using a known configuration such as an encoder angle sensor may be adopted. ..
 貫入量計測機3は、回転杭17の貫入量を計測する。貫入量計測機3として、例えばワイヤロープ3aと、エンコーダ3bとを有する貫入量計測センサが用いられる。ワイヤロープ3aは、オーガーマシン15に先端部を連結し、杭打ち機リーダー10の上端で折返して杭打ち機本体13に誘導して巻き取れるように設けられる。エンコーダ3bは、杭打ち機本体13上に設けられ、ワイヤロープ3aの移動量を回転杭17の貫入量として計測する。 The penetration amount measuring machine 3 measures the penetration amount of the rotary pile 17. As the penetration amount measuring device 3, for example, a penetration amount measuring sensor having a wire rope 3a and an encoder 3b is used. The wire rope 3a is provided so that the tip end portion is connected to the auger machine 15 and the wire rope 3a is folded back at the upper end of the pile driver leader 10 and guided to the pile driver main body 13 to be wound up. The encoder 3b is provided on the pile driver main body 13 and measures the amount of movement of the wire rope 3a as the amount of penetration of the rotary pile 17.
 貫入量計測機3として、上述した貫入量計測センサが用いられるほか、公知の計測センサ等が用いられてもよい。 As the penetration amount measuring device 3, the above-mentioned penetration amount measuring sensor may be used, or a known measurement sensor or the like may be used.
 回転トルク計測機4は、回転杭17を回転圧入する際の回転トルクを計測する。回転トルク計測機4として、例えばオーガー電流計4aが用いられる。この場合、従来から行われている公知の計測手段であるオーガーの駆動電流によって計測することができる。 The rotational torque measuring machine 4 measures the rotational torque when the rotary pile 17 is rotationally press-fitted. As the rotational torque measuring machine 4, for example, an auger ammeter 4a is used. In this case, it can be measured by the drive current of an auger, which is a conventionally known measuring means.
 変動量計測機5は、地盤91上に固定された状態で用いられる。変動量計測機5は、例えば回転杭17までの距離を測定する。変動量計測機5は、例えば地盤91に回転圧入する前(初期状態)における回転杭17までの距離を初期値として、回転圧入中における回転杭17までの距離を測定し、各距離の差分(位置ずれの量)を変動量として計測する。 The fluctuation amount measuring device 5 is used in a state of being fixed on the ground 91. The fluctuation amount measuring device 5 measures, for example, the distance to the rotary pile 17. The fluctuation amount measuring device 5 measures the distance to the rotary pile 17 during the rotary press-fitting, using the distance to the rotary pile 17 before the rotary press-fitting into the ground 91 as an initial value, and the difference between the distances (initial state). The amount of misalignment) is measured as the amount of fluctuation.
 変動量計測機5として、例えばレーザー距離計等のような公知の距離計測装置が用いられる。なお、変動量計測機5により測定された回転杭17までの距離に基づき、施工管理装置6を用いて変動量を計測してもよい。 As the fluctuation amount measuring device 5, a known distance measuring device such as a laser range finder is used. The fluctuation amount may be measured by using the construction management device 6 based on the distance to the rotary pile 17 measured by the fluctuation amount measuring device 5.
 なお、変動量計測機5として、例えば傾斜計が用いられてもよい。この場合、変動量計測機5は、オーガーマシン15や回転杭17等に取り付けられる。この場合、初期状態における傾斜角度を初期値として、回転圧入中における傾斜角度を測定し、各傾斜角度の差分(変化量)を変動量として計測する。 Note that, for example, an inclinometer may be used as the fluctuation amount measuring device 5. In this case, the fluctuation amount measuring device 5 is attached to the auger machine 15, the rotary pile 17, or the like. In this case, the tilt angle in the initial state is used as the initial value, the tilt angle during rotational press-fitting is measured, and the difference (change amount) of each tilt angle is measured as the fluctuation amount.
 また、変動量計測機5として、例えば距離計測装置および傾斜計の何れもが用いられてもよい。この場合、位置ずれの量と、変化量とを組み合わせた値を、変動量として計測する。 Further, as the fluctuation amount measuring device 5, for example, either a distance measuring device or an inclinometer may be used. In this case, the value obtained by combining the amount of misalignment and the amount of change is measured as the amount of fluctuation.
 <ケーシングドライバー21>
 回転杭の施工管理システム100では、例えば図6および図7に示すように、回転杭17の回転圧入装置として、ケーシングドライバー21が用いられてもよい。図6は、ケーシングドライバー21の一例を示す上面図である。図7は、ケーシングドライバー21の一例を示す模式図である。
<Casing driver 21>
In the rotary pile construction management system 100, for example, as shown in FIGS. 6 and 7, the casing driver 21 may be used as the rotary press-fitting device for the rotary pile 17. FIG. 6 is a top view showing an example of the casing driver 21. FIG. 7 is a schematic view showing an example of the casing driver 21.
 この場合においても、施工管理システム100は、上述した図3に示す主な構成と同様である。以下、オーガーマシン15を備える場合とは異なる構成について説明し、同様の内容については、適宜説明を省略する。 Even in this case, the construction management system 100 is the same as the main configuration shown in FIG. 3 described above. Hereinafter, a configuration different from that provided with the auger machine 15 will be described, and the same description will be omitted as appropriate.
 ケーシングドライバー21は、例えば図6に示すように、反力バー21bを介してクローラークレーン21aによって支持される。回転杭17は、クローラークレーン21aによって吊り下げられた状態で、ケーシングドライバー21内に挿通される。 The casing driver 21 is supported by the crawler crane 21a via the reaction force bar 21b, for example, as shown in FIG. The rotary pile 17 is inserted into the casing driver 21 in a state of being suspended by the crawler crane 21a.
 ケーシングドライバー21は、例えば図7(a)に示すように、支持板41上に設けられ、回転杭17を把持する。ケーシングドライバー21として、例えば台座26と、圧入用油圧ジャッキ24と、非回転枠材27と、油圧モーター23と、旋回リング22と、把持部25とを有する公知のケーシングドライバーが用いられる。 As shown in FIG. 7A, for example, the casing driver 21 is provided on the support plate 41 and grips the rotary pile 17. As the casing driver 21, for example, a known casing driver having a pedestal 26, a press-fitting hydraulic jack 24, a non-rotating frame member 27, a hydraulic motor 23, a swivel ring 22, and a grip portion 25 is used.
 台座26は、例えば支持板41上に設けられるほか、地盤91上に直接設けられてもよい。圧入用油圧ジャッキ24は、台座26に設置され、例えば4つ用いられる。非回転枠材27は、圧入用油圧ジャッキ24に取り付けられる。油圧モーター23は、非回転枠材27に支持され、旋回リング22に回転トルクを作用させる。旋回リング22は、歯車機構28および軸受け機構29を介して、油圧モーター23により回転する。把持部25は、旋回リング22の上部に一体回転するように連結され、ハンドル30を用いて回転杭17を把持する。 The pedestal 26 is provided on, for example, the support plate 41, or may be provided directly on the ground 91. The press-fitting hydraulic jacks 24 are installed on the pedestal 26, and for example, four are used. The non-rotating frame member 27 is attached to the press-fitting hydraulic jack 24. The hydraulic motor 23 is supported by the non-rotating frame member 27, and a rotational torque is applied to the swivel ring 22. The swivel ring 22 is rotated by a hydraulic motor 23 via a gear mechanism 28 and a bearing mechanism 29. The grip portion 25 is connected to the upper portion of the swivel ring 22 so as to rotate integrally, and the rotary pile 17 is gripped by using the handle 30.
 例えば支持板41が設けられる場合、支持板41は、ケーシングドライバー21と、地盤91との間に挟まれる。支持板41は、回転圧入中の回転杭17における偏心量の増加に伴い、ケーシングドライバー21および回転杭17とともに設置された位置がずれる傾向を示す。 For example, when the support plate 41 is provided, the support plate 41 is sandwiched between the casing driver 21 and the ground 91. The support plate 41 tends to be displaced from the position where it is installed together with the casing driver 21 and the rotary pile 17 as the amount of eccentricity in the rotary pile 17 during rotary press-fitting increases.
 上載荷重計測機1として、例えば圧入用油圧ジャッキ24の油圧を計測する公知の圧力センサを用いることができる。 As the loading load measuring machine 1, for example, a known pressure sensor that measures the hydraulic pressure of the press-fitting hydraulic jack 24 can be used.
 回転角計測機2として、上述した回転角計測センサを用いることができる。この場合、磁気反応近接スイッチ2aは、非回転枠材27上に設けられる。金属片2bは、旋回リング22上に設けられる。これにより、上述した回転角計測センサと同様に、回転杭17の回転に応じてパルス信号が生成され、回転角を計測できる。 As the rotation angle measuring device 2, the above-mentioned rotation angle measuring sensor can be used. In this case, the magnetic reaction proximity switch 2a is provided on the non-rotating frame member 27. The metal piece 2b is provided on the swivel ring 22. As a result, similarly to the rotation angle measurement sensor described above, a pulse signal is generated according to the rotation of the rotation pile 17, and the rotation angle can be measured.
 貫入量計測機3として、例えば圧入用油圧ジャッキ24のストロークを計測するストロークセンサ3cを用いることができる。ストロークセンサ3cは、圧入用油圧ジャッキ24のシリンダー24aと、台座26との間に設けられる。ストロークセンサ3cとして、例えばリニア方式変位計や、紐等を用いたポテンショメーター方式等の公知の計測方式を用いることができる。 As the penetration amount measuring machine 3, for example, a stroke sensor 3c that measures the stroke of the press-fitting hydraulic jack 24 can be used. The stroke sensor 3c is provided between the cylinder 24a of the press-fitting hydraulic jack 24 and the pedestal 26. As the stroke sensor 3c, a known measurement method such as a linear displacement meter or a potentiometer method using a string or the like can be used.
 回転トルク計測機4として、例えば旋回リング22を回転駆動する油圧モーター23の油圧を計測する公知の圧力センサ(油圧センサ)を用いることができる。 As the rotational torque measuring machine 4, for example, a known pressure sensor (hydraulic pressure sensor) that measures the hydraulic pressure of the hydraulic motor 23 that rotationally drives the swivel ring 22 can be used.
 変動量計測機5は、支持板41に対して離間し、地盤91上に設けられる。この場合、変動量計測機5は、例えば初期状態における支持板41までの距離を初期値として、回転杭17の回転圧入中における支持板41までの距離を測定し、各距離の差分(位置ずれの量)を回転杭17の変動量として計測する。 The fluctuation amount measuring device 5 is provided on the ground 91 at a distance from the support plate 41. In this case, the fluctuation amount measuring device 5 measures the distance to the support plate 41 during the rotational press-fitting of the rotary pile 17, with the distance to the support plate 41 in the initial state as the initial value, and the difference between the distances (positional deviation). Is measured as the amount of fluctuation of the rotating pile 17.
 回転杭17の回転圧入中において、回転杭17の変動する範囲は、地盤91と平行な平面の変動に加え、傾斜の変動も含まれる。そのため、当該平面の変動、および当該傾斜の変動の少なくとも一方を計測することが好ましい。 During the rotary press-fitting of the rotary pile 17, the fluctuation range of the rotary pile 17 includes not only the fluctuation of the plane parallel to the ground 91 but also the fluctuation of the inclination. Therefore, it is preferable to measure at least one of the fluctuation of the plane and the fluctuation of the inclination.
 ここで、支持板41の変動する範囲は、地盤91と平行な平面の変動(水平面における移動量)のみである。そのため、変動量計測機5を用いて支持板41の位置ずれの量を回転杭17の変動量として計測する場合、回転杭17の変動量を直接計測する場合に比べて、変動する領域が狭い。また、回転杭17の変動量を直接計測する場合、回転杭17の回転中に計測する必要があり、回転に伴う計測のばらつきが大きくなる場合がある。これらを踏まえると、支持板41の位置ずれの量を回転杭17の変動量として計測することで、計測値のばらつきを抑制することができる。 Here, the fluctuation range of the support plate 41 is only the fluctuation of the plane parallel to the ground 91 (the amount of movement in the horizontal plane). Therefore, when the amount of displacement of the support plate 41 is measured as the amount of fluctuation of the rotary pile 17 by using the fluctuation amount measuring machine 5, the fluctuation region is narrower than that of the case of directly measuring the amount of fluctuation of the rotary pile 17. .. Further, when directly measuring the fluctuation amount of the rotary pile 17, it is necessary to measure during the rotation of the rotary pile 17, and the variation in the measurement due to the rotation may become large. Based on these, by measuring the amount of misalignment of the support plate 41 as the amount of fluctuation of the rotating pile 17, it is possible to suppress the variation in the measured values.
 変動量計測機5は、例えば支持板41上に設けられてもよい。この場合、支持板41に対して離間した地盤91上(例えば図7(a)の変動量計測機5の位置)に計測基準部を設け、計測基準部までの距離を測定することで、上記と同様に回転杭17の変動量を計測することができる。 The fluctuation amount measuring device 5 may be provided on the support plate 41, for example. In this case, the measurement reference unit is provided on the ground 91 separated from the support plate 41 (for example, the position of the fluctuation amount measuring device 5 in FIG. 7A), and the distance to the measurement reference unit is measured. The amount of fluctuation of the rotary pile 17 can be measured in the same manner as in the above.
(回転杭の施工方法の一例)
 次に、本実施形態における回転杭の施工方法の一例について、図8を参照して説明する。図8は、本実施形態における回転杭の施工方法の一例を示すフローチャートである。
(Example of construction method of rotating pile)
Next, an example of the construction method of the rotary pile in the present embodiment will be described with reference to FIG. FIG. 8 is a flowchart showing an example of the construction method of the rotary pile in the present embodiment.
 本実施形態における回転杭の施工方法は、回転圧入工程S100と、計測工程S110と、判断工程S120とを備え、例えば回転圧入工程S100を実施しながら、計測工程S110および判断工程S120を適宜繰り返し実施する。 The method for constructing a rotary pile in the present embodiment includes a rotary press-fitting step S100, a measuring step S110, and a determination step S120. For example, while performing the rotary press-fitting step S100, the measuring step S110 and the determining step S120 are appropriately repeated. To do.
 <回転圧入工程S100>
 回転圧入工程S100は、オーガーマシン15またはケーシングドライバー21により、回転杭17を把持し、らせん羽根16が設けられた先端部を地盤91に当接させる。その後、地盤91に対して回転杭17を回転圧入する。
<Rotary press-fitting process S100>
In the rotary press-fitting step S100, the rotary pile 17 is gripped by the auger machine 15 or the casing driver 21, and the tip portion provided with the spiral blade 16 is brought into contact with the ground 91. After that, the rotary pile 17 is rotationally press-fitted into the ground 91.
 <計測工程S110>
 計測工程S110は、地盤91に対して回転杭17を回転圧入中に、回転杭17における上載荷重を計測する。計測工程S110では、例えば上載荷重を周期的に計測する。上載荷重を計測する周期は、例えば1秒以上60秒以下の所定値であり、施工条件等に応じて任意に設定できる。上載荷重を計測する周期を短くした場合、回転杭17の状態を高精度にモニタリングできる。一方、上載荷重を計測する周期を長くした場合、蓄積されるデータ量を削減することができる。
<Measurement process S110>
In the measurement step S110, the loading load on the rotary pile 17 is measured while the rotary pile 17 is rotationally press-fitted into the ground 91. In the measurement step S110, for example, the loading load is periodically measured. The cycle for measuring the loading load is, for example, a predetermined value of 1 second or more and 60 seconds or less, and can be arbitrarily set according to the construction conditions and the like. When the cycle for measuring the loading load is shortened, the state of the rotating pile 17 can be monitored with high accuracy. On the other hand, when the cycle for measuring the loading load is lengthened, the amount of accumulated data can be reduced.
 特に、上載荷重を計測する周期として、10秒以下とすることで、回転杭17の中に堆積された土砂91aの傾向を容易に把握することができる。回転杭17の中における土砂91aの堆積量を推定する場合、上載荷重のゆるやかな増加傾向から推定するほか、上載荷重の突発的な変動により推定できることがある。この場合、10秒を超える計測周期に設定すると、上載荷重の突発的な変動が計測されず、土砂91aの閉塞を見逃す可能性が高まる。そのため、上載荷重を計測する周期は10秒以下が好ましい。 In particular, by setting the period for measuring the loading load to 10 seconds or less, the tendency of the sediment 91a deposited in the rotary pile 17 can be easily grasped. When estimating the amount of sediment 91a deposited in the rotating pile 17, it may be estimated from the gradual increasing tendency of the loading load, or from the sudden fluctuation of the loading load. In this case, if the measurement cycle is set to exceed 10 seconds, sudden fluctuations in the loading load are not measured, and the possibility of overlooking the blockage of the earth and sand 91a increases. Therefore, the period for measuring the loading load is preferably 10 seconds or less.
 <判断工程S120>
 次に、判断工程S120は、計測工程S110で得られた測定結果に基づき、回転杭17の中に堆積された土砂91aの詰まりを取るか否かを判断する。判断工程S120では、例えば予め設定された回転杭17の回転圧入の条件に関する基準杭情報を判断基準として参照し、回転杭17の中に堆積された土砂91aの詰まりを取るか否かを判断する。基準杭情報は、例えば上載荷重の絶対値、直前の値との差分値、または一定区間の積分値、平均値、もしくは標準偏差に基づく閾値や許容範囲等の管理値を示す。基準杭情報は、回転杭17の杭径、らせん羽根16の径、N値、地盤91の深度等に応じて、上載荷重の閾値等を任意に設定することができる。
<Judgment process S120>
Next, the determination step S120 determines whether or not to clear the clogging of the earth and sand 91a deposited in the rotary pile 17 based on the measurement result obtained in the measurement step S110. In the determination step S120, for example, the reference pile information regarding the condition of rotational press-fitting of the rotary pile 17 set in advance is referred to as a determination standard, and it is determined whether or not to clear the clogging of the earth and sand 91a deposited in the rotary pile 17. .. The reference pile information indicates, for example, the absolute value of the loaded load, the difference value from the immediately preceding value, the integrated value in a certain section, the average value, or the control value such as the threshold value or the allowable range based on the standard deviation. For the reference pile information, the threshold value of the loading load and the like can be arbitrarily set according to the pile diameter of the rotary pile 17, the diameter of the spiral blade 16, the N value, the depth of the ground 91, and the like.
 基準杭情報は、例えば過去に施工された回転杭17の回転圧入時における過去の計測結果を含んでもよい。この場合、判断工程S120は、過去の計測結果を含む基準杭情報と、計測工程S110における上載荷重の計測結果とを比較し、土砂91aの詰まりを取るか否かを判断する。このため、地盤91の特徴や施工実績等を踏まえた最適な判断を実施することができる。 The reference pile information may include, for example, the past measurement results at the time of rotational press-fitting of the rotary pile 17 constructed in the past. In this case, the determination step S120 compares the reference pile information including the past measurement result with the measurement result of the loading load in the measurement step S110, and determines whether or not to clear the clogging of the earth and sand 91a. Therefore, the optimum judgment can be made based on the characteristics of the ground 91, the construction results, and the like.
 <詰まり取り工程S121>
 回転杭の施工方法は、例えば図8(b)に示すように、詰まり取り工程S121を備えてもよい。詰まり取り工程S121は、判断工程S120において土砂91aの詰まりを取ると判断した場合に実施される。
<Clogging step S121>
As shown in FIG. 8B, for example, the method of constructing the rotary pile may include the clogging step S121. The clogging step S121 is carried out when it is determined in the determination step S120 that the earth and sand 91a is to be unclogging.
 詰まり取り工程S121では、例えば図2(b)に示したように、回転杭17を反転するように制御することで、回転杭17の中に堆積された土砂91aに対し、回転圧入方向と反対の力を生じさせ、回転杭17内の土砂91aの詰まりを取る。この場合、回転杭17の回転条件を制御するだけで、回転杭17の中に堆積された土砂91aの詰まりを取ることができるため、土砂91aの詰まり取りに費やす時間を短くすることができる。 In the clogging step S121, for example, as shown in FIG. 2B, by controlling the rotary pile 17 to be inverted, the sediment 91a deposited in the rotary pile 17 is opposed to the rotary press-fitting direction. To unclog the earth and sand 91a in the rotary pile 17. In this case, the clogging of the earth and sand 91a deposited in the rotary pile 17 can be cleared only by controlling the rotation condition of the rotary pile 17, so that the time spent for clogging of the earth and sand 91a can be shortened.
 上記のほか、詰まり取り工程S121では、例えば図9に示すように、採掘装置51を用いて回転杭17の中に堆積された土砂91aの少なくとも一部を撤去し、回転杭17内の土砂91aの詰まりを取ってもよい。採掘装置51として、例えばクレーン50等に吊り下げられたハンマーグラブが用いられる。この場合、例えば図9(b)に示すように、採掘装置51を用いて直接土砂91aを撤去するため、土砂91aの詰まりを確実に取ることができかつ、回転杭17内から撤去した土砂91aの量を把握することができる。 In addition to the above, in the clogging step S121, for example, as shown in FIG. 9, at least a part of the earth and sand 91a deposited in the rotary pile 17 is removed by using the mining device 51, and the earth and sand 91a in the rotary pile 17 is removed. You may unclog. As the mining device 51, for example, a hammer grab suspended from a crane 50 or the like is used. In this case, for example, as shown in FIG. 9B, since the earth and sand 91a is directly removed by using the mining device 51, the earth and sand 91a can be surely unclogging and the earth and sand 91a removed from the rotating pile 17 is removed. You can grasp the amount of.
 なお、例えば詰まり取り工程S121のあとに再び計測工程S110を実施する場合、当該詰まり取り工程S121の後に計測された上載荷重の計測結果と、当該詰まり取り工程S121の前に計測された上載荷重の計測結果とを比較することで、土砂91aの詰まりが取れたか否かを確認することができる。このような土砂91aの詰まりが取れた否かを確認する工程を、確認工程S123として回転杭の施工方法が備えてもよい。また、各計測結果の比較は、施工管理装置6により演算した結果を用いてもよい。 For example, when the measurement step S110 is performed again after the clogging step S121, the measurement result of the loading load measured after the clogging step S121 and the loading load measured before the clogging step S121 By comparing with the measurement result, it can be confirmed whether or not the clogging of the earth and sand 91a has been cleared. The rotary pile construction method may include a step of confirming whether or not the clogging of the earth and sand 91a is cleared as the confirmation step S123. Further, for the comparison of each measurement result, the result calculated by the construction management device 6 may be used.
 これにより、本実施形態における回転杭の施工方法が完了する。なお、図8(a)に示すように、判断工程S120を実施したあとに計測工程S110を再び実施し、必要に応じてこれら工程を繰り返し実施することで、任意の地盤91の深さに応じた回転杭17の貫入を実現することができる。特に、判断工程S120において土砂91aの詰まりを取らないと判断したあと、計測工程S110を再び実施することで、継続的に回転杭17の回転圧入を進めることができる。 This completes the method of constructing the rotary pile in this embodiment. As shown in FIG. 8A, after the determination step S120 is carried out, the measurement step S110 is carried out again, and these steps are repeatedly carried out as necessary according to the depth of the arbitrary ground 91. It is possible to realize the penetration of the rotating pile 17. In particular, by performing the measurement step S110 again after determining that the earth and sand 91a will not be clogged in the determination step S120, the rotary press-fitting of the rotary pile 17 can be continuously promoted.
 なお、回転杭の施工方法では、例えば移動工程S122をさらに備えてもよい。移動工程S122は、回転杭17を支持層92まで回転圧入したあと、採掘装置51を用いて撤去した土砂91aを、回転杭17の中に移動させる。具体的には、詰まり取り工程S121において撤去した土砂91aが、例えば図9(a)に示すように、地盤91上に仮置きされ、移動工程S122において回転杭17の中に移される。このため、施工現場の外への土砂91aの排出することを防ぐことができる。 In the method of constructing the rotary pile, for example, the moving step S122 may be further provided. In the moving step S122, after the rotary pile 17 is rotationally press-fitted to the support layer 92, the earth and sand 91a removed by the mining device 51 is moved into the rotary pile 17. Specifically, the earth and sand 91a removed in the clogging step S121 is temporarily placed on the ground 91, for example, as shown in FIG. 9A, and is transferred into the rotary pile 17 in the moving step S122. Therefore, it is possible to prevent the earth and sand 91a from being discharged to the outside of the construction site.
(回転杭の施工方法の第1変形例)
 次に、本実施形態における回転杭の施工方法の第1変形例について説明する。上述した回転杭の施工方法と、第1変形例との違いは、計測工程S110において、回転杭17の上載荷重以外を計測する点である。なお、上述した回転杭の施工方法と同様の構成については、説明を省略する。
(First modification of the rotating pile construction method)
Next, a first modification of the method of constructing a rotary pile in this embodiment will be described. The difference between the above-mentioned construction method of the rotary pile and the first modification is that in the measurement step S110, the load other than the load on the rotary pile 17 is measured. The description of the same configuration as the above-described rotary pile construction method will be omitted.
 計測工程S110では、例えば上載荷重のほか、回転杭17の回転角、回転杭17の貫入量、回転杭17の回転トルク、および回転杭17の変動量の少なくとも何れかを杭情報として計測してもよい。計測工程S110では、回転杭17の回転角、回転杭17の貫入量、および回転杭17の回転トルクのそれぞれは、例えば上述した回転角計測機2、貫入量計測機3、および回転トルク計測機4を用いて計測される。 In the measurement step S110, for example, in addition to the loading load, at least one of the rotation angle of the rotary pile 17, the penetration amount of the rotary pile 17, the rotational torque of the rotary pile 17, and the fluctuation amount of the rotary pile 17 is measured as pile information. May be good. In the measurement step S110, the rotation angle of the rotary pile 17, the penetration amount of the rotary pile 17, and the rotational torque of the rotary pile 17 are, for example, the above-mentioned rotation angle measuring machine 2, the penetration amount measuring machine 3, and the rotating torque measuring machine. It is measured using 4.
 計測工程S110において回転杭17の変動量を計測する場合、例えば変動量計測機5を用いて、回転杭17から変動量を計測する。この場合、例えば支持板41の位置ずれの量を、回転杭17の変動量として計測する。また、計測工程S110では、変動量計測機5に代えて、例えば定規、ゲージ等の計測工具を用いて変動量を計測してもよい。この場合、例えば作業者が計測工具を用いて、支持板41の初期値からの位置ずれの量を測定することで、回転杭17の変動量が計測される。例えば作業者が測定した値を施工管理装置6に入力することで、変動量が計測されてもよい。 When measuring the fluctuation amount of the rotary pile 17 in the measurement step S110, the fluctuation amount is measured from the rotary pile 17 using, for example, the fluctuation amount measuring device 5. In this case, for example, the amount of misalignment of the support plate 41 is measured as the amount of fluctuation of the rotating pile 17. Further, in the measurement step S110, the fluctuation amount may be measured by using a measuring tool such as a ruler or a gauge instead of the fluctuation amount measuring machine 5. In this case, for example, the operator uses a measuring tool to measure the amount of displacement of the support plate 41 from the initial value, so that the amount of fluctuation of the rotary pile 17 is measured. For example, the amount of fluctuation may be measured by inputting the value measured by the operator into the construction management device 6.
 作業者が計測工具を用いて位置ずれの量を測定することで、変動量計測機5を設置できない場所でも円滑に計測工程S110を実施することができる。なお、例えば持ち運び可能な小型の変動量計測機5を用いて、作業者が測定し、回転杭17の変動量を計測してもよい。 By measuring the amount of misalignment using a measuring tool, the operator can smoothly carry out the measurement process S110 even in a place where the fluctuation amount measuring machine 5 cannot be installed. In addition, for example, a portable small fluctuation amount measuring device 5 may be used by an operator to measure the fluctuation amount of the rotary pile 17.
 判断工程S120は、例えば図10に示すように、上述した基準杭情報と、変動量等の計測結果(杭情報)とを比較して、正常または異常の判断をすることを含んでもよい。この場合、判断結果に基づき、回転杭17の回転圧入の条件を制御する。また、回転杭17の回転圧入の条件を踏まえることで、回転杭17の中に堆積された土砂91aの詰まりを取るか否かの判定精度を向上させることができる。 The determination step S120 may include, for example, as shown in FIG. 10, comparing the above-mentioned reference pile information with the measurement result (pile information) such as the amount of fluctuation to determine normality or abnormality. In this case, the condition of rotary press-fitting of the rotary pile 17 is controlled based on the determination result. Further, by considering the condition of the rotary press-fitting of the rotary pile 17, it is possible to improve the accuracy of determining whether or not the earth and sand 91a deposited in the rotary pile 17 is unclogging.
 判断工程S120では、例えば変動量等が、基準杭情報に含まれる閾値を超えた場合、回転トルクの低減、または反転するように条件を設定する。なお、上述した「回転杭17の回転圧入の条件を制御」とは、杭情報に基づき、回転杭17を回転圧入する条件の変更を実施する場合のほか、条件の変更を実施しないで回転圧入を進める場合や、回転圧入を停止する場合も含む。 In the determination step S120, conditions are set so that the rotational torque is reduced or reversed when, for example, the amount of fluctuation exceeds the threshold value included in the reference pile information. The above-mentioned "controlling the conditions for rotational press-fitting of the rotary pile 17" means that the conditions for rotationally press-fitting the rotary pile 17 are changed based on the pile information, and that the rotary press-fitting is performed without changing the conditions. This includes the case of advancing and the case of stopping the rotary press-fitting.
 判断工程S120において、基準杭情報と、変動量等とを比較する方法として、例えば施工管理装置6により基準杭情報と、変動量等との比較が実行され、変動量等を正常または異常に分類した結果がモニタ画面6bに表示される。このとき、作業者が確実に認識できるように、アラートを表示してもよく、例えば音を発するようにしてもよい。このほか、例えば作業者が正常または異常を最終的に判断してもよい。モニタ画面6bに表示された計測結果または比較した結果から、作業者が正常と判断した場合、回転杭17の回転圧入の条件を制御した上で計測工程S110を実施、または施工を終了する。 In the determination step S120, as a method of comparing the reference pile information and the fluctuation amount, for example, the construction management device 6 executes a comparison between the reference pile information and the fluctuation amount, etc., and classifies the fluctuation amount, etc. as normal or abnormal. The result is displayed on the monitor screen 6b. At this time, an alert may be displayed, for example, a sound may be emitted so that the operator can be surely recognized. In addition, for example, the operator may finally determine whether it is normal or abnormal. When the operator determines that the measurement result or the comparison result displayed on the monitor screen 6b is normal, the measurement step S110 is performed or the construction is completed after controlling the conditions for rotational press-fitting of the rotary pile 17.
 第1変形例では、例えば確認工程S123をさらに備えてもよい。確認工程S123は、判断工程S120において変動量等を異常と判断した場合、回転杭17の状態を確認する。このとき、例えば回転杭17の回転を停止した上で、回転杭17の状態を確認する。 In the first modification, for example, the confirmation step S123 may be further provided. The confirmation step S123 confirms the state of the rotary pile 17 when it is determined in the determination step S120 that the amount of fluctuation or the like is abnormal. At this time, for example, after stopping the rotation of the rotary pile 17, the state of the rotary pile 17 is confirmed.
 <基準杭情報>
 次に、第1変形例における基準杭情報の一例について、図11を参照して説明する。
<Reference pile information>
Next, an example of the reference pile information in the first modification will be described with reference to FIG.
 基準杭情報として、例えば図11に示すように、らせん羽根16のピッチPに対する回転杭17の1回転当りの貫入量Sの許容範囲が含まれてもよい。この場合、計測工程S110により計測された杭情報に含まれる回転角と、貫入量とを用いて、1回転当りの貫入量Sを算出する。そして、算出した1回転当りの貫入量Sと、基準杭情報の1回転当りの貫入量Sの許容範囲とを比較し、比較結果に基づき上載荷重Nを制御する。なお、一回転当りの貫入量Sの算出は、施工管理装置6によって算出されるほか、作業者が算出してもよい。 As the reference pile information, for example, as shown in FIG. 11, the permissible range of the penetration amount S per rotation of the rotary pile 17 with respect to the pitch P of the spiral blade 16 may be included. In this case, the penetration amount S per rotation is calculated by using the rotation angle included in the pile information measured by the measurement step S110 and the penetration amount. Then, the calculated penetration amount S per rotation is compared with the permissible range of the penetration amount S per rotation of the reference pile information, and the loading load N is controlled based on the comparison result. The intrusion amount S per rotation is calculated by the construction management device 6 or may be calculated by the operator.
 例えば、算出した1回転当りの貫入量Sが、基準杭情報に設定された1回転当りの貫入量Sよりも大きい場合、上載荷重Nを減少させることで、次に計測された回転角と、貫入量とを用いて算出する1回転当りの貫入量Sを、基準杭情報に設定された1回転当りの貫入量Sに近づけることができる。これにより、例えばらせん羽根16に無理な荷重が作用せず、また回転杭17における先端部の土砂91aを乱さずに、効率よく施工を実施することが可能となる。 For example, when the calculated penetration amount S per rotation is larger than the penetration amount S per rotation set in the reference pile information, the load N is reduced to obtain the next measured rotation angle. The penetration amount S per rotation calculated by using the penetration amount can be brought close to the penetration amount S per rotation set in the reference pile information. As a result, for example, an unreasonable load does not act on the spiral blade 16 and the earth and sand 91a at the tip of the rotary pile 17 is not disturbed, so that the construction can be carried out efficiently.
(回転杭の施工方法の第2変形例)
 次に、本実施形態における回転杭の施工方法の第2変形例について説明する。上述した回転杭の施工方法と、第2変形例との違いは、回転杭の中に堆積された土砂91aの堆積量を直接計測する点である。なお、上述した回転杭の施工方法と同様の構成については、説明を省略する。
(Second modification of the rotating pile construction method)
Next, a second modification of the method of constructing a rotary pile in this embodiment will be described. The difference between the above-mentioned construction method of the rotary pile and the second modification is that the amount of sediment 91a deposited in the rotary pile is directly measured. The description of the same configuration as the above-described rotary pile construction method will be omitted.
 計測工程S110では、例えば上載荷重のほか、土砂91aの堆積量を計測することを含んでもよい。土砂91aの堆積量は、例えば図12に示す距離計18を用いて計測される。 In the measurement step S110, for example, in addition to the loading load, the amount of sediment 91a deposited may be measured. The amount of sediment 91a deposited is measured using, for example, the distance meter 18 shown in FIG.
 計測工程S110では、例えば図12(a)に示すように、距離計18として光波距離計81が用いられる。この場合、例えば回転圧入工程S100において、回転杭17の上方に脱着可能に設けたクランプ83に光波距離計81を固定して取り付ける。これにより、光波距離計81から発振される光波ビーム84を測定することで、回転杭17の土砂91a上面までの距離を非接触で測定することができ、土砂91aの堆積量を計測することができる。距離計18として用いる光波距離計81には、任意のレーザー距離計を用いることができる。 In the measurement step S110, for example, as shown in FIG. 12A, a light wave distance meter 81 is used as the distance meter 18. In this case, for example, in the rotary press-fitting step S100, the light wave distance meter 81 is fixedly attached to the clamp 83 provided above the rotary pile 17 so as to be removable. As a result, by measuring the light wave beam 84 oscillated from the light wave rangefinder 81, the distance of the rotating pile 17 to the upper surface of the earth and sand 91a can be measured in a non-contact manner, and the amount of sediment 91a deposited can be measured. it can. Any laser rangefinder can be used as the light wave rangefinder 81 used as the rangefinder 18.
 計測工程S110において土砂91aの堆積量を計測することで、判断工程S120の補助として利用することができる。計測工程S110において、例えば計測する土砂91aの堆積量の経時変化に基づき、判断工程S120における判断を実施してもよい。例えば計測工程S110において、事前に計測された土砂91aの堆積量と比べて変化がないとき、回転杭17の中に土砂91aが詰まっていると推定できる。この場合、判断工程S120では、回転杭17の中に堆積された土砂91aの詰まりを取ると判断することができる。このように、計測する土砂91aの堆積量の経時変化に基づき、判断工程S120における判断を実施することで、施工条件が異なる場合においても定量的に判断することが可能となる。なお、「事前に計測された土砂91aの堆積量」は、直前における計測結果のほか、例えば所定時間以前における計測結果でもよく、状況に応じて任意に設定することができる。 By measuring the amount of sediment 91a accumulated in the measurement step S110, it can be used as an aid to the determination step S120. In the measurement step S110, for example, the determination in the determination step S120 may be performed based on the time course of the accumulated amount of the earth and sand 91a to be measured. For example, in the measurement step S110, when there is no change in the amount of sediment 91a measured in advance, it can be estimated that the rotary pile 17 is clogged with sediment 91a. In this case, in the determination step S120, it can be determined that the earth and sand 91a deposited in the rotary pile 17 is unclogging. In this way, by carrying out the determination in the determination step S120 based on the time-dependent change in the amount of sediment 91a to be measured, it is possible to make a quantitative determination even when the construction conditions are different. The "pre-measured sedimentation amount of earth and sand 91a" may be, for example, a measurement result before a predetermined time in addition to the measurement result immediately before, and can be arbitrarily set according to the situation.
 特に、上述した詰まり取り工程S121を実施したあとの確認工程S123において堆積量を計測することで、回転杭17の中における土砂91aの詰まりが取れたか否かをより確実に判断することができる。なお、確認工程S123では、例えば図12(b)に示すように、距離計18として、検尺ロープ86に重り85を取り付けたものが用いられてもよい。この場合、重り85を土砂91a上面に載置し、検尺ロープ86の延在する長さを測定することで、土砂91aの堆積量を計測することができる。 In particular, by measuring the amount of deposit in the confirmation step S123 after the above-mentioned clogging step S121 is carried out, it is possible to more reliably determine whether or not the earth and sand 91a in the rotary pile 17 has been unclogging. In the confirmation step S123, for example, as shown in FIG. 12B, a rangefinder 18 with a weight 85 attached to the measuring rope 86 may be used. In this case, the amount of sediment 91a deposited can be measured by placing the weight 85 on the upper surface of the sediment 91a and measuring the extending length of the measuring rope 86.
(施工記録)
 次に、本実施形態における回転杭の施工方法に利用される施工記録の一例について、図13を参照して説明する。図13は、地盤91のN値、回転杭17の回転トルク、回転杭17の貫入量、および回転杭17の上載荷重のそれぞれが、地盤91の深度毎にプロットされた施工記録の一例を示すグラフである。図13では、硬質地盤93に相当する領域を第1領域R1および第2領域R2で示し、支持層92の上面に相当する位置を位置D1で示している。
(Construction record)
Next, an example of the construction record used in the construction method of the rotary pile in the present embodiment will be described with reference to FIG. FIG. 13 shows an example of a construction record in which the N value of the ground 91, the rotational torque of the rotary pile 17, the penetration amount of the rotary pile 17, and the loading load of the rotary pile 17 are plotted for each depth of the ground 91. It is a graph. In FIG. 13, the region corresponding to the hard ground 93 is indicated by the first region R1 and the second region R2, and the position corresponding to the upper surface of the support layer 92 is indicated by the position D1.
 上載荷重は、深度が大きく(深くなる)につれて、大きくなる傾向を示す。また、回転杭17が各領域R1、R2内を回転圧入したとき、上載荷重の急上昇点P1、P2を検出する。そして、計測工程S110を実施し、急上昇点P1、P2を計測した場合に、判断工程S120において「土砂91aの詰まりを取る」と判断する。また、各領域R1、R2内を回転圧入したとき、回転杭17の回転トルクが大きくなる傾向を示す。このため、上載荷重に加えて回転トルクを計測することで、判断工程S120における判断の補助指標として利用することができる。 The loading load tends to increase as the depth increases (becomes deeper). Further, when the rotary pile 17 is rotationally press-fitted in the respective regions R1 and R2, the sudden rise points P1 and P2 of the loading load are detected. Then, when the measurement step S110 is carried out and the sudden rise points P1 and P2 are measured, it is determined in the determination step S120 that "the clogging of the earth and sand 91a is removed". Further, when the insides of the regions R1 and R2 are rotationally press-fitted, the rotational torque of the rotary pile 17 tends to increase. Therefore, by measuring the rotational torque in addition to the loading load, it can be used as an auxiliary index for the judgment in the judgment step S120.
 急上昇点P1、P2としては、例えば、判断対象とする時点よりも前に計測工程S110において計測された上載荷重の平均値に対し、判断対象とする時点での計測工程S110における上載荷重の計測値が2倍以上である場合、当該計測値を急上昇点と判断してもよい。 As the sudden rise points P1 and P2, for example, the measured value of the loading load in the measuring process S110 at the time of the judgment target is compared with the average value of the loading load measured in the measuring step S110 before the time of the judgment target. If is more than twice, the measured value may be determined as a sudden rise point.
 なお、例えば判断工程S120において、施工管理装置6が判断の補助を実行してもよい。即ち、施工管理装置6は、土砂91aの詰まりを取る必要があると判定した場合や、変動量等を異常と判定した場合、作業者に異常を報知する報知情報(例えばアラート)をモニタ画面6bに表示してもよい。これにより、作業者は、常にモニタ画面6bを確認する必要がなく、作業性の向上を図ることが可能となる。また、作業者毎の主観的な判断基準のばらつきを抑制することができる。これにより、作業者の作業習熟度等に寄らず、回転杭17の中に土砂91aが詰まること等を防止することが可能となる。 Note that, for example, in the determination step S120, the construction management device 6 may execute the determination assistance. That is, when the construction management device 6 determines that it is necessary to clear the clogging of the earth and sand 91a, or when it determines that the amount of fluctuation or the like is abnormal, the construction management device 6 provides notification information (for example, an alert) for notifying the operator of the abnormality on the monitor screen 6b. It may be displayed in. As a result, the operator does not have to constantly check the monitor screen 6b, and the workability can be improved. In addition, it is possible to suppress variations in subjective judgment criteria for each worker. As a result, it is possible to prevent the earth and sand 91a from being clogged in the rotary pile 17 regardless of the work proficiency of the operator.
 本実施形態における回転杭の施工方法によれば、計測工程S110は、地盤91に対して回転杭17を回転圧入中に、回転杭17の上載荷重を計測する。判断工程S120は、計測工程S110での計測結果に基づき、回転杭17の中に堆積された土砂91aの詰まりを取るか否かを判断する。すなわち、作業者は、計測された上載荷重に基づき、回転圧入中の回転杭17の中に堆積された土砂91aの詰まりを取るか否かを判断することができ、回転杭17を地盤91に回転圧入する際に、回転杭17の中に土砂91aが詰まることを防ぐことが可能となる。 According to the method of constructing the rotary pile in the present embodiment, the measurement step S110 measures the load on the rotary pile 17 while the rotary pile 17 is rotationally press-fitted into the ground 91. The determination step S120 determines whether or not to unclog the earth and sand 91a deposited in the rotary pile 17 based on the measurement result in the measurement step S110. That is, the operator can determine whether or not to unclog the earth and sand 91a accumulated in the rotary pile 17 during rotary press-fitting based on the measured loading load, and the rotary pile 17 is placed on the ground 91. It is possible to prevent the earth and sand 91a from being clogged in the rotary pile 17 when the rotary press-fitting is performed.
 また、本実施形態における回転杭の施工方法によれば、計測工程S110は、回転杭17の回転トルクおよび貫入量の少なくとも何れかを計測することを含む。このため、回転杭17の回転圧入の状態を踏まえた上で、判断工程S120を実施することができ、判断工程S120における判定精度を向上させることが可能となる。 Further, according to the method of constructing the rotary pile in the present embodiment, the measurement step S110 includes measuring at least one of the rotary torque and the penetration amount of the rotary pile 17. Therefore, the determination step S120 can be performed based on the state of rotational press-fitting of the rotary pile 17, and the determination accuracy in the determination step S120 can be improved.
 また、本実施形態における回転杭の施工方法によれば、判断工程S120は、過去の計測結果と、計測工程S110における計測結果とを比較し、土砂91aの詰まりを取るか否かを判断する。このため、地盤91の特徴や施工実績等を踏まえた最適な判断を実施することができ、判定精度をさらに向上させることが可能となる。 Further, according to the construction method of the rotary pile in the present embodiment, the determination step S120 compares the past measurement result with the measurement result in the measurement step S110, and determines whether or not to clear the clogging of the earth and sand 91a. Therefore, the optimum judgment can be made based on the characteristics of the ground 91, the construction results, and the like, and the judgment accuracy can be further improved.
 また、本実施形態における回転杭の施工方法によれば、詰まり取り工程S121は、判断工程S120において土砂91aの詰まりを取ると判断した場合、回転杭17を反転するように制御し、土砂91aの詰まりを取る。このため、上載荷重に対する回転杭17を反転するタイミングや反転時間等を、データとして残すことができる。これにより、施工条件の詳細をデータとして蓄積でき、今後の施工に利用することが可能となる。 Further, according to the method of constructing the rotary pile in the present embodiment, when the clogging step S121 determines in the determination step S120 to clear the clogging of the earth and sand 91a, the rotary pile 17 is controlled to be inverted, and the earth and sand 91a is controlled. Unclogging. Therefore, the timing of reversing the rotary pile 17 with respect to the loading load, the reversing time, and the like can be left as data. As a result, the details of the construction conditions can be accumulated as data and can be used for future construction.
 また、本実施形態における回転杭の施工方法によれば、詰まり取り工程S121は、判断工程S120において土砂91aの詰まりを取ると判断した場合、採掘装置51を用いて土砂91aを撤去し、土砂91aの詰まりを取る。このため、土砂91aの詰まりをより確実に取ることができかつ、回転杭17内から撤去された土砂91aの量を把握することができる。 Further, according to the method of constructing the rotary pile in the present embodiment, when it is determined in the determination step S120 that the earth and sand 91a is to be unclogging, the earth and sand 91a is removed by using the mining device 51, and the earth and sand 91a is removed. Unclogging. Therefore, the clogging of the earth and sand 91a can be more reliably removed, and the amount of the earth and sand 91a removed from the rotating pile 17 can be grasped.
 また、本実施形態における回転杭の施工方法によれば、移動工程S122では、回転杭17を支持層92まで回転圧入したあと、撤去した土砂91aを回転杭17の中に移動させる。このため、施工現場の外へ土砂91aを排出することを防ぐことができる。これにより、施工現場の外への土砂91aの排出に必要な工数やコストを削減することが可能となる。 Further, according to the method of constructing the rotary pile in the present embodiment, in the moving step S122, the rotary pile 17 is rotationally press-fitted to the support layer 92, and then the removed earth and sand 91a is moved into the rotary pile 17. Therefore, it is possible to prevent the earth and sand 91a from being discharged to the outside of the construction site. As a result, it is possible to reduce the man-hours and costs required for discharging the earth and sand 91a to the outside of the construction site.
 また、本実施形態における回転杭の施工方法によれば、計測工程S110は、回転杭17の中に堆積された土砂91aの堆積量を計測する。このため、例えば回転杭17の回転圧入に伴い精度が低下する光波距離計81等を用いた場合においても、判断工程S120の補助として利用することができる。これにより、回転杭17の中に堆積された土砂91aの詰まりの判定精度をさらに向上させることが可能となる。 Further, according to the construction method of the rotary pile in the present embodiment, the measurement step S110 measures the amount of sediment 91a deposited in the rotary pile 17. Therefore, for example, even when a light wave range finder 81 or the like whose accuracy decreases due to rotational press-fitting of the rotary pile 17 is used, it can be used as an auxiliary in the determination step S120. This makes it possible to further improve the accuracy of determining the clogging of the earth and sand 91a deposited in the rotary pile 17.
 また、本実施形態における回転杭の施工方法によれば、確認工程S123は、詰まり取り工程S121のあと、堆積量を計測し、土砂91aの詰まりが取れたか否かを確認する。これにより、詰まり取り工程S121によって土砂91aの詰まりが取れたかをより正確に判断することができる。 Further, according to the construction method of the rotary pile in the present embodiment, in the confirmation step S123, after the clogging step S121, the accumulated amount is measured and it is confirmed whether or not the clogging of the earth and sand 91a is cleared. As a result, it is possible to more accurately determine whether or not the earth and sand 91a has been unclogging by the clogging step S121.
 また、本実施形態における回転杭17によれば、上述した回転杭の施工方法により、地盤91の支持層92まで貫入される。このため、回転圧入中における土砂91aの詰まりを防止した状態で施工された回転杭17を実現することが可能となる。 Further, according to the rotary pile 17 in the present embodiment, the rotary pile 17 is penetrated to the support layer 92 of the ground 91 by the above-mentioned construction method of the rotary pile. Therefore, it is possible to realize the rotary pile 17 constructed in a state where the clogging of the earth and sand 91a during the rotary press-fitting is prevented.
 なお、回転杭17が支持層92まで貫入され、回転杭17が打ち止めされた状態(回転杭17が支持層92の所定の深度まで貫入され、回転杭17の施工が完了した状態)では、回転杭17の内部に土砂91aが詰まっていることが好ましい。この場合、詰まった土砂91aにより支持力が得られるため、回転杭17の安定性が向上する。なお、このような回転杭17を得るためには、本実施形態における回転杭の施工方法により回転杭17を支持層92の所定の深度まで貫入した後に、例えば回転杭17の内部に土砂を入れて、詰まりを生じさせてもよい。また、回転杭17が打ち止めされた状態において、少なくとも杭先端から上方へ杭径以上の厚さで土砂91aが回転杭17の内部に詰まっていることがより好ましい。 In the state where the rotary pile 17 is penetrated to the support layer 92 and the rotary pile 17 is stopped (the rotary pile 17 is penetrated to a predetermined depth of the support layer 92 and the construction of the rotary pile 17 is completed), the rotation is rotated. It is preferable that the inside of the pile 17 is clogged with earth and sand 91a. In this case, since the bearing capacity is obtained by the clogged earth and sand 91a, the stability of the rotary pile 17 is improved. In order to obtain such a rotary pile 17, for example, after the rotary pile 17 is penetrated to a predetermined depth of the support layer 92 by the method of constructing the rotary pile in the present embodiment, earth and sand are put inside the rotary pile 17. May cause clogging. Further, it is more preferable that the earth and sand 91a is clogged inside the rotary pile 17 with a thickness equal to or larger than the pile diameter at least upward from the tip of the pile when the rotary pile 17 is stopped.
 なお、上述した施工管理装置6として、パーソナルコンピュータ等の電子機器が用いられる。施工管理装置6は、例えばCPU(Central Processing Unit)と、ROM(Read Only Memory)と、RAM(Random Access Memory)と、保存部と、I/Fと、キーボード6aと、モニタ画面6bとを備え、各構成が内部バスに接続される公知の電子機器である。作業者は、キーボード6aを介して、各種情報または施工管理装置6の制御コマンド等を入力または選択することができる。作業者は、例えば液晶ディスプレイ等のモニタ画面6bを介して、各種情報を認識することができる。 An electronic device such as a personal computer is used as the construction management device 6 described above. The construction management device 6 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a storage unit, an I / F, a keyboard 6a, and a monitor screen 6b. , Each configuration is a known electronic device connected to an internal bus. The operator can input or select various information or control commands of the construction management device 6 via the keyboard 6a. The operator can recognize various information via a monitor screen 6b such as a liquid crystal display.
 CPUは、施工管理装置6全体を制御する。ROMは、CPUの動作コードを格納する。RAMは、CPUの動作時に使用される作業領域である。保存部は、杭情報や基本杭情報等の各種情報が保存される。保存部には、例えば予め基準杭情報等が保存される。保存部として、例えばHDD(Hard Disk Drive)や、SSD(solid state drive)等の公知の記憶媒体が用いられる。施工管理装置6により実行される各機能は、CPUが、RAMを作業領域として、保存部等に記憶されたプログラムを実行することにより実現される。 The CPU controls the entire construction management device 6. The ROM stores the operation code of the CPU. RAM is a work area used when the CPU operates. Various information such as pile information and basic pile information is stored in the storage unit. For example, reference pile information and the like are stored in advance in the storage unit. As the storage unit, for example, a known storage medium such as an HDD (Hard Disk Drive) or an SSD (solid state drive) is used. Each function executed by the construction management device 6 is realized by the CPU executing a program stored in a storage unit or the like using the RAM as a work area.
 以上、本発明の実施形態の例について詳細に説明したが、上述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならない。 Although the examples of the embodiments of the present invention have been described in detail above, the above-described embodiments are merely examples of the embodiment of the present invention, and the technical aspects of the present invention are based on these. The scope should not be construed in a limited way.
1    :上載荷重計測機
1a   :ロードセル
2    :回転角計測機
2a   :磁気反応近接スイッチ
2b   :金属片
3    :貫入量計測機
3a   :ワイヤロープ
3b   :エンコーダ
3c   :ストロークセンサ
4    :回転トルク計測機
4a   :オーガー電流計
5    :変動量計測機
5a   :ロードセル
6    :施工管理装置
6a   :キーボード
6b   :モニタ画面
6c   :プリンタ
7    :データ変換器
8    :インターフェースボックス
9    :データ入力部
10   :杭打ち機リーダー
11   :無限軌道体
12   :旋回支持台
13   :杭打ち機本体
14   :傾斜支持アーム
15   :オーガーマシン
15a  :本体部
15b  :非回転枠材
15c  :回転体
16   :らせん羽根
17   :回転杭
18   :距離計
19   :運転室
21   :ケーシングドライバー
21a  :クローラークレーン
21b  :反力バー
22   :旋回リング
23   :油圧モーター
24   :圧入用油圧ジャッキ
24a  :シリンダー
25   :把持部
26   :台座
27   :非回転枠材
28   :歯車機構
29   :軸受け機構
30   :ハンドル
41   :支持板
50   :クレーン
51   :採掘装置
81   :光波距離計
83   :クランプ
84   :光波ビーム
85   :重り
86   :検尺ロープ
91   :地盤
91a  :土砂
92   :支持層
93   :硬質地盤
100  :施工管理システム
S100 :回転圧入工程
S110 :計測工程
S120 :判断工程
S121 :詰まり取り工程
S122 :移動工程
S123 :確認工程
X    :杭軸直交方向
W    :杭周方向
Z    :杭軸方向
1: Load measuring machine 1a: Load cell 2: Rotation angle measuring machine 2a: Magnetic reaction proximity switch 2b: Metal piece 3: Penetration amount measuring machine 3a: Wire rope 3b: Encoder 3c: Stroke sensor 4: Rotation torque measuring machine 4a: Auger current meter 5: Fluctuation amount measuring machine 5a: Load cell 6: Construction management device 6a: Keyboard 6b: Monitor screen 6c: Printer 7: Data converter 8: Interface box 9: Data input unit 10: Pile driver reader 11: Infinite Orbital body 12: Swivel support base 13: Pile driver main body 14: Inclined support arm 15: Auger machine 15a: Main body 15b: Non-rotating frame material 15c: Rotating body 16: Spiral blade 17: Rotating pile 18: Distance meter 19: Driver's cab 21: Casing driver 21a: Crawler crane 21b: Reaction force bar 22: Swing ring 23: Hydraulic motor 24: Hydraulic jack for press fitting 24a: Cylinder 25: Grip part 26: Pedestal 27: Non-rotating frame material 28: Gear mechanism 29 : Bearing mechanism 30: Handle 41: Support plate 50: Crane 51: Mining device 81: Light wave distance meter 83: Clamp 84: Light wave beam 85: Weight 86: Measuring rope 91: Ground 91a: Earth and sand 92: Support layer 93: Hard Ground 100: Construction management system S100: Rotational press-fitting process S110: Measurement process S120: Judgment process S121: Clog clearing process S122: Moving process S123: Confirmation process X: Pile axis orthogonal direction W: Pile circumferential direction Z: Pile axis direction

Claims (12)

  1.  羽根を設けた回転杭を、地盤に貫入する施工方法であって、
     前記地盤に対して前記回転杭を回転圧入中に、前記回転杭における上載荷重を計測する計測工程と、
     前記計測工程で得られた上載荷重の計測結果に基づき、前記回転杭の中に堆積された土砂の詰まりを取るか否かを判断する判断工程と、
     を備える
     ことを特徴とする回転杭の施工方法。
    It is a construction method that penetrates a rotating pile with blades into the ground.
    A measurement process for measuring the load on the rotary pile while the rotary pile is rotationally press-fitted into the ground.
    Based on the measurement result of the loading load obtained in the measurement step, a judgment step of determining whether or not to clear the clogging of the earth and sand accumulated in the rotary pile, and a judgment step.
    A method of constructing a rotating pile, which is characterized by being equipped with.
  2.  前記計測工程は、前記回転杭の回転トルクおよび貫入量の少なくとも何れかを計測することを含む
     ことを特徴とする請求項1記載の回転杭の施工方法。
    The method for constructing a rotary pile according to claim 1, wherein the measurement step includes measuring at least one of the rotational torque and the penetration amount of the rotary pile.
  3.  前記判断工程は、過去に施工された前記回転杭の回転圧入時における過去の計測結果と、前記計測工程で得られた前記計測結果とを比較し、前記土砂の詰まりを取るか否かを判断することを含む
     ことを特徴とする請求項1または2記載の回転杭の施工方法。
    In the determination step, the past measurement result at the time of rotational press-fitting of the rotary pile constructed in the past is compared with the measurement result obtained in the measurement step, and it is determined whether or not to clear the clogging of the earth and sand. The method for constructing a rotary pile according to claim 1 or 2, wherein the rotary pile is constructed.
  4.  前記回転杭を回転圧入する途中に、前記回転杭を反転して引抜き方向へ移動させる工程、及び、反転中に前記回転杭における上載荷重を計測する工程を含み、反転中の上載荷重の計測結果に基づき、前記回転杭の中に堆積された土砂の詰まりが解消されたか否かを判断することを含む
    ことを特徴とする請求項1~3のいずれか1項に記載の回転杭の施工方法。
    A step of reversing the rotary pile and moving it in the pulling direction during the rotational press-fitting of the rotary pile, and a step of measuring the loading load on the rotating pile during the reversing are included, and the measurement result of the loading load during the reversal. The method for constructing a rotary pile according to any one of claims 1 to 3, wherein it is determined whether or not the clogging of the earth and sand accumulated in the rotary pile is cleared based on the above. ..
  5.  前記回転杭を反転して回転させる工程は、前記判断工程において前記土砂の詰まりを取ると判断した場合に行う
     ことを特徴とする請求項4に記載の回転杭の施工方法。
    The method for constructing a rotary pile according to claim 4, wherein the step of reversing and rotating the rotary pile is performed when it is determined in the determination step that the clogging of the earth and sand is to be removed.
  6.  前記判断工程において前記土砂の詰まりを取ると判断した場合、採掘装置を用いて前記土砂の少なくとも一部を撤去し、前記土砂の詰まりを取る詰まり取り工程をさらに備える
     ことを特徴とする請求項1~3の何れか1項記載の回転杭の施工方法。
    Claim 1 is characterized in that, when it is determined in the determination step that the clogging of the earth and sand is to be cleared, at least a part of the earth and sand is removed by using a mining device, and a clogging step of removing the clogging of the earth and sand is further provided. The method for constructing a rotary pile according to any one of 3 to 3.
  7.  前記回転杭を支持層まで回転圧入したあと、前記採掘装置を用いて撤去した前記土砂を、前記回転杭の中に移動させる移動工程をさらに備える
     ことを特徴とする請求項6記載の回転杭の施工方法。
    The rotary pile according to claim 6, further comprising a moving step of rotationally press-fitting the rotary pile to the support layer and then moving the earth and sand removed by the mining device into the rotary pile. Construction method.
  8.  前記計測工程は、前記回転杭の中に堆積された前記土砂の堆積量を計測することを含む
     ことを特徴とする請求項5~7の何れか1項記載の回転杭の施工方法。
    The method for constructing a rotary pile according to any one of claims 5 to 7, wherein the measurement step includes measuring the amount of the earth and sand deposited in the rotary pile.
  9.  前記詰まり取り工程のあと、前記堆積量を計測して前記土砂の詰まりが取れたか否かを確認する確認工程をさらに備える
     ことを特徴とする請求項8記載の回転杭の施工方法。
    The method for constructing a rotary pile according to claim 8, further comprising a confirmation step of measuring the accumulated amount and confirming whether or not the clogging of the earth and sand has been cleared after the clogging step.
  10.  請求項1~9の何れか1項記載の回転杭の施工方法により、前記地盤の支持層まで貫入された回転杭を複数含む杭群を製造する
     ことを特徴とする杭群の製造方法。
    A method for manufacturing a pile group, which comprises manufacturing a pile group including a plurality of rotary piles penetrating to the support layer of the ground by the method for constructing a rotary pile according to any one of claims 1 to 9.
  11.  請求項10に記載の杭群の製造方法により製造された、前記地盤の支持層まで貫入された回転杭を複数含む
     ことを特徴とする杭群。
    A pile group manufactured by the method for manufacturing a pile group according to claim 10, wherein a plurality of rotary piles penetrating to the support layer of the ground are included.
  12.  前記地盤の支持層で打ち止められた状態において、土砂が前記回転杭の内部に詰まっている
     ことを特徴とする請求項11記載の杭群。
    The pile group according to claim 11, wherein the earth and sand are clogged inside the rotary pile in a state of being stopped by the support layer of the ground.
PCT/JP2020/017827 2019-04-24 2020-04-24 Rotary pile construction method, pile group manufacturing method, and pile group WO2020218573A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11202106109XA SG11202106109XA (en) 2019-04-24 2020-04-24 Method of installation of screwed pile, method of production of group of piles, and group of piles
JP2021516300A JP7020589B2 (en) 2019-04-24 2020-04-24 Construction method of rotating piles, manufacturing method of piles, and piles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019082729 2019-04-24
JP2019-082729 2019-04-24

Publications (1)

Publication Number Publication Date
WO2020218573A1 true WO2020218573A1 (en) 2020-10-29

Family

ID=72942073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017827 WO2020218573A1 (en) 2019-04-24 2020-04-24 Rotary pile construction method, pile group manufacturing method, and pile group

Country Status (3)

Country Link
JP (1) JP7020589B2 (en)
SG (1) SG11202106109XA (en)
WO (1) WO2020218573A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256359A (en) * 1996-03-26 1997-09-30 Chiyoda Koei Kk Steel pipe pile
JP2000230234A (en) * 1999-02-09 2000-08-22 Nippon Steel Corp Pipe earth measuring method in construction of open end steel pipe pile
JP2003213687A (en) * 2002-01-23 2003-07-30 Tokyo Electric Power Co Inc:The Excavating torque reduced press-in method of rotary press-in steel pipe pile
JP2004257044A (en) * 2003-02-25 2004-09-16 Nippon Steel Corp Inclination adjustable oblique pile work execution stand, oblique pile work execution device having this stand, and oblique pile work execution method using rotary press-fit steel pipe pile
JP2005113612A (en) * 2003-10-10 2005-04-28 Nippon Steel Corp Method for construction management of rotary press-in steel pipe pile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256359A (en) * 1996-03-26 1997-09-30 Chiyoda Koei Kk Steel pipe pile
JP2000230234A (en) * 1999-02-09 2000-08-22 Nippon Steel Corp Pipe earth measuring method in construction of open end steel pipe pile
JP2003213687A (en) * 2002-01-23 2003-07-30 Tokyo Electric Power Co Inc:The Excavating torque reduced press-in method of rotary press-in steel pipe pile
JP2004257044A (en) * 2003-02-25 2004-09-16 Nippon Steel Corp Inclination adjustable oblique pile work execution stand, oblique pile work execution device having this stand, and oblique pile work execution method using rotary press-fit steel pipe pile
JP2005113612A (en) * 2003-10-10 2005-04-28 Nippon Steel Corp Method for construction management of rotary press-in steel pipe pile

Also Published As

Publication number Publication date
JP7020589B2 (en) 2022-02-16
SG11202106109XA (en) 2021-07-29
JPWO2020218573A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
US20140244101A1 (en) Stress and/or accumulated damage monitoring system
EP2468960B1 (en) Ground drilling method and apparatus.
JP5819152B2 (en) Support layer arrival estimation method and support layer arrival estimation support device used in pile embedding method
JP4906470B2 (en) Construction management method of ground improvement method and ground improvement processing machine
JP2008255765A (en) N-value detection method, n-value detector, and pile hole drilling unit
WO2020218573A1 (en) Rotary pile construction method, pile group manufacturing method, and pile group
CN102797461B (en) For monitoring the method and system of the operation of cable shovel
JP3831181B2 (en) Construction management system and construction management method for rotary press-fit piles
JP3647445B1 (en) Pile construction management device
JP7056801B2 (en) Construction method of rotary pile, manufacturing method of pile group, pile group, construction management device of rotary pile, construction management system of rotary pile
JP4964525B2 (en) Caisson settlement method and caisson settlement management system
JP2010133140A (en) Rotary penetrating pile construction system
JP4695056B2 (en) Construction management device
JP3012900B2 (en) Auger excavation control method
JP4757889B2 (en) Excavation data management system in the all casing method
JP2008255764A (en) Pile hole drilling unit
JP2003213687A (en) Excavating torque reduced press-in method of rotary press-in steel pipe pile
JP2021001446A (en) Existing pile trajectory management system
CN212896513U (en) Hole bottom sediment thickness measuring device after secondary hole cleaning during cast-in-place pile construction
JP7090320B2 (en) Arithmetic logic unit, excavator, calculation method, and computer program
JP3348227B2 (en) Ground improvement method and ground improvement device
JP7198957B2 (en) Ground strength estimation method and system
JP2563974B2 (en) Earth auger
JP3761839B2 (en) Ground improvement vehicle recording device
JP2563973B2 (en) Drilling auger head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516300

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795346

Country of ref document: EP

Kind code of ref document: A1