JP4906470B2 - Construction management method of ground improvement method and ground improvement processing machine - Google Patents

Construction management method of ground improvement method and ground improvement processing machine Download PDF

Info

Publication number
JP4906470B2
JP4906470B2 JP2006284692A JP2006284692A JP4906470B2 JP 4906470 B2 JP4906470 B2 JP 4906470B2 JP 2006284692 A JP2006284692 A JP 2006284692A JP 2006284692 A JP2006284692 A JP 2006284692A JP 4906470 B2 JP4906470 B2 JP 4906470B2
Authority
JP
Japan
Prior art keywords
ground improvement
construction
penetration
layer
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006284692A
Other languages
Japanese (ja)
Other versions
JP2008101388A (en
Inventor
惠智 太田
常康 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Civil Engineering and Construction Co Ltd
Original Assignee
Takenaka Civil Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Civil Engineering and Construction Co Ltd filed Critical Takenaka Civil Engineering and Construction Co Ltd
Priority to JP2006284692A priority Critical patent/JP4906470B2/en
Publication of JP2008101388A publication Critical patent/JP2008101388A/en
Application granted granted Critical
Publication of JP4906470B2 publication Critical patent/JP4906470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

この発明は、地盤改良処理機により造成する地盤改良杭(以下、単に造成杭という場合がある。)を連続させて山留め壁や止水壁、或いは液状化防止対策として平面視が格子状の壁体(以下、単に格子壁という場合がある。)を施工する場合に重要な着底管理、ラップ管理、或いは到達土層の判定管理を行う方法の技術分野に属する。   In the present invention, a ground improvement pile (hereinafter, simply referred to as a creation pile) that is created by a ground improvement processing machine is continued to form a retaining wall, a water blocking wall, or a lattice-like wall as a liquefaction prevention measure. It belongs to the technical field of a method of performing bottoming management, lap management, or judgment determination of the arrival soil layer, which is important when constructing a body (hereinafter sometimes referred to simply as a lattice wall).

地盤改良処理機により造成する山留め壁などの施工に際しては、壁体の用途、機能に応じて到達させるべき地層が選択される。よって、その到達土層ないし着底の管理が重要である。また、先行の造成杭とのラップ長(一体化又は連続化施工)の管理も重要である。
そのため従来から地盤改良工法の施工管理方法が種々研究されてきた。例えば下記の特許文献1に提案された着底判定管理方法の発明、或いは下記の特許文献2に提案されたソイル柱列杭のラップ長の施工管理方法の発明がそれぞれ公知であり、実用に供されている。
When constructing a retaining wall created by a ground improvement processing machine, the stratum to be reached is selected according to the use and function of the wall. Therefore, management of the reaching soil layer or the bottom is important. It is also important to manage the wrap length (integrated or continuous construction) with the previous constructed pile.
For this reason, various construction management methods for ground improvement have been studied. For example, the invention of the bottoming judgment management method proposed in the following Patent Document 1 or the invention of the construction management method of the lap length of the soil column pile proposed in the following Patent Document 2 is publicly known and provided for practical use. Has been.

特許第3156050号公報(平成13年2月9日登録)Japanese Patent No. 3156050 (registered on February 9, 2001) 特許第3156049号公報(平成13年2月9日登録)Japanese Patent No. 3156049 (registered on February 9, 2001)

上述した特許文献1の発明は、支持層へ到達するまで改良施工することを条件とした場合の着底判定方法であり、地盤改良処理機の貫入速度の変化、電動機の負荷の変化、到達深度などの条件とデータを組み合わせて判定を行っている。
しかし、地盤改良処理機の能力によっては、着底判定が機種能力ごとに違ってくるという問題点がある。したがって、一つの工区に能力が異なる複数種の地盤改良処理機が導入された場合には、前記の問題が顕在化して施工管理が面倒になり不都合である。同じ施工場所、同じ条件下では、複数の地盤改良処理機は同じ能力仕様でなければ、共通条件での判定ができないという面倒な問題がある。
その一方で、液状化防止対策として多く施工される平面視が格子状の格子壁の施工(特許第1930164号公報参照)においては、液状化層と非液状化層を判別し、液状化層より下方の非液状化層へ到達する壁体の施工管理が望まれているが、現状の技術ではこの要望は充分に満たされない。前記要望を満たすには、地層毎のN値を把握し、また、土質の性状として支持層や液状化層、非液状化層を正確に判定し、或いは先行して造成した改良杭の性状をそれぞれ判別可能な技術を確立する以外にない。
The invention of the above-mentioned Patent Document 1 is a bottoming determination method on the condition that improvement construction is performed until it reaches the support layer. Changes in the penetration speed of the ground improvement processing machine, changes in the load of the motor, depth of arrival Judgment is made by combining data such as the above.
However, depending on the capacity of the ground improvement processing machine, there is a problem that the bottoming judgment differs depending on the model ability. Therefore, when a plurality of types of ground improvement processing machines having different capacities are introduced into one work area, the above problem becomes obvious and construction management becomes troublesome. In the same construction place and under the same conditions, there is a troublesome problem that a plurality of ground improvement processors cannot be judged under common conditions unless they have the same capacity specifications.
On the other hand, in the construction of a lattice-like lattice wall (see Japanese Patent No. 1930164) that is often constructed as a countermeasure for preventing liquefaction, a liquefied layer and a non-liquefied layer are discriminated from the liquefied layer. Although the construction management of the wall body that reaches the lower non-liquefied layer is desired, the present technology does not sufficiently satisfy this demand. In order to satisfy the above-mentioned requirements, the N value of each stratum is grasped, and the support layer, liquefied layer and non-liquefied layer are accurately determined as the soil properties, or the properties of the improved pile created in advance are determined. There is no choice but to establish technologies that can be distinguished from each other.

上記した特許文献2の発明に係るラップ長の施工管理は、傾斜計とジャイロセンサーを組み合わせた3次元ジャイロセンサーを攪拌掘削軸の先端位置の計測手段として設置し、一方、地盤改良処理機の自己位置を測定するGPSを装備させることを前提とする。施工場所での座標位置を求め、杭位置登録管理システムへ入力して位置合わせを行うことによって実質のラップ長を把握し、適時に掘削攪拌翼軸の制御に反映制御するという内容であり、熟練した施工管理と、地盤改良処理機の位置の制御技術とを必要とし、その実施は容易でない。    The construction management of the lap length according to the invention of the above-mentioned Patent Document 2 is performed by installing a three-dimensional gyro sensor that combines an inclinometer and a gyro sensor as a means for measuring the tip position of the agitation excavation shaft. It is assumed that a GPS for measuring the position is equipped. The content is that the actual lap length is obtained by obtaining the coordinate position at the construction site, inputting it to the pile position registration management system, and aligning it, and reflecting it in the control of the excavator blade axis in a timely manner. Construction management and technology for controlling the position of the ground improvement processing machine are required, and its implementation is not easy.

ところで、地盤改良処理工法の実施に際しては、その施工場所の土質構成や、液状化層、非液状化層の位置、およびN値データ等を予め採取するボーリングを、施工場所内の複数箇所に実施してボーリングデータを用意することは、通常行われている。
図8はそのようにして採取した深度25mに及ぶボーリングデータの一例を示す。図8中の右側に表示した土質構成によれば、表層土の下がシルト層Acで、以下砂層As1、砂泥層As2、そして、支持層と目される礫層Dsの順で構成されていることが明らかである。ボーリングN値は、砂層As1に到達した段階で急増大し、以下の砂泥層As2まではほぼ同様なN値を示し、更に支持層と目される礫層Dsに至って一段と大きなN値になっていることが明解である。通例、砂層As1は一般的に液状化層とみなされ、シルト層Acは非液状化層とみなされるが、前記ボーリングN値の変化を見るかぎりではその区別はできない。
By the way, when implementing the ground improvement treatment method, boring to collect the soil structure of the construction site, the position of the liquefied layer, the non-liquefied layer, N value data, etc. in advance at multiple locations within the construction site. The preparation of the boring data is usually performed.
FIG. 8 shows an example of the borehole data collected in such a manner and having a depth of 25 m. According to the soil structure displayed on the right side in FIG. 8, the bottom of the surface soil is a silt layer Ac, which is composed of a sand layer As1, a sand mud layer As2, and a gravel layer Ds that is regarded as a support layer. It is clear that The boring N value suddenly increases when it reaches the sand layer As1, shows almost the same N value up to the following sand mud layer As2, and further reaches the gravel layer Ds, which is regarded as the support layer, and becomes a larger N value. It is clear that Usually, the sand layer As1 is generally regarded as a liquefied layer, and the silt layer Ac is regarded as a non-liquefied layer. However, as long as the change in the boring N value is observed, the distinction cannot be made.

上記ボーリングデータによると、支持層と目される礫層Dsの存在と深度(約21m)は、前記ボーリングN値の明解な変化と傾向により、およそ正確に認定、把握できる。しかし、前記ボーリングデータの採取位置から離れた位置では、支持層と目される礫層Dsの存在と深度は推定を働かせる以外にないわけである。しかも支持層と目される礫層Dsの深度は、通例、場所によって上下に変化することは常識であるから、前記推定にはそれなりの根拠を伴うことが要求される。
同様に、上記液状化層と目される砂層As1、あるいは非液状化層と目されるシルト層Acおよび砂泥層As2の存在と深度を知得することも地盤改良工法の施工に重要であるが、上記ボーリングデータにおけるボーリングN値の推移を見るかぎり、それと明確に認定、把握するに足る明白な変化や傾向を断定することは難しい。
According to the boring data, the presence and depth (about 21 m) of the gravel layer Ds that is regarded as the support layer can be recognized and grasped approximately accurately by the clear change and tendency of the boring N value. However, in the position away from the sampling position of the boring data, the existence and depth of the gravel layer Ds regarded as the support layer can only be estimated. Moreover, since it is common sense that the depth of the gravel layer Ds, which is regarded as the support layer, usually changes up and down depending on the place, the estimation is required to be accompanied by a reasonable basis.
Similarly, it is important to know the existence and depth of the sand layer As1, which is regarded as the liquefied layer, or the silt layer Ac and the sand mud layer As2, which are regarded as the non-liquefied layer. As long as the transition of the boring N value in the above boring data is seen, it is difficult to determine an obvious change or tendency sufficient to clearly recognize and grasp it.

従来、地盤改良処理機の貫入動力源である電動機の負荷トルク値又は負荷電流値を、掘削時における地盤の掘削抵抗を推定するデータとして記録、確認することは、通例行われている。
しかし、前記ボーリングデータと、電動機の負荷トルク値又は負荷電流値などを組み合わせ、或いは照合処理して支持層等への到達判定方法を実施する場合に、前記電動機の能力(出力)が常に一定状態に発揮されるとしても、地盤の固さや土質に応じて切削抵抗値は当然に変化するから、目的とする地層へ到達するまでの貫入速度や貫入深度、貫入所要時間、或いはは、時々刻々に変化する。したがって、単にそれらの各データを採取し、目標土層への到達管理(土層別判定)などを積極的、具体的に行う方法は未だ実施されていない。
Conventionally, it is common practice to record and confirm the load torque value or load current value of an electric motor that is an intrusion power source of a ground improvement processing machine as data for estimating excavation resistance of the ground during excavation.
However, when the boring data and the load torque value or load current value of the motor are combined or collated, and the method for determining the arrival at the support layer or the like is performed, the capacity (output) of the motor is always constant. However, the cutting resistance value naturally changes depending on the hardness and soil quality of the ground, so the penetration speed, penetration depth, penetration time, or time to reach the target formation Change. Therefore, there has not yet been implemented a method in which each of these data is simply collected and the arrival management to the target soil layer (determination by soil layer) is actively and specifically performed.

本発明の目的は、施工場所の土質構成と液状化層や非液状化層の位置、N値データ等が明解なボーリングデータを先行実施して、そのボーリングデータ採取位置の近傍位置に、地盤改良処理機による掘削・貫入の試験施工を行って、直近の管理データを取得することにより、ボーリングデータに前記管理データを照合することで、施工上必要とされる着底管理、目標土層への到達管理(土層別判定)、或いはラップ管理などを簡易に正確に判定可能とし、もって地盤改良処理機による地盤改良工法の施工管理に即座に反映・実施できる方法を提供することである。   The purpose of the present invention is to perform soil drilling data with clear soil composition of construction site, position of liquefied layer and non-liquefied layer, N value data, etc., and improve the ground at a position near the boring data collection position. By performing excavation / penetration test construction with a processing machine and acquiring the latest management data, by collating the management data with the boring data, the bottom management required for construction and the target soil layer It is to provide a method capable of easily and accurately determining arrival management (determination by soil layer), lap management, etc., and immediately reflecting / implementing it in construction management of the ground improvement method by the ground improvement processing machine.

上述の課題を解決するための手段として、請求項1に記載した発明に係る地盤改良工法の施工における支持層到達判定方法は、
施工場所の土質構成とN値データ等が明解なボーリングデータ採取位置の近傍位置に、地盤改良処理機1による掘削・貫入の試験施工を行い、
前記地盤改良処理機1の試験施工における貫入速度、貫入深度、貫入所要時間、および当該地盤改良処理機1の貫入動力源である電動機の負荷トルク値又は負荷電流値、並びに掘削時における掘削抵抗値をそれぞれ、前記ボーリングデータにより明らかな支持層へ到達するまでの貫入深度毎に採取し、
採取した支持層到達時点の予想深度、支持層到達時点における前記電動機の予想負荷トルク値又は予想電流値と、支持層到達時点の予想貫入速度値、並びに支持層到達時点における予想掘削抵抗値をそれぞれ、支持層への到達判定基準値に採用して以降の地盤改良工法の施工を隣接位置から順に進めることを特徴とする。
As a means for solving the above-mentioned problem, the support layer arrival determination method in the construction of the ground improvement method according to the invention described in claim 1 is:
Excavation / penetration test by the ground improvement processing machine 1 is performed near the boring data collection position where the soil composition and N value data etc. of the construction site are clear,
Penetration speed, penetration depth, penetration time in the test construction of the ground improvement processing machine 1, load torque value or load current value of the electric motor that is the penetration power source of the ground improvement processing machine 1, and excavation resistance value during excavation For each penetration depth until reaching the support layer apparent from the boring data,
The estimated depth when the support layer is reached, the expected load torque value or the expected current value of the motor when the support layer is reached, the expected penetration speed value when the support layer is reached, and the expected excavation resistance value when the support layer is reached, respectively. It is characterized by adopting the reference value for determining the arrival at the support layer and proceeding the subsequent ground improvement construction methods in order from the adjacent position.

請求項2記載の発明に係る地盤改良工法の施工における非液状化層到達判定方法は、
施工場所の土質構成と非液状化層の位置、N値データ等が明解なボーリングデータ採取位置の近傍位置に、地盤改良処理機1による掘削・貫入の試験施工を行い、
前記地盤改良処理機1の試験施工における貫入速度、貫入深度、貫入所要時間、および当該地盤改良処理機の貫入動力源である電動機の負荷トルク値又は負荷電流値、並びに掘削時における掘削抵抗値をそれぞれ、前記ボーリングデータにより明らかな非液状化層へ到達するまでの貫入深度毎に採取し、
採取した非液状化層到達時点の予想深度、および前記電動機の非液状化層到達時点の予想負荷トルク値又は予想電流値、非液状化層到達時点の予想貫入速度値、並びに非液状化層到達時点の予想掘削抵抗値をそれぞれ、非液状化層到達判定基準値に採用して以降の地盤改良工法の施工を隣接位置から順に進めることを特徴とする。
The non-liquefied layer arrival determination method in the construction of the ground improvement method according to the invention of claim 2 is:
Excavation / penetration test by the ground improvement processing machine 1 is performed at the position near the boring data collection position where the soil composition of the construction site, the position of the non-liquefaction layer, N value data, etc. are clear,
The penetration speed, penetration depth, penetration required time, load torque value or load current value of the electric motor that is the penetration power source of the ground improvement processing machine, and the excavation resistance value at the time of excavation in the test construction of the ground improvement processing machine 1 Each sample is taken for each penetration depth until reaching the non-liquefied layer apparent from the boring data,
Expected depth when the collected non-liquefied layer reaches, expected load torque value or current value when the motor reaches the non-liquefied layer, expected penetration speed value when reaching the non-liquefied layer, and non-liquefied layer reached The predicted excavation resistance value at the time is adopted as the non-liquefied layer arrival determination reference value, and the subsequent ground improvement method is sequentially advanced from the adjacent position.

請求項3に記載した発明に係る地盤改良工法の施工における液状化層又は非液状化層の判定方法は、
施工場所の土質構成と液状化層や非液状化層の位置、N値データ等が明解なボーリングデータ採取位置の近傍位置に、地盤改良処理機1による掘削・貫入の試験施工を行い、
前記地盤改良処理機1の試験施工における液状化層や非液状化層での貫入速度や貫入深度、貫入所要時間、および当該地盤改良処理機の貫入動力源である電動機の負荷トルク値又は負荷電流値、並びに掘削時における掘削抵抗値をそれぞれ貫入深度毎に採取し、
採取した液状化層や非液状化層の位置情報に基づいて、原地盤土層における液状化層又は非液状化層の位置を深度毎に判別して地盤改良施工法の施工条件に反映させて以降の施工を隣接位置から順に進めることを特徴とする。
The determination method of the liquefied layer or the non-liquefied layer in the construction of the ground improvement method according to the invention described in claim 3 is:
Excavation / penetration test by the ground improvement processing machine 1 is performed in the vicinity of the boring data collection position where the soil composition of the construction site, the position of the liquefied layer and non-liquefied layer, N value data, etc. are clear,
The penetration speed and penetration depth in the liquefied layer and the non-liquefied layer in the test construction of the ground improvement processing machine 1, the time required for penetration, and the load torque value or load current of the motor that is the penetration power source of the ground improvement processing machine Value and excavation resistance value at the time of excavation are collected for each penetration depth,
Based on the position information of the collected liquefied layer and non-liquefied layer, the position of the liquefied layer or non-liquefied layer in the original ground soil layer is determined for each depth and reflected in the construction conditions of the ground improvement construction method. It is characterized in that the subsequent construction is sequentially advanced from the adjacent position.

請求項4に記載した発明に係る地盤改良工法の施工におけるラップ切削管理方法は、
施工場所の土質構成と液状化層や非液状化層の位置、N値データ等が明解なボーリングデータ採取位置の近傍位置に、地盤改良処理機1による掘削・貫入の試験施工を行い、
前記試験施工で、ボーリングデータにより明解な原地盤土層における地盤改良処理機1の貫入速度、貫入深度、貫入所要時間、および当該地盤改良処理機の貫入動力源である電動機の負荷トルク値又は負荷電流値、並びに掘削時における地盤の掘削抵抗値をそれぞれ、前記ボーリングデータにより明らかな非液状化層へ到達するまでの貫入深度毎に採取し、
その後、同じ場所に設計強度を満足する改良杭を造成し、造成した前記改良杭を、実施工の施工と同じ手順によりラップ切削施工を行い、前記ラップ切削時の切削抵抗を深度方向に採取し、前記の切削抵抗値を前記地盤の掘削抵抗値と深度毎に対比、判別して改良済み杭とのラップ切削管理を行うことを特徴とする。
The lap cutting management method in the construction of the ground improvement method according to the invention described in claim 4 is:
Excavation / penetration test by the ground improvement processing machine 1 is performed in the vicinity of the boring data collection position where the soil composition of the construction site, the position of the liquefied layer and non-liquefied layer, N value data, etc. are clear,
In the test construction, the penetration speed, penetration depth, penetration time, and load torque value or load of the electric motor that is the penetration power source of the ground improvement processing machine in the ground soil layer clear from the boring data. The current value and the excavation resistance value of the ground at the time of excavation are collected for each penetration depth until reaching the non-liquefied layer apparent from the boring data,
After that, an improved pile satisfying the design strength was created at the same place, and the improved pile thus created was lapped by the same procedure as the construction of the construction work, and the cutting resistance during the lapping was sampled in the depth direction. The cutting resistance value is compared with the excavation resistance value of the ground for each depth, and lap cutting management with an improved pile is performed.

請求項5に記載した発明は、請求項1〜4のいずれか一に記載した地盤改良工法の施工管理方法において、
地盤改良処理機1の掘削時における掘削抵抗値を貫入深度毎に採取する手段として、地盤改良処理機1の軸継手部10に、トルク伝達材として、トルクの大きさに比例して一定の角度変位を発生する弾性なゴム質材13を介在させ、前記の角度変位をポテンショメータ19による電流値として取り出すことを特徴とする。
The invention described in claim 5 is the construction management method of the ground improvement method according to any one of claims 1 to 4,
As means for collecting the excavation resistance value at the time of excavation of the ground improvement processing machine 1 for each penetration depth, the shaft coupling part 10 of the ground improvement processing machine 1 is used as a torque transmission material at a constant angle in proportion to the magnitude of torque. An elastic rubber material 13 that generates a displacement is interposed, and the angular displacement is extracted as a current value by a potentiometer 19.

請求項6に記載した発明は、請求項1〜5のいずれか一に記載した地盤改良工法の施工管理方法において、
請求項1に記載した支持層到達判定方法における掘削抵抗値を貫入深度毎に採取する手段として、3軸型の掘削攪拌翼軸3において先行する中央の掘削攪拌翼軸に、貫入深度毎に掘削抵抗値を採取する手段を設置することを特徴とする。
The invention described in claim 6 is the construction management method of the ground improvement construction method according to any one of claims 1 to 5,
As a means for collecting the excavation resistance value for each penetration depth in the support layer arrival determination method according to claim 1, excavation is performed on the central excavation agitation blade shaft preceding the three-axis type excavation agitation blade shaft at each penetration depth. A means for collecting the resistance value is provided.

請求項7に記載した発明に係る地盤改良処理機は、
地盤改良処理機1の掘削攪拌翼軸3の軸継手部10に、地盤改良処理機1の掘削時における掘削抵抗値を貫入深度毎に採取する手段として、トルクの大きさに比例して一定の角度変位を発生する弾性なゴム質材13がトルク伝達材として介在され、前記の角度変位を電流値として取り出すポテンショメータ19が設置されていることを特徴とする。
The ground improvement processing machine according to the invention described in claim 7 is:
As a means for collecting the excavation resistance value at the time of excavation of the ground improvement processing machine 1 at the depth of the penetration into the shaft joint portion 10 of the excavation stirring blade shaft 3 of the ground improvement processing machine 1, a constant proportional to the magnitude of the torque is provided. An elastic rubber material 13 that generates an angular displacement is interposed as a torque transmission material, and a potentiometer 19 that takes out the angular displacement as a current value is installed.

地盤改良処理機1の貫入動力源は通例電動機であるが、その電動機の能力(出力)が常に一定状態に発揮されるとしても、地盤の固さや土質に応じて切削抵抗値は当然に変化するから、目的とする地層へ到達するまでの貫入速度や貫入深度、貫入所要時間、或いは電動機の負荷トルク値又は負荷電流値、並びに掘削時における地盤の掘削抵抗値は、時々刻々に変化する。したがって、単にそれらの各データを採取し、時々刻々の変化をつぶさに眺めてみても、支持層への到達であるとか、液状化層や非液状化層への到達やその位置の確認は困難で、推定の域を出ないが、本願発明のように施工場所の土質構成とN値データ等が明解にするボーリングデータの採取位置の近傍位置に、地盤改良処理機による掘削・貫入の試験施工を行って、試験施工における貫入速度、貫入深度、貫入所要時間、および当該地盤改良処理機の貫入動力源である電動機の負荷トルク値又は負荷電流値、並びに掘削時における掘削抵抗値をそれぞれ、前記ボーリングデータにより明らかな支持層へ到達するまでの貫入深度毎に採取すると、直近のボーリングデータと照合することにより、支持層への到達、液状化層や非液状化層への到達やその位置の確認はほぼ正確に把握、確認することができる。ちなみに、地盤改良工法の施工場所には、従前より、一定の距離と配置でボーリングデータの採取を複数箇所行うことが必須条件とされているので、そのボーリングデータを利用することで本発明を容易に実施できる。   The penetration power source of the ground improvement processing machine 1 is usually an electric motor, but even if the capacity (output) of the electric motor is always exerted in a constant state, the cutting resistance value naturally changes according to the hardness and soil quality of the ground. The penetration speed, penetration depth, penetration time, electric motor load torque value or load current value, and excavation resistance value of the ground during excavation change from moment to moment. Therefore, simply collecting each of these data and looking at the changes at every moment, it is difficult to reach the support layer, reach the liquefied layer or non-liquefied layer, and confirm its position. However, the test construction of excavation / intrusion by the ground improvement processing machine is performed in the vicinity of the sampling position of the boring data where the soil composition and N value data etc. are clear as in the present invention The drilling speed, the penetration depth, the time required for penetration, the load torque value or load current value of the electric motor that is the penetration power source of the ground improvement processing machine, and the excavation resistance value during excavation, respectively, If it is collected at each penetration depth until it reaches the support layer, which is apparent from the data, it reaches the support layer and reaches the liquefied layer and non-liquefied layer by collating with the latest boring data. And confirmation of its position almost exactly grasped, can be confirmed. By the way, since it has been an indispensable condition to collect boring data at a certain distance and arrangement at the construction site of the ground improvement method, it is easy to use the present invention by using the boring data. Can be implemented.

本発明の方法により支持層への到達、液状化層や非液状化層への到達を判定基準値に採用して以降の地盤改良工法の施工を隣接位置から順に進めると、地盤改良工法の施工場所全域にわたり正確な管理と施工を能率良く進めることができる。
同様に、既成の改良杭とのラップ管理、更には土層別に必要な改良材の種別、注入量を判定、操作して施工管理することが可能となり、地盤改良施工の精度と品質の向上に大きく寄与する。
By using the method of the present invention to reach the support layer, the arrival to the liquefied layer or the non-liquefied layer as a criterion value, and proceeding from the adjacent position in order, the construction of the ground improvement method Accurate management and construction can be carried out efficiently throughout the site.
Similarly, it is possible to manage laps with existing improved piles, and to determine and operate the type and amount of improvement material required for each soil layer, and to manage the work by improving the accuracy and quality of ground improvement work. A big contribution.

土質の種類も、砂、粘土、シルト、腐植土の程度に分類すると、同地盤のN値も切削抵抗=硬さ=N値の関係が明らかとなり、ボーリングデータにより適正な施工機種を選択できることになる。一方、引き抜き攪拌混合時における攪拌抵抗値(混ぜ練り攪拌抵抗値)を検出して、その抵抗値により混合基準の目安にすることも可能である。
したがって、施工する壁体の品質の向上に大きく寄与する。
If the soil type is also classified into sand, clay, silt, and humus, the N value of the ground will also reveal the relationship of cutting resistance = hardness = N value, and the appropriate construction model can be selected based on the boring data. Become. On the other hand, it is also possible to detect the stirring resistance value (mixing and stirring resistance value) at the time of pulling and mixing and use it as a standard for mixing based on the resistance value.
Therefore, it greatly contributes to the improvement of the quality of the wall body to be constructed.

施工場所の土質構成とN値データ等が明解なボーリングデータ採取位置の近傍位置に地盤改良処理機1による掘削・貫入の試験施工を行い、前記地盤改良処理機1の試験施工における貫入速度、貫入深度、貫入所要時間、および当該地盤改良処理機の貫入動力源である電動機の負荷トルク値又は負荷電流値、並びに掘削時における掘削抵抗値をそれぞれ、前記ボーリングデータにより明らかな支持層へ到達するまでの貫入深度毎に採取する。
採取した支持層到達時点の予想深度、および支持層到達時点における前記電動機の予想負荷トルク値又は予想電流値と、支持層到達時点の予想貫入速度値、並びに支持層到達時点における予想掘削抵抗値をそれぞれ、支持層への到達判定基準値に採用して以降の地盤改良工法の施工を進める。
或いはボーリングデータにより明らかな非液状化層へ到達するまでの貫入深度毎に掘削抵抗値等を採取し、採取した非液状化層到達時点の予想深度、および前記電動機の非液状化層到達時点の予想負荷トルク値又は予想電流値、非液状化層到達予想時点の貫入速度値、並びに非液状化層到達時点の予想掘削抵抗値をそれぞれ、非液状化層への到達判定基準値に採用して以降の地盤改良工法の施工を進める。
若しくは得られた液状化層や非液状化層の位置情報に基づいて、原地盤土層における液状化層又は非液状化層の位置を深度毎に判別して地盤改良施工の条件に反映させて施工を進める。
Excavation / penetration test by the ground improvement processing machine 1 is performed near the boring data collection position where the soil composition and N value data of the construction site are clear, and the penetration speed and penetration in the test construction of the ground improvement processing machine 1 The depth, the time required for penetration, and the load torque value or load current value of the electric motor that is the penetration power source of the ground improvement processing machine, and the excavation resistance value at the time of excavation until reaching the obvious support layer by the boring data Collect at every penetration depth.
The estimated depth when the support layer is reached, the expected load torque value or the expected current value of the motor when the support layer is reached, the expected penetration speed value when the support layer is reached, and the expected excavation resistance value when the support layer is reached Adopt each of them as the reference value for reaching the support layer and proceed with the subsequent ground improvement method.
Alternatively, excavation resistance values, etc. are collected at each penetration depth until reaching the non-liquefied layer, which is apparent from the boring data, and the estimated depth when the non-liquefied layer reaches the collected time Estimated load torque value or predicted current value, penetration speed value at the time of reaching the non-liquefied layer, and predicted excavation resistance value at the time of reaching the non-liquefied layer are adopted as reference values for reaching the non-liquefied layer, respectively. The construction of the ground improvement method will be promoted.
Or based on the position information of the obtained liquefied layer and non-liquefied layer, the position of the liquefied layer or non-liquefied layer in the original ground soil layer is determined for each depth and reflected in the conditions of ground improvement construction Proceed with construction.

以下に、請求項1〜7に記載した発明に係る地盤改良工法の施工における支持層到達判定方法とラップ切削管理方法、および同方法の実施に使用する地盤改良処理機を、図示した実施例に基づいて説明する。
本発明の支持層到達判定方法、ラップ切削管理方法を実施する際にも、先ずは従前通り、地盤改良工法を施工する場所の幾つかの地点に、地盤の土質構成とN値データ、検出トルク等を明解にするボーリングデータを採取するためのボーリング工事を先行実施することに変わりがない。
既述した図8は、そのようにして採取した深度25mに及ぶボーリングデータの一例であるものとし、ここでは段落番号[0006]および[0006]の説明を援用する。
図8のボーリングN値は、砂層As1に到達した段階(K点)で急増大し、以下の砂泥層As2まではほぼ同様傾向のN値を示す。支持層と目される礫層Dsに至って一段と大きなN値になることが明解である。
砂層As1は一般的に液状化層とみなされ、シルト層Acは非液状化層とみなされるが、前記ボーリングN値の変化を見るかぎりでは両層の区別は明解でない。
Below, the support layer arrival judgment method and the lap cutting management method in the construction of the ground improvement method according to the invention described in claims 1 to 7 and the ground improvement processing machine used for the implementation of the method are shown in the illustrated examples. This will be explained based on.
When carrying out the support layer arrival judging method and the lapping management method of the present invention, first, as before, at several points where the ground improvement method is to be constructed, the soil soil composition and N value data, detection torque There is no change in prior implementation of boring work to collect boring data to clarify the above.
FIG. 8 described above is an example of the boring data having a depth of 25 m collected in this manner, and the description of paragraph numbers [0006] and [0006] is used here.
The boring N value in FIG. 8 rapidly increases when reaching the sand layer As1 (K point), and shows an N value having a substantially similar tendency until the following sand mud layer As2. It is clear that the gravel layer Ds, which is regarded as the support layer, reaches a larger N value.
The sand layer As1 is generally regarded as a liquefied layer, and the silt layer Ac is regarded as a non-liquefied layer. However, as far as the change in the boring N value is observed, the distinction between the two layers is not clear.

上記したように、図8のボーリングデータを参照すると、支持層と目される礫層Dsの存在と深度(約21m)は、前記ボーリングN値の明解な変化と傾向により、およそ正確に認定、把握できる。ところが同ボーリングデータの採取位置から離れた位置における、支持層と目される礫層Dsの存在と深度は不明であるから、従前は推定を働かせて認定・把握する以外になかったわけである。因みに支持層と目される礫層Dsの深度は、通例、場所によって上下に変化することは常識であるから、前記推定にもそれなりの根拠を伴うことが当然に要求される。
同様に、ボーリングデータの採取位置から離れた位置における、上記液状化層と目される砂層As1、あるいは非液状化層と目されるシルト層Acおよび砂泥層As2の存在と深度を知得することも地盤改良工法の施工に重要であるが、上記ボーリングデータにおけるボーリングN値の推移を見るかぎり、これらを認定、把握するに足る明白な変化や傾向を把握することは難しいことは上述した。
As described above, referring to the boring data in FIG. 8, the presence and depth (about 21 m) of the gravel layer Ds, which is regarded as the support layer, are approximately accurately identified by the clear change and tendency of the boring N value. I can grasp. However, the existence and depth of the gravel layer Ds, which is regarded as a support layer, at a position away from the sampling position of the boring data is unknown. Incidentally, since it is common knowledge that the depth of the gravel layer Ds, which is regarded as the support layer, usually changes up and down depending on the place, it is naturally required that the estimation is accompanied by a reasonable basis.
Similarly, to know the presence and depth of the sand layer As1, which is regarded as the liquefied layer, or the silt layer Ac and the sand mud layer As2, which are regarded as non-liquefied layers, at a position away from the sampling position of the boring data. Although it is important for the construction of the ground improvement method, as described above, as far as the transition of the boring N value in the boring data is observed, it is difficult to grasp the obvious changes and trends sufficient to recognize and grasp these.

そこで請求項1に係る発明の支持層到達判定方法は、上記図8のボーリングデータ採取位置の近傍ないし隣接位置、具体的には半径にして1m内外の位置に、一例として図2に示したような公知の地盤改良処理機1による掘削・貫入の試験施工を行うことから始める。図2の地盤改良処理機1は、リーダー2のレール2aを伝って昇降する3軸型の回転駆動部4と、これに接続された1本ないし複数本の駆動軸5およびその先端部の掘削攪拌翼軸3とで構成されている。
この地盤改良処理機1による試験施工における掘削攪拌翼軸3の貫入速度、貫入深度、貫入所要時間を計測する。また、当該地盤改良処理機1を貫入させる回転駆動部4の動力源である電動機の負荷トルク値又は負荷電流値を測定する。更に掘削時の掘削抵抗値(以下、これを検出トルクという。)を測定する。それぞれの測定値は、上記図8のボーリングデータにより明らかな支持層Dsへ到達するまで予め定めた各貫入深度毎に採取する。
こうして採取した電動機の負荷トルク値(又は負荷電流値)を「発生トルク」と表し、また、掘削時の掘削抵抗値を「検出トルク」として表し、上記図8のボーリングデータに重畳させて作成・表示したのが、図1に示す試験施工データ一図表である。
Therefore, the support layer arrival judging method according to the first aspect of the present invention is as shown in FIG. 2 as an example in the vicinity or adjacent position of the boring data collection position of FIG. It begins by performing the test construction of excavation and penetration by such a known ground improvement processing machine 1. The ground improvement processing machine 1 in FIG. 2 includes a triaxial rotary drive unit 4 that moves up and down along a rail 2a of a leader 2, one or more drive shafts 5 connected thereto, and excavation of the tip thereof. It comprises a stirring blade shaft 3.
The penetration speed, penetration depth, and penetration required time of the excavation stirring blade shaft 3 in the test construction by the ground improvement processing machine 1 are measured. Moreover, the load torque value or load current value of the electric motor which is a power source of the rotational drive part 4 which penetrates the said ground improvement processing machine 1 is measured. Further, the excavation resistance value at the time of excavation (hereinafter referred to as “detected torque”) is measured. Each measured value is collected at each penetration depth determined in advance until reaching the support layer Ds that is apparent from the boring data of FIG.
The load torque value (or load current value) of the electric motor thus collected is expressed as “generated torque”, and the excavation resistance value at the time of excavation is expressed as “detected torque”, which is created by superimposing on the boring data in FIG. Displayed is a table of test construction data shown in FIG.

因みに、上記地盤改良処理機1を貫入させる回転駆動部4の動力源である電動機の負荷トルク値又は負荷電流値の測定は、既往技術の通り、予め動力源である電動機の電源回路へ組み入れた電流計により電流値として検出し、データ集計装置(パーソナルコンピュータ等)へ入力、記録され、或いはディスプレイを通じてリアルタイムに目視確認することも行う。掘削攪拌翼軸3の貫入速度、貫入深度、貫入所要時間の計測もそれぞれ、既往技術として地盤改良処理機1に予め付属する貫入速度計、貫入深度計および計時装置により行い、各測定値はやはり共通のデータ集計装置(パーソナルコンピュータ等)へ入力、記録される。   Incidentally, the measurement of the load torque value or the load current value of the electric motor that is the power source of the rotary drive unit 4 that penetrates the ground improvement processing machine 1 is incorporated in the power supply circuit of the electric motor that is the power source in advance as in the prior art. It is detected as an electric current value by an ammeter and input and recorded in a data totaling device (such as a personal computer) or visually confirmed in real time through a display. The measurement of the penetration speed, penetration depth, and penetration time of the excavation stirring blade shaft 3 is also carried out by the penetration speed meter, penetration depth meter and timing device that are pre-attached to the ground improvement processing machine 1 as a past technique. The data is input and recorded in a common data aggregation device (such as a personal computer).

次に、地盤改良処理機1による掘削・貫入の試験施工における掘削時の掘削抵抗値を計測する手段としては、たとえば図3〜図6に示す、ポテンショメータ利用のトルク検出器を好適に実施することができる。
図3A、Bは、3軸型地盤改良処理機1における中央の駆動軸5を回転駆動部4と接続する軸継手部10に、上記ポテンショメータ利用のトルク検出器を設置した実施例を示している。中央の駆動軸5の軸継手部10にトルク検出器を設置した理由は、図6を見る通り、3軸型地盤改良処理機1の掘削攪拌翼軸3の構成は、中央軸が正転する場合、両側の軸は逆転駆動されるので、各軸の先端の攪拌翼3aが相互間で干渉を起こさせないため、中央軸の攪拌翼3aが最先に位置する。よって、この中央軸で地盤の掘削抵抗値の大きさ(検出トルク)を検出するのが実質値に近いと考えられるからである。
Next, as a means for measuring the excavation resistance value during excavation in excavation / penetration test construction by the ground improvement processing machine 1, for example, a torque detector using a potentiometer shown in FIGS. Can do.
3A and 3B show an embodiment in which the potentiometer-based torque detector is installed in the shaft coupling portion 10 that connects the central drive shaft 5 to the rotation drive portion 4 in the three-axis type ground improvement processing machine 1. . The reason why the torque detector is installed in the shaft coupling portion 10 of the central drive shaft 5 is that, as shown in FIG. 6, the configuration of the excavating and stirring blade shaft 3 of the triaxial ground improvement processing machine 1 is forward rotation of the central shaft. In this case, since the shafts on both sides are driven in reverse, the stirring blade 3a at the tip of each shaft does not cause mutual interference, so the stirring blade 3a of the central shaft is positioned first. Therefore, it is considered that detecting the magnitude (detection torque) of the ground excavation resistance value with this central axis is close to the actual value.

ポテンショメータ利用のトルク検出器の具体的構成を、図4と図5に示した。図4と図5から明らかなように、中央の駆動軸5を回転駆動部4と接続する軸継手部10を構成する最外周の下向きに碗状をなす主動カプラー11と、内側の従動カプラー12とが同心配置とされ、両者間の隙間に、トルクの大きさに比例した回転変位を発生するゴム質材の一例としてポリウレタン系ゴム13が介在され、このポリウレタン系ゴム13を介して回転駆動部4の原動トルクが駆動軸5の駆動トルクとして伝達される構成とされている。外側の主動カプラー11は、溶接とボルト接合により、回転駆動部4に内蔵された図示省略の動力源である電動機の出力軸と接続される雄ジョイント軸14と一体的に回転する構造とされている。他方、内側の従動カプラー12は、やはり溶接とボルト接合により、駆動軸5の上端を嵌め込んで接続する雌ジョイント軸15と一体的に回転する構造とされている。雄ジョイント軸14の外周面と、従動カプラー12の内周面とは、ラジアルとスラスト兼用のアンギュラー軸受16で同心円の相対回転が可能に組み合わされている。そして、拡大して示す図5で明らかなように、従動カプラー12および雌ジョイント軸15の回転中心位置に上向きに立ち上がる支持体17と、主動カプラー11および雄ジョイント軸14の回転中心に位置する下向きの支持体18との境界部位に、ポテンショメータ19が設置されている。
したがって、地盤改良処理機1による地盤の掘削・貫入時に、駆動軸5に伝達される回転トルクの大きさに比例してポリウレタン系ゴム13に発生する回転変位を、掘削抵抗値としてポテンショメータ19でリアルタイムに直接正確に計測することができる。ポテンショメータ19の計測値は、図示を省略したリード線により地上の共通するデータ集計装置(パーソナルコンピュータ等)へ入力、記録される。
A specific configuration of a potentiometer-based torque detector is shown in FIGS. As is apparent from FIGS. 4 and 5, a main driving coupler 11 having a hooked shape in the downward direction on the outermost periphery constituting the shaft coupling portion 10 that connects the central driving shaft 5 to the rotation driving portion 4, and an inner driven coupler 12. Are arranged in a concentric manner, and a polyurethane rubber 13 is interposed as an example of a rubber material that generates a rotational displacement proportional to the magnitude of torque in a gap between them. 4 driving torque is transmitted as the driving torque of the drive shaft 5. The outer main drive coupler 11 is structured to rotate integrally with a male joint shaft 14 connected to an output shaft of an electric motor (not shown) built in the rotation drive unit 4 by welding and bolt joining. Yes. On the other hand, the inner driven coupler 12 is configured to rotate integrally with the female joint shaft 15 that is fitted and connected to the upper end of the drive shaft 5 by welding and bolt joining. The outer peripheral surface of the male joint shaft 14 and the inner peripheral surface of the driven coupler 12 are combined with each other by a radial and thrust angular bearing 16 so as to allow relative rotation of concentric circles. As shown in FIG. 5 in an enlarged manner, the support body 17 rises upward at the rotation center positions of the driven coupler 12 and the female joint shaft 15 and the downward direction positioned at the rotation centers of the main drive coupler 11 and the male joint shaft 14. A potentiometer 19 is installed at a boundary portion with the support 18.
Therefore, when the ground improvement processing machine 1 excavates and penetrates the ground, the rotational displacement generated in the polyurethane rubber 13 in proportion to the magnitude of the rotational torque transmitted to the drive shaft 5 is real-time on the potentiometer 19 as the excavation resistance value. Can be measured directly and accurately. The measured value of the potentiometer 19 is input and recorded in a common data totaling device (such as a personal computer) on the ground by a lead wire (not shown).

上記構成の地盤改良処理機1による掘削・貫入の試験施工においてデータ集計装置(パーソナルコンピュータ等)で採取した図1の試験施工データ一図表を、図8の単なるボーリングデータと対比して参照すると、次の事項が明らかである。
図1の試験施工データ一図表によれば、上述したボーリングN値の変化におよそ倣った傾向で、「発生トルク」と、「検出トルク」がより一層明快な変化を呈していることが認められる。
たとえば「発生トルク」の変化として明解な第一のピークP1は、およそシルト層Acから砂層As1へ移行する境界領域に明瞭に発生している。また、第二のピークP2と第三のピークP3は、砂層As1から砂泥層As2へ移行する境界領域に明瞭に発生している。第四のピークP4は、砂泥層As2から礫層Dsへ移行する境界領域に明瞭に発生していることが認められる。
When referring to the test construction data chart of FIG. 1 collected by the data totalization apparatus (personal computer or the like) in the excavation / penetration test construction by the ground improvement processing machine 1 having the above configuration, in comparison with the simple boring data of FIG. The following matters are clear.
According to the test construction data chart of FIG. 1, it is recognized that “generated torque” and “detected torque” are more clearly changing with a tendency to follow the above-described change in the boring N value. .
For example, the first peak P1, which is clear as a change in “generated torque”, clearly occurs in a boundary region where the transition from the silt layer Ac to the sand layer As1 occurs. In addition, the second peak P2 and the third peak P3 are clearly generated in the boundary region where the sand layer As1 transitions to the sand mud layer As2. It can be seen that the fourth peak P4 clearly occurs in the boundary region where the sand mud layer As2 transitions to the gravel layer Ds.

つまり、図1の「発生トルク値」の変化、とりわけ第一から第四のピークP1〜P4は、図8に示すボーリングデータのボーリングN値の推移を見るだけではとうてい理解できない土質構成の変化を知るデータと認められる。
即ち、第一のピークP1が現れると、非液状化層と目されるシルト層Acを突き抜けて液状化層と目される砂層As1への到達時期と認識することができる。第二のピークP2が現れると、前記の砂層As1を抜けて次の非液状化層である砂泥層As2への移行を予測でき、第三のピークPは砂泥層As2へ到達したことを認識できる。そして、第四のピークP4はいよいよ支持層と目される礫層Dsへの到達時期を認識することができる。
In other words, changes in the “generated torque value” in FIG. 1, especially the first to fourth peaks P1 to P4, indicate changes in the soil composition that cannot be understood simply by looking at the changes in the boring N value of the boring data shown in FIG. It is recognized as data to know.
That is, when the first peak P1 appears, it can be recognized as the arrival time of the sand layer As1 that is regarded as the liquefied layer through the silt layer Ac that is regarded as the non-liquefied layer. When the second peak P2 appears, the transition to the sand mud layer As2 that is the next non-liquefiable layer through the sand layer As1 can be predicted, and the third peak P has reached the sand mud layer As2. Can be recognized. And the 4th peak P4 can recognize the arrival time to the gravel layer Ds finally regarded as a support layer.

同様に、図1の試験施工データ一図表における「検出トルク」の変化と傾向も、ボーリングN値の変化におよそ倣った傾向で、より一層明確な変化を呈していることが認められる。
たとえば「検出トルク」の変化として明解な第一のポイントLは、シルト層Acから砂層As1へ移行する境界部に現れ、次の第二ポイントMは、砂層As1から砂泥層Asへ移行する境界部に現れている。そして、第三、第四のポイントN、Rは砂泥層Asから支持層と目される礫層Dsへの移行する境界部(到達時期)に現れていることがわかる。
Similarly, it can be seen that the change and tendency of the “detected torque” in the test construction data chart of FIG. 1 also follow the change of the boring N value and show a more clear change.
For example, the first point L that is clear as a change in the “detected torque” appears at the boundary where the silt layer Ac transitions to the sand layer As1, and the next second point M is the boundary where the sand layer As1 transitions to the sand mud layer As. Appears in the department. And it turns out that the 3rd, 4th points N and R appear in the boundary part (arrival time) which transfers from the sand mud layer As to the gravel layer Ds seen as a support layer.

したがって、以降の地盤改良工法の実施工を、試験施工に隣接する位置から順次につないで連続するように行い、その際に先ずは前記図1の試験施工データ一図表の土層構成とボーリングN値、および発生トルク、並びに検出トルクの変化とその傾向を相互に参照しつつ、地盤改良工法の実施工を進めると、支持層と目される礫層Dsへの到達予想深度はもとより、その途中経過である非液状化層と目されるシルト層Acの存在(位置)と深度、次いで液状化層と目される砂層As1の存在(位置)と深度、および次の非液状化層である砂泥層As2の存在(位置)とその深度をそれぞれ、正確に認識、把握しつつ地盤改良工法の施工を進めることができる。
勿論、当該位置での地盤改良工法の施工に際しても、やはり掘削攪拌翼軸3の貫入速度、貫入深度、貫入所要時間を計測するほか、当該地盤改良処理機1を貫入させる回転駆動部4の動力源である電動機の負荷トルク値又は負荷電流値を発生トルクとして測定し、更に掘削時の掘削抵抗値(以下、これを検出トルクという。)をそれぞれ、支持層Dsへ到達するまで予め定めた各貫入深度毎に採取して、共通のデータ集計装置(パーソナルコンピュータ等)へ入力、記録して、当該位置での「施工データ一図表」を作成する。
そして、隣接する次順位置における地盤改良工法の施工に際しては、やはり直前に作成した前記の「施工データ一図表」を参照すると、その各データはほぼ正確なものとして活用できる。
Therefore, the following ground improvement methods are carried out sequentially from the position adjacent to the test construction so that they are continuously connected. At that time, first, the soil layer configuration and boring N in the test construction data chart of FIG. When the implementation of the ground improvement method is carried out while referring to the values, changes in the generated torque, and the detected torque, and their trends, the predicted depth to reach the gravel layer Ds, not only the support layer, but in the middle The presence (position) and depth of the silt layer Ac that is regarded as a non-liquefied layer, and the presence (position) and depth of the sand layer As1 that is regarded as a liquefied layer, and the sand that is the next non-liquefied layer Construction of the ground improvement method can be advanced while accurately recognizing and grasping the presence (position) and depth of the mud layer As2.
Of course, in the construction of the ground improvement method at that position, the penetration speed, penetration depth and penetration time of the excavation stirring blade shaft 3 are also measured, and the power of the rotary drive unit 4 that allows the ground improvement processing machine 1 to penetrate. The load torque value or load current value of the electric motor that is the source is measured as the generated torque, and the excavation resistance value at the time of excavation (hereinafter referred to as “detected torque”) is determined in advance until reaching the support layer Ds. Samples are taken at each penetration depth, input and recorded in a common data tabulation device (such as a personal computer), and a “construction data chart” at that position is created.
Then, when performing the ground improvement method at the next next sequential position, referring to the “construction data chart” created immediately before, each of the data can be used as being almost accurate.

かくして、施工場所について、複数箇所の各ボーリングデータ採取位置を始点とする地盤改良工法の施工を必要な位置乃至場所にまで、順次に隣接する関係で進めると、直前の「施工データ一図表」が活きた施工データとして利用できると共に、各「施工データ一図表」を順次に並べた関係で集計すると、施工場所の全域に及ぶ詳細な地層構成のデータを得ることができる。   Thus, regarding the construction site, when the construction of the ground improvement method starting from the multiple sampling positions of the boring data is sequentially advanced to the necessary position or place in the adjacent relationship, the “construction data chart” immediately before is obtained. It can be used as live construction data, and when each “construction data chart” is tabulated in order, detailed geological composition data covering the entire construction site can be obtained.

その一方で、直前施工において作成した前記「施工データ一図表」を参照しつつ、隣接位置の施工における土質とその深度に応じて、予め設計された地盤安定剤の添加量を調整し施工することにより、改良地盤(改良杭)の強度、剛性を設計値に一致させる施工制御が可能である。したがって、品質、精度の高い地盤改良工法の実施ができる。
のみならず、土質に応じて地盤安定剤の添加量を調整し施工するから、地盤安定剤の使用量を節減でき、ひいては同地盤安定剤を構成するセメント等の使用量を節減でき、大幅なコストダウンを実現できるのである。
On the other hand, referring to the above "construction data chart" created in the previous construction, adjust the amount of ground stabilizer added in advance according to the soil quality and depth in construction at the adjacent position. This makes it possible to perform construction control that matches the strength and rigidity of the improved ground (improved pile) with the design values. Therefore, the ground improvement method with high quality and accuracy can be implemented.
As well as adjusting the amount of ground stabilizer added according to the soil quality, the amount of ground stabilizer used can be reduced, and as a result, the amount of cement, etc. that constitutes the ground stabilizer can be saved. Cost reduction can be realized.

最後に、地盤改良工法の施工は、たとえば3軸型地盤改良機による場合には、図7に示した通り、先ずは先行する地盤改良施工(I)を実施し、次に1工程分のピッチ相当を隔てた位置に次順の地盤改良施工(II)を実施し、最後に前記二つの地盤改良施工(I)と(II)を連結する地盤改良施工(III)を実施して一連につながった地盤改良体(壁体)を連続状態に施工するのが通例である。つまり、第三の地盤改良施工(III)は、W1とW2とにラップ部を有するラップ施工を実施する。
よって請求項4に係る発明の実施例としては、3軸型地盤改良機による地盤改良に際しては、3軸全ての駆動軸5と回転駆動部4との軸継手部10に、上記ポテンショメータ利用のトルク検出器を設備した3軸型地盤改良機を使用し、地盤の掘削・貫入時に、中央の駆動軸5に伝達される回転トルクの大きさを、地盤の掘削抵抗値としてリアルタイムに直接正確に計測し、左右両側の駆動軸5に伝達される回転トルクの大きさを、上記ラップ部W1、W2のラップ切削抵抗値としてリアルタイムに直接正確に計測し、これは前記掘削抵抗値とは別異の測定値としてする共通のデータ集計装置(パーソナルコンピュータ等)へ入力、記録する。
Finally, when the ground improvement method is used, for example, when using a three-axis type ground improvement machine, as shown in FIG. 7, first, the preceding ground improvement work (I) is performed, and then the pitch for one step is performed. The next ground improvement construction (II) is carried out at a position separated by a considerable distance, and finally the ground improvement construction (III) that connects the two ground improvement constructions (I) and (II) is carried out in a series. It is customary to construct a ground improvement body (wall body) in a continuous state. That is, in the third ground improvement construction (III), a lap construction having lap portions at W1 and W2 is performed.
Therefore, as an embodiment of the invention according to claim 4, when the ground is improved by the three-axis type ground improvement machine, the torque using the potentiometer is applied to the shaft coupling portion 10 of all the three drive shafts 5 and the rotary drive portion 4. Using a 3-axis type ground improvement machine equipped with a detector, when excavating and penetrating the ground, the magnitude of the rotational torque transmitted to the center drive shaft 5 is directly and accurately measured in real time as the ground excavation resistance value. Then, the magnitude of the rotational torque transmitted to the left and right drive shafts 5 is directly and accurately measured in real time as the lapping cutting resistance values of the lapping portions W1 and W2, which is different from the excavation resistance value. Input and record to a common data tabulation device (personal computer, etc.) as measurement values.

その結果、ラップ部W1、W2のラップ切削抵抗値が大小に変化すると、それはラップ量の大小変化とみなし得るので、中央軸により得られる地盤の掘削抵抗値(検出トルク)と深度毎に対比・判別して改良済み杭とのラップ切削管理を行い、3軸型地盤改良機における掘削攪拌翼軸3の建て入れ精度の調節を行うことにより地盤改良工法の施工を正確に進めることができる。   As a result, if the lapping cutting resistance values of the lapping parts W1, W2 change to large or small, it can be regarded as a change in lapping amount, so the excavation resistance value (detected torque) of the ground obtained by the central axis is compared with each depth. It is possible to accurately proceed with the ground improvement method by discriminating and managing the lapping with the improved pile and adjusting the accuracy of digging and stirring blade shaft 3 in the three-axis type ground improvement machine.

以上に本発明を実施例と共に説明したが、もとより本発明は実施例の内容に限定されるものではない。本発明の要旨と目的を逸脱しない範囲で、いわゆる当業者が必要に応じて行う設計変更や応用、利用として種々な態様で実施されることを念のため申し添える。    Although the present invention has been described above together with the embodiments, the present invention is not limited to the contents of the embodiments. In the range which does not deviate from the gist and the purpose of the present invention, it will be noted that the present invention can be implemented in various modes as design changes, applications, and utilizations as required by those skilled in the art.

本発明の方法により得られた試験施工データ図表の一例である。It is an example of the test construction data chart obtained by the method of the present invention. 地盤改良機の一例を示す立面図である。It is an elevation view showing an example of a ground improvement machine. A、Bは3軸型地盤改良機の回転駆動部を示す正面図と側面図である。A and B are the front view and side view which show the rotational drive part of a 3 axis type ground improvement machine. aはポテンショメータ利用のトルク検出器を内蔵した軸継手の正面図、bはその断面図、cはb図のC−C線矢視図である。a is a front view of a shaft coupling incorporating a torque detector using a potentiometer, b is a cross-sectional view thereof, and c is a view taken along the line CC in FIG. 図4b図の拡大図である。Fig. 4b is an enlarged view of Fig. 4b. 3軸型の掘削攪拌翼軸の例を示す正面図である。It is a front view which shows the example of a triaxial type excavation stirring blade axis | shaft. ラップ掘削施工の施工図を示す。The construction drawing of lap excavation construction is shown. ボーリングデータの一例を示す。An example of boring data is shown.

符号の説明Explanation of symbols

1 地盤改良処理機
2 リーダー
2a レール
3 掘削攪拌翼軸
3a 攪拌翼
4 回転駆動部
5 駆動軸
10 軸継手部
11 主動カプラー
12 従動カプラー
13 ゴム質材
14 雄ジョイント軸
15 雌ジョイント軸
16 アンギュラー軸受
17、18 支持体
19 ポテンショメータ
DESCRIPTION OF SYMBOLS 1 Ground improvement processing machine 2 Leader 2a Rail 3 Excavation stirring blade axis | shaft 3a Stirring blade 4 Rotation drive part 5 Drive shaft 10 Shaft coupling part 11 Main drive coupler 12 Follower coupler 13 Rubber material 14 Male joint shaft 15 Female joint shaft 16 Angular bearing 17 , 18 Support 19 Potentiometer

Claims (7)

施工場所の土質構成とN値データ等が明解なボーリングデータ採取位置の近傍位置に、地盤改良処理機による掘削・貫入の試験施工を行い、
前記地盤改良処理機の試験施工における貫入速度、貫入深度、貫入所要時間、および当該地盤改良処理機の貫入動力源である電動機の負荷トルク値又は負荷電流値、並びに掘削時における掘削抵抗値をそれぞれ、前記ボーリングデータにより明らかな支持層へ到達するまでの貫入深度毎に採取し、
採取した支持層到達時点の予想深度、支持層到達時点における前記電動機の予想負荷トルク値又は予想電流値と、支持層到達時点の予想貫入速度値、並びに支持層到達時点における予想掘削抵抗値をそれぞれ、支持層への到達判定基準値に採用して以降の地盤改良工法の施工を隣接位置から順に進めることを特徴とする、地盤改良工法の施工における支持層到達判定方法。
Excavation / penetration test using a ground improvement processing machine is performed near the boring data collection position where the soil composition and N value data of the construction site are clear,
The penetration speed, penetration depth, penetration time, and load torque value or load current value of the electric motor that is the penetration power source of the ground improvement processing machine, and the excavation resistance value at the time of excavation, respectively, in the test construction of the ground improvement processing machine , Collected at every penetration depth until reaching the obvious support layer by the boring data,
The estimated depth when the support layer is reached, the expected load torque value or the expected current value of the motor when the support layer is reached, the expected penetration speed value when the support layer is reached, and the expected excavation resistance value when the support layer is reached, respectively. The support layer arrival judgment method in the construction of the ground improvement method, which is adopted as the reference value for determining the arrival at the support layer, and the subsequent construction of the ground improvement method is advanced in order from the adjacent position.
施工場所の土質構成と非液状化層の位置、N値データ等が明解なボーリングデータ採取位置の近傍位置に、地盤改良処理機による掘削・貫入の試験施工を行い、
前記地盤改良処理機の試験施工における貫入速度、貫入深度、貫入所要時間、および当該地盤改良処理機の貫入動力源である電動機の負荷トルク値又は負荷電流値、並びに掘削時における掘削抵抗値をそれぞれ、前記ボーリングデータにより明らかな非液状化層へ到達するまでの貫入深度毎に採取し、
採取した非液状化層到達時点の予想深度、および前記電動機の非液状化層到達時点の予想負荷トルク値又は予想電流値、非液状化層到達時点の予想貫入速度値、並びに非液状化層到達時点の予想掘削抵抗値をそれぞれ、非液状化層到達判定基準値に採用して以降の地盤改良工法の施工を隣接位置から順に進めることを特徴とする、地盤改良工法の施工における非液状化層到達判定方法。
Excavation / penetration test using a ground improvement processing machine was performed near the boring data collection position where the soil composition of the construction site, the position of the non-liquefied layer, N value data, etc. were clear,
The penetration speed, penetration depth, penetration time, and load torque value or load current value of the electric motor that is the penetration power source of the ground improvement processing machine, and the excavation resistance value at the time of excavation, respectively, in the test construction of the ground improvement processing machine , Collected at every penetration depth until reaching the non-liquefied layer apparent from the boring data,
Expected depth when the collected non-liquefied layer reaches, expected load torque value or current value when the motor reaches the non-liquefied layer, expected penetration speed value when reaching the non-liquefied layer, and non-liquefied layer reached The expected digging resistance value at the time is adopted as the non-liquefied layer arrival judgment reference value, and the subsequent ground improvement method construction is proceeded from the adjacent position in order, the non-liquefaction layer in the ground improvement method construction Arrival determination method.
施工場所の土質構成と液状化層や非液状化層の位置、N値データ等が明解なボーリングデータ採取位置の近傍位置に、地盤改良処理機による掘削・貫入の試験施工を行い、
前記地盤改良処理機の試験施工における液状化層や非液状化層での貫入速度や貫入深度、貫入所要時間、および当該地盤改良処理機の貫入動力源である電動機の負荷トルク値又は負荷電流値、並びに掘削時における掘削抵抗値をそれぞれ貫入深度毎に採取し、
採取した液状化層や非液状化層の位置情報に基づいて、原地盤土層における液状化層又は非液状化層の位置を深度毎に判別して地盤改良施工法の施工条件に反映させて以降の施工を隣接位置から順に進めることを特徴とする、地盤改良工法の施工における液状化層又は非液状化層の判定方法。
Excavation / penetration test by ground improvement processing machine is performed at the position near the boring data collection position where the soil composition of the construction site, the position of the liquefied layer and non-liquefied layer, N value data etc. are clear,
Penetration speed and penetration depth in the liquefied layer and non-liquefied layer in the test construction of the ground improvement treatment machine, penetration time, and load torque value or load current value of the motor that is the penetration power source of the ground improvement treatment machine , And excavation resistance value at the time of excavation is collected for each penetration depth,
Based on the position information of the collected liquefied layer and non-liquefied layer, the position of the liquefied layer or non-liquefied layer in the original ground soil layer is determined for each depth and reflected in the construction conditions of the ground improvement construction method. The determination method of the liquefied layer or the non-liquefied layer in the construction of the ground improvement construction method, characterized in that the subsequent construction is sequentially advanced from the adjacent position.
施工場所の土質構成と液状化層や非液状化層の位置、N値データ等が明解なボーリングデータ採取位置の近傍位置に、地盤改良処理機による掘削・貫入の試験施工を行い、
前記試験施工で、ボーリングデータにより明解な原地盤土層における地盤改良処理機の貫入速度、貫入深度、貫入所要時間、および当該地盤改良処理機の貫入動力源である電動機の負荷トルク値又は負荷電流値、並びに掘削時における地盤の掘削抵抗値をそれぞれ、前記ボーリングデータにより明らかな非液状化層へ到達するまでの貫入深度毎に採取し、
その後、同じ場所に設計強度を満足する改良杭を造成し、造成した前記改良杭を、実施工の施工と同じ手順によりラップ切削施工を行い、前記ラップ切削時の切削抵抗を深度方向に採取し、前記の切削抵抗値を前記地盤の掘削抵抗値と深度毎に対比、判別して改良済み杭とのラップ切削管理を行うことを特徴とする、地盤改良工法の施工におけるラップ切削管理方法。
Excavation / penetration test by ground improvement processing machine is performed at the position near the boring data collection position where the soil composition of the construction site, the position of the liquefied layer and non-liquefied layer, N value data etc. are clear,
In the above test construction, the penetration speed, penetration depth, penetration time, and load torque value or load current of the motor that is the penetration power source of the ground improvement processing machine in the ground soil layer that is clear from the boring data. Value, and excavation resistance value of the ground at the time of excavation, respectively, collected for each penetration depth until reaching the non-liquefiable layer apparent from the boring data,
After that, an improved pile satisfying the design strength was created at the same place, and the improved pile thus created was lapped by the same procedure as the construction of the construction work, and the cutting resistance during the lapping was sampled in the depth direction. A lap cutting management method in the construction of the ground improvement construction method, wherein the lap cutting management with the improved pile is performed by comparing and discriminating the cutting resistance value with the excavation resistance value of the ground for each depth.
地盤改良処理機の掘削時における掘削抵抗値を貫入深度毎に採取する手段として、地盤改良処理機の軸継手部に、トルク伝達材として、トルクの大きさに比例して一定の角度変位を発生する弾性なゴム質材を介在させ、前記の角度変位をポテンショメータによる電流値として取り出すことを特徴とする、請求項1〜4のいずれか一に記載した地盤改良工法の施工管理方法。   As a means to collect the excavation resistance value at the depth of penetration for excavation of the ground improvement processing machine, a constant angular displacement is generated in proportion to the magnitude of the torque as a torque transmission material in the shaft joint part of the ground improvement processing machine The ground improvement construction method according to any one of claims 1 to 4, wherein an elastic rubber material is interposed and the angular displacement is taken out as a current value by a potentiometer. 請求項1に記載した支持層到達判定方法における掘削抵抗値を貫入深度毎に採取する手段として、3軸型の掘削攪拌翼軸において先行する中央の掘削攪拌翼軸に、貫入深度毎に掘削抵抗値を採取する手段を設置することを特徴とする、請求項1〜5のいずれか一に記載した地盤改良工法の施工管理方法。   As a means for collecting the excavation resistance value for each penetration depth in the support layer arrival determination method according to claim 1, the excavation resistance for each penetration depth is provided at the central excavation agitation blade axis preceding the triaxial excavation agitation blade axis. The construction management method of the ground improvement construction method according to any one of claims 1 to 5, wherein means for collecting the value is installed. 地盤改良処理機の掘削攪拌翼軸の軸継手部に、地盤改良処理機の掘削時における掘削抵抗値を貫入深度毎に採取する手段として、トルクの大きさに比例して一定の角度変位を発生する弾性なゴム質材がトルク伝達材として介在され、前記の角度変位を電流値として取り出すポテンショメータが設置されていることを特徴とする、地盤改良処理機。   As a means of collecting the excavation resistance value at the time of excavation by the ground improvement processing machine at each penetration depth, a constant angular displacement is generated in proportion to the magnitude of the torque at the shaft joint of the ground improvement processing machine. A ground improvement processing machine characterized in that an elastic rubber material is interposed as a torque transmission material, and a potentiometer for taking out the angular displacement as a current value is installed.
JP2006284692A 2006-10-19 2006-10-19 Construction management method of ground improvement method and ground improvement processing machine Active JP4906470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284692A JP4906470B2 (en) 2006-10-19 2006-10-19 Construction management method of ground improvement method and ground improvement processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006284692A JP4906470B2 (en) 2006-10-19 2006-10-19 Construction management method of ground improvement method and ground improvement processing machine

Publications (2)

Publication Number Publication Date
JP2008101388A JP2008101388A (en) 2008-05-01
JP4906470B2 true JP4906470B2 (en) 2012-03-28

Family

ID=39435922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284692A Active JP4906470B2 (en) 2006-10-19 2006-10-19 Construction management method of ground improvement method and ground improvement processing machine

Country Status (1)

Country Link
JP (1) JP4906470B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6532319B2 (en) * 2015-06-25 2019-06-19 株式会社チダエンジニアリング Deep mixing processing method and deep mixing processing apparatus using powder solidifying material
JP6662543B2 (en) * 2015-10-13 2020-03-11 株式会社菅原建設 Pile construction method and reverse drilling system
JP6166833B1 (en) * 2016-11-17 2017-07-19 あおみ建設株式会社 Management equipment for deep mixing equipment
JP6846186B2 (en) * 2016-12-15 2021-03-24 前田建設工業株式会社 Support layer confirmation method and ground improvement method
JP7464354B2 (en) * 2018-07-03 2024-04-09 株式会社テノックス How to confirm whether piles have reached the supporting layer when using the inner excavation method
JP7397481B2 (en) 2020-04-10 2023-12-13 株式会社オムテック Ground liquefaction depth estimation device and method
JP7475208B2 (en) * 2020-06-15 2024-04-26 株式会社竹中工務店 How to build a water barrier
CN114855749B (en) * 2022-05-24 2023-04-07 中交第四航务工程局有限公司 Pressure-based mixing pile soil layer identification method
CN115584960B (en) * 2022-10-13 2024-01-30 徐州徐工基础工程机械有限公司 Control method and system for fixed-point automatic operation of rotary drilling rig

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3675164B2 (en) * 1998-03-27 2005-07-27 コベルコクレーン株式会社 Support ground position detection method and support ground position detection device for ground improvement machine
JP3156050B2 (en) * 1998-11-27 2001-04-16 株式会社竹中土木 Landing judgment management method of ground improvement processing machine
JP3156049B2 (en) * 1998-11-27 2001-04-16 株式会社竹中土木 Ground improvement device, ground improvement method, and improved soil column pile pile lap length management method

Also Published As

Publication number Publication date
JP2008101388A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP4906470B2 (en) Construction management method of ground improvement method and ground improvement processing machine
JP6251128B2 (en) Judgment method of soil distribution by shield machine
CA2933381C (en) Arrangement and method of utilizing rock drilling information
CN110528550A (en) The hard soil layer in caisson cutting edge position is broken and slag cleaning device and its construction method
JP5819152B2 (en) Support layer arrival estimation method and support layer arrival estimation support device used in pile embedding method
JP2001091242A (en) Measuring device for propulsion locus and propulsion attitude in propulsion shield tunneling method, measuring method, propulsion locus control device and propulsion locus control method
US6574893B2 (en) Method and system for supporting construction of underground continuous wall and excavator therefor
CN110878572B (en) Machine tool grade management system
US20120303224A1 (en) Method and system for monitoring the operation of a cable shovel machine
JP2019049142A (en) System, method and program for calculating caisson opening ratio
CA2894656C (en) Drilling data visualization method
JPH06299531A (en) Method and device of measuring support ground soil properties
JP2001348906A (en) Trench excavator, method of displaying trench wall shape in trench excavator and method of correcting trench wall shape
US20210010231A1 (en) Excavation data processing method, excavation data processing device, and excavator for trench
JP5070984B2 (en) Shape confirmation system for root bulbs in foundation pile construction
US9739133B2 (en) Imaging underground objects using spatial sampling customization
JP4757889B2 (en) Excavation data management system in the all casing method
JP5616244B2 (en) Foundation judgment method by underground drilling data analysis
JP6864211B2 (en) Pile hole construction method, pile hole construction system and excavation rod
JP2735734B2 (en) Pile support layer detection method
JP2563973B2 (en) Drilling auger head
US20200072046A1 (en) Method and system for determining a soil class and use during determination of a soil class
JP7020589B2 (en) Construction method of rotating piles, manufacturing method of piles, and piles
JP3681813B2 (en) Geological determination method
JPH09228780A (en) Estimation method for tunnel facing earth quality and timbering selecting method, and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4906470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250