WO2020218384A1 - Circuit composite structure - Google Patents

Circuit composite structure Download PDF

Info

Publication number
WO2020218384A1
WO2020218384A1 PCT/JP2020/017409 JP2020017409W WO2020218384A1 WO 2020218384 A1 WO2020218384 A1 WO 2020218384A1 JP 2020017409 W JP2020017409 W JP 2020017409W WO 2020218384 A1 WO2020218384 A1 WO 2020218384A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforced resin
wiring board
flexible printed
printed wiring
fiber
Prior art date
Application number
PCT/JP2020/017409
Other languages
French (fr)
Japanese (ja)
Inventor
町田 英明
正太郎 日高
公志 木山
Original Assignee
東レ・デュポン株式会社
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ・デュポン株式会社, 東レ株式会社 filed Critical 東レ・デュポン株式会社
Publication of WO2020218384A1 publication Critical patent/WO2020218384A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a technique for combining electrical signal wiring with a structure constituting a transportation device such as an automobile or an industrial device.
  • the present invention relates to a technique of using a flexible printed wiring board in the technique of compounding.
  • FRP fiber reinforced plastic
  • Patent Document 1 discloses a structure made of FRP, which is used in an electric / electronic circuit of a notebook computer or the like and has excellent conductivity and electromagnetic wave shielding characteristics as a countermeasure against electromagnetic noise, and also has excellent strength and rigidity.
  • this structure made of FRP has a main layer 1 made of FRP containing continuous carbon fibers, and the main layer is a conductive member (metal plate, which forms a part of an electric / electronic circuit). A brass boss 7) is electrically connected.
  • the FRP structure also has sublayers 2a and 2b, a rib portion 3, a hinge portion 5, and a stainless plate 6.
  • CFRP carbon fiber reinforced plastic
  • Patent Document 1 proposes a structure that doubles as a structure and a circuit by electrically connecting a conductive member that constitutes a part of an electric / electronic circuit to a main layer made of a carbon fiber reinforced resin. However, it is difficult to form electrical signal circuits or wiring within the structure.
  • the flexible printed wiring board has a high degree of freedom in shape and is excellent in thinness, light weight, and flexibility, but has low rigidity and is inferior in independence as a structure, and has vibration resistance. There was a problem of reliability.
  • An object of the present invention is to provide a novel circuit composite structure (particularly, a structure containing a fiber reinforced resin).
  • Another object of the present invention is to provide a structure having wiring inside the structure and containing a fiber reinforced resin.
  • wiring such as FPC may cause problems in terms of independence (strength) and reliability.
  • these problems may become remarkable when the wiring or the structure itself is formed non-planarly.
  • FPC is a circuit form made of a film base material and characterized by thinness, flexibility, and bending resistance.
  • FPC is a circuit form made of a film base material and characterized by thinness, flexibility, and bending resistance.
  • it is used as a non-planar wiring material due to its self-supporting force, it is caused by vibration or the like. There was a concern that the conductor would break. Further, even when the conductor is installed along the non-planar structure having other rigidity, there is a concern that the conductor may be damaged due to peeling from the structure or an external force.
  • the present inventors can embed wiring such as FPC inside the structure formed of the fiber reinforced resin, and can efficiently solve the above-mentioned problems by such embedding. I found that.
  • CFRP or the like or carbon fiber or the like as the fiber (filler) of the fiber reinforced resin
  • the present inventors can combine it with wiring such as FPC due to its conductivity. , Found that it may be necessary to adjust the impedance. Impedance is generally adjusted by adjusting the distance between conductors in FPC or the like, but according to the study by the present inventors, in a structure using CFRP or the like, impedance is adjusted by adjusting the distance between conductors. Was not adjusted well in some cases.
  • the present inventors particularly obtain impedance by using an impedance adjusting material formed of polyimide or the like in a structure in which wiring (FPC or the like) is embedded in a fiber reinforced resin such as CFRP. Efficient adjustment is possible, and as described above, such efficient impedance adjustment can be performed without impairing strength and reliability (both strength and reliability and impedance adjustment can be realized at the same time). ) Etc., and further diligent research was carried out to complete the present invention.
  • a structure composite structure, circuit composite structure containing (providing) a fiber reinforced resin (fiber reinforced resin layer) and wiring (circuit), in which the wiring is embedded in the fiber reinforced resin. body.
  • a second flexible printed wiring board is installed on the opposite surface of the fiber-reinforced resin layer composed of one or more of the first flexible printed wiring board on which the first flexible printed wiring board is installed.
  • the fiber reinforced resin contains a fiber containing glass fiber or carbon fiber and a thermosetting resin.
  • the fiber reinforced resin contains carbon fibers and a thermosetting resin.
  • the fiber reinforced resin contains carbon fibers and the specific rigidity of the carbon fibers is 16000000 meters or more.
  • the flexible printed wiring board is provided with a film containing polyimide on the outermost layers on both sides, and has an opening so that the conductor of the terminal portion is exposed [in the flexible printed wiring board, the terminal portion of the wiring is exposed].
  • the thickness of the first fiber-reinforced resin layer, the second fiber-reinforced resin layer, and the third fiber-reinforced resin layer is in the range of 0.05 mm or more and 3 mm or less, respectively [5].
  • the terminal portion (end of wiring) of the first flexible printed wiring board and / or the terminal portion (end of wiring) of the second flexible printed wiring board is exposed [for example, at least a part of the terminal portion (preferably). (All) are not embedded in the fiber reinforced resin layer (for example, are on the first fiber reinforced resin layer and are exposed)]], any of [6] to [18].
  • the structure described in. [20] The structure according to any one of [4] to [19], wherein all the terminals of the flexible printed wiring board are exposed.
  • [21] The structure according to any one of [1] to [20], wherein the wiring is embedded so as to be conductive.
  • fiber of the fiber reinforced resin used examples include carbon fiber, glass fiber, aramid fiber, PBO (polyparaphenylene benzobis oxazole) fiber, boron fiber and the like, and carbon having excellent specific strength and specific rigidity. Fiber is the most suitable.
  • the fiber-reinforced resin used may be either a thermoplastic resin or a thermosetting resin, but a thermosetting resin is preferable in consideration of ease of molding with a flexible printed wiring board. Of these, a prepreg in which fibers are pre-impregnated with an uncured thermosetting resin is preferable.
  • the thermosetting resin used for the prepreg include epoxy resin, vinyl ester resin, unsaturated polyester resin, urethane resin, cyanate ester resin, and the like. Epoxy resin is used for molding and structure strength. It is suitable for developing rigidity.
  • the structure (composite structure, circuit composite structure) can be manufactured separately and bonded, but in order to improve the weight, strength, rigidity, and reliability of the structure, it should be integrally molded. Is desirable.
  • the integral molding method examples of the composite material molding method include hand lay-up, spray-up, press molding using various materials, injection molding, etc., but the voids in the structure are reduced and at the time of molding. In order to properly control the temperature and pressure, it is most preferable to mold using an autoclave.
  • an engineering plastic film having excellent insulation and heat resistance such as polyester film, LCP film, PPS film, and polyimide film.
  • a glass transition temperature higher than the molding temperature in order to ensure insulation against electrical signal wiring and prevent deformation and distortion of the wiring.
  • a polyimide film having excellent heat resistance, dimensional stability, and insulating property is particularly preferable.
  • the circuit conductors (wiring, circuits) that make up the flexible printed wiring board consist of metal powder, metal foil (for example, copper foil, etc.), dry and wet plating, or a combination thereof on the insulating film. Then, a wiring pattern is formed by a known method. Insulation protection on circuit conductors other than the connection terminal part and component mounting part with external wiring is performed by heat fusion of the insulating film, bonding of the insulating film via a heat-resistant adhesive, resist ink, or resist. It is formed by a film or a known method in which they are combined.
  • the circuit conductors (wiring, circuits) constituting the flexible printed wiring board can be partially or completely multi-layered in the thickness direction, and each layer can be made conductive as needed. Further, the terminal portion of the flexible printed wiring board may be reinforced with an insulating plate in order to facilitate component mounting and connection with the outside.
  • a novel circuit composite structure can be provided.
  • Such a structure includes a structure in which wiring (circuit) is embedded in fiber reinforced plastic (fiber reinforced resin layer in which wiring is embedded), and is lightweight with wiring (for example, an electric signal circuit composed of FPC). Two functions of high rigidity can be realized with a single structure. Further, according to such a structure, even if wiring is provided, independence (mechanical strength) and reliability as wiring (circuit) can be improved.
  • the existing form of wiring in the structure and / or the structure itself can be made non-planar. According to such a structure, various structures can be formed by increasing the degree of freedom in wiring or structure design.
  • the structure of one aspect of the present invention increases the degree of freedom in the design of electrical wiring by using a flexible printed wiring board, and secures the reliability of the function of transmitting an electrical signal.
  • a fiber-reinforced resin layer such as a carbon fiber-reinforced resin layer is used as the coating protection layer of the circuit, it is possible to exhibit a function of protecting from the aspects of mechanical strength and electromagnetic wave shielding, and further as a signal circuit. The reliability can be improved.
  • the structure of one aspect of the present invention is a structure obtained by integrally molding a flexible printed wiring board under either high temperature or high pressure or both conditions. Since the adhesion between the reinforced resin layer and the flexible printed wiring board can be ensured and the bending rigidity corresponding to the thickness of the flexible printed wiring board can be improved, the bending rigidity of the structure can be improved.
  • the structure of the present invention is formed of a fiber reinforced resin and has a structure in which wiring is embedded.
  • the structure of the present invention includes a fiber reinforced resin (fiber reinforced resin layer) in which wiring is embedded.
  • the wiring is usually embedded without disconnection (so that it can be conducted).
  • the wiring (circuit) may be buried in a plane or may be buried in a non-planar manner.
  • the degree of freedom in wiring (circuit) design is high.
  • the shape of the wiring, the cross-sectional area of the conductor, and the distance between the conductors are not particularly limited, and it is sufficient that the necessary continuity and circuit characteristics between the terminals can be obtained.
  • the wiring shape may be, for example, a corrugated shape, an S-shape, or the like.
  • the shape of the circuit composite structure may be planar or non-planar. In the present invention, since it can be formed regardless of whether it is planar or non-planar, various forms of structures can be provided.
  • the non-planar shape is not particularly limited, and may be molded according to the shape of the target product or the like.
  • the shape of the circuit composite structure may correspond (follow) the embedded form of the wiring, or may not correspond to the embedded form. In particular, in the present invention, since the shape of the structure can correspond to (follow) the non-planar buried form of the wiring, the structure having a non-planar shape (curved surface shape, etc.) can be efficiently and highly reliable.
  • the function of wiring (circuit) can be demonstrated by the nature.
  • Fiber reinforced plastics usually include fibers and resins.
  • the fiber contained in the fiber reinforced resin include carbon fiber, glass fiber, aramid fiber, PBO (polyparaphenylene benzobis oxazole) fiber, boron fiber and the like.
  • the fiber reinforced resin include carbon fiber reinforced plastic, glass fiber reinforced plastic, aramid fiber reinforced plastic, PBO fiber reinforced plastic, and boron fiber reinforced plastic.
  • carbon fiber reinforced plastic is preferable from the viewpoint of specific strength, specific rigidity and the like.
  • the specific rigidity of the carbon fibers contained in the fiber reinforced resin can be appropriately selected according to the specifications of the circuit composite structure, etc., but by making the circuit composite structure thinner and lighter in a stronger form. Further, from the viewpoint of easily improving the space efficiency, it may be preferably 16,000,000 meters or more (for example, 21,000,000 meters or more), and more preferably 25,000,000 meters or more.
  • the specific rigidity may be a value obtained by dividing the tensile elastic modulus in the fiber direction by the density.
  • the tensile modulus may be, for example, a value measured according to JIS K 7161.
  • the specific strength of the carbon fibers can be appropriately selected according to the specifications of the circuit composite structure and the like, but is preferable from the viewpoint of easily providing a structure that is lighter and has excellent strength reliability. It may be 330,000 meters or more, more preferably 360000 meters or more.
  • the specific strength may be a value obtained by dividing the tensile strength in the fiber direction by the density.
  • the tensile strength may be, for example, a value measured according to JIS K 7161.
  • the resin contained in the fiber-reinforced resin examples include thermoplastic resin, thermosetting resin (for example, epoxy resin, vinyl ester resin, unsaturated polyester resin, urethane resin, cyanate ester resin), and wiring (cyanate ester resin).
  • thermosetting resin for example, epoxy resin, vinyl ester resin, unsaturated polyester resin, urethane resin, cyanate ester resin
  • wiring cyanate ester resin
  • a thermosetting resin is preferable from the viewpoint of moldability with a flexible printed wiring board
  • an epoxy resin is particularly preferable from the viewpoint of strength and rigidity of a circuit composite structure.
  • the glass transition temperature of the resin contained in the fiber-reinforced resin can be appropriately selected depending on the usage environment of the circuit composite structure, but may be preferably 150 ° C. or higher, more preferably 180 ° C. or higher. ..
  • a resin having a high heat resistant temperature it is possible to provide electronic circuits such as controls and sensors in a more space-efficient form even in a device having a combustion
  • the glass transition temperature of the resin contained in the fiber reinforced resin may be a value measured by DMA (Dynamic Mechanical Analysis).
  • fiber reinforced resin those containing carbon fiber, aramid fiber, or both, and a thermosetting resin are particularly preferable.
  • the ratio of fibers can be appropriately set according to the structural design requirements of the product, molding conditions, etc., and is not particularly limited.
  • the high ratio of fibers can improve the elastic modulus and strength of the fiber reinforced resin, and is lighter. From the viewpoint of realizing a structure having excellent space efficiency, for example, it may be about 5 to 90 parts by mass, preferably about 10 to 80 parts by mass with respect to 100 parts by mass of the resin (resin component).
  • the fiber-reinforced resin layer is heat-reinforced from the viewpoints of preventing disconnection of wiring (for example, flexible printed wiring board) and arranging the terminal portion of the wiring at a designed position (preventing misalignment of the terminal portion).
  • Those molded from a prepreg containing a curable resin are preferable.
  • the prepreg may be a fiber such as carbon fiber or aramid fiber impregnated with a thermosetting resin.
  • the prepreg may be a thermosetting resin in a semi-cured state.
  • the method for bringing the thermosetting resin into a semi-cured state is not particularly limited, and heating or drying may be performed by a conventional method.
  • the preprig may contain various additives (for example, rubber components, inorganic substances, etc.).
  • the laminated structure of the fiber reinforced resin layer is not particularly limited, and the direction and thickness of the fibers can be selected according to the specifications of the circuit composite structure and the like. For example, pseudo isotropic lamination and orthogonal anisotropy can be selected. Lamination and the like can be mentioned.
  • the wiring may be included in the wiring board (particularly, the flexible printed wiring board) [constituting the wiring board (particularly the flexible printed wiring board)]. That is, in the circuit composite structure, the wiring board (particularly, the flexible printed wiring board) may be embedded (the wiring may be embedded as the flexible printed wiring board).
  • Examples of the flexible printed wiring board include the above-exemplified ones.
  • the thickness of the flexible printed wiring board may be, for example, 0.01 mm or more and 1 mm or less.
  • the terminal portion of the wiring (for example, the flexible printed wiring board) [the connection point of the wiring (circuit) with the outside] is exposed [the structure (or the fiber reinforced resin layer) formed of the fiber reinforced resin. ) May be exposed.
  • the terminal portion may be exposed at least in part, and is, for example, in contact with or adhered to the surface of a structure (or fiber reinforced resin layer) formed of a fiber reinforced resin. (Or it may be fixed), and it may not be in contact or adhered (or may not be fixed) from the viewpoint of making it easier to connect to the outside.
  • a release film is sandwiched between the wiring (for example, FPC) and the prepreg. It can be manufactured by removing the release film after heat molding.
  • a polyamic acid solution is obtained by polymerizing an aromatic diamine component and an acid anhydride component in an organic solvent.
  • aromatic diamine component examples include paraphenylenediamine, metaphenylenediamine, benzidine, paraxylylene diamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4 , 4'-diaminodiphenylsulfone, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 1,5-diaminonaphthalene, 1,3-bis (4-aminophenoxy) benzene, 3,3'-dimethoxybench Examples thereof include zinc, 1,4-bis (3 methyl-5 aminophenyl) benzene, and amide-forming derivatives thereof.
  • aromatic diamine components para-phenylenediamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether and the like can be preferably used.
  • the content of 4,4'-diaminodiphenyl ether among all the components of the aromatic diamine component is preferably 10 to 100 mol%, more preferably 30 to 100 mol. %, More preferably 50 to 100 mol%.
  • the aromatic diamine component contains para-phenylenediamine the content of para-phenylenediamine in all the components of the aromatic diamine component is preferably 5 to 60 mol%, more preferably 10 to 50 mol%, still more preferably 15. It is ⁇ 40 mol%.
  • the acid anhydride component examples include pyromellitic acid, 3,3', 4,4'-biphenyltetracarboxylic acid, 2,3', 3,4'-biphenyltetracarboxylic acid, 3,3', 4 , 4'-Benzophenone tetracarboxylic acid, 2,3,6,7-naphthalenedicarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) ether, pyridine-2,3,5,6-tetracarboxylic acid And acid anhydrides such as these amide-forming derivatives. These may be used alone or in combination of two or more. Among these acid anhydride components, pyromellitic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride and the like can be preferably used.
  • the content of the pyromellitic acid dianhydride component in the total acid anhydride component is preferably 10 to 100 mol%, more preferably 30 to 100 mol%. It is more preferably 50 to 100 mol%, and particularly preferably 80 to 100 mol%.
  • the acid anhydride component contains 3,3', 4,4'-biphenyltetracarboxylic dianhydride, among the total acid anhydride components, 3,3', 4,4'-biphenyltetracarboxylic acid
  • the content of the dianhydride is preferably 5 to 60 mol%, more preferably 15 to 40 mol%.
  • organic solvent used for forming the polyamic acid solution examples include sulfoxide-based solvents such as dimethyl sulfoxide and diethyl sulfoxide, formamide-based solvents such as N, N-dimethylforme and N, N-diethylformamide, and N.
  • N-Dimethylacetamide such as N, N-diethylacetamide
  • pyroridone solvents such as N-methyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, phenols, o-, m-, or p- Examples thereof include phenolic solvents such as cresol, xylenol, halogenated phenol and catechol, and aprotonic polar solvents such as hexamethylphospholamide and ⁇ -butyrolactone, which are used alone or as a mixture of two or more.
  • aromatic hydrocarbons such as xylene and toluene can also be used.
  • the polymerization method is not particularly limited, and any known method may be used.
  • the obtained polyamic acid solution usually contains 5 to 40% by weight of solids, preferably 10 to 30% by weight of solids.
  • the viscosity is usually 10 to 10000 Pa ⁇ s as measured by a Brookfield viscometer, and is preferably 300 to 5000 Pa ⁇ s for stable liquid feeding.
  • the polyamic acid in the organic solvent solution may be partially imidized.
  • a method for forming a polyimide film As a method for forming a polyimide film, a method of casting a polyamic acid solution into a film and thermally decyclizing and desolving it to obtain a polyimide film, and a method of mixing a cyclization catalyst and a dehydrating agent with a polyamic acid solution and chemistry A method of obtaining a polyimide film by subjecting it to decyclization to prepare a gel film and heat-desolving the gel film can be mentioned.
  • the polyimide film may contain a plasticizer, other resins, etc. as long as the object of the present invention is not impaired.
  • the plasticizer is not particularly limited, and for example, bisphenol compounds such as hexylene glycol, glycerin, ⁇ -naphthol, dibenzylphenol, octylcresol, and bisphenol A, octyl p-hydroxybenzoate, and p-hydroxybenzoic acid-2.
  • bisphenol compounds such as hexylene glycol, glycerin, ⁇ -naphthol, dibenzylphenol, octylcresol, and bisphenol A, octyl p-hydroxybenzoate, and p-hydroxybenzoic acid-2.
  • the other resin to be blended in the polyimide one having excellent compatibility is preferable, and for example, an ester and / or a carboxylic acid-modified olefin resin, an acrylic resin (particularly, an acrylic resin having a glutarimide group), an ionomer resin, and a polyester resin.
  • an ester and / or a carboxylic acid-modified olefin resin an acrylic resin (particularly, an acrylic resin having a glutarimide group), an ionomer resin, and a polyester resin.
  • acrylic resin particularly, an acrylic resin having a glutarimide group
  • the polyimide film may contain a colorant, various additives and the like as long as the object of the present invention is not impaired.
  • the additive include an antistatic agent, a flame retardant, a heat stabilizer, an ultraviolet absorber, a lubricant, a mold release agent, a crystal nucleating agent, a strengthening agent (filler) and the like.
  • the surface of the polyimide film may be coated with ink or the like.
  • the polyimide film constituting the flexible printed wiring board preferably has a heat shrinkage rate in an environment of 180 ° C. for 20 minutes from the viewpoint of suppressing wrinkles during adhesion between the flexible printed wiring board and the fiber reinforced resin. Is ⁇ 0.1 to 0.1%, more preferably ⁇ 0.05 to 0.05%.
  • the structure may include a shield layer, if desired.
  • the shield layer may be capable of blocking external noise.
  • the shield layer may usually be provided on the outside of the wiring (or wiring board, eg, flexible printed wiring board).
  • Such a shield layer may be provided on at least one side (one side) of the wiring board (for example, a flexible printed wiring board), or may be provided on both sides (both sides). Further, it is preferable that the shield layer is provided in contact with a wiring board (for example, a flexible printed wiring board) (for example, on at least one side).
  • the shield layer for example, a metal foil (for example, copper foil, aluminum foil) or a film having a metal layer (for example, a metal layer formed on a film by vapor deposition, sputtering, etc.) may be used. it can.
  • a metal foil for example, copper foil, aluminum foil
  • a film having a metal layer for example, a metal layer formed on a film by vapor deposition, sputtering, etc.
  • the thickness of the shield layer may be, for example, 0.005 mm to 1 mm, preferably 0.005 mm to 0.1 mm or the like.
  • the method of bonding the shield layer and the fiber reinforced resin (or the fiber reinforced resin layer) is not particularly limited, and may be electrically connected, and between the fiber reinforced resin layer and the shield layer in order to obtain insulation. Insulating resin may be present.
  • a method for adhering the shield layer and the fiber reinforced resin (or the fiber reinforced resin layer) a known method may be used, and an adhesive may be used if necessary.
  • the structure may include an impedance adjusting layer.
  • an impedance adjusting layer may usually be provided on the outside of a wiring board (for example, a flexible printed wiring board), or may be provided on, for example, at least one side of the impedance adjusting layer.
  • the impedance adjustment layer may be provided on at least one side of the wiring board (for example, a flexible printed wiring board), or may be provided on both sides.
  • the structure includes a shield layer and an impedance adjusting layer, the positional relationship between them is not particularly limited, and any layer may be located on the outside, but usually, it is outside the impedance adjusting layer.
  • a shield layer may be provided (for example, on the impedance adjustment layer).
  • the impedance adjustment layer is preferably one capable of adjusting the characteristic impedance of the wiring (or wiring board, for example, a flexible printed wiring board) to 50 to 150 ohms.
  • the adjusting material for forming the impedance adjusting layer include a film made of a general resin, a non-woven fabric, and a woven fabric.
  • polyimide fiber for example, non-thermoplastic polyimide fiber
  • aramid fiber aramid fiber
  • the impedance can be adjusted. Efficient and easy to adjust.
  • the impedance adjusting layer may be partially integrated with the fiber reinforced resin (for example, impregnated with the fiber reinforced resin) depending on its mode (for example, in the case of a non-woven fabric or the like). ..
  • the characteristic impedance of the flexible printed wiring board can be measured by, for example, the TDR method.
  • the thickness of the impedance adjusting layer may be, for example, 0.05 mm to 0.5 mm, preferably 0.1 mm to 0.3 mm or the like.
  • the structure (layer structure) of the fiber reinforced resin (layer) is not particularly limited as long as the wiring board (for example, a flexible printed wiring board) is embedded, and may be a single layer structure. It may have a plurality of layer structures.
  • the plurality of layer structures may be integrated (adhesive integration).
  • the structure is a first wiring board (particularly) that is above (upper) the first fiber-reinforced resin layer and the first fiber-reinforced resin layer and is in contact with the first fiber-reinforced resin layer.
  • Flexible printed wiring board and a second fiber-reinforced resin that is on the first wiring board (particularly, flexible printed wiring board) and is in contact with the first wiring board (particularly, flexible printed wiring board).
  • a layer may be provided (hereinafter, a unit provided with these may be referred to as a "circuit composite structure (1)").
  • the contact between the fiber reinforced resin layer and the wiring may be direct or indirect.
  • the wiring is made of a fiber reinforced resin via such other layers. May be in contact with.
  • the circuit composite structure (1) may include a second flexible printed wiring board on the opposite surface of the first fiber reinforced resin layer on which the first flexible printed wiring board is installed.
  • the first flexible wiring board and the second flexible wiring board may each have a multi-layer wiring structure having two or more layers in the internal thickness direction.
  • the circuit composite structure (1) may include a third fiber reinforced resin layer that is on the second flexible printed wiring board and is in contact with the second flexible printed wiring board.
  • the flexible printed wiring board and the fiber are provided with the n + 1 flexible printed wiring board on the opposite surface of the nth fiber reinforced resin layer in contact with the nth (n is an integer of 3 or more) flexible printed wiring board.
  • a structure in which a plurality of reinforced resin layers are further laminated may be adopted.
  • the fiber-reinforced resin forming the first fiber-reinforced resin layer, the second fiber-reinforced resin layer, and the third fiber-reinforced resin layer may be the same or different.
  • each fiber reinforced resin layer may be composed of one or more (for example, two or more kinds) of fiber reinforced resins.
  • each fiber reinforced resin layer may be, for example, 0.05 mm or more and 3 mm or less, preferably 0.5 mm or more and 2 mm or less.
  • the method of forming the fiber reinforced resin layer on the surface of the flexible printed wiring board is not particularly limited.
  • the surface of the flexible printed wiring board may be heated while pressurizing the fiber reinforced resin, and the above-exemplified molding method may be used. Etc. may be used.
  • An adhesive layer may be provided between the fiber reinforced resin layer and the flexible printed wiring board.
  • the adhesive forming the adhesive layer is not particularly limited, and examples thereof include adhesives of thermosetting resins (for example, acrylic resins, epoxy resins, polyimide resins, etc.).
  • FIG. 2A is a cross-sectional view showing an example of the circuit composite structure (1) according to the first embodiment
  • FIG. 2B is a cross-sectional view of the circuit composite structure (1) according to the first embodiment of the present invention. It is a perspective view which shows an example.
  • the cross-sectional view of FIG. 2A corresponds to the alternate long and short dash line portion of FIG. 2B.
  • the configuration is on the fiber reinforced resin layer 301, the flexible printed wiring board 302 on the fiber reinforced resin layer 301 and in contact with the fiber reinforced resin layer 301, and the flexible printed wiring board 302. It is provided with a fiber reinforced resin layer 303 that is in contact with the printed wiring board.
  • FIG. 3 shows a flexible printed wiring board 302 according to the first embodiment.
  • an insulating film (or base film, base film) 102 for example, a polyimide film
  • a circuit conductor (etching circuit) 103 is formed on a copper-coated substrate (for example, a polyimide substrate) by using a photolithography technique.
  • thermosetting heat-resistant adhesive is applied to the protective insulating film 105 (for example, a polyimide film), and the semi-cured coverlay film is heat-pressed so that the conductor circuit is embedded while the adhesive is cured. They are bonded together to form an adhesive layer 104. At that time, an opening is formed in advance in the portion relative to (corresponding to) the terminal portion 106 by punching or the like.
  • the terminal portion 106 is preferably plated with nickel, gold, silver, tin, solder, or the like in order to improve the corrosion resistance of the conductor and the reliability of electrical connection.
  • the fiber reinforced resin layer 301 is formed on the surface of the flexible printed wiring board 302.
  • a prepreg can be used as the fiber reinforced resin forming the fiber reinforced resin layer 301.
  • the prepreg forming the fiber reinforced resin layer 301 is heated while pressurizing. As a result, the generation of bubbles can be suppressed even if the heating temperature is raised.
  • the resin can be cured using a pressure defoaming machine (autoclave or the like).
  • the fiber reinforced resin layer 303 is formed so as to expose the terminal portion 106 of the flexible printed wiring board 302.
  • the material and forming method of the fiber reinforced resin layer 303 are the same as those of the fiber reinforced resin layer 301. After this process, shipping is possible.
  • the film thicknesses of the fiber-reinforced resin layer 301 and the fiber-reinforced resin layer 303 are in the range of 0.05 mm or more and 3 mm or less, respectively.
  • the film thickness of the flexible printed wiring board 302 (the film thickness other than the terminal portion) is in the range of 0.01 mm or more and 1 mm or less.
  • the side surface of the flexible printed wiring board 302 in the longitudinal direction is in contact with the fiber reinforced resin layer 301 and the fiber reinforced resin layer 303.
  • a flexible printed wiring board may be further formed on the upper surface of the fiber reinforced resin layer 303, and a fiber reinforced resin layer may be formed on the upper surface of the flexible printed wiring board (not shown). Further, as described above, the flexible printed wiring board (302, etc.) may be (indirectly) in contact with the resin layer (301, 303, etc.) via another layer (not shown).
  • the fiber reinforced resin layer is used as the FPC coating layer, it is not necessary to use a new adhesive.
  • the flexible printed wiring board (302) and the fiber reinforced resin layer (301 and 303) have a planar shape, but the flexible printed wiring board (302) and / or the fiber reinforced resin layer (301 and 303) have a planar shape. , May have a non-planar shape (not shown).
  • a prepreg is formed in a molding mold, and wiring (for example, a flexible printed wiring board) is placed on the prepreg. It can be manufactured by putting it on, shaping it by stacking prepregs, and sandwiching the wiring with fiber reinforced resin. Examples of such a manufacturing method include a layup method (for example, hand layup and sprayup), molding using an autoclave, and the like.
  • the present inventors can obtain a circuit composite structure in which wiring is embedded non-planarly or a circuit composite structure having a non-planar shape by using a prepreg, adjusting manufacturing conditions, and the like.
  • a flexible printed wiring board For example, the flexible printed wiring board (FPC) is placed on the fiber reinforced resin (fiber reinforced resin layer) in a non-planar manner so that there are no wrinkles, tears, disconnections, etc., and the terminal portion is placed at the design position after molding.
  • the FPC In order to bury it so as to be arranged, the FPC should have a three-dimensional shape of the target structure developed in a plane (or the shape of the developed view), or a part or the whole of the FPC should have an S-shape or a wavy shape. It is preferable that the FPC has a partial slit in advance to disperse the stress. In order to prevent disconnection of the circuit conductor, it is also effective to make the conductor wiring itself inside the FPC an S-shaped or corrugated wiring, and to use rolled copper foil having excellent bending resistance as the material of the conductor. Is.
  • circuit composite structure of the present invention is not particularly limited, but it can be used, for example, for structural parts of various mobile bodies such as automobiles, aircrafts, satellites, and drones, and control circuit parts.
  • circuit material 1 Manufacturing of circuit material 1 Using a copper-clad laminate with copper foil (rolled copper foil, thickness 0.035 mm) laminated on one side of a polyimide film (Capton 100EN, thickness 0.025 mm) manufactured by Toray DuPont Co., Ltd., so that the pitch is 0.5 mm.
  • An S-shaped circuit matching the curved shape was formed by etching with a circuit width of 0.3 mm and an inter-circuit width of 0.2 mm. After forming the circuit, the circuit surface is protected by laminating a coverlay made of adhesive (epoxy type) and (Kapton 100EN, thickness 0.025 mm) on the etching circuit surface other than the part that will be the connection terminal to the outside. It was. After that, unnecessary parts were removed to obtain FPC. The completed circuit became S-shaped.
  • the circuit surface is protected by laminating a coverlay made of adhesive (epoxy type) and (Kapton 100EN, thickness 0.025 mm) on the etching circuit surface other than the part that will be the connection terminal to the outside. It was. After that, unnecessary parts were removed to obtain FPC. The completed circuit became S-shaped.
  • Example 1 (Superposition with fiber reinforced plastic)
  • a prepreg (Trading card prepreg F6347B-05P 4 layers (thickness about 1.0 mm) manufactured by Toray Industries, Inc.) is shaped into the shape of the mold with respect to the molded mold having a curved surface designed to have a predetermined shape, and then the circuit material 1 is formed.
  • the release film was sandwiched between the terminals of the circuit material so that the opposite sides of the circuit surface were in contact with each other (that is, along the mold having a curved surface).
  • a prepreg (Trading card prepreg F6347B-05P two layers (thickness about 0.5 mm) manufactured by Toray Industries, Inc.) was overlaid on the circuit surface side and shaped to obtain a composite material of FPC and prepreg.
  • the composite material of the FPC and the prepreg was put into an autoclave and heated at 0.5 MPa and 130 ° C. for 120 minutes to cure the prepreg to obtain a circuit composite structure. It was confirmed that the obtained circuit composite structure conformed to the curved surface shape of the molding die, and that the terminals of the FPC were exposed with the terminals arranged at predetermined positions and were normally conducting. This result suggests that since both the FPC and the overall shape of the structure are curved surfaces, a wide range of options can be obtained in the design of the circuit and the structure (molded body).
  • Example 2 A circuit composite structure was obtained by superimposing and laminating with a fiber reinforced resin in the same manner as in Example 1 except that the circuit material 2 was used instead of the circuit material 1. It was confirmed that the obtained circuit composite structure follows the curved surface shape of the molding die, and that the terminals of the FPC are exposed by arranging the terminals at predetermined positions and conducting normally.
  • Example 3 Paper (thickness 0.3 mm) made from non-thermoplastic polyimide fiber as an impedance adjusting material was attached to the outer layer of the coverlay of the circuit material 1.
  • a shield (thickness 0.2 mm) made of aluminum foil and a protective insulating film was bonded to the outer layer of the circuit material 1 to which the above impedance adjusting material was bonded.
  • a prepreg (Toray Industries, Inc. Treka prepreg F6347B-05P 4 layers (thickness about 1.0 mm)) is shaped into the shape of the mold with a curved surface designed to a predetermined shape, and then the impedance adjustment described above is performed.
  • the release film was sandwiched between the terminals of the circuit material so that the opposite sides of the circuit surface of the circuit material 1 to which the material and the shield were bonded were in contact with each other.
  • a prepreg (Trading card prepreg F6347B-05P two layers (thickness about 0.5 mm) manufactured by Toray Industries, Inc.) was overlaid on the circuit surface side and shaped to obtain a composite material of FPC and prepreg.
  • the composite material of the FPC and the prepreg was put into an autoclave and heated at 0.5 MPa and 130 ° C. for 120 minutes to cure the prepreg to obtain a circuit composite structure. It was confirmed that the obtained circuit composite structure follows the curved surface shape of the molding die, and the terminals of the FPC are arranged at predetermined positions and exposed, so that they are normally conducting. Further, the obtained circuit composite structure had a characteristic impedance of FPC (measured by a network analyzer) of 120 ohms, and the impedance could be adjusted.
  • Example 4 A circuit composite structure was obtained in the same manner as in Example 3 except that the circuit material 2 was used instead of the circuit material 1. It was confirmed that the obtained circuit composite structure follows the curved surface shape, and that the terminals of the FPC are exposed by arranging the terminals at predetermined positions and conducting normally.
  • Example 5 A circuit composite structure was obtained in the same manner as in Example 1 except that the circuit material 3 was used. The obtained circuit composite structure was electrically connected without any problem, although the terminal position of the FPC was displaced.
  • the present invention can be applied to a technical field or the like in which a structure constituting a vehicle or the like and electrical signal wiring are combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Structure Of Printed Boards (AREA)
  • Laminated Bodies (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

The present invention addresses the problem of providing a novel circuit composite structure. The structure comprises a fiber-reinforced resin and a wire, wherein the wire is embedded in the fiber-reinforced resin.

Description

回路複合構造体Circuit composite structure
 本発明は、自動車等の輸送機器や産業機器を構成する構造体と電気信号配線を複合化する技術に関する。特に、複合化する技術においてフレキシブルプリント配線板を用いる技術に関する。 The present invention relates to a technique for combining electrical signal wiring with a structure constituting a transportation device such as an automobile or an industrial device. In particular, the present invention relates to a technique of using a flexible printed wiring board in the technique of compounding.
 従来から、複合材料のひとつとしてマトリックス樹脂と強化繊維を組み合わせることで軽量かつ高強度、高剛性を実現する材料として繊維強化樹脂(FRP)が様々な分野で用いられている。このFRPが用いられる例のひとつとして、航空機や自動車等の人を運ぶ移動体や、タブレット、ノートパソコンなどの可搬機器が挙げられる。これら輸送機器や電子情報機器は近年の情報技術の発達により、多くの電子機器や回路が搭載されるようになってきており、電気信号配線の技術分野においては、電子機器の軽量化、薄型化、小型化に貢献する技術としてフレキシブルプリント配線板(Flexible Printed Circuit、FPC)の採用が拡大している。 Conventionally, fiber reinforced plastic (FRP) has been used in various fields as a material that realizes light weight, high strength, and high rigidity by combining matrix resin and reinforcing fiber as one of the composite materials. As one example in which this FRP is used, there are mobile objects such as aircraft and automobiles that carry people, and portable devices such as tablets and laptop computers. With the development of information technology in recent years, many electronic devices and circuits have come to be mounted on these transportation devices and electronic information devices, and in the technical field of electrical signal wiring, the weight and thickness of the electronic devices have been reduced. The adoption of flexible printed wiring boards (Flexible Printed Circuits, FPCs) is expanding as a technology that contributes to miniaturization.
 構造体においては経済性や人の快適性を高めるため、その構造体自身の体積や重量をより小さくすることが強く求められており、電気信号配線に関しては、省スペース、小型化、軽量化の重要度がますます高まっている。 In order to improve economy and human comfort in a structure, it is strongly required to reduce the volume and weight of the structure itself, and for electrical signal wiring, space saving, miniaturization, and weight reduction are required. It is becoming more and more important.
 例えば自動車においては、軽量化が求められる一方で、電子制御技術の高度化に伴い、ケーブル等の電気信号回路は増加する傾向にあり、電気信号配線の体積を小さくし、軽量化を図ることが重要な課題となっている。 For example, in automobiles, while weight reduction is required, the number of electric signal circuits such as cables tends to increase with the advancement of electronic control technology, and it is possible to reduce the volume of electric signal wiring to reduce the weight. It has become an important issue.
 例えば特許文献1には、ノートパソコンなどの電気・電子回路に用いられる、電磁波ノイズ対策のための導電性および電磁波遮蔽特性に優れ、かつ、強度、剛性に優れたFRPからなる構造体が開示されている。このFRPからなる構造体は、図1に示すように、連続炭素繊維を含むFRPからなる主層1を有し、該主層に電気・電子回路の一部を構成する導電部材(金属板、真鍮製のボス7)が電気的に接続されている。また、FRP構造体は、図1の通り、副層2a、2b 、リブ部3、ヒンジ部5、及びステンレス板6をも有している。 For example, Patent Document 1 discloses a structure made of FRP, which is used in an electric / electronic circuit of a notebook computer or the like and has excellent conductivity and electromagnetic wave shielding characteristics as a countermeasure against electromagnetic noise, and also has excellent strength and rigidity. ing. As shown in FIG. 1, this structure made of FRP has a main layer 1 made of FRP containing continuous carbon fibers, and the main layer is a conductive member (metal plate, which forms a part of an electric / electronic circuit). A brass boss 7) is electrically connected. Further, as shown in FIG. 1, the FRP structure also has sublayers 2a and 2b, a rib portion 3, a hinge portion 5, and a stainless plate 6.
 FRPの中でも、炭素繊維強化樹脂(CFRP)は、炭素繊維の持つ導電性を利用することで、電磁波シールド特性を有し、かつ強度、剛性に優れていることが知られている。 Among FRPs, carbon fiber reinforced plastic (CFRP) is known to have electromagnetic wave shielding properties and excellent strength and rigidity by utilizing the conductivity of carbon fibers.
特開平09-323372号公報Japanese Unexamined Patent Publication No. 09-323372
 特許文献1においては、炭素繊維強化樹脂からなる主層に、電気・電子回路の一部を構成する導電部材を電気的に接続することで、構造体と回路を兼ねた構造が提案されているが、構造体内に電気信号回路または配線を形成することは困難である。 Patent Document 1 proposes a structure that doubles as a structure and a circuit by electrically connecting a conductive member that constitutes a part of an electric / electronic circuit to a main layer made of a carbon fiber reinforced resin. However, it is difficult to form electrical signal circuits or wiring within the structure.
 また、フレキシブルプリント配線板は、形状の自由度が高いことに加え、薄さ、軽量性、柔軟性に優れる特徴を有するが、剛性が低く構造物としての自立性に劣り、また耐振動性における信頼性にかけるという課題があった。 In addition, the flexible printed wiring board has a high degree of freedom in shape and is excellent in thinness, light weight, and flexibility, but has low rigidity and is inferior in independence as a structure, and has vibration resistance. There was a problem of reliability.
 本発明の目的は、新規な回路複合構造体(特に、繊維強化樹脂を含む構造体)を提供することにある。 An object of the present invention is to provide a novel circuit composite structure (particularly, a structure containing a fiber reinforced resin).
 本発明の他の目的は、構造体内に配線を有し、繊維強化樹脂を含む構造体を提供することにある。 Another object of the present invention is to provide a structure having wiring inside the structure and containing a fiber reinforced resin.
 前記のように、FPC等の配線(配線材)は、自立性(強度)や信頼性の点で問題を生じる場合があった。特に、本発明者らの検討によれば、配線や構造体自体を非平面的に形成すると、これらの問題が顕著になる場合があった。例えば、FPCは、フィルム基材からなり、薄型、柔軟性、耐折り曲げ性に特徴を持つ回路形態であるが、反面、自己支持力によって非平面的な配線材として活用する場合は、振動等により導体が断線する懸念があった。また、他の剛性を有する非平面的構造体に沿わせるように設置した場合でも、構造体からの剥離や、外力により、導体が損傷するなどの懸念があった。 As mentioned above, wiring (wiring material) such as FPC may cause problems in terms of independence (strength) and reliability. In particular, according to the study by the present inventors, these problems may become remarkable when the wiring or the structure itself is formed non-planarly. For example, FPC is a circuit form made of a film base material and characterized by thinness, flexibility, and bending resistance. On the other hand, when it is used as a non-planar wiring material due to its self-supporting force, it is caused by vibration or the like. There was a concern that the conductor would break. Further, even when the conductor is installed along the non-planar structure having other rigidity, there is a concern that the conductor may be damaged due to peeling from the structure or an external force.
 このような中、本発明者らは、繊維強化樹脂で形成された構造体の内部に、FPC等の配線を埋設できること、また、このような埋設により上記のような問題を効率よく解決しうることを見出した。 Under such circumstances, the present inventors can embed wiring such as FPC inside the structure formed of the fiber reinforced resin, and can efficiently solve the above-mentioned problems by such embedding. I found that.
 一方、本発明者らは、繊維強化樹脂としてCFRP等[又は繊維強化樹脂の繊維(フィラー)として炭素繊維等]を使用する場合、その導電性に起因して、FPC等の配線と組み合わせるには、インピーダンスの調整が必要な場合があることを見出した。インピーダンスの調整は、一般的には、FPC等における導体間の距離の調整によって行うが、本発明者らの検討によれば、CFRP等を使用した構造体では、導体間の距離の調整によってインピーダンスを上手く調整できない場合があった。 On the other hand, when CFRP or the like [or carbon fiber or the like as the fiber (filler) of the fiber reinforced resin] is used as the fiber reinforced resin, the present inventors can combine it with wiring such as FPC due to its conductivity. , Found that it may be necessary to adjust the impedance. Impedance is generally adjusted by adjusting the distance between conductors in FPC or the like, but according to the study by the present inventors, in a structure using CFRP or the like, impedance is adjusted by adjusting the distance between conductors. Was not adjusted well in some cases.
 このような中、本発明者らは、配線(FPC等)が、CFRP等の繊維強化樹脂に埋設された構造体において、ポリイミド等で形成されたインピーダンス調整材を使用することにより、特にインピーダンスを効率よく調整しうること、また、前記のように、強度や信頼性を損なうことなく、このような効率良いインピーダンス調整を行いうる(強度や信頼性と、インピーダンス調整とを両立して実現しうる)こと等も見出し、さらに鋭意研究を重ねて、本発明を完成した。 Under these circumstances, the present inventors particularly obtain impedance by using an impedance adjusting material formed of polyimide or the like in a structure in which wiring (FPC or the like) is embedded in a fiber reinforced resin such as CFRP. Efficient adjustment is possible, and as described above, such efficient impedance adjustment can be performed without impairing strength and reliability (both strength and reliability and impedance adjustment can be realized at the same time). ) Etc., and further diligent research was carried out to complete the present invention.
 すなわち、本発明は、以下の発明等に関する。
[1]
 繊維強化樹脂(繊維強化樹脂層)と配線(回路)とを含有する(備えた)構造体(複合構造体、回路複合構造体)であって、配線が繊維強化樹脂に埋設されている、構造体。
[2]
 配線が非平面的に埋設された[1]記載の構造体。
[3]
 非平面的形状の構造体である[1]記載の構造体。
[4]
 フレキシブルプリント配線板が埋設された(又は配線がフレキシブルプリント配線板を構成している又は配線がフレキシブルプリント配線板として埋設されている)[1]~[3]のいずれかに記載の構造体。
[5]
 第一の単数もしくは複数から構成される繊維強化樹脂層と、前記第一の単数もしくは複数から構成される繊維強化樹脂層の上にあり、かつ、前記第一の繊維強化樹脂層と接している第一のフレキシブルプリント配線板と、前記第一のフレキシブルプリント配線板上にあり、かつ、前記第一のフレキシブルプリント配線板と接している第二の単数もしくは複数から構成される繊維強化樹脂層と、を備えたことを特徴とする[1]~[4]のいずれかに記載の構造体(複合構造体、回路複合構造体)。
[6]
 前記第一のフレキシブルプリント配線板が設置された第一の単数もしくは複数から構成される繊維強化樹脂層の反対面に、第二のフレキシブルプリント配線板が設置されており、前記第二のフレキシブルプリント配線板上にあり、かつ第二のフレキシブルプリント配線板と接している第三の単数もしくは複数から構成される繊維強化樹脂層を備えたことを特徴とする[5]に記載の構造体(複合構造体、回路複合構造体)。
[7]
 繊維強化樹脂は、ガラス繊維又は炭素繊維を含む繊維及び熱硬化性樹脂を含むことを特徴とする[1]~[6]のいずれかに記載の構造体。
[8]
 繊維強化樹脂は、炭素繊維及び熱硬化性樹脂を含むことを特徴とする[1]~[7]のいずれかに記載の構造体。
[9]
 繊維強化樹脂が、炭素繊維を含み、炭素繊維の比剛性が16000000メートル以上である[1]~[8]のいずれかに記載の構造体。
[10]
 繊維強化樹脂に含まれる樹脂が、DMAによって測定されるガラス転移温度150℃以上を満たす[1]~[9]のいずれかに記載の構造体。
[11]
 フレキシブルプリント配線板の少なくとも片面側(例えば、少なくとも片面上)にシールド層を備えた、[4]~[10]のいずれかに記載の構造体。
[12]
 フレキシブルプリント配線板の少なくとも片面側にインピーダンス調整層を備えた、[4]~[11]のいずれかに記載の構造体。
[13]
 繊維強化樹脂層とフレキシブルプリント配線板の間に、熱硬化性樹脂で構成された接着層を備えた[5]~[12]のいずれかに記載の構造体。
[14]
 前記フレキシブルプリント配線板が、両面の最外層にポリイミドを含むフィルムを備え、端子部の導体が露出するように開口部を備えた[フレキシブルプリント配線板において、配線の端子部が露出している]ことを特徴とする[4]~[13]のいずれかに記載の構造体。
[15]
 前記第一の繊維強化樹脂層及び前記第二の繊維強化樹脂層及び前記第三の繊維強化樹脂層の厚みは、それぞれ、0.05mm以上3mm以下の範囲にあることを特徴とする[5]~[14]のいずれかに記載の構造体。
[16]
 前記フレキシブルプリント配線板の端子部分以外の厚み(膜厚)が、0.01mm以上1mm以下の範囲にあることを特徴とする[4]~[15]のいずれかに記載の構造体。
[17]
 前記第一のフレキシブルプリント配線板の端面[又は側面、通常、配線(導体)以外の端面]が、前記第一の繊維強化樹脂層及び前記第二の繊維強化樹脂層と接していることを特徴とする[5]~[16]のいずれかに記載の構造体。
[18]
 前記第二のフレキシブルプリント配線板の端面[又は側面、通常、配線(導体)以外の端面]が、前記第一の繊維強化樹脂層及び前記第三の繊維強化樹脂層と接していることを特徴とする[6]~[17]のいずれかに記載の構造体。
[19]
 前記第一のフレキシブルプリント配線板の端子部(配線の端部)および/または前記第二のフレキシブルプリント配線板の端子部(配線の端部)が露出[例えば、少なくとも端子部の一部(好ましくは全部)が繊維強化樹脂層に埋設されていない(例えば、前記第一の繊維強化樹脂層上にあり、かつ露出)]していることを特徴とする[6]~[18]のいずれかに記載の構造体。
[20]
 フレキシブルプリント配線板の端子部の全部が露出している、[4]~[19]のいずれかに記載の構造体。
[21]
 配線が、導通可能なように埋設されている[1]~[20]のいずれかに記載の構造体。
That is, the present invention relates to the following inventions and the like.
[1]
A structure (composite structure, circuit composite structure) containing (providing) a fiber reinforced resin (fiber reinforced resin layer) and wiring (circuit), in which the wiring is embedded in the fiber reinforced resin. body.
[2]
The structure according to [1], wherein the wiring is embedded in a non-planar manner.
[3]
The structure according to [1], which is a non-planar structure.
[4]
The structure according to any one of [1] to [3], wherein the flexible printed wiring board is embedded (or the wiring constitutes the flexible printed wiring board or the wiring is embedded as the flexible printed wiring board).
[5]
It is on the first fiber-reinforced resin layer composed of one or more and the first fiber-reinforced resin layer composed of one or more, and is in contact with the first fiber-reinforced resin layer. A first flexible printed wiring board and a second fiber reinforced resin layer on the first flexible printed wiring board and in contact with the first flexible printed wiring board. The structure (composite structure, circuit composite structure) according to any one of [1] to [4], which comprises.
[6]
A second flexible printed wiring board is installed on the opposite surface of the fiber-reinforced resin layer composed of one or more of the first flexible printed wiring board on which the first flexible printed wiring board is installed. The structure (composite) according to [5], characterized in that it is provided with a fiber-reinforced resin layer composed of a third single or plural, which is on the wiring board and is in contact with the second flexible printed wiring board. Structure, circuit composite structure).
[7]
The structure according to any one of [1] to [6], wherein the fiber reinforced resin contains a fiber containing glass fiber or carbon fiber and a thermosetting resin.
[8]
The structure according to any one of [1] to [7], wherein the fiber reinforced resin contains carbon fibers and a thermosetting resin.
[9]
The structure according to any one of [1] to [8], wherein the fiber reinforced resin contains carbon fibers and the specific rigidity of the carbon fibers is 16000000 meters or more.
[10]
The structure according to any one of [1] to [9], wherein the resin contained in the fiber reinforced plastic satisfies the glass transition temperature of 150 ° C. or higher measured by DMA.
[11]
The structure according to any one of [4] to [10], wherein a shield layer is provided on at least one side (for example, at least one side) of the flexible printed wiring board.
[12]
The structure according to any one of [4] to [11], which is provided with an impedance adjusting layer on at least one side of a flexible printed wiring board.
[13]
The structure according to any one of [5] to [12], wherein an adhesive layer made of a thermosetting resin is provided between the fiber reinforced resin layer and the flexible printed wiring board.
[14]
The flexible printed wiring board is provided with a film containing polyimide on the outermost layers on both sides, and has an opening so that the conductor of the terminal portion is exposed [in the flexible printed wiring board, the terminal portion of the wiring is exposed]. The structure according to any one of [4] to [13].
[15]
The thickness of the first fiber-reinforced resin layer, the second fiber-reinforced resin layer, and the third fiber-reinforced resin layer is in the range of 0.05 mm or more and 3 mm or less, respectively [5]. The structure according to any one of [14].
[16]
The structure according to any one of [4] to [15], wherein the thickness (film thickness) other than the terminal portion of the flexible printed wiring board is in the range of 0.01 mm or more and 1 mm or less.
[17]
The end face [or the side surface, usually the end face other than the wiring (conductor)] of the first flexible printed wiring board is in contact with the first fiber reinforced resin layer and the second fiber reinforced resin layer. The structure according to any one of [5] to [16].
[18]
The end face [or side surface, usually the end face other than the wiring (conductor)] of the second flexible printed wiring board is in contact with the first fiber reinforced resin layer and the third fiber reinforced resin layer. The structure according to any one of [6] to [17].
[19]
The terminal portion (end of wiring) of the first flexible printed wiring board and / or the terminal portion (end of wiring) of the second flexible printed wiring board is exposed [for example, at least a part of the terminal portion (preferably). (All) are not embedded in the fiber reinforced resin layer (for example, are on the first fiber reinforced resin layer and are exposed)]], any of [6] to [18]. The structure described in.
[20]
The structure according to any one of [4] to [19], wherein all the terminals of the flexible printed wiring board are exposed.
[21]
The structure according to any one of [1] to [20], wherein the wiring is embedded so as to be conductive.
 用いられる繊維強化樹脂の繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、PBO(ポリパラフェニレン・ベンゾビス・オキサゾール)繊維、ボロン繊維等が挙げられるが、比強度と比剛性に優れた炭素繊維が最も好適である。 Examples of the fiber of the fiber reinforced resin used include carbon fiber, glass fiber, aramid fiber, PBO (polyparaphenylene benzobis oxazole) fiber, boron fiber and the like, and carbon having excellent specific strength and specific rigidity. Fiber is the most suitable.
 また、用いられる繊維強化樹脂の樹脂は、熱可塑性樹脂または熱硬化性樹脂、いずれであっても良いが、フレキシブルプリント配線板との成形の容易さを考慮すると熱硬化性樹脂が好適で、その中でも未硬化の熱硬化性樹脂を予め繊維に含浸させたプリプレグが好適である。
 プリプレグに用いられる熱硬化性樹脂としては、例えば、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、シアネートエステル樹脂等が挙げられるが、エポキシ樹脂を用いるのが成形や構造体の強度、剛性を発現させるのに好適である。
The fiber-reinforced resin used may be either a thermoplastic resin or a thermosetting resin, but a thermosetting resin is preferable in consideration of ease of molding with a flexible printed wiring board. Of these, a prepreg in which fibers are pre-impregnated with an uncured thermosetting resin is preferable.
Examples of the thermosetting resin used for the prepreg include epoxy resin, vinyl ester resin, unsaturated polyester resin, urethane resin, cyanate ester resin, and the like. Epoxy resin is used for molding and structure strength. It is suitable for developing rigidity.
 構造体(複合構造体、回路複合構造体)を製作する方法は、別々に作って接着する方法もあるが、構造の重量、強度、剛性、信頼性を向上させるために、一体成形とすることが望ましい。一体成形の方法についても、複合材料の成形方法としては、ハンドレイアップ、スプレイアップ、各種材料を用いたプレス成形、射出成形等が挙げられるが、構造体内のボイドを低減し、かつ成形時の温度や圧力を適切に管理するため、オートクレーブを用いて成形することが最も好適である。 The structure (composite structure, circuit composite structure) can be manufactured separately and bonded, but in order to improve the weight, strength, rigidity, and reliability of the structure, it should be integrally molded. Is desirable. As for the integral molding method, examples of the composite material molding method include hand lay-up, spray-up, press molding using various materials, injection molding, etc., but the voids in the structure are reduced and at the time of molding. In order to properly control the temperature and pressure, it is most preferable to mold using an autoclave.
 構造体(複合構造体、回路複合構造体)を構成するフレキシブルプリント配線板を構成する絶縁フィルムとしては、ポリエステルフィルム、LCPフィルム、PPSフィルム、ポリイミドフィルムなどの絶縁性と耐熱性に優れるエンジニアリングプラスチックフィルムであれば良いが、繊維強化樹脂層と一体成型する等の場合は、電気信号配線に対する絶縁性を確保し、また配線の変形、ひずみを防ぐために、成型温度以上のガラス転移温度を有することが好ましく、特には耐熱性、寸法安定性、絶縁性に優れるポリイミドフィルムが好適である。 As the insulating film constituting the flexible printed wiring board constituting the structure (composite structure, circuit composite structure), an engineering plastic film having excellent insulation and heat resistance such as polyester film, LCP film, PPS film, and polyimide film. However, in the case of integrally molding with a fiber-reinforced resin layer, it is necessary to have a glass transition temperature higher than the molding temperature in order to ensure insulation against electrical signal wiring and prevent deformation and distortion of the wiring. Preferably, a polyimide film having excellent heat resistance, dimensional stability, and insulating property is particularly preferable.
 フレキシブルプリント配線板を構成する回路導体(配線、回路)は、上記絶縁フィルム上に金属粉、または金属箔(例えば、銅箔など)、または乾式及び湿式めっき、またはそれらを組み合わせたものからなるもので、公知の方法により配線パターンが形成される。また外部配線との接続端子部や部品実装部以外の回路導体上の絶縁保護は、上記絶縁フィルムの加熱融着、または耐熱接着剤を介した上記絶縁フィルムの貼り合せ、またはレジストインク、またはレジストフィルム、またはそれらを組み合わせた公知の方法により形成される。 The circuit conductors (wiring, circuits) that make up the flexible printed wiring board consist of metal powder, metal foil (for example, copper foil, etc.), dry and wet plating, or a combination thereof on the insulating film. Then, a wiring pattern is formed by a known method. Insulation protection on circuit conductors other than the connection terminal part and component mounting part with external wiring is performed by heat fusion of the insulating film, bonding of the insulating film via a heat-resistant adhesive, resist ink, or resist. It is formed by a film or a known method in which they are combined.
 なお、フレキシブルプリント配線板を構成する回路導体(配線、回路)は必要に応じて、厚み方向において、一部または全部を多層化し、各層を必要に応じて導通する構造にできることは言うまでもない。また、フレキシブルプリント配線板の端子部分は、部品実装、外部との接続を容易にするために、絶縁板で補強してもよい。 Needless to say, the circuit conductors (wiring, circuits) constituting the flexible printed wiring board can be partially or completely multi-layered in the thickness direction, and each layer can be made conductive as needed. Further, the terminal portion of the flexible printed wiring board may be reinforced with an insulating plate in order to facilitate component mounting and connection with the outside.
 本発明によれば、新規な回路複合構造体を提供できる。
 このような構造体は、配線(回路)が繊維強化樹脂に埋設された構造(配線が埋設された繊維強化樹脂層)を備えており、配線(例えば、FPCからなる電気信号回路)と、軽量高剛性という、二つの機能を、単一の構造体で実現しうる。そして、このような構造体によれば、配線を備えていても、自立性(機械的強度)や配線(回路)としての信頼性を向上しうる。
According to the present invention, a novel circuit composite structure can be provided.
Such a structure includes a structure in which wiring (circuit) is embedded in fiber reinforced plastic (fiber reinforced resin layer in which wiring is embedded), and is lightweight with wiring (for example, an electric signal circuit composed of FPC). Two functions of high rigidity can be realized with a single structure. Further, according to such a structure, even if wiring is provided, independence (mechanical strength) and reliability as wiring (circuit) can be improved.
 本発明の一態様では、構造体における配線の存在形態、及び/又は構造体そのものを非平面的なものとすることができる。このような構造体によれば、配線ないし構造体設計の自由度を高め、種々の構造体を形成しうる。 In one aspect of the present invention, the existing form of wiring in the structure and / or the structure itself can be made non-planar. According to such a structure, various structures can be formed by increasing the degree of freedom in wiring or structure design.
 本発明の一態様によれば、インピーダンスが調整された回路複合構造体を提供しうる。 According to one aspect of the present invention, it is possible to provide a circuit composite structure in which impedance is adjusted.
 本発明の一態様の構造体(複合構造体、回路複合構造体)は、フレキシブルプリント配線板を用いることで電気配線の設計の自由度を高め、電気信号を伝える機能の信頼性を確保し、また回路の被覆保護層として炭素繊維強化樹脂層などの繊維強化樹脂層を採用したことから、機械的強度の面や電磁波遮蔽の面から保護する機能を発現することができ、更に信号回路としての信頼性を向上させることができる。 The structure of one aspect of the present invention (composite structure, circuit composite structure) increases the degree of freedom in the design of electrical wiring by using a flexible printed wiring board, and secures the reliability of the function of transmitting an electrical signal. In addition, since a fiber-reinforced resin layer such as a carbon fiber-reinforced resin layer is used as the coating protection layer of the circuit, it is possible to exhibit a function of protecting from the aspects of mechanical strength and electromagnetic wave shielding, and further as a signal circuit. The reliability can be improved.
 また、本発明の一態様の構造体(複合構造体、回路複合構造体)は、構造体としては、高温と高圧のどちらかもしくは両方の条件下においてフレキシブルプリント配線板を一体成形することで繊維強化樹脂層とフレキシブルプリント配線板の密着性を確保することができ、フレキシブルプリント配線板の厚み分の曲げ剛性を向上させることができるから、構造体としての曲げ剛性を改善することができる。 Further, the structure of one aspect of the present invention (composite structure, circuit composite structure) is a structure obtained by integrally molding a flexible printed wiring board under either high temperature or high pressure or both conditions. Since the adhesion between the reinforced resin layer and the flexible printed wiring board can be ensured and the bending rigidity corresponding to the thickness of the flexible printed wiring board can be improved, the bending rigidity of the structure can be improved.
従来のFRP構造体を示す図である。It is a figure which shows the conventional FRP structure. (a)本発明の実施形態1に係る回路複合構造体を示す断面図である。(b)本発明の実施形態1に係る回路複合構造体を示す斜視図である。(A) It is sectional drawing which shows the circuit composite structure which concerns on Embodiment 1 of this invention. (B) It is a perspective view which shows the circuit composite structure which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るFPCの断面図である。It is sectional drawing of FPC which concerns on Embodiment 1 of this invention.
 以下、本発明の回路複合構造体の形態について、図等を用いて詳細に説明する。但し、本発明は以下に示す実施形態の記載内容に限定されず、本明細書等において開示する発明の趣旨から逸脱することなく形態および詳細を様々に変更し得ることは当業者にとって自明である。 Hereinafter, the form of the circuit composite structure of the present invention will be described in detail with reference to figures and the like. However, the present invention is not limited to the contents of the embodiments shown below, and it is obvious to those skilled in the art that the forms and details can be variously changed without departing from the spirit of the invention disclosed in the present specification and the like. ..
[回路複合構造体]
 本発明の構造体は、繊維強化樹脂で形成され、配線が埋設された構造を有している。換言すれば、本発明の構造体は、配線が埋設された繊維強化樹脂(繊維強化樹脂層)を備えている。なお、構造体において、配線は、通常、断線することなく(導通可能なように)埋設されている。
 構造体において、配線(回路)は、平面的に埋設されていてもよく、非平面的に埋設されていてもよい。本発明では、配線を、平面的・非平面的を問わず埋設できる(配線の機能を実現できる)ので、配線(回路)設計の自由度が高い。
 配線の形状、導体の断面積、導体間隔は、特に限定されず、端子間で必要な導通、回路特性が得られればよい。配線が非平面的に埋設されている場合、配線形状は、例えば、波形、S字形等であってもよい。
[Circuit composite structure]
The structure of the present invention is formed of a fiber reinforced resin and has a structure in which wiring is embedded. In other words, the structure of the present invention includes a fiber reinforced resin (fiber reinforced resin layer) in which wiring is embedded. In the structure, the wiring is usually embedded without disconnection (so that it can be conducted).
In the structure, the wiring (circuit) may be buried in a plane or may be buried in a non-planar manner. In the present invention, since the wiring can be embedded regardless of whether it is planar or non-planar (the function of wiring can be realized), the degree of freedom in wiring (circuit) design is high.
The shape of the wiring, the cross-sectional area of the conductor, and the distance between the conductors are not particularly limited, and it is sufficient that the necessary continuity and circuit characteristics between the terminals can be obtained. When the wiring is embedded in a non-planar shape, the wiring shape may be, for example, a corrugated shape, an S-shape, or the like.
 回路複合構造体の形状は、平面的であってもよく、非平面的であってもよい。本発明では、平面的・非平面的を問わず形成できるので、種々の形態の構造体を提供しうる。
 非平面的な形状は、特に限定されず、目的とする製品の形等に応じて成形されたものであってもよい。
 回路複合構造体の形状は、配線の埋設形態を対応(追随)していてもよく、埋設形態に対応していなくてもよい。特に、本発明では、構造体の形状を、配線の非平面的な埋設形態に対応(追随)させることもできるため、非平面的形状(曲面形状等)の構造体においても、効率よく高い信頼性で配線(回路)の機能を発揮しうる。
The shape of the circuit composite structure may be planar or non-planar. In the present invention, since it can be formed regardless of whether it is planar or non-planar, various forms of structures can be provided.
The non-planar shape is not particularly limited, and may be molded according to the shape of the target product or the like.
The shape of the circuit composite structure may correspond (follow) the embedded form of the wiring, or may not correspond to the embedded form. In particular, in the present invention, since the shape of the structure can correspond to (follow) the non-planar buried form of the wiring, the structure having a non-planar shape (curved surface shape, etc.) can be efficiently and highly reliable. The function of wiring (circuit) can be demonstrated by the nature.
 繊維強化樹脂は、通常、繊維と樹脂を含む。
 繊維強化樹脂に含まれる繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、PBO(ポリパラフェニレン・ベンゾビス・オキサゾール)繊維、ボロン繊維等が挙げられる。換言すれば、繊維強化樹脂としては、例えば、炭素繊維強化プラスチック、ガラス繊維強化プラスチック、アラミド繊維強化プラスチック、PBO繊維強化プラスチック、ボロン繊維強化プラスチック等が挙げられる。
 繊維強化樹脂としては、比強度や比剛性等の観点から、炭素繊維強化プラスチックが好ましい。
Fiber reinforced plastics usually include fibers and resins.
Examples of the fiber contained in the fiber reinforced resin include carbon fiber, glass fiber, aramid fiber, PBO (polyparaphenylene benzobis oxazole) fiber, boron fiber and the like. In other words, examples of the fiber reinforced resin include carbon fiber reinforced plastic, glass fiber reinforced plastic, aramid fiber reinforced plastic, PBO fiber reinforced plastic, and boron fiber reinforced plastic.
As the fiber reinforced resin, carbon fiber reinforced plastic is preferable from the viewpoint of specific strength, specific rigidity and the like.
 また、繊維強化樹脂に含まれる炭素繊維の比剛性は、回路複合構造体の仕様等に応じて適宜選択することができるが、回路複合構造体をより強固な形態で、かつ薄く軽くすることで更に空間効率を向上しやすい等の観点から、好ましくは16000000メートル以上(例えば、21000000メートル以上)、より好ましくは25000000メートル以上であってよい。
 なお、比剛性は、繊維方向の引張弾性率を密度で除した値であってよい。引張弾性率は、例えば、JIS K 7161に従って測定した値であってよい。
Further, the specific rigidity of the carbon fibers contained in the fiber reinforced resin can be appropriately selected according to the specifications of the circuit composite structure, etc., but by making the circuit composite structure thinner and lighter in a stronger form. Further, from the viewpoint of easily improving the space efficiency, it may be preferably 16,000,000 meters or more (for example, 21,000,000 meters or more), and more preferably 25,000,000 meters or more.
The specific rigidity may be a value obtained by dividing the tensile elastic modulus in the fiber direction by the density. The tensile modulus may be, for example, a value measured according to JIS K 7161.
 また、炭素繊維の比強度は、回路複合構造体の仕様等に応じて適宜選択することができるが、より軽量でかつ強度信頼性に優れた構造体を提供しやすい等の観点から、好ましくは330000メートル以上、より好ましくは360000メートル以上であってよい。
 なお、比強度は、繊維方向の引張強度を密度で除した値であってよい。引張強度は、例えば、JIS K 7161に従って測定した値であってよい。
The specific strength of the carbon fibers can be appropriately selected according to the specifications of the circuit composite structure and the like, but is preferable from the viewpoint of easily providing a structure that is lighter and has excellent strength reliability. It may be 330,000 meters or more, more preferably 360000 meters or more.
The specific strength may be a value obtained by dividing the tensile strength in the fiber direction by the density. The tensile strength may be, for example, a value measured according to JIS K 7161.
 繊維強化樹脂に含まれる樹脂としては、例えば、熱可塑性樹脂、熱硬化性樹脂(例えば、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、シアネートエステル樹脂)等が挙げられるが、配線(例えば、フレキシブルプリント配線板)との成形性等の観点から、熱硬化性樹脂が好ましく、回路複合構造体の強度や剛性等の観点から、エポキシ樹脂が特に好ましい。
 また、繊維強化樹脂に含まれる樹脂のガラス転移温度は、回路複合構造体の使用環境に応じて適宜選択することができるが、好ましくは150℃以上、より好ましくは180℃以上であってもよい。なお、高い耐熱温度を持つ樹脂を用いることにより、例えば内燃機関等の燃焼工程を持つ装置においても、制御やセンサー等の電子回路を、より空間効率の優れた形態で提供しうる。
Examples of the resin contained in the fiber-reinforced resin include thermoplastic resin, thermosetting resin (for example, epoxy resin, vinyl ester resin, unsaturated polyester resin, urethane resin, cyanate ester resin), and wiring (cyanate ester resin). For example, a thermosetting resin is preferable from the viewpoint of moldability with a flexible printed wiring board), and an epoxy resin is particularly preferable from the viewpoint of strength and rigidity of a circuit composite structure.
The glass transition temperature of the resin contained in the fiber-reinforced resin can be appropriately selected depending on the usage environment of the circuit composite structure, but may be preferably 150 ° C. or higher, more preferably 180 ° C. or higher. .. By using a resin having a high heat resistant temperature, it is possible to provide electronic circuits such as controls and sensors in a more space-efficient form even in a device having a combustion process such as an internal combustion engine.
 なお、繊維強化樹脂に含まれる樹脂のガラス転移温度は、DMA(Dynamic Mechanical Analysis)によって測定した値であってよい。 The glass transition temperature of the resin contained in the fiber reinforced resin may be a value measured by DMA (Dynamic Mechanical Analysis).
 繊維強化樹脂としては、特に、炭素繊維又はアラミド繊維もしくはその両方と、熱硬化性樹脂を含むものが好ましい。 As the fiber reinforced resin, those containing carbon fiber, aramid fiber, or both, and a thermosetting resin are particularly preferable.
 繊維強化樹脂において、繊維の割合は、製品の構造設計要件や成形条件等により適宜設定でき、特に限定されないが、繊維の割合が高いことによって繊維強化樹脂の弾性率と強度を向上でき、より軽量で空間効率に優れた構造を実現しうる等の観点から、樹脂(樹脂成分)100質量部に対して、例えば、5~90質量部、好ましくは10~80質量部程度であってもよい。 In the fiber reinforced plastic, the ratio of fibers can be appropriately set according to the structural design requirements of the product, molding conditions, etc., and is not particularly limited. However, the high ratio of fibers can improve the elastic modulus and strength of the fiber reinforced resin, and is lighter. From the viewpoint of realizing a structure having excellent space efficiency, for example, it may be about 5 to 90 parts by mass, preferably about 10 to 80 parts by mass with respect to 100 parts by mass of the resin (resin component).
 また、繊維強化樹脂層は、配線(例えば、フレキシブルプリント配線板)の断線防止や、配線の端子部を設計された位置に配置させる(端子部の位置ずれを防止する)等の観点から、熱硬化性樹脂を含むプリプレグから成形されるものが好ましい。
 プリプレグは、炭素繊維やアラミド繊維等の繊維に、熱硬化性樹脂を含浸させたものであってよい。また、プリプレグは、熱硬化性樹脂を、半硬化状態にしたものであってよい。熱硬化性樹脂を半硬化状態とする方法は、特に限定されず、常法によって加熱や乾燥を行ってもよい。
 プレプリグは、各種添加剤(例えば、ゴム成分や無機物等)を含んでいてもよい。
Further, the fiber-reinforced resin layer is heat-reinforced from the viewpoints of preventing disconnection of wiring (for example, flexible printed wiring board) and arranging the terminal portion of the wiring at a designed position (preventing misalignment of the terminal portion). Those molded from a prepreg containing a curable resin are preferable.
The prepreg may be a fiber such as carbon fiber or aramid fiber impregnated with a thermosetting resin. Further, the prepreg may be a thermosetting resin in a semi-cured state. The method for bringing the thermosetting resin into a semi-cured state is not particularly limited, and heating or drying may be performed by a conventional method.
The preprig may contain various additives (for example, rubber components, inorganic substances, etc.).
 また、繊維強化樹脂層の積層構造は、特に限定されず、回路複合構造体の仕様等に応じて繊維の方向や厚みを選択することができるが、例えば、擬似等方積層、直行異方性積層等が挙げられる。 The laminated structure of the fiber reinforced resin layer is not particularly limited, and the direction and thickness of the fibers can be selected according to the specifications of the circuit composite structure and the like. For example, pseudo isotropic lamination and orthogonal anisotropy can be selected. Lamination and the like can be mentioned.
 回路複合構造体において、配線は、配線板(特に、フレキシブルプリント配線板)に含まれて[配線板(特にフレキシブルプリント配線板)を構成して]いてもよい。すなわち、回路複合構造体において、配線板(特に、フレキシブルプリント配線板)が埋設(配線がフレキシブルプリント配線板として埋設)されていてもよい。 In the circuit composite structure, the wiring may be included in the wiring board (particularly, the flexible printed wiring board) [constituting the wiring board (particularly the flexible printed wiring board)]. That is, in the circuit composite structure, the wiring board (particularly, the flexible printed wiring board) may be embedded (the wiring may be embedded as the flexible printed wiring board).
 フレキシブルプリント配線板としては、上記例示のもの等が挙げられる。
 フレキシブルプリント配線板の厚みは、例えば、0.01mm以上1mm以下等であってよい。
Examples of the flexible printed wiring board include the above-exemplified ones.
The thickness of the flexible printed wiring board may be, for example, 0.01 mm or more and 1 mm or less.
 回路複合構造体において、配線(例えば、フレキシブルプリント配線板)の端子部[配線(回路)の外部との接続箇所]は、露出[繊維強化樹脂で形成された構造体(又は、繊維強化樹脂層)の表面に露出]していてもよい。露出する場合、当該端子部は、その少なくとも一部が露出していればよく、例えば、繊維強化樹脂で形成された構造体(又は、繊維強化樹脂層)の表面に、接触ないし接着していても(又は、固定されていても)よく、外部との接続をより一層行いやすくする等の観点から、接触ないし接着していなくても(又は、固定されていなくても)よい。なお、端子部が露出した構造体は、例えば、配線(例えば、FPC)とプリプレグを積層させて加熱成型する際に、配線(例えば、FPC)とプリプレグの間に離型フィルムを挟んでおき、加熱成型後に離型フィルムを取り除くこと等により、製造することができる。 In the circuit composite structure, the terminal portion of the wiring (for example, the flexible printed wiring board) [the connection point of the wiring (circuit) with the outside] is exposed [the structure (or the fiber reinforced resin layer) formed of the fiber reinforced resin. ) May be exposed. When exposed, the terminal portion may be exposed at least in part, and is, for example, in contact with or adhered to the surface of a structure (or fiber reinforced resin layer) formed of a fiber reinforced resin. (Or it may be fixed), and it may not be in contact or adhered (or may not be fixed) from the viewpoint of making it easier to connect to the outside. In the structure in which the terminal portion is exposed, for example, when the wiring (for example, FPC) and the prepreg are laminated and heat-molded, a release film is sandwiched between the wiring (for example, FPC) and the prepreg. It can be manufactured by removing the release film after heat molding.
 以下、フレキシブルプリント配線板を構成するポリイミドフィルムの一例について述べる。 Hereinafter, an example of the polyimide film constituting the flexible printed wiring board will be described.
 ポリイミドフィルムの製造に際しては、まず芳香族ジアミン成分と酸無水物成分とを有機溶媒中で重合させることにより、ポリアミック酸溶液を得る。 In the production of the polyimide film, first, a polyamic acid solution is obtained by polymerizing an aromatic diamine component and an acid anhydride component in an organic solvent.
 芳香族ジアミン成分の具体例としては、パラフェニレンジアミン、メタフェニレンジアミン、ベンジジン、パラキシリレンジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、1,5-ジアミノナフタレン、1,3-ビス(4-アミノフェノキシ)ベンゼン、3,3’-ジメトキシベンチジン、1,4-ビス(3メチル-5アミノフェニル)ベンゼン及びこれらのアミド形成性誘導体等が挙げられる。これらは、1種単独で用いてもよく、2種以上を混合して用いてもよい。
 これら芳香族ジアミン成分の中でも、パラフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル等を好適に使用することができる。
Specific examples of the aromatic diamine component include paraphenylenediamine, metaphenylenediamine, benzidine, paraxylylene diamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4 , 4'-diaminodiphenylsulfone, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 1,5-diaminonaphthalene, 1,3-bis (4-aminophenoxy) benzene, 3,3'-dimethoxybench Examples thereof include zinc, 1,4-bis (3 methyl-5 aminophenyl) benzene, and amide-forming derivatives thereof. These may be used alone or in combination of two or more.
Among these aromatic diamine components, para-phenylenediamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether and the like can be preferably used.
 芳香族ジアミン成分が4,4’―ジアミノジフェニルエーテルを含む場合、芳香族ジアミン成分全成分のうち、4,4’―ジアミノジフェニルエーテルの含有量は、好ましくは10~100mol%、より好ましくは30~100mol%、さらに好ましくは50~100mol%である。
 また、芳香族ジアミン成分がパラフェニレンジアミンを含む場合、芳香族ジアミン成分全成分のうち、パラフェニレンジアミンの含有量は、好ましくは5~60mol%、より好ましくは10~50mol%、さらに好ましくは15~40mol%である。
When the aromatic diamine component contains 4,4'-diaminodiphenyl ether, the content of 4,4'-diaminodiphenyl ether among all the components of the aromatic diamine component is preferably 10 to 100 mol%, more preferably 30 to 100 mol. %, More preferably 50 to 100 mol%.
When the aromatic diamine component contains para-phenylenediamine, the content of para-phenylenediamine in all the components of the aromatic diamine component is preferably 5 to 60 mol%, more preferably 10 to 50 mol%, still more preferably 15. It is ~ 40 mol%.
 酸無水物成分の具体例としては、ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3’,3,4’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,3,6,7-ナフタレンジカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)エーテル、ピリジン-2,3,5,6-テトラカルボン酸及びこれらのアミド形成性誘導体等の酸無水物が挙げられる。これらは、1種単独で用いてもよく、2種以上を混合して用いてもよい。
 これらの酸無水物成分の中でも、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物等を好適に使用することができる。
Specific examples of the acid anhydride component include pyromellitic acid, 3,3', 4,4'-biphenyltetracarboxylic acid, 2,3', 3,4'-biphenyltetracarboxylic acid, 3,3', 4 , 4'-Benzophenone tetracarboxylic acid, 2,3,6,7-naphthalenedicarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) ether, pyridine-2,3,5,6-tetracarboxylic acid And acid anhydrides such as these amide-forming derivatives. These may be used alone or in combination of two or more.
Among these acid anhydride components, pyromellitic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride and the like can be preferably used.
 酸無水物成分がピロメリット酸二無水物を含む場合、全酸無水物成分のうち、ピロメリット酸二無水物成分の含有量は、好ましくは10~100mol%、より好ましくは30~100mol%、さらに好ましくは50~100mol%、特に好ましくは80~100mol%である。
 また、酸無水物成分が3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を含む場合、全酸無水物成分のうち、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物の含有量は、好ましくは5~60mol%、より好ましくは15~40mol%である。
When the acid anhydride component contains pyromellitic acid dianhydride, the content of the pyromellitic acid dianhydride component in the total acid anhydride component is preferably 10 to 100 mol%, more preferably 30 to 100 mol%. It is more preferably 50 to 100 mol%, and particularly preferably 80 to 100 mol%.
When the acid anhydride component contains 3,3', 4,4'-biphenyltetracarboxylic dianhydride, among the total acid anhydride components, 3,3', 4,4'-biphenyltetracarboxylic acid The content of the dianhydride is preferably 5 to 60 mol%, more preferably 15 to 40 mol%.
 また、ポリアミック酸溶液の形成に使用される有機溶媒としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶媒、N,N-ジメチルホルムド、N,N-ジエチルホルムアミド等のホルムアミド系溶媒、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド等のアセトアミド系溶媒、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドン等のピロリドン系溶媒、フェノール、o-,m-,又はp-クレゾール、キシレノール、ハロゲン化フェノール、カテコール等のフェノール系溶媒、又はヘキサメチルホスホルアミド、γ-ブチロラクトン等の非プロトン性極性溶媒を挙げることができ、これらを単独又は2種以上を混合物として用いるのが望ましいが、さらにはキシレン、トルエン等の芳香族炭化水素も使用できる。 Examples of the organic solvent used for forming the polyamic acid solution include sulfoxide-based solvents such as dimethyl sulfoxide and diethyl sulfoxide, formamide-based solvents such as N, N-dimethylforme and N, N-diethylformamide, and N. , N-Dimethylacetamide, acetamide solvents such as N, N-diethylacetamide, pyroridone solvents such as N-methyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, phenols, o-, m-, or p- Examples thereof include phenolic solvents such as cresol, xylenol, halogenated phenol and catechol, and aprotonic polar solvents such as hexamethylphospholamide and γ-butyrolactone, which are used alone or as a mixture of two or more. However, aromatic hydrocarbons such as xylene and toluene can also be used.
 重合方法は、特に限定されず、公知のいずれの方法で行ってもよい。 The polymerization method is not particularly limited, and any known method may be used.
 得られるポリアミック酸溶液は、通常、5~40重量%の固形分を含有し、好ましくは10~30重量%の固形分を含有する。また、その粘度は、ブルックフィールド粘度計による測定値で、通常、10~10000Pa・sであり、安定した送液のために、好ましくは300~5000Pa・sである。また、有機溶媒溶液中のポリアミック酸は部分的にイミド化されていてもよい。 The obtained polyamic acid solution usually contains 5 to 40% by weight of solids, preferably 10 to 30% by weight of solids. The viscosity is usually 10 to 10000 Pa · s as measured by a Brookfield viscometer, and is preferably 300 to 5000 Pa · s for stable liquid feeding. Further, the polyamic acid in the organic solvent solution may be partially imidized.
 次に、ポリアミック酸溶液を用いたポリイミドフィルムの製造方法について説明する。 Next, a method for producing a polyimide film using a polyamic acid solution will be described.
 ポリイミドフィルムを製膜する方法としては、ポリアミック酸溶液をフィルム状にキャストし熱的に脱環化脱溶媒させてポリイミドフィルムを得る方法、及びポリアミック酸溶液に環化触媒及び脱水剤を混合し化学的に脱環化させてゲルフィルムを作製し、これを加熱脱溶媒することによりポリイミドフィルムを得る方法が挙げられる。 As a method for forming a polyimide film, a method of casting a polyamic acid solution into a film and thermally decyclizing and desolving it to obtain a polyimide film, and a method of mixing a cyclization catalyst and a dehydrating agent with a polyamic acid solution and chemistry A method of obtaining a polyimide film by subjecting it to decyclization to prepare a gel film and heat-desolving the gel film can be mentioned.
 ポリイミドフィルムは、本発明の目的を損なわない範囲で、可塑剤や他の樹脂等を含んでいてもよい。 The polyimide film may contain a plasticizer, other resins, etc. as long as the object of the present invention is not impaired.
 可塑剤としては、特に限定されず、例えば、ヘキシレングリコール、グリセリン、β-ナフトール、ジベンジルフェノール、オクチルクレゾール、ビスフェノールA等のビスフェノール化合物、p-ヒドロキシ安息香酸オクチル、p-ヒドロキシ安息香酸-2-エチルヘキシル、p-ヒドロキシ安息香酸ペプチル、p-ヒドロキシ安息香酸のエチレンオキサイド及び/又はプロピレンオキサイド付加物、ε-カプロラクトン、フェノール類のリン酸エステル化合物、N-メチルベンゼンスルホンアミド、N-エチルベンゼンスルホンアミド、N-ブチルベンゼンスルホンアミド、トルエンスルホンアミド、N-エチルトルエンスルホンアミド、N-シクロヘキシルトルエンスルホンアミド等が挙げられる。 The plasticizer is not particularly limited, and for example, bisphenol compounds such as hexylene glycol, glycerin, β-naphthol, dibenzylphenol, octylcresol, and bisphenol A, octyl p-hydroxybenzoate, and p-hydroxybenzoic acid-2. -Ethylhexyl, peptyl p-hydroxybenzoate, ethylene oxide and / or propylene oxide adduct of p-hydroxybenzoic acid, ε-caprolactone, phosphate ester compounds of phenols, N-methylbenzenesulfonamide, N-ethylbenzenesulfonamide , N-butylbenzenesulfonamide, toluenesulfonamide, N-ethyltoluenesulfonamide, N-cyclohexyltoluenesulfonamide and the like.
 ポリイミドに配合する他の樹脂としては、相溶性に優れるものが好ましく、例えば、エステル及び/又はカルボン酸変性オレフィン樹脂、アクリル樹脂(特に、グルタルイミド基を有するアクリル樹脂)、アイオノマー樹脂、ポリエステル樹脂、フェノキシ樹脂、エチレン-プロピレン-ジエン共重合体、ポリフェニレンオキサイド等が挙げられる。 As the other resin to be blended in the polyimide, one having excellent compatibility is preferable, and for example, an ester and / or a carboxylic acid-modified olefin resin, an acrylic resin (particularly, an acrylic resin having a glutarimide group), an ionomer resin, and a polyester resin. Examples thereof include phenoxy resins, ethylene-propylene-diene copolymers, and polyphenylene oxides.
 ポリイミドフィルムは、本発明の目的を損なわない範囲で、着色剤、各種添加剤等を含んでいてもよい。添加剤としては、例えば、帯電防止剤、難燃剤、熱安定剤、紫外線吸収剤、滑剤、離型剤、結晶核剤、強化剤(フィラー)等を挙げることができる。また、ポリイミドフィルム表面をインク等でコーティングしても良い。 The polyimide film may contain a colorant, various additives and the like as long as the object of the present invention is not impaired. Examples of the additive include an antistatic agent, a flame retardant, a heat stabilizer, an ultraviolet absorber, a lubricant, a mold release agent, a crystal nucleating agent, a strengthening agent (filler) and the like. Further, the surface of the polyimide film may be coated with ink or the like.
 本発明において、フレキシブルプリント配線板を構成するポリイミドフィルムは、フレキシブルプリント配線板と繊維強化樹脂との接着時のシワ抑制等の観点から、180℃、20分の環境下における熱収縮率が、好ましくは-0.1~0.1%、より好ましくは-0.05~0.05%である。 In the present invention, the polyimide film constituting the flexible printed wiring board preferably has a heat shrinkage rate in an environment of 180 ° C. for 20 minutes from the viewpoint of suppressing wrinkles during adhesion between the flexible printed wiring board and the fiber reinforced resin. Is −0.1 to 0.1%, more preferably −0.05 to 0.05%.
 構造体は、必要に応じて、シールド層を備えていてもよい。
 シールド層は、外部ノイズを遮断しうるものであってよい。
 シールド層は、通常、配線(又は配線板、例えば、フレキシブルプリント配線板)の外側に設けてもよい。このようなシールド層は、配線板(例えば、フレキシブルプリント配線板)の少なくとも片面(片面側)に備えられていればよく、両面(両面側)に備えられていてもよい。また、シールド層は、配線板(例えば、フレキシブルプリント配線板)と接触させて(例えば、少なくとも片面上)に備えられていることが好ましい。
The structure may include a shield layer, if desired.
The shield layer may be capable of blocking external noise.
The shield layer may usually be provided on the outside of the wiring (or wiring board, eg, flexible printed wiring board). Such a shield layer may be provided on at least one side (one side) of the wiring board (for example, a flexible printed wiring board), or may be provided on both sides (both sides). Further, it is preferable that the shield layer is provided in contact with a wiring board (for example, a flexible printed wiring board) (for example, on at least one side).
 シールド層としては、例えば、金属箔(例えば、銅箔、アルミ箔)や、金属層を有するフィルム(例えば、フィルム上に、金属層を、蒸着、スパッタ等で形成したもの)等を用いることができる。 As the shield layer, for example, a metal foil (for example, copper foil, aluminum foil) or a film having a metal layer (for example, a metal layer formed on a film by vapor deposition, sputtering, etc.) may be used. it can.
 シールド層の厚みは、例えば、0.005mm~1mm、好ましくは0.005mm~0.1mm等であってよい。 The thickness of the shield layer may be, for example, 0.005 mm to 1 mm, preferably 0.005 mm to 0.1 mm or the like.
 シールド層と繊維強化樹脂(又は、繊維強化樹脂層)の接着方法は、特に限定されず、電気的に接続されていてもよく、絶縁性を取るために繊維強化樹脂層とシールド層の間に絶縁樹脂が介在していてもよい。
 なお、シールド層と繊維強化樹脂(又は、繊維強化樹脂層)の接着方法は、公知の方法を用いてよく、必要に応じて接着剤を用いてもよい。
The method of bonding the shield layer and the fiber reinforced resin (or the fiber reinforced resin layer) is not particularly limited, and may be electrically connected, and between the fiber reinforced resin layer and the shield layer in order to obtain insulation. Insulating resin may be present.
As a method for adhering the shield layer and the fiber reinforced resin (or the fiber reinforced resin layer), a known method may be used, and an adhesive may be used if necessary.
 また、構造体は、インピーダンス調整層を備えていてもよい。このようなインピーダンス調整層は、通常、配線板(例えば、フレキシブルプリント配線板)の外側に備えてもよく、例えば、少なくとも片面側にインピーダンス調整層を備えていてもよい。インピーダンス調整層は、配線板(例えば、フレキシブルプリント配線板)の少なくとも片面側に備えられていればよく、両面側に備えられていてもよい。
 なお、構造体が、シールド層及びインピーダンス調整層を備えている場合、これらの位置関係は特に限定されず、いずれかの層が外側に位置していてもよいが、通常、インピーダンス調整層の外側(例えば、インピーダンス調整層上)にシールド層を備えていてもよい。
Further, the structure may include an impedance adjusting layer. Such an impedance adjusting layer may usually be provided on the outside of a wiring board (for example, a flexible printed wiring board), or may be provided on, for example, at least one side of the impedance adjusting layer. The impedance adjustment layer may be provided on at least one side of the wiring board (for example, a flexible printed wiring board), or may be provided on both sides.
When the structure includes a shield layer and an impedance adjusting layer, the positional relationship between them is not particularly limited, and any layer may be located on the outside, but usually, it is outside the impedance adjusting layer. A shield layer may be provided (for example, on the impedance adjustment layer).
 インピーダンス調整層は、配線(又は配線板、例えば、フレキシブルプリント配線板)の特性インピーダンスを50~150オームに調整できるものが好ましい。
 インピーダンス調整層を形成する調整材しては、例えば、一般的な樹脂からなるフィルム、不織布、織布等が挙げられる。中でも、成型加工時の耐熱性や低誘電性等の観点から、ポリイミド繊維(例えば、非熱可塑性ポリイミド繊維など)やアラミド繊維からなる不織布又は織布を用いることが好適である。特に、炭素繊維を含む繊維強化樹脂を用いて回路複合構造体を形成する場合、インピーダンスの調整が難しい場合があるが、ポリイミド繊維からなる不織布又は織布をインピーダンス調整材とすることにより、インピーダンスを効率よく調整しやすい。
 なお、インピーダンス調整層(調整材)は、その態様に応じて(例えば、不織布等である場合)、繊維強化樹脂と部分的に一体化して(例えば、繊維強化樹脂に含浸されて)いてもよい。
The impedance adjustment layer is preferably one capable of adjusting the characteristic impedance of the wiring (or wiring board, for example, a flexible printed wiring board) to 50 to 150 ohms.
Examples of the adjusting material for forming the impedance adjusting layer include a film made of a general resin, a non-woven fabric, and a woven fabric. Above all, from the viewpoint of heat resistance and low dielectric property during molding, it is preferable to use a non-woven fabric or woven fabric made of polyimide fiber (for example, non-thermoplastic polyimide fiber) or aramid fiber. In particular, when a circuit composite structure is formed using a fiber-reinforced resin containing carbon fibers, it may be difficult to adjust the impedance. However, by using a non-woven fabric or woven fabric made of polyimide fibers as an impedance adjusting material, the impedance can be adjusted. Efficient and easy to adjust.
The impedance adjusting layer (adjusting material) may be partially integrated with the fiber reinforced resin (for example, impregnated with the fiber reinforced resin) depending on its mode (for example, in the case of a non-woven fabric or the like). ..
 なお、フレキシブルプリント配線板の特性インピーダンスは、例えば、TDR法によって測定することができる。 The characteristic impedance of the flexible printed wiring board can be measured by, for example, the TDR method.
 インピーダンス調整層の厚みは、例えば、0.05mm~0.5mm、好ましくは0.1mm~0.3mm等であってよい。 The thickness of the impedance adjusting layer may be, for example, 0.05 mm to 0.5 mm, preferably 0.1 mm to 0.3 mm or the like.
 構造体において、繊維強化樹脂(層)は、配線板(例えば、フレキシブルプリント配線板)を埋設する限り、その構造(層構造)は特に限定されず、単一の層構造であってもよく、複数の層構造を有していてもよい。なお、複数の層構造は、一体化(接着一体化)していてもよい。
 例えば、構造体は、第一の繊維強化樹脂層と、第一の繊維強化樹脂層の上(上側)にあり、かつ、第一の繊維強化樹脂層と接している第一の配線板(特に、フレキシブルプリント配線板)と、第一の配線板(特に、フレキシブルプリント配線板)上にあり、かつ、第一の配線板(特に、フレキシブルプリント配線板)と接している第二の繊維強化樹脂層とを備えていてもよい(以下、これらを備えたユニットを、「回路複合構造体(1)」ということがある)。
In the structure, the structure (layer structure) of the fiber reinforced resin (layer) is not particularly limited as long as the wiring board (for example, a flexible printed wiring board) is embedded, and may be a single layer structure. It may have a plurality of layer structures. The plurality of layer structures may be integrated (adhesive integration).
For example, the structure is a first wiring board (particularly) that is above (upper) the first fiber-reinforced resin layer and the first fiber-reinforced resin layer and is in contact with the first fiber-reinforced resin layer. , Flexible printed wiring board) and a second fiber-reinforced resin that is on the first wiring board (particularly, flexible printed wiring board) and is in contact with the first wiring board (particularly, flexible printed wiring board). A layer may be provided (hereinafter, a unit provided with these may be referred to as a "circuit composite structure (1)").
 なお、このようなユニットにおいて、繊維強化樹脂層と配線との接触は、直接的であってもよく、間接的であってもよい。例えば、構造体が、他の層[例えば、シールド層、インピーダンス調整層、熱硬化性樹脂層(接着層)等]を有する場合、配線は、このような他の層を介して、繊維強化樹脂と接触していてもよい。 In such a unit, the contact between the fiber reinforced resin layer and the wiring may be direct or indirect. For example, when the structure has other layers [for example, a shield layer, an impedance adjusting layer, a thermosetting resin layer (adhesive layer), etc.], the wiring is made of a fiber reinforced resin via such other layers. May be in contact with.
(回路複合構造体(1))
 回路複合構造体(1)は、第一のフレキシブルプリント配線板が設置された第一の繊維強化樹脂層の反対面に、第二のフレキシブルプリント配線板を備えていてもよい。第一のフレキシブル配線板、第二のフレキシブル配線板は各々、内部の厚み方向に二層以上の多層配線構造を有していてもよい。
 また、回路複合構造体(1)は、第二のフレキシブルプリント配線板上にあり、かつ第二のフレキシブルプリント配線板と接している第三の繊維強化樹脂層を備えていてもよい。
 さらに、第n(nは3以上の整数)のフレキシブルプリント配線板と接している第nの繊維強化樹脂層の反対面に、第n+1のフレキシブルプリント配線板を備えるといった、フレキシブルプリント配線板と繊維強化樹脂層をさらに複数積層する構造を取ってもよい。
(Circuit composite structure (1))
The circuit composite structure (1) may include a second flexible printed wiring board on the opposite surface of the first fiber reinforced resin layer on which the first flexible printed wiring board is installed. The first flexible wiring board and the second flexible wiring board may each have a multi-layer wiring structure having two or more layers in the internal thickness direction.
Further, the circuit composite structure (1) may include a third fiber reinforced resin layer that is on the second flexible printed wiring board and is in contact with the second flexible printed wiring board.
Further, the flexible printed wiring board and the fiber are provided with the n + 1 flexible printed wiring board on the opposite surface of the nth fiber reinforced resin layer in contact with the nth (n is an integer of 3 or more) flexible printed wiring board. A structure in which a plurality of reinforced resin layers are further laminated may be adopted.
 なお、第一の繊維強化樹脂層、第二の繊維強化樹脂層及び第三の繊維強化樹脂層を形成する繊維強化樹脂は、同じであってもよいし、異なっていてもよい。 The fiber-reinforced resin forming the first fiber-reinforced resin layer, the second fiber-reinforced resin layer, and the third fiber-reinforced resin layer may be the same or different.
 また、各繊維強化樹脂層は、単数もしくは複数(例えば、2種以上)の繊維強化樹脂から構成されていてもよい。 Further, each fiber reinforced resin layer may be composed of one or more (for example, two or more kinds) of fiber reinforced resins.
 各繊維強化樹脂層の厚みは、例えば、0.05mm以上3mm以下、好ましくは0.5mm以上2mm以下等であってよい。 The thickness of each fiber reinforced resin layer may be, for example, 0.05 mm or more and 3 mm or less, preferably 0.5 mm or more and 2 mm or less.
 フレキシブルプリント配線板の表面に、繊維強化樹脂層を形成する方法は、特に限定されず、例えば、フレキシブルプリント配線板表面に、繊維強化樹脂を加圧しながら加熱してもよく、上記例示の成形方法等を使用してもよい。 The method of forming the fiber reinforced resin layer on the surface of the flexible printed wiring board is not particularly limited. For example, the surface of the flexible printed wiring board may be heated while pressurizing the fiber reinforced resin, and the above-exemplified molding method may be used. Etc. may be used.
 繊維強化樹脂層とフレキシブルプリント配線板の間に、接着層を有していてもよい。接着層を形成する接着剤としては、特に限定されず、例えば、熱硬化性樹脂(例えば、アクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂等)の接着剤等が挙げられる。 An adhesive layer may be provided between the fiber reinforced resin layer and the flexible printed wiring board. The adhesive forming the adhesive layer is not particularly limited, and examples thereof include adhesives of thermosetting resins (for example, acrylic resins, epoxy resins, polyimide resins, etc.).
(実施形態1)
 以下に本発明の実施形態の一例を示す。図2(a)は、本実施形態1に係る回路複合構造体(1)の一例を示す断面図であり、図2(b)本発明の実施形態1に係る回路複合構造体(1)の一例を示す斜視図である。ここで、図2(a)の断面図は、図2(b)の一点鎖線部分に対応する。その構成は、繊維強化樹脂層301と、繊維強化樹脂層301上にあり、かつ、繊維強化樹脂層301と接しているフレキシブルプリント配線板302と、フレキシブルプリント配線板302上にあり、かつ、フレキシブルプリント配線板と接している繊維強化樹脂層303と、を備えている。
(Embodiment 1)
An example of the embodiment of the present invention is shown below. FIG. 2A is a cross-sectional view showing an example of the circuit composite structure (1) according to the first embodiment, and FIG. 2B is a cross-sectional view of the circuit composite structure (1) according to the first embodiment of the present invention. It is a perspective view which shows an example. Here, the cross-sectional view of FIG. 2A corresponds to the alternate long and short dash line portion of FIG. 2B. The configuration is on the fiber reinforced resin layer 301, the flexible printed wiring board 302 on the fiber reinforced resin layer 301 and in contact with the fiber reinforced resin layer 301, and the flexible printed wiring board 302. It is provided with a fiber reinforced resin layer 303 that is in contact with the printed wiring board.
 図3は、本実施形態1に係るフレキシブルプリント配線板302を示す。フレキシブルプリント配線板302の形成においては、例えば、まず、基板用絶縁フィルム(又は、ベースフィルム、基材フィルム)102(例えば、ポリイミドフィルム)を熱硬化性耐熱接着剤を介して銅箔と貼り合わせた銅貼り基板(例えば、ポリイミド基板)に対し、フォトリソグラフィー技術を用いて回路導体(エッチング回路)103を形成する。 FIG. 3 shows a flexible printed wiring board 302 according to the first embodiment. In forming the flexible printed wiring board 302, for example, first, an insulating film (or base film, base film) 102 (for example, a polyimide film) for a substrate is bonded to a copper foil via a heat-curable heat-resistant adhesive. A circuit conductor (etching circuit) 103 is formed on a copper-coated substrate (for example, a polyimide substrate) by using a photolithography technique.
 ついで、保護用絶縁フィルム105(例えば、ポリイミドフィルム)に熱硬化性耐熱接着剤を塗布し、半硬化状態としてあるカバーレイフィルムを加熱プレス工程によって、接着剤を硬化させながら導体回路を埋め込むように貼り合わせ、接着剤層104を形成する。その際、端子部106に相対(相当)する部分は、予め打ち抜き加工等により開口部を形成しておく。なお、端子部106は導体の耐食性、電気接続信頼性を高めるためニッケル、金、銀、錫、半田などのめっき加工を施すことが好ましい。 Then, a thermosetting heat-resistant adhesive is applied to the protective insulating film 105 (for example, a polyimide film), and the semi-cured coverlay film is heat-pressed so that the conductor circuit is embedded while the adhesive is cured. They are bonded together to form an adhesive layer 104. At that time, an opening is formed in advance in the portion relative to (corresponding to) the terminal portion 106 by punching or the like. The terminal portion 106 is preferably plated with nickel, gold, silver, tin, solder, or the like in order to improve the corrosion resistance of the conductor and the reliability of electrical connection.
 これにより、外部配線との接続や、部品実装のための端子部106を持つフレキシブルプリント配線板(フレキシブルプリント回路基板)302を得ることができる。 As a result, it is possible to obtain a flexible printed wiring board (flexible printed circuit board) 302 having a terminal portion 106 for connection with external wiring and component mounting.
 次いで、フレキシブルプリント配線板302の表面に、繊維強化樹脂層301を形成する。 Next, the fiber reinforced resin layer 301 is formed on the surface of the flexible printed wiring board 302.
 繊維強化樹脂層301を形成する繊維強化樹脂には、プリプレグを用いることができる。フレキシブルプリント配線板302の表面で、繊維強化樹脂層301を形成するプリプレグを、加圧しながら加熱する。これにより、加熱温度を高くしても気泡の発生を抑制することができる。例えば、加圧脱泡機(オートクレーブなど)を用いて樹脂を硬化することができる。 A prepreg can be used as the fiber reinforced resin forming the fiber reinforced resin layer 301. On the surface of the flexible printed wiring board 302, the prepreg forming the fiber reinforced resin layer 301 is heated while pressurizing. As a result, the generation of bubbles can be suppressed even if the heating temperature is raised. For example, the resin can be cured using a pressure defoaming machine (autoclave or the like).
 次いで、フレキシブルプリント配線板302の端子部106を露出するように繊維強化樹脂層303を形成する。繊維強化樹脂層303の材料及び形成方法は、繊維強化樹脂層301と同様である。この工程後、出荷が可能となる。 Next, the fiber reinforced resin layer 303 is formed so as to expose the terminal portion 106 of the flexible printed wiring board 302. The material and forming method of the fiber reinforced resin layer 303 are the same as those of the fiber reinforced resin layer 301. After this process, shipping is possible.
 繊維強化樹脂層301及び繊維強化樹脂層303の膜厚は、それぞれ、0.05mm以上3mm以下の範囲にあることが望ましい。 It is desirable that the film thicknesses of the fiber-reinforced resin layer 301 and the fiber-reinforced resin layer 303 are in the range of 0.05 mm or more and 3 mm or less, respectively.
 フレキシブルプリント配線板302の膜厚(端子部分以外の膜厚)は、0.01mm以上1mm以下の範囲にあることが望ましい。 It is desirable that the film thickness of the flexible printed wiring board 302 (the film thickness other than the terminal portion) is in the range of 0.01 mm or more and 1 mm or less.
 本実施形態の回路複合構造体(1)において、フレキシブルプリント配線板302の長手方向の側面は、繊維強化樹脂層301及び繊維強化樹脂層303と接している。 In the circuit composite structure (1) of the present embodiment, the side surface of the flexible printed wiring board 302 in the longitudinal direction is in contact with the fiber reinforced resin layer 301 and the fiber reinforced resin layer 303.
 繊維強化樹脂層303の上面上にさらに、フレキシブルプリント配線板を形成し、フレキシブルプリント配線板の上面上に繊維強化樹脂層を形成してもよい(図示せず)。
 また、前記の通り、フレキシブルプリント配線板(302等)は、他の層を介して(間接的に)樹脂層(301、303等)と接していてもよい(図示せず)。
A flexible printed wiring board may be further formed on the upper surface of the fiber reinforced resin layer 303, and a fiber reinforced resin layer may be formed on the upper surface of the flexible printed wiring board (not shown).
Further, as described above, the flexible printed wiring board (302, etc.) may be (indirectly) in contact with the resin layer (301, 303, etc.) via another layer (not shown).
 FPC被覆層として繊維強化樹脂層を採用しているので、新たに接着剤を使用することが不要になる。 Since the fiber reinforced resin layer is used as the FPC coating layer, it is not necessary to use a new adhesive.
 繊維強化樹脂層材料として炭素繊維を採用した場合、電磁波シールド特性も確保できる。 When carbon fiber is used as the fiber reinforced resin layer material, electromagnetic wave shielding characteristics can also be ensured.
 図2では、フレキシブルプリント配線板(302)及び繊維強化樹脂層(301及び303)は、平面的形状であるが、フレキシブルプリント配線板(302)及び/又は繊維強化樹脂層(301及び303)は、非平面的形状であってもよい(図示せず)。 In FIG. 2, the flexible printed wiring board (302) and the fiber reinforced resin layer (301 and 303) have a planar shape, but the flexible printed wiring board (302) and / or the fiber reinforced resin layer (301 and 303) have a planar shape. , May have a non-planar shape (not shown).
 配線が非平面的に埋設された回路複合構造体や、非平面的形状の回路複合構造体は、例えば、成形型にプリプレグを賦形させ、その上に配線(例えば、フレキシブルプリント配線板)を乗せ、さらにプリプレグを重ねて賦形し、配線を繊維強化樹脂で挟みこむことによって製造することができる。
 このような製造方法としては、例えば、レイアップ法(例えば、ハンドレイアップ、スプレイアップ)、オートクレーブを用いた成形等が挙げられる。
In a circuit composite structure in which wiring is embedded non-planarly or a circuit composite structure having a non-planar shape, for example, a prepreg is formed in a molding mold, and wiring (for example, a flexible printed wiring board) is placed on the prepreg. It can be manufactured by putting it on, shaping it by stacking prepregs, and sandwiching the wiring with fiber reinforced resin.
Examples of such a manufacturing method include a layup method (for example, hand layup and sprayup), molding using an autoclave, and the like.
 なお、本発明者らは、プリプレグを用いることや、製造条件を調整すること等により、配線が非平面的に埋設された回路複合構造体や、非平面的形状の回路複合構造体が得られることを見出したが、フレキシブルプリント配線板に工夫をすることで、より確実にこれらの構造を得られることを見出した。
 例えば、フレキシブルプリント配線板(FPC)を、繊維強化樹脂(繊維強化樹脂層)に、非平面的に、しわ、破れ、断線等がないように、また、端子部を成型後に設計された位置に配置させるように埋設させるには、FPCを、目的とする構造体の立体形状を平面に展開した形状(又は、展開図の形状)とすること、FPCの一部又は全体をS字や波形形状とすること、FPCにあらかじめ部分的なスリットを入れて応力を分散させる形態とすること等が好ましい。なお、回路導体の断線を防ぐためには、FPC内部の導体配線自体をS字形状や波形形状の配線としておくこと、当該導体の素材として耐折り曲げ特性に優れる圧延銅箔を使用すること等も有効である。
In addition, the present inventors can obtain a circuit composite structure in which wiring is embedded non-planarly or a circuit composite structure having a non-planar shape by using a prepreg, adjusting manufacturing conditions, and the like. However, it was found that these structures can be obtained more reliably by devising a flexible printed wiring board.
For example, the flexible printed wiring board (FPC) is placed on the fiber reinforced resin (fiber reinforced resin layer) in a non-planar manner so that there are no wrinkles, tears, disconnections, etc., and the terminal portion is placed at the design position after molding. In order to bury it so as to be arranged, the FPC should have a three-dimensional shape of the target structure developed in a plane (or the shape of the developed view), or a part or the whole of the FPC should have an S-shape or a wavy shape. It is preferable that the FPC has a partial slit in advance to disperse the stress. In order to prevent disconnection of the circuit conductor, it is also effective to make the conductor wiring itself inside the FPC an S-shaped or corrugated wiring, and to use rolled copper foil having excellent bending resistance as the material of the conductor. Is.
 本発明の回路複合構造体の用途は、特に限定されないが、例えば、自動車、航空機、衛星、ドローン等の各種移動体の構造部品や、制御回路部品等に使用することができる。 The use of the circuit composite structure of the present invention is not particularly limited, but it can be used, for example, for structural parts of various mobile bodies such as automobiles, aircrafts, satellites, and drones, and control circuit parts.
 次に本発明を実施例に基づいてさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。 Next, the present invention will be described in more detail based on Examples, but the present invention is not limited to such Examples.
(回路材1の製造)
 東レ・デュポン株式会社製のポリイミドフィルム(カプトン100EN、厚み0.025mm)の片面に銅箔(圧延銅箔、厚み0.035mm)を張り合わせた銅張り積層板を用い、0.5mmピッチになるよう0.3mmの回路幅と0.2mmの回路間幅で、曲面形状に合わせたS字状の回路をエッチング加工により形成した。回路形成後、エッチング回路面の、外部との接続端子となる部分以外に(カプトン100EN、厚み0.025mm)と接着剤(エポキシ系)からなるカバーレイをラミネートして、回路面の保護を行った。その後に不要部分を取り除きFPCを得た。出来上がった回路はS字状となった。
(Manufacturing of circuit material 1)
Using a copper-clad laminate with copper foil (rolled copper foil, thickness 0.035 mm) laminated on one side of a polyimide film (Capton 100EN, thickness 0.025 mm) manufactured by Toray DuPont Co., Ltd., so that the pitch is 0.5 mm. An S-shaped circuit matching the curved shape was formed by etching with a circuit width of 0.3 mm and an inter-circuit width of 0.2 mm. After forming the circuit, the circuit surface is protected by laminating a coverlay made of adhesive (epoxy type) and (Kapton 100EN, thickness 0.025 mm) on the etching circuit surface other than the part that will be the connection terminal to the outside. It was. After that, unnecessary parts were removed to obtain FPC. The completed circuit became S-shaped.
(回路材2の製造)
 東レ・デュポン株式会社製のポリイミドフィルム(カプトン100EN、厚み0.025mm)の両面に銅箔(圧延銅箔、厚み0.035mm)を張り合わせた銅張り積層板を用い、銅箔の片面のみを0.5mmピッチになるよう0.3mmの回路幅と0.2mmの回路間幅で、曲面形状に合わせたS字状の回路をエッチング加工により形成した。回路形成後、エッチング回路面の、外部との接続端子となる部分以外に(カプトン100EN、厚み0.025mm)と接着剤(エポキシ系)からなるカバーレイをラミネートして、回路面の保護を行った。その後に不要部分を取り除きFPCを得た。出来上がった回路はS字状となった。
(Manufacturing of circuit material 2)
Using a copper-clad laminate with copper foil (rolled copper foil, thickness 0.035 mm) laminated on both sides of a polyimide film (Capton 100EN, thickness 0.025 mm) manufactured by Toray DuPont Co., Ltd., only one side of the copper foil is 0. An S-shaped circuit matching the curved shape was formed by etching with a circuit width of 0.3 mm and an inter-circuit width of 0.2 mm so as to have a pitch of .5 mm. After forming the circuit, the circuit surface is protected by laminating a coverlay made of adhesive (epoxy type) and (Kapton 100EN, thickness 0.025 mm) on the etching circuit surface other than the part that will be the connection terminal to the outside. It was. After that, unnecessary parts were removed to obtain FPC. The completed circuit became S-shaped.
(回路材3の製造)
 東レ・デュポン株式会社製のポリイミドフィルム(カプトン100EN、厚み0.025mm)の片面に銅箔(圧延銅箔、厚み0.035mm)を張り合わせた銅張り積層板を用い、0.5mmピッチになるよう0.3mmの回路幅と0.2mmの回路間幅で直線状に回路をエッチング加工により形成した。回路形成後、エッチング回路面の、外部との接続端子となる部分以外に(カプトン100EN、厚み0.035mm)と接着剤(エポキシ系)からなるカバーレイをラミネートして、回路面の保護を行った。その後に不要部分を取り除きFPCを得た。出来上がった回路は直線状となった。
(Manufacturing of circuit material 3)
Using a copper-clad laminate with copper foil (rolled copper foil, thickness 0.035 mm) laminated on one side of a polyimide film (Capton 100EN, thickness 0.025 mm) manufactured by Toray DuPont Co., Ltd., so that the pitch is 0.5 mm. A linear circuit was formed by etching with a circuit width of 0.3 mm and a circuit-to-circuit width of 0.2 mm. After forming the circuit, the circuit surface is protected by laminating a coverlay made of adhesive (epoxy type) with (Kapton 100EN, thickness 0.035 mm) other than the part of the etching circuit surface that will be the connection terminal to the outside. It was. After that, unnecessary parts were removed to obtain FPC. The completed circuit became linear.
(実施例1)
(繊維強化樹脂との重ね合わせ)
 所定の形状に設計した曲面を持つ成形型に対し、プリプレグ(東レ株式会社製 トレカプリプレグF6347B-05P 4層(厚み約1.0mm))を型の形状に賦形し、その後、回路材1の回路面の反対側が接する(すなわち、曲面を持つ型に沿わせる)ように、回路材の端子部に離型フィルムを挟んだ状態で重ねた。
 その後、プリプレグ(東レ株式会社製 トレカプリプレグF6347B-05P 2層(厚み約0.5mm))を回路面側に重ねて賦形し、FPCとプリプレグの複合材を得た。
(Example 1)
(Superposition with fiber reinforced plastic)
A prepreg (Trading card prepreg F6347B-05P 4 layers (thickness about 1.0 mm) manufactured by Toray Industries, Inc.) is shaped into the shape of the mold with respect to the molded mold having a curved surface designed to have a predetermined shape, and then the circuit material 1 is formed. The release film was sandwiched between the terminals of the circuit material so that the opposite sides of the circuit surface were in contact with each other (that is, along the mold having a curved surface).
Then, a prepreg (Trading card prepreg F6347B-05P two layers (thickness about 0.5 mm) manufactured by Toray Industries, Inc.) was overlaid on the circuit surface side and shaped to obtain a composite material of FPC and prepreg.
(繊維強化樹脂との張り合わせ)
 上記FPCとプリプレグの複合材をオートクレーブへ投入し、0.5MPa、130℃で120分加熱してプリプレグを硬化させ、回路複合構造体を得た。得られた回路複合構造体は、成形型の曲面形状に沿っており、また、FPCの端子は所定の位置に端子が配置されて露出しており、正常に導通していることを確認した。
 この結果は、FPC及び構造体の全体形状のいずれもが、曲面形状であることから、回路や構造体(成形体)の設計において、幅広い選択肢が得られることを示唆するものとなる。
(Lasting with fiber reinforced plastic)
The composite material of the FPC and the prepreg was put into an autoclave and heated at 0.5 MPa and 130 ° C. for 120 minutes to cure the prepreg to obtain a circuit composite structure. It was confirmed that the obtained circuit composite structure conformed to the curved surface shape of the molding die, and that the terminals of the FPC were exposed with the terminals arranged at predetermined positions and were normally conducting.
This result suggests that since both the FPC and the overall shape of the structure are curved surfaces, a wide range of options can be obtained in the design of the circuit and the structure (molded body).
(実施例2)
 回路材1のかわりに回路材2を用いた以外は実施例1と同様にして、繊維強化樹脂との重ね合わせ及び張り合わせを行い、回路複合構造体を得た。得られた回路複構造体は成形型の曲面形状に沿っており、また、FPCの端子は所定の位置に端子が配置されて露出しており、正常に導通していることを確認した。
(Example 2)
A circuit composite structure was obtained by superimposing and laminating with a fiber reinforced resin in the same manner as in Example 1 except that the circuit material 2 was used instead of the circuit material 1. It was confirmed that the obtained circuit composite structure follows the curved surface shape of the molding die, and that the terminals of the FPC are exposed by arranging the terminals at predetermined positions and conducting normally.
(実施例3)
 回路材1のカバーレイの外層に、インピーダンス調整材となる非熱可塑性のポリイミド繊維を用いて抄紙した紙(厚み0.3mm)を貼り合わせた。
(Example 3)
Paper (thickness 0.3 mm) made from non-thermoplastic polyimide fiber as an impedance adjusting material was attached to the outer layer of the coverlay of the circuit material 1.
 上記インピーダンス調整材を貼り合わせた回路材1の外層に、アルミ箔と保護絶縁膜からなるシールド(厚み0.2mm)を貼り合わせた。 A shield (thickness 0.2 mm) made of aluminum foil and a protective insulating film was bonded to the outer layer of the circuit material 1 to which the above impedance adjusting material was bonded.
(繊維強化樹脂との重ね合わせ)
 所定の形状に設計した曲面を持つ成形型に対し、プリプレグ(東レ株式会社製 トレカプリプレグF6347B-05P 4層(厚み約1.0mm))を型の形状に賦形し、その後、上記のインピーダンス調整材及びシールドを貼り合わせた回路材1の回路面の反対側が接するように、回路材の端子部に離型フィルムを挟んだ状態で重ねた。
 その後、プリプレグ(東レ株式会社製 トレカプリプレグF6347B-05P 2層(厚み約0.5mm))を回路面側に重ねて賦形し、FPCとプリプレグの複合材を得た。
(Superposition with fiber reinforced plastic)
A prepreg (Toray Industries, Inc. Treka prepreg F6347B-05P 4 layers (thickness about 1.0 mm)) is shaped into the shape of the mold with a curved surface designed to a predetermined shape, and then the impedance adjustment described above is performed. The release film was sandwiched between the terminals of the circuit material so that the opposite sides of the circuit surface of the circuit material 1 to which the material and the shield were bonded were in contact with each other.
Then, a prepreg (Trading card prepreg F6347B-05P two layers (thickness about 0.5 mm) manufactured by Toray Industries, Inc.) was overlaid on the circuit surface side and shaped to obtain a composite material of FPC and prepreg.
(繊維強化樹脂との張り合わせ)
 上記FPCとプリプレグの複合材をオートクレーブへ投入し、0.5MPa、130℃で120分加熱してプリプレグを硬化させ、回路複合構造体を得た。得られた回路複合構造体は、成形型の曲面形状に沿っており、また、FPCの端子は所定の位置に配置されて露出しており、正常に導通していることを確認した。また、得られた回路複合構造体は、FPCの特性インピーダンス(ネットワークアナライザーによって測定)が120オームであり、インピーダンスを調整できていた。
(Lasting with fiber reinforced plastic)
The composite material of the FPC and the prepreg was put into an autoclave and heated at 0.5 MPa and 130 ° C. for 120 minutes to cure the prepreg to obtain a circuit composite structure. It was confirmed that the obtained circuit composite structure follows the curved surface shape of the molding die, and the terminals of the FPC are arranged at predetermined positions and exposed, so that they are normally conducting. Further, the obtained circuit composite structure had a characteristic impedance of FPC (measured by a network analyzer) of 120 ohms, and the impedance could be adjusted.
(実施例4)
 回路材1のかわりに回路材2を用いた以外は実施例3と同様にして、回路複合構造体を得た。得られた回路複構造体は曲面形状に沿っており、また、FPCの端子は所定の位置に端子が配置されて露出しており、正常に導通していることを確認した。
(Example 4)
A circuit composite structure was obtained in the same manner as in Example 3 except that the circuit material 2 was used instead of the circuit material 1. It was confirmed that the obtained circuit composite structure follows the curved surface shape, and that the terminals of the FPC are exposed by arranging the terminals at predetermined positions and conducting normally.
(実施例5)
 回路材3を用いた以外は実施例1と同じ方法で回路複合構造体を得た。得られた回路複合構造体は、FPCの端子位置ずれが起きたが、問題なく導通した。
(Example 5)
A circuit composite structure was obtained in the same manner as in Example 1 except that the circuit material 3 was used. The obtained circuit composite structure was electrically connected without any problem, although the terminal position of the FPC was displaced.
 上記結果から、FPCをS字状にした方が、FPCの端子が所定の位置からずれにくく、好ましいことが分かった。 From the above results, it was found that it is preferable to make the FPC S-shaped because the terminals of the FPC are less likely to shift from the predetermined positions.
 本発明は、乗物等を構成する構造体と電気信号配線を複合する技術分野等に適用することができる。 The present invention can be applied to a technical field or the like in which a structure constituting a vehicle or the like and electrical signal wiring are combined.
1 FRPからなる主層
2a、2b 副層
3 リブ部
5 ヒンジ部
6 ステンレス板
7 真鍮製のボス
102 基板用絶縁フィルム
103 回路導体
104 接着剤層
105 保護用絶縁フィルム
106 端子部
301 繊維強化樹脂層
302 フレキシブルプリント配線板
303 繊維強化樹脂層
1 Main layer 2a and 2b made of FRP Sub-layer 3 Rib part 5 Hinge part 6 Stainless steel plate 7 Brass boss 102 Insulation film for substrate 103 Circuit conductor 104 Adhesive layer 105 Protective insulation film 106 Terminal part 301 Fiber reinforced resin layer 302 Flexible printed wiring board 303 Fiber reinforced resin layer

Claims (21)

  1.  繊維強化樹脂と配線とを含有する構造体であって、配線が繊維強化樹脂に埋設されている、構造体。 A structure containing a fiber reinforced resin and wiring, in which the wiring is embedded in the fiber reinforced resin.
  2.  配線が非平面的に埋設された請求項1記載の構造体。 The structure according to claim 1, wherein the wiring is buried non-planarly.
  3.  非平面的形状の構造体である請求項1記載の構造体。 The structure according to claim 1, which is a non-planar structure.
  4.  フレキシブルプリント配線板が埋設された請求項1~3のいずれかに記載の構造体。 The structure according to any one of claims 1 to 3, in which a flexible printed wiring board is embedded.
  5.  第一の単数もしくは複数から構成される繊維強化樹脂層と、前記第一の単数もしくは複数から構成される繊維強化樹脂層の上にあり、かつ、前記第一の繊維強化樹脂層と接している第一のフレキシブルプリント配線板と、前記第一のフレキシブルプリント配線板上にあり、かつ、前記第一のフレキシブルプリント配線板と接している第二の単数もしくは複数から構成される繊維強化樹脂層と、を備えたことを特徴とする請求項1~4のいずれかに記載の構造体。 It is on the first fiber-reinforced resin layer composed of one or more and the first fiber-reinforced resin layer composed of one or more, and is in contact with the first fiber-reinforced resin layer. A first flexible printed wiring board and a fiber reinforced resin layer composed of a second single or plural, which is on the first flexible printed wiring board and is in contact with the first flexible printed wiring board. The structure according to any one of claims 1 to 4, wherein the structure is provided with.
  6.  前記第一のフレキシブルプリント配線板が設置された第一の単数もしくは複数から構成される繊維強化樹脂層の反対面に、第二のフレキシブルプリント配線板が設置されており、前記第二のフレキシブルプリント配線板上にあり、かつ第二のフレキシブルプリント配線板と接している第三の単数もしくは複数から構成される繊維強化樹脂層を備えたことを特徴とする請求項5に記載の構造体。 The second flexible printed wiring board is installed on the opposite surface of the fiber reinforced resin layer composed of one or more of the first flexible printed wiring board on which the first flexible printed wiring board is installed. The structure according to claim 5, further comprising a fiber-reinforced resin layer composed of a third single or plural, which is on the wiring board and is in contact with the second flexible printed wiring board.
  7.  繊維強化樹脂は、ガラス繊維又は炭素繊維を含む繊維及び熱硬化性樹脂を含むことを特徴とする請求項1~6のいずれかに記載の構造体。 The structure according to any one of claims 1 to 6, wherein the fiber-reinforced resin contains fibers containing glass fibers or carbon fibers and a thermosetting resin.
  8.  繊維強化樹脂は、炭素繊維及び熱硬化性樹脂を含むことを特徴とする請求項1~7のいずれかに記載の構造体。 The structure according to any one of claims 1 to 7, wherein the fiber-reinforced resin contains carbon fibers and a thermosetting resin.
  9.  繊維強化樹脂が、炭素繊維を含み、炭素繊維の比剛性が16000000メートル以上である請求項1~8のいずれかに記載の構造体。 The structure according to any one of claims 1 to 8, wherein the fiber reinforced resin contains carbon fibers and the specific rigidity of the carbon fibers is 16000000 meters or more.
  10.  繊維強化樹脂に含まれる樹脂が、DMAによって測定されるガラス転移温度150℃以上を満たす請求項1~9のいずれかに記載の構造体。 The structure according to any one of claims 1 to 9, wherein the resin contained in the fiber reinforced resin satisfies the glass transition temperature of 150 ° C. or higher measured by DMA.
  11.  フレキシブルプリント配線板の少なくとも片面側にシールド層を備えた、請求項4~10のいずれかに記載の構造体。 The structure according to any one of claims 4 to 10, wherein a shield layer is provided on at least one side of the flexible printed wiring board.
  12.  フレキシブルプリント配線板の少なくとも片面側にインピーダンス調整層を備えた、請求項4~11のいずれかに記載の構造体。 The structure according to any one of claims 4 to 11, wherein an impedance adjusting layer is provided on at least one side of the flexible printed wiring board.
  13.  繊維強化樹脂層とフレキシブルプリント配線板の間に、熱硬化性樹脂で構成された接着層を備えた請求項5~12のいずれかに記載の構造体。 The structure according to any one of claims 5 to 12, wherein an adhesive layer made of a thermosetting resin is provided between the fiber reinforced resin layer and the flexible printed wiring board.
  14.  前記フレキシブルプリント配線板が、両面の最外層にポリイミドを含むフィルムを備え、端子部の導体が露出するように開口部を備えたことを特徴とする請求項4~13のいずれかに記載の構造体。 The structure according to any one of claims 4 to 13, wherein the flexible printed wiring board is provided with a film containing polyimide on the outermost layers on both sides, and is provided with an opening so that the conductor of the terminal portion is exposed. body.
  15.  前記第一の繊維強化樹脂層及び前記第二の繊維強化樹脂層及び前記第三の繊維強化樹脂層の厚みは、それぞれ、0.05mm以上3mm以下の範囲にあることを特徴とする請求項5~14のいずれかに記載の構造体。 5. The thickness of the first fiber-reinforced resin layer, the second fiber-reinforced resin layer, and the third fiber-reinforced resin layer are each in the range of 0.05 mm or more and 3 mm or less, respectively. The structure according to any one of 14 to 14.
  16.  前記フレキシブルプリント配線板の端子部以外の部分の膜厚は、0.01mm以上1mm以下の範囲にあることを特徴とする請求項4~15のいずれかに記載の構造体。 The structure according to any one of claims 4 to 15, wherein the film thickness of the portion other than the terminal portion of the flexible printed wiring board is in the range of 0.01 mm or more and 1 mm or less.
  17.  前記第一のフレキシブルプリント配線板の端面が、前記第一の繊維強化樹脂層及び前記第二の繊維強化樹脂層と接していることを特徴とする請求項5~16のいずれかに記載の構造体。 The structure according to any one of claims 5 to 16, wherein the end face of the first flexible printed wiring board is in contact with the first fiber reinforced resin layer and the second fiber reinforced resin layer. body.
  18.  前記第二のフレキシブルプリント配線板の端面が、前記第一の繊維強化樹脂層及び前記第三の繊維強化樹脂層と接していることを特徴とする請求項6~17のいずれかに記載の構造体。 The structure according to any one of claims 6 to 17, wherein the end face of the second flexible printed wiring board is in contact with the first fiber reinforced resin layer and the third fiber reinforced resin layer. body.
  19.  前記第一のフレキシブルプリント配線板の端子部および/または前記第二のフレキシブルプリント配線板の端子部が露出していることを特徴とする請求項6~18のいずれかに記載の構造体。 The structure according to any one of claims 6 to 18, wherein the terminal portion of the first flexible printed wiring board and / or the terminal portion of the second flexible printed wiring board is exposed.
  20.  フレキシブルプリント配線板の端子部の全部が露出している、請求項4~19のいずれかに記載の構造体。 The structure according to any one of claims 4 to 19, wherein all the terminals of the flexible printed wiring board are exposed.
  21.  配線が、導通可能なように埋設されている請求項1~20のいずれかに記載の構造体。 The structure according to any one of claims 1 to 20, wherein the wiring is embedded so as to be conductive.
PCT/JP2020/017409 2019-04-23 2020-04-22 Circuit composite structure WO2020218384A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-081853 2019-04-23
JP2019081853A JP2022092071A (en) 2019-04-23 2019-04-23 Circuit composite structure

Publications (1)

Publication Number Publication Date
WO2020218384A1 true WO2020218384A1 (en) 2020-10-29

Family

ID=72942060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017409 WO2020218384A1 (en) 2019-04-23 2020-04-22 Circuit composite structure

Country Status (3)

Country Link
JP (1) JP2022092071A (en)
TW (1) TW202100344A (en)
WO (1) WO2020218384A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466508A (en) * 2022-02-17 2022-05-10 北京宽叶智能科技有限公司 Stretchable circuit structures and methods of production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113939080A (en) * 2021-11-19 2022-01-14 安捷利电子科技(苏州)有限公司 Circuit board grid and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700825A (en) * 1970-10-01 1972-10-24 Int Computers Ltd Circuit interconnecting cables and methods of making such cables
JPH05267502A (en) * 1992-03-19 1993-10-15 Matsushita Electric Ind Co Ltd Resin molded item
JP3146586U (en) * 2008-05-08 2008-11-20 天瑞企業股▲ふん▼有限公司 Easy to bend transmission line with good characteristic impedance
US20130160291A1 (en) * 2011-12-22 2013-06-27 Rolls-Royce Plc Method of servicing a gas turbine engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700825A (en) * 1970-10-01 1972-10-24 Int Computers Ltd Circuit interconnecting cables and methods of making such cables
JPH05267502A (en) * 1992-03-19 1993-10-15 Matsushita Electric Ind Co Ltd Resin molded item
JP3146586U (en) * 2008-05-08 2008-11-20 天瑞企業股▲ふん▼有限公司 Easy to bend transmission line with good characteristic impedance
US20130160291A1 (en) * 2011-12-22 2013-06-27 Rolls-Royce Plc Method of servicing a gas turbine engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466508A (en) * 2022-02-17 2022-05-10 北京宽叶智能科技有限公司 Stretchable circuit structures and methods of production
CN114466508B (en) * 2022-02-17 2023-08-04 北京宽叶智能科技有限公司 Stretchable circuit structure and production method

Also Published As

Publication number Publication date
JP2022092071A (en) 2022-06-22
TW202100344A (en) 2021-01-01

Similar Documents

Publication Publication Date Title
JP5541122B2 (en) Flexible wiring board
KR102082536B1 (en) Circuit board and method for manufacturing same
WO2013099172A1 (en) Cover lay film, flexible wiring board, and manufacturing method thereof
US8383948B2 (en) Flex-rigid wiring board and method for manufacturing the same
WO2020218384A1 (en) Circuit composite structure
JP6955481B2 (en) Flexible circuit board and its manufacturing method
JP5399995B2 (en) Multilayer printed wiring board and multilayer metal-clad laminate
KR20200076177A (en) Low dielectric adhesive composition and coverlay film comprising the same
JP4455406B2 (en) Connector cable
CN108300350B (en) Film for flexible flat cable reinforcing plate
US20180270945A1 (en) Multilayer printed wiring board, multilayer metal-clad laminated board, and resin-coated metal foil
CN112314064B (en) Method for manufacturing shielding printed circuit board and shielding printed circuit board
JP2009277623A (en) Method of manufacturing shield covered flexible flat cable
CN114126202A (en) Copper-clad substrate, preparation method thereof, circuit board and electronic equipment
JP5098572B2 (en) Metal foil-clad laminate and multilayer printed wiring board
JP4967359B2 (en) Resin composition, resin film, interlayer adhesive, and multilayer circuit board
JP2009278048A (en) Method for producing shield-coating flexible printed wiring board
JP2013026322A (en) Printed wiring board
JP2010040934A (en) Rigid flex circuit board
JP6709254B2 (en) Rigid flex multilayer wiring board
CN104244603A (en) A manufacturing method for a part built-in type wiring substrate and a semiconductor device
JPH05327209A (en) Manufacture of bonding sheet for multiple layer and of multilayer substrate
JPH0992980A (en) Multilayer printed wiring board having flexible part and its manufacture
JP2005236153A (en) Multilayer circuit board, and manufacturing method thereof
JP2008034702A (en) Rigid flex circuit board and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20796204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP