WO2020217631A1 - Plate fin stacking-type heat exchanger and refrigeration system using same - Google Patents

Plate fin stacking-type heat exchanger and refrigeration system using same Download PDF

Info

Publication number
WO2020217631A1
WO2020217631A1 PCT/JP2020/003932 JP2020003932W WO2020217631A1 WO 2020217631 A1 WO2020217631 A1 WO 2020217631A1 JP 2020003932 W JP2020003932 W JP 2020003932W WO 2020217631 A1 WO2020217631 A1 WO 2020217631A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
heat exchanger
heat transfer
plate fin
plate
Prior art date
Application number
PCT/JP2020/003932
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 奥村
一彦 丸本
憲昭 山本
健二 名越
崇裕 大城
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080004008.9A priority Critical patent/CN112424544B/en
Publication of WO2020217631A1 publication Critical patent/WO2020217631A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present disclosure relates to a plate fin laminated heat exchanger and a refrigeration system using the same.
  • a refrigerating system such as an air conditioner or a refrigerator circulates a refrigerant compressed by a compressor to a heat exchanger such as a condenser or an evaporator and exchanges heat with a second fluid to perform cooling or heating.
  • a heat exchanger such as a condenser or an evaporator
  • the heat exchange efficiency of the heat exchanger greatly affects the performance and energy saving of the system. Therefore, heat exchangers are strongly required to have high efficiency.
  • a fin tube type heat exchanger configured by penetrating a heat transfer tube through a group of fins is generally used, and the diameter of the heat transfer tube is reduced. By doing so, the heat exchange efficiency of the heat exchanger is being improved and the size is being reduced.
  • a plate fin laminated heat exchanger configured by laminating plate fins having a flow path is known.
  • This plate fin laminated heat exchanger exchanges heat between the refrigerant flowing through the flow path formed in the plate fins and the second fluid flowing between the laminated plate fins, and the amount of refrigerant is small. It is used in an air conditioner for vehicles having a low refrigerant pressure (see, for example, Patent Document 1).
  • the heat exchanger 100 has a plate fin laminate 103 in which a large number of plate fins 102 having a heat transfer flow path 101 through which a refrigerant flows are laminated. End plates 104 are laminated and arranged on both side end faces of the plate fin laminate 103. An inflow side header flow path 105 and an outflow side header flow path 106 are arranged at both left and right ends of the heat transfer flow path 101.
  • the plate fins 102 are press-molded to form a concave groove, and the concave groove constitutes a heat transfer flow path 101. Therefore, the cross-sectional area of the heat transfer flow path 101 can be made smaller than that of the fin tube type heat transfer tube, and the heat exchange efficiency can be improved to reduce the size.
  • the cross-sectional areas of the header flow paths 105 and 106 are extremely large compared to the cross-sectional areas of the respective flow paths 101. Therefore, the pressure of the refrigerant in the header flow paths 105 and 106 increases, and the portion of the end plate 102 having the header flow paths 105 and 106 (the upper and lower portions of the plate fin laminated heat exchanger shown by X in FIG. 11). Tends to expand and deform outward.
  • the applicant applies that the portion of the end plate 102 expands and deforms outward at least in the portion where the header flow path is provided. It is proposed to provide the expansion / deformation suppressing means 107 that suppresses the movement.
  • the applicant also proposes to improve the heat exchange performance by branching the heat transfer flow path 101 between the header flow paths 105 and 106 of the plate fin 102 into a plurality of branches. ..
  • the connecting flow path 108 through which the gas refrigerant flows is configured so that the cross-sectional area of the connecting flow path 108 is larger than the total cross-sectional area of each heat transfer flow path 101 on the gas refrigerant side from the viewpoint of reducing pressure loss and the like. Therefore, the amount of refrigerant flowing in the connecting flow path 108 is equal to or more than the number of heat transfer channels of the refrigerant flowing in each heat transfer flow path 101, and a considerably large amount of refrigerant flows in the connecting flow path 108. Therefore, the connecting flow path 108 has a large cross-sectional area and a wide outer wall surface. Then, a large amount of pressure due to a large amount of refrigerant continues to be applied to the entire outer wall surface. Therefore, it has been found that during the long-term use of the heat exchanger 100, the connecting flow path 108 portion is deformed because it cannot withstand the pressure that continues to be applied to the wall surface of the connecting flow path 108.
  • the present disclosure provides a plate fin laminated heat exchanger with improved reliability by preventing deformation of the connecting flow path portion of the plate fin, and a freezing system using the same.
  • the heat exchanger of the present disclosure is configured by stacking plate fins each having a plurality of heat transfer channels for flowing the first fluid in parallel, and the second fluid flowing between the plate fins and the first fluid It is a plate fin laminated heat exchanger that exchanges heat between.
  • Each of the plate fins has a plurality of heat transfer channels formed by concave grooves provided on the plates arranged opposite to each other, and communicates with the plurality of heat transfer channels, the header channel on the liquid side and the gas. It has a header flow path on the side and a connecting flow path connecting the plurality of heat transfer channels and the header flow path on the gas side, and the cross-sectional area of the connecting flow paths is equal to or less than the total cross-sectional area of the plurality of heat transfer channels.
  • the pressure of the first fluid applied to the connecting flow path connecting the header flow path and the plurality of heat transfer flow paths is reduced, so that the pressure resistance performance in the connecting flow path portion can be improved. Therefore, even when the heat exchanger is used for a long period of time, it is possible to prevent deformation in the connecting flow path portion.
  • FIG. 1 is a perspective view showing the appearance of the plate fin laminated heat exchanger according to the first embodiment of the present disclosure.
  • FIG. 2 is an exploded perspective view of the plate fin laminated heat exchanger.
  • FIG. 3 is an exploded perspective view showing a plate and an end plate of the plate fin laminated heat exchanger.
  • FIG. 4 is a diagram showing a pair of plates constituting the plate fins of the plate fin laminated heat exchanger.
  • FIG. 5 is an exploded perspective view showing a laminated state of plate fins in the plate fin laminated heat exchanger.
  • FIG. 6 is a laminated perspective view of plate fins in the plate fin laminated heat exchanger.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII of FIG. FIG.
  • FIG. 8 is an exploded perspective view showing a modified example of the plate fin laminated heat exchanger according to the first embodiment.
  • FIG. 9 is a refrigeration cycle diagram of the air conditioner according to the second embodiment of the present disclosure.
  • FIG. 10 is a diagram showing a cross-sectional configuration of an indoor unit of the air conditioner.
  • FIG. 11 is a cross-sectional view of a conventional plate fin laminated heat exchanger.
  • FIG. 12 is a plan view of the plate fins in the conventional plate fin laminated heat exchanger.
  • FIG. 13 is a perspective view showing the appearance of a conventional plate fin laminated heat exchanger.
  • FIG. 14 is a plan view of a conventional plate fin.
  • the heat exchanger according to the present disclosure is configured by stacking plate fins each having a plurality of heat transfer channels for flowing the first fluid in parallel, and the second fluid flowing between the plate fins and the first fluid. It is a plate fin laminated heat exchanger that exchanges heat with and from.
  • Each of the plate fins has a plurality of heat transfer channels formed by concave grooves provided on the plates arranged opposite to each other, and communicates with the plurality of heat transfer channels, the header channel on the liquid side and the gas.
  • It has a header flow path on the side and a connecting flow path connecting the plurality of heat transfer channels and the header flow path on the gas side, and the cross-sectional area of the connecting flow paths is equal to or less than the total cross-sectional area of the plurality of heat transfer channels.
  • the pressure of the first fluid applied to the connecting flow path connecting the header flow path and the plurality of heat transfer flow paths is reduced, so that the pressure resistance performance of the connecting passage can be improved. Therefore, even when the heat exchanger is used for a long period of time, it is possible to prevent deformation in the connecting flow path portion.
  • cross-sectional area of the connecting flow path may be equal to or less than the cross-sectional area of at least one of the plurality of heat transfer channels.
  • the surface area of the wall surface of the connecting flow path can be suppressed to the surface area of the wall surface of the heat transfer flow path, and the pressure from the first fluid applied to the connecting flow path portion can be significantly reduced. Therefore, the deformation of the connecting flow path portion can be prevented more reliably, and the reliability of the heat exchanger can be greatly improved.
  • cross-sectional area of the connecting flow path may be 3 m 2 or less.
  • the pressure of the first fluid such as the refrigerant applied to the wall surface of the connecting flow path can be suppressed to the pressure specified in the home and commercial air conditioners or less. Therefore, even for equipment such as home and commercial air conditioners, which has a large amount of refrigerant as the first fluid and high pressure, it prevents deformation of the connecting flow path and is a highly reliable heat exchanger. Can be obtained.
  • the refrigeration system according to the present disclosure has a refrigeration cycle configured by using the above heat exchanger.
  • the heat exchanger of the present disclosure is not limited to the configuration of the heat exchanger described in the following embodiments, and the configuration of the heat exchanger is equivalent to the technical idea described in the following embodiments. Is included.
  • FIG. 1 is a perspective view showing the appearance of the plate fin laminated heat exchanger according to the embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a plate fin laminated heat exchanger.
  • FIG. 3 is an exploded perspective view showing a plate and an end plate of the plate fin laminated heat exchanger.
  • FIG. 4 is a diagram showing a pair of plates constituting the plate fins of the plate fin laminated heat exchanger.
  • FIG. 5 is an exploded perspective view showing a laminated state of plate fins in the plate fin laminated heat exchanger.
  • FIG. 6 is a laminated perspective view of plate fins in a plate fin laminated heat exchanger
  • FIG. 7 is a cross-sectional view taken along the line VII-VII of FIG.
  • the heat exchanger 1 of the present embodiment is a plate fin laminated heat exchanger.
  • the heat exchanger 1 is configured by laminating a plurality of plate fins 2a.
  • each of the plate fins 2a has a substantially bow-shaped shape when viewed from the stacking direction (z-axis direction of FIGS. 1 and 2).
  • End plates 3a and 3b are arranged on both sides of the plate fin laminated body 2 in the laminating direction.
  • the shapes of the end plates 3a and 3b viewed from the stacking direction and the shapes of the plate fins 2a viewed from the stacking direction are substantially the same.
  • the plate fin laminate 2 and the end plates 3a and 3b are joined and integrated.
  • the pipe A4 serves as an inlet for the refrigerant when the heat exchanger 1 is used as an evaporator, and serves as an outlet when the heat exchanger 1 is used as a condenser.
  • the directions of the refrigerant are opposite to those of the pipe A4.
  • the end plates 3a and 3b on both sides of the plate fin laminate 2 are brazed while sandwiching the plate fin laminate 2, and the plate fins are laminated by a fastening portion 9 composed of bolts and nuts, a caulking pin shaft, or the like. It is connected to and fixed to the body 2.
  • the fastening portion 9 connects the end plates 3a and 3b and the plate fin laminate 2 at both ends of the end plates 3a and 3b in the longitudinal direction. As a result, the rigidity of the heat exchanger 1 is maintained.
  • the plate fins 2a constituting the plate fin laminate 2 are composed of a pair of plates 6a and 6b.
  • the plate fin 2a is formed by joining the pair of plates (first plate) 6a and the plate (second plate) 6b by brazing or the like, so that a first fluid such as a refrigerant is formed between the plates 6a and 6b. It constitutes a heat transfer flow path through which (hereinafter referred to as a refrigerant) flows.
  • the plate fins 2a constituting the plate fin laminate 2 are connected to the flow path region in which the heat transfer flow path is arranged and each heat transfer flow path in the flow path region, and are on the header flow path on the inlet side and the header flow path on the outlet side. It has a header area in which the header flow path is arranged.
  • the plate fin laminated body 2 is configured by laminating a large number of plate fins 2a.
  • a stacking gap d through which a second fluid such as air (hereinafter referred to as air) flows is formed between the adjacent plate fins 2a. Then, heat exchange is performed between the refrigerant flowing through the heat transfer flow path 14 provided in the plate fins 2a and the air flowing through the stacking gap d between the adjacent plate fins 2a.
  • one plate 6a has an opening 8a and an opening forming the header flow path A8 connected to the pipe A4 and the header flow path B10 connected to the pipe B5, respectively, as shown in FIG. 10a is arranged. Further, ring-shaped concave grooves 8b and 10b are arranged at the opening edge of the opening 8a and the opening edge of the opening 10a, respectively.
  • a concave groove 11Aa for a connecting flow path extending from the ring-shaped concave groove 8b and a concave groove 12Aa for a branch flow path connected to the end of the concave groove 11Aa for the connecting flow path are arranged. ing.
  • a plurality of flow path forming concave grooves 14a are arranged so as to branch from the branch flow path forming concave groove 12Aa. Further, a connecting flow path concave groove 11Ba extending from the ring-shaped concave groove 10b and a joint flow path concave groove 12Ba connected to the end of the connecting flow path concave groove 11Ba are arranged.
  • a plurality of flow path forming concave grooves 14Ba are arranged so as to join the merging flow path concave groove 12Ba.
  • the flow path forming concave groove 14Aa and the flow path forming concave groove 14Ba are end portions of the first plate 6a provided with the header flow path portion A (liquid side) 8 and the header flow path portion B (gas side) 10. It is connected in the vicinity of the end portion on the opposite side to the above, and is configured such that the heat transfer flow path 14 has a substantially U shape when viewed from the stacking direction (z-axis direction in FIG. 6).
  • an opening 8c and an opening 10c constituting the header flow path A8 and the header flow path B10 are arranged on the other plate 6b of the pair of plates, respectively.
  • Ring-shaped concave grooves 8d and 10d are arranged at the opening edges of the opening 8c and the opening 10c, respectively.
  • a diversion groove 12Ab is arranged at a position facing the end of the connecting flow path concave groove 11Aa of the plate 6a.
  • a plurality of flow path forming concave grooves 14b are arranged so as to branch from the branch flow path forming concave groove 12Ab.
  • the flow path forming concave groove 14b is configured to have a substantially U shape when viewed from the stacking direction (z-axis direction).
  • the pair of plates 6a and 6b are joined so that the openings 8a and 8c and the openings 10a and 10c face each other.
  • the ring-shaped concave groove 8b and the ring-shaped concave groove 8d provided on the opening edge, and the ring-shaped concave groove 10b and the ring-shaped concave groove 10d are brought into contact with each other so as to face each other, and the branch channel concave groove 12Aa and the branch channel
  • the concave groove 12Ab for forming the flow path, the concave groove 14a for forming the flow path, and the concave groove 14b for forming the flow path are joined so as to face each other by brazing or the like.
  • the header flow path A8 is formed by the openings 8a, the openings 8c, and the ring-shaped concave grooves 8b and the ring-shaped concave grooves 8d at the edges of these openings.
  • the header flow path B10 is formed by the opening 10a, the opening 10c, and the ring-shaped concave groove 10b and the ring-shaped concave groove 10d at the edge of the opening.
  • the connecting flow path 11 (see FIG. 7) is formed by the concave groove 11Aa for the connecting flow path and the plate 6b.
  • the dividing flow path 12A is formed by the dividing channel concave groove 12Aa and the dividing flow path concave groove 12Ab
  • the heat transfer flow path 14 is formed by the flow path forming concave groove 14a and the flow path forming concave groove 14b.
  • the heat transfer flow path 14 is formed by the plates 6a and 6b bent in a bow shape
  • the heat transfer flow path 14 is also formed by the plates 6a and 6b as shown in the overall view of the plate fins of FIG. It is also bent in a bow shape. That is, the heat transfer flow path 14 is bent in a substantially bow shape like the outer shape of the plate fin 2a. Further, as shown in FIG. 4, the heat transfer flow path 14 is configured to make a U-turn at the end portion (upper side in FIG. 4) of the plate fin 2a. As shown in FIG.
  • the heat transfer flow path 14 is connected to the header flow path A8 and is connected to the header flow path A8 to flow the liquid refrigerant, and is connected to the header flow path B10 to flow the gas refrigerant. It has 6 heat transfer return flow paths 14B. Further, a slit 16 is arranged between the heat transfer flow path group 14A and the heat transfer return flow path group 14B to prevent heat transfer between them and to insulate heat.
  • a plurality of protrusions 15 are appropriately arranged on the plate fins 2a along the longitudinal direction of the plate fins 2a.
  • a stacking gap T1 through which air flows is formed between the heat transfer channels 14 of the adjacent plate fins 2a.
  • a gap T2 (see FIG. 7) is formed between the connecting flow paths 11 of the adjacent plate fins 2a, and air flows through the gap T2. As a result, the heat exchange efficiency in the heat exchanger 1 is improved.
  • the cross-sectional area of the connecting flow path 11B on the side through which the gas refrigerant flows is equal to or less than the total cross-sectional area of the cross-sectional areas of the six heat transfer return flow paths 14B on the side through which the gas refrigerant flows. It is configured to be. In the present embodiment, the cross-sectional area of the connecting flow path 11B is equal to or less than the cross-sectional area of one heat transfer flow path in the heat transfer return flow path group 14B.
  • the liquid refrigerant in the gas-liquid two-phase state is discharged from the pipe A4 (see FIG. 1) on the inlet side of the plate fin laminate 2. It flows into the header flow path A8.
  • the liquid refrigerant flowing into the header flow path A8 transfers heat to the heat transfer flow path 14 via the communication flow path 11A and the branch flow path 12A of each plate fin 2a. It flows into the forward flow path group 14A.
  • the refrigerant flowing into the heat transfer flow path group 14A of each plate fin 2a makes a U-turn and flows through the heat transfer return flow path group 14B. After that, the refrigerant passes through the combined flow path 12B and the connecting flow path 11B, flows out from the pipe B5 to the refrigerant circuit of the refrigeration system in a gas phase state via the header flow path B10.
  • the refrigerant is gasified when flowing from the heat transfer flow path group 14A of the heat transfer flow path 14 to the pipe B5 via the heat transfer return flow path group 14B, and the plate fin laminate of the plate fin laminate 2 is laminated. It exchanges heat with the air passing through the gap d (see FIG. 6).
  • the gas refrigerant from the heat transfer return flow path group 14B through which the gasified refrigerant flows flows to the header flow path B10, and the communication flow path 11B on the gas refrigerant side is cut off.
  • the area is equal to or less than the total cross-sectional area of each heat transfer flow path of the heat transfer return flow path group 14B. Therefore, the flow rate of the refrigerant flowing inside the connecting flow path 11B is reduced. Therefore, the refrigerant pressure applied to the wall surface of the connecting flow path 11B is not small, and the pressure resistance in the connecting flow path 11B is improved. Therefore, even when used for a long period of time, it is possible to prevent deformation of the connecting flow path 11B portion.
  • the cross-sectional area of the connecting flow path 11B is set to be equal to or less than the cross-sectional area of at least one of the heat transfer flow paths of the heat transfer return flow path group 14B. Therefore, the pressure applied to the wall surface of the connecting flow path 11B is significantly reduced. Therefore, the deformation of the connecting flow path 11B portion can be prevented more reliably, and the reliability of the heat exchanger 1 can be greatly improved.
  • the cross-sectional area of the connecting flow path 11B is 3 m 2 or less, the pressure of the refrigerant applied to the wall surface of the connecting flow path 11B can be suppressed to the pressure specified in the home and commercial air conditioners or less. Therefore, as described above, even in a heat exchanger having a large amount of refrigerant or a heat exchanger using an environment-friendly refrigerant having a high compression ratio, the plate fin laminate 2 is connected to the gas refrigerant side. It is possible to prevent the flow path 11B portion from expanding and deforming. Therefore, the pressure of the refrigerant can be used in a higher state, and a highly efficient heat exchanger can be obtained.
  • the cross-sectional area of the connecting flow path 11B is equal to or less than the total cross-sectional area of the combined heat transfer flow paths of the heat transfer return flow path group 14B, or the heat transfer flow path of the heat transfer return flow path group 14B.
  • the cross-sectional area of at least one of the flow paths is set to 3 m 2 or less, for example, as shown in FIG. 7, a gap T2 is formed between the connecting flow paths 11B of the adjacent plate fins 2a. can do. As a result, air can flow through the gap T2, and the heat exchange efficiency can be improved while ensuring the high pressure resistance of the connecting flow path 11B.
  • the connecting flow path 11B In order to secure the pressure resistance of the connecting flow path 11B, for example, it is conceivable to abut the outer wall surfaces of the connecting flow path 11B adjacent to each other in the stacking direction of the plate fins 2a. As a result, the pressure resistance can be ensured without reducing the cross-sectional area of the connecting flow path 11B. However, in this case, there is no gap between the connecting flow paths 11B adjacent to each other in the stacking direction. Therefore, the connecting flow path 11B portion cannot be used as a heat exchange region. However, if it is configured as in the present embodiment, the gap T2 can be formed between the connecting flow paths 11B as described above, so that the connecting flow path 11B portion can be used as the heat exchange region. Therefore, the heat exchange efficiency of the heat exchanger 1 can be improved.
  • the heat transfer flow path 14 through which the gas-side refrigerant flows which causes a large pressure loss
  • the heat transfer return flow path group 14B is designated as the heat transfer return flow path group 14B, and is a multi-pass type composed of a plurality of heat transfer flow paths. Therefore, since the flow rate per flow path in the heat transfer return flow path group 14B becomes small, the influence on the performance can be minimized, and the level is practically no problem.
  • the heat transfer flow path 14 of the plate fin 2a is formed in a substantially U shape, and is configured to be folded back at one end of the plate fin 2a. As a result, the length of the refrigerant flow path can be increased without increasing the length dimension of the plate fin 2a.
  • the configuration of the heat exchanger 1 is not limited to this.
  • the heat exchanger 1 is provided with a header flow path tube A8 on one end side of the plate fin 2a and a header flow path tube B10 on the opposite end side, and connects them.
  • the heat transfer flow path 14 may be formed in a linear shape in only one direction. In this case, the heat transfer forward flow path group 14A and the heat transfer return flow path group 14B are configured as the same heat transfer flow path 14.
  • the cross-sectional area of the header flow path on the gas refrigerant side is equal to or less than the total cross-sectional area of the heat transfer flow path 14, or among the plurality of heat transfer flow paths 14. It may be less than or equal to the cross-sectional area of at least one of the flow paths, or 3 m 2 or less.
  • the header flow path on the gas refrigerant side is described as the header flow path B10 on the outlet side
  • the header flow path on the liquid side is described as the header flow path A8 on the inlet side, but when used as a condenser, it is described.
  • the exit side and the entrance side are reversed.
  • FIG. 9 is a refrigeration cycle diagram of the air conditioner
  • FIG. 10 is a diagram showing a cross-sectional configuration showing the indoor unit of the air conditioner.
  • the air conditioner 50 includes an outdoor unit 51 and an indoor unit 52 connected to the outdoor unit 51.
  • the outdoor unit 51 includes a compressor 53 that compresses the refrigerant, a four-way valve 54, an outdoor heat exchanger 55, a decompressor 56 that decompresses the refrigerant, and an outdoor blower 59.
  • the four-way valve 54 switches the refrigerant circuit between the cooling operation and the heating operation.
  • the outdoor heat exchanger 55 exchanges heat between the refrigerant and the outside air.
  • the indoor unit 52 includes an indoor heat exchanger 57 and an indoor blower 58.
  • the compressor 53, the four-way valve 54, the indoor heat exchanger 57, the decompressor 56, and the outdoor heat exchanger 55 are connected by piping to form a refrigerant circuit, and a heat pump type refrigeration cycle is formed.
  • the plate fin laminated heat exchanger 1 described in the first embodiment is used for at least one of the outdoor heat exchanger 55 and the indoor heat exchanger 57.
  • tetrafluoropropene or trifluoropropene and a refrigerant obtained by mixing difluoromethane, pentafluoroethane or tetrafluoroethane alone, or a mixture of two or three components, respectively, are used. ..
  • the four-way valve 54 switches the connection of the piping so that the discharge side of the compressor 53 and the outdoor heat exchanger 55 communicate with each other.
  • the refrigerant compressed by the compressor 53 becomes a high-temperature and high-pressure refrigerant and is sent to the outdoor heat exchanger 55 through the four-way valve 54.
  • the refrigerant dissipates heat by exchanging heat with the outside air, becomes a high-pressure liquid refrigerant, and is sent to the decompressor 56.
  • the decompressor 56 the refrigerant is decompressed to become a low-temperature low-pressure two-phase refrigerant, which is sent to the indoor unit 52.
  • the refrigerant enters the indoor heat exchanger 57, exchanges heat with the indoor air, absorbs heat, evaporates and vaporizes, and becomes a low-temperature gas refrigerant. At this time, the indoor air is cooled to cool the room. Further, the refrigerant returns to the outdoor unit 51 and is returned to the compressor 53 via the four-way valve 54.
  • the four-way valve 54 switches the pipe connection so that the discharge side of the compressor 53 and the indoor unit 52 communicate with each other.
  • the refrigerant compressed by the compressor 53 becomes a high-temperature and high-pressure refrigerant
  • passes through the four-way valve 54 and is sent to the indoor unit 52.
  • the high-temperature and high-pressure refrigerant enters the indoor heat exchanger 57 and exchanges heat with the indoor air to dissipate heat and cool, and becomes a high-pressure liquid refrigerant.
  • the indoor air is heated to heat the room.
  • the refrigerant is sent to the decompressor 56, decompressed by the decompressor 56 to become a low-temperature low-pressure two-phase refrigerant, and sent to the outdoor heat exchanger 55. Then, the refrigerant evaporates and vaporizes by exchanging heat with the outside air, and is returned to the compressor 53 via the four-way valve 54.
  • the heat exchanger shown in the first embodiment is used for at least one of the outdoor heat exchanger 55 and the indoor heat exchanger 57.
  • the plate fin laminated type heat exchanger 1 described in the first embodiment is used as the indoor heat exchanger 57 of the indoor unit 52.
  • the heat exchanger 1 is a compact, high-performance, and highly reliable plate fin laminated heat exchanger, so that a highly energy-saving and highly reliable refrigeration system can be realized. Can be done.
  • the present disclosure is to provide a highly reliable, compact, and high-performance plate fin laminated heat exchanger that prevents deformation of the plate fin flow path and a refrigeration system using the same. it can. Therefore, it can be widely used in heat exchangers used for home and commercial air conditioners, various refrigeration equipment, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This plate fin stacking-type heat exchanger is formed by stacking plate fins (2a) each having a plurality of heat transfer flow channels (14) for passing a first fluid in parallel therethrough, and exchanges heat between the first fluid and a second fluid flowing between the plate fins (2a). The plate fins (2a) each have a plurality of heat transfer flow channels (14) provided to plates (6a, 6b) disposed facing each other, and formed therein by recessed grooves; a fluid-side header flow channel and a gas-side flow channel (10) that communicate with the plurality of heat transfer channels (14); and a communication flow channel (11) that connects the plurality of heat transfer flow channels and the gas-side header flow channel (10), wherein the cross-sectional area of the communication flow channel (11) is no greater than the total cross-sectional area of the plurality of heat transfer channels (14).

Description

プレートフィン積層型熱交換器およびそれを用いた冷凍システムPlate fin laminated heat exchanger and refrigeration system using it
 本開示は、プレートフィン積層型熱交換器と、それを用いた冷凍システムに関する。 The present disclosure relates to a plate fin laminated heat exchanger and a refrigeration system using the same.
 一般に、空気調和機又は冷凍機等の冷凍システムは、圧縮機によって圧縮された冷媒を凝縮器又は蒸発器等の熱交換器に循環させ、第2流体と熱交換させて冷房又は暖房を行う。この際、熱交換器の熱交換効率によって、システムとしての性能及び省エネルギ性が大きく左右される。従って、熱交換器は高効率化が強く求められている。 Generally, a refrigerating system such as an air conditioner or a refrigerator circulates a refrigerant compressed by a compressor to a heat exchanger such as a condenser or an evaporator and exchanges heat with a second fluid to perform cooling or heating. At this time, the heat exchange efficiency of the heat exchanger greatly affects the performance and energy saving of the system. Therefore, heat exchangers are strongly required to have high efficiency.
 空気調和機又は冷凍機等の冷凍システムの熱交換器は、一般的には、フィン群に伝熱管を貫通させて構成したフィンチューブ型熱交換器が用いられており、伝熱管の細径化を図ることで、熱交換器の熱交換効率の向上及び小型化が進められている。 As the heat exchanger of a refrigeration system such as an air conditioner or a refrigerator, a fin tube type heat exchanger configured by penetrating a heat transfer tube through a group of fins is generally used, and the diameter of the heat transfer tube is reduced. By doing so, the heat exchange efficiency of the heat exchanger is being improved and the size is being reduced.
 しかしながら、伝熱管の細径化には限度があるため、熱交換効率の向上及び小型化は限界に近づきつつある。 However, since there is a limit to the diameter reduction of the heat transfer tube, improvement of heat exchange efficiency and miniaturization are approaching the limit.
 一方、熱エネルギを交換するために使用される熱交換器として、流路を有するプレートフィンを積層して構成したプレートフィン積層型熱交換器が知られている。 On the other hand, as a heat exchanger used for exchanging heat energy, a plate fin laminated heat exchanger configured by laminating plate fins having a flow path is known.
 このプレートフィン積層型熱交換器は、プレートフィンに形成された流路を流れる冷媒と、積層されたプレートフィンの間を流れる第2流体との間で熱交換を行うもので、冷媒量が少なく冷媒圧が低い車両用の空気調和機において使用されている(例えば、特許文献1参照)。 This plate fin laminated heat exchanger exchanges heat between the refrigerant flowing through the flow path formed in the plate fins and the second fluid flowing between the laminated plate fins, and the amount of refrigerant is small. It is used in an air conditioner for vehicles having a low refrigerant pressure (see, for example, Patent Document 1).
 図11及び図12は、特許文献1に記載されたプレートフィン積層型熱交換器を示している。この熱交換器100は、冷媒が流れる伝熱流路101を有する多数のプレートフィン102を積層したプレートフィン積層体103を有する。プレートフィン積層体103の両側端面には、エンドプレート104を積層して配置している。伝熱流路101の左右両端部には、流入側ヘッダ流路105及び流出側ヘッダ流路106が配置されている。 11 and 12 show the plate fin laminated heat exchanger described in Patent Document 1. The heat exchanger 100 has a plate fin laminate 103 in which a large number of plate fins 102 having a heat transfer flow path 101 through which a refrigerant flows are laminated. End plates 104 are laminated and arranged on both side end faces of the plate fin laminate 103. An inflow side header flow path 105 and an outflow side header flow path 106 are arranged at both left and right ends of the heat transfer flow path 101.
 特許文献1に記載されたプレートフィン積層型熱交換器は、プレートフィン102をプレス成形して凹溝を形成し、当該凹溝により伝熱流路101が構成されている。このため、当該伝熱流路101の断面積をフィンチューブ型の伝熱管に比べさらに小さくでき、熱交換効率を高めて小型化することができる。 In the plate fin laminated heat exchanger described in Patent Document 1, the plate fins 102 are press-molded to form a concave groove, and the concave groove constitutes a heat transfer flow path 101. Therefore, the cross-sectional area of the heat transfer flow path 101 can be made smaller than that of the fin tube type heat transfer tube, and the heat exchange efficiency can be improved to reduce the size.
 しかしながら、上記プレートフィン積層型熱交換器は、ヘッダ流路105,106の断面積が各流路101の断面積に比べ極端に大きい。このため、ヘッダ流路105,106部分の冷媒の圧力が大きくなり、エンドプレート102のヘッダ流路105,106を有する部分(図11においてXで示す、プレートフィン積層型熱交換器の上下部分)が外方に膨張変形する傾向がある。 However, in the plate fin laminated heat exchanger, the cross-sectional areas of the header flow paths 105 and 106 are extremely large compared to the cross-sectional areas of the respective flow paths 101. Therefore, the pressure of the refrigerant in the header flow paths 105 and 106 increases, and the portion of the end plate 102 having the header flow paths 105 and 106 (the upper and lower portions of the plate fin laminated heat exchanger shown by X in FIG. 11). Tends to expand and deform outward.
 そこで出願人は、図13に示すように、ヘッダ流路部分での膨張変形を防止するために、エンドプレート102の少なくともヘッダ流路が設けられている部分に、当該部分が外方へ膨張変形するのを抑制する膨張変形抑制手段107を設けることを提案している。 Therefore, as shown in FIG. 13, in order to prevent expansion and deformation in the header flow path portion, the applicant applies that the portion of the end plate 102 expands and deforms outward at least in the portion where the header flow path is provided. It is proposed to provide the expansion / deformation suppressing means 107 that suppresses the movement.
 これにより、冷媒の流量が多く、配管にかかる圧力の高い熱交換器であっても、ヘッダ流路領域部分での外方への膨張変形を抑制することができる。 As a result, even in a heat exchanger having a large flow rate of refrigerant and a high pressure applied to the piping, it is possible to suppress outward expansion and deformation in the header flow path region portion.
 また、出願人は、図14に示すように、プレートフィン102のヘッダ流路105,106との間の伝熱流路101を複数に分岐させることで、熱交換性能を高めることも提案している。 Further, as shown in FIG. 14, the applicant also proposes to improve the heat exchange performance by branching the heat transfer flow path 101 between the header flow paths 105 and 106 of the plate fin 102 into a plurality of branches. ..
 しかしながら、伝熱流路101を複数に分岐させた場合、熱交換器を長期間使用していると、ガス冷媒側のヘッダ流路106と、分岐させた各伝熱流路101と、を繋ぐ連絡流路108部分で、変形が生じることがわかってきた。 However, when the heat transfer flow path 101 is branched into a plurality of branches, if the heat exchanger is used for a long period of time, a connecting flow connecting the header flow path 106 on the gas refrigerant side and each of the branched heat transfer flow paths 101. It has been found that deformation occurs at the 108th part of the road.
 ガス冷媒が流れる連絡流路108は、圧損低下等の観点から、ガス冷媒側の各伝熱流路101の合計断面積よりも連絡流路108の断面積が大きくなるように構成されている。そのため、連絡流路108に流れる冷媒は各伝熱流路101を流れる冷媒の伝熱流路本数分以上となり、かなり多くの冷媒が連絡流路108を流れる。従って、連絡流路108部分では、断面積が大きく、外壁面も広い。そして、この外壁面の全域に大量の冷媒による大きな圧力がかかり続ける。そのため、熱交換器100を長期間使用しているうちに、連絡流路108部分は、連絡流路108の壁面に加わり続けている圧力に耐えきれずに変形するということがわかってきた。 The connecting flow path 108 through which the gas refrigerant flows is configured so that the cross-sectional area of the connecting flow path 108 is larger than the total cross-sectional area of each heat transfer flow path 101 on the gas refrigerant side from the viewpoint of reducing pressure loss and the like. Therefore, the amount of refrigerant flowing in the connecting flow path 108 is equal to or more than the number of heat transfer channels of the refrigerant flowing in each heat transfer flow path 101, and a considerably large amount of refrigerant flows in the connecting flow path 108. Therefore, the connecting flow path 108 has a large cross-sectional area and a wide outer wall surface. Then, a large amount of pressure due to a large amount of refrigerant continues to be applied to the entire outer wall surface. Therefore, it has been found that during the long-term use of the heat exchanger 100, the connecting flow path 108 portion is deformed because it cannot withstand the pressure that continues to be applied to the wall surface of the connecting flow path 108.
日本国実用新案登録第3192719号公報Japanese Utility Model Registration No. 3192719
 本開示は、プレートフィンの連絡流路部分の変形を防止することによって信頼性を向上させた、プレートフィン積層型熱交換器と、それを用いた冷凍システムを提供する。 The present disclosure provides a plate fin laminated heat exchanger with improved reliability by preventing deformation of the connecting flow path portion of the plate fin, and a freezing system using the same.
 本開示の熱交換器は、第1流体を並行して流すための複数の伝熱流路を各々有するプレートフィンが積層されて構成され、プレートフィンの間を流れる第2流体と、第1流体との間で熱交換する、プレートフィン積層型熱交換器である。プレートフィンの各々は、互いに対向して配置されたプレートに設けられた、凹状溝により複数の伝熱流路が形成されており、複数の伝熱流路と連通する、液側のヘッダ流路及びガス側のヘッダ流路、及び、複数の伝熱流路とガス側のヘッダ流路とを結ぶ連絡流路を有し、連絡流路の断面積が複数の伝熱流路の合計断面積以下である。 The heat exchanger of the present disclosure is configured by stacking plate fins each having a plurality of heat transfer channels for flowing the first fluid in parallel, and the second fluid flowing between the plate fins and the first fluid It is a plate fin laminated heat exchanger that exchanges heat between. Each of the plate fins has a plurality of heat transfer channels formed by concave grooves provided on the plates arranged opposite to each other, and communicates with the plurality of heat transfer channels, the header channel on the liquid side and the gas. It has a header flow path on the side and a connecting flow path connecting the plurality of heat transfer channels and the header flow path on the gas side, and the cross-sectional area of the connecting flow paths is equal to or less than the total cross-sectional area of the plurality of heat transfer channels.
 これにより、ヘッダ流路と複数の伝熱流路とを結ぶ連絡流路に掛かる第1流体の圧力が小さくなるため、連絡流路部分における耐圧性能を向上させることができる。従って、熱交換器が長期間使用された場合であっても、連絡流路部分での変形を防止することができる。 As a result, the pressure of the first fluid applied to the connecting flow path connecting the header flow path and the plurality of heat transfer flow paths is reduced, so that the pressure resistance performance in the connecting flow path portion can be improved. Therefore, even when the heat exchanger is used for a long period of time, it is possible to prevent deformation in the connecting flow path portion.
図1は、本開示の実施の形態1におけるプレートフィン積層型熱交換器の外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of the plate fin laminated heat exchanger according to the first embodiment of the present disclosure. 図2は、同プレートフィン積層型熱交換器の分解斜視図である。FIG. 2 is an exploded perspective view of the plate fin laminated heat exchanger. 図3は、同プレートフィン積層型熱交換器のプレートとエンドプレートを示す分解斜視図である。FIG. 3 is an exploded perspective view showing a plate and an end plate of the plate fin laminated heat exchanger. 図4は、同プレートフィン積層型熱交換器のプレートフィンを構成する一対のプレートを示す図である。FIG. 4 is a diagram showing a pair of plates constituting the plate fins of the plate fin laminated heat exchanger. 図5は、同プレートフィン積層型熱交換器におけるプレートフィンの積層状態を示す分解斜視図である。FIG. 5 is an exploded perspective view showing a laminated state of plate fins in the plate fin laminated heat exchanger. 図6は、同プレートフィン積層型熱交換器におけるプレートフィンの積層斜視図である。FIG. 6 is a laminated perspective view of plate fins in the plate fin laminated heat exchanger. 図7は、図6のVII-VII切断線による線断面図である。FIG. 7 is a cross-sectional view taken along the line VII-VII of FIG. 図8は、実施の形態1におけるプレートフィン積層型熱交換器の変形例を示す分解斜視図である。FIG. 8 is an exploded perspective view showing a modified example of the plate fin laminated heat exchanger according to the first embodiment. 図9は、本開示の実施の形態2における空気調和機の冷凍サイクル図である。FIG. 9 is a refrigeration cycle diagram of the air conditioner according to the second embodiment of the present disclosure. 図10は、同空気調和機の室内機の断面構成を示す図である。FIG. 10 is a diagram showing a cross-sectional configuration of an indoor unit of the air conditioner. 図11は、従来のプレートフィン積層型熱交換器の断面図である。FIG. 11 is a cross-sectional view of a conventional plate fin laminated heat exchanger. 図12は、同従来のプレートフィン積層型熱交換器におけるプレートフィンの平面図である。FIG. 12 is a plan view of the plate fins in the conventional plate fin laminated heat exchanger. 図13は、従来のプレートフィン積層型熱交換器の外観を示す斜視図である。FIG. 13 is a perspective view showing the appearance of a conventional plate fin laminated heat exchanger. 図14は、従来のプレートフィンの平面図である。FIG. 14 is a plan view of a conventional plate fin.
 本開示に係る熱交換器は、第1流体を並行して流すための複数の伝熱流路を各々有するプレートフィンが積層されて構成され、プレートフィンの間を流れる第2流体と、第1流体との間で熱交換する、プレートフィン積層型熱交換器である。プレートフィンの各々は、互いに対向して配置されたプレートに設けられた、凹状溝により複数の伝熱流路が形成されており、複数の伝熱流路と連通する、液側のヘッダ流路及びガス側のヘッダ流路、及び、複数の伝熱流路とガス側のヘッダ流路とを結ぶ連絡流路を有し、連絡流路の断面積が複数の伝熱流路の合計断面積以下である。 The heat exchanger according to the present disclosure is configured by stacking plate fins each having a plurality of heat transfer channels for flowing the first fluid in parallel, and the second fluid flowing between the plate fins and the first fluid. It is a plate fin laminated heat exchanger that exchanges heat with and from. Each of the plate fins has a plurality of heat transfer channels formed by concave grooves provided on the plates arranged opposite to each other, and communicates with the plurality of heat transfer channels, the header channel on the liquid side and the gas. It has a header flow path on the side and a connecting flow path connecting the plurality of heat transfer channels and the header flow path on the gas side, and the cross-sectional area of the connecting flow paths is equal to or less than the total cross-sectional area of the plurality of heat transfer channels.
 これにより、ヘッダ流路と複数の伝熱流路とを結ぶ連絡流路に掛かる第1流体の圧力が小さくなるため、連絡通路の耐圧性能を向上させることができる。従って、熱交換器が長期間使用された場合であっても、連絡流路部分での変形を防止することができる。 As a result, the pressure of the first fluid applied to the connecting flow path connecting the header flow path and the plurality of heat transfer flow paths is reduced, so that the pressure resistance performance of the connecting passage can be improved. Therefore, even when the heat exchanger is used for a long period of time, it is possible to prevent deformation in the connecting flow path portion.
 また、連絡流路の断面積は、複数の伝熱流路のうちの少なくとも1本の断面積以下であってもよい。 Further, the cross-sectional area of the connecting flow path may be equal to or less than the cross-sectional area of at least one of the plurality of heat transfer channels.
 これにより、連絡流路の壁面の表面積を伝熱流路の壁面表面積まで抑えて、当該連絡流路部分に掛かる第1流体からの圧力を大幅に低下させることができる。従って、連絡流路部分の変形をより確実に防止でき、熱交換器の信頼性を大きく向上させることができる。 As a result, the surface area of the wall surface of the connecting flow path can be suppressed to the surface area of the wall surface of the heat transfer flow path, and the pressure from the first fluid applied to the connecting flow path portion can be significantly reduced. Therefore, the deformation of the connecting flow path portion can be prevented more reliably, and the reliability of the heat exchanger can be greatly improved.
 また、連絡流路の断面積は、3m以下であってもよい。 Further, the cross-sectional area of the connecting flow path may be 3 m 2 or less.
 これにより、連絡流路の壁面に掛かる冷媒等の第1流体の圧力を、家庭用及び業務用エアコンにおいて規定されている圧力以下に抑えることができる。従って、家庭用及び業務用エアコン等の、第1流体となる冷媒量が多く、且つ、圧力も高い機器であっても、連絡流路部分の変形を防止して、信頼性の高い熱交換器を得ることができる。 As a result, the pressure of the first fluid such as the refrigerant applied to the wall surface of the connecting flow path can be suppressed to the pressure specified in the home and commercial air conditioners or less. Therefore, even for equipment such as home and commercial air conditioners, which has a large amount of refrigerant as the first fluid and high pressure, it prevents deformation of the connecting flow path and is a highly reliable heat exchanger. Can be obtained.
 本開示に係る冷凍システムは、上記熱交換器を用いて構成された冷凍サイクルを有している。 The refrigeration system according to the present disclosure has a refrigeration cycle configured by using the above heat exchanger.
 これにより、プレートフィン積層型熱交換器の小型、且つ、高性能という特徴を生かしつつ、信頼性の高い冷凍システムを得ることができる。 This makes it possible to obtain a highly reliable refrigeration system while taking advantage of the small size and high performance of the plate fin laminated heat exchanger.
 以下、本開示の実施の形態について、添付の図面を参照しながら説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the attached drawings.
 なお、本開示の熱交換器は、以下の実施の形態に記載した熱交換器の構成に限定されるものではなく、以下の実施の形態において説明する技術的思想と同等の熱交換器の構成を含むものである。 The heat exchanger of the present disclosure is not limited to the configuration of the heat exchanger described in the following embodiments, and the configuration of the heat exchanger is equivalent to the technical idea described in the following embodiments. Is included.
 (実施の形態1)
 [1-1.熱交換器の構成]
 図1は、本発明の実施の形態におけるプレートフィン積層型熱交換器の外観を示す斜視図である。図2は、プレートフィン積層型熱交換器の分解斜視図である。図3は、プレートフィン積層型熱交換器のプレートとエンドプレートを示す分解斜視図である。図4は、プレートフィン積層型熱交換器のプレートフィンを構成する一対のプレートを示す図である。また、図5は、プレートフィン積層型熱交換器におけるプレートフィンの積層状態を示す分解斜視図である。図6は、プレートフィン積層型熱交換器におけるプレートフィンの積層斜視図であり、図7は、図6のVII-VII切断線による断面図である。
(Embodiment 1)
[1-1. Heat exchanger configuration]
FIG. 1 is a perspective view showing the appearance of the plate fin laminated heat exchanger according to the embodiment of the present invention. FIG. 2 is an exploded perspective view of a plate fin laminated heat exchanger. FIG. 3 is an exploded perspective view showing a plate and an end plate of the plate fin laminated heat exchanger. FIG. 4 is a diagram showing a pair of plates constituting the plate fins of the plate fin laminated heat exchanger. Further, FIG. 5 is an exploded perspective view showing a laminated state of plate fins in the plate fin laminated heat exchanger. FIG. 6 is a laminated perspective view of plate fins in a plate fin laminated heat exchanger, and FIG. 7 is a cross-sectional view taken along the line VII-VII of FIG.
 図1及び図2に示すように、本実施の形態の熱交換器1は、プレートフィン積層型熱交換器である。熱交換器1は、複数のプレートフィン2aが積層されて構成されている。本実施の形態では、プレートフィン2aの各々は、積層方向(図1及び図2のz軸方向)から見た場合に、略弓型の形状を有している。プレートフィン積層体2の積層方向における両側に、エンドプレート3a、3bが配置されている。図3に示すように、エンドプレート3a,3bを積層方向から見た形状と、プレートフィン2aを積層方向からみた形状とは、実質的に同一である。プレートフィン積層体2とエンドプレート3a,3bとは、接合されて一体化されている。そして、積層方向におけるプレートフィン積層体2の一端部側に、配管A(液側)4及び配管B(ガス側)5が接続されている。配管A4は、熱交換器1が蒸発器として用いられる場合には冷媒の入口となり、熱交換器1が凝縮器として用いられる場合は出口となる。配管B5は、配管A4と冷媒の向きが逆となる。 As shown in FIGS. 1 and 2, the heat exchanger 1 of the present embodiment is a plate fin laminated heat exchanger. The heat exchanger 1 is configured by laminating a plurality of plate fins 2a. In the present embodiment, each of the plate fins 2a has a substantially bow-shaped shape when viewed from the stacking direction (z-axis direction of FIGS. 1 and 2). End plates 3a and 3b are arranged on both sides of the plate fin laminated body 2 in the laminating direction. As shown in FIG. 3, the shapes of the end plates 3a and 3b viewed from the stacking direction and the shapes of the plate fins 2a viewed from the stacking direction are substantially the same. The plate fin laminate 2 and the end plates 3a and 3b are joined and integrated. Then, the pipe A (liquid side) 4 and the pipe B (gas side) 5 are connected to one end side of the plate fin laminated body 2 in the stacking direction. The pipe A4 serves as an inlet for the refrigerant when the heat exchanger 1 is used as an evaporator, and serves as an outlet when the heat exchanger 1 is used as a condenser. In the pipe B5, the directions of the refrigerant are opposite to those of the pipe A4.
 プレートフィン積層体2の両側のエンドプレート3a,3bは、プレートフィン積層体2を挟持した状態でロウ付けされ、ボルト及びナット、又は、カシメピン軸等で構成される締結部9により、プレートフィン積層体2に連結され、且つ、固定されている。締結部9は、エンドプレート3a,3bの長手方向の両端において、エンドプレート3a,3bとプレートフィン積層体2とを連結している。これにより、熱交換器1の剛性が保持されている。 The end plates 3a and 3b on both sides of the plate fin laminate 2 are brazed while sandwiching the plate fin laminate 2, and the plate fins are laminated by a fastening portion 9 composed of bolts and nuts, a caulking pin shaft, or the like. It is connected to and fixed to the body 2. The fastening portion 9 connects the end plates 3a and 3b and the plate fin laminate 2 at both ends of the end plates 3a and 3b in the longitudinal direction. As a result, the rigidity of the heat exchanger 1 is maintained.
 図4に示すように、プレートフィン積層体2を構成するプレートフィン2aは、一対のプレート6a,6bにより構成される。プレートフィン2aは、この一対のプレート(第1プレート)6aとプレート(第2プレート)6bとをロウ付け等により接合することで、プレート6aとプレート6bとの間に、冷媒等の第1流体(以下、冷媒と称する)が流れる伝熱流路を構成している。また、プレートフィン積層体2を構成するプレートフィン2aは、伝熱流路が配置された流路領域、及び、流路領域の各伝熱流路と連通する、入口側のヘッダ流路及び出口側のヘッダ流路が配置されたヘッダ領域を有する。 As shown in FIG. 4, the plate fins 2a constituting the plate fin laminate 2 are composed of a pair of plates 6a and 6b. The plate fin 2a is formed by joining the pair of plates (first plate) 6a and the plate (second plate) 6b by brazing or the like, so that a first fluid such as a refrigerant is formed between the plates 6a and 6b. It constitutes a heat transfer flow path through which (hereinafter referred to as a refrigerant) flows. Further, the plate fins 2a constituting the plate fin laminate 2 are connected to the flow path region in which the heat transfer flow path is arranged and each heat transfer flow path in the flow path region, and are on the header flow path on the inlet side and the header flow path on the outlet side. It has a header area in which the header flow path is arranged.
 また、図6に示すように、プレートフィン積層体2は、プレートフィン2aが多数積層されて構成されている。隣接するプレートフィン2aの間には、空気等の第2流体(以下、空気と称する)が流れる積層間隙dが形成されている。そして、プレートフィン2aに設けられた伝熱流路14を流れる冷媒と隣接するプレートフィン2aの間の積層間隙dを流れる空気との間で、熱交換が行われる。 Further, as shown in FIG. 6, the plate fin laminated body 2 is configured by laminating a large number of plate fins 2a. A stacking gap d through which a second fluid such as air (hereinafter referred to as air) flows is formed between the adjacent plate fins 2a. Then, heat exchange is performed between the refrigerant flowing through the heat transfer flow path 14 provided in the plate fins 2a and the air flowing through the stacking gap d between the adjacent plate fins 2a.
 [1-2.プレートフィンの詳細構成]
 以下、プレートフィン2aの構成及び冷媒が流れる流路構成等について詳細に説明する。
[1-2. Detailed configuration of plate fins]
Hereinafter, the configuration of the plate fin 2a, the flow path configuration through which the refrigerant flows, and the like will be described in detail.
 プレートフィン2aを構成する一対のプレートのうち、一方のプレート6aは、図5に示すように、配管A4に繋がるヘッダ流路A8及び配管B5に繋がるヘッダ流路B10をそれぞれ構成する開口8a及び開口10aが配置されている。また、開口8aの開口縁及び開口10aの開口縁には、それぞれリング状凹溝8b,10bが配置されている。プレート6aには、リング状凹溝8bから延設された連絡流路用凹溝11Aaと、この連絡流路用凹溝11Aaの端部に接続された分流路用凹溝12Aaと、が配置されている。 Of the pair of plates constituting the plate fin 2a, one plate 6a has an opening 8a and an opening forming the header flow path A8 connected to the pipe A4 and the header flow path B10 connected to the pipe B5, respectively, as shown in FIG. 10a is arranged. Further, ring-shaped concave grooves 8b and 10b are arranged at the opening edge of the opening 8a and the opening edge of the opening 10a, respectively. On the plate 6a, a concave groove 11Aa for a connecting flow path extending from the ring-shaped concave groove 8b and a concave groove 12Aa for a branch flow path connected to the end of the concave groove 11Aa for the connecting flow path are arranged. ing.
 そして、分流路用凹溝12Aaから分岐するように、複数の流路形成用凹溝14aが配置されている。また、リング状凹溝10bから延設された連絡流路用凹溝11Baと、連絡流路用凹溝11Baの端部に接続された合流路用凹溝12Baと、が配置されている。 Then, a plurality of flow path forming concave grooves 14a are arranged so as to branch from the branch flow path forming concave groove 12Aa. Further, a connecting flow path concave groove 11Ba extending from the ring-shaped concave groove 10b and a joint flow path concave groove 12Ba connected to the end of the connecting flow path concave groove 11Ba are arranged.
 また合流路用凹溝12Baに合流するように、複数の流路形成用凹溝14Baが配置されている。流路形成用凹溝14Aaと流路形成用凹溝14Baとは、第1プレート6aのヘッダ流路部A(液側)8及びヘッダ流路部B(ガス側)10が設けられた端部と反対側の端部の近傍で接続されており、積層方向(図6のz軸方向)から見たときに、伝熱流路14が略U字状になるように構成されている。 Further, a plurality of flow path forming concave grooves 14Ba are arranged so as to join the merging flow path concave groove 12Ba. The flow path forming concave groove 14Aa and the flow path forming concave groove 14Ba are end portions of the first plate 6a provided with the header flow path portion A (liquid side) 8 and the header flow path portion B (gas side) 10. It is connected in the vicinity of the end portion on the opposite side to the above, and is configured such that the heat transfer flow path 14 has a substantially U shape when viewed from the stacking direction (z-axis direction in FIG. 6).
 また、一対のプレートのうちの他方のプレート6bには、ヘッダ流路A8及びヘッダ流路B10をそれぞれ構成する開口8c及び開口10cが配置されている。そして、開口8c及び開口10cの開口縁には、それぞれリング状凹溝8d,10dが配置されている。また、プレート6bには、プレート6aの連絡流路用凹溝11Aaの端部と対向する位置に分流路用凹溝12Abが配置されている。また、分流路用凹溝12Abから分岐するように、複数の流路形成用凹溝14bが配置されている。流路形成用凹溝14bは、積層方向(z軸方向)から見たときに、略U字状になるように構成されている。 Further, an opening 8c and an opening 10c constituting the header flow path A8 and the header flow path B10 are arranged on the other plate 6b of the pair of plates, respectively. Ring-shaped concave grooves 8d and 10d are arranged at the opening edges of the opening 8c and the opening 10c, respectively. Further, on the plate 6b, a diversion groove 12Ab is arranged at a position facing the end of the connecting flow path concave groove 11Aa of the plate 6a. Further, a plurality of flow path forming concave grooves 14b are arranged so as to branch from the branch flow path forming concave groove 12Ab. The flow path forming concave groove 14b is configured to have a substantially U shape when viewed from the stacking direction (z-axis direction).
 そして、一対のプレート6a,6bは、図5に示すように、開口8aと開口8c、開口10aと開口10cがそれぞれ対向して合わさるように接合される。この際、開口縁に設けられたリング状凹溝8bとリング状凹溝8d、及び、リング状凹溝10bとリング状凹溝10dがそれぞれ対向して合わさり、分流路用凹溝12Aaと分流路用凹溝12Ab、及び、流路形成用凹溝14aと流路形成用凹溝14bがそれぞれ対向して合わさるようにして、ロウ付け等により接合される。これにより、開口8a、開口8c、及びこれらの開口縁のリング状凹溝8b、リング状凹溝8dによって、ヘッダ流路A8が形成される。同様に、開口10a、開口10c、及び、これらの開口縁のリング状凹溝10b、リング状凹溝10dによって、ヘッダ流路B10が形成される。さらに、連絡流路用凹溝11Aaとプレート6bによって連絡流路11(図7参照)が形成される。また、分流路用凹溝12Aaと分流路用凹溝12Abによって分流路12Aが形成され、流路形成用凹溝14aと流路形成用凹溝14bによって伝熱流路14が形成される。 Then, as shown in FIG. 5, the pair of plates 6a and 6b are joined so that the openings 8a and 8c and the openings 10a and 10c face each other. At this time, the ring-shaped concave groove 8b and the ring-shaped concave groove 8d provided on the opening edge, and the ring-shaped concave groove 10b and the ring-shaped concave groove 10d are brought into contact with each other so as to face each other, and the branch channel concave groove 12Aa and the branch channel The concave groove 12Ab for forming the flow path, the concave groove 14a for forming the flow path, and the concave groove 14b for forming the flow path are joined so as to face each other by brazing or the like. As a result, the header flow path A8 is formed by the openings 8a, the openings 8c, and the ring-shaped concave grooves 8b and the ring-shaped concave grooves 8d at the edges of these openings. Similarly, the header flow path B10 is formed by the opening 10a, the opening 10c, and the ring-shaped concave groove 10b and the ring-shaped concave groove 10d at the edge of the opening. Further, the connecting flow path 11 (see FIG. 7) is formed by the concave groove 11Aa for the connecting flow path and the plate 6b. Further, the dividing flow path 12A is formed by the dividing channel concave groove 12Aa and the dividing flow path concave groove 12Ab, and the heat transfer flow path 14 is formed by the flow path forming concave groove 14a and the flow path forming concave groove 14b.
 なお、伝熱流路14は、弓型形状に曲げられたプレート6a,6bによって形成されているため、図4のプレートフィン全体図に示すように、伝熱流路14もまた、プレート6a,6bと同様に弓型に曲がっている。すなわち、伝熱流路14は、プレートフィン2aの外形と同様に、略弓型に屈曲している。また、伝熱流路14は、図4に示すように、プレートフィン2aの端部(図4における上側)でUターンするように構成されている。図6に示すように、伝熱流路14は、ヘッダ流路A8に繋がり液冷媒が流れる側となる2本の伝熱往き流路群14A、及び、ヘッダ流路B10に繋がりガス冷媒が流れる側となる6本の伝熱戻り流路群14Bを有する。また、伝熱往き流路群14Aと伝熱戻り流路群14Bとの間に、これら両者間の熱移動を防止して断熱するためのスリット16が配置されている。 Since the heat transfer flow path 14 is formed by the plates 6a and 6b bent in a bow shape, the heat transfer flow path 14 is also formed by the plates 6a and 6b as shown in the overall view of the plate fins of FIG. It is also bent in a bow shape. That is, the heat transfer flow path 14 is bent in a substantially bow shape like the outer shape of the plate fin 2a. Further, as shown in FIG. 4, the heat transfer flow path 14 is configured to make a U-turn at the end portion (upper side in FIG. 4) of the plate fin 2a. As shown in FIG. 6, the heat transfer flow path 14 is connected to the header flow path A8 and is connected to the header flow path A8 to flow the liquid refrigerant, and is connected to the header flow path B10 to flow the gas refrigerant. It has 6 heat transfer return flow paths 14B. Further, a slit 16 is arranged between the heat transfer flow path group 14A and the heat transfer return flow path group 14B to prevent heat transfer between them and to insulate heat.
 また、プレートフィン2aには、プレートフィン2aの長手方向に沿って複数の突起15(図4参照)が適宜配置されている。これによって、隣接するプレートフィン2aの伝熱流路14同士の間に、空気が流れる積層間隙T1(図7参照)が形成されている。 Further, a plurality of protrusions 15 (see FIG. 4) are appropriately arranged on the plate fins 2a along the longitudinal direction of the plate fins 2a. As a result, a stacking gap T1 (see FIG. 7) through which air flows is formed between the heat transfer channels 14 of the adjacent plate fins 2a.
 また、隣接するプレートフィン2aの連絡流路11同士の間に、間隙T2(図7参照)が形成されており、この間隙T2を介しても空気が流れる。これにより、熱交換器1における熱交換効率が高められている。 Further, a gap T2 (see FIG. 7) is formed between the connecting flow paths 11 of the adjacent plate fins 2a, and air flows through the gap T2. As a result, the heat exchange efficiency in the heat exchanger 1 is improved.
 ここで、ガス冷媒が流れる側の連絡流路11Bの断面積は、ガス冷媒が流れる側となる6本の伝熱戻り流路群14Bの各伝熱流路の断面積を合わせた合計断面積以下となるように構成されている。なお、本実施の形態では、連絡流路11Bの断面積は、伝熱戻り流路群14Bにおける1本の伝熱流路の断面積以下に構成されている。 Here, the cross-sectional area of the connecting flow path 11B on the side through which the gas refrigerant flows is equal to or less than the total cross-sectional area of the cross-sectional areas of the six heat transfer return flow paths 14B on the side through which the gas refrigerant flows. It is configured to be. In the present embodiment, the cross-sectional area of the connecting flow path 11B is equal to or less than the cross-sectional area of one heat transfer flow path in the heat transfer return flow path group 14B.
 [1-3.動作及び効果等]
 次に、以上のように構成されたプレートフィン積層型の熱交換器1について、その作用効果を説明する。
[1-3. Operation and effect]
Next, the action and effect of the plate fin laminated heat exchanger 1 configured as described above will be described.
 本実施の形態の熱交換器1は、例えば蒸発条件で使用されている場合には、配管A4(図1参照)から気液二相状態の液冷媒が、プレートフィン積層体2の入り口側のヘッダ流路A8に流入する。 In the heat exchanger 1 of the present embodiment, for example, when the heat exchanger 1 is used under evaporation conditions, the liquid refrigerant in the gas-liquid two-phase state is discharged from the pipe A4 (see FIG. 1) on the inlet side of the plate fin laminate 2. It flows into the header flow path A8.
 ヘッダ流路A8に流入した液冷媒は、図6及び図7に示す流路構成から明らかなように、各プレートフィン2aの連絡流路11A及び分流路12Aを介して伝熱流路14の伝熱往き流路群14Aへ流入する。各プレートフィン2aの伝熱往き流路群14Aに流入した冷媒はUターンし、伝熱戻り流路群14Bを流れる。その後、冷媒は、合流路12B及び連絡流路11Bを通り、ヘッダ流路B10を介して、配管B5から気相状態で冷凍システムの冷媒回路へと流出する。 As is clear from the flow path configurations shown in FIGS. 6 and 7, the liquid refrigerant flowing into the header flow path A8 transfers heat to the heat transfer flow path 14 via the communication flow path 11A and the branch flow path 12A of each plate fin 2a. It flows into the forward flow path group 14A. The refrigerant flowing into the heat transfer flow path group 14A of each plate fin 2a makes a U-turn and flows through the heat transfer return flow path group 14B. After that, the refrigerant passes through the combined flow path 12B and the connecting flow path 11B, flows out from the pipe B5 to the refrigerant circuit of the refrigeration system in a gas phase state via the header flow path B10.
 このようにして、冷媒は、伝熱流路14の伝熱往き流路群14Aから伝熱戻り流路群14Bを介して配管B5へと流れる際にガス化し、プレートフィン積層体2のプレートフィン積層間隙d(図6参照)を通り抜ける空気と熱交換する。 In this way, the refrigerant is gasified when flowing from the heat transfer flow path group 14A of the heat transfer flow path 14 to the pipe B5 via the heat transfer return flow path group 14B, and the plate fin laminate of the plate fin laminate 2 is laminated. It exchanges heat with the air passing through the gap d (see FIG. 6).
 ここで、熱交換器1では、上述のように、ガス化した冷媒が流れる伝熱戻り流路群14Bからのガス冷媒をヘッダ流路B10へと流す、ガス冷媒側の連絡流路11Bの断面積は、伝熱戻り流路群14Bの各伝熱流路を合わせた合計断面積以下である。従って、連絡流路11Bの内部を流れる冷媒流量は少なくなる。このため、連絡流路11Bの壁面に掛かる冷媒圧力が小さなくなり、連絡流路11Bにおける耐圧が向上する。このため、長期間使用した場合であっても、連絡流路11B部分の変形を防止することができる。 Here, in the heat exchanger 1, as described above, the gas refrigerant from the heat transfer return flow path group 14B through which the gasified refrigerant flows flows to the header flow path B10, and the communication flow path 11B on the gas refrigerant side is cut off. The area is equal to or less than the total cross-sectional area of each heat transfer flow path of the heat transfer return flow path group 14B. Therefore, the flow rate of the refrigerant flowing inside the connecting flow path 11B is reduced. Therefore, the refrigerant pressure applied to the wall surface of the connecting flow path 11B is not small, and the pressure resistance in the connecting flow path 11B is improved. Therefore, even when used for a long period of time, it is possible to prevent deformation of the connecting flow path 11B portion.
 なお、特に本実施の形態では、連絡流路11Bの断面積は、伝熱戻り流路群14Bの伝熱流路のうちの少なくとも1本の流路断面積以下としている。そのため、連絡流路11Bの壁面に掛かる圧力が大幅に低減される。従って、連絡流路11B部分の変形をより確実に防止することができ、熱交換器1の信頼性を大きく向上させることができる。 In particular, in the present embodiment, the cross-sectional area of the connecting flow path 11B is set to be equal to or less than the cross-sectional area of at least one of the heat transfer flow paths of the heat transfer return flow path group 14B. Therefore, the pressure applied to the wall surface of the connecting flow path 11B is significantly reduced. Therefore, the deformation of the connecting flow path 11B portion can be prevented more reliably, and the reliability of the heat exchanger 1 can be greatly improved.
 また、連絡流路11Bの断面積を3m以下とすれば、連絡流路11Bの壁面に掛かる冷媒の圧力を家庭用及び業務用エアコンにおいて規定されている圧力以下に抑えることができる。従って、既述したように、冷媒量が多い熱交換器、又は、圧縮比率が高い、環境対応型の冷媒を用いた熱交換器であっても、プレートフィン積層体2のガス冷媒側の連絡流路11B部分が膨張して変形することを防止できる。このため、冷媒の圧力をより高い状態で使用することができ、効率の高い熱交換器を得ることができる。 Further, if the cross-sectional area of the connecting flow path 11B is 3 m 2 or less, the pressure of the refrigerant applied to the wall surface of the connecting flow path 11B can be suppressed to the pressure specified in the home and commercial air conditioners or less. Therefore, as described above, even in a heat exchanger having a large amount of refrigerant or a heat exchanger using an environment-friendly refrigerant having a high compression ratio, the plate fin laminate 2 is connected to the gas refrigerant side. It is possible to prevent the flow path 11B portion from expanding and deforming. Therefore, the pressure of the refrigerant can be used in a higher state, and a highly efficient heat exchanger can be obtained.
 また、上述のように、連絡流路11Bの断面積を、伝熱戻り流路群14Bの各伝熱流路を合わせた合計断面積以下、又は、伝熱戻り流路群14Bの伝熱流路のうちの少なくとも1本の流路断面積以下、又は3m以下とすることによって、例えば、図7に示すように、隣接するプレートフィン2aの連絡流路11B同士の間にも、間隙T2を形成することができる。これにより、当該間隙T2にも空気を流すことができ、連絡流路11Bの高い耐圧性を確保しつつ熱交換効率を高めることができる。 Further, as described above, the cross-sectional area of the connecting flow path 11B is equal to or less than the total cross-sectional area of the combined heat transfer flow paths of the heat transfer return flow path group 14B, or the heat transfer flow path of the heat transfer return flow path group 14B. By setting the cross-sectional area of at least one of the flow paths to 3 m 2 or less, for example, as shown in FIG. 7, a gap T2 is formed between the connecting flow paths 11B of the adjacent plate fins 2a. can do. As a result, air can flow through the gap T2, and the heat exchange efficiency can be improved while ensuring the high pressure resistance of the connecting flow path 11B.
 連絡流路11Bの耐圧性を確保するためには、例えばプレートフィン2aの積層方向に隣接する連絡流路11Bの外壁面同士を突き合わせることが考えられる。これにより、連絡流路11Bの断面積を小さくしなくても耐圧を確保することができる。しかし、この場合、積層方向に隣接する連絡流路11B同士の間に間隙がなくなる。従って、連絡流路11B部分を熱交換領域として利用できない。しかしながら、本実施の形態のように構成すれば、上述のように連絡流路11B同士の間にも間隙T2が形成できるため、連絡流路11B部分を熱交換領域として使用できる。従って、熱交換器1の熱交換効率を高めることができる。 In order to secure the pressure resistance of the connecting flow path 11B, for example, it is conceivable to abut the outer wall surfaces of the connecting flow path 11B adjacent to each other in the stacking direction of the plate fins 2a. As a result, the pressure resistance can be ensured without reducing the cross-sectional area of the connecting flow path 11B. However, in this case, there is no gap between the connecting flow paths 11B adjacent to each other in the stacking direction. Therefore, the connecting flow path 11B portion cannot be used as a heat exchange region. However, if it is configured as in the present embodiment, the gap T2 can be formed between the connecting flow paths 11B as described above, so that the connecting flow path 11B portion can be used as the heat exchange region. Therefore, the heat exchange efficiency of the heat exchanger 1 can be improved.
 なお、連絡流路11Bの断面積を小さくすることによって、連絡流路11B部分において圧損が発生することが懸念される。ここで、本実施の形態では、圧損が大きくなる、ガス側冷媒の流れる伝熱流路14を伝熱戻り流路群14Bとして、複数の伝熱流路により構成した多パス型としている。従って、伝熱戻り流路群14Bにおける1流路当たりの流量が小さくなるため、性能への影響を最小限に抑えることができ、実用上問題ないレベルとなる。 It should be noted that there is a concern that pressure loss may occur in the connecting flow path 11B portion by reducing the cross-sectional area of the connecting flow path 11B. Here, in the present embodiment, the heat transfer flow path 14 through which the gas-side refrigerant flows, which causes a large pressure loss, is designated as the heat transfer return flow path group 14B, and is a multi-pass type composed of a plurality of heat transfer flow paths. Therefore, since the flow rate per flow path in the heat transfer return flow path group 14B becomes small, the influence on the performance can be minimized, and the level is practically no problem.
 また、本実施形態の熱交換器1は、プレートフィン2aの伝熱流路14は、略U字状に形成されており、プレートフィン2aの一端部において折り返すように構成されている。これにより、プレートフィン2aの長さ寸法を大きくすることなく冷媒流路長を長くすることができる。 Further, in the heat exchanger 1 of the present embodiment, the heat transfer flow path 14 of the plate fin 2a is formed in a substantially U shape, and is configured to be folded back at one end of the plate fin 2a. As a result, the length of the refrigerant flow path can be increased without increasing the length dimension of the plate fin 2a.
 これにより、熱交換器の小型化を図りつつ、冷媒と空気との熱交換効率を高め、冷凍システムの効率を向上させることができる。 This makes it possible to improve the efficiency of the refrigeration system by increasing the heat exchange efficiency between the refrigerant and air while reducing the size of the heat exchanger.
 なお、熱交換器1については、伝熱流路14がUターンする構成として説明したが、熱交換器1の構成はこれに限られない。例えば、図8に示すように、熱交換器1は、プレートフィン2aの一端部側にヘッダ流路管A8、反対の他端部側にヘッダ流路管B10を設けて、これらの間を繋ぐ伝熱流路14を一方向のみの直線状に構成してもよい。この場合、伝熱往き流路群14Aと伝熱戻り流路群14Bは、同じ伝熱流路14として構成される。従って、ガス冷媒側となるヘッダ流路、例えば出口側のヘッダ流路B10側の連絡流路11Bの断面積は、伝熱流路14の合計断面積以下、又は、複数の伝熱流路14のうちの少なくとも1本の流路断面積以下、又は3m以下とすればよい。 Although the heat exchanger 1 has been described as having a U-turn of the heat transfer flow path 14, the configuration of the heat exchanger 1 is not limited to this. For example, as shown in FIG. 8, the heat exchanger 1 is provided with a header flow path tube A8 on one end side of the plate fin 2a and a header flow path tube B10 on the opposite end side, and connects them. The heat transfer flow path 14 may be formed in a linear shape in only one direction. In this case, the heat transfer forward flow path group 14A and the heat transfer return flow path group 14B are configured as the same heat transfer flow path 14. Therefore, the cross-sectional area of the header flow path on the gas refrigerant side, for example, the connecting flow path 11B on the header flow path B10 side on the outlet side is equal to or less than the total cross-sectional area of the heat transfer flow path 14, or among the plurality of heat transfer flow paths 14. It may be less than or equal to the cross-sectional area of at least one of the flow paths, or 3 m 2 or less.
 以上、本実施の形態では、熱交換器を蒸発器として使用した場合を例にして説明した。このため、便宜上、ガス冷媒側となるヘッダ流路を出口側のヘッダ流路B10、液側のヘッダ流路を入口側のヘッダ流路A8として説明しているが、凝縮器として使用する場合は出口側と入口側が逆になる。 As described above, in the present embodiment, the case where the heat exchanger is used as an evaporator has been described as an example. Therefore, for convenience, the header flow path on the gas refrigerant side is described as the header flow path B10 on the outlet side, and the header flow path on the liquid side is described as the header flow path A8 on the inlet side, but when used as a condenser, it is described. The exit side and the entrance side are reversed.
 (実施の形態2)
 本実施の形態では、実施の形態1で説明したプレートフィン積層型の熱交換器1を用いた冷凍システムについて説明する。なお、本実施の形態では、冷凍システムとして、空気調和機を例に説明する。
(Embodiment 2)
In the present embodiment, the refrigeration system using the plate fin laminated heat exchanger 1 described in the first embodiment will be described. In the present embodiment, an air conditioner will be described as an example of the refrigeration system.
 図9は空気調和機の冷凍サイクル図、図10は空気調和機の室内機を示す断面構成を示す図である。 FIG. 9 is a refrigeration cycle diagram of the air conditioner, and FIG. 10 is a diagram showing a cross-sectional configuration showing the indoor unit of the air conditioner.
 図9に示すように、空気調和機50は、室外機51と、室外機51に接続された室内機52と、を有する。室外機51は、冷媒を圧縮する圧縮機53と、四方弁54と、室外熱交換器55と、冷媒を減圧する減圧器56と、室外送風機59と、を有する。四方弁54は、冷房運転時と暖房運転時とで、冷媒回路を切り替える。また、室外熱交換器55は、冷媒と外気との間で熱交換を行う。 As shown in FIG. 9, the air conditioner 50 includes an outdoor unit 51 and an indoor unit 52 connected to the outdoor unit 51. The outdoor unit 51 includes a compressor 53 that compresses the refrigerant, a four-way valve 54, an outdoor heat exchanger 55, a decompressor 56 that decompresses the refrigerant, and an outdoor blower 59. The four-way valve 54 switches the refrigerant circuit between the cooling operation and the heating operation. Further, the outdoor heat exchanger 55 exchanges heat between the refrigerant and the outside air.
 室内機52は、室内熱交換器57と、室内送風機58と、を有する。 The indoor unit 52 includes an indoor heat exchanger 57 and an indoor blower 58.
 そして、圧縮機53、四方弁54、室内熱交換器57、減圧器56、及び室外熱交換器55が配管により連結されることで冷媒回路が構成されて、ヒートポンプ式冷凍サイクルが形成される。 Then, the compressor 53, the four-way valve 54, the indoor heat exchanger 57, the decompressor 56, and the outdoor heat exchanger 55 are connected by piping to form a refrigerant circuit, and a heat pump type refrigeration cycle is formed.
 本実施の形態の空気調和機50においては、室外熱交換器55及び室内熱交換器57の少なくともいずれか一方に、実施の形態1で説明したプレートフィン積層型の熱交換器1が用いられる。 In the air conditioner 50 of the present embodiment, the plate fin laminated heat exchanger 1 described in the first embodiment is used for at least one of the outdoor heat exchanger 55 and the indoor heat exchanger 57.
 なお、本実施形態による冷媒回路には、テトラフルオロプロペン又はトリフルオロプロペン、並びに、ジフルオロメタン、ペンタフルオロエタン又はテトラフルオロエタンを、単体、又はそれぞれ2成分混合若しくは3成分混合した冷媒が使用される。 In the refrigerant circuit according to the present embodiment, tetrafluoropropene or trifluoropropene, and a refrigerant obtained by mixing difluoromethane, pentafluoroethane or tetrafluoroethane alone, or a mixture of two or three components, respectively, are used. ..
 以上のように構成された空気調和機50について、その動作を説明する。 The operation of the air conditioner 50 configured as described above will be described.
 冷房運転の際には、四方弁54は、圧縮機53の吐出側と室外熱交換器55とが連通するように、配管の接続を切り換える。これにより、圧縮機53によって圧縮された冷媒は高温高圧の冷媒となって四方弁54を通って室外熱交換器55に送られる。そして、冷媒は、外気と熱交換することで放熱し、高圧の液冷媒となり、減圧器56に送られる。減圧器56では、冷媒は減圧されて低温低圧の二相冷媒となり、室内機52に送られる。そして、室内機52では、冷媒は室内熱交換器57に入り、室内空気と熱交換して吸熱し、蒸発気化して低温のガス冷媒となる。この時、室内空気が冷却されて、室内の冷房が行われる。さらに冷媒は室外機51に戻り、四方弁54を経由して圧縮機53に戻される。 During the cooling operation, the four-way valve 54 switches the connection of the piping so that the discharge side of the compressor 53 and the outdoor heat exchanger 55 communicate with each other. As a result, the refrigerant compressed by the compressor 53 becomes a high-temperature and high-pressure refrigerant and is sent to the outdoor heat exchanger 55 through the four-way valve 54. Then, the refrigerant dissipates heat by exchanging heat with the outside air, becomes a high-pressure liquid refrigerant, and is sent to the decompressor 56. In the decompressor 56, the refrigerant is decompressed to become a low-temperature low-pressure two-phase refrigerant, which is sent to the indoor unit 52. Then, in the indoor unit 52, the refrigerant enters the indoor heat exchanger 57, exchanges heat with the indoor air, absorbs heat, evaporates and vaporizes, and becomes a low-temperature gas refrigerant. At this time, the indoor air is cooled to cool the room. Further, the refrigerant returns to the outdoor unit 51 and is returned to the compressor 53 via the four-way valve 54.
 暖房運転の際には、四方弁54は、圧縮機53の吐出側と室内機52とが連通するように、配管の接続を切り換える。これにより、圧縮機53によって圧縮された冷媒は高温高圧の冷媒となって四方弁54を通り、室内機52に送られる。高温高圧の冷媒は室内熱交換器57に入って室内空気と熱交換することで、放熱して冷却され、高圧の液冷媒となる。この時、室内空気が加熱されて、室内の暖房が行われる。その後、冷媒は減圧器56に送られ、減圧器56において減圧されて低温低圧の二相冷媒となり、室外熱交換器55に送られる。そして、冷媒は、外気と熱交換することで蒸発気化し、四方弁54を経由して圧縮機53へ戻される。 During the heating operation, the four-way valve 54 switches the pipe connection so that the discharge side of the compressor 53 and the indoor unit 52 communicate with each other. As a result, the refrigerant compressed by the compressor 53 becomes a high-temperature and high-pressure refrigerant, passes through the four-way valve 54, and is sent to the indoor unit 52. The high-temperature and high-pressure refrigerant enters the indoor heat exchanger 57 and exchanges heat with the indoor air to dissipate heat and cool, and becomes a high-pressure liquid refrigerant. At this time, the indoor air is heated to heat the room. After that, the refrigerant is sent to the decompressor 56, decompressed by the decompressor 56 to become a low-temperature low-pressure two-phase refrigerant, and sent to the outdoor heat exchanger 55. Then, the refrigerant evaporates and vaporizes by exchanging heat with the outside air, and is returned to the compressor 53 via the four-way valve 54.
 ここで、空気調和機50は、室外熱交換器55及び室内熱交換器57の少なくともいずれか一方に、実施の形態1で示した熱交換器が使用される。本実施の形態では、例えば、図10に示すように、室内機52の室内熱交換器57として、実施の形態1で説明したプレートフィン積層型の熱交換器1が用いられる。熱交換器1は、前述の通り、小型、且つ、高性能で、信頼性の高いプレートフィン積層型の熱交換器であるから、省エネルギ性が高く、信頼性の高い冷凍システムを実現することができる。 Here, in the air conditioner 50, the heat exchanger shown in the first embodiment is used for at least one of the outdoor heat exchanger 55 and the indoor heat exchanger 57. In the present embodiment, for example, as shown in FIG. 10, as the indoor heat exchanger 57 of the indoor unit 52, the plate fin laminated type heat exchanger 1 described in the first embodiment is used. As described above, the heat exchanger 1 is a compact, high-performance, and highly reliable plate fin laminated heat exchanger, so that a highly energy-saving and highly reliable refrigeration system can be realized. Can be done.
 以上、本開示に係るプレートフィン積層型の熱交換器及びそれを用いた冷凍システムについて、各実施の形態において説明した。しかし、本開示は、これらに限定されるものではない。つまり、今回開示した実施の形態はすべての点で例示であって制限的なものではなく、本開示の範囲は請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれるものである。 The plate fin laminated heat exchanger and the refrigeration system using the same are described above in each embodiment. However, the present disclosure is not limited to these. That is, the embodiments disclosed this time are exemplary and not restrictive in all respects, the scope of the present disclosure is indicated by the claims, and all meanings and scope equivalent to the claims. Changes are included.
 本開示は、プレートフィンの流路の変形を防止して、信頼性が高く、小型であり、且つ、高性能なプレートフィン積層型熱交換器と、それを用いた冷凍システムを提供することができる。従って、家庭用及び業務用エアコン等に用いられる熱交換器、又は各種冷凍機器等に幅広く利用できる。 The present disclosure is to provide a highly reliable, compact, and high-performance plate fin laminated heat exchanger that prevents deformation of the plate fin flow path and a refrigeration system using the same. it can. Therefore, it can be widely used in heat exchangers used for home and commercial air conditioners, various refrigeration equipment, and the like.
  1 熱交換器
  2 プレートフィン積層体
  2a プレートフィン
  3a,3b エンドプレート
  4 配管A(液側)
  5 配管B(ガス側)
  6a プレート(第1プレート)
  6b プレート(第2プレート)
  8 ヘッダ流路A(液側)
  8a,8c 開口
  8b,8d リング状凹溝
  9 締結部
 10 ヘッダ流路B(ガス側)
 10a,10c 開口
 10b,10d リング状凹溝
 11,11A,11B 連絡流路
 11a,11Aa,11Ba 連絡流路用凹溝
 12A 分流路
 12B 合流路
 12Aa,12Ab 分流路用凹溝
 12Ba,12Bb 合流路用凹溝
 14 伝熱流路
 14A 伝熱流路群(伝熱往き流路群)
 14B 伝熱流路群(伝熱戻り流路群)
 14a,14Aa,14Ba 流路形成用凹溝
 14b,14Ab,14Bb 流路形成用凹溝
 15 突起
 16 スリット
 50 空気調和機(冷凍システム)
 51 室外機
 52 室内機
 53 圧縮機
 54 四方弁
 55 室外熱交換器
 56 減圧器
 57 室内熱交換器
 58 室内送風機
1 Heat exchanger 2 Plate fin laminate 2a Plate fins 3a, 3b End plate 4 Piping A (liquid side)
5 Piping B (gas side)
6a plate (first plate)
6b plate (second plate)
8 Header flow path A (liquid side)
8a, 8c Opening 8b, 8d Ring-shaped concave groove 9 Fastening part 10 Header flow path B (gas side)
10a, 10c Opening 10b, 10d Ring-shaped concave groove 11, 11A, 11B Communication flow path 11a, 11Aa, 11B Connection flow path concave groove 12A branch flow path 12B Concatenated flow path 12Aa, 12Ab Divided flow path concave groove 12Ba, 12Bb Recessed groove 14 Heat transfer flow path 14A Heat transfer flow path group (heat transfer flow path group)
14B Heat transfer channel group (heat transfer return channel group)
14a, 14Aa, 14Ba Concave groove for flow path formation 14b, 14Ab, 14Bb Concave groove for flow path formation 15 Protrusion 16 Slit 50 Air conditioner (refrigeration system)
51 Outdoor unit 52 Indoor unit 53 Compressor 54 Four-way valve 55 Outdoor heat exchanger 56 Decompressor 57 Indoor heat exchanger 58 Indoor blower

Claims (4)

  1.  第1流体を並行して流すための複数の伝熱流路を各々有するプレートフィンが積層されて構成され、前記プレートフィンの間を流れる第2流体と、前記第1流体との間で熱交換する、プレートフィン積層型熱交換器であって、
     前記プレートフィンの各々は、
      互いに対向して配置されたプレートに設けられた、凹状溝により前記複数の伝熱流路が形成されており、
      前記複数の伝熱流路と連通する、液側のヘッダ流路及びガス側のヘッダ流路、及び、前記複数の伝熱流路と前記ガス側のヘッダ流路とを結ぶ連絡流路を有し、
     前記連絡流路の断面積が前記複数の伝熱流路の合計断面積以下である、
    プレートフィン積層型熱交換器。
    Plate fins each having a plurality of heat transfer channels for flowing the first fluid in parallel are laminated and formed, and heat is exchanged between the second fluid flowing between the plate fins and the first fluid. , Plate fin laminated heat exchanger,
    Each of the plate fins
    The plurality of heat transfer channels are formed by concave grooves provided on plates arranged so as to face each other.
    It has a liquid-side header flow path and a gas-side header flow path that communicate with the plurality of heat transfer channels, and a communication flow path that connects the plurality of heat transfer channels and the gas-side header flow path.
    The cross-sectional area of the connecting flow path is equal to or less than the total cross-sectional area of the plurality of heat transfer flow paths.
    Plate fin laminated heat exchanger.
  2.  前記連絡流路の前記断面積は、前記複数の伝熱流路のうちの少なくとも1本の断面積以下である、
    請求項1に記載のプレートフィン積層型熱交換器。
    The cross-sectional area of the connecting flow path is equal to or less than the cross-sectional area of at least one of the plurality of heat transfer channels.
    The plate fin laminated heat exchanger according to claim 1.
  3.  前記連絡流路の前記断面積は、3m以下である、
    請求項1に記載のプレートフィン積層型熱交換器。
    The cross-sectional area of the connecting flow path is 3 m 2 or less.
    The plate fin laminated heat exchanger according to claim 1.
  4.  冷凍サイクルを構成する熱交換器として、請求項1~3のいずれか一項に記載のプレートフィン積層型熱交換器を用いた、冷凍システム。 A refrigeration system using the plate fin laminated heat exchanger according to any one of claims 1 to 3 as the heat exchanger constituting the refrigeration cycle.
PCT/JP2020/003932 2019-04-22 2020-02-03 Plate fin stacking-type heat exchanger and refrigeration system using same WO2020217631A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080004008.9A CN112424544B (en) 2019-04-22 2020-02-03 Plate fin stacked type heat exchanger and refrigeration system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019080596A JP6872694B2 (en) 2019-04-22 2019-04-22 Plate fin laminated heat exchanger and refrigeration system using it
JP2019-080596 2019-04-22

Publications (1)

Publication Number Publication Date
WO2020217631A1 true WO2020217631A1 (en) 2020-10-29

Family

ID=72937534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003932 WO2020217631A1 (en) 2019-04-22 2020-02-03 Plate fin stacking-type heat exchanger and refrigeration system using same

Country Status (3)

Country Link
JP (1) JP6872694B2 (en)
CN (1) CN112424544B (en)
WO (1) WO2020217631A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045920B2 (en) * 1982-06-26 1992-02-04 Rockwell International Corp
JPH0713552B2 (en) * 1985-11-15 1995-02-15 松下電器産業株式会社 Refrigerator evaporator
JP2018066531A (en) * 2016-10-21 2018-04-26 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system using the same
JP2020012489A (en) * 2018-07-13 2020-01-23 株式会社三井E&Sマシナリー Vaporizer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2786728B2 (en) * 1990-08-14 1998-08-13 昭和アルミニウム株式会社 Stacked heat exchanger
US7413003B2 (en) * 2006-09-15 2008-08-19 Halla Climate Control Corporation Plate for heat exchanger
JP6785409B2 (en) * 2016-10-21 2020-11-18 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045920B2 (en) * 1982-06-26 1992-02-04 Rockwell International Corp
JPH0713552B2 (en) * 1985-11-15 1995-02-15 松下電器産業株式会社 Refrigerator evaporator
JP2018066531A (en) * 2016-10-21 2018-04-26 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system using the same
JP2020012489A (en) * 2018-07-13 2020-01-23 株式会社三井E&Sマシナリー Vaporizer

Also Published As

Publication number Publication date
CN112424544B (en) 2022-03-29
CN112424544A (en) 2021-02-26
JP6872694B2 (en) 2021-05-19
JP2020176791A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JP6767637B2 (en) Heat exchanger and freezing system using it
JP6767620B2 (en) Heat exchanger and freezing system using it
CN109564067B (en) Heat exchanger and refrigeration system using the same
CN109328291B (en) Heat exchanger and refrigerating apparatus using the same
CN109564070B (en) Heat exchanger and refrigeration system using the same
CN109564075B (en) Heat exchanger and refrigeration system using the same
CN109416229B (en) Heat exchanger and refrigerating apparatus using the same
CN109312993B (en) Heat exchanger and refrigerating apparatus using the same
WO2020217631A1 (en) Plate fin stacking-type heat exchanger and refrigeration system using same
JP3658677B2 (en) Plate heat exchanger and refrigeration system
JP6887075B2 (en) Heat exchanger and freezing system using it
JP6934609B2 (en) Heat exchanger and freezing system using it
JP2020118369A (en) Plate fin lamination type heat exchanger, and refrigeration system using the same
CN114838604A (en) Plate fin stacked type heat exchanger and refrigeration system using the same
JP6827186B2 (en) Plate fin laminated heat exchanger and refrigeration system using it
JP6913858B2 (en) Plate fin laminated heat exchanger and refrigeration system using it
JP6827179B2 (en) Heat exchanger and refrigeration system using it
JP2019100563A (en) Heat exchanger and refrigeration system using the same
JP6934608B2 (en) Plate fin laminated heat exchanger and freezing system using it
JP2019100565A (en) Heat exchanger and refrigeration system using the same
JP6928793B2 (en) Plate fin laminated heat exchanger and freezing system using it
JP2020186834A (en) Heat exchanger, and air conditioner using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20796174

Country of ref document: EP

Kind code of ref document: A1