WO2020213505A1 - 感圧センサ - Google Patents

感圧センサ Download PDF

Info

Publication number
WO2020213505A1
WO2020213505A1 PCT/JP2020/015898 JP2020015898W WO2020213505A1 WO 2020213505 A1 WO2020213505 A1 WO 2020213505A1 JP 2020015898 W JP2020015898 W JP 2020015898W WO 2020213505 A1 WO2020213505 A1 WO 2020213505A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive fiber
pressure
electrode cloth
cloth
Prior art date
Application number
PCT/JP2020/015898
Other languages
English (en)
French (fr)
Inventor
健司 中原
古賀 欣郎
Original Assignee
タカノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020068875A external-priority patent/JP7046114B2/ja
Application filed by タカノ株式会社 filed Critical タカノ株式会社
Publication of WO2020213505A1 publication Critical patent/WO2020213505A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present invention relates to a pressure-sensitive sensor that measures biological information.
  • a pressure sensor is used to measure the pressure distribution of a sleeping posture on a bed and the pressure distribution of a sitting posture on a chair or the like as biological information.
  • a pressure-sensitive sensor that can measure a wide range of pressure distribution with a large size corresponding to the body is required while having flexibility that does not cause discomfort to the body. Has been done.
  • Patent Document 1 See US Pat. No. 8,966,997. Further, a pressure-sensitive sheet having a structure in which an intermediate mixture whose resistance value changes depending on a load is sandwiched between an upper cloth and a lower cloth having a conductive thread has been proposed (Patent Document 2: Japanese Patent Application Laid-Open No. 2004-132765). ).
  • the pressure-sensitive sheet described in Patent Document 1 requires an intermediate cloth for detecting the pressing force, the material cost is increased by that amount, and the intermediate cloth is arranged between the electrode cloths. As a result, the original flexibility of the cloth is impaired and the weight increases.
  • the size of the cloth is constrained by the size of the plating equipment, making it difficult to produce large size pressure sensitive sheets.
  • the pressure-sensitive sheet described in Patent Document 2 requires an intermediate mixture for detecting the pressing force, the material cost is increased by that amount, and the intermediate mixture is arranged in a matrix between the electrode cloth and the electrode cloth. As a result, the original flexibility of the cloth is impaired and the weight increases. Then, the resistance value in the length direction of the thin conductive yarn becomes a noise component with respect to the resistance value of the intermediate mixture, and the resistance value fluctuation becomes large. As a result, there is a problem that the reproducibility of the pressure sensitive resistance is poor and a desired measurement cannot be performed. Further, when the size of the cloth is increased, a huge number of intermediate mixtures must be arranged in a matrix, which makes it difficult to manufacture a pressure-sensitive sheet having a large size.
  • the present invention has been made in view of the above circumstances, and the material cost is significantly reduced by eliminating the intermediate cloth and the intermediate mixture for detecting the pressing force, and the electrode cloth is superposed on the upper and lower sides, and the cloth is flexible. It is an object of the present invention to provide a pressure-sensitive sensor having a configuration in which a wide range of pressure distribution can be stably measured in a state of surface contact while taking advantage of the property, and the measurement accuracy of the pressure applied in each intersection region is improved. ..
  • the present invention solves the above-mentioned problems by the solution disclosed below as an embodiment.
  • the pressure-sensitive sensor according to the present invention has a first electrode cloth and a second electrode cloth, and the first conductive surface is formed by the first conductive fiber thread exposed on the first main surface of the first electrode cloth.
  • the second conductive surface is formed by the second conductive fiber yarn exposed on the second main surface of the first electrode cloth, and the third conductive surface exposed on the third main surface of the second electrode cloth.
  • the third conductive surface is formed by the fiber thread, the fourth conductive surface is formed by the fourth conductive fiber thread exposed on the fourth main surface of the second electrode cloth, and the second conductive surface is formed.
  • the intersection region between the first conductive surface and the third conductive surface is formed in a matrix arrangement, and the first conductive surface and the fourth conductive surface are in contact with each other, and the first conductive surface and the third conductive surface are in contact with each other.
  • the second conductive surface and the fourth conductive surface are in contact with each other, and the electric resistance per unit length of the first conductive fiber yarn is per unit length of the second conductive fiber yarn. It is higher than the electric resistance of the third conductive fiber yarn and higher than the electric resistance per unit length of the third conductive fiber yarn, and the electric resistance per unit length of the fourth conductive fiber yarn is higher. It is characterized in that it is higher than the electric resistance per unit length of the third conductive fiber yarn.
  • the material cost is significantly reduced by the simple configuration in which the first electrode cloth and the second electrode cloth are vertically overlapped, and the flexibility of the cloth is utilized while the wide range of pressure distribution is surface-contacted.
  • the configuration is such that stable measurement can be performed in the state and the measurement accuracy of the pressing force in each intersecting region is improved.
  • the material cost can be significantly reduced, and the alignment error can be eliminated by integrating the electrode cloth and the pressure sensitive cloth. Then, while taking advantage of the flexibility of the cloth, a wide range of pressure distribution can be stably measured in a state of surface contact, and the pressure measurement accuracy in each intersecting region is improved.
  • FIG. 1 is a structural development view schematically showing an example of arrangement of the first electrode cloth and the second electrode cloth in the intersection region of the pressure sensor of the first example in the first embodiment from a perspective view.
  • FIG. 2 is a structural development view schematically showing an example of arrangement of the first electrode cloth and the second electrode cloth in the intersecting region of the pressure sensor of the second example in the first embodiment from a perspective view.
  • FIG. 3 is a structural development view schematically showing an example of arrangement of the first electrode cloth and the second electrode cloth in the intersecting region of the pressure sensor of the third example in the first embodiment from a perspective view.
  • FIG. 4 is a diagram schematically showing an example of a front surface and a back surface when the first electrode cloth and the second electrode cloth are woven fabrics.
  • FIG. 5 is a diagram schematically showing other examples of the front surface and the back surface when the first electrode cloth and the second electrode cloth are woven fabrics.
  • FIG. 6 is a diagram schematically showing an example of a front surface and a back surface when the first electrode cloth and the second electrode cloth are knitted.
  • FIG. 7 is a schematic plan view showing an example of the pressure sensor of the first embodiment, and is a diagram showing a state in which a controller is connected.
  • FIG. 8 is a schematic plan view showing another example of the pressure sensor of the first embodiment, and is a diagram showing a state in which a controller is connected.
  • FIG. 9 is a schematic plan view showing an example of the pressure sensor of the second embodiment, and is a diagram showing a state in which a controller is connected.
  • FIG. 10A is a schematic perspective view showing an example in which the pressure sensitive sensor is sewn on the cover cloth
  • FIG. 10B is a schematic cross-sectional view showing a part of FIG. 10A in an enlarged manner.
  • FIG. 11A is a schematic cross-sectional view showing a part of a state in which a bobbin thread is passed through a loop-shaped upper thread penetrating the first electrode cloth and the second electrode cloth by a sewing machine and a knot is formed
  • FIG. 11B is shown in FIG. 11A.
  • FIG. 11A is a schematic cross-sectional view showing a part of the state in which the knot is arranged between the first electrode cloth and the second electrode cloth by pulling up the knot
  • FIG. 11A is a schematic perspective view showing an example in which the pressure sensitive sensor is sewn on the cover cloth
  • FIG. 10B is a schematic cross-sectional view showing a part of FIG. 10A in an enlarged manner.
  • FIG. 11A is a schematic cross-sectional view
  • FIG. 11C is a first sectional view following FIG. 11B. It is a schematic cross-sectional view which shows a part of the sewn state by repeating the work of tying a knot while moving the electrode cloth and the second electrode cloth in a predetermined direction.
  • FIG. 12 is a schematic perspective view showing a state in which the pressure sensor of the first embodiment is sewn.
  • FIG. 13 is a schematic plan view of FIG. 12 and is a diagram showing a state in which a controller is connected.
  • FIG. 14 is a schematic perspective view showing a state in which the pressure sensor of the second embodiment is sewn.
  • FIG. 15 is a schematic plan view of FIG. 14 and is a diagram showing a state in which a controller is connected.
  • FIG. 16 is a diagram showing an example of FIG. 4 as an image.
  • FIG. 12 is a schematic perspective view showing the pressure sensor 1 of the first embodiment.
  • 7, 8 and 13 are schematic plan views showing a state in which the controller 7 is connected to the pressure sensor 1.
  • the present embodiment is configured by superimposing the first electrode cloth 2 and the second electrode cloth 3.
  • the cover cloth, signal wiring, etc. may be omitted.
  • members having the same function may be designated by the same reference numerals, and the repeated description thereof may be omitted.
  • the first main surface 2a and the second main surface 2b of the first electrode cloth 2 are in a front-to-back relationship with each other.
  • the third main surface 3a and the fourth main surface 3b of the second electrode cloth 3 are in a front-to-back relationship with each other.
  • FIG. 1 to 3 are structural development views schematically showing an arrangement example of the first electrode cloth 2 and the second electrode cloth 3 in the intersection region V1 of the pressure sensor 1 of the present embodiment.
  • FIG. 1 is an example of a configuration in which the first conductive surface 2a1 and the fourth conductive surface 3b1 are in contact with each other.
  • FIG. 2 is an example of a configuration in which the first conductive surface 2a1 and the third conductive surface 3a1 are in contact with each other.
  • FIG. 3 is an example of a configuration in which the second conductive surface 2b1 and the fourth conductive surface 3b1 are in contact with each other.
  • the formation of the first conductive surface 2a1, the second conductive surface 2b1, the third conductive surface 3a1 and the fourth conductive surface 3b1 is, for example, a structure in which the conductive fiber threads are entwined with each other, a structure in which the conductive fiber threads are sewn diagonally. A configuration in which the conductive fiber threads are diagonally tied and other known methods are applied.
  • the first electrode cloth 2 and the second electrode cloth 3 are woven fabrics.
  • Woven fabrics are manufactured, for example, by horizontal looms, vertical looms or jacquard looms.
  • the woven fabric is, for example, a plain weave, a twill weave, a twill weave, a satin weave, a double weave, a jacquard, a lame, a goblin, a pile, a velvet, a towel, a moquette, or a layered structure to which a known weave is applied. , So-called three-dimensional three-dimensional structure.
  • the example is not limited to the illustrated example.
  • the example shown in FIGS. 4 and 16 has a configuration in which the first conductive surface 2a1 and the fourth conductive surface 3b1 are in contact with each other to form an electric circuit.
  • the first insulating line having the first non-conductive fiber thread 5a has a lattice pattern
  • the fourth main surface 3b is the fourth non-conductive fiber thread 5d.
  • the fourth insulating line having the above is the same as or corresponding to the first main surface 2a.
  • the second insulating line having the second non-conductive fiber thread 5b has a vertical stripe pattern or a horizontal stripe pattern
  • the third main surface 3a has a third non-third non-conductive line.
  • the third insulating line having the conductive fiber thread 5c has a pattern that is the same as or corresponds to the second main surface 2b. According to this configuration, the intersecting region V1 between the second conductive surface 2b1 and the third conductive surface 3a1 can be easily formed in a regular grid-like matrix arrangement, and the first conductive surface 2a1 and the fourth conductive surface 3b1 can be easily formed. It is possible to easily suppress the variation in the electric resistance in the electric circuit by making the contact area with which the light comes into contact constant.
  • the first non-conductive fiber thread 5a and the second non-conductive fiber thread 5b may be the same thread or may be different threads.
  • the third non-conductive fiber thread 5c and the fourth non-conductive fiber thread 5d may be the same thread or may be different threads.
  • the weft yarn is regularly skipped with respect to the warp yarn.
  • the woven structure has an increased exposure of the first conductive fiber yarn 4a
  • the fourth main surface 3b has the weft yarn as the fourth conductive fiber yarn 4d and the warp yarn as the fourth non-conductive fiber yarn 5d.
  • the weft yarns are regularly skipped with respect to the warp yarns to increase the exposure of the fourth conductive fiber yarn 4d.
  • a plurality of conductive lines in which the warp yarn is the second conductive fiber yarn 4b (third conductive fiber yarn 4c) and the weft yarn is the first conductive fiber yarn 4a (fourth conductive fiber yarn 4d) are arranged in close proximity to each other.
  • the second conductive surface 2b1 is formed.
  • Examples of the weaving structure include double weave, diagonal weave, twill weave, and satin weave. According to this configuration, the contact area between the first conductive fiber thread 4a and the fourth conductive fiber thread 4d when the first electrode cloth 2 and the second electrode cloth 3 are cross-arranged at 90 degrees is increased. Therefore, it becomes a high-performance pressure-sensitive sensor 1 with little variation in sensitivity characteristics and high reproducibility by contact. Note that FIG.
  • first conductive fiber thread 4a and the fourth conductive fiber thread 4d may be the same thread or may be different threads.
  • the second conductive fiber thread 4b and the third conductive fiber thread 4c may be the same thread or may be different threads.
  • the weft and warp are in a relative relationship, and the relationship may be interchanged depending on the type of loom.
  • the first electrode cloth 2 and the second electrode cloth 3 are knitted fabrics.
  • the knitting is, for example, a weft knitted by a flat knitting machine, a full fashion knitting machine or a circular knitting machine.
  • the weft knitting is a layered structure to which flat knitting, rubber knitting, pearl knitting, tack knitting, pile knitting, jacquard knitting, and other known weft knitting are applied, and has a so-called three-dimensional structure. ..
  • the knitting is, for example, a warp knitting machine knitted by a tricot knitting machine, a Russell knitting machine, a crochet knitting machine or a Milanese knitting machine.
  • the warp knitting is a layered organization to which tricot, satin, inlay, Russell, double Russell, crochet, chain, atlas, mirannies, and other known warp are applied. , So-called three-dimensional structure.
  • the example is not limited to the illustrated example.
  • the first conductive fiber thread 4a is exposed on the first main surface 2a of the first electrode cloth 2 to form the first conductive surface 2a1, and the second main surface 2b of the first electrode cloth 2 is formed.
  • the second conductive fiber thread 4b is exposed and the second conductive surface 2b1 is formed.
  • the third conductive fiber thread 4c is exposed on the third main surface 3a of the second electrode cloth 3 to form the third conductive surface 3a1, and the fourth main surface 3b of the second electrode cloth 3 is formed.
  • the conductive fiber thread 4d is exposed to form the fourth conductive surface 3b1.
  • the intersecting region V1 between the second conductive surface 2b1 and the third conductive surface 3a1 is formed in a matrix arrangement.
  • the average value R1 of the electrical resistance in the longitudinal direction of the first conductive surface 2a1 and the average value R2 of the electrical resistance in the longitudinal direction of the second conductive surface 2b1 can satisfy the following equation (1). preferable. (Number 1) R2 ⁇ Rc ⁇ R1 ... (1)
  • the ratio to the resistance value R1 which is the average value of the resistance in the longitudinal direction of the first conductive surface 2a1 when the resistance value R2 which is the average value of the resistance in the longitudinal direction of the second conductive surface 2b1 is used as a reference is 1. : By setting it to more than 300, you can take advantage of the flexibility of the cloth that does not make you feel uncomfortable. As an example, even if the resistance values of 30 lines are accumulated as electric signal lines, the influence of the accumulation of electric resistance on the measured resistance can be less than 1/10.
  • the electric resistance per unit length of the first conductive fiber thread 4a is higher than the electric resistance per unit length of the second conductive fiber thread 4b, and the third conductive fiber It is higher than the electrical resistance per unit length of the thread 4c.
  • the second conductive fiber thread 4b is exposed only on the second main surface 2b of the first electrode cloth 2.
  • the electric resistance per unit length of the fourth conductive fiber thread 4d is higher than the electric resistance per unit length of the third conductive fiber thread 4c.
  • the third conductive fiber thread 4c is exposed only on the third main surface 3a of the second electrode cloth 3.
  • the material cost is significantly reduced by a simple configuration in which the first electrode cloth 2 and the second electrode cloth 3 are vertically overlapped, and the flexibility of the cloth is utilized to provide a wide range of pressure distribution.
  • the configuration is such that stable measurement can be performed in the state of contact, and the measurement accuracy of the pressing force in each intersection region V1 is improved.
  • the first electrode cloth 2 and the second electrode cloth 3 may each have non-conductive fiber threads.
  • the non-conductive fiber yarn is a synthetic yarn containing any one or more of polyester, polyamide, nylon, rayon, acrylic and polyurethane. Since it has a non-conductive fiber yarn, it has a structure that is soft to the touch and has excellent chemical resistance. In order to reduce the contact resistance and secure the strength required as a pressure sensor while utilizing the flexibility of the cloth, the non-conductive fiber yarn is preferably multifilament. As an example, non-conductive fiber yarns are 20-200 denier.
  • the first conductive fiber thread 4a, the second conductive fiber thread 4b, the third conductive fiber thread 4c, and the fourth conductive fiber thread 4d are each one or more of polyester, polyamide, nylon, rayon, acrylic, or polyurethane. It has synthetic yarns containing, and the synthetic yarns are conductive carbon black, conductive polymer compounds, silver, nickel, nickel alloys, copper, copper alloys, copper sulfide, aluminum, or one or more of aluminum alloys. A structure coated with a sex material is preferable.
  • the second conductive fiber yarn 4b and the third conductive fiber yarn 4c each contain a synthetic yarn containing at least one of polyester, polyamide, nylon, rayon, acrylic or polyurethane as a core yarn, and the polyester yarn and polyamide.
  • the second conductive fiber yarn 4b and the third conductive fiber yarn 4c are woolly processed yarns in which polyester yarn, polyamide yarn or nylon yarn is coated with silver and woolly processed, respectively. According to this configuration, excellent elasticity can be provided, and the surface area can be increased to improve contactability.
  • the thickness of the conductive metal is preferably 1% or more and 10% or less with respect to the diameter of the coated yarn. According to this configuration, flexibility can be ensured while suppressing the resistance value in the length direction of the thread to be coated.
  • the thickness of the conductive metal is 0.01% or more with respect to the diameter of the coated yarn. % Or less is preferable.
  • silver has excellent ductility, a conductive thin film can be formed, and silver ions have an excellent antibacterial action because they show strong bactericidal activity against various germs such as bacteria.
  • the second conductive fiber thread 4b and the third conductive fiber thread 4c are made of the same material or the same kind of material.
  • the second conductive fiber yarn 4b and the third conductive fiber yarn 4c are warp yarns.
  • conductive carbon black is applied to the first conductive fiber thread 4a and the fourth conductive fiber thread 4d.
  • the size of the conductive carbon black is preferably any one or more of Ketjen black, acetylene black, channel black and furnace black having an average primary particle size of 100 [nm] or less. According to this configuration, the cloth has excellent scratch resistance and flexibility.
  • the first conductive fiber thread 4a and the fourth conductive fiber thread 4d are synthetic threads coated with copper sulfide. According to this configuration, the cloth has excellent scratch resistance and flexibility.
  • the first conductive fiber yarn 4a and the fourth conductive fiber yarn 4d are weft yarns.
  • the first conductive fiber thread 4a and the second conductive fiber thread 4b and / or the third conductive fiber thread 4c and the fourth conductive fiber thread 4d are made of the same material or the same kind of material, and the conductive material is used.
  • the coat thickness of the sex material is different.
  • the base yarn is a 50 denier nylon yarn
  • the second conductive fiber yarn 4b and the third conductive fiber yarn 4c have a thickness of 2 to 3 [ ⁇ m] on the surface of the base yarn.
  • the first conductive fiber yarn 4a and the fourth conductive fiber yarn 4d are formed by subjecting the surface of the base material yarn to silver plating of 50 to 200 [nm].
  • conductive fiber yarns of the same material having different electrical resistances can be formed, and since they can be manufactured by the same manufacturing method, the number of parts can be significantly reduced and the fiber yarns can be manufactured.
  • the combination of electrical resistances between them is simplified and the pressure sensitive sensor 1 can be easily configured.
  • the first electrode cloth 2 and the second electrode cloth 3 are made of the same material or the same material. According to this configuration, the number of parts can be significantly reduced, and the combination of electrical resistance between the cloths is simplified, so that the pressure-sensitive sensor 1 can be easily configured.
  • the first electrode cloth 2 has a plurality of second conductive surfaces 2b1 formed at the first interval 2c
  • the second electrode cloth 3 has a plurality of third conductive surfaces 3a1 formed at the second interval 3c.
  • the third conductive surface 3a1 and the second conductive surface 2b1 are arranged so as to intersect with each other to form an intersecting region V1.
  • the number of parts can be halved by making the first electrode cloth 2 and the second electrode cloth 3 the same.
  • 10A and 10B are examples of a configuration in which the pressure sensitive sensor 1 is sewn on the cover cloth 8a and the cover cloth 8b.
  • the first electrode cloth 2 is sewn to the cover cloth 8a by the suture thread 9a
  • the second electrode cloth 3 is sewn to the cover cloth 8b by the suture thread 9b.
  • the four corners of the cover cloth 8a and the cover cloth 8b are sewn, hooked, eyelets, hook-and-loop fasteners, and other known methods are assembled and integrated. That is, the first electrode cloth 2 and the second electrode cloth 3 are sewn to the inside of the cover cloths 8a and 8b by the suture threads 9a and 9b, respectively, and face each other.
  • the structure is not limited to the above.
  • the bag-shaped cover cloth is turned inside out, the first electrode cloth 2 and the second electrode cloth 3 are sewn inside the cover cloth with a suture, and the cover cloth is turned over.
  • the pressure sensitive sensor 1 can be integrated with the cover cloth.
  • first electrode cloth 2 and the second electrode cloth 3 may be sewn to each other by the suture thread 9c. According to this configuration, since the first electrode cloth 2 and the second electrode cloth 3 are sewn and integrated, the position shift of the measurement area is prevented, and stable pressing force is utilized while utilizing the flexibility of the cloth. Can be measured. Moreover, the pressure distribution over a wide range can be made into a measurable size. Then, stable pressing force can be measured in the state of surface contact, and the structure becomes highly productive while suppressing the material cost. Further, since the position of the boundary of the crossing region V1 is stabilized by sewing, the measurement accuracy of the pressing force in each crossing region V1 can be improved.
  • FIG. 11A, 11B, and 11C are schematic cross-sectional views illustrating a procedure for sewing the first electrode cloth 2 and the second electrode cloth 3 to each other by a sewing machine.
  • a knot is formed by passing a bobbin thread (sewn thread 9c) through a loop-shaped upper thread (sewn thread 9c) penetrating the first electrode cloth 2 and the second electrode cloth 3 by a sewing machine. (FIG. 11A), the knot is pulled up so that the knot is arranged between the first electrode cloth 2 and the second electrode cloth 3 (FIG. 11B), and the first electrode cloth 2 and the second electrode cloth 3 are placed together.
  • the work of tying a knot is repeated while moving the cloth in a predetermined direction (FIG. 11C).
  • Sewing is, for example, a sewing machine or hand-sewn.
  • lockstitch, chain stitch, overlock stitch, flat stitch, and other known sewing methods are applied to the sewing.
  • the part where the suture thread 9c is sewn becomes a non-stretchable seam, and a dead zone is formed to suppress the fluctuation of the resistance value in the part other than the intersection area V1. Therefore, the intersection area V1 is formed in a matrix arrangement and individually. It facilitates functioning as an independent pressure cell for extracting electrical signals.
  • the sutures 9a, 9b, 9c are made of synthetic fibers such as nylon, polyester, rayon, acrylic, and polyamide, and natural fibers such as cotton and linen, for example.
  • the sutures 9a, 9b, 9c have a thickness of 20-200 denier.
  • the 7, 8 and 13 are schematic plan views showing an example of the pressure sensor 1 of the first embodiment, and are views in a state where the controller 7 is connected.
  • the controller 7 includes a signal wiring switching circuit, a signal detector, an A / D converter, a semiconductor memory, an arithmetic circuit, and a CPU that controls these.
  • the pressure-sensitive sensor 1 is scanned at a frequency of 10 to 100 [Hz] as an example by a switching circuit built in the controller 7, and the resistance value of the intersection region V1 formed in the matrix arrangement is individually signal-detected on the order of millisecond.
  • A-D converted by an A / D converter data is stored by a semiconductor memory, calculated by an arithmetic circuit, and finally a pressure value or pressure distribution, or an external display device as a pressure value and pressure distribution. Is displayed in.
  • a personal computer having a built-in interface board for signal connection with the pressure sensitive sensor 1 can be applied to the controller 7 and the display device.
  • the 3b is provided with [n] number of third conductive surfaces 3a1 arranged at a second interval 3c in a direction intersecting the second conductive surface 2b1, and the intersection region V1 between the third conductive surface 3a1 and the third conductive surface 3a1.
  • the second conductive surface 2b1 is signal-connected by the conductive first terminals 6a arranged at predetermined intervals at the ends of the first electrode cloth 2, and the second electrode cloth 3 is used.
  • the third conductive surface 3a1 is signal-connected by the conductive second terminal 6b arranged one-to-one with the first terminal 6a at the end of the above.
  • signal connection to an external device such as the controller 7 can be easily performed.
  • the example shown in FIG. 8 has a configuration in which the resolution can be set according to the sizes of the first terminal 6a and the second terminal 6b. As a result, as an example, the resolution of the central portion with respect to the peripheral portion can be increased, and high-precision sensing corresponding to the body can be easily performed.
  • the first terminal 6a and the second terminal 6b are made of a conductive metal such as brass, aluminum, aluminum alloy, stainless steel, nickel, nickel alloy, copper, and copper alloy, for example. Further, as an example, eyelets, clips, caulking terminals, and other known terminals can be applied. As an example, the first terminal 6a and the second terminal 6b have a "U-shape" when viewed from the side. According to this configuration, not only can the connection with the controller 7 be easily made, but also a plurality of second conductive fiber threads 4b on the second conductive surface 2b1 can be collectively electrically connected by contact, and the third conductive surface 3a1 can be connected.
  • the pressure-sensitive sensor 1 Since a plurality of third conductive fiber threads 4c can be electrically connected together by contact, the pressure-sensitive sensor 1 has excellent electrical connection reliability. By reducing the size of the first terminal 6a and the second terminal 6b, the number of connections with the second conductive fiber thread 4b and the third conductive fiber thread 4c can be reduced and the resolution can be improved. The spatial resolution of the pressure sensor 1 can be easily changed.
  • a pressure sensor 1 having a size suitable for a bed size having a width of 900 [mm] and a length of 1800 [mm] can be used.
  • the first electrode cloth 2 having an electrode stripe of 25 [mm] and an insulating stripe having a stripe pitch of 35 [mm] and an electrode stripe having a stripe pitch of 25 [mm] and an insulating stripe having a stripe pitch of 35 [mm].
  • a pressure sensitive sensor 1 capable of measuring the pressure distribution can be obtained by providing 450 pressure sensitive cells having a side of 25 [mm] in the intersecting region.
  • the insulating stripe By making the insulating stripe wider than the electrode stripe in this way, the amount of the conductive fiber thread used can be reduced and the cost can be further reduced. Then, by sewing the first electrode cloth 2, the conductive cloth, and the second electrode cloth 3 with the non-conductive suture thread 9c in the area of the insulating stripe, the first electrode cloth 2 and the second electrode cloth 3 are sewn together. A large-sized pressure-sensitive sensor 1 that prevents misalignment and has excellent reproducibility of pressure-sensitive characteristics can be obtained.
  • 9 and 15 are schematic plan views showing an example of the pressure sensor 1 of the second embodiment, and are views in a state where the controller 7 is connected.
  • the differences from the first embodiment will be mainly described.
  • [m] number of first electrode cloths 2 are arranged at a first interval of 2c, and [n] number of second electrode cloths 3 are arranged in a direction intersecting with the first electrode cloth 2.
  • the crossing region V1 is formed by being arranged at the second interval 3c.
  • the number of parts can be halved by making the first electrode cloth 2 and the second electrode cloth 3 the same.
  • a vibration sensor 11 made of a piezoelectric element or the like is configured to be connected to an electric circuit in the pressure sensor 1 so that a signal can be taken out, so that the pressure distribution and heartbeat / breathing can be performed with high accuracy. It can be easily sensed. Further, as an example, the pressure distribution and the temperature / humidity distribution can be made high by configuring the temperature sensor 11 composed of a thermocouple or the like, the humidity sensor 11 or the like so as to be connected to the electric circuit in the pressure sensor 1 so that the signal can be taken out. Sensing with accuracy can be easily performed.
  • the electric circuit in the pressure sensor 1 preferably has a configuration in which any one or more of a vibration sensor, a temperature sensor, and a humidity sensor are connected so that signals can be taken out.
  • Various sensors such as a vibration sensor, a temperature sensor, and a humidity sensor are arranged in a space formed in a space other than the intersection region of the band-shaped first electrode cloth 2 and the band-shaped second electrode cloth 3, which saves space and is rational. It becomes a hybrid sensor with a typical arrangement configuration.
  • the pressure-sensitive sensor 1 described above can be applied to beds, bed mats, sheets, mats, cushions, chair mats, health mats, and carpets as an example.
  • the pressure sensor 1 by incorporating the pressure sensor 1 into a bed, a bed mat, sheets or a mat, it is possible to measure a person's sleeping appearance at bedtime and to promote turning over by adjusting the air pressure of the air mat to prevent pressure ulcers. It is also possible to measure heartbeat, respiration, etc. as a heartbeat sensor or respiration sensor by analyzing and calculating the pressure waveform of a predetermined portion.
  • the posture is corrected by measuring the sitting posture of a person, detecting the leaving of the seat to grasp the movement of the person, adjusting the air pressure of the air cushion, and the like. It can prevent stiff shoulders and back pain.
  • incorporating the pressure sensor 1 into a health mat or carpet it is possible to customize shoes corresponding to the subject by measuring the walking posture of a person or measuring the foot pressure in a standing position. It is also possible to measure the weight of a person from the contact resistance, and it can also be applied to the measurement of lifestyle habits such as movement of a person in a room.
  • the measurement range by the pressure sensor 1 can be sufficiently measured when the pressing force is 2 to 40 [kPa].
  • the frequency of measurement by the pressure sensor 1 is high when the pressing force is around 10 [kPa].
  • the fourth conductive fiber thread 4d is exposed on the fourth main surface 3b of the second electrode cloth 3 to form the fourth conductive surface 3b1, but the present invention is not limited to this configuration.
  • the present invention is not limited to this configuration.
  • the first main surface 2a of the first electrode cloth 2 and the third main surface 3a of the second electrode cloth 3 are in contact with each other, there is no particular problem even if the fourth conductive fiber thread 4d is omitted.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the present invention.
  • the shape and size of the pressure sensitive sensor 1 may be appropriately changed according to the specifications of known beds, bed mats, sheets, mattresses, cushions, chair mats, health mats, carpets and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

感圧センサ(1)は、電極布を上下に重ね合わせた単純な構成になっており、第1電極布(2)の第1主面(2a)に第1導電性繊維糸(4a)が露出して第1導電面(2a1)が形成されており、第1電極布(2)の第2主面(2b)に第2導電性繊維糸(4b)が露出して第2導電面(2b1)が形成されており、第2電極布(3)の第3主面(3a)に第3導電性繊維糸(4c)が露出して第3導電面(3a1)が形成されており、第2電極布(3)の第4主面(3b)に第4導電性繊維糸(4d)が露出して第4導電面(3b1)が形成されており、第1電極布(2)の第1主面(2a)と第2電極布(3)の第4主面(3b)とが当接しており、第2導電面(2b1)と第3導電面(3a1)との交差領域(V1)がマトリクス配置で形成されている。

Description

感圧センサ
 本発明は、生体情報を計測する感圧センサに関する。
 近年、医療介護や健康促進等の目的で感圧センサが使用されている。一例として、感圧センサを用いて、ベッドでの寝姿の圧力分布や椅子等での着座姿勢の圧力分布を生体情報として計測する。このように身体に接触させて生体情報を計測する用途においては、身体に違和感の少ない柔軟性を有しつつ、身体に対応した大きなサイズで広範囲の圧力分布を計測可能な感圧センサが必要とされている。
 従来、加圧力によって電気特性値が変化する中間布を、導電性貴金属粒子をめっきして塗り分けた第1電極布と第3電極布とで挟んだ構成の感圧シートが提案されている(特許文献1:米国特許第8966997号明細書参照)。また、荷重によって抵抗値が変化する中間混合物を、導電性糸を有する上布と下布とで挟んだ構成の感圧シートが提案されている(特許文献2:特開2004-132765号公報参照)。
米国特許第8966997号明細書 特開2004-132765号公報
 特許文献1記載の感圧シートは、加圧力を検出する中間布が必須であるので、その分の材料費が嵩み、また、中間布が電極布と電極布との間に配置されたことによって、布本来の柔軟性が損なわれて重量が増大する。そして、導電性貴金属粒子を布にめっきする場合、布の油分除去、触媒付与、布表面の活性化処理等を事前に行う必要があるため、処理工程が複雑になるとともに、布へのダメージが懸念される。さらに、布のサイズは、めっき設備のサイズの制約を受けるので、大きなサイズの感圧シートを製造することが困難である。また、特許文献2記載の感圧シートは、加圧力を検出する中間混合物が必須であるので、その分の材料費が嵩み、また、中間混合物が電極布と電極布との中間にマトリクス配置されたことによって、布本来の柔軟性が損なわれて重量が増大する。そして、細い導電性糸の長さ方向の抵抗値は中間混合物の抵抗値に対してノイズ成分となって抵抗値変動が大きくなる。その結果、感圧抵抗の再現性に乏しく所望の計測ができない、という問題がある。さらに、布のサイズを大きくすると、膨大な数の中間混合物をマトリクス配置しなければならず、大きなサイズの感圧シートを製造することが困難である。
 本発明は、上記事情に鑑みてなされ、加圧力を検出するための中間布や中間混合物をなくして、電極布を上下に重ね合わせた単純な構成によって材料費を大幅に抑えるとともに、布の柔軟性を活かしつつ、広範囲の圧力分布を面接触の状態で安定して計測できて、尚且つ、各交差領域における加圧力の計測精度を高めた構成の感圧センサを提供することを目的とする。
 本発明は一実施形態として以下に開示する解決策により、前記課題を解決する。
 本発明に係る感圧センサは、第1電極布と第2電極布とを有し、前記第1電極布の第1主面に露出した第1導電性繊維糸によって第1導電面が形成されており、前記第1電極布の第2主面に露出した第2導電性繊維糸によって第2導電面が形成されており、前記第2電極布の第3主面に露出した第3導電性繊維糸によって第3導電面が形成されており、前記第2電極布の第4主面に露出した第4導電性繊維糸によって第4導電面が形成されており、かつ、前記第2導電面と前記第3導電面との交差領域がマトリクス配置で形成されており、前記第1導電面と前記第4導電面が当接する構成、前記第1導電面と前記第3導電面が当接する構成、前記第2導電面と前記第4導電面が当接する構成のいずれかであり、前記第1導電性繊維糸の単位長さ当たりの電気抵抗は前記第2導電性繊維糸の単位長さ当たりの電気抵抗よりも高くなっているとともに前記第3導電性繊維糸の単位長さ当たりの電気抵抗よりも高くなっており、かつ、前記第4導電性繊維糸の単位長さ当たりの電気抵抗は前記第3導電性繊維糸の単位長さ当たりの電気抵抗よりも高くなっていることを特徴とする。
 この構成によれば、第1電極布と第2電極布とを上下に重ね合わせた単純な構成によって材料費を大幅に抑えるとともに、布の柔軟性を活かしつつ、広範囲の圧力分布を面接触の状態で安定して計測できて、尚且つ、各交差領域における加圧力の計測精度を高めた構成になる。
 本発明によれば、材料費を大幅に抑えるとともに、電極布と感圧布とを一体構造にしたことでアラインメント誤差をなくすことができる。そして、布の柔軟性を活かしつつ、広範囲の圧力分布を面接触の状態で安定して計測できて、尚且つ、各交差領域における加圧力の計測精度を高めた構成になる。
図1は第1の実施形態における第1例の感圧センサの交差領域における第1電極布と第2電極布との配置例を斜視にて模式的に示す構造展開図である。 図2は第1の実施形態における第2例の感圧センサの交差領域における第1電極布と第2電極布との配置例を斜視にて模式的に示す構造展開図である。 図3は第1の実施形態における第3例の感圧センサの交差領域における第1電極布と第2電極布との配置例を斜視にて模式的に示す構造展開図である。 図4は第1電極布と第2電極布が織物の場合の表面並びに裏面の例を模式的に示す図である。 図5は第1電極布と第2電極布が織物の場合の表面並びに裏面の他の例を模式的に示す図である。 図6は第1電極布と第2電極布が編物の場合の表面並びに裏面の例を模式的に示す図である。 図7は第1の実施形態の感圧センサの例を示す概略の平面図であり、コントローラを接続した状態を示す図である。 図8は第1の実施形態の感圧センサの他の例を示す概略の平面図であり、コントローラを接続した状態を示す図である。 図9は第2の実施形態の感圧センサの例を示す概略の平面図であり、コントローラを接続した状態を示す図である。 図10Aは感圧センサがカバー布に縫製された例を示す概略の斜視図であり、図10Bは図10Aの一部を拡大して示す概略の断面図である。 図11Aはミシンによって第1電極布と第2電極布とを貫通したループ状の上糸に下糸を通して結び目が出来た状態の一部を示す概略の断面図であり、図11Bは図11Aに続いて前記結び目を引き上げることで第1電極布と第2電極布との間に前記結び目が配された状態の一部を示す概略の断面図であり、図11Cは図11Bに続いて第1電極布と第2電極布とを所定方向に移動させながら結び目を作る作業を繰り返して縫製された状態の一部を示す概略の断面図である。 図12は第1の実施形態の感圧センサが縫製された状態を示す概略の斜視図である。 図13は図12の概略の平面図であり、コントローラを接続した状態を示す図である。 図14は第2の実施形態の感圧センサが縫製された状態を示す概略の斜視図である。 図15は図14の概略の平面図であり、コントローラを接続した状態を示す図である。 図16は図4の例を画像にて示す図である。
(第1の実施形態)
 以下、図面を参照して、本発明の第1の実施形態について詳しく説明する。図12は第1の実施形態の感圧センサ1を示す概略の斜視図である。図7、図8並びに図13は感圧センサ1にコントローラ7を接続した状態を示す概略の平面図である。本実施形態は、第1電極布2と第2電極布3とが重ね合わさって構成される。説明の都合上、カバー布や信号配線等を省略している場合がある。ここで、実施形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する場合がある。第1電極布2における第1主面2aと第2主面2bとはそれぞれ互いに表裏の関係にある。同様に、第2電極布3における第3主面3aと第4主面3bとはそれぞれ互いに表裏の関係にある。
 図1~図3は、本実施形態の感圧センサ1の交差領域V1における第1電極布2と第2電極布3との配置例を模式的に示す構造展開図である。図1は、第1導電面2a1と第4導電面3b1が当接する構成の例である。図2は、第1導電面2a1と第3導電面3a1が当接する構成の例である。図3は、第2導電面2b1と第4導電面3b1が当接する構成の例である。第1導電面2a1、第2導電面2b1、第3導電面3a1並びに第4導電面3b1の形成は、一例として、導電性繊維糸同士を絡ませる構成、導電性繊維糸を斜め縫いする構成、導電性繊維糸を斜め結びする構成、その他既知の方法が適用される。
 図4、図5並びに図16に示す例は、第1電極布2、並びに第2電極布3は、織物である。織物は、一例として、水平織機、垂直織機またはジャガード織機によって製造される。織物は、一例として、平織、斜文織、綾織、朱子織、二重織、ジャガード、ラメ、ゴブラン、パイル、ビロード、タオル、モケット、その他既知の織方が適用された重ね組織となっており、いわゆる3次元立体構造となっている。なお、図示の例に限定されない。
 図4と図16に示す例は、第1導電面2a1と第4導電面3b1が当接して電気回路が形成されている構成である。この例では、第1主面2aは、第1非導電性繊維糸5aを有する第1絶縁ラインが格子模様になっており、かつ、第4主面3bは、第4非導電性繊維糸5dを有する第4絶縁ラインが第1主面2aと同一または対応する模様になっている。また、この例では、第2主面2bは、第2非導電性繊維糸5bを有する第2絶縁ラインが縦縞模様または横縞模様になっており、かつ、第3主面3aは、第3非導電性繊維糸5cを有する第3絶縁ラインが第2主面2bと同一または対応する模様になっている。この構成によれば、第2導電面2b1と第3導電面3a1との交差領域V1を規則正しい格子状のマトリクス配置で形成することが容易にできるとともに、第1導電面2a1と第4導電面3b1が当接する当接面積を一定にして電気回路における電気抵抗のばらつきを抑えることが容易にできる。なお、ここで、第1非導電性繊維糸5aと第2非導電性繊維糸5bは同じ糸の場合があり、または、異なる糸の場合がある。また、ここで、第3非導電性繊維糸5cと第4非導電性繊維糸5dは同じ糸の場合があり、または、異なる糸の場合がある。
 図16に示すように、第1主面2aは、緯糸を第1導電性繊維糸4aとして、経糸を第1非導電性繊維糸5aとした場合に、緯糸を経糸に対して規則的に飛ばして第1導電性繊維糸4aの露出を増やした織組織であり、かつ、第4主面3bは、緯糸を第4導電性繊維糸4dとして、経糸を第4非導電性繊維糸5dとした場合に、緯糸を経糸に対して規則的に飛ばして第4導電性繊維糸4dの露出を増やした織組織である。そして、経糸を第2導電性繊維糸4b(第3導電性繊維糸4c)として、緯糸を第1導電性繊維糸4a(第4導電性繊維糸4d)とした導電ラインが複数近接配置して第2導電面2b1が形成されている。織組織は、一例として、二重織、斜文織、綾織、朱子織が挙げられる。この構成によれば、第1電極布2と第2電極布3とを90度交差配置させた場合における、第1導電性繊維糸4aと第4導電性繊維糸4dとの当接面積を増やすことができるので、感度特性のばらつきが少なくて接触による再現性の高い高性能の感圧センサ1になる。なお、図16は一例であり、この例に限定されない。ここで、第1導電性繊維糸4aと第4導電性繊維糸4dは同じ糸の場合があり、または、異なる糸の場合がある。また、第2導電性繊維糸4bと第3導電性繊維糸4cは同じ糸の場合があり、または、異なる糸の場合がある。緯糸と経糸とは相対的な関係であり、織機の種類によって互いの関係が入れ替わる場合がある。
 図6に示す例では、第1電極布2、並びに第2電極布3は編物である。編物は、一例として、横編機、フルファッション編機または丸編機によって編成された緯編である。緯編は、一例として、平編、ゴム編、パール編、タック編、パイル編、ジャガード編、その他既知の緯編が適用された重ね組織となっており、いわゆる3次元立体構造となっている。また、編物は、一例として、トリコット編機、ラッセル編機、クロッシェ編機またはミラニーズ編機によって編成された経編である。経編は、一例として、トリコット編、サテン編、インレイ編、ラッセル編、ダブルラッセル編、クロッシェ編、鎖編、アトラス編、ミラニーズ編、その他既知の経編が適用された重ね組織となっており、いわゆる3次元立体構造となっている。なお、図示の例に限定されない。
 本実施形態は、第1電極布2の第1主面2aに第1導電性繊維糸4aが露出して第1導電面2a1が形成されており、第1電極布2の第2主面2bに第2導電性繊維糸4bが露出して第2導電面2b1が形成されている。また、第2電極布3の第3主面3aに第3導電性繊維糸4cが露出して第3導電面3a1が形成されており、第2電極布3の第4主面3bに第4導電性繊維糸4dが露出して第4導電面3b1が形成されている。尚且つ、第2導電面2b1と第3導電面3a1との交差領域V1がマトリクス配置で形成されている。
 第1電極布2と第2電極布3とが互いに近づく圧縮方向に10[kPa]の外力を加えた状態における、第1導電面2a1と第2導電面2b1との厚み方向の電気抵抗の平均値Rcに対して、第1導電面2a1の長手方向の電気抵抗の平均値R1と、第2導電面2b1の長手方向の電気抵抗の平均値R2とは次の式(1)を満たすことが好ましい。
(数1)
 R2<Rc<<R1・・・(1)
 この構成によれば、加圧力を検出する際に、電極間のショートを防止しつつ、隣接する交差領域とのクロストークを防止できるので、S/N比を向上できる。一例として、第2導電面2b1の長手方向の抵抗の平均値である抵抗値R2を基準とした場合の第1導電面2a1の長手方向の抵抗の平均値である抵抗値R1との比を1:300超にすることで身体に違和感の少ない布の柔軟性を活かすことができる。一例として、電気信号線として30ライン分の抵抗値が累積しても電気抵抗の累積による測定抵抗への影響は1/10未満にできる。
 本実施形態は、第1導電性繊維糸4aの単位長さ当たりの電気抵抗は、第2導電性繊維糸4bの単位長さ当たりの電気抵抗よりも高くなっているとともに、第3導電性繊維糸4cの単位長さ当たりの電気抵抗よりも高くなっている。そして、第2導電性繊維糸4bは第1電極布2の第2主面2bにのみ露出している。また、第4導電性繊維糸4dの単位長さ当たりの電気抵抗は、第3導電性繊維糸4cの単位長さ当たりの電気抵抗よりも高くなっている。そして、第3導電性繊維糸4cは第2電極布3の第3主面3aにのみ露出している。この構成によれば、第1電極布2と第2電極布3とを上下に重ね合わせた単純な構成によって材料費を大幅に抑えるとともに、布の柔軟性を活かしつつ、広範囲の圧力分布を面接触の状態で安定して計測できて、尚且つ、各交差領域V1における加圧力の計測精度を高めた構成になる。
 第1電極布2と第2電極布3とはそれぞれ非導電性繊維糸を有している場合がある。一例として、非導電性繊維糸はポリエステル、ポリアミド、ナイロン、レーヨン、アクリルまたはポリウレタンのいずれか一種以上を含む合成糸である。非導電性繊維糸を有していることで、肌触りがよくて耐薬品性に優れた構成になる。接触抵抗を小さくし、布の柔軟性を活かしつつ圧力センサとして必要な強度を確保するためには、非導電性繊維糸はマルチフィラメントが好ましい。一例として、非導電性繊維糸は20~200デニールである。
 第1導電性繊維糸4a、第2導電性繊維糸4b、第3導電性繊維糸4c並びに第4導電性繊維糸4dはそれぞれポリエステル、ポリアミド、ナイロン、レーヨン、アクリルまたはポリウレタンのいずれか一種以上を含む合成糸を有しており、前記合成糸に導電性カーボンブラック、導電性高分子化合物、銀、ニッケル、ニッケル合金、銅、銅合金、硫化銅、アルミニウムまたはアルミニウム合金のいずれか一種以上の導電性材料をコートしている構成が好ましい。一例として、第2導電性繊維糸4bと第3導電性繊維糸4cとはそれぞれポリエステル、ポリアミド、ナイロン、レーヨン、アクリルまたはポリウレタンのいずれか一種以上を含む合成糸を芯糸として、ポリエステル糸、ポリアミド糸またはナイロン糸が銀でコートされた糸によってカバーリングされたカバーリング糸である。この構成によれば、優れた伸縮性をもたせることができる。コートは、めっき、蒸着、その他既知のコーティング工法が適用される。一例として、第2導電性繊維糸4bと第3導電性繊維糸4cとはそれぞれポリエステル糸、ポリアミド糸またはナイロン糸が銀でコートされてウーリー加工されたウーリー加工糸である。この構成によれば、優れた伸縮性をもたせることができるとともに、表面積を大きくして接触性を高めることができる。
 第2導電性繊維糸4bと第3導電性繊維糸4cとに導電性金属を適用する場合、導電性金属の厚みは、コートされる糸の直径に対して1%以上10%以下が好ましい。この構成によれば、コートされる糸の長さ方向の抵抗値を抑えつつ柔軟性を確保できる。同様に、第1導電性繊維糸4aと第4導電性繊維糸4dとに導電性金属を適用する場合、導電性金属の厚みは、コートされる糸の直径に対して0.01%以上1%以下が好ましい。特に、銀は展延性に優れているので導電性薄膜を形成できるうえ、銀イオンはバクテリアなどの雑菌に対して強い殺菌力を示すので優れた抗菌作用がある。一例として、第2導電性繊維糸4bと第3導電性繊維糸4cとは同一材料または同種材料からなる。一例として、第2導電性繊維糸4bと第3導電性繊維糸4cとは経糸になる。
 一例として、第1導電性繊維糸4aおよび第4導電性繊維糸4dは導電性カーボンブラックが適用される。導電性カーボンブラックのサイズは平均一次粒子径が100[nm]以下のケッチェンブラック、アセチレンブラック、チャンネルブラックまたはファーネスブラックのいずれか1種以上であることが好ましい。この構成によれば、耐擦過性および柔軟性に優れた布になる。一例として、第1導電性繊維糸4aと第4導電性繊維糸4dとは硫化銅によってコートされた合成糸である。この構成によれば、耐擦過性および柔軟性に優れた布になる。一例として、第1導電性繊維糸4aと第4導電性繊維糸4dとは緯糸になる。
 一例として、第1導電性繊維糸4aと第2導電性繊維糸4b、及び/または、第3導電性繊維糸4cと第4導電性繊維糸4dとは同一材料または同種材料からなり、前記導電性材料のコート厚みを異ならせている。より具体的な例として、基材糸を50デニールのナイロン糸とし、第2導電性繊維糸4bと第3導電性繊維糸4cとは前記基材糸の表面に膜厚2~3[μm]の銀メッキを施して形成し、第1導電性繊維糸4aと第4導電性繊維糸4dは前記基材糸の表面に50~200[nm]の銀メッキを施して形成する。この構成によれば、同一材料でそれぞれ電気抵抗を異ならせた導電性繊維糸を形成することができるとともに、同一の製法で製造することができるため、部品点数を大幅に削減出来るとともに、繊維糸同士の電気抵抗の組み合わせが単純化されて感圧センサ1が容易に構成できる。一例として、第1電極布2と第2電極布3とは同一材料または同種材料からなる。この構成によれば、部品点数を大幅に削減出来るとともに、布同士の電気抵抗の組み合わせが単純化されて感圧センサ1が容易に構成できる。
 本実施形態は、第1電極布2は第1間隔2cで複数の第2導電面2b1が形成されており、第2電極布3は第2間隔3cで複数の第3導電面3a1が形成されており、第3導電面3a1と第2導電面2b1とが交差するように配されて交差領域V1が形成される構成である。一例として、第1電極布2と第2電極布3とを同じものにすることで部品点数を半減できる。
 図10Aと図10Bは、感圧センサ1がカバー布8aとカバー布8bに縫製された構成の例である。第1電極布2は、縫合糸9aによってカバー布8aに縫い付けられており、かつ、第2電極布3は、縫合糸9bによってカバー布8bに縫い付けられている。そして、一例として、カバー布8aとカバー布8bの四隅を縫製、ホック止め、ハトメ、面ファスナー、その他既知の方法で組み付けて一体化している。つまり、第1電極布2と第2電極布3は、縫合糸9a、9bによってカバー布8a、8bの内側にそれぞれ縫い付けられて互いに向き合っている構成である。この構成により、測定領域の位置ずれを防止するとともに、布の柔軟性を活かしつつ安定した加圧力の計測が可能になる。なお、上記構成に限定されず、例えば、袋状のカバー布を裏返して、第1電極布2と第2電極布3を縫合糸によってカバー布の内側にそれぞれ縫い付けて、カバー布を表返すことで感圧センサ1をカバー布と一体構造にすることもできる。
 また、第1電極布2と第2電極布3とが縫合糸9cによって互いに縫い付けられている構成にする場合がある。この構成によれば、第1電極布2と第2電極布3とが縫い付けられて一体化しているので、測定領域の位置ずれを防止するとともに、布の柔軟性を活かしつつ安定した加圧力の計測が可能になる。尚且つ、広範囲の圧力分布を計測可能なサイズにできる。そして、面接触の状態で安定した加圧力の計測が可能となり、材料費を抑えつつ、生産性が高い構成になる。さらに、縫い付けによって交差領域V1の境界の位置が安定するので、各交差領域V1における加圧力の計測精度を高めることができる。
 図11A、図11B、図11Cは、ミシンによって第1電極布2と第2電極布3とを互いに縫い合わせる手順を例示する概略の断面図である。一例として、本縫いの場合、ミシンによって第1電極布2と第2電極布3とを貫通したループ状の上糸(縫合糸9c)に下糸(縫合糸9c)を通して結び目が出来た状態とし(図11A)、結び目を引き上げることで第1電極布2と第2電極布3との間に結び目が配される状態とし(図11B)、第1電極布2と第2電極布3とを所定方向に移動させながら結び目を作る作業を繰り返して縫製する(図11C)。ミシンによって第1電極布2と第2電極布3とを縫製する場合も、上記の縫製手順と同様である。縫製は、一例としてミシン、若しくは手縫いである。前記縫製は、一例として本縫い、環縫い、かがり縫い、偏平縫い、その他既知の縫い方が適用される。縫合糸9cが縫い付けられた箇所は伸縮性のない縫い目となり、不感帯が形成されて交差領域V1以外の箇所の抵抗値の変動が抑えられるので、交差領域V1をマトリクス配置で形成するとともに、個々に電気信号を取り出すための独立した圧力セルとして機能させ易くなる。
 縫合糸9a、9b、9cは、一例としてナイロン、ポリエステル、レーヨン、アクリル、ポリアミドなどの合成繊維や、綿、リンネルなどの天然繊維からなる。一例として、縫合糸9a、9b、9cの太さは、20~200デニールである。
 図7、図8、図13は第1の実施形態の感圧センサ1の例を示す概略の平面図であり、コントローラ7を接続した状態の図である。コントローラ7は、信号配線の切替え回路、信号検出器、A/D変換器、半導体メモリ、演算回路、これらを制御するCPUを有する。感圧センサ1は、コントローラ7に内蔵された切替え回路によって周波数が一例として10~100[Hz]でスキャンされ、マトリクス配置で形成された交差領域V1の抵抗値を個々にミリ秒オーダーで信号検出器によって検出され、A/D変換器によってA-D変換され、半導体メモリによってデータ蓄積され、演算回路によって演算され、最終的に圧力値または圧力分布、若しくは圧力値及び圧力分布として外部のディスプレイ装置に表示される。一例としてコントローラ7とディスプレイ装置とは、感圧センサ1との信号接続用のインターフェース基板が内蔵されたパーソナルコンピュータが適用できる。
 本実施形態は、一例として、第1電極布2の第1主面2aに第1間隔2cで配された[m]数の第2導電面2b1と、第2電極布3の第4主面3bに第2導電面2b1と交差する方向に第2間隔3cで配された[n]数の第3導電面3a1とを備え、第3導電面3a1と第3導電面3a1との交差領域V1がマトリクス配置で形成されている。ここで、[m]と[n]とはそれぞれ2以上の自然数であり、図13の例では、m=5であり、n=6である。
 本実施形態は、一例として、第1電極布2の端部に所定間隔で配された導電性の第1端子6aによって第2導電面2b1が信号接続されており、かつ、第2電極布3の端部に第1端子6aに一対一で対応して配された導電性の第2端子6bによって第3導電面3a1が信号接続されている。この構成により、コントローラ7など外部機器への信号接続が容易にできる。また、図8に示す例は、第1端子6aおよび第2端子6bの各サイズに応じて分解能が設定可能な構成である。これにより、一例として、周辺部に対して中央部の分解能を高めて、身体に対応させた高精度のセンシングが容易にできる。
 第1端子6a並びに第2端子6bは、一例として、真鍮、アルミニウム、アルミニウム合金、ステンレス、ニッケル、ニッケル合金、銅、銅合金などの導電性金属製である。また、一例として、ハトメ、クリップ、カシメ端子、その他既知の端子が適用できる。第1端子6a並びに第2端子6bは、一例として、側面視で「コの字形状」となっている。この構成によれば、コントローラ7との接続が容易にできるうえに、第2導電面2b1における複数の第2導電性繊維糸4bを接触によって一括して電気接続できて、第3導電面3a1における複数の第3導電性繊維糸4cを接触によって一括して電気接続できるので、電気接続の信頼性に優れた感圧センサ1になる。そして、第1端子6a並びに第2端子6bのサイズを小さくすることで第2導電性繊維糸4bや第3導電性繊維糸4cとの接続数を少なくして分解能を高めることができるので、感圧センサ1の空間分解能を容易に変更できる。
 一例として、幅が900[mm]×長さが1800[mm]のベッドサイズに合わせたサイズの感圧センサ1とすることができる。この場合、電極ストライプが25[mm]で絶縁ストライプが35[mm]のストライプピッチを有する第1電極布2と、電極ストライプが25[mm]で絶縁ストライプが35[mm]のストライプピッチを有する第2電極布3とを上下に重ね合わせた構成とすることで、交差領域の一辺が25[mm]の感圧セルを450個備えて圧力分布が計測可能な感圧センサ1ができる。このように、絶縁ストライプを電極ストライプより幅広にすることにより、導電性繊維糸の使用量を低減し、よりコストダウンすることができる。そして、絶縁ストライプのエリア内で第1電極布2と導電布と第2電極布3とを非導電性の縫合糸9cで縫製することによって、第1電極布2と第2電極布3との位置ずれを防止するとともに、感圧特性の再現性に優れた大きなサイズの感圧センサ1ができる。
(第2の実施形態)
 続いて、第2の実施形態について、以下に説明する。図9並びに図15は第2の実施形態の感圧センサ1の例を示す概略の平面図であり、コントローラ7を接続した状態の図である。第2の実施形態では、第1の実施形態と相違する点を中心に説明する。
 本実施形態は、一例として、[m]数の第1電極布2が第1間隔2cで配されており、第1電極布2と交差する方向に[n]数の第2電極布3が第2間隔3cで配されて交差領域V1が形成される構成である。ここで、[m]と[n]とはそれぞれ2以上の自然数であり、図15の例では、m=5であり、n=6である。この構成によれば、第1電極布2並びに第2電極布3をそれぞれ細幅織物または細幅編物にすることで、軽量化するとともに、材料費を抑えつつ生産性が高い構成になる。一例として、第1電極布2と第2電極布3とを同じものにすることで部品点数を半減できる。
 図9に示すように、一例として、圧電素子などからなる振動センサ11が信号取出可能に感圧センサ1における電気回路に接続されている構成にすることで、圧力分布および心拍呼吸を高精度でセンシングすることが容易にできる。また、一例として、熱電対などからなる温度センサ11や、湿度センサ11などが信号取出可能に感圧センサ1における電気回路に接続されている構成にすることで、圧力分布および温湿度分布を高精度でセンシングすることが容易にできる。つまり、一例として、感圧センサ1における電気回路は、振動センサ、温度センサ、または湿度センサのいずれか一種以上が信号取出可能に接続されている構成が好ましい。振動センサ、温度センサ、湿度センサなどの各種センサは、帯状の第1電極布2と、帯状の第2電極布3との交差領域以外に形成された空間に配置することで、省スペースで合理的な配置構成のハイブリッドセンサになる。
 上述の感圧センサ1は、一例としてベッド、ベッド用マット、シーツ、敷布、クッション、椅子用マット、健康マット、カーペットに適用できる。一例としてベッド、ベッド用マット、シーツまたは敷布に感圧センサ1を組み込むことで、人の就寝時の寝姿を計測し、エアマットの空気圧調整等によって寝返りを促して褥瘡を防止できる。また、所定部位の圧力波形を分析演算することにより心拍センサや呼吸センサとして、心拍や呼吸等を計測することも可能である。一例として、クッションまたは椅子用マットに感圧センサ1を組み込むことで、人の着座姿勢の計測や、離席を検知して人の動作の把握や、エアクッションの空気圧調整等によって姿勢を矯正して肩こりや腰痛を防止できる。一例として、健康マットまたはカーペットに感圧センサ1を組み込むことで、人の歩行姿勢の計測や、立位での足圧計測によって被検者に対応する靴のカスタマイズができる。そして、接触抵抗から人の体重を計測することも可能であり、また、人の部屋内移動など生活習慣の計測にも応用可能である。一般に、椅子やベッドでの圧力分布計測では、感圧センサ1による計測範囲は加圧力が2~40[kPa]で十分に計測できる。感圧センサ1による計測頻度が高いのは加圧力が10[kPa]前後である。
 上述の実施形態では第2電極布3の第4主面3bに第4導電性繊維糸4dが露出して第4導電面3b1が形成されているとして説明したが、この構成に限定されない。第1電極布2の第1主面2aと第2電極布3の第3主面3aとが当接する構成の場合、第4導電性繊維糸4dを省いても特段支障ない。
 本発明は、上述の実施例に限定されることなく、本発明を逸脱しない範囲において種々変更が可能である。感圧センサ1の形状及びサイズは、既知のベッド、ベッド用マット、シーツ、敷布、クッション、椅子用マット、健康マット、カーペットの仕様等に合わせて適宜仕様変更する場合がある。

Claims (17)

  1.  第1電極布と第2電極布とを有し、
     前記第1電極布の第1主面に露出した第1導電性繊維糸によって第1導電面が形成されており、前記第1電極布の第2主面に露出した第2導電性繊維糸によって第2導電面が形成されており、前記第2電極布の第3主面に露出した第3導電性繊維糸によって第3導電面が形成されており、前記第2電極布の第4主面に露出した第4導電性繊維糸によって第4導電面が形成されており、かつ、前記第2導電面と前記第3導電面との交差領域がマトリクス配置で形成されており、
     前記第1導電面と前記第4導電面が当接する構成、前記第1導電面と前記第3導電面が当接する構成、前記第2導電面と前記第4導電面が当接する構成のいずれかであり、
     前記第1導電性繊維糸の単位長さ当たりの電気抵抗は前記第2導電性繊維糸の単位長さ当たりの電気抵抗よりも高くなっているとともに前記第3導電性繊維糸の単位長さ当たりの電気抵抗よりも高くなっており、かつ、前記第4導電性繊維糸の単位長さ当たりの電気抵抗は前記第3導電性繊維糸の単位長さ当たりの電気抵抗よりも高くなっていること
    を特徴とする感圧センサ。
  2.  前記第1電極布における前記第2主面にのみ前記第2導電性繊維糸が露出しており、かつ、前記第2電極布における前記第3主面にのみ前記第3導電性繊維糸が露出していること
    を特徴とする請求項1記載の感圧センサ。
  3.  前記第1電極布と前記第2電極布とが互いに近づく圧縮方向に10kPaの外力を加えた状態における、前記第1導電面と前記第2導電面との厚み方向の電気抵抗の平均値(Rc)に対して、前記第1導電面の長手方向の電気抵抗の平均値(R1)と、前記第2導電面の長手方向の電気抵抗の平均値(R2)とは次の式(1)を満たすこと
    を特徴とする請求項1または2記載の感圧センサ。
    (数1)
     R2<Rc<<R1・・・(1)
  4.  前記第1導電面の長手方向の電気抵抗の平均値(R1)は、前記第2導電面の長手方向の電気抵抗の平均値(R2)の300倍超であること
    を特徴とする請求項1~3のいずれか一項記載の感圧センサ。
  5.  前記第1導電面と前記第4導電面が当接して電気回路が形成されている構成であること
    を特徴とする請求項1~4のいずれか一項記載の感圧センサ。
  6.  前記第1主面は、第1非導電性繊維糸を有する第1絶縁ラインが格子模様になっており、
     前記第2主面は、第2非導電性繊維糸を有する第2絶縁ラインが縦縞模様または横縞模様になっており、
     前記第3主面は、第3非導電性繊維糸を有する第3絶縁ラインが前記第2主面と同一または対応する模様になっており、
     前記第4主面は、第4非導電性繊維糸を有する第4絶縁ラインが前記第1主面と同一または対応する模様になっていること
    を特徴とする請求項5記載の感圧センサ。
  7.  前記第1主面は、緯糸を前記第1導電性繊維糸として、経糸を前記第1非導電性繊維糸とした場合に、緯糸を経糸に対して規則的に飛ばして前記第1導電性繊維糸の露出を増やした織組織であり、かつ、前記第4主面は、緯糸を前記第4導電性繊維糸として、経糸を前記第4非導電性繊維糸とした場合に、緯糸を経糸に対して規則的に飛ばして前記第4導電性繊維糸の露出を増やした織組織であること
    を特徴とする請求項6記載の感圧センサ。
  8.  前記電気回路は、振動センサ、温度センサ、または湿度センサのいずれか一種以上が信号取出可能に接続されていること
    を特徴とする請求項5~7のいずれか一項記載の感圧センサ。
  9.  前記第1電極布の端部に所定間隔で配された導電性の第1端子によって前記第2導電面が信号接続されており、かつ、前記第2電極布の端部に前記第1端子に対応して配された導電性の第2端子によって前記第3導電面が信号接続されていること
    を特徴とする請求項5~8のいずれか一項記載の感圧センサ。
  10.  前記第1端子および前記第2端子の各サイズに応じて分解能が設定可能な構成であること
    を特徴とする請求項9記載の感圧センサ。
  11.  前記第1導電性繊維糸、前記第2導電性繊維糸並びに前記第3導電性繊維糸はそれぞれポリエステル、ポリアミド、ナイロン、レーヨン、アクリルまたはポリウレタンのいずれか一種以上を含む合成糸を有しており、前記合成糸に導電性カーボンブラック、導電性高分子化合物、銀、ニッケル、ニッケル合金、銅、銅合金、硫化銅、アルミニウムまたはアルミニウム合金のいずれか一種以上の導電性材料をコートしていること
    を特徴とする請求項1~10のいずれか一項記載の感圧センサ。
  12.  前記第1導電性繊維糸と前記第2導電性繊維糸とは同一材料または同種材料からなり、前記第1導電性繊維糸と前記第2導電性繊維糸とでは、前記導電性材料のコート厚みが異なっていること
    を特徴とする請求項11記載の感圧センサ。
  13.  前記第2導電性繊維糸と前記第3導電性繊維糸とは同一材料または同種材料からなること
    を特徴とする請求項1~12のいずれか一項記載の感圧センサ。
  14.  前記第1電極布と前記第2電極布とは同一材料または同種材料からなること
    を特徴とする請求項1~13のいずれか一項記載の感圧センサ。
  15.  前記第1電極布が第1間隔で複数配されており、前記第1電極布と交差する方向に前記第2電極布が第2間隔で複数配されて前記交差領域が形成されている構成であること
    を特徴とする請求項1~14のいずれか一項記載の感圧センサ。
  16.  前記第1電極布と前記第2電極布は、縫合糸によってカバー布の内側にそれぞれ縫い付けられて互いに向き合っている構成であること
    を特徴とする請求項1~15のいずれか一項記載の感圧センサ。
  17.  前記第1電極布は非導電性繊維糸を有している編物であり、かつ、前記第2電極布は非導電性繊維糸を有している編物であること
    を特徴とする請求項1~5のいずれか一項記載の感圧センサ。
PCT/JP2020/015898 2019-04-15 2020-04-09 感圧センサ WO2020213505A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-077086 2019-04-15
JP2019077086 2019-04-15
JP2020-068875 2020-04-07
JP2020068875A JP7046114B2 (ja) 2019-04-15 2020-04-07 感圧センサ

Publications (1)

Publication Number Publication Date
WO2020213505A1 true WO2020213505A1 (ja) 2020-10-22

Family

ID=72837862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015898 WO2020213505A1 (ja) 2019-04-15 2020-04-09 感圧センサ

Country Status (1)

Country Link
WO (1) WO2020213505A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273233B2 (ja) * 2005-03-31 2009-06-03 福井県 感圧センサーシート
JP4755797B2 (ja) * 2000-04-03 2011-08-24 インテリジェント テクスタイルズ リミテッド 感圧導電性布地

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755797B2 (ja) * 2000-04-03 2011-08-24 インテリジェント テクスタイルズ リミテッド 感圧導電性布地
JP4273233B2 (ja) * 2005-03-31 2009-06-03 福井県 感圧センサーシート

Similar Documents

Publication Publication Date Title
JP4273233B2 (ja) 感圧センサーシート
US8925393B2 (en) Device intended for measuring pressure from a flexible, foldable, and/or extendable object made of a textile material and comprising a measurement device
RU2638751C2 (ru) Способ оптимизации контактного сопротивления в токопроводящих текстильных материалах
CN105555186A (zh) 纺织压阻式传感器以及心跳和/或呼吸速率的探测***
JP6902507B2 (ja) 感圧センサ
US20100324405A1 (en) Electrode for acquiring physiological signals of a recipient
US20140150573A1 (en) Device for Measuring Pressure from a Flexible, Pliable, and/or Extensible Object Made from a Textile Material Comprising a Measurement Device
CN112424579B (zh) 压敏传感器及其制造方法、使用压敏传感器的垫***
WO2019167744A1 (ja) センサ用電極およびそれを用いた面状センサ
JP6883546B2 (ja) 感圧センサ及びその製造方法
JP4565109B2 (ja) 感圧用繊維構造体
JP7046114B2 (ja) 感圧センサ
CN113383219B (zh) 压敏传感器
JP6883545B2 (ja) 感圧センサ及びその製造方法
JP6883547B2 (ja) 感圧センサ
WO2020213505A1 (ja) 感圧センサ
JP6653006B1 (ja) 圧力センサシート
KR20210046094A (ko) 다층 구조 체압 센서
JP2020020605A (ja) 感圧マットシステム
JP7488156B2 (ja) センサ付きマットレスおよびこれを備えるベッド
JP2019118675A (ja) 敷布
WO2022181268A1 (ja) 布帛状センサ、及び布帛状センサデバイス
WO2022263828A1 (en) Fabric article and method of making the same
LV14920B (lv) Tekstila pārveidošanas ierīce (TPI) stiepes un spiedes mērījumiem, no TPI veidotu ierīču sistēma ādas un muskuļu kontrolei un stimulēšanai un TPI ražošanas metode, izmantojot strāvu vadošus pjezorezistīvus diegus un plūksnoto vai frotē pinumu

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791109

Country of ref document: EP

Kind code of ref document: A1