WO2020213486A1 - Structure body, heat exchanger member, and transporter member - Google Patents

Structure body, heat exchanger member, and transporter member Download PDF

Info

Publication number
WO2020213486A1
WO2020213486A1 PCT/JP2020/015721 JP2020015721W WO2020213486A1 WO 2020213486 A1 WO2020213486 A1 WO 2020213486A1 JP 2020015721 W JP2020015721 W JP 2020015721W WO 2020213486 A1 WO2020213486 A1 WO 2020213486A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
represented
compound
formula
hydrolyzable
Prior art date
Application number
PCT/JP2020/015721
Other languages
French (fr)
Japanese (ja)
Inventor
純平 植野
鈴木 秀也
啓 高野
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2020213486A1 publication Critical patent/WO2020213486A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings

Definitions

  • the present invention relates to a structure, a member for a heat exchanger, and a member for a transport aircraft.
  • Water repellency is evaluated by the size of the contact angle of water, while water repellency is evaluated by the small sliding angle of water, and no correlation is observed between water repellency and water slickness. Even the above-mentioned fluorine-based surface treatment agent having water repellency may not have the desired effect because it does not have water-sliding property.
  • the problem to be solved by the present invention is to provide a structure having both excellent water repellency and water slipperiness.
  • the present invention is a structure having a sliding water-repellent layer on a base material, and the sliding water-repellent layer has a structure represented by the following formula (1) and a structure represented by the following formula (2). It relates to a structure containing one or more selected from the above and a compound having a silyl group having a hydrolyzable group.
  • the structure of the present invention has a sliding water-repellent layer on a base material, and the sliding water-repellent layer is selected from a structure represented by the following formula (1) and a structure represented by the following formula (2). Includes one or more compounds and a compound having a silyl group having a hydrolyzable group.
  • the compound contained in the sliding water-repellent layer has a silyl group having a hydrolyzable group at one end and a specific perfluoropolyether chain at the other end, so that the compound has high water repellency. And high lubricity can be shown at the same time.
  • the base material of the structure of the present invention is not particularly limited, and for example, a base material made of metal (metal base material), a base material made of resin (resin base material), a base material made of glass (glass base material), and the like can be used. Can be used.
  • the metal constituting the metal base material include iron, copper, aluminum, stainless steel, zinc, silver, gold, platinum, and alloys thereof. Of these, aluminum, copper, or alloys thereof are preferable, and aluminum or an aluminum alloy is more preferable.
  • the resin constituting the resin base material examples include polyethylene, polypropylene, polycabonate, polyester, polystyrene, polymethacrylate, polyvinyl chloride, polyethylene alcohol, polyimide, polyamide, polyurethane, epoxy resin, cellulose resin and the like.
  • the glass constituting the glass base material includes inorganic glass; organic glass; alkali-containing glass such as alkali aluminum silicate glass and soda lime glass; non-alkali glass base material such as borosilicate glass; sapphire glass; crystal glass; quartz. Examples include glass.
  • the base material may be subjected to surface treatment such as etching treatment, plasma treatment, ozone treatment and the like.
  • the shape of the base material is not particularly limited, and examples thereof include a flat plate shape and a curved surface shape, and any shape may be used depending on the intended use.
  • the thickness thereof is not particularly limited, but is, for example, 10 ⁇ m to 1000 ⁇ m, preferably 50 ⁇ m to 500 ⁇ m.
  • the sliding water-repellent layer contains one or more selected from the structure represented by the following formula (1) and the structure represented by the following formula (2), and a compound having a silyl group having a hydrolyzable group. ..
  • the repeating unit contains a 1-perfluoropropyl ether structure.
  • the 1-perfluoropropyl ether structure By including the 1-perfluoropropyl ether structure in the repeating unit, three CF groups are densely arranged on the surface of the sliding water-repellent layer (air interface), and the structure of the present invention has both high water repellency and high water repellency at the same time. It is speculated that it can be shown.
  • the repeating unit contains an n-perfluoroethyl ether structure.
  • the crystallization of the perfluoropoethyl ethers causes the three CF groups at the ends to be oriented toward the surface of the sliding water-repellent layer (air interface). It is speculated that the structure can exhibit both high water repellency and high slipperiness at the same time.
  • the number of repetitions of r is not particularly limited, and is preferably 5 to 100 on average, more preferably 8 to 80 on average, and even more preferably 10 to 60 on average.
  • the number of repetitions of r is not particularly limited, and is preferably 5 to 100 on average, and more preferably 5 to 50 on average.
  • the silyl group having a hydrolyzable group is preferably a silyl group represented by Si (A) 3 (the three A's are independently hydrolyzable or non-hydrolyzable groups, respectively, and the three A's. At least one of them is a hydrolyzable group).
  • the number of hydrolyzable groups in the silyl group represented by Si (A) 3 is at least one, and two or more hydrolyzable groups are preferable because a film having more excellent durability can be formed, and all three are preferable. Is more preferably a hydrolyzable group.
  • the two or more hydrolyzable groups may be the same or different from each other.
  • At least one silyl group represented by Si (A) 3 may have a hydrolyzable group.
  • the two or more non-hydrolyzable groups may be the same or different from each other.
  • hydrolyzable group examples include an alkoxy group such as a methoxy group, an ethoxy group and a propoxy group; an alkoxy group substituted alkoxy group such as a methoxyethoxy group; an acyloxy group such as an acetoxy group, a propionyloxy group and a benzoyloxy group; Alkoxyoxy groups such as propenyloxy group and isobutenyloxy group; imineoxy groups such as dimethylketoxim group, methylethylketoxim group, diethylketoxim group, cyclohexaneoxym group; methylamino group, ethylamino group, dimethylamino group, diethylamino Substituent amino groups such as groups; amide groups such as N-methylacetamide group and N-ethylamide group; substituted aminooxy groups such as dimethylaminooxy group and diethylaminooxy group; halogens such as chlorine and the like
  • an alkoxy group is preferable because the hydrolysis rate is high and a film having excellent durability can be formed quickly, and an alkoxy group having 1 to 6 carbon atoms is more preferable, and the number of carbon atoms is more preferable. 1 to 3 alkoxy groups are more preferable, methoxy groups and ethoxy groups are particularly preferable, and methoxy groups are most preferable.
  • non-hydrolyzable group examples include an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms. And so on.
  • an alkyl group having 1 to 3 carbon atoms is preferable because it can avoid steric hindrance and increase the hydrolysis rate, and as a result, a film having excellent durability can be formed quickly.
  • Methyl groups are more preferred.
  • a compound having one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2) and a silyl group having a hydrolyzable group is represented by the formula (1).
  • the compound containing the structure represented by the formula (1) is preferably represented by the following formulas (1-1), (1-2), (1-3) or (1-4). It is a compound.
  • R 1 is an alkylene group having 1 to 6 carbon atoms.
  • R 3 is a divalent linking group.
  • Z is a trivalent linking group.
  • Each of B is an organic group or a silyl group represented by Si (A) 3 , and at least one of the two Bs is a silyl group represented by Si (A) 3 .
  • the three A of the silyl group represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group. .. )
  • the organic group when B is an organic group, the organic group includes, for example, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkenyl group. Phenyl group and the like.
  • the organic group of B is a substituted alkyl group
  • examples of the substituted alkyl group include a partially fluorinated alkyl group having 1 to 6 carbon atoms and a perfluoroalkyl group having 1 to 6 carbon atoms.
  • R 32 is an alkylene group having 1 to 3 carbon atoms.
  • R 33 is a direct bond or an alkylene group having 1 to 6 carbon atoms.
  • R 34 is an alkylene group having 1 to 5 carbon atoms
  • linking group represented by the formula (R 3 -1) include the following.
  • linking group represented by the formula (R 3 -2) include the following.
  • the trivalent linking group of Z in the formulas (1-2) and (1-4) is, for example, a trivalent aliphatic ring group having 4 to 8 carbon atoms, preferably a cyclohexyl group.
  • a is an integer of 1 to 6.
  • a compound having one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2) and a silyl group having a hydrolyzable group is represented by the formula (2).
  • the compound containing the structure represented by the formula (2) is preferably a compound represented by the following formulas (2-1), (2-2) or (2-3).
  • R 1 is an alkylene group having 1 to 6 carbon atoms.
  • R 2 is an alkylene aminoalkylene group or an alkylene thioalkylene group.
  • the three A of the silyl group represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group. .. )
  • the alkylene group having 1 to 6 carbon atoms of R 1 is preferably an alkylene group having 3 carbon atoms.
  • the alkyleneaminoalkylene group of R 2 is a group in which two alkylene groups are linked by an amino bond (-NH-), and is an alkylenethio.
  • An alkylene group is a group in which two alkylene groups are linked by a thio bond (—S—).
  • the alkylene groups of the alkyleneaminoalkylene group and the alkylenethioalkylene group are independently alkylene groups having 1 to 6 carbon atoms.
  • the method for producing a compound having one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2) and a silyl group having a hydrolyzable group is not particularly limited and is known. It can be manufactured by the method of.
  • the method for producing the compound represented by the formulas (1-1), (1-2), (1-3) or (1-4) is, for example, the carboxylic acid represented by the following formula ( ⁇ -1) and the following formula ( ⁇ -2) or the following formula ( ⁇ ).
  • the second step of reacting with the isocyanate compound represented by -4) is included.
  • R 3 is a divalent linking group.
  • the three A of the silyl groups represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group.
  • R 1 is an alkylene group having 1 to 6 carbon atoms.
  • the three A of the silyl groups represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group.
  • R 3 is a divalent linking group.
  • G is an organic group.
  • the first step may be included, and the second step can be omitted.
  • R 1 is an alkylene group having 1 to 6 carbon atoms, preferably an alkylene group having 1 to 3 carbon atoms, and more preferably an n-propylene group).
  • the method for producing the compound represented by the formulas (1-1), (1-2), (1-3) or (1-4) may be carried out in the presence of an organic solvent, if necessary.
  • the organic solvent is not particularly limited as long as it can dissolve the above-mentioned compound group as a raw material.
  • a solvent such as acetone, methyl ethyl ketone, toluene, xylene, etc., which does not have reactivity with an isocyanate group, or a fluorine-based solvent is used.
  • An organic solvent can be used.
  • fluorine-based solvent examples include fluorine-containing aromatic hydrocarbon solvents such as 1,3-bis (trifluoromethyl) benzene and trifluorotoluene; and having 3 to 3 carbon atoms such as perfluorohexane and perfluoromethylcyclohexane. Twelve perfluorocarbon solvents; 1,1,2,2,3,3,4-heptafluorocyclopentane, 1,1,1,2,2,3,4,4,5,5,6 Hydrofluorocarbon solvent such as 6-tridecafluorooctane; C 3 F 7 OCH 3 , C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 , C 2 F 5 CF (OCH 3 ) C 3 F 7 etc.
  • fluorine-containing aromatic hydrocarbon solvents such as 1,3-bis (trifluoromethyl) benzene and trifluorotoluene; and having 3 to 3 carbon atoms such as perfluorohexane and perfluoromethylcyclohe
  • Hydrofluoroether-based solvent Perfluoropolyether-based solvent such as Fomblin, Garden (manufactured by Solvay), Demnum (manufactured by Daikin Industries), Kleitox (manufactured by Chemers) and the like can be preferably exemplified.
  • the reaction ratio between the compound ( ⁇ -1) and the compound ( ⁇ -2) or the compound ( ⁇ -3) is the carboxyl group of the compound ( ⁇ -1) and the compound ( ⁇ -2) or
  • the ratio of the equivalent ratio (carboxyl group / epoxy group) of the compound ( ⁇ -3) to the epoxy group is preferably 0.5 to 1.5, more preferably 0.9 to 1.1. A ratio of 0.98 to 1.02 is more preferable.
  • the reaction temperature in the first step is not particularly limited, and is usually 50 to 150 ° C.
  • the reaction time is also not particularly limited, and is usually 1 to 10 hours.
  • the reaction ratio between the reactant having a secondary hydroxyl group derived from the epoxy group obtained in the first step and the compound ( ⁇ -4) is the hydroxyl group and the compound ( ⁇ -4) contained in the reactant.
  • the ratio of the equivalent ratio (hydroxyl group / isocyanate group) to the isocyanate group of the is preferably 0.5 to 1.5, more preferably 0.9 to 1.1, and 0.98 to 1.02. Is more preferable.
  • the reaction temperature in the second step is not particularly limited, and is usually 30 to 120 ° C.
  • the reaction time is also not particularly limited, and is usually 1 to 10 hours.
  • the method for producing the compound represented by the formula (2-1), (2-2) or (2-3) is the formula (1-1), (1-2), (1-3) or (1-1).
  • a method similar to the method for producing the compound represented by 4) can be adopted.
  • an alcohol represented by the following formula ( ⁇ -1) with an isocyanate compound represented by the above formula ( ⁇ -4), the formula (2-1), (2-2) or (2)
  • the compound represented by -3) can be produced.
  • the reaction conditions and other raw materials the same reaction conditions and other raw materials as the method for producing the compound represented by the above formulas (1-1), (1-2), (1-3) or (1-4) It is good to adopt.
  • One kind of compound having one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2) in the sliding water-repellent layer and a silyl group having a hydrolyzable group is one kind. It may be used alone or in combination of two or more.
  • the sliding water-repellent layer may include one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2), and a compound having a silyl group having a hydrolyzable group.
  • Other components may be contained as long as the effects of the present invention are not impaired. Examples of the other components include inorganic metal compounds such as inorganic tin compounds, inorganic titanium compounds and inorganic zinc compounds, hydrolysis accelerators such as amine compounds, and storage stabilizers such as alcohol.
  • the sliding water-repellent layer includes one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2), a compound having a silyl group having a hydrolyzable group, and others. It may or may not contain the component of.
  • the sliding water-repellent layer is substantially composed of a compound having one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2) and a silyl group having a hydrolyzable group. At this time, the sliding water-repellent layer may contain unavoidable impurities.
  • the thickness of the sliding water-repellent layer is, for example, 1 to 100 nm, preferably 1 to 50 nm, and more preferably 1 to 20 nm.
  • the structure of the present invention comprises, for example, one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2) on the base material, and a silyl group having a hydrolyzable group. It is produced by applying a solution of a compound having a compound (hereinafter, a compound having this structure may be referred to as a “sliding water-repellent layer compound”), or by immersing a base material in a solution of a sliding water-repellent layer compound. be able to.
  • the cleaning solution include water, ethanol, isopropanol, an aqueous solution of sodium hydroxide, an aqueous solution of tetramethylammonium hydroxide, and a mixed solution thereof.
  • a cleaning liquid By cleaning the base material with a cleaning liquid, dirt such as oil on the surface of the base material can be removed, and the water-repellent sliding layer can be smoothly formed.
  • the surface of the base material may be hydrophilized by performing plasma treatment, UV ozone treatment, or the like.
  • the solvent of the solution of the sliding water-repellent layer compound is not particularly limited as long as it is a solvent capable of dissolving the sliding water-repellent layer compound, and for example, the above formulas (1-1), (1-2) and (1-3). Alternatively, the solvent used in the preparation of the compound represented by (1-4) may be used.
  • the concentration of the sliding water-repellent layer compound is, for example, 0.01% by mass to 30% by mass, preferably 0.01% by mass to 10% by mass, and more preferably 0.1% by mass to 5% by mass. is there.
  • a compound having one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2) and a silyl group having a hydrolyzable group is a silyl group having a hydrolyzable group.
  • the solution of the sliding water repellent layer compound may not contain, for example, a binder, since can be directly bonded to the substrate.
  • a water-repellent sliding layer can be formed on the base material by drying the base material coated with the solution of the sliding water-repellent layer compound or the base material immersed in the solution of the sliding water-repellent layer compound.
  • the drying temperature is preferably 40 to 200 ° C.
  • the drying time is preferably 5 to 60 minutes.
  • the structure of the present invention can exhibit both water repellency and water sliding property at the same time, the sliding angle of water on the surface of the sliding water repellent layer can be set to 15 ° or less, and the contact of water on the surface of the sliding water repellent layer. The angle can be 110 ° or more. Since the structure of the present invention can exhibit both water repellency and water sliding property at the same time, for example, if the base material is an aluminum base material, the structure of the present invention can be used as a member for a heat exchanger, and the base material can be used. Condensation water and / or frost can be suppressed from adhering to the surface, and high heat exchange efficiency of the heat exchanger can be realized.
  • the structure of the present invention can be used as a member for a transport aircraft, and high visibility stability of the transport aircraft can be realized without water droplets adhering to the glass surface. it can.
  • the sliding angle and the contact angle are each evaluated by the methods described in the examples.
  • r is the number of repetitions, which is 43 on average.
  • the reaction solution was diluted by adding hydrofluoroether so that the concentration of the solvent was 80% by mass.
  • the diluted reaction solution was filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 1 ⁇ m to obtain a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (1a).
  • PTFE polytetrafluoroethylene
  • Synthesis example 2 In a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device, 36.67 g of 1,3-bis (trifluoromethyl) benzene as a solvent and a carboxylic acid represented by the following formula (Krytox 157FS (L) manufactured by Chemers) )) 50 g, 5.01 g of ⁇ -glycidoxypropyltrimethoxysilane, and 0.165 g of triphenylphosphine as a reaction catalyst were added, stirring was started under a nitrogen stream, and after heating to 105 ° C., about 5 Reacted for time.
  • r is the number of repetitions, which is 13 on average.
  • the reaction solution was diluted by adding hydrofluoroether so that the concentration of the solvent was 80% by mass.
  • the diluted reaction solution was filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 0.2 ⁇ m to obtain a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (2a). ..
  • PTFE polytetrafluoroethylene
  • Synthesis example 3 In a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device, 40.0 g of alcohol having a poly (perfluoroalkylene ether) chain represented by the following formula and hydrofluoro ether (C 4 F 9 OC) as a solvent and 2 H 5) 43.77g, tin octoate 0.004g added as a urethane catalyst, stirring was started under a stream of nitrogen. After starting stirring, 3.77 g of 3-isocyanatopropyltrimethoxysilane was added dropwise to the reaction solution over 15 minutes while maintaining the temperature at 50 ° C. After completion of the dropping, the alcohol was reacted with 3-isocyanatopropyltrimethoxysilane by stirring at 50 ° C. for 6 hours to obtain a reaction product.
  • r is the number of repetitions, which is 13 on average.
  • the obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the following compound (3a) was obtained.
  • the reaction solution was diluted by adding hydrofluoroether so that the concentration of the solvent was 80% by mass.
  • the diluted reaction solution was filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 0.2 ⁇ m to obtain a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (3a). ..
  • PTFE polytetrafluoroethylene
  • r is the number of repetitions, which is 13 on average.
  • Comparative synthesis example 1 In a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device, 45.3 g of a diol having a poly (perfluoroalkylene ether) chain represented by the following formula (1') and tin octylate as a urethanization catalyst. 0.025 g was charged, stirring was started under a nitrogen stream, and 4.7 g of 3-isocyanatopropyltrimethoxysilane was added dropwise over 15 minutes while maintaining 60 ° C. After completion of the dropping, the mixture was stirred at 60 ° C. for 1 hour, then further heated to 80 ° C. and stirred for 2 hours to react the diol with 3-isocyanatopropyltrimethoxysilane to obtain a reaction product.
  • a diol having a poly (perfluoroalkylene ether) chain represented by the following formula (1') and tin octylate as a
  • n is the number of repetitions.
  • Each of the plurality of Xs is independently a perfluoromethylene group or a perfluoroethylene group, and each compound represented by the formula (1') has an average of 21 perfluoromethylene groups and an average of 21 perfluoroethylene groups. It is present and has an average of 126 fluorine atoms.
  • the obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the following compound (1'a) was obtained.
  • the reaction solution was diluted by adding hydrofluoroether so that the concentration of the solvent was 80% by mass.
  • the diluted reaction solution is filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 0.2 ⁇ m, and a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (1'a) is prepared. Obtained.
  • PTFE polytetrafluoroethylene
  • PFPE corresponds to-(XO-) n -X-of the above formula (1').
  • Comparative synthesis example 2 55.79 g of diol having a poly (perfluoroalkylene ether) chain represented by the following formula (2') and hydrofluoro ether (C 4 F) in a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device.
  • 9 OC 2 H 5 ) 40 g and 0.03 g of tin octylate as a urethanization catalyst were charged, stirring was started under a nitrogen stream, and 4.12 g of 3-isocyanatopropyltrimethoxysilane was applied for 15 minutes while maintaining 50 ° C. And dropped. After completion of the dropping, the diol was reacted with 3-isocyanatopropyltrimethoxysilane by stirring at 50 ° C. for 6 hours to obtain a reaction product.
  • n is the number of repetitions.
  • the plurality of Xs are independently perfluoromethylene groups or perfluoroethylene groups, and each compound represented by the formula (2') has an average of 30 perfluoromethylene groups and an average of 30 perfluoroethylene groups. It is present and has an average number of fluorine atoms of 180. )
  • the obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the following compound (2'a) was obtained.
  • the reaction solution was diluted by adding hydrofluoroether so that the concentration of the solvent was 80% by mass.
  • the diluted reaction solution is filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 0.2 ⁇ m, and a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (2'a) is prepared. Obtained.
  • PTFE polytetrafluoroethylene
  • PFPE corresponds to-(XO-) n -X-of the above formula (2').
  • Comparative synthesis example 3 In a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device, 20 g of alcohol having a poly (perfluoroalkylene ether) chain represented by the following formula (3') and hydrofluoro ether (C 4 F 9 OC). 2 H 5) g of tin octylate 0.006g as 20g and urethanization catalyst, stirring in a nitrogen stream to begin, dropwise over while maintaining 50 ° C. 3- isocyanatoethyl trimethoxysilane 1.31 g 15 min did. After completion of the dropping, the alcohol was reacted with 3-isocyanatopropyltrimethoxysilane by stirring at 50 ° C. for 6 hours to obtain a reaction product.
  • a poly (perfluoroalkylene ether) chain represented by the following formula (3') and hydrofluoro ether (C 4 F 9 OC). 2 H 5
  • the obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the following compound (3'a) was obtained.
  • the reaction solution was diluted by adding hydrofluoroether so that the concentration of the solvent was 80% by mass.
  • the diluted reaction solution is filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 0.2 ⁇ m, and a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (3'a) is prepared. Obtained.
  • PTFE polytetrafluoroethylene
  • Comparative synthesis example 4 50 g of trifluoroethanol, 157.99 g of hydrofluoroether (C 4 F 9 OC 2 H 5 ) and 0.047 g of tin octylate as a urethanization catalyst are placed in a glass flask equipped with a stirrer, a thermometer, a cooling tube and a dropping device. The mixture was charged, stirring was started under a nitrogen stream, and 107.99 g of 3-isocyanatopropyltrimethoxysilane was added dropwise over 15 minutes while maintaining 50 ° C. After completion of the dropping, the alcohol was reacted with 3-isocyanatopropyltrimethoxysilane by stirring at 50 ° C. for 6 hours to obtain a reaction product.
  • the obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the perfluoroalkyl group-containing silane compound (4'a) was obtained.
  • the reaction solution was diluted by adding hydrofluoroether so that the concentration of the solvent was 80% by mass.
  • the diluted reaction solution was filtered and purified using a filter made of polytetrafluoroethylene (PTFE) having a pore size of 0.2 ⁇ m to obtain a hydrofluoroether solution containing a perfluoroalkyl group-containing silane compound (4'a).
  • PTFE polytetrafluoroethylene
  • Comparative synthesis example 5 25 g of 2- (perfluorohexyl) ethanol, 39.98 g of hydrofluoroether (C 4 F 9 OC 2 H 5 ) and octyl as a urethanization catalyst in a glass flask equipped with a stirrer, thermometer, condenser and dropping device. 0.01 g of tin acid acid was charged, stirring was started under a nitrogen stream, and 14.98 g of 3-isocyanatopropyltrimethoxysilane was added dropwise over 15 minutes while maintaining 50 ° C. After completion of the dropping, the alcohol was reacted with 3-isocyanatopropyltrimethoxysilane by stirring at 50 ° C. for 6 hours to obtain a reaction product.
  • the obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the perfluoroalkyl group-containing silane compound (5'a) was obtained.
  • the reaction solution was diluted by adding hydrofluoroether so that the concentration of the solvent was 80% by mass.
  • the diluted reaction solution was filtered and purified using a filter made of polytetrafluoroethylene (PTFE) having a pore size of 0.2 ⁇ m to obtain a hydrofluoroether solution containing a perfluoroalkyl group-containing silane compound (5'a).
  • PTFE polytetrafluoroethylene
  • Example 1 Hydrofluoroether was further added to the solution of compound (1a) prepared in Synthesis Example 1 to prepare a coating solution of 0.1% by weight of compound (1a).
  • the pretreated glass plate was immersed in the obtained coating liquid and allowed to stand for 1 hour. After standing, the glass plate was taken out and dried at 150 ° C. for 30 minutes to produce a coated plate (base material: glass plate) which is a laminate in which a layer containing the compound (1a) is laminated on the base material.
  • the pretreatment of the glass plate is a process in which a 7 cm ⁇ 7 cm glass plate is passed through a plasma irradiator and plasma is irradiated until the water contact angle (6 ⁇ l) is measured to be 10 ° or less. The measurement of the water contact angle will be described later.
  • the pretreated aluminum plate was immersed in the obtained coating liquid and allowed to stand for 1 hour. After standing, the aluminum plate was taken out and dried at 150 ° C. for 30 minutes to produce a coated plate (base material: aluminum plate) which is a laminated body in which a layer containing the compound (1a) is laminated on the base material.
  • the pretreatment of the aluminum plate was carried out by immersing a 2.5 cm ⁇ 7.5 cm aluminum flat plate in a 0.5 wt% sodium hydroxide aqueous solution for 5 minutes and then washing with water and methanol.
  • the contact angle and the sliding angle of the two coated plates produced were evaluated by the following methods. The results are shown in Table 1.
  • Contact angle measurement Using a contact angle / sliding angle measuring device (DM-500 manufactured by Kyowa Interface Science Co., Ltd.), 6 ⁇ L of water droplets were dropped onto the layer of compound (1a) on the coating plate, and the contact angles of the water droplets were measured. The contact angle was measured 5 times, and the average value of the 5 times was taken as the contact angle of the coated plate.
  • sliding angle measurement Using a contact angle / sliding angle measuring device (DM-500 manufactured by Kyowa Interface Science Co., Ltd.), 50 ⁇ L of water droplets were dropped onto the layer of compound (1a) on the coating plate, and the stage was tilted at a speed of 2 degrees / second. The angle at which the water droplets started to move was taken as the value of the sliding angle. The measurement was performed 5 times, and the average value of the 5 times was taken as the sliding angle of the coated plate.
  • DM-500 manufactured by Kyowa Interface Science Co., Ltd.
  • Example 2-3 and Comparative Example 1-5 A coated plate was produced and evaluated in the same manner as in Example 1 except that the compounds shown in Table 1 were used instead of the compound (1a). The results are shown in Table 1.
  • the coated plate of Example 1-3 can show not only water repellency but also water sliding property at the same time regardless of the material of the base material, as compared with the coated plate of Comparative Example 1-5. You can see that there is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

Provided is a structure body that is excellent in terms of both water-repellency and water sliding properties. Specifically, the structure body is a structure body having a water sliding and repelling layer over a base material, wherein the water sliding and repelling layer contains a compound having one or more structures selected from among the structure represented by formula (1) and the structure represented by formula (2), and a silyl group having a hydrolytic group.

Description

構造体、熱交換器用部材、輸送機用部材Structures, heat exchanger members, transport aircraft members
 本発明は、構造体、熱交換器用部材、輸送機用部材に関する。 The present invention relates to a structure, a member for a heat exchanger, and a member for a transport aircraft.
 現代の生活環境において、撥水性が必要とされる設備、装置及び機械器具は多数存在し、その種類も、自動車の窓ガラス、自動車の塗装表面、台所設備、台所用品、台所設備に付設される排気装置、入浴設備、洗面設備、医療用施設、医療用機械器具、鏡、眼鏡、インクジェットプリンター部品など、きわめて多岐に亘っている。これら設備、装置及び機械器具では、撥水性を付与することによって、防汚性も付与している。また、冷蔵庫、空調室外機等の熱交換器、及び、電気自動車向けヒートポンプにおいても着氷・着霜防止の観点から撥水性が求められている。
 上記撥水性が必要される設備、装置及び機械器具においては、フッ素系表面処理剤が広く利用されている(例えば特許文献1-3)。
In the modern living environment, there are many facilities, devices and machinery that require water repellency, and the types are also attached to automobile window glass, automobile painted surfaces, kitchen equipment, kitchen utensils, and kitchen equipment. Exhaust equipment, bathing equipment, washroom equipment, medical facilities, medical machinery and equipment, mirrors, eyeglasses, inkjet printer parts, etc. are extremely diverse. In these facilities, devices and machinery / equipment, antifouling property is also imparted by imparting water repellency. Further, heat exchangers such as refrigerators and air conditioner outdoor units, and heat pumps for electric vehicles are also required to have water repellency from the viewpoint of preventing icing and frosting.
Fluorine-based surface treatment agents are widely used in the above-mentioned equipment, devices and machinery / equipment that require water repellency (for example, Patent Documents 1-3).
 上記の設備、装置及び機械器具においては、撥水性のみならず、重力などによって速やかに流れ落ちる性質である滑水性も必要とされる。滑水性が弱いと、水滴は自重により落下することなく物体表面に強く付着したままとなり、表面を垂直に傾けても落下しない。
 例えば、自動車のフロントガラスに多数の水滴が付着した状態のままになっていると、街灯などの光によってフロントガラスが乱反射し、運転者の視界を妨げるという不都合があった。
In the above-mentioned equipment, devices and machinery, not only water repellency but also water-sliding property which is a property of rapidly flowing down due to gravity or the like is required. When the water-sliding property is weak, the water droplets do not fall due to their own weight and remain strongly attached to the surface of the object, and do not fall even if the surface is tilted vertically.
For example, if a large number of water droplets are left on the windshield of an automobile, the windshield is diffusely reflected by light from a street lamp or the like, which has the disadvantage of obstructing the driver's field of vision.
 撥水性が水の接触角の大きさで評価されるのに対し、滑水性は水の滑落角の小ささで評価され、撥水性と滑水性に相関関係は認められない。撥水性を有する上記フッ素系表面処理剤であっても、滑水性を有さないために目的の効果が得られない場合があった。 Water repellency is evaluated by the size of the contact angle of water, while water repellency is evaluated by the small sliding angle of water, and no correlation is observed between water repellency and water slickness. Even the above-mentioned fluorine-based surface treatment agent having water repellency may not have the desired effect because it does not have water-sliding property.
 具体的には、滑水性を有さない表面処理剤を、外装材などの雨水に曝される環境で使用すると、表面に水が流れた跡(雨すじ)が付いてしまうため、耐汚染性も優れているとは言えなかった。また、熱交換器においては、表面処理剤に滑水性が無い場合に、除霜効率が大幅に悪化してしまう問題があった。 Specifically, if a surface treatment agent that does not have water-sliding properties is used in an environment exposed to rainwater such as exterior materials, traces of water flow (rain streaks) will be left on the surface, resulting in stain resistance. Was not good. Further, in the heat exchanger, there is a problem that the defrosting efficiency is significantly deteriorated when the surface treatment agent does not have water-sliding property.
特開2013-147573号公報Japanese Unexamined Patent Publication No. 2013-147573 特開2014-166747号公報Japanese Unexamined Patent Publication No. 2014-166747 特開2012-219072号公報Japanese Unexamined Patent Publication No. 2012-21907
 本発明が解決しようとする課題は、撥水性と滑水性の両方に優れる構造体を提供することである。 The problem to be solved by the present invention is to provide a structure having both excellent water repellency and water slipperiness.
 本発明者らは、上記課題を解決するため鋭意検討を行った結果、基材上に積層した特定の構造を有する化合物を含む滑落撥水層が撥水性と滑水性の両方を示すことができることを見出し、本発明を完成させた。 As a result of diligent studies to solve the above problems, the present inventors have found that a sliding water-repellent layer containing a compound having a specific structure laminated on a substrate can exhibit both water repellency and water-sliding property. The present invention was completed.
 すなわち、本発明は、基材上に滑落撥水層を有する構造体であって、前記滑落撥水層が、下記式(1)で表される構造及び下記式(2)で表される構造から選択される1種以上と、加水分解性基を有するシリル基とを有する化合物を含む構造体に関するものである。 That is, the present invention is a structure having a sliding water-repellent layer on a base material, and the sliding water-repellent layer has a structure represented by the following formula (1) and a structure represented by the following formula (2). It relates to a structure containing one or more selected from the above and a compound having a silyl group having a hydrolyzable group.
Figure JPOXMLDOC01-appb-C000005
(前記式(1)及び(2)において、rは繰り返し数を示す整数である。*は結合手である。)
Figure JPOXMLDOC01-appb-C000005
(In the above equations (1) and (2), r is an integer indicating the number of repetitions. * Is a bond.)
 本発明により、撥水性と滑水性の両方に優れる構造体が提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, a structure excellent in both water repellency and water sliding property can be provided.
 以下、本発明の一実施形態について説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を損なわない範囲で適宜変更を加えて実施することができる。 Hereinafter, an embodiment of the present invention will be described. The present invention is not limited to the following embodiments, and can be carried out with appropriate modifications as long as the effects of the present invention are not impaired.
<構造体>
 本発明の構造体は、基材上に滑落撥水層を有し、前記滑落撥水層は、下記式(1)で表される構造及び下記式(2)で表される構造から選択される1種以上と、加水分解性基を有するシリル基とを有する化合物を含む。
<Structure>
The structure of the present invention has a sliding water-repellent layer on a base material, and the sliding water-repellent layer is selected from a structure represented by the following formula (1) and a structure represented by the following formula (2). Includes one or more compounds and a compound having a silyl group having a hydrolyzable group.
Figure JPOXMLDOC01-appb-C000006
(前記式(1)及び(2)において、rは繰り返し数を示す整数である。*は結合手である。)
Figure JPOXMLDOC01-appb-C000006
(In the above equations (1) and (2), r is an integer indicating the number of repetitions. * Is a bond.)
 本発明の構造体では、滑落撥水層に含まれる化合物が、一方端に加水分解性基を有するシリル基を有し、他方端に特定のパーフルオロポリエーテル鎖を有することで、高い撥水性と高い滑水性の両方を同時に示すことができる。
 以下、本発明の構造体の各要素について説明する。
In the structure of the present invention, the compound contained in the sliding water-repellent layer has a silyl group having a hydrolyzable group at one end and a specific perfluoropolyether chain at the other end, so that the compound has high water repellency. And high lubricity can be shown at the same time.
Hereinafter, each element of the structure of the present invention will be described.
[基材]
 本発明の構造体の基材は、特に限定されず、例えば金属からなる基材(金属基材)、樹脂からなる基材(樹脂基材)、ガラスからなる基材(ガラス基材)等が使用できる。
 金属基材を構成する金属としては、鉄、銅、アルミニウム、ステンレス、亜鉛、銀、金、白金、又はこれらの合金等が挙げられる。これらのうち、アルミニウム、銅、又はこれらの合金が好ましく、アルミニウム又はアルミニウム合金がより好ましい。
 樹脂基材を構成する樹脂としては、ポリエチレン、ポリプロピレン、ポリカボナート、ポリエステル、ポリスチレン、ポリメタクリレート、ポリ塩化ビニール、ポリエチレンアルコール、ポリイミド、ポリアミド、ポリウレタン、エポキシ樹脂、セルロース樹脂等が挙げられる。
 ガラス基材を構成するガラスとしては、無機ガラス;有機ガラス;アルカリアルミケイ酸塩ガラス、ソーダライムガラス等のアルカリ含有ガラス;ホウケイ酸ガラス等の無アルカリガラス基材;サファイアガラス;クリスタルガラス;石英ガラス等が挙げられる。
[Base material]
The base material of the structure of the present invention is not particularly limited, and for example, a base material made of metal (metal base material), a base material made of resin (resin base material), a base material made of glass (glass base material), and the like can be used. Can be used.
Examples of the metal constituting the metal base material include iron, copper, aluminum, stainless steel, zinc, silver, gold, platinum, and alloys thereof. Of these, aluminum, copper, or alloys thereof are preferable, and aluminum or an aluminum alloy is more preferable.
Examples of the resin constituting the resin base material include polyethylene, polypropylene, polycabonate, polyester, polystyrene, polymethacrylate, polyvinyl chloride, polyethylene alcohol, polyimide, polyamide, polyurethane, epoxy resin, cellulose resin and the like.
The glass constituting the glass base material includes inorganic glass; organic glass; alkali-containing glass such as alkali aluminum silicate glass and soda lime glass; non-alkali glass base material such as borosilicate glass; sapphire glass; crystal glass; quartz. Examples include glass.
 基材には、エッチング処理、プラズマ処理、オゾン処理等の表面処理を施してもよい。 The base material may be subjected to surface treatment such as etching treatment, plasma treatment, ozone treatment and the like.
 基材の形状は特に限定されず、例えば平板状、曲面状等が挙げられ、用途に応じて任意の形状にするとよい。
 基材の形状が平板状である場合、その厚みは特に限定されないが、例えば10μm~1000μmであり、好ましくは50μm~500μmである。
The shape of the base material is not particularly limited, and examples thereof include a flat plate shape and a curved surface shape, and any shape may be used depending on the intended use.
When the shape of the base material is a flat plate, the thickness thereof is not particularly limited, but is, for example, 10 μm to 1000 μm, preferably 50 μm to 500 μm.
[滑落撥水層]
 滑落撥水層は、下記式(1)で表される構造及び下記式(2)で表される構造から選択される1種以上と、加水分解性基を有するシリル基とを有する化合物を含む。
[Sliding water repellent layer]
The sliding water-repellent layer contains one or more selected from the structure represented by the following formula (1) and the structure represented by the following formula (2), and a compound having a silyl group having a hydrolyzable group. ..
Figure JPOXMLDOC01-appb-C000007
(前記式(1)及び(2)において、rは繰り返し数を示す整数である。*は結合手である。)
Figure JPOXMLDOC01-appb-C000007
(In the above equations (1) and (2), r is an integer indicating the number of repetitions. * Is a bond.)
 式(1)で表される構造では、繰り返し単位に1-パーフルオロプロピルエーテル構造を含む。繰り返し単位に1-パーフルオロプロピルエーテル構造を含むことで、CF基が滑落撥水層表面(空気界面)に密に並び、本発明の構造体は高い撥水性と高い滑水性の両方を同時に示すことができると推測される。 In the structure represented by the formula (1), the repeating unit contains a 1-perfluoropropyl ether structure. By including the 1-perfluoropropyl ether structure in the repeating unit, three CF groups are densely arranged on the surface of the sliding water-repellent layer (air interface), and the structure of the present invention has both high water repellency and high water repellency at the same time. It is speculated that it can be shown.
 式(2)で表される構造では、繰り返し単位にn-パーフルオロエチルエーテル構造を含む。繰り返し単位にn-パーフルオロエチルエーテル構造を含むことで、パーフルオロポエチルエーテル同士の結晶化によって、末端のCF基が滑落撥水層表面(空気界面)に配向されるため、本発明の構造体は高い撥水性と高い滑水性の両方を同時に示すことができると推測される。 In the structure represented by the formula (2), the repeating unit contains an n-perfluoroethyl ether structure. By including the n-perfluoroethyl ether structure in the repeating unit, the crystallization of the perfluoropoethyl ethers causes the three CF groups at the ends to be oriented toward the surface of the sliding water-repellent layer (air interface). It is speculated that the structure can exhibit both high water repellency and high slipperiness at the same time.
 式(1)において、rの繰り返し数は、特に限定されず、平均で5~100であると好ましく、平均で8~80がより好ましく、平均で10~60がさらに好ましい。
 式(2)において、rの繰り返し数は、特に限定されず、平均で5~100であると好ましく、平均で5~50であるとより好ましい。
In the formula (1), the number of repetitions of r is not particularly limited, and is preferably 5 to 100 on average, more preferably 8 to 80 on average, and even more preferably 10 to 60 on average.
In the formula (2), the number of repetitions of r is not particularly limited, and is preferably 5 to 100 on average, and more preferably 5 to 50 on average.
 加水分解性基を有するシリル基は、好ましくはSi(A)で表されるシリル基(3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である)である。
 Si(A)で表されるシリル基中の加水分解性基の数は少なくとも1つであり、より耐久性に優れる被膜が形成できることから加水分解性基は2つ以上が好ましく、3つ全てが加水分解性基であるとより好ましい。
 尚、Si(A)で表されるシリル基中の加水分解性基が2以上ある場合、2以上の加水分解性基は互いに同じでも異なってもよい。また、Si(A)で表されるシリル基中の加水分解性基が2以上ある場合、少なくとも1つのSi(A)で表されるシリル基が加水分解性基を有すればよい。同様に、Si(A)で表されるシリル基中の非加水分解性基が2以上ある場合、2以上の非加水分解性基は互いに同じでも異なってもよい。
The silyl group having a hydrolyzable group is preferably a silyl group represented by Si (A) 3 (the three A's are independently hydrolyzable or non-hydrolyzable groups, respectively, and the three A's. At least one of them is a hydrolyzable group).
The number of hydrolyzable groups in the silyl group represented by Si (A) 3 is at least one, and two or more hydrolyzable groups are preferable because a film having more excellent durability can be formed, and all three are preferable. Is more preferably a hydrolyzable group.
When there are two or more hydrolyzable groups in the silyl group represented by Si (A) 3 , the two or more hydrolyzable groups may be the same or different from each other. When there are two or more hydrolyzable groups in the silyl group represented by Si (A) 3 , at least one silyl group represented by Si (A) 3 may have a hydrolyzable group. Similarly, when there are two or more non-hydrolyzable groups in the silyl group represented by Si (A) 3 , the two or more non-hydrolyzable groups may be the same or different from each other.
 前記加水分解性基としては、例えば、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基;メトキシエトキシ基等のアルコキシ基置換アルコキシ基;アセトキシ基、プロピオニルオキシ基、ベンゾイルオキシ基等のアシルオキシ基;イソプロペニルオキシ基、イソブテニルオキシ基等のアルケニルオキシ基;ジメチルケトキシム基、メチルエチルケトキシム基、ジエチルケトキシム基、シクロヘキサンオキシム基等のイミンオキシ基;メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基等の置換アミノ基;N-メチルアセトアミド基、N-エチルアミド基等のアミド基;ジメチルアミノオキシ基、ジエチルアミノオキシ基等の置換アミノオキシ基;塩素等のハロゲン等が挙げられる。
 これら加水分解性基の中でも、加水分解の速度が早く、耐久性に優れる被膜を迅速に形成することができることからアルコキシ基が好ましく、炭素原子数1~6のアルコキシ基がより好ましく、炭素原子数1~3のアルコキシ基が更に好ましく、メトキシ基、エトキシ基が特に好ましく、メトキシ基が最も好ましい。
Examples of the hydrolyzable group include an alkoxy group such as a methoxy group, an ethoxy group and a propoxy group; an alkoxy group substituted alkoxy group such as a methoxyethoxy group; an acyloxy group such as an acetoxy group, a propionyloxy group and a benzoyloxy group; Alkoxyoxy groups such as propenyloxy group and isobutenyloxy group; imineoxy groups such as dimethylketoxim group, methylethylketoxim group, diethylketoxim group, cyclohexaneoxym group; methylamino group, ethylamino group, dimethylamino group, diethylamino Substituent amino groups such as groups; amide groups such as N-methylacetamide group and N-ethylamide group; substituted aminooxy groups such as dimethylaminooxy group and diethylaminooxy group; halogens such as chlorine and the like can be mentioned.
Among these hydrolyzable groups, an alkoxy group is preferable because the hydrolysis rate is high and a film having excellent durability can be formed quickly, and an alkoxy group having 1 to 6 carbon atoms is more preferable, and the number of carbon atoms is more preferable. 1 to 3 alkoxy groups are more preferable, methoxy groups and ethoxy groups are particularly preferable, and methoxy groups are most preferable.
 前記非加水分解性基としては、例えば、炭素原子数1~20のアルキル基、炭素原子数2~20のアルケニル基、炭素原子数6~20のアリール基、炭素原子数7~20のアラルキル基等が挙げられる。
 これら非加水分解性基の中でも、立体障害を避けて加水分解速度を早くでき、その結果、耐久性に優れる被膜を迅速に形成することができることから炭素原子数1~3のアルキル基が好ましく、メチル基がより好ましい。
Examples of the non-hydrolyzable group include an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms. And so on.
Among these non-hydrolyzable groups, an alkyl group having 1 to 3 carbon atoms is preferable because it can avoid steric hindrance and increase the hydrolysis rate, and as a result, a film having excellent durability can be formed quickly. Methyl groups are more preferred.
 式(1)で表される構造及び式(2)で表される構造から選択される1種以上と、加水分解性基を有するシリル基とを有する化合物が、式(1)で表される構造を含む場合、式(1)で表される構造を含む化合物は、好ましくは下記式(1-1)、(1-2)、(1-3)又は(1-4)で表される化合物である。 A compound having one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2) and a silyl group having a hydrolyzable group is represented by the formula (1). When the structure is included, the compound containing the structure represented by the formula (1) is preferably represented by the following formulas (1-1), (1-2), (1-3) or (1-4). It is a compound.
Figure JPOXMLDOC01-appb-C000008
(前記式(1-1)、(1-2)、(1-3)及び(1-4)において、
 rは繰り返し数を示す整数である。
 Rは、炭素原子数1~6のアルキレン基である。
 Rは、2価の連結基である。
 Zは、3価の連結基である。
 Bは、それぞれ独立に、有機基又はSi(A)で表されるシリル基であり、2つのBのうち少なくとも1つはSi(A)で表されるシリル基である。
 前記Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。)
Figure JPOXMLDOC01-appb-C000008
(In the above formulas (1-1), (1-2), (1-3) and (1-4),
r is an integer indicating the number of repetitions.
R 1 is an alkylene group having 1 to 6 carbon atoms.
R 3 is a divalent linking group.
Z is a trivalent linking group.
Each of B is an organic group or a silyl group represented by Si (A) 3 , and at least one of the two Bs is a silyl group represented by Si (A) 3 .
The three A of the silyl group represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group. .. )
 式(1-1)、(1-2)、(1-3)及び(1-4)において、rの繰り返し数、及びSi(A)で表されるシリル基の好ましい形態については、それぞれ上述した通りである。 In formulas (1-1), (1-2), (1-3) and (1-4), the number of repetitions of r and the preferred form of the silyl group represented by Si (A) 3 are described, respectively. As described above.
 式(1-1)、(1-2)、(1-3)及び(1-4)において、Rの炭素原子数1~6のアルキレン基としては、炭素原子数3のアルキレン基が好ましい。 Equation (1-1) and (1-2), (1-3) and (1-4), the alkylene group having 1 to 6 carbon atoms of R 1, preferably an alkylene group having a carbon number of 3 ..
 式(1-1)及び(1-2)において、Bが有機基である場合、当該有機基としては、例えば、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のフェニル基等が挙げられる。
 Bの有機基が置換アルキル基である場合、当該置換アルキル基としては、例えば、炭素原子数1~6の部分フッ素化アルキル基、炭素原子数1~6のパーフルオロアルキル基等が挙げられる。
In formulas (1-1) and (1-2), when B is an organic group, the organic group includes, for example, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkenyl group. Phenyl group and the like.
When the organic group of B is a substituted alkyl group, examples of the substituted alkyl group include a partially fluorinated alkyl group having 1 to 6 carbon atoms and a perfluoroalkyl group having 1 to 6 carbon atoms.
 式(1-1)、(1-2)、(1-3)及び(1-4)において、Rの2価の連結基としては、下記式(R-1)で表される連結基、又は下記式(R-2)で表される連結基が好ましい。 Linked in the formula (1-1), (1-2), (1-3) and (1-4), as the divalent linking group for R 3, represented by the following formula (R 3 -1) group, or a linking group represented by the following formula (R 3 -2) preferred.
Figure JPOXMLDOC01-appb-C000009
(前記式(R-1)及び(R-2)中、
 R32は炭素原子数1~3のアルキレン基である。
 R33は直接結合又は炭素原子数1~6のアルキレン基である。
 R34は炭素原子数1~5のアルキレン基である)
Figure JPOXMLDOC01-appb-C000009
(In the formulas (R-1) and (R-2),
R 32 is an alkylene group having 1 to 3 carbon atoms.
R 33 is a direct bond or an alkylene group having 1 to 6 carbon atoms.
R 34 is an alkylene group having 1 to 5 carbon atoms)
 式(R-1)で表される連結基の具体例としては、下記が挙げられる。 Specific examples of the linking group represented by the formula (R 3 -1), include the following.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(R-2)で表される連結基の具体例としては、下記が挙げられる。 Specific examples of the linking group represented by the formula (R 3 -2), include the following.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(R-1)及び(R-2)表される連結基としては、式(R-1-1)、(R-1-3)、(R-1-4)、(R-2-5)、(R-2-6)、(R-2-8)で表される連結基が好ましく、式(R-1-3)及び(R-1-4)で表される連結基がより好ましい。 Formula The (R 3 -1) and (R 3 -2) linking group represented by the formula (R 3 -1-1), (R 3 -1-3), (R 3 -1-4), (R 3 -2-5), (R 3 -2-6), the linking group is preferably represented by (R 3 -2-8), the formula (R 3 -1-3) and (R 3 -1 The linking group represented by -4) is more preferable.
 式(1-2)及び(1-4)におけるZの3価の連結基としては、例えば、炭素原子数4~8の3価の脂肪族環基であり、好ましくはシクロヘキシル基が挙げられる。 The trivalent linking group of Z in the formulas (1-2) and (1-4) is, for example, a trivalent aliphatic ring group having 4 to 8 carbon atoms, preferably a cyclohexyl group.
 式(1-1)、(1-2)、(1-3)又は(1-4)で表される化合物の具体例としては、例えば下記が挙げられる。 Specific examples of the compound represented by the formulas (1-1), (1-2), (1-3) or (1-4) include the following.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(前記式(1-1-11)及び(1-1-12)中、aは1~6の整数である。)
Figure JPOXMLDOC01-appb-C000015
(In the above formulas (1-1-11) and (1-1-12), a is an integer of 1 to 6.)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(1)で表される構造及び式(2)で表される構造から選択される1種以上と、加水分解性基を有するシリル基とを有する化合物が、式(2)で表される構造を含む場合、式(2)で表される構造を含む化合物は、好ましくは下記式(2-1)、(2-2)又は(2-3)で表される化合物である。 A compound having one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2) and a silyl group having a hydrolyzable group is represented by the formula (2). When the structure is included, the compound containing the structure represented by the formula (2) is preferably a compound represented by the following formulas (2-1), (2-2) or (2-3).
Figure JPOXMLDOC01-appb-C000020
(前記式(2-1)、(2-2)及び(2-3)において、
 rは繰り返し数を示す整数である。
 Rは、炭素原子数1~6のアルキレン基である。
 Rは、アルキレンアミノアルキレン基又はアルキレンチオアルキレン基である。
 前記Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。)
Figure JPOXMLDOC01-appb-C000020
(In the above formulas (2-1), (2-2) and (2-3),
r is an integer indicating the number of repetitions.
R 1 is an alkylene group having 1 to 6 carbon atoms.
R 2 is an alkylene aminoalkylene group or an alkylene thioalkylene group.
The three A of the silyl group represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group. .. )
 式(2-1)、(2-2)及び(2-3)において、rの繰り返し数、及びSi(A)で表されるシリル基の好ましい形態については、それぞれ上述した通りである。 In formulas (2-1), (2-2) and (2-3), the number of repetitions of r and the preferred form of the silyl group represented by Si (A) 3 are as described above.
 式(2-1)、(2-2)及び(2-3)において、Rの炭素原子数1~6のアルキレン基としては、炭素原子数3のアルキレン基が好ましい。 In the formulas (2-1), (2-2) and (2-3), the alkylene group having 1 to 6 carbon atoms of R 1 is preferably an alkylene group having 3 carbon atoms.
 式(2-1)、(2-2)及び(2-3)において、Rのアルキレンアミノアルキレン基は、2つアルキレン基がアミノ結合(-NH-)で連結した基であり、アルキレンチオアルキレン基は2つアルキレン基がチオ結合(-S-)で連結した基である。ここで、アルキレンアミノアルキレン基及びアルキレンチオアルキレン基のアルキレン基は、それぞれ独立に炭素原子数1~6のアルキレン基であると好ましい。 In formulas (2-1), (2-2) and (2-3), the alkyleneaminoalkylene group of R 2 is a group in which two alkylene groups are linked by an amino bond (-NH-), and is an alkylenethio. An alkylene group is a group in which two alkylene groups are linked by a thio bond (—S—). Here, it is preferable that the alkylene groups of the alkyleneaminoalkylene group and the alkylenethioalkylene group are independently alkylene groups having 1 to 6 carbon atoms.
 式(2-1)、(2-2)又は(2-3)で表される化合物の具体例としては、例えば下記が挙げられる。 Specific examples of the compound represented by the formula (2-1), (2-2) or (2-3) include the following.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(1)で表される構造及び式(2)で表される構造から選択される1種以上と、加水分解性基を有するシリル基とを有する化合物の製造方法は特に限定されず、公知の方法により製造することができる。 The method for producing a compound having one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2) and a silyl group having a hydrolyzable group is not particularly limited and is known. It can be manufactured by the method of.
 以下、式(1-1)、(1-2)、(1-3)又は(1-4)で表される化合物の製造方法の一実施形態について説明する。
 式(1-1)及び(1-2)で表される化合物の製造方法は、例えば下記式(β-1)で表されるカルボン酸と、下記式(β-2)又は下記式(β-3)で表されるエポキシシラン化合物とを反応させて、エポキシ基由来の2級水酸基を有する反応物を調製する第1工程と、前記第1工程で得られた反応物と下記式(β-4)で表されるイソシアネート化合物とを反応させる第2工程を含む。
Hereinafter, an embodiment of a method for producing a compound represented by the formulas (1-1), (1-2), (1-3) or (1-4) will be described.
The method for producing the compound represented by the formulas (1-1) and (1-2) is, for example, the carboxylic acid represented by the following formula (β-1) and the following formula (β-2) or the following formula (β). The first step of reacting with the epoxysilane compound represented by -3) to prepare a reaction product having a secondary hydroxyl group derived from an epoxy group, and the reaction product obtained in the first step and the following formula (β). The second step of reacting with the isocyanate compound represented by -4) is included.
Figure JPOXMLDOC01-appb-C000022
(前記式(β-1)中、rは繰り返し数である。)
Figure JPOXMLDOC01-appb-C000022
(In the above equation (β-1), r is the number of repetitions.)
Figure JPOXMLDOC01-appb-C000023
(前記式(β-2)及び式(β-3)中、
 Rは、2価の連結基である。
 Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。)
Figure JPOXMLDOC01-appb-C000023
(In the formula (β-2) and the formula (β-3),
R 3 is a divalent linking group.
The three A of the silyl groups represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group. )
Figure JPOXMLDOC01-appb-C000024
(前記式(β-4)中、
 Rは炭素原子数1~6のアルキレン基である。
 Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。)
Figure JPOXMLDOC01-appb-C000024
(In the above formula (β-4),
R 1 is an alkylene group having 1 to 6 carbon atoms.
The three A of the silyl groups represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group. )
 前記式(β-2)で表される化合物の代わりに、下記式(β-5)で表される化合物を用いてもよい。 Instead of the compound represented by the above formula (β-2), a compound represented by the following formula (β-5) may be used.
Figure JPOXMLDOC01-appb-C000025
(前記式(β-5)中、
 Rは、2価の連結基である。
 Gは、有機基である。)
Figure JPOXMLDOC01-appb-C000025
(In the above formula (β-5),
R 3 is a divalent linking group.
G is an organic group. )
 式(1-3)又は(1-4)で表される化合物を製造する場合は、前記第1工程を含めばよく、前記第2工程を省略することができる。 When producing the compound represented by the formula (1-3) or (1-4), the first step may be included, and the second step can be omitted.
 式(β-2)で表される化合物の具体例としては、下記が挙げられる。 Specific examples of the compound represented by the formula (β-2) include the following.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(β-3)で表される化合物の具体例としては、下記が挙げられる。 Specific examples of the compound represented by the formula (β-3) include the following.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式(β-4)で表される化合物の具体例としては、下記が挙げられる。 Specific examples of the compound represented by the formula (β-4) include the following.
Figure JPOXMLDOC01-appb-C000028
(式中、Rは炭素原子数1~6のアルキレン基であり、炭素原子数1~3のアルキレン基が好ましく、n-プロピレン基がより好ましい)
Figure JPOXMLDOC01-appb-C000028
(In the formula, R 1 is an alkylene group having 1 to 6 carbon atoms, preferably an alkylene group having 1 to 3 carbon atoms, and more preferably an n-propylene group).
 式(β-5)で表される化合物の具体例としては、下記が挙げられる。 Specific examples of the compound represented by the formula (β-5) include the following.
Figure JPOXMLDOC01-appb-C000029
(aは1~6の整数である。)
Figure JPOXMLDOC01-appb-C000029
(A is an integer from 1 to 6.)
 式(1-1)、(1-2)、(1-3)又は(1-4)で表される化合物の製造方法では、必要に応じて有機溶剤存在下で行ってもよい。
 前記有機溶剤としては、原料である上記化合物群を溶解するできるものであれば特に制限されず、例えば、イソシアネート基との反応性を有さないアセトン、メチルエチルケトン、トルエン、キシレン等の溶剤やフッ素系有機溶剤を用いることができる。
The method for producing the compound represented by the formulas (1-1), (1-2), (1-3) or (1-4) may be carried out in the presence of an organic solvent, if necessary.
The organic solvent is not particularly limited as long as it can dissolve the above-mentioned compound group as a raw material. For example, a solvent such as acetone, methyl ethyl ketone, toluene, xylene, etc., which does not have reactivity with an isocyanate group, or a fluorine-based solvent is used. An organic solvent can be used.
 前記フッ素系の溶剤としては、例えば、1、3-ビス(トリフルオロメチル)ベンゼン、トリフルオロトルエン等の含フッ素芳香族炭化水素系溶剤;パーフルオロヘキサン、パーフルオロメチルシクロヘキサン等の炭素数3~12のパーフルオロカーボン系溶剤;1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン、1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロオクタン等のハイドロフルオロカーボン系溶剤;COCH,COCH,COC,CCF(OCH)C等のハイドロフルオロエーテル系溶剤;フォンブリン、ガルデン(ソルベイ製)、デムナム(ダイキン工業製)、クライトックス(ケマーズ製)等のパーフルオロポリエーテル系溶剤等を好ましく例示することができる。 Examples of the fluorine-based solvent include fluorine-containing aromatic hydrocarbon solvents such as 1,3-bis (trifluoromethyl) benzene and trifluorotoluene; and having 3 to 3 carbon atoms such as perfluorohexane and perfluoromethylcyclohexane. Twelve perfluorocarbon solvents; 1,1,2,2,3,3,4-heptafluorocyclopentane, 1,1,1,2,2,3,4,4,5,5,6 Hydrofluorocarbon solvent such as 6-tridecafluorooctane; C 3 F 7 OCH 3 , C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 , C 2 F 5 CF (OCH 3 ) C 3 F 7 etc. Hydrofluoroether-based solvent; Perfluoropolyether-based solvent such as Fomblin, Garden (manufactured by Solvay), Demnum (manufactured by Daikin Industries), Kleitox (manufactured by Chemers) and the like can be preferably exemplified.
 前記第1工程において、化合物(β-1)と化合物(β-2)又は化合物(β-3)との反応割合は、化合物(β-1)が有するカルボキシル基と化合物(β-2)又は化合物(β-3)が有するエポキシ基との当量比(カルボキシル基/エポキシ基)が、0.5~1.5となる割合が好ましく、0.9~1.1となる割合がより好ましく、0.98~1.02となる割合がさらに好ましい。 In the first step, the reaction ratio between the compound (β-1) and the compound (β-2) or the compound (β-3) is the carboxyl group of the compound (β-1) and the compound (β-2) or The ratio of the equivalent ratio (carboxyl group / epoxy group) of the compound (β-3) to the epoxy group is preferably 0.5 to 1.5, more preferably 0.9 to 1.1. A ratio of 0.98 to 1.02 is more preferable.
 前記第1工程の反応温度は特に限定されず、通常50~150℃である。また、反応時間についても特に限定されず、通常1~10時間である。 The reaction temperature in the first step is not particularly limited, and is usually 50 to 150 ° C. The reaction time is also not particularly limited, and is usually 1 to 10 hours.
 前記第2工程において、前記第1工程で得られるエポキシ基由来の2級水酸基を有する反応物と化合物(β-4)との反応割合は、前記反応物が有する水酸基と化合物(β-4)が有するイソシアネート基との当量比(水酸基/イソシアネート基)が、0.5~1.5となる割合が好ましく、0.9~1.1となる割合がより好ましく、0.98~1.02となる割合がさらに好ましい。 In the second step, the reaction ratio between the reactant having a secondary hydroxyl group derived from the epoxy group obtained in the first step and the compound (β-4) is the hydroxyl group and the compound (β-4) contained in the reactant. The ratio of the equivalent ratio (hydroxyl group / isocyanate group) to the isocyanate group of the is preferably 0.5 to 1.5, more preferably 0.9 to 1.1, and 0.98 to 1.02. Is more preferable.
 前記第2工程の反応温度は特に限定されず、通常30~120℃である。また、反応時間についても特に限定されず、通常1~10時間である。 The reaction temperature in the second step is not particularly limited, and is usually 30 to 120 ° C. The reaction time is also not particularly limited, and is usually 1 to 10 hours.
 式(2-1)、(2-2)又は(2-3)で表される化合物の製造方法は、式(1-1)、(1-2)、(1-3)又は(1-4)で表される化合物の製造方法と同様の方法が採用できる。
 例えば、下記式(γ-1)で表されるアルコールと、前記式(β-4)で表されるイソシアネート化合物とを反応させることにより式(2-1)、(2-2)又は(2-3)で表される化合物を製造することができる。
 反応条件やその他原料等については、前記式式(1-1)、(1-2)、(1-3)又は(1-4)で表される化合物の製造方法と同じ反応条件やその他原料を採用するとよい。
The method for producing the compound represented by the formula (2-1), (2-2) or (2-3) is the formula (1-1), (1-2), (1-3) or (1-1). A method similar to the method for producing the compound represented by 4) can be adopted.
For example, by reacting an alcohol represented by the following formula (γ-1) with an isocyanate compound represented by the above formula (β-4), the formula (2-1), (2-2) or (2) The compound represented by -3) can be produced.
Regarding the reaction conditions and other raw materials, the same reaction conditions and other raw materials as the method for producing the compound represented by the above formulas (1-1), (1-2), (1-3) or (1-4) It is good to adopt.
Figure JPOXMLDOC01-appb-C000030
(前記式(γ-1)中、rは繰り返し数である。)
Figure JPOXMLDOC01-appb-C000030
(In the above equation (γ-1), r is the number of repetitions.)
 滑落撥水層中の式(1)で表される構造及び式(2)で表される構造から選択される1種以上と、加水分解性基を有するシリル基とを有する化合物は、1種単独でもよく、2種以上を併用してもよい。 One kind of compound having one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2) in the sliding water-repellent layer and a silyl group having a hydrolyzable group is one kind. It may be used alone or in combination of two or more.
 滑落撥水層は、式(1)で表される構造及び式(2)で表される構造から選択される1種以上と、加水分解性基を有するシリル基とを有する化合物を含めばよく、本発明の効果を損なわない範囲で、その他成分を含んでもよい。
 前記その他成分としては、無機錫化合物、無機チタン化合物、無機亜鉛化合物等の無機金属化合物、アミン化合物等の加水分解促進剤、アルコール等の保存安定剤が挙げられる。
The sliding water-repellent layer may include one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2), and a compound having a silyl group having a hydrolyzable group. , Other components may be contained as long as the effects of the present invention are not impaired.
Examples of the other components include inorganic metal compounds such as inorganic tin compounds, inorganic titanium compounds and inorganic zinc compounds, hydrolysis accelerators such as amine compounds, and storage stabilizers such as alcohol.
 滑落撥水層は、式(1)で表される構造及び式(2)で表される構造から選択される1種以上と、加水分解性基を有するシリル基とを有する化合物のほかにその他の成分を含んでもよく、含まなくてもよい。
 滑落撥水層は、式(1)で表される構造及び式(2)で表される構造から選択される1種以上と、加水分解性基を有するシリル基とを有する化合物から実質的になると好ましく、この時、滑落撥水層は不可避不純物を含んでもよい。
The sliding water-repellent layer includes one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2), a compound having a silyl group having a hydrolyzable group, and others. It may or may not contain the component of.
The sliding water-repellent layer is substantially composed of a compound having one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2) and a silyl group having a hydrolyzable group. At this time, the sliding water-repellent layer may contain unavoidable impurities.
 滑落撥水層の厚みは、例えば1~100nmであり、1~50nmであると好ましく、1~20nmであるとより好ましい。 The thickness of the sliding water-repellent layer is, for example, 1 to 100 nm, preferably 1 to 50 nm, and more preferably 1 to 20 nm.
<構造体の製造方法>
 本発明の構造体は、例えば、基材に式(1)で表される構造及び式(2)で表される構造から選択される1種以上と、加水分解性基を有するシリル基とを有する化合物(以下、この構造を有する化合物を「滑落撥水層化合物」という場合がある)の溶液を塗布する、又は基材を滑落撥水層化合物の溶液に基材を浸漬させることにより製造することができる。
<Manufacturing method of structure>
The structure of the present invention comprises, for example, one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2) on the base material, and a silyl group having a hydrolyzable group. It is produced by applying a solution of a compound having a compound (hereinafter, a compound having this structure may be referred to as a “sliding water-repellent layer compound”), or by immersing a base material in a solution of a sliding water-repellent layer compound. be able to.
 基材に滑落撥水層化合物の溶液を塗布する前に、又は基材を滑落撥水層化合物の溶液に基材を浸漬させる前に、基材を洗浄液に浸漬して洗浄すると好ましい。
 前記洗浄液としては、例えば、水、エタノール、イソプロパノール、水酸化ナトリウム水溶液、水酸化テトラメチルアンモニウム水溶液、これらの混合液が挙げられる。
 基材を洗浄液で洗浄しておくことで、基材表面の油等の汚れを除去し、撥水滑落層の形成をスムーズに行うことができる。
 また、他の基材の処理方法として、プラズマ処理、UVオゾン処理等をして、基材表面を親水化処理してもよい。
It is preferable to immerse the base material in a cleaning liquid for cleaning before applying the solution of the sliding water-repellent layer compound to the base material or before immersing the base material in the solution of the sliding water-repellent layer compound.
Examples of the cleaning solution include water, ethanol, isopropanol, an aqueous solution of sodium hydroxide, an aqueous solution of tetramethylammonium hydroxide, and a mixed solution thereof.
By cleaning the base material with a cleaning liquid, dirt such as oil on the surface of the base material can be removed, and the water-repellent sliding layer can be smoothly formed.
Further, as another method for treating the base material, the surface of the base material may be hydrophilized by performing plasma treatment, UV ozone treatment, or the like.
 滑落撥水層化合物の溶液の溶剤としては、滑落撥水層化合物を溶解できる溶剤であれば特に限定されず、例えば上述の式(1-1)、(1-2)、(1-3)又は(1-4)で表される化合物の調製の際に使用する溶剤を用いるとよい。
 滑落撥水層化合物の濃度としては、例えば0.01質量%~30質量%であり、好ましくは0.01質量%~10質量%であり、より好ましくは0.1質量%~5質量%である。
The solvent of the solution of the sliding water-repellent layer compound is not particularly limited as long as it is a solvent capable of dissolving the sliding water-repellent layer compound, and for example, the above formulas (1-1), (1-2) and (1-3). Alternatively, the solvent used in the preparation of the compound represented by (1-4) may be used.
The concentration of the sliding water-repellent layer compound is, for example, 0.01% by mass to 30% by mass, preferably 0.01% by mass to 10% by mass, and more preferably 0.1% by mass to 5% by mass. is there.
 式(1)で表される構造及び式(2)で表される構造から選択される1種以上と、加水分解性基を有するシリル基とを有する化合物は、加水分解性基を有するシリル基が基材に直接結合することができるので、滑落撥水層化合物の溶液は、例えばバインダーを含まなくてもよい。 A compound having one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2) and a silyl group having a hydrolyzable group is a silyl group having a hydrolyzable group. The solution of the sliding water repellent layer compound may not contain, for example, a binder, since can be directly bonded to the substrate.
 滑落撥水層化合物の溶液を塗布した基材、又は滑落撥水層化合物の溶液に浸漬した基材を乾燥することで基材上に撥水滑落層を形成することができる。
 ここで乾燥は、乾燥温度は40~200℃であると好ましく、乾燥時間は5~60分であると好ましい。
A water-repellent sliding layer can be formed on the base material by drying the base material coated with the solution of the sliding water-repellent layer compound or the base material immersed in the solution of the sliding water-repellent layer compound.
Here, the drying temperature is preferably 40 to 200 ° C., and the drying time is preferably 5 to 60 minutes.
<熱交換器用部材および輸送機用部材>
 本発明の構造体は、撥水性と滑水性の両方を同時に示すことができ、滑落撥水層表面の水の滑落角を15°以下とすることができ、滑落撥水層表面の水の接触角を110°以上とすることができる。
 本発明の構造体は、撥水性と滑水性の両方を同時に示すことができので、例えば基材がアルミニウム基材であれば、本発明の構造体を熱交換器用部材として用いることでき、基材表面に結露水及び/又は霜が付着することを抑制し、熱交換器の高い熱交換効率を実現することができる。また、例えば基材がガラス基材であれば、本発明の構造体を輸送機用部材として用いることでき、ガラス表面に水滴がつくことのない、輸送機の高い視界安定性を実現することができる。
 尚、上記滑落角及び接触角はそれぞれ実施例に記載の方法で評価する。
<Members for heat exchangers and transport aircraft>
The structure of the present invention can exhibit both water repellency and water sliding property at the same time, the sliding angle of water on the surface of the sliding water repellent layer can be set to 15 ° or less, and the contact of water on the surface of the sliding water repellent layer. The angle can be 110 ° or more.
Since the structure of the present invention can exhibit both water repellency and water sliding property at the same time, for example, if the base material is an aluminum base material, the structure of the present invention can be used as a member for a heat exchanger, and the base material can be used. Condensation water and / or frost can be suppressed from adhering to the surface, and high heat exchange efficiency of the heat exchanger can be realized. Further, for example, if the base material is a glass base material, the structure of the present invention can be used as a member for a transport aircraft, and high visibility stability of the transport aircraft can be realized without water droplets adhering to the glass surface. it can.
The sliding angle and the contact angle are each evaluated by the methods described in the examples.
 以下、実施例と比較例とにより、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
<パーフルオロポリエーテル基を有するシラン化合物の合成例>
合成例1
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶剤として1,3-ビス(トリフルオロメチル)ベンゼン60.62gと、下記式で表されるカルボン酸(ケマーズ株式会社製Krytox157FS(H))87.6gと、γ-グリシドキシプロピルトリメトキシシラン3.33gと、反応触媒としてトリフェニルフォスフィン0.273gを加え、窒素気流下で攪拌を開始し、105℃に加温後、約5時間反応させた。
<Synthesis example of a silane compound having a perfluoropolyether group>
Synthesis example 1
In a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device, 60.62 g of 1,3-bis (trifluoromethyl) benzene as a solvent and a carboxylic acid represented by the following formula (Krytox 157FS manufactured by Chemers Co., Ltd.) (H)) 87.6 g, γ-glycidoxypropyltrimethoxysilane 3.33 g, and triphenylphosphine 0.273 g as a reaction catalyst were added, stirring was started under a nitrogen stream, and the mixture was heated to 105 ° C. After that, it was reacted for about 5 hours.
Figure JPOXMLDOC01-appb-C000031
(rは繰り返し数であり、平均で43である。)
Figure JPOXMLDOC01-appb-C000031
(R is the number of repetitions, which is 43 on average.)
 反応終了後50℃まで降温し、この反応液に溶剤としてハイドロフルオロエーテル(COC)33.33gと、3-イソシアナトプロピルトリメトキシシラン3.02gと、ウレタン化触媒としてオクチル酸スズ0.047gを加え、窒素気流下で攪拌を開始し、70℃で約4時間反応させ、パーフルオロポリエーテル基を有するシラン化合物である下記化合物(1a)を得た。 After completion of the reaction, the temperature was lowered to 50 ° C., and 33.33 g of hydrofluoroether (C 4 F 9 OC 2 H 5 ), 3.02 g of 3-isocyanatopropyltrimethoxysilane as a solvent, and 3.02 g of 3-isocyanatopropyltrimethoxysilane as a urethanization catalyst were added to the reaction solution. 0.047 g of tin octylate was added, stirring was started under a nitrogen stream, and the reaction was carried out at 70 ° C. for about 4 hours to obtain the following compound (1a), which is a silane compound having a perfluoropolyether group.
Figure JPOXMLDOC01-appb-C000032
(式中、rは繰り返し数であり、平均で43である。)
Figure JPOXMLDOC01-appb-C000032
(In the formula, r is the number of repetitions, which is 43 on average.)
 溶剤の濃度が80質量%となるようにハイドロフルオロエーテルを添加して反応液を希釈した。希釈した反応液を孔径1μmのポリテトラフルオロエチレン(PTFE)製フィルターを使用してろ過精製し、ポリ(パーフルオロアルキレンエーテル)鎖含有シラン化合物(1a)を含むハイドロフルオロエーテル溶液を得た。 The reaction solution was diluted by adding hydrofluoroether so that the concentration of the solvent was 80% by mass. The diluted reaction solution was filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 1 μm to obtain a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (1a).
合成例2
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶剤として1,3-ビス(トリフルオロメチル)ベンゼン36.67gと、下記式で表されるカルボン酸(ケマーズ製Krytox157FS(L))50gと、γ-グリシドキシプロピルトリメトキシシラン5.01gと、反応触媒としてトリフェニルフォスフィン0.165gを加え、窒素気流下で攪拌を開始し、105℃に加温後、約5時間反応させた。
Synthesis example 2
In a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device, 36.67 g of 1,3-bis (trifluoromethyl) benzene as a solvent and a carboxylic acid represented by the following formula (Krytox 157FS (L) manufactured by Chemers) )) 50 g, 5.01 g of γ-glycidoxypropyltrimethoxysilane, and 0.165 g of triphenylphosphine as a reaction catalyst were added, stirring was started under a nitrogen stream, and after heating to 105 ° C., about 5 Reacted for time.
Figure JPOXMLDOC01-appb-C000033
(rは平均で13である。)
Figure JPOXMLDOC01-appb-C000033
(R is 13 on average.)
 反応終了後50℃まで降温し、この反応液にハイドロフルオロエーテル(COC)2.97gと、3-イソシアナトプロピルトリメトキシシラン4.63gと、ウレタン化触媒としてオクチル酸スズ0.018gを加え、窒素気流下で攪拌を開始し、70℃で約4時間反応させ、パーフルオロポリエーテル基を有するシラン化合物である下記化合物(2a)を得た。 After completion of the reaction, the temperature was lowered to 50 ° C., and 2.97 g of hydrofluoroether (C 4 F 9 OC 2 H 5 ), 4.63 g of 3-isocyanatopropyltrimethoxysilane, and octyl acid as a urethanization catalyst were added to this reaction solution. 0.018 g of tin was added, stirring was started under a nitrogen stream, and the reaction was carried out at 70 ° C. for about 4 hours to obtain the following compound (2a), which is a silane compound having a perfluoropolyether group.
Figure JPOXMLDOC01-appb-C000034
(式中、rは繰り返し数であり、平均で13である。)
Figure JPOXMLDOC01-appb-C000034
(In the formula, r is the number of repetitions, which is 13 on average.)
 溶剤の濃度が80質量%となるようにハイドロフルオロエーテルを添加して反応液を希釈した。希釈した反応液を孔径0.2μmのポリテトラフルオロエチレン(PTFE)製フィルターを使用してろ過精製し、ポリ(パーフルオロアルキレンエーテル)鎖含有シラン化合物(2a)を含むハイドロフルオロエーテル溶液を得た。 The reaction solution was diluted by adding hydrofluoroether so that the concentration of the solvent was 80% by mass. The diluted reaction solution was filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 0.2 μm to obtain a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (2a). ..
合成例3
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、下記式で表されるポリ(パーフルオロアルキレンエーテル)鎖を有するアルコール40.0gと溶剤としてハイドロフルオロエーテル(COC)43.77gと、ウレタン化触媒としてオクチル酸スズ0.004gを加え、窒素気流下で攪拌を開始した。攪拌を開始後、50℃に保ちながら3-イソシアナトプロピルトリメトキシシラン3.77gを15分間かけて反応液に滴下した。滴下終了後、50℃で6時間攪拌することにより前記アルコールと3-イソシアナトプロピルトリメトキシシランとを反応させ、反応物を得た。
Synthesis example 3
In a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device, 40.0 g of alcohol having a poly (perfluoroalkylene ether) chain represented by the following formula and hydrofluoro ether (C 4 F 9 OC) as a solvent and 2 H 5) 43.77g, tin octoate 0.004g added as a urethane catalyst, stirring was started under a stream of nitrogen. After starting stirring, 3.77 g of 3-isocyanatopropyltrimethoxysilane was added dropwise to the reaction solution over 15 minutes while maintaining the temperature at 50 ° C. After completion of the dropping, the alcohol was reacted with 3-isocyanatopropyltrimethoxysilane by stirring at 50 ° C. for 6 hours to obtain a reaction product.
Figure JPOXMLDOC01-appb-C000035
(式中、rは繰り返し数であり、平均で13である。)
Figure JPOXMLDOC01-appb-C000035
(In the formula, r is the number of repetitions, which is 13 on average.)
 得られた反応物について、IRスペクトル測定を行い、反応物中にイソシアネート基の消失していることを確認し、下記化合物(3a)が得られたことを確認した。
 溶剤の濃度が80質量%となるようにハイドロフルオロエーテルを添加して反応液を希釈した。希釈した反応液を孔径0.2μmのポリテトラフルオロエチレン(PTFE)製フィルターを使用してろ過精製し、ポリ(パーフルオロアルキレンエーテル)鎖含有シラン化合物(3a)を含むハイドロフルオロエーテル溶液を得た。
The obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the following compound (3a) was obtained.
The reaction solution was diluted by adding hydrofluoroether so that the concentration of the solvent was 80% by mass. The diluted reaction solution was filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 0.2 μm to obtain a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (3a). ..
Figure JPOXMLDOC01-appb-C000036
(式中、rは繰り返し数であり、平均で13である。)
Figure JPOXMLDOC01-appb-C000036
(In the formula, r is the number of repetitions, which is 13 on average.)
比較合成例1
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、下記式(1’)で表されるポリ(パーフルオロアルキレンエーテル)鎖を有するジオール45.3gとウレタン化触媒としてオクチル酸スズ0.025gを仕込み、窒素気流下で攪拌を開始し、60℃を保ちながら3-イソシアナトプロピルトリメトキシシラン4.7gを15分間かけて滴下した。
 滴下終了後、60℃で1時間攪拌した後、更に80℃に昇温して2時間攪拌することにより前記ジオールと3-イソシアナトプロピルトリメトキシシランとを反応させ、反応物を得た。
Comparative synthesis example 1
In a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device, 45.3 g of a diol having a poly (perfluoroalkylene ether) chain represented by the following formula (1') and tin octylate as a urethanization catalyst. 0.025 g was charged, stirring was started under a nitrogen stream, and 4.7 g of 3-isocyanatopropyltrimethoxysilane was added dropwise over 15 minutes while maintaining 60 ° C.
After completion of the dropping, the mixture was stirred at 60 ° C. for 1 hour, then further heated to 80 ° C. and stirred for 2 hours to react the diol with 3-isocyanatopropyltrimethoxysilane to obtain a reaction product.
Figure JPOXMLDOC01-appb-C000037
(式中、nは繰り返し数である。
 複数のXはそれぞれ独立にパーフルオロメチレン基又はパーフルオロエチレン基であり、式(1’)で表される化合物1分子あたり、パーフルオロメチレン基が平均21個、パーフルオロエチレン基が平均21個存在するものであり、フッ素原子の数が平均126である。)
Figure JPOXMLDOC01-appb-C000037
(In the equation, n is the number of repetitions.
Each of the plurality of Xs is independently a perfluoromethylene group or a perfluoroethylene group, and each compound represented by the formula (1') has an average of 21 perfluoromethylene groups and an average of 21 perfluoroethylene groups. It is present and has an average of 126 fluorine atoms. )
 得られた反応物について、IRスペクトル測定を行い、反応物中にイソシアネート基の消失していることを確認し、下記化合物(1’a)が得られたことを確認した。
 溶剤の濃度が80質量%となるようにハイドロフルオロエーテルを添加して反応液を希釈した。希釈した反応液を孔径0.2μmのポリテトラフルオロエチレン(PTFE)製フィルターを使用してろ過精製し、ポリ(パーフルオロアルキレンエーテル)鎖含有シラン化合物(1’a)を含むハイドロフルオロエーテル溶液を得た。
The obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the following compound (1'a) was obtained.
The reaction solution was diluted by adding hydrofluoroether so that the concentration of the solvent was 80% by mass. The diluted reaction solution is filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 0.2 μm, and a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (1'a) is prepared. Obtained.
Figure JPOXMLDOC01-appb-C000038
(式中、PFPEは、前記式(1’)の-(X-O-)-X-に対応する。)
Figure JPOXMLDOC01-appb-C000038
(In the formula, PFPE corresponds to-(XO-) n -X-of the above formula (1').)
比較合成例2
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、下記式(2’)で表されるポリ(パーフルオロアルキレンエーテル)鎖を有するジオール55.79gとハイドロフルオロエーテル(COC)40gとウレタン化触媒としてオクチル酸スズ0.03gを仕込み、窒素気流下で攪拌を開始し、50℃を保ちながら3-イソシアナトプロピルトリメトキシシラン4.12gを15分間かけて滴下した。
 滴下終了後、50℃で6時間攪拌することにより前記ジオールと3-イソシアナトプロピルトリメトキシシランとを反応させ、反応物を得た。
Comparative synthesis example 2
55.79 g of diol having a poly (perfluoroalkylene ether) chain represented by the following formula (2') and hydrofluoro ether (C 4 F) in a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device. 9 OC 2 H 5 ) 40 g and 0.03 g of tin octylate as a urethanization catalyst were charged, stirring was started under a nitrogen stream, and 4.12 g of 3-isocyanatopropyltrimethoxysilane was applied for 15 minutes while maintaining 50 ° C. And dropped.
After completion of the dropping, the diol was reacted with 3-isocyanatopropyltrimethoxysilane by stirring at 50 ° C. for 6 hours to obtain a reaction product.
Figure JPOXMLDOC01-appb-C000039
(式中、nは繰り返し数である。
 複数のXはそれぞれ独立にパーフルオロメチレン基又はパーフルオロエチレン基であり、式(2’)で表される化合物1分子あたり、パーフルオロメチレン基が平均30個、パーフルオロエチレン基が平均30個存在するものであり、フッ素原子の数が平均180である。)
Figure JPOXMLDOC01-appb-C000039
(In the equation, n is the number of repetitions.
The plurality of Xs are independently perfluoromethylene groups or perfluoroethylene groups, and each compound represented by the formula (2') has an average of 30 perfluoromethylene groups and an average of 30 perfluoroethylene groups. It is present and has an average number of fluorine atoms of 180. )
 得られた反応物について、IRスペクトル測定を行い、反応物中にイソシアネート基の消失していることを確認し、下記化合物(2’a)が得られたことを確認した。
 溶剤の濃度が80質量%となるようにハイドロフルオロエーテルを添加して反応液を希釈した。希釈した反応液を孔径0.2μmのポリテトラフルオロエチレン(PTFE)製フィルターを使用してろ過精製し、ポリ(パーフルオロアルキレンエーテル)鎖含有シラン化合物(2’a)を含むハイドロフルオロエーテル溶液を得た。
The obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the following compound (2'a) was obtained.
The reaction solution was diluted by adding hydrofluoroether so that the concentration of the solvent was 80% by mass. The diluted reaction solution is filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 0.2 μm, and a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (2'a) is prepared. Obtained.
Figure JPOXMLDOC01-appb-C000040
(式中、PFPEは、前記式(2’)の-(X-O-)-X-に対応する。)
Figure JPOXMLDOC01-appb-C000040
(In the formula, PFPE corresponds to-(XO-) n -X-of the above formula (2').)
比較合成例3
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、下記式(3’)で表されるポリ(パーフルオロアルキレンエーテル)鎖を有するアルコール20gとハイドロフルオロエーテル(COC)20gとウレタン化触媒としてオクチル酸スズ0.006gを仕込み、窒素気流下で攪拌を開始し、50℃を保ちながら3-イソシアナトプロピルトリメトキシシラン1.31gを15分間かけて滴下した。
 滴下終了後、50℃で6時間攪拌することにより前記アルコールと3-イソシアナトプロピルトリメトキシシランとを反応させ、反応物を得た。
Comparative synthesis example 3
In a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device, 20 g of alcohol having a poly (perfluoroalkylene ether) chain represented by the following formula (3') and hydrofluoro ether (C 4 F 9 OC). 2 H 5) g of tin octylate 0.006g as 20g and urethanization catalyst, stirring in a nitrogen stream to begin, dropwise over while maintaining 50 ° C. 3- isocyanatoethyl trimethoxysilane 1.31 g 15 min did.
After completion of the dropping, the alcohol was reacted with 3-isocyanatopropyltrimethoxysilane by stirring at 50 ° C. for 6 hours to obtain a reaction product.
Figure JPOXMLDOC01-appb-C000041
(式中、lは繰り返し数であり、平均で19である。mは繰り返し数であり、平均で19である。)
Figure JPOXMLDOC01-appb-C000041
(In the equation, l is the number of repetitions and is 19 on average. M is the number of repetitions and is 19 on average.)
 得られた反応物について、IRスペクトル測定を行い、反応物中にイソシアネート基の消失していることを確認し、下記化合物(3’a)が得られたことを確認した。
 溶剤の濃度が80質量%となるようにハイドロフルオロエーテルを添加して反応液を希釈した。希釈した反応液を孔径0.2μmのポリテトラフルオロエチレン(PTFE)製フィルターを使用してろ過精製し、ポリ(パーフルオロアルキレンエーテル)鎖含有シラン化合物(3’a)を含むハイドロフルオロエーテル溶液を得た。
The obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the following compound (3'a) was obtained.
The reaction solution was diluted by adding hydrofluoroether so that the concentration of the solvent was 80% by mass. The diluted reaction solution is filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 0.2 μm, and a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (3'a) is prepared. Obtained.
Figure JPOXMLDOC01-appb-C000042
(式中、lは繰り返し数であり、平均で19である。mは繰り返し数であり、平均で19である。)
Figure JPOXMLDOC01-appb-C000042
(In the equation, l is the number of repetitions and is 19 on average. M is the number of repetitions and is 19 on average.)
比較合成例4
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコにトリフルオロエタノール50gとハイドロフルオロエーテル(COC)157.99gとウレタン化触媒としてオクチル酸スズ0.047gを仕込み、窒素気流下で攪拌を開始し、50℃を保ちながら3-イソシアナトプロピルトリメトキシシラン107.99gを15分間かけて滴下した。
 滴下終了後、50℃で6時間攪拌することにより前記アルコールと3-イソシアナトプロピルトリメトキシシランとを反応させ、反応物を得た。
Comparative synthesis example 4
50 g of trifluoroethanol, 157.99 g of hydrofluoroether (C 4 F 9 OC 2 H 5 ) and 0.047 g of tin octylate as a urethanization catalyst are placed in a glass flask equipped with a stirrer, a thermometer, a cooling tube and a dropping device. The mixture was charged, stirring was started under a nitrogen stream, and 107.99 g of 3-isocyanatopropyltrimethoxysilane was added dropwise over 15 minutes while maintaining 50 ° C.
After completion of the dropping, the alcohol was reacted with 3-isocyanatopropyltrimethoxysilane by stirring at 50 ° C. for 6 hours to obtain a reaction product.
 得られた反応物について、IRスペクトル測定を行い、反応物中にイソシアネート基の消失していることを確認し、パーフルオロアルキル基含有シラン化合物(4’a)が得られたことを確認した。
 溶剤の濃度が80質量%となるようにハイドロフルオロエーテルを添加して反応液を希釈した。希釈した反応液を孔径0.2μmのポリテトラフルオロエチレン(PTFE)製フィルターを使用してろ過精製し、パーフルオロアルキル基含有シラン化合物(4’a)を含むハイドロフルオロエーテル溶液を得た。
The obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the perfluoroalkyl group-containing silane compound (4'a) was obtained.
The reaction solution was diluted by adding hydrofluoroether so that the concentration of the solvent was 80% by mass. The diluted reaction solution was filtered and purified using a filter made of polytetrafluoroethylene (PTFE) having a pore size of 0.2 μm to obtain a hydrofluoroether solution containing a perfluoroalkyl group-containing silane compound (4'a).
比較合成例5
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに2-(パーフルオロへキシル)エタノール25gとハイドロフルオロエーテル(COC)39.98gとウレタン化触媒としてオクチル酸スズ0.01gを仕込み、窒素気流下で攪拌を開始し、50℃を保ちながら3-イソシアナトプロピルトリメトキシシラン14.98gを15分間かけて滴下した。
 滴下終了後、50℃で6時間攪拌することにより前記アルコールと3-イソシアナトプロピルトリメトキシシランとを反応させ、反応物を得た。
Comparative synthesis example 5
25 g of 2- (perfluorohexyl) ethanol, 39.98 g of hydrofluoroether (C 4 F 9 OC 2 H 5 ) and octyl as a urethanization catalyst in a glass flask equipped with a stirrer, thermometer, condenser and dropping device. 0.01 g of tin acid acid was charged, stirring was started under a nitrogen stream, and 14.98 g of 3-isocyanatopropyltrimethoxysilane was added dropwise over 15 minutes while maintaining 50 ° C.
After completion of the dropping, the alcohol was reacted with 3-isocyanatopropyltrimethoxysilane by stirring at 50 ° C. for 6 hours to obtain a reaction product.
 得られた反応物について、IRスペクトル測定を行い、反応物中にイソシアネート基の消失していることを確認し、パーフルオロアルキル基含有シラン化合物(5’a)が得られたことを確認した。
 溶剤の濃度が80質量%となるようにハイドロフルオロエーテルを添加して反応液を希釈した。希釈した反応液を孔径0.2μmのポリテトラフルオロエチレン(PTFE)製フィルターを使用してろ過精製し、パーフルオロアルキル基含有シラン化合物(5’a)を含むハイドロフルオロエーテル溶液を得た。
The obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the perfluoroalkyl group-containing silane compound (5'a) was obtained.
The reaction solution was diluted by adding hydrofluoroether so that the concentration of the solvent was 80% by mass. The diluted reaction solution was filtered and purified using a filter made of polytetrafluoroethylene (PTFE) having a pore size of 0.2 μm to obtain a hydrofluoroether solution containing a perfluoroalkyl group-containing silane compound (5'a).
実施例1
 合成例1で調製した化合物(1a)溶液にハイドロフルオロエーテルをさらに加え、化合物(1a)0.1重量%の塗工液を調製した。
 得られた塗工液に前処理をしたガラス板を浸漬し、1時間静置した。静置後、ガラス板を取り出し150℃で30分間乾燥させ、基材上に化合物(1a)を含む層が積層した積層体である塗工板(基材:ガラス板)を製造した。
 尚、ガラス板の前処理は、7cm×7cmのガラス板をプラズマ照射器に通して、水接触角(6μl)の測定で10°以下となるまでプラズマ照射する処理である。水接触角の測定については後述する。
Example 1
Hydrofluoroether was further added to the solution of compound (1a) prepared in Synthesis Example 1 to prepare a coating solution of 0.1% by weight of compound (1a).
The pretreated glass plate was immersed in the obtained coating liquid and allowed to stand for 1 hour. After standing, the glass plate was taken out and dried at 150 ° C. for 30 minutes to produce a coated plate (base material: glass plate) which is a laminate in which a layer containing the compound (1a) is laminated on the base material.
The pretreatment of the glass plate is a process in which a 7 cm × 7 cm glass plate is passed through a plasma irradiator and plasma is irradiated until the water contact angle (6 μl) is measured to be 10 ° or less. The measurement of the water contact angle will be described later.
 基材がガラス板の塗工板だけでなく、基材がアルミ板である塗工板も製造した。具体的には、得られた塗工液に前処理をしたアルミ板を浸漬し、1時間静置した。静置後、アルミ板を取り出し150℃で30分間乾燥させ、基材上に化合物(1a)を含む層が積層した積層体である塗工板(基材:アルミ板)を製造した。
 尚、アルミ板の前処理は、2.5cm×7.5cmのアルミ平板を0.5重量%水酸化ナトリウム水溶液に5分浸漬させた後、水及びメタノールで洗浄することで行った。
Not only a coated plate whose base material is a glass plate, but also a coated plate whose base material is an aluminum plate was manufactured. Specifically, the pretreated aluminum plate was immersed in the obtained coating liquid and allowed to stand for 1 hour. After standing, the aluminum plate was taken out and dried at 150 ° C. for 30 minutes to produce a coated plate (base material: aluminum plate) which is a laminated body in which a layer containing the compound (1a) is laminated on the base material.
The pretreatment of the aluminum plate was carried out by immersing a 2.5 cm × 7.5 cm aluminum flat plate in a 0.5 wt% sodium hydroxide aqueous solution for 5 minutes and then washing with water and methanol.
 製造した2つの塗工板について、下記の方法により接触角及び滑落角をそれぞれ評価した。結果を表1に示す。
(接触角測定)
 接触角・滑落角測定装置(協和界面科学社製DM-500)を用い、塗工板の化合物(1a)の層上に6μLの水滴を滴下し、水滴の接触角を測定した。接触角の測定は5回行い、5回の平均値を塗工板の接触角とした。
(滑落角測定)
 接触角・滑落角測定装置(協和界面科学社製DM-500)を用い、塗工板の化合物(1a)の層上に50μLの水滴を滴下し、2度/秒のスピードでステージを傾け、水滴が動き出した角度を滑落角の値とした。測定は5回行い、5回の平均値を塗工板の滑落角とした。
The contact angle and the sliding angle of the two coated plates produced were evaluated by the following methods. The results are shown in Table 1.
(Contact angle measurement)
Using a contact angle / sliding angle measuring device (DM-500 manufactured by Kyowa Interface Science Co., Ltd.), 6 μL of water droplets were dropped onto the layer of compound (1a) on the coating plate, and the contact angles of the water droplets were measured. The contact angle was measured 5 times, and the average value of the 5 times was taken as the contact angle of the coated plate.
(Sliding angle measurement)
Using a contact angle / sliding angle measuring device (DM-500 manufactured by Kyowa Interface Science Co., Ltd.), 50 μL of water droplets were dropped onto the layer of compound (1a) on the coating plate, and the stage was tilted at a speed of 2 degrees / second. The angle at which the water droplets started to move was taken as the value of the sliding angle. The measurement was performed 5 times, and the average value of the 5 times was taken as the sliding angle of the coated plate.
実施例2-3及び比較例1-5
 化合物(1a)の代わりに表1に示す化合物を用いた他は実施例1と同様にして塗工板を製造し、評価した。結果を表1に示す。
Example 2-3 and Comparative Example 1-5
A coated plate was produced and evaluated in the same manner as in Example 1 except that the compounds shown in Table 1 were used instead of the compound (1a). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 表1の結果から、実施例1-3の塗工板は、比較例1-5の塗工板に比べ、基材の材質に拘わらず撥水性だけでなく滑水性も同時に示すことができていることが分かる。 From the results in Table 1, the coated plate of Example 1-3 can show not only water repellency but also water sliding property at the same time regardless of the material of the base material, as compared with the coated plate of Comparative Example 1-5. You can see that there is.

Claims (13)

  1.  基材上に滑落撥水層を有する構造体であって、
     前記滑落撥水層が、下記式(1)で表される構造及び下記式(2)で表される構造から選択される1種以上と、加水分解性基を有するシリル基とを有する化合物を含む構造体。
    Figure JPOXMLDOC01-appb-C000001
    (前記式(1)及び(2)において、rは繰り返し数を示す整数である。*は結合手である。)
    A structure having a sliding water-repellent layer on a base material.
    A compound in which the sliding water-repellent layer has one or more selected from the structure represented by the following formula (1) and the structure represented by the following formula (2), and a silyl group having a hydrolyzable group. Structure including.
    Figure JPOXMLDOC01-appb-C000001
    (In the above equations (1) and (2), r is an integer indicating the number of repetitions. * Is a bond.)
  2.  前記式(1)で表される構造及び式(2)で表される構造から選択される1種以上と、加水分解性基を有するシリル基とを有する化合物が、下記式(1-1)、(1-2)、(1-3)又は(1-4)で表される化合物である請求項1に記載の構造体。
    Figure JPOXMLDOC01-appb-C000002
    (前記式(1-1)、(1-2)、(1-3)及び(1-4)において、
     rは繰り返し数を示す整数である。
     Rは、炭素原子数1~6のアルキレン基である。
     Rは、2価の連結基である。
     Zは、3価の連結基である。
     Bは、それぞれ独立に、有機基又はSi(A)で表されるシリル基であり、2つのBのうち少なくとも1つはSi(A)で表されるシリル基である。
     前記Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。)
    A compound having one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2) and a silyl group having a hydrolyzable group is the compound having the following formula (1-1). The structure according to claim 1, which is a compound represented by, (1-2), (1-3) or (1-4).
    Figure JPOXMLDOC01-appb-C000002
    (In the above formulas (1-1), (1-2), (1-3) and (1-4),
    r is an integer indicating the number of repetitions.
    R 1 is an alkylene group having 1 to 6 carbon atoms.
    R 3 is a divalent linking group.
    Z is a trivalent linking group.
    Each of B is an organic group or a silyl group represented by Si (A) 3 , and at least one of the two Bs is a silyl group represented by Si (A) 3 .
    The three A of the silyl group represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group. .. )
  3.  前記Rの2価の連結基が、下記式(R-1)で表される連結基、又は下記式(R-2)で表される連結基である請求項2に記載の構造体。
    Figure JPOXMLDOC01-appb-C000003
    (前記式(R-1)及び(R-2)中、
     R32は炭素原子数1~3のアルキレン基である。
     R33は直接結合又は炭素原子数1~6のアルキレン基である。
     R34は炭素原子数1~5のアルキレン基である)
    The divalent linking group of the R 3 is represented by the following formula linking group represented by (R 3 -1), or the structure of claim 2 is a linking group represented by the following formula (R 3 -2) body.
    Figure JPOXMLDOC01-appb-C000003
    In (Formula (R 3 -1) and (R 3 -2),
    R 32 is an alkylene group having 1 to 3 carbon atoms.
    R 33 is a direct bond or an alkylene group having 1 to 6 carbon atoms.
    R 34 is an alkylene group having 1 to 5 carbon atoms)
  4.  前記式(1)で表される構造及び式(2)で表される構造から選択される1種以上と、加水分解性基を有するシリル基とを有する化合物が、下記式(2-1)、(2-2)又は(2-3)で表される化合物である請求項1に記載の構造体。
    Figure JPOXMLDOC01-appb-C000004
    (前記式(2-1)、(2-2)及び(2-3)において、
     rは繰り返し数を示す整数である。
     Rは、炭素原子数1~6のアルキレン基である。
     Rは、アルキレンアミノアルキレン基又はアルキレンチオアルキレン基である。
     前記Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。)
    A compound having one or more selected from the structure represented by the formula (1) and the structure represented by the formula (2) and a silyl group having a hydrolyzable group is the compound having the following formula (2-1). The structure according to claim 1, which is a compound represented by (2-2) or (2-3).
    Figure JPOXMLDOC01-appb-C000004
    (In the above formulas (2-1), (2-2) and (2-3),
    r is an integer indicating the number of repetitions.
    R 1 is an alkylene group having 1 to 6 carbon atoms.
    R 2 is an alkylene aminoalkylene group or an alkylene thioalkylene group.
    The three A of the silyl group represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group. .. )
  5.  前記Si(A)で表されるシリル基の3つのAが、それぞれ独立に、加水分解性基である請求項2~4のいずれかに記載の構造体。 The structure according to any one of claims 2 to 4, wherein each of the three A of the silyl group represented by Si (A) 3 is a hydrolyzable group independently.
  6.  前記加水分解性基が、アルコキシ基である請求項1~5のいずれかに記載の構造体。 The structure according to any one of claims 1 to 5, wherein the hydrolyzable group is an alkoxy group.
  7.  前記基材が、ガラス基材、樹脂基材又は金属基材である請求項1~6のいずれかに記載の構造体。 The structure according to any one of claims 1 to 6, wherein the base material is a glass base material, a resin base material, or a metal base material.
  8.  前記滑落撥水層表面の水の滑落角が15°以下である請求項1~7のいずれかに記載の構造体。 The structure according to any one of claims 1 to 7, wherein the sliding angle of water on the surface of the sliding water-repellent layer is 15 ° or less.
  9.  前記滑落撥水層表面の水の接触角が110°以上である請求項1~8のいずれかに記載の構造体。 The structure according to any one of claims 1 to 8, wherein the contact angle of water on the surface of the sliding water-repellent layer is 110 ° or more.
  10.  請求項1~9のいずれかに記載の構造体である熱交換機用部材。 A member for a heat exchanger which is the structure according to any one of claims 1 to 9.
  11.  請求項1~9のいずれかに記載の構造体である輸送機用部材。 A member for a transport aircraft, which is the structure according to any one of claims 1 to 9.
  12.  請求項10に記載の熱交換器用部材を備える空調機又は冷却機。 An air conditioner or a cooler including the heat exchanger member according to claim 10.
  13.  請求項11に記載の輸送機部材を備える自動車又は飛行機。 An automobile or an airplane provided with the transport aircraft member according to claim 11.
PCT/JP2020/015721 2019-04-18 2020-04-07 Structure body, heat exchanger member, and transporter member WO2020213486A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-079289 2019-04-18
JP2019079289 2019-04-18

Publications (1)

Publication Number Publication Date
WO2020213486A1 true WO2020213486A1 (en) 2020-10-22

Family

ID=72837441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015721 WO2020213486A1 (en) 2019-04-18 2020-04-07 Structure body, heat exchanger member, and transporter member

Country Status (1)

Country Link
WO (1) WO2020213486A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032817A1 (en) * 2021-09-02 2023-03-09 ダイキン工業株式会社 Surface treatment agent

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327772A (en) * 1999-05-20 2000-11-28 Shin Etsu Chem Co Ltd Perfluoropolyether-modified aminosilane, surface- treating agent and article with formed coated film of the aminosilane
WO2009008380A1 (en) * 2007-07-06 2009-01-15 Asahi Glass Company, Limited Surface treating agent, article, and novel fluorine-containing ether compound
JP2009144133A (en) * 2007-12-13 2009-07-02 Korea Inst Of Chemical Technology Perfluoropolyether-modified silane compound, antifouling coating agent composition containing the same and membrane applied with the same
JP2015503001A (en) * 2011-11-15 2015-01-29 スリーエム イノベイティブ プロパティズ カンパニー Fluorinated coatings containing lubricating additives
WO2015087902A1 (en) * 2013-12-13 2015-06-18 旭硝子株式会社 Fluorine-containing ether composition, method for producing same, coating liquid, base material having surface treatment layer, and method for producing same
JP2017014452A (en) * 2015-07-06 2017-01-19 Dic株式会社 Surface modification agent, coating composition and article
JP2017031347A (en) * 2015-08-04 2017-02-09 Dic株式会社 Coating composition and article
JP2017186495A (en) * 2016-03-31 2017-10-12 大日本印刷株式会社 Member for low temperature environment having frost retarding property, dew concentration retarding property and icing retarding property
JP2019044158A (en) * 2017-08-31 2019-03-22 Agc株式会社 Fluorine-containing ether compound, fluorine-containing ether composition, coating liquid, article and manufacturing method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327772A (en) * 1999-05-20 2000-11-28 Shin Etsu Chem Co Ltd Perfluoropolyether-modified aminosilane, surface- treating agent and article with formed coated film of the aminosilane
WO2009008380A1 (en) * 2007-07-06 2009-01-15 Asahi Glass Company, Limited Surface treating agent, article, and novel fluorine-containing ether compound
JP2009144133A (en) * 2007-12-13 2009-07-02 Korea Inst Of Chemical Technology Perfluoropolyether-modified silane compound, antifouling coating agent composition containing the same and membrane applied with the same
JP2015503001A (en) * 2011-11-15 2015-01-29 スリーエム イノベイティブ プロパティズ カンパニー Fluorinated coatings containing lubricating additives
WO2015087902A1 (en) * 2013-12-13 2015-06-18 旭硝子株式会社 Fluorine-containing ether composition, method for producing same, coating liquid, base material having surface treatment layer, and method for producing same
JP2017014452A (en) * 2015-07-06 2017-01-19 Dic株式会社 Surface modification agent, coating composition and article
JP2017031347A (en) * 2015-08-04 2017-02-09 Dic株式会社 Coating composition and article
JP2017186495A (en) * 2016-03-31 2017-10-12 大日本印刷株式会社 Member for low temperature environment having frost retarding property, dew concentration retarding property and icing retarding property
JP2019044158A (en) * 2017-08-31 2019-03-22 Agc株式会社 Fluorine-containing ether compound, fluorine-containing ether composition, coating liquid, article and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032817A1 (en) * 2021-09-02 2023-03-09 ダイキン工業株式会社 Surface treatment agent
JP2023036547A (en) * 2021-09-02 2023-03-14 ダイキン工業株式会社 Surface treatment agent
JP7273352B2 (en) 2021-09-02 2023-05-15 ダイキン工業株式会社 Surface treatment agent

Similar Documents

Publication Publication Date Title
JP5857942B2 (en) Fluorine surface treatment agent for vapor deposition and article vapor-deposited with the surface treatment agent
KR100940086B1 (en) Per-fluoro polyether compound, antifouling coating composition and film containing same
JP6248858B2 (en) Fluorine-based surface treatment agent and article surface-treated with the surface treatment agent
JP5938280B2 (en) Perfluoropolyether-modified silane compound, antifouling film forming composition, antifouling film, and article having this film
KR102561500B1 (en) surface treatment agent
JP6119656B2 (en) Fluoropolyether group-containing polymer
KR102084270B1 (en) Fluorooxyalkylene group-containing polymer modified silane and surface treatment agent comprising said silane, and article treated with said surface treatment agent
TW201736537A (en) Coating material composition
TW201605992A (en) Fluorochemical coating composition and article treated therewith
CN109071935B (en) Composition comprising a metal oxide and a metal oxide
WO2017141707A1 (en) Fluoropolyether group-containing polymer-modified silane, surface treatment agent and article
JP7392667B2 (en) Fluorine-containing ether composition, coating liquid, article and method for producing the same
WO2020213486A1 (en) Structure body, heat exchanger member, and transporter member
WO2006049020A1 (en) Composition for treating glass base
US8119765B2 (en) Crosslinkable fluorine-containing ether compound
WO2020213485A1 (en) Structure body, structure body production method, heat exchanger member and heat exchanger
WO2020246301A1 (en) Fluoropolyether group-containing polymer and production method therefor
JP2014156061A (en) Substrate having base layer and water-repellent film and article transportation device including the substrate having base layer and water-repellent film
JP7321655B2 (en) METHOD FOR EVALUATING THE WEATHER RESISTANCE OF A COATING, METHOD FOR FORMING THE COATING, AND ARTICLES HAVING THE SAME COATING
WO2018034202A1 (en) Composition
JPH0940910A (en) Water repellent
JP7397367B1 (en) compositions and articles
US20230257528A1 (en) Surface treating composition
KR20220010452A (en) Fluoropolyether-modified amidosilane compound, surface treating composition, and article
JPH07252472A (en) Agent for water-repelling treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP