WO2020212128A1 - Bipolarplatte für eine brennstoffzelle, verfahren zur herstellung einer bipolarplatte und brennstoffzelle - Google Patents

Bipolarplatte für eine brennstoffzelle, verfahren zur herstellung einer bipolarplatte und brennstoffzelle Download PDF

Info

Publication number
WO2020212128A1
WO2020212128A1 PCT/EP2020/059027 EP2020059027W WO2020212128A1 WO 2020212128 A1 WO2020212128 A1 WO 2020212128A1 EP 2020059027 W EP2020059027 W EP 2020059027W WO 2020212128 A1 WO2020212128 A1 WO 2020212128A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
surface structure
bipolar plate
carrier plate
plate
Prior art date
Application number
PCT/EP2020/059027
Other languages
English (en)
French (fr)
Inventor
Kai Weeber
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2020212128A1 publication Critical patent/WO2020212128A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • Bipolar plate for a fuel cell process for the production of a
  • the invention relates to a bipolar plate for a fuel cell comprising a carrier plate and a surface structure.
  • the invention also relates to a method for producing a bipolar plate for a fuel cell.
  • the invention also relates to a fuel cell that has at least one
  • According to the invention comprises bipolar plate and a vehicle comprising the fuel cell.
  • a fuel cell is an electrochemical cell, which the chemical reaction energy of a continuously supplied fuel and a
  • a fuel cell Converts oxidizing agent into electrical energy.
  • a fuel cell is therefore an electrochemical energy converter.
  • hydrogen (H 2 ) and oxygen (O 2 ) in particular are converted into water (H 2 O), electrical energy and heat.
  • PEM proton exchange membrane
  • Hydrogen ions are permeable.
  • the oxidizing agent in particular
  • Oxygen in the air is therefore spatially away from the fuel, in particular
  • Proton exchange membrane fuel cells also have an anode and a cathode.
  • the fuel is fed to the anode of the fuel cell and is catalytically oxidized to protons, releasing electrons.
  • the protons pass through the membrane to the cathode.
  • the released electrons are derived from the fuel cell and flow to the cathode via an external circuit.
  • the oxidizing agent is supplied to the cathode of the fuel cell and it reacts to water by absorbing electrons from the external circuit and protons that have passed through the membrane. The resulting water is drained from the fuel cell.
  • the gross response is:
  • a voltage is applied between the anode and the cathode of the fuel cell.
  • several fuel cells can be mechanically arranged one behind the other to form a fuel cell stack and electrically connected in series.
  • the fuel cell stacks are used, for example, in fuel cell vehicles.
  • Gas distributor plates are provided, which are also referred to as bipolar plates.
  • the bipolar plates have a surface structure, for example channel-like structures, for distributing the fuel as well as the
  • the channel-like structures also serve to drain off the water produced during the reaction.
  • bipolar plate structures for the passage of a
  • the water formed on the cathode side during the reaction is present at the time of formation as pure water, which is also referred to as ultrapure water, DI water or deionized water.
  • Water is a dipole and has electrical polarity, which is why it strives to take in ions.
  • Ultrapure water is therefore described as very aggressive towards materials, especially metals, because it is able to dissolve ions from the materials, which is referred to as corrosion. Even stainless steel is used in this
  • Ultrapure water an accelerated aging process.
  • the presence of ultrapure water has a strong influence on the
  • Iron ions e.g. come from components of the fuel cell that are made of steel, migrate due to a concentration gradient in the water from the bipolar plate to the membrane, where the iron ions damage the layer structure of the electrodes by accumulation.
  • a very high electrical conductivity must be maintained over the service life of the fuel cell.
  • the conductivity decreases due to corrosive
  • Metallic bipolar plates can be partially coated with gold, in particular at the current-carrying contact points, or the bipolar plate can be made of titanium sheet in order to prevent corrosion and one of it
  • the surface structure is usually produced by embossing. If the bipolar plate is made of stainless steel, the embossing of fine, close-meshed structures is only possible to a limited extent, which hinders the fluid dynamic optimization of the media flow by means of an optimized design of the structures. Furthermore, any coatings applied to improve the contact resistance, for example made of gold, can be damaged during embossing. If, as an alternative, the coating is only applied after the embossing, this is very complex.
  • DE 10 2004 009 869 B4 describes a contact plate for fuel cells which is manufactured on the basis of a plate body from corrosion-resistant metal and a contact surface which has a coating of an electrically conductive, having corrosion-resistant material.
  • the coating saves indentations on the surface of the plate body and consists of plastic and a thermoplastic or thermosetting binder for application in liquid form.
  • DE 10 2015 015 876 A1 relates to a separator plate for a fuel cell.
  • At least one structural element connected to the base body, such as a web, is applied to a base body of the separator plate.
  • the structural element can have a coating which reduces a contact resistance or transition resistance where the structural element rests against a membrane-electron arrangement.
  • a bipolar plate for a fuel cell comprising a carrier plate made from a first material and a
  • Surface structure made of an electrically conductive, second material, the carrier plate being coated with a third material that is electrically insulating and corrosion-resistant, and the surface structure having an at least partially uncoated surface.
  • Fuel cell proposed comprising the following steps: a) producing a carrier plate (3) from a first material (5), b) applying a second material (9) to the carrier plate (3) by means of a printing process, so that a surface structure (7) is formed
  • step b) If applicable Removing the third material (11) from the surface structure (7) if step b) is carried out before step c).
  • the surface structure made of the second material, which forms a current-carrying part of the bipolar plate and makes electrical contact with the membrane, is applied to the carrier plate.
  • the surface structure can replace known channel-like structures.
  • the geometric design of the surface structure is preferably determined by a fluid dynamic optimization, so that starting materials and reaction products are guided in an optimal manner.
  • the surface structure preferably has a height H, which can also be referred to as the thickness of the surface structure, of 10 ⁇ m to 100 ⁇ m, the carrier plate, for example, having dimensions in terms of length and width of 10 cm by 25 cm.
  • the carrier plate preferably has a planar surface and more preferably the surface structure is formed exclusively from the second material.
  • the first material is preferably steel, in particular stainless steel, and / or the second material is steel or titanium.
  • the second material particularly preferably consists of titanium.
  • the application of the second material in step b) can take place, for example, by means of screen printing or an additive printing process.
  • the carrier plate is made of the first material that is susceptible to corrosion, that is, not corrosion-resistant.
  • the carrier plate is coated with the third material, which forms a corrosion protection layer on the first material.
  • the layer thickness of the anti-corrosion layer is preferably in the nanometer range to micrometer range.
  • the first material of the carrier plate is electrically isolated from the environment by the coating.
  • At least parts of the surface structure are free from the third material.
  • the at least partially uncoated surface of the surface structure is electrically conductive and makes electrical contact with the membrane.
  • the third material preferably has a different chemical composition than the first material.
  • the third material is not formed by passivating the first material.
  • the third material is electrically insulating, which can also be referred to as high resistance and usually describes an electrical resistance of more than 1 megaohm.
  • the third material is corrosion-resistant, which means in particular the ability of a metal to maintain its functionality in a given corrosion system (ISO 8044: 2015).
  • the third material is preferred in step c) by means of cataphoretic
  • the third material is preferably, at least partially, removed again from the surface structure in order to enable current to be carried.
  • the application of the second material (9) in step b) is carried out before the coating in step c). More preferred is the
  • a photoresist is preferably used for the surface structure.
  • step b) is carried out before step c), the method preferably comprises step d), removing the third material from the surface structure.
  • the third material optionally also applied to the surface structure in this embodiment, is preferably used in step d) by means of a
  • the surface structure can be at least partially masked before the carrier plate is coated with the third material in order to achieve a
  • step c) is carried out before step b).
  • the entire carrier plate can be coated with the third material, which is only then followed by the application of the surface structure.
  • the Surface structure made of corrosion-resistant material is thus applied to the carrier plate made of corrosion-prone material, which is already coated with the electrically insulating and corrosion-resistant third material.
  • the carrier plate is preferably first completely coated with the third material in step c), so that the carrier plate is initially completely covered with the corrosion protection layer. The surface structure is then applied, an electrical contact being established between the first material and the second material. Due to the small thickness of the
  • Coating of the third material and the preferably high temperatures when applying the surface structure, in particular during metal printing the coating of the third material is preferably broken during the application, in particular by locally melting the third material, and an electrical contact is established.
  • the additional removal of the third material in step d), for example by means of grinding, can be omitted in this embodiment.
  • the invention makes it possible to use a carrier plate made of readily available material that may have a tendency to corrosion. Highly corrosion-resistant material such as titanium is only required in small quantities for the formation of the surface structure.
  • Methods that can be easily carried out can be used to coat the carrier plate.
  • Figure 1 is a schematic representation of a fuel cell
  • FIG. 2 shows a plan view of a bipolar plate according to the invention
  • FIG. 3 shows a schematic representation of the method according to the invention.
  • FIG. 1 shows a fuel cell 13 which comprises an anode 15 and a cathode 17.
  • the anode 15 and the cathode 17 are each delimited by a bipolar plate 1 and each have an electrode 19 and a flow distributor 21.
  • the anode 15 and the cathode 17 are separated from one another by a membrane 23.
  • FIG. 2 shows a plan view of a bipolar plate 1 according to the invention which, instead of the depressions 25 shown in FIG. 1, has a surface structure 7 for forming a flow field.
  • the bipolar plate 1 is constructed from a carrier plate 3, which consists of a first material 5, the carrier plate 3 being coated with a third material 11.
  • the surface structure 7 made of a second material 9 is applied to the carrier plate 3. The surface structure 7 enables the media to be routed, so it determines the
  • FIG. 3 illustrates the method according to the invention.
  • FIG. 3, part 3.1 shows a bipolar plate 1 which is produced by steps a) and b) according to the invention.
  • a carrier plate 3 is produced from a first material 5.
  • a surface structure 7 made of a second material 9 is applied to the carrier plate 3 by means of a printing process.
  • FIG. 3, part 3.2 shows the bipolar plate 1 from FIG. 3, part 3.1 after step c) of the method according to the invention has been carried out.
  • the bipolar plate 1, which initially comprised the carrier plate 3 and the surface structure 7, is coated with a third material 11.
  • the third material 11 completely covers the bipolar plate 1 according to FIG. 3, part 3.1, that is to say both the carrier plate 3 and the surface structure 7.
  • FIG. 3, part 3.3 shows the bipolar plate 1 according to FIG. 3, part 3.2 after step d) has been carried out according to the proposed method.
  • the third material 11 is removed again by grinding parts of the surface of the surface structure 7, so that it is possible to establish an electrical contact via an at least partially uncoated surface 27.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung betrifft eine Bipolarplatte (1) für eine Brennstoffzelle (13) umfassend eine Trägerplatte (3), gefertigt aus einem ersten Material (5), und eine Oberflächenstruktur (7), gefertigt aus einem elektrisch leitfähigen, zweiten Material (9), wobei die Trägerplatte (3) mit einem dritten Material (11), das elektrisch isolierend und korrosionsbeständig ist, beschichtet ist und wobei die Oberflächenstruktur (7) eine zumindest teilweise unbeschichtete Oberfläche (27) aufweist. Ferner betrifft die Erfindung ein Verfahren zur Herstellung einer Bipolarplatte (1), eine Brennstoffzelle (13) und ein Fahrzeug.

Description

Bipolarplate für eine Brennstoffzelle, Verfahren zur Herstellung einer
Bipolarplate und Brennstoffzelle
Die Erfindung betrifft eine Bipolarplatte für eine Brennstoffzelle umfassend eine Trägerplatte und eine Oberflächenstruktur. Die Erfindung betrifft auch ein Verfahren zur Herstellung einer Bipolarplatte für eine Brennstoffzelle. Ferner betrifft die Erfindung eine Brennstoffzelle, die mindestens eine
erfindungsgemäße Bipolarplatte umfasst und ein Fahrzeug umfassend die Brennstoffzelle.
Stand der Technik
Eine Brennstoffzelle ist eine elektrochemische Zelle, welche die chemische Reaktionsenergie eines kontinuierlich zugeführten Brennstoffs und eines
Oxidationsmittels in elektrische Energie wandelt. Eine Brennstoffzelle ist also ein elektrochemischer Energiewandler. Bei bekannten Brennstoffzellen werden insbesondere Wasserstoff (H2) und Sauerstoff (O2) in Wasser (H2O), elektrische Energie und Wärme gewandelt.
Unter anderem sind Protonenaustauschmembran (Proton Exchange Membrane = PEM)-Brennstoffzellen bekannt. Protonenaustauschmembran-Brennstoffzellen weisen eine zentral angeordnete Membran auf, die für Protonen, also
Wasserstoffionen, durchlässig sind. Das Oxidationsmittel, insbesondere
Luftsauerstoff, ist dadurch räumlich von dem Brennstoff, insbesondere
Wasserstoff, getrennt.
Protonenaustauschmembran-Brennstoffzellen weisen ferner eine Anode und eine Kathode auf. Der Brennstoff wird an der Anode der Brennstoffzelle zugeführt und katalytisch unter Abgabe von Elektronen zu Protonen oxidiert. Die Protonen gelangen durch die Membran zu der Kathode. Die abgegebenen Elektronen werden aus der Brennstoffzelle abgeleitet und fließen über einen externen Stromkreis zu der Kathode.
Das Oxidationsmittel wird an der Kathode der Brennstoffzelle zugeführt und es reagiert durch Aufnahme der Elektronen aus dem externen Stromkreis und Protonen, die durch die Membran gelangt sind, zu Wasser. Das so entstandene Wasser wird aus der Brennstoffzelle abgeleitet. Die Bruttoreaktion lautet:
0 + 4H+ + 4E- - 2 H20
Zwischen der Anode und der Kathode der Brennstoffzelle liegt dabei eine Spannung an. Zur Erhöhung der Spannung können mehrere Brennstoffzellen mechanisch hintereinander zu einem Brennstoffzellenstapel angeordnet und elektrisch in Reihe geschaltet werden. Die Brennstoffzellenstapel werden beispielsweise in Brennstoffzellenfahrzeugen verwendet.
Zur gleichmäßigen Verteilung des Brennstoffs an die Anode sowie zur gleichmäßigen Verteilung des Oxidationsmittels an die Kathode sind
Gasverteilerplatten vorgesehen, welche auch als Bipolarplatten bezeichnet werden. Die Bipolarplatten weisen eine Oberflächenstruktur, beispielsweise kanalartige Strukturen, zur Verteilung des Brennstoffs sowie des
Oxidationsmittels an die Elektroden auf. Die kanalartigen Strukturen dienen ferner zur Ableitung des bei der Reaktion entstandenen Wassers.
Zusätzlich können die Bipolarplatten Strukturen zur Durchleitung einer
Kühlflüssigkeit durch die Brennstoffzelle zur Abführung von Wärme aufweisen.
Das kathodenseitig bei der Reaktion entstandene Wasser liegt zum Zeitpunkt der Entstehung als reines Wasser, das auch als Reinstwasser, Dl-Wasser oder deionisiertes Wasser bezeichnet wird, vor. Wasser ist ein Dipol und hat eine elektrische Polarität, weshalb es bestrebt ist, Ionen aufzunehmen. Reinstwasser wird daher als sehr aggressiv gegenüber Werkstoffen, insbesondere Metallen, beschrieben, da es in der Lage ist, Ionen aus den Werkstoffen herauszulösen, was als Korrosion bezeichnet wird. Selbst an Edelstahl wird in diesem
Zusammenhang Korrosion beobachtet, wobei Ionen aus dem Edelstahl entfernt werden. Auch Dichtungsmaterialien unterliegen in Anwesenheit von
Reinstwasser einem beschleunigten Alterungsprozess. Die Anwesenheit von Reinstwasser hat einen starken Einfluss auf die
Lebensdauer von Brennstoffzellen. Eisenionen, die zB. aus Bauteilen der Brennstoffzelle stammen, die aus Stahl gefertigt sind, wandern aufgrund eines Konzentrationsgefälles im Wasser von der Bipolarplatte zur Membran, wo die Eisenionen den Schichtaufbau der Elektroden durch Anlagerung schädigen.
Neben der Medienführung bezüglich Sauerstoff, Wasserstoff und Wasser ist es Aufgabe der Bipolarplatte, einen flächigen elektrischen Kontakt zur Membran zu gewährleisten, wobei die Fläche der Medienführung nicht für die
Stromübertragung zur Verfügung steht.
Über die Lebensdauer der Brennstoffzelle muss eine sehr hohe elektrische Leitfähigkeit erhalten werden. Die Leitfähigkeit nimmt durch korrosive
Veränderungen ab, wodurch die Lebensdauer der Brennstoffzelle reduziert wird. Insbesondere in der Anwendung in Lastkraftwagen (LKW) und Bussen ist jedoch eine lange Lebensdauer von Brennstoffzellen gefordert, die stark
korrosionsabhängig ist.
Es sind sowohl metallische Bipolarplatten als auch Bipolarplatten aus Graphit bekannt. Metallische Bipolarplatten können partiell, insbesondere an den stromführenden Kontaktstellen, mit Gold beschichtet sein oder die Bipolarplatte kann aus Titanblech gefertigt sein, um die Korrosion und eine daraus
resultierende geringe Leitfähigkeit zu vermeiden.
Üblicherweise wird die Oberflächenstruktur durch Prägen hergestellt. Ist die Bipolarplatte aus Edelstahl gefertigt, so ist das Prägen von feinen, engmaschigen Strukturen nur eingeschränkt möglich, was die fluiddynamische Optimierung der Medienführung durch mittels optimierter Gestaltung der Strukturen behindert. Ferner können gegebenenfalls aufgebrachte Beschichtungen zur Verbesserung des Kontaktwiderstandes, beispielsweise aus Gold, beim Prägen beschädigt werden. Wird die Beschichtung alternativ erst nach dem Prägen aufgebracht, so ist dies sehr aufwändig.
DE 10 2004 009 869 B4 beschreibt eine Kontaktplatte für Brennstoffzellen, die auf Basis eines Plattenkörpers aus korrosionsbeständigem Metall gefertigt ist und eine Kontaktfläche, die eine Beschichtung aus einem elektrisch leitenden, korrosionsbeständigen Material aufweist, besitzt. Die Beschichtung spart Vertiefungen auf der Oberfläche des Plattenkörpers aus und besteht aus Kunststoff und einem thermoplastischen oder duroplastischen Bindemittel zum Aufträgen in flüssiger Form.
DE 10 2015 015 876 Al hat eine Separatorplatte für eine Brennstoffzelle zum Gegenstand. Auf einem Grundkörper der Separatorplatte ist wenigstens ein mit dem Grundkörper verbundenes Strukturelement wie ein Steg aufgebracht. Das Strukturelement kann eine Beschichtung aufweisen, die einen Kontaktwiderstand oder Übergangswiderstand dort verringert, wo das Strukturelement an einer Membran-Elektronen-Anordnung anliegt.
Offenbarung der Erfindung
Es wird eine Bipolarplatte für eine Brennstoffzelle vorgeschlagen, umfassend eine Trägerplatte, gefertigt aus einem ersten Material, und eine
Oberflächenstruktur, gefertigt aus einem elektrisch leitfähigen, zweiten Material, wobei die Trägerplatte mit einem dritten Material, das elektrisch isolierend und korrosionsbeständig ist, beschichtet ist und wobei die Oberflächenstruktur eine zumindest teilweise unbeschichtete Oberfläche aufweist.
Ferner wird ein Verfahren zur Herstellung einer Bipolarplatte für eine
Brennstoffzelle vorgeschlagen, umfassend die folgenden Schritte: a) Herstellen einer Trägerplatte (3) aus einem ersten Material (5), b) Aufbringen eines zweiten Materials (9) auf die Trägerplatte (3) mittels eines Druckverfahrens, so dass eine Oberflächenstruktur (7) gebildet wird,
c) Beschichten der Trägerplatte (3) mit einem dritten Material (11), das elektrisch isolierend und korrosionsbeständig ist,
d) Ggf. Entfernen des dritten Materials (11) von der Oberflächenstruktur (7), wenn Schritt b) vor Schritt c) ausgeführt wird.
Die Oberflächenstruktur aus dem zweiten Material, welche einen stromführenden Teil der Bipolarplatte bildet und den elektrischen Kontakt zur Membran herstellt, wird auf die Trägerplatte aufgetragen. Die Oberflächenstruktur kann bekannte kanalähnliche Strukturen ersetzen.
Die geometrische Gestaltung der Oberflächenstruktur wird bevorzugt durch eine fluiddynamische Optimierung bestimmt, so dass Edukte und Reaktionsprodukte in optimaler Weise geführt werden.
Bevorzugt weist die Oberflächenstruktur eine Höhe H, die auch als Dicke der Oberflächenstruktur bezeichnet werden kann, von 10 pm bis 100 pm auf, wobei die Trägerplatte beispielsweise Abmessungen bezüglich Länge und Breite von 10 cm mal 25 cm besitzen kann.
Bevorzugt weist die Trägerplatte eine planare Oberfläche auf und mehr bevorzugt wird die Oberflächenstruktur ausschließlich aus dem zweiten Material gebildet.
Bevorzugt ist das erste Material Stahl, insbesondere Edelstahl, und/oder das zweite Material Stahl oder Titan. Insbesondere bevorzugt besteht das zweite Material aus Titan.
Das Aufbringen des zweiten Materials in Schritt b) kann zum Beispiel mittels Siebdruck oder eines additiven Druckverfahrens erfolgen.
Die Trägerplatte ist aus dem ersten Material gefertigt, das korrosionsanfällig, also nicht korrosionsbeständig, ist. Zum Korrosionsschutz ist die Trägerplatte mit dem dritten Material beschichtet, das eine Korrosionsschutzschicht auf dem ersten Material bildet. Die Schichtdicke der Korrosionsschutzschicht liegt bevorzugt im Nanometerbereich bis Mikrometerbereich. Das erste Material der Trägerplatte wird durch die Beschichtung gegenüber der Umgebung elektrisch isoliert.
Zumindest Teile der Oberflächenstruktur sind frei von dem dritten Material. Die zumindest teilweise unbeschichtete Oberfläche der Oberflächenstruktur ist elektrisch leitfähig und stellt einen elektrischen Kontakt zur Membran her.
Das dritte Material weist bevorzugt eine andere chemische Zusammensetzung als das erste Material auf. Insbesondere wird das dritte Material nicht durch Passivierung des ersten Materials gebildet. Das dritte Material ist elektrisch isolierend, was auch als hochohmig bezeichnet werden kann und üblicherweise einen elektrischen Widerstand von mehr als 1 Megaohm beschreibt.
Ferner ist das dritte Material korrosionsbeständig, worunter insbesondere die Fähigkeit eines Metalls verstanden wird, die Funktionsfähigkeit in einem gegebenen Korrosionssystem beizubehalten (ISO 8044:2015).
Bevorzugt wird in Schritt c) das dritte Material mittels kataphoretischer
Tauchlackierung aufgebracht.
Wird die Trägerplatte mit dem dritten Material beschichtet, nachdem die
Oberflächenstruktur aufgebracht wurde, so wird das dritte Material bevorzugt, zumindest teilweise, wieder von der Oberflächenstruktur entfernt, um eine Stromführung zu ermöglichen.
In einer Ausführungsform wird das Aufbringen des zweiten Materials (9) in Schritt b) vor dem Beschichten in Schritt c) ausgeführt. Mehr bevorzugt wird die
Oberflächenstruktur (7) nach dem Aufbringen des zweiten Materials (9) in Schritt b) und vor dem Beschichten in Schritt c) maskiert. Zum Maskieren der
Oberflächenstruktur wird bevorzugt ein Photolack verwendet.
Wenn Schritt b) vor Schritt c) ausgeführt wird, umfasst das Verfahren bevorzugt Schritt d), das Entfernen des dritten Materials von der Oberflächenstruktur. Das in dieser Ausführungsform gegebenenfalls auch auf die Oberflächenstruktur aufgebrachte dritte Material wird in Schritt d) bevorzugt mittels eines
Schleifverfahrens wieder von der Oberflächenstruktur entfernt.
Alternativ kann die Oberflächenstruktur zumindest teilweise maskiert werden, bevor die Trägerplatte mit dem dritten Material beschichtet wird, um eine
Beschichtung der stromführenden Kontaktstellen zu vermeiden, so dass das dritte Material nicht wieder von der Oberflächenstruktur entfernt werden muss.
In einer weiteren Ausführungsform wird Schritt c) vor Schritt b) ausgeführt.
Zunächst kann die gesamte Trägerplatte mit dem dritten Material beschichtet werden, worauf erst dann das Aufbringen der Oberflächenstruktur folgt. Die Oberflächenstruktur aus korrosionsbeständigem Material wird also auf die Trägerplatte aus korrosionsanfälligem Material, die bereits mit dem elektrisch isolierenden und korrosionsbeständigen dritten Material beschichtet ist, aufgebracht. Bevorzugt wird die Trägerplatte zunächst vollständig in Schritt c) mit dem dritten Material beschichtet, so dass die Trägerplatte zunächst vollständig mit der Korrosionsschutzschicht bedeckt. Dann wird die Oberflächenstruktur aufgebracht, wobei ein elektrischer Kontakt zwischen dem ersten Material und dem zweiten Material hergestellt wird. Aufgrund der geringen Dicke der
Beschichtung aus dem dritten Material und der bevorzugt hohen Temperaturen beim Aufbringen der Oberflächenstruktur, insbesondere beim Metalldrucken, wird bevorzugt während des Aufbringens die Beschichtung aus dem dritten Material durchbrochen, insbesondere durch lokales Aufschmelzen des dritten Materials, und ein elektrischer Kontakt wird hergestellt. Das zusätzliche Entfernen des dritten Materials in Schritt d), beispielsweise mittels Schleifen, kann in dieser Ausführungsform entfallen.
Weiterhin wird eine Brennstoffzelle umfassend eine erfindungsgemäße
Bipolarplatte sowie ein Fahrzeug umfassend die Brennstoffzelle vorgeschlagen.
Vorteile der Erfindung
Durch die Vermeidung von Korrosion kann die Lebensdauer der Brennstoffzelle erhöht werden. Gleichzeitig ermöglicht die Erfindung, eine Trägerplatte aus leicht verfügbarem Material einzusetzen, das eine Korrosionsneigung besitzen darf. Hochkorrosionsbeständiges Material wie Titan wird lediglich in kleinen Mengen aus Ausbildung der Oberflächenstruktur benötigt.
Zum Beschichten der Trägerplatte können leicht durchführbare Verfahren eingesetzt werden.
Mit Vermeidung der Korrosion wird auch eine Kontaktwiderstandserhöhung der Bipolarplatte sowie die Schädigung der Membran durch Eintrag von Eisenionen vermieden.
Durch der Auftragung der Oberflächenstruktur mittels eines Druckverfahrens kann eine fluiddynamische Optimierung der Oberflächenstruktur realisiert werden und gleichzeitig eine engmaschige Oberfläche für den elektrischen Kontakt hergestellt werden.
Kurze Beschreibung der Zeichnungen
Ausführungsformen der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert.
Es zeigen:
Figur 1 eine schematische Darstellung einer Brennstoffzelle,
Figur 2 eine Draufsicht auf eine erfindungsgemäße Bipolarplatte und Figur 3 eine schematische Darstellung des erfindungsgemäßen Verfahrens.
Ausführungsformen der Erfindung
In der nachfolgenden Beschreibung der Ausführungsformen der Erfindung werden gleiche oder ähnliche Elemente mit gleichen Bezugszeichen bezeichnet, wobei auf eine wiederholte Beschreibung dieser Elemente in Einzelfällen verzichtet wird. Die Figuren stellen den Gegenstand der Erfindung nur schematisch dar.
Figur 1 zeigt eine Brennstoffzelle 13, die eine Anode 15 und eine Kathode 17 umfasst. Die Anode 15 und die Kathode 17 sind jeweils von einer Bipolarplatte 1 begrenzt und weisen jeweils eine Elektrode 19 und einen Strömungsverteiler 21 auf. Die Anode 15 und die Kathode 17 sind durch eine Membran 23 voneinander getrennt.
Durch Vertiefungen 25 an der Bipolarplatte 1 wird an der Kathode 17 Sauerstoff zugeführt und Sauerstoff und Wasser werden abgeführt. An der Anode 15 wird durch Vertiefungen 25 der Bipolarplatte 1 Wasserstoff zu- bzw. abgeführt. Auf der Fläche der Bipolarplatten 1 bilden die Vertiefungen 25 ein Strömungsfeld. Figur 2 zeigt eine Draufsicht auf eine erfindungsgemäße Bipolarplatte 1, die anstelle der in Figur 1 gezeigten Vertiefungen 25 eine Oberflächenstruktur 7 zur Bildung eines Strömungsfeldes aufweist. Die Bipolarplatte 1 ist aus einer Trägerplatte 3, die aus einem ersten Material 5 besteht, aufgebaut, wobei die Trägerplatte 3 mit einem dritten Material 11 beschichtet ist. Auf der Trägerplatte 3 ist die Oberflächenstruktur 7 aus einem zweiten Material 9 aufgebracht. Die Oberflächenstruktur 7 ermöglicht die Medienführung, bestimmt also den
Strömungsweg von Sauerstoff, Wasserstoff und Wasser und stellt einen elektrischen Kontakt her.
Die Figur 3 illustriert das erfindungsgemäße Verfahren.
Figur 3, Teil 3.1 zeigt eine Bipolarplatte 1, die durch die erfindungsgemäßen Schritte a) und b) hergestellt wird. Zunächst wird eine Trägerplatte 3 aus einem ersten Material 5 hergestellt. Dann wird eine Oberflächenstruktur 7 aus einem zweiten Material 9 auf die Trägerplatte 3 mittels eines Druckverfahrens aufgebracht.
Figur 3, Teil 3.2 zeigt die Bipolarplatte 1 aus Figur 3, Teil 3.1 nachdem Schritt c) des erfindungsgemäßen Verfahrens durchgeführt wurde. Die Bipolarplatte 1, die zunächst die Trägerplatte 3 und die Oberflächenstruktur 7 umfasste, wird mit einem dritten Material 11 beschichtet. In der gezeigten Ausführungsform bedeckt das dritte Material 11 die Bipolarplatte 1 gemäß Figur 3, Teil 3.1, also sowohl die Trägerplatte 3 als auch die Oberflächenstruktur 7, vollständig.
Figur 3, Teil 3.3 zeigt die Bipolarplatte 1 gemäß Figur 3, Teil 3.2 nachdem Schritt d) gemäß dem vorgeschlagenen Verfahren ausgeführt wurde. Das dritte Material 11 wird durch Schleifen von Teilen der Oberfläche der Oberflächenstruktur 7 wieder entfernt, so dass die Herstellung eines elektrischen Kontakts über eine zumindest teilweise nun wieder unbeschichtete Oberfläche 27 möglich ist.
Die Erfindung ist nicht auf die hier beschriebenen Ausführungsbeispiele und die darin hervorgehobenen Aspekte beschränkt. Vielmehr ist innerhalb des durch die Ansprüche angegebenen Bereichs eine Vielzahl von Abwandlungen möglich, die im Rahmen fachmännischen Handelns liegen.

Claims

Ansprüche
1. Bipolarplatte (1) für eine Brennstoffzelle (13) umfassend eine
Trägerplatte (3), gefertigt aus einem ersten Material (5), und eine Oberflächenstruktur (7), gefertigt aus einem elektrisch leitfähigen, zweiten Material (9), wobei die Trägerplatte (3) mit einem dritten Material (11), das elektrisch isolierend und korrosionsbeständig ist, beschichtet ist und wobei die Oberflächenstruktur (7) eine zumindest teilweise unbeschichtete Oberfläche (27) aufweist.
2. Bipolarplatte (1) nach Anspruch 1, dadurch gekennzeichnet, dass das erste Material (5) Stahl ist und/oder das zweite Material (9) Stahl oder Titan ist.
3. Verfahren zur Herstellung einer Bipolarplatte (1) für eine Brennstoffzelle (13) umfassend die folgenden Schritte:
a) Herstellen einer Trägerplatte (3) aus einem ersten Material (5), b) Aufbringen eines zweiten Materials (9) auf die Trägerplatte (3) mittels eines Druckverfahrens, so dass eine Oberflächenstruktur (7) gebildet wird,
c) Beschichten der Trägerplatte (3) mit einem dritten Material (11), das elektrisch isolierend und korrosionsbeständig ist,
d) Ggf. Entfernen des dritten Materials (11) von der Oberflächenstruktur (7), wenn Schritt b) vor Schritt c) ausgeführt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das
Aufbringen des zweiten Materials (9) in Schritt b) vor dem Beschichten in Schritt c) ausgeführt wird und die Oberflächenstruktur (7) nach dem Aufbringen des zweiten Materials (9) in Schritt b) und vor dem
Beschichten in Schritt c) maskiert wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass zum
Maskieren der Oberflächenstruktur (7) ein Photolack verwendet wird.
6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass in Schritt d) das dritte Material (11) mittels eines Schleifverfahrens von der Oberflächenstruktur (7) entfernt wird.
7. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass Schritt c) vor Schritt b) ausgeführt wird.
8. Verfahren nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass in Schritt c) das dritte Material (11) mittels kataphoretischer Tauchlackierung aufgebracht wird.
9. Brennstoffzelle (13) umfassend eine Bipolarplatte (1) nach einem der Ansprüche 1 oder 2 oder umfassend eine Bipolarplatte (1) hergestellt nach einem Verfahren gemäß einem der Ansprüche 3 bis 8.
10. Fahrzeug umfassend eine Brennstoffzelle (13) nach Anspruch 9.
PCT/EP2020/059027 2019-04-17 2020-03-31 Bipolarplatte für eine brennstoffzelle, verfahren zur herstellung einer bipolarplatte und brennstoffzelle WO2020212128A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019205574.5 2019-04-17
DE102019205574.5A DE102019205574A1 (de) 2019-04-17 2019-04-17 Bipolarplatte für eine Brennstoffzelle, Verfahren zur Herstellung einer Bipolarplatte und Brennstoffzelle

Publications (1)

Publication Number Publication Date
WO2020212128A1 true WO2020212128A1 (de) 2020-10-22

Family

ID=70189918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/059027 WO2020212128A1 (de) 2019-04-17 2020-03-31 Bipolarplatte für eine brennstoffzelle, verfahren zur herstellung einer bipolarplatte und brennstoffzelle

Country Status (2)

Country Link
DE (1) DE102019205574A1 (de)
WO (1) WO2020212128A1 (de)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023006A2 (de) * 1995-12-20 1997-06-26 Forschungszentrum Jülich GmbH Bipolare platte mit selektiver beschichtung
US20050287413A1 (en) * 2004-06-23 2005-12-29 Jun-Won Suh Separator for fuel cell, method of preparing same, and fuel cell comprising same
US20060286432A1 (en) * 2005-06-15 2006-12-21 Rakowski James M Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
EP1919015A1 (de) * 2005-06-17 2008-05-07 University of Yamanashi Metalltrennglied für eine brennstoffzelle und herstellungsverfahren dafür
DE102008006038A1 (de) * 2008-01-25 2009-07-30 Elringklinger Ag Verfahren zur Herstellung einer Bipolarplatte für eine Brennstoffzelleneinheit und Bipolarplatte
DE102004009869B4 (de) 2004-02-26 2010-12-30 Reinz-Dichtungs-Gmbh Kontaktplatte für Brennstoffzellen, Brennstoffzelle und Brennstoffzellenstapel sowie Verfahren zur Herstellung einer Kontaktplatte
EP2450992A1 (de) * 2009-06-29 2012-05-09 Tokai Carbon Co., Ltd. Herstellungsverfahren für einen brennstoffzellenseparator
EP2485309A2 (de) * 2009-09-28 2012-08-08 Postech Academy-Industry- Foundation Separator für eine brennstoffzelle, herstellungsverfahren dafür und brennstoffzellenstapel damit
DE102015015876A1 (de) 2015-12-09 2017-06-14 Daimler Ag Separatorplatte für eine Brennstoffzelle, Brennstoffzelle, Fahrzeug und Verfahren zum Fertigen einer Separatorplatte

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023006A2 (de) * 1995-12-20 1997-06-26 Forschungszentrum Jülich GmbH Bipolare platte mit selektiver beschichtung
DE102004009869B4 (de) 2004-02-26 2010-12-30 Reinz-Dichtungs-Gmbh Kontaktplatte für Brennstoffzellen, Brennstoffzelle und Brennstoffzellenstapel sowie Verfahren zur Herstellung einer Kontaktplatte
US20050287413A1 (en) * 2004-06-23 2005-12-29 Jun-Won Suh Separator for fuel cell, method of preparing same, and fuel cell comprising same
US20060286432A1 (en) * 2005-06-15 2006-12-21 Rakowski James M Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
EP1919015A1 (de) * 2005-06-17 2008-05-07 University of Yamanashi Metalltrennglied für eine brennstoffzelle und herstellungsverfahren dafür
DE102008006038A1 (de) * 2008-01-25 2009-07-30 Elringklinger Ag Verfahren zur Herstellung einer Bipolarplatte für eine Brennstoffzelleneinheit und Bipolarplatte
EP2450992A1 (de) * 2009-06-29 2012-05-09 Tokai Carbon Co., Ltd. Herstellungsverfahren für einen brennstoffzellenseparator
EP2485309A2 (de) * 2009-09-28 2012-08-08 Postech Academy-Industry- Foundation Separator für eine brennstoffzelle, herstellungsverfahren dafür und brennstoffzellenstapel damit
DE102015015876A1 (de) 2015-12-09 2017-06-14 Daimler Ag Separatorplatte für eine Brennstoffzelle, Brennstoffzelle, Fahrzeug und Verfahren zum Fertigen einer Separatorplatte

Also Published As

Publication number Publication date
DE102019205574A1 (de) 2020-10-22

Similar Documents

Publication Publication Date Title
DE10393838B4 (de) Korrosionsbeständige PEM-Brennstoffzelle, Separatorplatte und Verfahren zur Herstellug und Behandlung derselben
WO2018015189A1 (de) Verfahren zur herstellung einer bipolarplatte für eine brennstoffzelle und brennstoffzelle
DE10356653A1 (de) Brennstoffzellenseparator und Fertigungsverfahren für denselben
DE112005000978T5 (de) Hybridbipolarplattenanordnung und Vorrichtungen, die diese enthalten
DE102014210358A1 (de) Brennstoffzellenstapel mit einer dummyzelle
DE102019218380A1 (de) Brennstoffzellenanordnung und Verfahren zur Herstellung einer Brennstoffzellenanordnung
DE112008003285B4 (de) Anschlussplatte für eine Brennstoffzelle, die Anschlussplatte enthaltende Brennstoffzelle
EP3563442B1 (de) Gasverteilerplatte für eine brennstoffzelle und brennstoffzelle
WO2020182433A1 (de) Gasdiffusionslage für eine brennstoffzelle und brennstoffzelle
DE102016224696A1 (de) Bipolarplatte für eine Brennstoffzelle und Brennstoffzelle
WO2020212128A1 (de) Bipolarplatte für eine brennstoffzelle, verfahren zur herstellung einer bipolarplatte und brennstoffzelle
EP1328987A2 (de) Betriebsverfahren für eine brennstoffzelle, damit arbeitende polymer-elektrolyt-membran-brennstoffzelle und verfahren zu deren herstellung
DE112007000572B4 (de) Verfahren zur Herstellung eines Separators
DE102011083469A1 (de) Batteriemodul umfassend eine Mehrzahl von Batteriezellen und Kraftfahrzeug
DE102017115053A1 (de) Beschichtete aluminium-bipolarplatte für brennstoffzellenanwendungen
WO2018130388A1 (de) Verfahren zur herstellung einer bipolarplatte, bipolarplatte für eine brennstoffzelle und brennstoffzelle
WO2022128856A2 (de) Anordnung elektrochemischer zellen
WO2017025557A1 (de) Membran-elektroden-einheit für eine brennstoffzelle sowie brennstoffzelle
DE102020213574A1 (de) Verteilerplatte für eine elektrochemische Zelle, elektrochemische Zelle und Verfahren zum Betrieb einer elektrochemischen Zelle
DE102012200607A1 (de) Kathodenstrommabnehmer für elektrische energiespeichereinrichtung und verfahren zur herstellung desselben
WO2016120233A1 (de) Verfahren zur herstellung einer katalytisch beschichteten membran sowie membran-elektroden-einheit und brennstoffzellenstapel mit einer solchen
WO2018166733A1 (de) Bipolarplatte für eine brennstoffzelle und brennstoffzelle sowie verfahren zur herstellung einer bipolarplatte
DE102018204602A1 (de) Gasverteilerstruktur für eine Brennstoffzelle
DE102015015876A1 (de) Separatorplatte für eine Brennstoffzelle, Brennstoffzelle, Fahrzeug und Verfahren zum Fertigen einer Separatorplatte
DE102020213578A1 (de) Verteilerplatte für eine elektrochemische Zelle und elektrochemische Zelle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20717124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20717124

Country of ref document: EP

Kind code of ref document: A1