WO2020209047A1 - セパレータ一体ガスケット - Google Patents

セパレータ一体ガスケット Download PDF

Info

Publication number
WO2020209047A1
WO2020209047A1 PCT/JP2020/012908 JP2020012908W WO2020209047A1 WO 2020209047 A1 WO2020209047 A1 WO 2020209047A1 JP 2020012908 W JP2020012908 W JP 2020012908W WO 2020209047 A1 WO2020209047 A1 WO 2020209047A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional shape
gasket
separator
shape portion
lip
Prior art date
Application number
PCT/JP2020/012908
Other languages
English (en)
French (fr)
Inventor
泰輔 松田
茂 渡部
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Priority to DE112020001826.1T priority Critical patent/DE112020001826T5/de
Priority to US17/439,837 priority patent/US11888103B2/en
Priority to JP2021513546A priority patent/JP7126610B2/ja
Priority to CN202080023862.XA priority patent/CN113614423A/zh
Publication of WO2020209047A1 publication Critical patent/WO2020209047A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/12Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a gasket with an integrated separator.
  • Separator integral gasket for a fuel cell to a separator which is a component of the fuel cell, in which integrally assembled to the gasket for sealing the reactant (O 2, H 2) and cooling water.
  • a metal bipolar separator that can be press-processed may be used in order to reduce the grooving cost of the gasket forming portion and the flow path portion (for example, Special Table 2017-532731).
  • the gasket a double-sided gasket made of a lip-shaped gasket and a flat-shaped gasket may be used in order to allow the separators laminated to each other to be displaced on a plane during stack assembly.
  • the lip-shaped gasket has a seal lip integrally provided on the flat surface of the gasket base.
  • the flat gasket is a flat gasket having no seal lip. Therefore, the height (thickness) of the lip gasket is larger than the height (thickness) of the flat gasket.
  • the electrolyte membrane sandwiched between the two gaskets during stack assembly is lifted in one direction in the thickness direction by the lip-shaped gasket and deformed. This deformation can affect the durability of the electrolyte membrane.
  • An object of the present invention is to provide a separator-integrated gasket in which the electrolyte membrane is not easily deformed during stack assembly.
  • the separator integrated gasket for the fuel cell of the present invention With a lip gasket, A first separator component made of a press-processable metal plate and having a first three-dimensional shape portion, and a gasket mounting groove for holding the lip-shaped gasket is provided on a surface of the first three-dimensional shape portion opposite to the protruding direction.
  • the first separator part to have and A second separator component made of a press-processable metal plate and having a second three-dimensional shape portion, and a three-dimensional shape fitting groove for accommodating the first three-dimensional shape portion is on the side opposite to the protruding direction of the second three-dimensional shape portion.
  • the first three-dimensional shape portion and the second three-dimensional shape portion are aligned on a plane and project in the same direction.
  • the first separator component and the second separator component are overlapped and joined in the thickness direction.
  • Enlarged cross-sectional view of the main part showing the stack assembly state of the gasket with integrated separator (A) is an enlarged sectional view taken along line DD in FIG. 1
  • (B) is a sectional view taken along line EE in FIG. 4 (A).
  • Enlarged cross-sectional view of the main part showing the stack assembly state of the gasket with integrated separator (A) is an enlarged sectional view taken along line FF in FIG. 1
  • (B) is a sectional view taken along line GG in FIG. 6 (A).
  • Enlarged cross-sectional view of the main part showing the stack assembly state of the gasket with integrated separator (A) is an enlarged cross-sectional view taken along line HH in FIG. 1, and (B) is a cross-sectional view taken along line II in FIG. 8 (A).
  • Enlarged cross-sectional view of the main part showing the stack assembly state of the gasket with integrated separator Enlarged sectional view of a main part showing another example of the flow path structure of the separator integrated gasket.
  • the separator integrated gasket 1 includes a separator 11 and a gasket 71.
  • the separator 11 has a rectangular shape in a plane.
  • the gasket 71 is integrally assembled with the separator 11.
  • the separator 11 has a reaction surface 12 of a reactant (O 2 , H 2 ) and a manifold hole 13.
  • the reaction surface 12 is located at the center of the plane of the separator 11.
  • the manifold holes 13 are made of oxygen (O 2 ) supply manifold holes 13A, oxygen (O 2 ) discharge manifold holes 13B, hydrogen (H 2 ) supply manifold holes 13C, and hydrogen (H 2 ). It has a discharge manifold hole 13D, a cooling water supply manifold hole 13E, and a cooling water discharge manifold hole 13F.
  • the supply manifold holes 13A, 13C, 13E and the discharge manifold holes 13B, 13D, 13F are arranged on both sides of the reaction surface 12.
  • the gasket 71 has an outer peripheral seal portion 72 and a manifold seal portion 73.
  • the outer peripheral seal portion 72 is provided on the outer circumference of the separator 11 over the entire circumference.
  • the manifold seal portion 73 is provided around each manifold hole 13 over the entire circumference.
  • Manifold seal portion 73 includes a supply manifold seal portion 73A of the oxygen (O 2), and discharge manifold seal portion 73B of the oxygen (O 2), a supply manifold seal portion 73C of the hydrogen (H 2), hydrogen ( has a discharge manifold seal portion 73D of H 2), a supply manifold seal portion 73E of the cooling water, and a manifold sealing portion 73F for discharging the cooling water.
  • the separator 11 has a first separator component 21 and a second separator component 31.
  • the first separator component 21 is a metal plate that can be press-processed.
  • the second separator component 31 is a metal plate that can be press-processed.
  • the first separator component 21 and the second separator component 31 are overlapped with each other in the thickness direction and joined to form a metal bipolar separator that can be press-processed.
  • the first separator component 21 and the second separator component 31 are joined at the joint portion 35.
  • outer peripheral seal portion 72 and the manifold seal portion 73 will be described. Since the outer peripheral seal portion 72 and the manifold seal portion 73 have the same cross-sectional shape, the outer peripheral seal portion 72 will be described below.
  • the upper first separator component 21 has a first three-dimensional shape portion 23.
  • the first three-dimensional shape portion 23 projects toward the lower second separator component 31.
  • the first three-dimensional shape portion 23 is formed by press working.
  • the first three-dimensional shape portion 23 has a pair of left and right tapered surface-shaped side surface portions 23a (first side surface portion) and a flat bottom surface portion 23b (first bottom surface portion).
  • the first three-dimensional shape portion 23 has a trapezoidal cross section.
  • the back surface side (upper surface side in FIG. 2) of the first three-dimensional shape portion 23 in the direction opposite to the protruding direction is the gasket mounting groove 24.
  • the gasket mounting groove 24 holds the lip-shaped gasket 81.
  • the lip-shaped gasket 81 will be described later.
  • the second separator component 31 has a second three-dimensional shape portion 33.
  • the three-dimensional shape portion 33 aligns with the first three-dimensional shape portion 23 on a plane and projects in the same direction as the first three-dimensional shape portion 23.
  • the second three-dimensional shape portion 33 is formed by press working.
  • the second three-dimensional shape portion 33 has a pair of left and right tapered surface-shaped side surface portions 33a (second side surface portion) and a flat bottom surface portion 33b (second bottom surface portion).
  • the second three-dimensional shape portion 33 has a trapezoidal cross section.
  • the back surface side (upper surface side in FIG. 2) opposite to the protruding direction of the second three-dimensional shape portion 33 is the three-dimensional shape fitting groove 34.
  • the first three-dimensional shape portion 23 is fitted and accommodated in the three-dimensional shape fitting groove 34.
  • the gasket 71 is a double-sided gasket made of a combination of a lip-shaped gasket 81 and a flat-shaped gasket 91.
  • the lip-shaped gasket 81 is held in the gasket mounting groove 24 of the first separator component 21.
  • the lip-shaped gasket 81 is integrally provided with a gasket base 82, a seal lip 83, and a pair of protruding receiving portions 84.
  • the gasket base 82 is flat and is held in the mounting groove 24.
  • the seal lip 83 has a chevron-shaped cross section, is provided on the plane of the gasket base 82 and is provided at the center in the width direction.
  • the pair of receiving portions 84 are provided on the plane surface of the gasket base 82 at intervals on both sides of the seal lip 83 in the width direction.
  • the tip of the seal lip 83 has an arc-shaped cross section so as to easily generate a peak surface pressure.
  • the tip of the receiving portion 84 is formed in a flat shape so as to easily exert the function of receiving.
  • the height of the receiving portion 84 is smaller than the height of the seal lip 83.
  • the pair of receiving portions 84 have the same height.
  • the distance between the pair of receiving portions 84 is smaller than the width of the second three-dimensional shape portion 33.
  • the distance w 1 at the tip ends of the pair of receiving portions 84 is smaller than the width w 2 of the bottom surface portion 33b of the second three-dimensional shape portion 33.
  • the lip-shaped gasket 81 is molded by an injection molding method.
  • the lip-shaped gasket 81 is formed of a rubber material such as silicone-based, EPDM (ethylene / propylene / diene rubber), fluorine-based, or PIB (polyisobutylene).
  • the flat gasket 91 is held on the outer surface side of the bottom surface portion 33b of the second three-dimensional shape portion 33.
  • the flat gasket 91 is formed in a flat and thin film shape.
  • the width w 3 of the flat gasket 91 is larger than the width w 4 of the seal lip 83, and is larger than the distance w 1 at the tips of the pair of receiving portions 84 and the width w 2 of the bottom surface portion 33 b of the second three-dimensional shape portion 33. small.
  • the flat gasket 91 is formed by applying a rubber solution or liquid rubber by screen printing.
  • the flat gasket 91 may be molded by an inkjet method, a stamping method, or the like.
  • the flat gasket 91 is formed of a rubber material such as silicone, EPDM, fluorine, or PIB.
  • Both the first three-dimensional shape portion 23 and the second three-dimensional shape portion 33 are formed by press working. Therefore, the following configurations are provided in preparation for dimensional errors during press working and positional deviations on a plane when joining separator parts.
  • the width of the first three-dimensional shape portion 23 is smaller than the width of the second three-dimensional shape portion 33.
  • the width of the bottom surface portion 23b of the first three-dimensional shape portion 23 is smaller than the width of the bottom surface portion 33b of the second three-dimensional shape portion 33.
  • a gap c in the width direction is provided between the side surface portion 23a of the first three-dimensional shape portion 23 and the side surface portion 33a of the second three-dimensional shape portion 33 facing each other.
  • the dimensional error and the positional deviation are within the range of the gap c, the dimensional error and the positional deviation can be absorbed, so that the first three-dimensional shape portion 23 can be fitted into the second three-dimensional shape portion 33.
  • the bottom surface portion 23b and the second three-dimensional shape of the first three-dimensional shape portion 23 are joined.
  • the bottom surface portion 33b of the portion 33 is in contact with each other, but the side surface portion 23a of the first three-dimensional shape portion 23 and the side surface portion 33a of the second three-dimensional shape portion 33 are in a state of being separated from each other without contacting each other.
  • the oxygen supply manifold seal portion 73A supplies oxygen from the supply manifold hole 13A to the reaction surface 12 when the fuel cell is in operation.
  • the oxygen discharge manifold seal portion 73B discharges oxygen from the reaction surface 12 to the discharge manifold hole 13B during operation of the fuel cell.
  • a gap space 41 is provided in a part of the seal circumference between the first three-dimensional shape portion 23 and the second three-dimensional shape portion 33.
  • the first separator component 21 is provided with a first opening 42 and a second opening 43, respectively, at both ends of the gap space 41.
  • a fluid flow path 44 that crosses the lip-shaped gasket 81 and the flat-shaped gasket 91 in the width direction is provided. Oxygen flows through the fluid flow path 44.
  • the first three-dimensional shape portion 23 has a three-dimensional portion 45.
  • the three-dimensional portion 45 is formed by press working.
  • the three-dimensional portion 45 has a bottom surface portion 23b of the first three-dimensional shape portion 23, a pair of side surface portions 23a, and flat portions on both sides in the width direction of the first three-dimensional shape portion 23 so as to cross the width direction of the first three-dimensional shape portion 23. It has a cross-sectional shape shown in FIG. 4B across 22.
  • the fluid flow path for oxygen supply in the direction of the arrow from the supply manifold hole 13A to the reaction surface 12 via the first opening 42, the gap space 41 and the second opening 43. 44 is formed. Further, a fluid flow path 44 for oxygen discharge in the direction opposite to the arrow is formed from the reaction surface 12 to the discharge manifold hole 13B via the second opening 43, the gap space 41 and the first opening 42.
  • the hydrogen supply manifold seal portion 73C supplies hydrogen from the supply manifold hole 13C to the reaction surface 12 when the fuel cell is in operation.
  • the hydrogen discharge manifold seal portion 73D discharges hydrogen from the reaction surface 12 to the discharge manifold hole 13D during operation of the fuel cell.
  • a gap space 51 is provided in a part of the seal circumference between the first three-dimensional shape portion 23 and the second three-dimensional shape portion 33.
  • the first opening 52 and the second opening 53 are provided in the second separator component 31 at both ends of the gap space 51, respectively.
  • a fluid flow path 54 that crosses the lip-shaped gasket 81 and the flat-shaped gasket 91 in the width direction is provided. Hydrogen flows through the fluid flow path 54.
  • the first three-dimensional shape portion 23 has a three-dimensional portion 55.
  • the three-dimensional portion 55 is formed by press working.
  • the three-dimensional portion 55 has a bottom surface portion 23b of the first three-dimensional shape portion 23, a pair of side surface portions 23a, and flat portions on both sides in the width direction of the first three-dimensional shape portion 23 so as to cross the width direction of the first three-dimensional shape portion 23. It has a cross-sectional shape shown in FIG. 6B across 22.
  • a fluid flow path for hydrogen supply in the direction of the arrow from the supply manifold hole 13C to the reaction surface 12 via the first opening 52, the gap space 51 and the second opening 53. 54 is formed. Further, a fluid flow path 54 for hydrogen discharge in the direction opposite to the arrow is formed from the reaction surface 12 to the discharge manifold hole 13D via the second opening 53, the gap space 51 and the first opening 52.
  • the cooling water supply manifold seal portion 73E supplies the cooling water from the supply manifold hole 13E to the reaction surface 12 when the fuel cell is in operation.
  • the cooling water discharge manifold seal portion 73F discharges the cooling water from the reaction surface 12 to the discharge manifold hole 13F when the fuel cell is in operation.
  • a gap space 61 is provided in a part of the seal circumference between the first three-dimensional shape portion 23 and the second three-dimensional shape portion 33.
  • a fluid flow path 64 that crosses the lip-shaped gasket 81 and the flat-shaped gasket 91 in the width direction is provided. Cooling water flows through the fluid flow path 64.
  • the first three-dimensional shape portion has a three-dimensional portion 65.
  • the three-dimensional portion 65 is formed by press working.
  • the three-dimensional portion 65 has a bottom surface portion 23b of the first three-dimensional shape portion 23, a pair of side surface portions 23a, and flat portions on both sides in the width direction of the first three-dimensional shape portion 23 so as to cross the width direction of the first three-dimensional shape portion 23. It has a cross-sectional shape shown in FIG. 8B across 22.
  • Cooling water is not a reactant unlike oxygen and hydrogen. Therefore, the cooling water flows into the discharge manifold hole 13F by passing through the inside of the bipolar separator (the internal space between the first separator component 21 and the second separator component 31) even in the region of the reaction surface 12. .. Therefore, even in the region on the reaction surface 12 side of the first three-dimensional shape portion 23 and the second three-dimensional shape portion 33, a cross-sectional shape similar to that of the gap space 61 is formed between the first separator component 21 and the second separator component 31.
  • the internal space 66 to have is continuous with the gap space 61.
  • an internal space 67 having a cross-sectional shape similar to that of the gap space 61 is formed between the first separator component 21 and the second separator component 31. It is continuous with 61.
  • a fluid flow path 64 for supplying cooling water in the direction of the arrow is formed from the supply manifold hole 13E to the internal space 66 via the internal space 67 and the gap space 61. .. Further, a fluid flow path 64 for discharging cooling water in the direction opposite to the arrow is formed from the internal space 66 to the discharge manifold hole 13F via the gap space 61 and the internal space 67.
  • an opening 62 may be provided in the region of the cooling water supply manifold hole 13E and the region of the cooling water discharge manifold hole 13F instead of the internal space 67.
  • the separator integrated gasket 1 of the present embodiment is assembled as a fuel cell stack together with the electrolyte membrane 101 and the gas diffusion layers 102 and 103, which are the components of the fuel cell.
  • the electrolyte membrane 101 sandwiched between the pair of gas diffusion layers 102 and 103 has a larger flat area than the gas diffusion layers 102 and 103. Therefore, the electrolyte membrane 101 has a peripheral edge portion 101a that protrudes from the gas diffusion layers 102 and 103.
  • the peripheral edge portion 101a is sandwiched between the lip-shaped gasket 81 and the flat-shaped gasket 91.
  • the lip-shaped gasket 81 and the flat-shaped gasket 91 exert a sealing action so that oxygen, hydrogen, or cooling water does not leak.
  • the lip-shaped gasket 81 of the separator integrated gasket 1 of the present embodiment is the one in which the seal lip 83 is integrally provided on the flat surface of the gasket base 82. Further, the flat gasket 91 has a flat shape without a seal lip. Therefore, the lip-shaped gasket 81 has a height (thickness) larger than that of the flat-shaped gasket 91.
  • the first separator component 21 and the second separator component 31 are not provided with a three-dimensional shape portion, and the first separator component 21 and the second separator component 31 are planar.
  • the peripheral edge portion 101a of the electrolyte membrane 101 sandwiched between the lip-shaped gasket 81 and the flat-shaped gasket 91 during stack assembly is formed. It is lifted by the lip-shaped gasket 81 in the thickness direction (upward in FIG. 13) and deformed by this amount.
  • the first and second separator parts 21 and 31 have three-dimensional shaped portions 23 and 33, respectively. Therefore, as shown in FIG. 3, at the time of stack assembly, the peripheral edge portion 101a of the electrolyte membrane 101 sandwiched between the lip-shaped gasket 81 and the flat gasket 91 is unilaterally thickened by the lip-shaped gasket 81 (upper in FIG. 3).
  • the electrolyte membrane 101 remains substantially flat and does not deform significantly without being lifted to. Therefore, it is possible to prevent the electrolyte membrane 101 from being lifted and deformed by the lip-shaped gasket 81 to reduce its durability.
  • the height of the three-dimensional shape portion 33 of the second separator component 31 is equal to or substantially the same as the thickness of the gas diffusion layer 102 arranged between the second separator component 31 and the electrolyte membrane 101.
  • the width of the first three-dimensional shape portion 23 is smaller than the width of the second three-dimensional shape portion 33, and the side surface portions 23a and the second three-dimensional shape portion of the first three-dimensional shape portions 23 facing each other.
  • a gap c in the width direction is provided between the 33 and the side surface portion 33a. Therefore, even if a dimensional error occurs during press working of the first separator component 21 and the second separator component 31, or a positional deviation on a plane occurs when the first separator component 21 and the second separator component 31 are joined. , The first three-dimensional shape portion 23 can be fitted into the second three-dimensional shape portion 33.
  • gap spaces 41, 51, 61 are provided in a part of the circumference between the bottom surface portion 23b of the first three-dimensional shape portion 23 and the bottom surface portion 33b of the second three-dimensional shape portion 33.
  • the fluid flow paths 44, 54, 64 that cross the lip-shaped gasket 81 and the flat-shaped gasket 91 in the width direction are formed.
  • supply manifold hole 13A, @ 13 C the reaction surface 12 from 13E, discharge manifold hole 13B from the reaction surface 12, 13D, to 13F, the reactant (O 2, H 2 ) And cooling water flows.
  • the lip-shaped gasket 81 is provided with a pair of protruding receiving portions 84.
  • the distance between the pair of receiving portions 84 is smaller than the width of the second three-dimensional shape portion 33. Therefore, as shown in FIG. 3, a pair of receiving portions 84 both support the second three-dimensional shape portion 33 located above the receiving portions 84 at the same time. Therefore, as shown in FIG. 11, even if partial overcompression or misalignment of the separators 11 occurs during stack assembly, it is possible to prevent the separators 11 from being deformed or tilted, and a plurality of stacked separators can be prevented. Separator 11 can be maintained in a parallel state.
  • the receiving unit 84 may be omitted as another embodiment as shown in FIG. 12 due to the convenience of product specifications and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Gasket Seals (AREA)

Abstract

スタック組立て時に電解質膜が変形しにくいセパレータ一体ガスケットを提供する。燃料電池用のセパレータ一体ガスケット1は、リップ状ガスケット81と、プレス加工可能な金属板よりなり、第1立体形状部23を有し、リップ状ガスケット81を保持するガスケット装着溝24を第1立体形状部23の突出方向と反対側の面に有する第1セパレータ部品21と、プレス加工可能な金属板よりなり、第2立体形状部33を有し、第1立体形状部23を収める立体形状嵌め合い溝34を第2立体形状部33の突出方向と反対側の面に有する第2セパレータ部品31と、第2立体形状部33の外面側に保持されるフラット状ガスケット91と、を有し、第1立体形状部23と第2立体形状部33は、平面上の位置を合わせて、同じ向きに突出し、第1セパレータ部品21と第2セパレータ部品31は、厚み方向に重ねられて接合される。

Description

セパレータ一体ガスケット
 本発明は、セパレータ一体ガスケットに関する。
 燃料電池用のセパレータ一体ガスケットは、燃料電池セルの構成要素であるセパレータに対し、反応物質(O,H)や冷却水等をシールするためのガスケットを一体的に組み付けたものである。
 セパレータとして、ガスケット成形部や流路部の溝加工コストを低減させるため、プレス加工可能な金属バイポーラセパレータを用いることがある(例えば、特表2017-532731)。
 一方、ガスケットとして、スタック組立て時に互いに積層されるセパレータ同士の平面上の位置ズレを許容するため、リップ状ガスケットおよびフラット状ガスケットよりなる両面ガスケットを用いることがある。
 プレス加工可能な金属バイポーラセパレータとリップ状ガスケットおよびフラット状ガスケットよりなる両面ガスケットとを組み合わせて用いる場合には、以下の点に留意する必要がある。
 リップ状ガスケットは、ガスケット基部の平面上にシールリップを一体に設けたものである。フラット状ガスケットは、シールリップを有さない平坦状のものである。したがって、リップ状ガスケットの高さ(厚み)は、フラット状ガスケットの高さ(厚み)よりも大きい。
 リップ状ガスケットとフラット状ガスケットの高さ(厚み)の相違により、スタック組立て時に両ガスケット間に挟み込まれる電解質膜が、リップ状ガスケットによって厚み方向一方へ持ち上げられて、変形する。この変形が、電解質膜の耐久性に影響を及ぼすことがある。
 本発明は、スタック組立て時に電解質膜が変形しにくいセパレータ一体ガスケットを提供することを目的とする。
 本発明の燃料電池用のセパレータ一体ガスケットは、
 リップ状ガスケットと、
 プレス加工可能な金属板よりなり、第1立体形状部を有する第1セパレータ部品であって、前記リップ状ガスケットを保持するガスケット装着溝を前記第1立体形状部の突出方向と反対側の面に有する第1セパレータ部品と、
 プレス加工可能な金属板よりなり、第2立体形状部を有する第2セパレータ部品であって、前記第1立体形状部を収める立体形状嵌め合い溝を前記第2立体形状部の突出方向と反対側の面に有する第2セパレータ部品と、
 前記第2立体形状部の外面側に保持されるフラット状ガスケットと、
 を有し、
 前記第1立体形状部と前記第2立体形状部は、平面上の位置を合わせて、同じ向きに突出し、
 前記第1セパレータ部品と前記第2セパレータ部品は、厚み方向に重ねられて接合される。
 本発明のセパレータ一体ガスケットによれば、スタック組立て時の電解質膜の変形を抑制できる。
実施形態のセパレータ一体ガスケットの平面図 図1のC-C線拡大断面図 セパレータ一体ガスケットのスタック組立て状態を示す要部拡大断面図 (A)は、図1におけるD-D線拡大断面図、(B)は、図4(A)におけるE-E線断面図 セパレータ一体ガスケットのスタック組立て状態を示す要部拡大断面図 (A)は、図1におけるF-F線拡大断面図、(B)は、図6(A)におけるG-G線断面図 セパレータ一体ガスケットのスタック組立て状態を示す要部拡大断面図 (A)は、図1におけるH-H線拡大断面図、(B)は、図8(A)におけるI-I線断面図 セパレータ一体ガスケットのスタック組立て状態を示す要部拡大断面図 セパレータ一体ガスケットの流路構造の他の例を示す要部拡大断面図 セパレータ一体ガスケットのスタック組立て状態を示す要部拡大断面図 他の実施形態のセパレータ一体ガスケットの要部断面図 比較例のセパレータ一体ガスケットのスタック組立て状態を示す要部拡大断面図
 図1に示すように、実施の形態に係るセパレータ一体ガスケット1は、セパレータ11と、ガスケット71とを有する。セパレータ11は、平面長方形状である。ガスケット71は、セパレータ11に対し一体的に組み付けられる。
 セパレータ11は、反応物質(O,H)の反応面12と、マニホールド孔13とを有する。反応面12は、セパレータ11の平面中央に位置する。マニホールド孔13は、酸素(O)の供給用マニホールド孔13Aと、酸素(O)の排出用マニホールド孔13Bと、水素(H)の供給用マニホールド孔13Cと、水素(H)の排出用マニホールド孔13Dと、冷却水の供給用マニホールド孔13Eと、冷却水の排出用マニホールド孔13Fと、を有する。供給用マニホールド孔13A、13C、13Eと排出用マニホールド孔13B、13D、13Fは、反応面12を挟んで両側に配置される。
 ガスケット71は、外周シール部72と、マニホールドシール部73とを有する。外周シール部72は、セパレータ11の外周に全周に亙って設けられる。マニホールドシール部73は、各マニホールド孔13の周りに、それぞれ全周に亙って設けられる。マニホールドシール部73は、酸素(O)の供給用マニホールドシール部73Aと、酸素(O)の排出用マニホールドシール部73Bと、水素(H)の供給用マニホールドシール部73Cと、水素(H)の排出用マニホールドシール部73Dと、冷却水の供給用マニホールドシール部73Eと、冷却水の排出用マニホールドシール部73Fとを有する。
 図2に示すように、セパレータ11は、第1セパレータ部品21と、第2セパレータ部品31と、を有する。第1セパレータ部品21は、プレス加工可能な金属板である。第2セパレータ部品31は、プレス加工可能な金属板である。第1セパレータ部品21と第2セパレータ部品31が互いに厚み方向に重ね合わされ接合され、プレス加工可能な金属バイポーラセパレータとなる。第1セパレータ部品21と第2セパレータ部品31は、接合部35において接合される。
 以下、外周シール部72およびマニホールドシール部73の構成を説明する。尚、外周シール部72およびマニホールドシール部73は、同じ断面形状を有するため、以下、外周シール部72について説明する。
 図2に示すように、上側の第1セパレータ部品21は、第1立体形状部23を有する。第1立体形状部23は、下側の第2セパレータ部品31へ向けて突出する。第1立体形状部23は、プレス加工により形成される。第1立体形状部23は、左右一対のテーパー面状の側面部23a(第1側面部)と、平面状の底面部23b(第1底面部)を有する。第1立体形状部23は、台形状の断面を有する。第1立体形状部23の突出方向と反対向きの裏面側(図2では上面側)は、ガスケット装着溝24となる。ガスケット装着溝24は、リップ状ガスケット81を保持する。リップ状ガスケット81については後述する。
 第2セパレータ部品31は、第2立体形状部33を有する。立体形状部33は、第1立体形状部23と平面上の位置を合わせて、第1立体形状部23と同じ向きへ突出する。第2立体形状部33は、プレス加工により形成される。第2立体形状部33は、左右一対のテーパー面状の側面部33a(第2側面部)と、平面状の底面部33b(第2底面部)を有する。第2立体形状部33は、台形状の断面を有する。第2立体形状部33の突出方向と反対向きの裏面側(図2では上面側)は、立体形状嵌め合い溝34となる。立体形状嵌め合い溝34に、第1立体形状部23が嵌め込まれ収められる。
 ガスケット71は、リップ状ガスケット81とフラット状ガスケット91の組み合わせよりなる両面ガスケットである。
 第1セパレータ部品21のガスケット装着溝24に、リップ状ガスケット81が保持される。
 リップ状ガスケット81は、ガスケット基部82と、シールリップ83と、一対の突起状の受け部84が、一体に設けられる。ガスケット基部82は、平坦状であり、装着溝24内に保持される。シールリップ83は、山形形状の断面を有し、ガスケット基部82の平面上であって幅方向中央に設けられる。一対の受け部84は、ガスケット基部82の平面上であって、シールリップ83の幅方向両側に間隔をおいて設けられる。シールリップ83の先端は、ピーク面圧を発生させやすいよう、円弧形状の断面を有する。これに対し、受け部84の先端は、受けの作用を奏しやすいように平面状に形成される。受け部84の高さは、シールリップ83の高さよりも小さい。一対の受け部84は、同等の高さを有する。一対の受け部84の間隔は、第2立体形状部33の幅よりも小さい。具体的には、一対の受け部84の先端部における間隔wは、第2立体形状部33の底面部33bの幅wよりも小さい。リップ状ガスケット81は、射出成形法により成形される。リップ状ガスケット81は、シリコーン系、EPDM(エチレン・プロピレン・ジエンゴム)、フッ素系、PIB(ポリイソブチレン)等のゴム材料により成形される。
 第2立体形状部33の底面部33bの外面側に、フラット状ガスケット91が保持される。
 フラット状ガスケット91は、平坦状であって薄膜状に形成される。フラット状ガスケット91の幅wは、シールリップ83の幅wよりも大きく、一対の受け部84の先端部における間隔wおよび第2立体形状部33の底面部33bの幅wよりも小さい。フラット状ガスケット91は、ゴム溶液または液状ゴムをスクリーン印刷にて塗布する方法により成形される。フラット状ガスケット91は、インクジェット法またはスタンプ法などによって成形されても良い。フラット状ガスケット91は、シリコーン系、EPDM、フッ素系、PIB等のゴム材料により成形される。
 第1立体形状部23、第2立体形状部33は、共にプレス加工により形成される。そのため、プレス加工時の寸法誤差やセパレータ部品接合時の平面上の位置ズレに備えて、以下の構成が設けられている。
 第1立体形状部23の幅は、第2立体形状部33の幅よりも小さい。第1立体形状部23の底面部23bの幅は、第2立体形状部33の底面部33bの幅よりも小さい。互いに対向する第1立体形状部23の側面部23aと第2立体形状部33の側面部33aとの間に、幅方向の隙間cが設けられる。したがって、寸法誤差や位置ズレが隙間cの範囲内であれば、寸法誤差や位置ズレを吸収できるため、第1立体形状部23を第2立体形状部33に嵌め込むことが可能となる。第1立体形状部23が立体形状嵌め合い溝34に嵌め込まれ、第1セパレータ部品21と第2セパレータ部品31が接合された状態で、第1立体形状部23の底面部23bと第2立体形状部33の底面部33bは互いに接触した状態となるが、第1立体形状部23の側面部23aと第2立体形状部33の側面部33aは、互いに接触せず離間した状態となる。
 酸素の供給用マニホールドシール部73Aは、燃料電池の稼働時、酸素を供給用マニホールド孔13Aから反応面12へ供給する。酸素の排出用マニホールドシール部73Bは、燃料電池の稼働時、酸素を反応面12から排出用マニホールド孔13Bへ排出する。
 図4(A)に示すように、第1立体形状部23と第2立体形状部33との間のシール周上の一部に間隙空間41が設けられる。間隙空間41の両端部であって、第1セパレータ部品21には、それぞれ、第1開口42と第2開口43が設けられる。これにより、リップ状ガスケット81およびフラット状ガスケット91を幅方向に横断する流体流路44が設けられる。流体流路44を酸素が流れる。
 第1立体形状部23は、立体部45を有する。立体部45は、プレス加工により形成される。立体部45は、第1立体形状部23の幅方向を横断するように、第1立体形状部23の底面部23b、一対の側面部23a、第1立体形状部23の幅方向両側の平面部22に亙って、図4(B)に示す断面形状を有する。立体部45を有する第1立体形状部23を第2立体形状部33に嵌め込み、底面部23bと底面部33bを接触させることにより、間隙空間41は、トンネル状の空間となる。これにより、図5に示すように、供給用マニホールド孔13Aから第1開口42、間隙空間41および第2開口43を経由して反応面12へ至る、矢印の向きの酸素供給用の流体流路44が形成される。また、反応面12から第2開口43、間隙空間41および第1開口42を経由して排出用マニホールド孔13Bへ至る、矢印と反対の向きの酸素排出用の流体流路44が形成される。
 水素の供給用マニホールドシール部73Cは、燃料電池の稼働時、水素を供給用マニホールド孔13Cから反応面12へ供給する。水素の排出用マニホールドシール部73Dは、燃料電池の稼働時、水素を反応面12から排出用マニホールド孔13Dへ排出する。
 図6(A)に示すように、第1立体形状部23と第2立体形状部33との間のシール周上の一部に間隙空間51が設けられる。間隙空間51の両端部であって、第2セパレータ部品31には、それぞれ、第1開口52と第2開口53が設けられる。これにより、リップ状ガスケット81およびフラット状ガスケット91を幅方向に横断する流体流路54が設けられる。流体流路54を水素が流れる。
 第1立体形状部23は、立体部55を有する。立体部55は、プレス加工により形成される。立体部55は、第1立体形状部23の幅方向を横断するように、第1立体形状部23の底面部23b、一対の側面部23a、第1立体形状部23の幅方向両側の平面部22に亙って、図6(B)に示す断面形状を有する。立体部55を有する第1立体形状部23を第2立体形状部33に嵌め込み、底面部23bと底面部33bを接触させることにより、間隙空間51は、トンネル状の空間となる。これにより、図7に示すように、供給用マニホールド孔13Cから第1開口52、間隙空間51および第2開口53を経由して反応面12へ至る、矢印の向きの水素供給用の流体流路54が形成される。また、反応面12から第2開口53、間隙空間51および第1開口52を経由して排出用マニホールド孔13Dへ至る、矢印と反対の向きの水素排出用の流体流路54が形成される。
 冷却水の供給用マニホールドシール部73Eは、燃料電池の稼働時、冷却水を供給用マニホールド孔13Eから反応面12へ供給する。冷却水の排出用マニホールドシール部73Fは、燃料電池の稼働時、冷却水を反応面12から排出用マニホールド孔13Fへ排出する。
 図8(A)に示すように、第1立体形状部23と第2立体形状部33との間のシール周上の一部に間隙空間61が設けられる。これにより、リップ状ガスケット81およびフラット状ガスケット91を幅方向に横断する流体流路64が設けられる。流体流路64を冷却水が流れる。
 第1立体形状部は、立体部65を有する。立体部65は、プレス加工により形成される。立体部65は、第1立体形状部23の幅方向を横断するように、第1立体形状部23の底面部23b、一対の側面部23a、第1立体形状部23の幅方向両側の平面部22に亙って、図8(B)に示す断面形状を有する。立体部65を有する第1立体形状部23を第2立体形状部33に嵌め込み、底面部23bと底面部33bを接触させることにより、間隙空間61は、トンネル状の空間となる。
 冷却水は、酸素や水素と異なり、反応物質ではない。そのため、冷却水は、反応面12の領域においてもバイポーラセパレータの内部(第1セパレータ部品21と第2セパレータ部品31の間の内部空間)を通過することにより、排出用マニホールド孔13Fへと流動する。このため、第1立体形状部23及び第2立体形状部33の反応面12側の領域においても、第1セパレータ部品21と第2セパレータ部品31の間に、間隙空間61と同様の断面形状を有する内部空間66が、間隙空間61と連続する。
 供給用マニホールド孔13Eの領域および排出用マニホールド孔13Fの領域においても、第1セパレータ部品21と第2セパレータ部品31の間に、間隙空間61と同様の断面形状を有する内部空間67が、間隙空間61と連続する。
 これにより、図9に示すように、供給用マニホールド孔13Eから内部空間67および間隙空間61を経由して内部空間66へ至る、矢印の向きの冷却水供給用の流体流路64が形成される。また、内部空間66から間隙空間61および内部空間67を経由して排出用マニホールド孔13Fへ至る、矢印と反対の向きの冷却水排出用の流体流路64が形成される。
 尚、冷却水供給用マニホールド孔13Eの領域および冷却水排出用マニホールド孔13Fの領域には、図10に示すように、内部空間67に代えて開口62を設けても良い。
 本実施形態のセパレータ一体ガスケット1は、図3に示すように、燃料電池セルの構成要素である電解質膜101やガス拡散層102,103とともに、燃料電池スタックとして組み立てられる。一対のガス拡散層102,103間に挟まれた電解質膜101は、ガス拡散層102,103よりも大きな平面積を有する。そのため、電解質膜101は、ガス拡散層102,103から食み出す周縁部101aを有する。周縁部101aは、リップ状ガスケット81とフラット状ガスケット91の間に挟み込まれる。これにより、リップ状ガスケット81およびフラット状ガスケット91は、酸素、水素または冷却水が漏洩しないようにシール作用を発揮する。
 本実施形態のセパレータ一体ガスケット1のリップ状ガスケット81は、ガスケット基部82の平面上にシールリップ83を一体に設けたものである。また、フラット状ガスケット91は、シールリップを有さない平坦状である。そのため、リップ状ガスケット81は、フラット状ガスケット91よりも大きな高さ(厚み)を有する。
 図13に示す比較例では、第1セパレータ部品21、第2セパレータ部品31に立体形状部が設けられず、第1セパレータ部品21、第2セパレータ部品31が平面状である。この場合、リップ状ガスケット81と、フラット状ガスケット91の高さ(厚み)の相違により、スタック組立て時に、リップ状ガスケット81とフラット状ガスケット91の間に挟み込まれる電解質膜101の周縁部101aが、リップ状ガスケット81によって厚み方向一方(図13では上方)へ持ち上げられ、この分変形する。
 これに対し、本実施形態のセパレータ一体ガスケット1では、第1及び第2セパレータ部品21,31が、それぞれ立体形状部23,33を有する。そのため、図3に示すように、スタック組立て時に、リップ状ガスケット81とフラット状ガスケット91の間に挟み込まれる電解質膜101の周縁部101aが、リップ状ガスケット81によって厚み方向一方(図3では上方)へ持ち上げられることがなく、電解質膜101はほぼ平面状のままとなり、大きく変形することがない。
 したがって、電解質膜101がリップ状ガスケット81により持ち上げられて変形し、耐久性が低下するのを防止できる。
 第2セパレータ部品31の立体形状部33の高さを、第2セパレータ部品31と電解質膜101の間に配置されるガス拡散層102の厚みと同等またはほぼ同等にすることが好ましい。
 本実施形態のセパレータ一体ガスケット1では、第1立体形状部23の幅が第2立体形状部33の幅よりも小さく、互いに対向する第1立体形状部23の側面部23aと第2立体形状部33の側面部33aとの間に幅方向の隙間cが設けられる。そのため、第1セパレータ部品21、第2セパレータ部品31のプレス加工時に寸法誤差が発生したり、第1セパレータ部品21と第2セパレータ部品31の接合時に平面上の位置ズレが発生したりしても、第1立体形状部23を第2立体形状部33に嵌め込むことが可能となる。
 本実施形態のセパレータ一体ガスケット1は、第1立体形状部23の底面部23bと第2立体形状部33の底面部33bとの間の周上の一部に、間隙空間41,51,61が設けられる。これにより、リップ状ガスケット81およびフラット状ガスケット91を幅方向に横断する流体流路44,54,64が形成される。流体流路44,54,64を介して、供給用マニホールド孔13A,13C,13Eから反応面12へ、反応面12から排出用マニホールド孔13B,13D,13Fへ、反応物質(O,H)や冷却水が流れる。
 本実施形態のセパレータ一体ガスケット1では、リップ状ガスケット81に一対の突起状の受け部84が設けられる。一対の受け部84の間隔は、第2立体形状部33の幅よりも小さい。そのため、図3に示すように、一対の受け部84が双方同時にその上方に位置する第2立体形状部33を支持する。したがって、図11に示すように、スタック組立て時に部分的過圧縮やセパレータ11同士の位置ズレなどが生じても、セパレータ11に変形や傾きが発生するのを防止することができ、積層された複数のセパレータ11を平行な状態に維持できる。
 尚、受け部84は、他の実施形態として図12に示すように、製品仕様の都合等により、省略されても良い。
 1 セパレータ一体ガスケット
11 セパレータ
12 反応面
13 マニホールド孔
13A 酸素供給用マニホールド孔
13B 酸素排出用マニホールド孔
13C 水素供給用マニホールド孔
13D 水素排出用マニホールド孔
13E 冷却水供給用マニホールド孔
13F 冷却水排出用マニホールド孔
21 第1セパレータ部品
22,32 平面部
23 第1立体形状部
23a,33a 側面部
23b,33b 底面部
24 ガスケット装着溝
31 第2セパレータ部品
33 第2立体形状部
34 立体形状嵌め合い溝
35 接合部
41,51,61 間隙空間
42,43,52,53,62 開口
44,54,64 流体流路
45,55,65 立体部
66,67 内部空間
71 ガスケット
72 外周シール部
73 マニホールドシール部
73A 酸素供給用マニホールドシール部
73B 酸素排出用マニホールドシール部
73C 水素供給用マニホールドシール部
73D 水素排出用マニホールドシール部
73E 冷却水供給用マニホールドシール部
73F 冷却水排出用マニホールドシール部
81 リップ状ガスケット
82 ガスケット基部
83 シールリップ
84 受け部
91 フラット状ガスケット
101 電解質膜
101a 周縁部
102,103 ガス拡散層
c 隙間

Claims (4)

  1.  燃料電池用のセパレータ一体ガスケットであって、
     リップ状ガスケットと、
     プレス加工可能な金属板よりなり、第1立体形状部を有する第1セパレータ部品であって、前記リップ状ガスケットを保持するガスケット装着溝を前記第1立体形状部の突出方向と反対側の面に有する第1セパレータ部品と、
     プレス加工可能な金属板よりなり、第2立体形状部を有する第2セパレータ部品であって、前記第1立体形状部を収める立体形状嵌め合い溝を前記第2立体形状部の突出方向と反対側の面に有する第2セパレータ部品と、
     前記第2立体形状部の外面側に保持されるフラット状ガスケットと、
     を有し、
     前記第1立体形状部と前記第2立体形状部は、平面上の位置を合わせて、同じ向きに突出し、
     前記第1セパレータ部品と前記第2セパレータ部品は、厚み方向に重ねられて接合される、
     セパレータ一体ガスケット。
  2.  前記第1立体形状部は、前記第2立体形状部よりも小さい幅を有し、
     前記第1立体形状部は、第1側面部を有し、
     前記第2立体形状部は、第2側面部を有し、
     前記第1側面部と前記第2側面部は、互いに対向し、
     前記第1側面部と前記第2側面部の間には、隙間が設けられる、
     請求項1に記載のセパレータ一体ガスケット。
  3.  前記第1立体形状部は、第1底面部を有し、
     前記第2立体形状部は、第2底面部を有し、
     前記第1底面部と前記第2底面部との間の周上の一部に、前記リップ状ガスケットおよび前記フラット状ガスケットを幅方向に横断する流体流路を有する、
     請求項1又は2に記載のセパレータ一体ガスケット。
  4.  前記リップ状ガスケットは、
      前記ガスケット装着溝内に保持されたガスケット基部と、
      前記ガスケット基部の平面上に設けられたシールリップと、
      前記ガスケット基部の平面上であって、かつ、前記シールリップの幅方向両側にそれぞれ設けられた一対の突起状の受け部と、を有し、
     前記一対の受け部の間隔は、前記第2立体形状部の幅よりも小さい、
     請求項1~3のいずれかに記載のセパレータ一体ガスケット。
PCT/JP2020/012908 2019-04-09 2020-03-24 セパレータ一体ガスケット WO2020209047A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112020001826.1T DE112020001826T5 (de) 2019-04-09 2020-03-24 Separatorintegrierte Dichtung
US17/439,837 US11888103B2 (en) 2019-04-09 2020-03-24 Separator-integrated gasket
JP2021513546A JP7126610B2 (ja) 2019-04-09 2020-03-24 セパレータ一体ガスケット
CN202080023862.XA CN113614423A (zh) 2019-04-09 2020-03-24 隔板一体式密封垫

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019074231 2019-04-09
JP2019-074231 2019-04-09

Publications (1)

Publication Number Publication Date
WO2020209047A1 true WO2020209047A1 (ja) 2020-10-15

Family

ID=72751848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012908 WO2020209047A1 (ja) 2019-04-09 2020-03-24 セパレータ一体ガスケット

Country Status (5)

Country Link
US (1) US11888103B2 (ja)
JP (1) JP7126610B2 (ja)
CN (1) CN113614423A (ja)
DE (1) DE112020001826T5 (ja)
WO (1) WO2020209047A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220093940A1 (en) * 2019-04-09 2022-03-24 Nok Corporation Separator-integrated gasket

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116169316B (zh) * 2023-04-24 2023-06-30 上海韵量新能源科技有限公司 一种燃料电池密封结构、燃料电池、燃料电池堆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100030709A (ko) * 2008-09-11 2010-03-19 현대자동차주식회사 연료전지 스택용 분리판
JP2010129459A (ja) * 2008-11-28 2010-06-10 Nissan Motor Co Ltd 燃料電池、燃料電池の製造装置、および燃料電池の製造方法
JP2010272474A (ja) * 2009-05-25 2010-12-02 Nissan Motor Co Ltd 燃料電池モジュール及びその製造方法
WO2013077488A1 (ko) * 2011-11-24 2013-05-30 한국과학기술원 고분자 전해질 연료전지용 분리판 및 이것을 이용한 고분자 전해질 연료전지

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100551809B1 (ko) * 2004-03-27 2006-02-13 현대자동차주식회사 복합 가스켓을 포함하는 연료전지스택용 단셀 구조
KR101745024B1 (ko) * 2011-12-29 2017-06-09 현대자동차주식회사 향상된 기밀구조를 갖는 분리판의 가스켓 구조
JP6141103B2 (ja) * 2013-05-27 2017-06-07 Nok株式会社 燃料電池のシール構造
JP6036652B2 (ja) * 2013-11-11 2016-11-30 トヨタ自動車株式会社 燃料電池に用いられるセパレータおよび燃料電池
JP2016004739A (ja) * 2014-06-19 2016-01-12 トヨタ自動車株式会社 燃料電池
EP3195390A1 (en) 2014-09-20 2017-07-26 Daimler AG Bipolar plate assembly with integrated seal for fuel cell
JP6166240B2 (ja) * 2014-11-13 2017-07-19 トヨタ自動車株式会社 燃料電池用のセパレーターと燃料電池およびセパレーターの製造方法
JP6629066B2 (ja) * 2015-04-09 2020-01-15 Nok株式会社 ガスケット及びその製造方法
JP6673678B2 (ja) * 2015-12-03 2020-03-25 Nok株式会社 キャリアフィルム付きガスケット及びその製造方法
CN109416126B (zh) * 2016-08-02 2021-04-06 Nok株式会社 密封垫
US10403907B2 (en) * 2016-12-15 2019-09-03 Hyundai Motor Company Separator for a fuel cell
JP6841138B2 (ja) * 2017-04-13 2021-03-10 トヨタ自動車株式会社 ガスケットおよびそれを用いた燃料電池スタック
JP6859823B2 (ja) * 2017-04-17 2021-04-14 トヨタ自動車株式会社 燃料電池セル
WO2020209047A1 (ja) * 2019-04-09 2020-10-15 Nok株式会社 セパレータ一体ガスケット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100030709A (ko) * 2008-09-11 2010-03-19 현대자동차주식회사 연료전지 스택용 분리판
JP2010129459A (ja) * 2008-11-28 2010-06-10 Nissan Motor Co Ltd 燃料電池、燃料電池の製造装置、および燃料電池の製造方法
JP2010272474A (ja) * 2009-05-25 2010-12-02 Nissan Motor Co Ltd 燃料電池モジュール及びその製造方法
WO2013077488A1 (ko) * 2011-11-24 2013-05-30 한국과학기술원 고분자 전해질 연료전지용 분리판 및 이것을 이용한 고분자 전해질 연료전지

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220093940A1 (en) * 2019-04-09 2022-03-24 Nok Corporation Separator-integrated gasket
US11888103B2 (en) * 2019-04-09 2024-01-30 Nok Corporation Separator-integrated gasket

Also Published As

Publication number Publication date
DE112020001826T5 (de) 2021-12-23
CN113614423A (zh) 2021-11-05
US20220093940A1 (en) 2022-03-24
JPWO2020209047A1 (ja) 2021-12-16
JP7126610B2 (ja) 2022-08-26
US11888103B2 (en) 2024-01-30

Similar Documents

Publication Publication Date Title
JP3952139B2 (ja) 燃料電池
JP6968746B2 (ja) 燃料電池用セパレータ部材及び燃料電池スタック
WO2020209047A1 (ja) セパレータ一体ガスケット
US11031610B2 (en) Fuel cell stack
JP5907277B2 (ja) 燃料電池スタック、及び燃料電池スタックに用いるシールプレート
JP7196773B2 (ja) 燃料電池
CN108736040B (zh) 垫圈及使用了该垫圈的燃料电池组
US9196911B2 (en) Fuel cell gas diffusion layer integrated gasket
JP2005285744A (ja) 複合ガスケットを含む燃料電池スタック用単一セル構造
JP2007200751A (ja) 燃料電池用セパレータ
KR20180019196A (ko) 연료 전지 스택
JP5912942B2 (ja) 樹脂枠付き電解質膜・電極構造体及び燃料電池
JP2015191802A (ja) 燃料電池スタック
JP4780940B2 (ja) 固体高分子型燃料電池用セル
CN109659579B (zh) 燃料电池用接合隔板以及燃料电池堆
KR20200132294A (ko) 연료전지용 탄성체 셀 프레임 및 그 제조방법과 이를 이용한 연료전지 스택
KR20210075776A (ko) 탄성체 더미 셀 프레임 및 이를 이용한 연료전지 스택
JP4826716B2 (ja) 燃料電池用ガスケット
JP5321291B2 (ja) 燃料電池
JP7103249B2 (ja) 燃料電池スタック
JP2006520081A (ja) 多重高さ表面の密封
JP7431678B2 (ja) セパレータ一体型ガスケットの製造方法
WO2023218841A1 (ja) セパレータ一体ガスケット、及びこれを備える積層構造
US11843138B2 (en) Metal separator and fuel cell stack
JP7344802B2 (ja) 燃料電池のシール構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20786706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513546

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20786706

Country of ref document: EP

Kind code of ref document: A1