WO2020208927A1 - 発光駆動装置および発光装置 - Google Patents

発光駆動装置および発光装置 Download PDF

Info

Publication number
WO2020208927A1
WO2020208927A1 PCT/JP2020/005078 JP2020005078W WO2020208927A1 WO 2020208927 A1 WO2020208927 A1 WO 2020208927A1 JP 2020005078 W JP2020005078 W JP 2020005078W WO 2020208927 A1 WO2020208927 A1 WO 2020208927A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
unit
drive
current
signal
Prior art date
Application number
PCT/JP2020/005078
Other languages
English (en)
French (fr)
Inventor
湯脇 武志
上江川 明仁
大尾 桂久
隼人 上水流
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/594,051 priority Critical patent/US20220200237A1/en
Publication of WO2020208927A1 publication Critical patent/WO2020208927A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06821Stabilising other output parameters than intensity or frequency, e.g. phase, polarisation or far-fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06808Stabilisation of laser output parameters by monitoring the electrical laser parameters, e.g. voltage or current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/26Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being duration, interval, position, frequency, or sequence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06216Pulse modulation or generation

Definitions

  • the present disclosure relates to a light emitting drive device and a light emitting device. More specifically, the present invention relates to a light emitting drive device for driving a light emitting element and a light emitting device including the light emitting driving device.
  • a distance measuring device for measuring the distance to an object has been used in an imaging device such as an in-vehicle camera.
  • the distance is measured by irradiating the object with a laser beam, detecting the light reflected from the object, and measuring the time for the laser beam to reciprocate between the object and the object.
  • the device can be used.
  • the driving device of the light emitting element used in such a distance measuring device the fluctuation of the light emitting delay time of the light emitting element becomes a problem. This is because it causes an error in distance measurement.
  • a drive device for example, when setting a target current for obtaining a desired light emission intensity in distance measurement, the target current is set according to the background light when the light emitting element is non-light emitting and the characteristics of the light emitting element.
  • a drive device to perform the operation has been proposed (see, for example, Patent Document 1).
  • the bias current corresponding to the light emission threshold value of the light emitting element is further set.
  • the drive current of the light emitting element is controlled based on the set target current and vise current. Distance measurement errors due to errors such as target current are reduced.
  • the above-mentioned conventional technique has a problem that the distance measurement error cannot be reduced when the delay time of the drive signal of the light emitting element fluctuates.
  • a signal for controlling light emission is output from the processing device that executes the distance measurement to the driving device of the light emitting element. If the delay time between the output timing of this signal and the light emission timing of the light emitting element fluctuates, an error in distance measurement occurs.
  • the above-mentioned conventional technique has a problem that an error based on such a fluctuation in delay time cannot be reduced.
  • the present disclosure has been made in view of the above-mentioned problems, and an object of the present disclosure is to reduce an error due to a change in delay time when driving a light emitting element.
  • the present disclosure has been made to solve the above-mentioned problems, and the first aspect thereof is a light emitting current detecting unit that detects a light emitting current for causing a light emitting element supplied from a light emitting driving unit to emit light.
  • the phase difference detection unit that detects the phase difference between the detected emission current and the drive signal that controls the supply of the emission current in the emission drive unit, and the propagation of the drive signal according to the detected phase difference.
  • It is a light emitting drive device including a delay unit that adjusts a delay and supplies the adjusted drive signal as the drive signal to the light emission drive unit.
  • a simulated drive unit that is controlled by the adjusted drive signal and supplies a current substantially synchronized with the light emission current is further provided, and the light emission current detection unit is derived from the simulated drive unit.
  • the emission current may be detected by detecting the supplied current.
  • the light emitting drive unit may stop the supply of the light emitting current during the non-light emitting period, which is the period for stopping the light emitting of the light emitting element.
  • the delay portion may be configured by longitudinally connecting a plurality of delay circuits whose propagation delay time changes according to the phase difference.
  • a second light emitting drive unit which is connected in parallel to the light emitting drive unit and supplies a second light emitting current to the light emitting element may be further provided.
  • a second drive signal generation unit that generates a second drive signal that is a drive signal of the second light emission drive unit based on the adjusted drive signal is further provided. May be good.
  • the receiving unit that receives the driving signal transmitted by the signal line and outputs the received driving signal is further provided, and the phase difference detecting unit includes the detected light emitting current.
  • the difference between the driver and the drive signal output from the receiver may be detected, and the delay unit may adjust the delay of the drive signal output from the receiver.
  • the signal line transmits the drive signal converted into the differential signal
  • the receiving unit receives the drive signal converted into the transmitted differential signal. May be good.
  • the emission current detection unit may include a buffer circuit having a delay time substantially the same as the output delay time of the drive in the reception unit.
  • a second aspect of the present disclosure includes a light emitting element, a light emitting driving unit that supplies a light emitting current for causing the light emitting element to emit light, a light emitting current detecting unit that detects the supplied light emitting current, and the above detection.
  • the phase difference detection unit that detects the phase difference between the light emission current and the drive signal that controls the supply of the light emission current in the light emission drive unit, and the propagation delay of the drive signal are adjusted according to the detected phase difference.
  • the light emitting device includes a delay unit that supplies the adjusted drive signal as the drive signal to the light emission drive unit.
  • the delay time of the drive signal is adjusted according to the phase difference between the drive signal and the light emission current and supplied to the light emission drive unit. Adjustment of the phase difference between the drive signal and the emission current is assumed.
  • FIG. 1 is a diagram showing a configuration example of a light emitting device according to an embodiment of the present disclosure.
  • the figure is a diagram showing the outline of the light emitting device 1.
  • the light emitting device 1 in the figure is composed of a light emitting element 20, an emitting unit 40, a housing 30, a light emitting driving device 10, and a substrate 50.
  • the light emitting device 1 is, for example, a light emitting device used in a device that measures a distance to an object by a ToF (Time of Flight) method in a camera or the like.
  • ToF Time of Flight
  • the ToF method is a method of measuring a distance by irradiating an object with a laser beam and measuring the time for the laser beam to reciprocate with the object. It can also be used in a device that recognizes the three-dimensional shape of an object by the reflected laser light.
  • the light emitting element 20 is arranged in the housing 30 and emits laser light.
  • An exit portion 40 is arranged on the top plate of the housing 30.
  • the emitting unit 40 protects the light emitting element 20 and transmits laser light.
  • a diffusing plate is arranged in the emitting unit 40 to convert the laser light from the light emitting element 20 into diffused light.
  • the emitting unit 40 converts the laser beam of point (one-dimensional) emission into surface (two-dimensional) emission. By irradiating the object with this surface-emitting laser light, imaging the laser light reflected by the object, and acquiring the distance information for each pixel of the image sensor, it is possible to perform three-dimensional mapping of the object. ..
  • the white arrows in the figure represent the laser light emitted by the light emitting element 20, and the solid arrows represent the laser light converted into diffused light by the emitting unit 40.
  • the light emitting drive device 10 is an electronic circuit that drives the light emitting element 20.
  • the light emitting drive device 10 and the housing 30 are mounted on the substrate 50.
  • the figure shows an example of mounting with a solder ball.
  • a light emitting device 1 in order to improve the measurement accuracy of the distance, it is necessary to improve the timekeeping accuracy of the time from the irradiation of the laser light to the detection of the reflected light.
  • a timer or the like is used for this time measurement, and the time measurement is started based on the output of the drive signal that drives the light emitting element 20 to emit light.
  • FIG. 2 is a diagram showing a configuration example of a light emitting drive device according to the first embodiment of the present disclosure.
  • the figure is a diagram showing a configuration example of a light emitting device 1 and a light emitting driving device 10.
  • the light emitting device 1 in the figure includes a light emitting element 20, a power supply unit 21, and a light emitting driving device 10.
  • the light emitting element 20 is a light emitting element that emits laser light as described above. Light can be emitted by passing a specified light emitting current through the light emitting element 20.
  • a light emitting period the period during which the light emitting element 20 emits light
  • a non-light emitting period the period during which the light emitting element 20 is stopped from emitting light
  • a laser diode can be used for the light emitting element 20.
  • the light emitting current is a current equal to or higher than the light emitting threshold value of the light emitting element 20, and is a current for obtaining light emission of a desired luminous intensity.
  • the power supply unit 21 supplies a power source for passing a light emitting current through the light emitting element 20.
  • a constant voltage source can be applied to the power supply unit 21.
  • One end of the power supply unit 21 in the figure is grounded, and a positive power supply voltage is applied to the anode of the light emitting element 20.
  • the cathode of the light emitting element 20 is connected to the light emitting driving device 10 via the wiring 11.
  • the light emitting drive device 10 in the figure includes a drive unit 100, a delay unit 200, a phase difference detection unit 300, and an inverting buffer 401.
  • Signal lines 2 and 3 are connected to the light emitting drive device 10 in the figure.
  • the signal lines 2 and 3 are signal lines for transmitting a drive signal and a light emission signal, respectively.
  • the drive signal is a signal that controls the supply of the light emitting current to the light emitting element 20.
  • This drive signal can be composed of, for example, a continuous square wave.
  • the period when the voltage of the rectangular wave is high can correspond to the period when the light emitting current is applied to the light emitting element 20.
  • the light emitting current is a current for causing the light emitting element 20 to emit light.
  • the light emitting signal is a signal representing a light emitting period.
  • the emission signal can be composed of, for example, a square wave.
  • the period when the voltage of the square wave is high and the period when the voltage is low can be made to correspond to the light emitting period and the non-light emitting period, respectively.
  • These signals are supplied from a distance measuring device or the like that uses the light emitting device 1.
  • the delay unit 200 delays the input drive signal.
  • the delay unit 200 adjusts the delay time of the drive signal transmitted by the signal line 2, and outputs the drive signal with the adjusted delay time. This signal is output via the wiring 15.
  • the delay time is adjusted based on the signal output from the phase difference detection unit 300, which will be described later. The details of the configuration of the delay unit 200 will be described later.
  • the drive unit 100 drives the light emitting element 20.
  • the drive unit 100 drives the light emitting element 20 connected via the wiring 11 by supplying a light emitting current.
  • the supply of the light emitting current to the light emitting element 20 is controlled based on the drive signal output from the delay unit 200. Further, the drive unit 100 supplies a light emitting current based on the light emitting signal transmitted by the signal line 3. The details of the configuration of the drive unit 100 will be described later.
  • the inverting buffer 401 detects the light emission current when the drive unit 100 drives the light emitting element 20.
  • the inverting buffer 401 detects the light emission current via the wiring 12.
  • the logic of the detected emission current is inverted by the inverting buffer 401, and the detected luminescence current is output via the wiring 13.
  • the inverting buffer 401 and the wiring 12 are examples of the light emitting current detection unit described in the claims.
  • the phase difference detection unit 300 detects the phase difference between the drive signal and the emission current.
  • the phase difference detection unit 300 detects the phase difference between the drive signal transmitted by the signal line 2 and the light emission current detected by the inverting buffer 401, and outputs a signal corresponding to the detected phase difference. This signal is output via the wiring 14. Details of the configuration of the phase difference detection unit 300 will be described later.
  • the delay unit 200, the drive unit 100, the inverting buffer 401, and the phase difference detection unit 300 form a DLL (Delay Locked Loop).
  • DLL Delay Locked Loop
  • FIG. 3 is a diagram showing a configuration example of a drive unit according to the first embodiment of the present disclosure.
  • the figure is a circuit diagram showing a configuration example of the drive unit 100.
  • the drive unit 100 in the figure includes MOS transistors 111, 112, 121 and 122, a non-inverting buffer 101, a selection unit 103, a voltage source 102, and a resistor 123.
  • An n-channel MOS transistor can be used for the MOS transistors 111, 112, 121 and 122.
  • a power supply line Vdd is arranged in the drive unit 100. This power supply line Vdd is a wiring for supplying power to the drive unit 100.
  • the input of the non-inverting buffer 101 is connected to the wiring 15, and the output is connected to the gate of the MOS transistor 122 and the gate of the MOS transistor 112.
  • the source of the MOS transistor 112 is grounded and the drain is connected to the source of the MOS transistor 111.
  • the drain of the MOS transistor 111 is connected to the wiring 11, and the gate is connected to the output of the selection unit 103.
  • the control input of the selection unit 103 is connected to the signal line 3.
  • One input of the selection unit 103 is grounded, and the other input is connected to one end of the voltage source 102 and the gate of the MOS transistor 121. The other end of the voltage source 102 is grounded.
  • the source of the MOS transistor 121 is connected to the drain of the MOS transistor 122, and the drain is connected to one end of the wiring 12 and the resistor 123. The other end of the resistor 123 is connected to the power line Vdd. The source of the MOS transistor 122 is grounded.
  • the voltage source 102 is a power source that supplies a bias voltage to the gates of the MOS transistors 111 and 121.
  • the voltage source 102 supplies a positive bias voltage.
  • the selection unit 103 selects a signal input to one of the two input terminals and outputs the signal from the output terminal.
  • the selection unit 103 selects a signal based on the light emission signal connected to the control input. For example, the bias voltage of the voltage source 102 can be selected when the voltage of the emission signal is high, and the ground voltage can be selected when the voltage of the emission signal is low. In this way, the bias voltage is selected during the light emission period represented by the light emission signal and input to the gate of the MOS transistor 111.
  • the MOS transistors 111 and 112 form a light emitting drive unit 110 and supply a light emitting current to the light emitting element 20 connected to the wiring 11.
  • the light emitting drive unit 110 in the figure supplies a sink current as a light emitting current.
  • the gate of the MOS transistor 111 is connected to the voltage source 102 via the selection unit 103.
  • a bias voltage is supplied to the gate of the MOS transistor 111 during the light emission period. Therefore, a drain current corresponding to the supplied bias voltage flows through the MOS transistor 111. In this way, the MOS transistor 111 operates as a constant current circuit that supplies a constant drain current.
  • the light emitting current can be supplied by setting the bias voltage of the voltage source 102 so that the drain current of the MOS transistor 111 exceeds the light emitting threshold of the light emitting element 20.
  • the gate of the MOS transistor is grounded, and the MOS transistor 111 is in a non-conducting state. As a result, the supply of the light emitting current during the non-light emitting period is stopped.
  • the MOS transistor 112 is a MOS transistor that is connected in series with the MOS transistor 111 and controls the supply of light emission current.
  • the MOS transistor 112 is in a conductive state when the voltage of the drive signal applied to the gate is at a high level, and the light emitting current is supplied via the wiring 11.
  • the MOS transistor 112 is in a non-conducting state, and the supply of the light emitting current is stopped. In this way, the light emitting drive unit 110 supplies the light emitting current when the light emitting signal and the driving signal are at a high level.
  • the MOS transistors 121 and 122 form a simulated drive unit 120.
  • the simulated drive unit 120 supplies a current substantially synchronized with the light emission current supplied by the light emission drive unit 110.
  • the simulated drive unit 120 supplies a current flowing through the resistor 123.
  • a drive signal is applied to the gate of the MOS transistor 122, and the state transitions to a conductive state and a non-conducting state substantially at the same time as the MOS transistor 112.
  • the MOS transistor 121 constitutes a constant current circuit like the MOS transistor 111.
  • a bias voltage is always applied to the gate of the MOS transistor 121. By adjusting the channel width of the MOS transistor 121, the drain current of the MOS transistor 121 can be adjusted.
  • the drain current of the MOS transistor 121 can be set to 1 / N of the MOS transistor 111.
  • the simulated drive unit 120 can supply a current different from that of the light emitting drive unit 110. Power consumption can be reduced by making the current supplied by the simulated drive unit 120 lower than the light emission current. Further, since the bias voltage is always applied to the gate of the MOS transistor 121, a current can be supplied to the resistor 123 even during the non-emission period.
  • the emission current can be detected by detecting the voltage drop due to the resistor 123.
  • the drain and the resistor 123 of the MOS transistor 121 through which a current substantially synchronized with the light emitting current flows. Detects the voltage of the node that connects to. This makes it possible to detect the emission current that changes according to the drive signal and detect the phase of the emission current.
  • Wiring 12 is connected to the node connecting the drain of the MOS transistor 121 and the resistor 123, and the detected emission current is transmitted to the input of the inverting buffer 401 described with reference to FIG. Since the voltage of the node connecting the drain of the MOS transistor 121 and the resistor 123 is out of phase with the emission current, the logic is inverted by the inverting buffer 401.
  • a light emission signal can be supplied to the phase difference detection unit 300 even during the non-light emission period.
  • a closed loop can be maintained in the above-mentioned DLL, and a phase synchronization state (lock) can be maintained.
  • the detection of the light emitting signal is interrupted during the non-light emitting period. After that, when the light emission period shifts, the drive signal and the light emission signal are in an asynchronous state, and it takes time for the phases of both to be synchronized. Therefore, there is a delay in starting the distance measurement.
  • the configuration of the simulated drive unit 120 is not limited to this example.
  • a semiconductor element for example, a diode may be arranged instead of the resistor 123.
  • this diode it is preferable to arrange a diode having the same configuration as that of the light emitting element 20, for example, a diode having the same compound semiconductor. This is because a load having the same characteristics as the light emitting element 20 can be connected to the simulated drive unit 120, and the temperature characteristics and the like can be approximated to the light emitting element 20.
  • the resistor 123 can be supplied with the power supply of the power supply unit 21 described with reference to FIG. 1 instead of the power supply by the power supply line Vdd.
  • the channel width of the MOS transistor 121 can be made the same as that of the MOS transistor 111.
  • FIG. 4 is a diagram showing a configuration example of a delay portion according to the embodiment of the present disclosure.
  • the figure is a circuit diagram showing a configuration example of the delay unit 200.
  • the delay unit 200 in the figure includes a non-inverting buffer 201 and a plurality of inverter circuits (inverter circuits 210, 220, 240 and 250).
  • the non-inverting buffer 201 is a buffer that distributes the signal from the phase difference detection unit 300 to a plurality of inverter circuits.
  • the signal from the phase difference detection unit 300 is a signal having a voltage corresponding to the phase difference between the drive signal and the emission current, and the emission signal rises when the phase is delayed with respect to the drive signal, and the emission signal. Is a signal that advances with respect to the drive signal and decreases in phase. This signal is distributed as a power source for each inverter circuit by the non-inverting buffer 201.
  • the inverter circuit 210 is composed of MOS transistors 211 and 212.
  • MOS transistors 211 and 212 a p-channel MOS transistor and an n-channel MOS transistor can be used, respectively.
  • the gates of the MOS transistors 211 and 212 are commonly connected to form an input node.
  • the drains of the MOS transistors 211 and 212 are commonly connected to form an output node.
  • the input node of the inverter circuit 210 is connected to the signal line 2, and the output node of the inverter circuit 210 is connected to the input node of the inverter circuit 220 of the next stage.
  • the source of the MOS transistor 211 is connected to the output of the non-inverting buffer 201, and the source of the MOS transistor 212 is grounded.
  • the inverter circuit 210 or the like inverts the logic of the input drive signal and outputs it.
  • the output of this inverted drive signal is accompanied by a transmission delay.
  • This propagation delay can be changed by controlling the power supply voltage of the inverter circuit 210. This is because the transfer functions of the MOS transistors 211 and 212 change depending on the power supply voltage. The higher the power supply voltage, the higher the drive capability of the MOS transistor 211 and the like, and the shorter the propagation delay. By connecting a large number of such inverter circuits 210 in succession, a relatively large delay time can be obtained. Further, the delay time of the drive signal can be adjusted according to the output signal of the phase difference detection unit 300. The drive signal whose delay time has been adjusted is output to the drive unit 100 via the wiring 15.
  • the delay circuit of the delay unit 200 needs to be composed of an even number of inverter circuits 210 and the like. This is to make the polarities of the drive signal transmitted by the signal line 2 and the drive signal input to the gate of the MOS transistor 112 of the drive unit 100 uniform. Further, the non-inverting buffer 201 can amplify the signal from the phase difference detection unit 300 and distribute the amplified signal to each inverter circuit. As a result, the loop gain of the DLL can be improved.
  • FIG. 5 is a diagram showing an example of delay due to the delay portion according to the embodiment of the present disclosure.
  • the figure shows the relationship between the output signal of the phase difference detection unit 300 and the propagation delay of the delay unit 200.
  • the horizontal axis in the figure represents the voltage of the output signal of the phase difference detection unit 300.
  • the vertical axis of the figure represents the propagation delay time of the delay unit 200.
  • the graph 601 of the figure when the voltage of the output signal of the phase difference detection unit 300 rises, the propagation delay of the delay unit 200 is shortened.
  • FIG. 6 is a diagram showing a configuration example of the phase difference detection unit according to the embodiment of the present disclosure.
  • the figure is a circuit diagram showing a configuration example of the phase difference detection unit 300.
  • the phase difference detection unit 300 in the figure includes flip-flops 301 and 302, a NAND gate 303, an inverting buffer 304, a non-inverting buffer 305, MOS transistors 311 and 312, and constant current circuits 313 and 314. Further, the phase difference detection unit 300 in the figure further includes a capacitor 320.
  • D-type flip-flops can be used for the flip-flops 301 and 302.
  • the MOS transistors 311 and 312 a p-channel MOS transistor and an n-channel MOS transistor can be used, respectively.
  • the D inputs of the flip-flops 301 and 302 are connected to the power line Vdd.
  • the reset (R) inputs of the flip-flops 301 and 302 are commonly connected to the output of the NAND gate 303.
  • the clock input of the flip-flop 301 is connected to the signal line 2, and the Q output is connected to one of the input of the inverting buffer 304 and the NAND gate 303.
  • the other input of the NAND gate 303 is connected to the Q output of the flip-flop 302 and the input of the non-inverting buffer 305.
  • the clock input of the flip-flop 302 is connected to the wiring 13.
  • the gate of the MOS transistor 311 is connected to the output of the inverting buffer 304 and the source is connected to one end of the constant current circuit 313.
  • the other end of the constant current circuit 313 is connected to the power line Vdd.
  • the drain of the MOS transistor 311 is connected to the drain of the MOS transistor 312, one end of the capacitor 320, and the wiring 14. The other end of the capacitor 320 is grounded.
  • the gate of the MOS transistor 312 is connected to the output of the non-inverting buffer 305 and the source is connected to one end of the constant current circuit 314. The other end of the constant current circuit 314 is grounded.
  • the flip-flops 301 and 302 and the NAND gate 303 form a phase comparison circuit.
  • the Q output of the flip-flop on the side where the signal to be the lead phase is input is inverted first, and the value "1" is set in either the inversion buffer 304 or the non-inverting buffer 305.
  • Signal is output.
  • the flip-flops 301 and 302 are reset at the same time.
  • a signal having a value of "1" is output to the inversion buffer 304 or the like connected to the flip-flops 301 and 302 on the side where the signal to be the lead phase is input.
  • the inverting buffer 304 is a buffer that transmits the output of the flip-flop 301 to the gate of the MOS transistor 311 to drive the MOS transistor 311.
  • the non-inverting buffer 305 is a buffer that transmits the output of the flip-flop 302 to the gate of the MOS transistor 312 to drive the MOS transistor 312.
  • the MOS transistors 311 and 312 and the constant current circuits 313 and 314 constitute a charge pump circuit.
  • the MOS transistor 311 becomes conductive, the source current from the constant current circuit 313 connected to the source is output to the wiring 14.
  • the MOS transistor 312 becomes conductive, the sink current by the constant current circuit 314 connected to the source is output to the wiring 14. With this charge pump circuit, either the source current or the sink current is output according to the output of the phase comparison circuit.
  • the capacitor 320 is a capacitor that converts a change in the current output from the charge pump circuit into a change in the voltage.
  • the capacitor 320 outputs a signal having a voltage corresponding to the phase difference between the drive signal transmitted by the signal line 2 and the light emission signal transmitted by the wiring 13.
  • the capacitor 320 constitutes a low-pass filter.
  • FIG. 7 is a diagram showing an example of detection of a phase difference according to an embodiment of the present disclosure.
  • the figure is a diagram showing an example of detection of a phase difference in the phase difference detection unit 300, and is a diagram showing a state of detection of the phase difference.
  • the “drive signal” in the figure represents the waveform of the drive signal transmitted by the signal line 2.
  • the “detected light emission current” in the figure represents the waveform of the output voltage of the inverting buffer 401 transmitted by the wiring 13, and represents the waveform of the signal corresponding to the light emission current.
  • “Flip-flop 301 output voltage” and “flip-flop 302 output voltage” in the figure represent waveforms of the Q output voltage of the flip-flops 301 and 302, respectively.
  • the “charge pump circuit output current” represents the waveform of the current output from the charge pump circuit described with reference to FIG. 6 to the wiring 14.
  • the “phase difference detector output voltage” in the figure represents the voltage waveform of the wiring 14.
  • the dotted line in the figure represents the level at which the voltage or current has a value of "0".
  • the "drive signal”, "detected light emission current”, “flip-flop 301 output voltage” and “flip-flop 302 output voltage” represent a binarized voltage waveform.
  • the "drive signal” has a value of "1”
  • the light emission current is supplied by the light emission drive unit 110 of the drive unit 100.
  • the simulated drive unit 120 of the drive unit 100 supplies a current synchronized with the light emission current
  • the "detected light emission current” becomes a value "1”.
  • the positive electrode property and the negative electrode property of the "charge pump circuit output current” represent the supply of the source current and the sink current, respectively.
  • the left half of the waveform in the figure shows an example when the emission current detected with respect to the drive signal is in a delayed phase.
  • the Q output becomes a value "1" in synchronization with the rising edge of the drive signal
  • the Q output becomes a value "0” in synchronization with the rising edge of the detected emission current.
  • the source current is supplied from the charge pump circuit to charge the capacitor 320, and the output voltage of the phase difference detection unit 300 rises.
  • the right half of the waveform in the figure shows an example in the case where the emission current detected with respect to the drive signal is in the advanced phase.
  • the Q output becomes a value “1” in synchronization with the rising edge of the detected light emission signal
  • the Q output becomes a value “0” in synchronization with the rising edge of the drive signal.
  • the sink current is supplied from the charge pump circuit to discharge the capacitor 320, and the output voltage of the phase difference detection unit 300 decreases. In this way, the phase difference detection unit 300 detects the phase difference.
  • FIG. 8 is a diagram showing an example of the operation of the light emitting drive device according to the embodiment of the present disclosure.
  • the figure is a diagram showing an example of the operation of the light emitting driving device 10.
  • the “light emitting signal” in the figure represents the waveform of the light emitting signal transmitted by the signal line 3.
  • the period in which the "light emission signal” has a value of "1" and the period in which the value is "0" correspond to a light emission period (solid arrow) and a non-light emission period (dotted arrow), respectively.
  • the “light emitting drive unit gate voltage” in the figure represents the waveform of the gate voltage of the MOS transistor 112 of the light emitting drive unit 110 described with reference to FIG.
  • the “light emitting current” in the figure represents the waveform of the current supplied to the light emitting element 20. The same description was used for the parts common to FIG. 7.
  • the output voltage of the phase difference detection unit 300 rises and falls when the light emission signal detected with respect to the drive signal has a delayed phase and a leading phase.
  • the delay time of the delay unit 200 is adjusted, and the phase of the drive waveform of the gate of the MOS transistor 112 of the light emitting drive unit 110 is adjusted.
  • the drive signal and the light emitting current of the light emitting element 20 can be synchronized. Even when the delay time of the drive signal fluctuates due to a change in the power supply voltage or temperature of the light emitting drive device 10, the light emission current of the light emitting element 20 can be synchronized with the drive signal.
  • the MOS transistor 111 of the light emitting driving unit 110 becomes non-conducting. Therefore, the light emitting current is not supplied to the light emitting element 20, and the light emitting is stopped.
  • the inverting buffer 401 detects the emission current from the simulated drive unit 120, the DLL can be kept in the locked state.
  • a gate drive signal synchronized with the drive signal is supplied to the gate of the MOS transistor 112 of the light emission drive unit 110. Therefore, the synchronized state of the drive signal and the light emitting current of the light emitting element 20 can be maintained even immediately after the transition from the non-light emitting period to the light emitting period.
  • the configuration of the light emitting drive device 10 is not limited to this example.
  • the drive signal transmitted by the signal line 2 has negative logic, the logic of the light emission signal detected from the simulated drive unit 120 and the drive signal are equal, so that the inverting buffer 401 can be omitted.
  • the delay unit 200 needs to arrange an odd number of inverter circuits.
  • the wiring 12 constitutes the light emitting current detection unit.
  • the phase difference detection unit 300 detects the phase difference between the drive signal and the light emission signal, and the delay unit 200 corresponds to the detected phase difference. Adjust the delay time of the drive signal by. Thereby, the light emission of the light emitting element 20 can be synchronized with the drive signal. The delay in light emission of the light emitting element 20 can be compensated, and the error in distance measurement can be reduced.
  • the light emitting drive device 10 of the first embodiment described above supplies a light emitting current by a light emitting drive unit 110.
  • the light emitting drive device 10 of the second embodiment of the present disclosure is different from the above-described first embodiment in that a light emitting current is supplied by a plurality of light emitting driving units.
  • FIG. 9 is a diagram showing a configuration example of a light emitting drive device according to a second embodiment of the present disclosure.
  • FIG. 2 is a diagram showing a configuration example of the light emitting device 1 and the light emitting driving device 10 as in FIG. It differs from the light emitting drive device 10 described with reference to FIG. 2 in that it includes a drive unit 150 instead of the drive unit 100 and further includes a second drive signal generation unit 500.
  • the second drive signal generation unit 500 generates a second drive signal, which is a drive signal of the second light emitting drive unit 130 arranged in the drive unit 150.
  • the drive signal from the delay unit 200 is input to the second drive signal generation unit 500 via the wiring 15. Further, the second drive signal generated by the second drive signal generation unit 500 is supplied to the drive unit 150 via the wiring 16.
  • FIG. 10 is a diagram showing a configuration example of a drive unit according to a second embodiment of the present disclosure.
  • the figure is a circuit diagram showing a configuration example of the drive unit 150. It differs from the drive unit 100 described with reference to FIG. 3 in that it further includes MOS transistors 131 and 132, a non-inverting buffer 104, and a selection unit 105.
  • An n-channel MOS transistor can be used for the MOS transistors 131 and 132.
  • the input of the non-inverting buffer 104 is connected to the wiring 16, and the output is connected to the gate of the MOS transistor 132.
  • the source of the MOS transistor 132 is grounded and the drain is connected to the source of the MOS transistor 131.
  • the drain of the MOS transistor 131 is connected to the wiring 11, and the gate is connected to the output of the selection unit 105.
  • the control input of the selection unit 105 is connected to the signal line 3.
  • One input of the selection 105 is grounded and the other input is connected to one end of the voltage source 102. Since the wiring other than this is the same as that of the drive unit 100 described with reference to FIG. 3, the description thereof will be omitted.
  • the MOS transistors 131 and 132 form a second light emitting drive unit 130.
  • the MOS transistor 131 operates as a constant current circuit like the MOS transistor 111, and supplies a light emitting current together with the MOS transistor 111.
  • the MOS transistor 132 controls the supply of light emitting current.
  • the second light emitting drive unit 130 superimposes and supplies the light emitting current in a relatively short period of time when the light emitting current driving unit 110 starts supplying the light emitting current. As a result, the laser beam emitted from the light emitting element 20 can be made to rise sharply.
  • a MOS transistor having the same channel width as the MOS transistor 111 can be used.
  • the second light emitting drive unit 130 supplies a light emitting current having the same value as the light emitting drive unit 110.
  • the drain current of the MOS transistor 131 can be set to a value different from the drain current of the MOS transistor 111.
  • the light emitting current of the second light emitting driving unit 130 can be changed, and the rise of the laser light of the light emitting element 20 can be adjusted.
  • FIG. 11 is a diagram showing a configuration example of a second drive signal generation unit according to the second embodiment of the present disclosure.
  • the figure is a circuit diagram showing a configuration example of the second drive signal generation unit 500.
  • the second drive signal generation unit 500 includes inversion gates 502 to 504 and an AND gate 501.
  • One input of the AND gate 501 is connected to the wire 15, and the other input is connected to the output of the inverting gate 504.
  • the output of the AND gate 501 is connected to the wiring 16.
  • the input of the inverting gate 502 is connected to the wiring 15, and the output is connected to the input of the inverting gate 503.
  • the output of the reversing gate 503 is connected to the input of the reversing gate 504.
  • the inverting gates 502 to 504 are longitudinally connected to delay the signal transmitted by the wiring 15 and invert the logic. By performing the logical product calculation of the delayed signal and the signal before the delay, it is possible to generate a pulse voltage synchronized with the rising edge of the drive signal transmitted by the wiring 15. This pulse voltage is supplied to the second light emitting drive unit 130 as a second drive signal.
  • FIG. 12 is a diagram showing an example of driving a light emitting element according to the second embodiment of the present disclosure.
  • FIG. 6 is a diagram showing an example of driving the light emitting element 20 in the light emitting driving device 10 according to the second embodiment of the present disclosure.
  • the “delay unit output voltage” represents a drive signal output from the delay unit 200.
  • the “second drive signal” represents a second drive signal generated by the second drive signal generation unit 500.
  • the "light emitting drive unit 110 supply current” and the “light emitting drive unit 130 supply current” represent the currents supplied to the light emitting element 20 by the light emitting drive unit 110 and the light emitting drive unit 130, respectively.
  • the “light emitting current” represents the current of the light emitting element 20.
  • the second drive signal generated by the second drive signal generation unit 500 is a pulsed drive signal synchronized with the rise of the drive signal whose delay time is adjusted by the delay unit 200.
  • the light emission current by the second light emission drive unit 130 is supplied.
  • the light emission current of the second light emission drive unit 130 is superimposed on the light emission current of the light emission drive unit 110, and substantially twice the light emission current flows at the initial stage when the light emission element 20 starts light emission. With this double emission current, the rise of laser light irradiation in the light emitting element 20 can be accelerated.
  • the light emitting drive device 10 of the second embodiment of the present disclosure includes the second light emitting driving unit 130 and increases the light emitting current at the start of light emission of the light emitting element 20. As a result, the rise of the laser beam irradiation of the light emitting element 20 can be accelerated, and the waveform of the laser beam can be improved to a rectangular shape.
  • the drive signal was transmitted by the signal line 2.
  • the light emitting drive device 10 of the third embodiment of the present disclosure is different from the above-described first embodiment in that a drive signal converted into a differential signal is transmitted.
  • FIG. 13 is a diagram showing a configuration example of a light emitting drive device according to a third embodiment of the present disclosure.
  • the figure is a diagram showing a configuration example of the light emitting device 1 and the light emitting driving device 10 as in FIG. It differs from the light emitting drive device 10 described with reference to FIG. 2 in that it further includes receiving units 402 and 403 and includes a buffer 410 instead of the inverting buffer 401.
  • the signal line 2 is composed of a differential transmission line composed of two signal lines. Drive signals of opposite phases are transmitted by these two signal lines.
  • LVDS Low Voltage Differential Signaling
  • a differential signal having an amplitude of 0.35 V is transmitted. 0V corresponds to low level logic and 0.35V corresponds to high level logic.
  • the receiving units 402 and 403 receive the drive signal that has been converted into a differential signal and transmitted.
  • the receiving units 402 and 403 convert the received drive signal into a single-ended drive signal having a signal level that can be input to the phase difference detection unit 300 or the like.
  • the receiving unit 402 transmits the converted drive signal to the phase difference detecting unit 300 by the wiring 17, and the receiving unit 403 transmits the converted drive signal to the delay unit 200 by the wiring 18.
  • LVDS receivers can be used for the receiving units 402 and 403.
  • the buffer 410 is a buffer that inverts and outputs the logic of the light emission signal transmitted by the wiring 12.
  • the above-mentioned receiving unit 402 and the like can be used for the buffer 410. That is, it can be used as a buffer for converting the logic of the light emission signal by the function of converting the differential signal of the receiving unit 402 into a single-ended signal.
  • the buffer 410 and the wiring 12 are examples of the light emitting current detection unit according to the claims.
  • FIG. 14 is a circuit diagram showing a configuration example of a light emitting drive device according to a third embodiment of the present disclosure.
  • the figure is a circuit diagram showing an arrangement example of the receiving units 402 and 403 and the buffer 410 in the light emitting drive device 10.
  • the signal line 2 in the figure is composed of a DATA signal line and an XDATA signal line.
  • the DATA signal line transmits a signal having the same polarity as the drive signal
  • the XDATA signal line transmits a signal in which the logic of the drive signal is inverted.
  • the non-inverting input of the receiving unit 402 is connected to the DATA signal line, and the inverting input is connected to the XDATA signal line.
  • the output of the receiving unit 402 is connected to the wiring 17.
  • the non-inverting input of the receiving unit 403 is connected to the DATA signal line, and the inverting input is connected to the XDATA signal line.
  • the output of the receiving unit 403 is connected to the wiring 18.
  • the buffer 410 in the figure includes a receiving unit 404 and a voltage source 405.
  • the inverting input of the receiving unit 404 is connected to the wiring 12, and the output is connected to the wiring 13.
  • One end of the voltage source 405 is connected to the non-inverting input of the receiver 404, and the other end is grounded.
  • the receiving unit 404 receives the differential signal in the same manner as the receiving units 402 and 403 described above, converts it into a single-ended signal, and outputs the signal. Further, the voltage source 405 supplies the bias voltage to the non-inverting input of the receiving unit 404.
  • This bias voltage can be an intermediate voltage of the amplitude of the emission current input to the inverting input of the receiver 404.
  • the receiving unit 404 can be used as a buffer for inverting the logic of the signal (detected emission current) input to the inverting input. Further, by arranging the receiving unit 404 in the loop of the DLL, the delay time due to the receiving units 402 and 403 described above can be compensated. Even when the drive signal is transmitted through the differential transmission line, the light emission of the light emitting element 20 can be synchronized with the drive signal.
  • the configuration of the light emitting device 1 is not limited to this example.
  • a signal line for transmitting a single-ended signal can be applied to the signal line 2.
  • the light emitting drive device 10 of the third embodiment of the present disclosure can compensate for the delay in light emission of the light emitting element 20 even when the drive signal is transmitted by the differential transmission line.
  • the light emitting drive device 10 of the first embodiment described above detects the light emitting current from the simulated drive unit 120 arranged in the drive unit 100.
  • the light emitting drive device 10 of the fourth embodiment of the present disclosure is different from the above-described first embodiment in that the simulated drive unit 120 is omitted.
  • FIG. 15 is a diagram showing a configuration example of the drive unit 100 according to the fourth embodiment of the present disclosure.
  • FIG. 3 is a circuit diagram showing a configuration example of the drive unit 100 as in FIG. It differs from the drive unit 100 described with reference to FIG. 3 in that the simulated drive unit 120 and the resistor 123 are omitted.
  • the wiring 12 is connected to the drain of the MOS transistor 111. Since the wiring other than this is the same as that of the drive unit 100 of FIG. 3, the description thereof will be omitted.
  • the wiring 12 is connected to the wiring 11 which is a node connecting the drain of the MOS transistor 111 and the light emitting element 20.
  • the light emission current is detected from the light emission drive device 10. Therefore, the emission current cannot be detected during the non-emission period.
  • the phase difference between the drive signal and the light emission current becomes large. It is necessary to delay the measurement of the distance until the drive signal and the light emission signal are in the synchronized state.
  • the light emitting drive device 10 of the fourth embodiment of the present disclosure detects the light emitting current from the wiring 11 between the light emitting element 20 and the light emitting drive unit 110.
  • the simulated drive unit 120 can be omitted, and the configuration of the light emitting drive device 10 can be simplified.
  • the technology according to the present disclosure can be applied to various products.
  • the present technology may be realized as an image pickup device mounted on an image pickup device such as a camera.
  • FIG. 16 is a block diagram showing a schematic configuration example of a camera which is an example of an imaging device to which the present technology can be applied.
  • the camera 1000 in the figure includes a lens 1001, an image pickup element 1002, an image pickup control unit 1003, a lens drive unit 1004, an image processing unit 1005, an operation input unit 1006, a frame memory 1007, a display unit 1008, and the like. It includes a recording unit 1009 and a light emitting device 1010.
  • the lens 1001 is a photographing lens of the camera 1000.
  • the lens 1001 collects light from the subject and causes the light to be incident on the image sensor 1002 described later to form an image of the subject.
  • the image sensor 1002 is a semiconductor element that captures the light from the subject focused by the lens 1001.
  • the image sensor 1002 generates an analog image signal corresponding to the irradiated light, converts it into a digital image signal, and outputs the signal.
  • the image pickup control unit 1003 controls the image pickup in the image pickup device 1002.
  • the image pickup control unit 1003 controls the image pickup device 1002 by generating a control signal and outputting the control signal to the image pickup device 1002. Further, the image pickup control unit 1003 can perform autofocus on the camera 1000 based on the image signal output from the image pickup device 1002.
  • the autofocus is a system that detects the focal position of the lens 1001 and automatically adjusts it.
  • a method (image plane phase difference autofocus) in which the image plane phase difference is detected by the phase difference pixels arranged in the image sensor 1002 to detect the focal position can be used. It is also possible to apply a method (contrast autofocus) of detecting the position where the contrast of the image is highest as the focal position.
  • the image pickup control unit 1003 adjusts the position of the lens 1001 via the lens drive unit 1004 based on the detected focal position, and performs autofocus.
  • the image pickup control unit 1003 can be configured by, for example, a DSP (Digital Signal Processor) equipped with firmware.
  • DSP Digital Signal Processor
  • the lens driving unit 1004 drives the lens 1001 based on the control of the imaging control unit 1003.
  • the lens driving unit 1004 can drive the lens 1001 by changing the position of the lens 1001 using a built-in motor.
  • the image processing unit 1005 processes the image signal generated by the image sensor 1002. This processing includes, for example, demosaic to generate an image signal of a color that is insufficient among the image signals corresponding to red, green, and blue for each pixel, noise reduction to remove noise of the image signal, and coding of the image signal. Applicable.
  • the image processing unit 1005 can be configured by, for example, a microcomputer equipped with firmware.
  • the operation input unit 1006 receives the operation input from the user of the camera 1000.
  • a push button or a touch panel can be used for the operation input unit 1006.
  • the operation input received by the operation input unit 1006 is transmitted to the image pickup control unit 1003 and the image processing unit 1005. After that, processing according to the operation input, for example, processing such as imaging of the subject is activated.
  • the frame memory 1007 is a memory that stores a frame that is an image signal for one screen.
  • the frame memory 1007 is controlled by the image processing unit 1005 and holds the frame in the process of image processing.
  • the display unit 1008 displays the image processed by the image processing unit 1005.
  • a liquid crystal panel can be used for the display unit 1008, for example.
  • the recording unit 1009 records the image processed by the image processing unit 1005.
  • a memory card or a hard disk can be used for the recording unit 1009.
  • the light emitting device 1010 irradiates a laser beam for measuring the distance to the subject.
  • the image pickup control unit 1003 described above further controls the light emitting device 1010 and measures the distance to the subject.
  • the distance to the subject with the camera 1000 can be measured as follows. First, the image pickup control unit 1003 controls the light emitting device 1010 to emit laser light. Next, the laser beam reflected by the subject is detected by the image sensor 1002. Next, the image pickup control unit 1003 measures the time from the emission of the laser beam in the light emitting device 1010 to the detection of the laser beam in the image pickup device 1002, and calculates the distance to the subject.
  • the camera to which the present invention can be applied has been described above.
  • the present technology can be applied to the light emitting device 1010 among the configurations described above.
  • the light emitting device 1 described with reference to FIG. 1 can be applied to the light emitting device 1010.
  • By applying the light emitting device 1 to the light emitting device 1010 it is possible to reduce an error in distance measurement.
  • the technique according to the present invention may be applied to other devices such as a mobile terminal and an automatic guided vehicle.
  • drawings in the above-described embodiment are schematic, and the ratio of the dimensions of each part does not always match the actual one.
  • the drawings include parts having different dimensional relationships and ratios from each other.
  • the present technology can have the following configurations.
  • a light emitting current detection unit that detects a light emitting current for causing the light emitting element supplied from the light emitting drive unit to emit light
  • a phase difference detection unit that detects the phase difference between the detected light emission current and the drive signal that controls the supply of the light emission current in the light emission drive unit.
  • a light emitting drive device including a delay unit that adjusts the propagation delay of the drive signal according to the detected phase difference and supplies the adjusted drive signal as the drive signal to the light emission drive unit.
  • the light-emitting drive device (1), wherein the light-emitting current detection unit detects the light-emitting current by detecting a current supplied from the simulated drive unit.
  • the light emitting driving device (2), wherein the light emitting driving unit stops the supply of the light emitting current during a non-light emitting period, which is a period for stopping the light emitting of the light emitting element.
  • the delay unit is configured by longitudinally connecting a plurality of delay circuits whose propagation delay time changes according to the phase difference. ..
  • the light emitting drive device adjusts the delay of the drive signal output from the reception unit.
  • the signal line transmits the drive signal converted into a differential signal, and the signal line transmits the drive signal.
  • the light emitting drive device (7) above, wherein the receiving unit receives a drive signal converted into the transmitted differential signal.
  • the light emitting current detection unit includes a buffer circuit having a delay time substantially the same as the output delay time of the drive in the receiving unit.
  • Light emitting element and A light emitting drive unit that supplies a light emitting current for causing the light emitting element to emit light
  • the emission current detection unit that detects the supplied emission current
  • a phase difference detection unit that detects the phase difference between the detected light emission current and the drive signal that controls the supply of the light emission current in the light emission drive unit.
  • a light emitting device including a delay unit that adjusts the propagation delay of the drive signal according to the detected phase difference and supplies the adjusted drive signal as the drive signal to the light emission drive unit.
  • Light emitting device 2 3 Signal line 10 Light emitting drive device 11-18 Wiring 20 Light emitting element 100, 150 Drive unit 110 Light emitting drive unit 120 Simulated drive unit 130 Second light emitting drive unit 200 Delay part 210, 220, 240, 250 Inverter Circuit 300 Phase difference detector 401 Inverter buffer 402 to 404 Receiver 410 Buffer 500 Second drive signal generator 1000 Camera 1003 Imaging control unit 1010 Light emitting device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Nonlinear Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

本発明は、発光素子の駆動の際の遅延時間の変化に基づく誤差を軽減することを目的としている。 本発明の発光駆動装置(10)は、発光電流検出部(401)(12)、位相差検出部(300)および遅延部(200)を具備する。発光電流検出部(401)(12)は、発光駆動部(110)から供給される発光素子(20)を発光させるための発光電流を検出する。位相差検出部(300)は、検出された発光電流と発光駆動部(110)における発光電流の供給を制御する駆動信号との位相差を検出する。遅延部(200)は、検出された位相差に応じて駆動信号の伝播遅延を調整して当該調整された駆動信号を駆動信号として発光駆動部(110)に供給する。 本発明は、例えば、カメラの発光装置に適用できる。

Description

発光駆動装置および発光装置
 本開示は、発光駆動装置および発光装置に関する。詳しくは、発光素子を駆動する発光駆動装置および当該発光駆動装置を備える発光装置に関する。
 従来、車載カメラ等の撮像装置において、対象物までの距離を計測する測距装置が使用されている。この測距装置には、例えば、対象物にレーザ光を照射して対象物から反射された光を検出し、レーザ光が対象物との間を往復する時間を測定することにより距離を計測する装置を使用することができる。このような測距装置に使用される発光素子の駆動装置においては、発光素子の発光遅延時間の変動が問題となる。距離測定の誤差の原因となるためである。
 このような駆動装置として、例えば、距離測定における所望の発光強度を得るためのターゲット電流を設定する際、発光素子が非発光の時の背景光や発光素子の特性に応じてターゲット電流の設定を行う駆動装置が提案されている(例えば、特許文献1参照。)。この従来技術においては、ターゲット電流の他に発光素子の発光閾値に対応するバイアス電流の設定をさらに行う。これら設定されたターゲット電流およびバイス電流に基づいて発光素子の駆動電流が制御される。ターゲット電流等の誤差による距離測定の誤差が軽減される。
特開2019-041201号公報
 上述の従来技術では、発光素子の駆動信号の遅延時間が変動した場合の距離計測誤差を軽減できないという問題がある。距離計測の際、距離計測を実行する処理装置から発光素子の駆動装置に対して発光を制御する信号が出力される。この信号の出力のタイミングと発光素子の発光のタイミングとの遅延時間が変動すると、距離計測の誤差が発生する。上述の従来技術では、このような遅延時間の変動に基づく誤差を軽減することができないという問題がある。
 本開示は、上述した問題点に鑑みてなされたものであり、発光素子の駆動の際の遅延時間の変化に基づく誤差を軽減することを目的としている。
 本開示は、上述の問題点を解消するためになされたものであり、その第1の態様は、発光駆動部から供給される発光素子を発光させるための発光電流を検出する発光電流検出部と、上記検出された発光電流と上記発光駆動部における上記発光電流の供給を制御する駆動信号との位相差を検出する位相差検出部と、上記検出された位相差に応じて上記駆動信号の伝播遅延を調整して当該調整された駆動信号を上記駆動信号として上記発光駆動部に供給する遅延部とを具備する発光駆動装置である。
 また、この第1の態様において、上記調整された駆動信号により制御されて上記発光電流と略同期した電流を供給する模擬駆動部をさらに具備し、上記発光電流検出部は、上記模擬駆動部から供給される電流を検出することにより上記発光電流を検出してもよい。 
 また、この第1の態様において、上記発光駆動部は、上記発光素子の発光を停止させる期間である非発光期間に上記発光電流の供給を停止してもよい。
 また、この第1の態様において、上記遅延部は、上記位相差に応じて上記伝播遅延時間が変化する複数の遅延回路が縦続接続されて構成されてもよい。
 また、この第1の態様において、上記発光駆動部に並列に接続されて上記発光素子に第2の発光電流を供給する第2の発光駆動部をさらに具備してもよい。
 また、この第1の態様において、上記調整された駆動信号に基づいて上記第2の発光駆動部の駆動信号である第2の駆動信号を生成する第2の駆動信号生成部をさらに具備してもよい。
 また、この第1の態様において、信号線路により伝達される上記駆動信号を受信して当該受信した駆動信号を出力する受信部をさらに具備し、上記位相差検出部は、上記検出された発光電流と上記受信部から出力された駆動信号との差分を検出し、上記遅延部は上記受信部から出力された駆動信号の遅延を調整してもよい。
 また、この第1の態様において、上記信号線路は、差動信号に変換された上記駆動信号を伝達し、上記受信部は、上記伝達された差動信号に変換された駆動信号を受信してもよい。
 また、この第1の態様において、上記発光電流検出部は、上記受信部における上記駆動の出力遅延時間と略同じ遅延時間のバッファ回路を備えてもよい。
 また、本開示の第2の態様は、発光素子と、上記発光素子を発光させるための発光電流を供給する発光駆動部と、上記供給された発光電流を検出する発光電流検出部と、上記検出された発光電流と上記発光駆動部における上記発光電流の供給を制御する駆動信号との位相差を検出する位相差検出部と、上記検出された位相差に応じて上記駆動信号の伝播遅延を調整して当該調整された駆動信号を上記駆動信号として上記発光駆動部に供給する遅延部とを具備する発光装置である。
 以上のような態様を採ることにより、駆動信号および発光電流の位相差に応じて駆動信号の遅延時間が調整されて発光駆動部に供給されるという作用をもたらす。駆動信号および発光電流の位相差の調整が想定される。
本開示の実施の形態に係る発光装置の構成例を示す図である。 本開示の第1の実施の形態に係る発光駆動装置の構成例を示す図である。 本開示の第1の実施の形態に係る駆動部の構成例を示す図である。 本開示の実施の形態に係る遅延部の構成例を示す図である。 本開示の実施の形態に係る遅延部による遅延の一例を示す図である。 本開示の実施の形態に係る位相差検出部の構成例を示す図である。 本開示の実施の形態に係る位相差の検出の一例を示す図である。 本開示の実施の形態に係る発光駆動装置の動作の一例を示す図である。 本開示の第2の実施の形態に係る発光駆動装置の構成例を示す図である。 本開示の第2の実施の形態に係る駆動部の構成例を示す図である。 本開示の第2の実施の形態に係る第2の駆動信号生成部の構成例を示す図である。 本開示の第2の実施の形態に係る発光素子の駆動の一例を示す図である。 本開示の第3の実施の形態に係る発光駆動装置の構成例を示す図である。 本開示の第3の実施の形態に係る発光駆動装置の構成例を示す回路図である。 本開示の第4の実施の形態に係る駆動部の構成例を示す図である。 本技術が適用され得る撮像装置の一例であるカメラの概略的な構成例を示すブロック図である。
 次に、図面を参照して、本開示を実施するための形態(以下、実施の形態と称する)を説明する。以下の図面において、同一または類似の部分には同一または類似の符号を付している。また、以下の順序で実施の形態の説明を行う。
 1.第1の実施の形態
 2.第2の実施の形態
 3.第3の実施の形態
 4.第4の実施の形態
 5.カメラへの応用例
 <1.第1の実施の形態>
 [発光装置]
 図1は、本開示の実施の形態に係る発光装置の構成例を示す図である。同図は、発光装置1の概略を表す図である。同図の発光装置1は、発光素子20、出射部40、筐体30、発光駆動装置10および基板50により構成される。発光装置1は、例えば、カメラ等において対象物との距離をToF(Time of Flight)方式により測定する装置に使用される発光装置である。ここでToF方式とは、対象物にレーザ光を照射し、レーザ光が対象物との間を往復する時間を計測することにより距離を測定する方式である。また、反射されたレーザ光により対象物の3次元形状を認識する装置に使用することもできる。
 発光素子20は、筐体30内に配置され、レーザ光を放射する。筐体30の天板には、出射部40が配置される。この出射部40は、発光素子20を保護するとともにレーザ光を透過するものである。また、この出射部40には拡散板が配置され、発光素子20からのレーザ光を拡散光に変換する。この出射部40により、点(1次元)発光のレーザ光が面(2次元)発光に変換される。この面発光のレーザ光を対象物に照射し、対象物により反射されたレーザ光を撮像するとともに撮像素子の画素毎の距離情報を取得することにより、対象物の3次元マッピングを行うことができる。同図の白抜きの矢印は、発光素子20により放射されるレーザ光を表し、実線の矢印は出射部40により拡散光に変換されたレーザ光を表す。
 発光駆動装置10は、発光素子20を駆動する電子回路である。発光駆動装置10および筐体30は、基板50に実装される。同図は、半田ボールにより実装される例を表したものである。
 このような発光装置1において、距離の計測精度を向上させるためには、レーザ光の照射から反射光の検出までの時間の計時精度を向上させる必要がある。この計時にはタイマ等が使用され、発光素子20に対して発光駆動する駆動信号の出力を基準に計時が開始される。駆動信号の出力から発光素子20によるレーザ光の照射の開始には遅延時間が存在する。この遅延時間が変動すると計時の精度が低下し、距離測定の精度も低下する。そこで、同図の発光装置1においては、発光素子20によるレーザ光の照射開始までの遅延時間を安定化する。
[発光駆動装置]
 図2は、本開示の第1の実施の形態に係る発光駆動装置の構成例を示す図である。同図は、発光装置1および発光駆動装置10の構成例を表す図である。同図の発光装置1は、発光素子20、電源部21および発光駆動装置10を備える。
 発光素子20は、前述のようにレーザ光を放射する発光素子である。この発光素子20に規定の発光電流を流すことにより発光させることができる。以下、発光素子20を発光させる期間を発光期間と称し、発光素子20の発光を停止させる期間を非発光期間と称する。この発光素子20には、例えば、レーザダイオードを使用することができる。発光電流は、発光素子20の発光閾値以上の電流であり、所望の光度の発光を得るための電流である。電源部21は、発光素子20に発光電流を流すための電源を供給するものである。電源部21には、定電圧源を適用することができる。同図の電源部21は、一端が接地され、発光素子20のアノードに正極性の電源電圧を印加する。なお、発光素子20のカソードは、配線11を介して発光駆動装置10に接続される。
 同図の発光駆動装置10は、駆動部100と、遅延部200と、位相差検出部300と、反転バッファ401とを備える。同図の発光駆動装置10には、信号線2および3が接続される。この信号線2および3は、それぞれ駆動信号および発光信号を伝達する信号線である。駆動信号は、発光素子20に対する発光電流の供給を制御する信号である。この駆動信号は、例えば、連続する矩形波により構成することができる。矩形波の電圧が高レベルの期間を発光電流が発光素子20に通電される期間に対応させることができる。また、発光電流は、発光素子20を発光させるための電流である。また、発光信号は、発光期間を表す信号である。発光信号は、例えば、矩形波により構成することができる。矩形波の電圧が高レベルの期間および低レベルの期間をそれぞれ発光期間および非発光期間に対応させることができる。これらの信号は、発光装置1を使用する測距装置等から供給される。
 遅延部200は、入力された駆動信号を遅延させるものである。この遅延部200は、信号線2により伝達された駆動信号の遅延時間を調整し、遅延時間が調整された駆動信号を出力する。この信号は、配線15を介して出力される。遅延時間の調整は、後述する位相差検出部300から出力される信号に基づいて行われる。遅延部200の構成の詳細については後述する。
 駆動部100は、発光素子20を駆動するものである。この駆動部100は、配線11を介して接続された発光素子20に発光電流を供給することにより駆動を行う。発光素子20への発光電流の供給は、遅延部200から出力される駆動信号に基づいて制御される。また、駆動部100は、信号線3により伝達された発光信号に基づいて発光電流を供給する。駆動部100の構成の詳細については後述する。
 反転バッファ401は、駆動部100が発光素子20を駆動する際の発光電流を検出するものである。この反転バッファ401は、配線12を介して発光電流を検出する。検出された発光電流は、反転バッファ401により論理が反転されて、配線13を介して出力される。なお、反転バッファ401および配線12は、請求の範囲に記載の発光電流検出部の一例である。
 位相差検出部300は、駆動信号および発光電流の位相差を検出するものである。この位相差検出部300は、信号線2により伝達された駆動信号と反転バッファ401により検出された発光電流との位相差を検出し、検出した位相差に応じた信号を出力する。この信号は、配線14を介して出力される。位相差検出部300の構成の詳細については後述する。 
 遅延部200、駆動部100、反転バッファ401および位相差検出部300は、DLL(Delay Locked Loop)を構成する。このDLLにより、発光信号と駆動信号とが同期
し、発光素子20の発光を駆動信号に同期させることができる。
 [駆動部]
 図3は、本開示の第1の実施の形態に係る駆動部の構成例を示す図である。同図は、駆動部100の構成例を表す回路図である。同図の駆動部100は、MOSトランジスタ111、112、121および122と、非反転バッファ101と、選択部103と、電圧源102と、抵抗123とを備える。MOSトランジスタ111、112、121および122には、nチャネルMOSトランジスタを使用することができる。また、駆動部100には電源線Vddが配置される。この電源線Vddは、駆動部100の電源を供給する配線である。
 非反転バッファ101の入力は配線15に接続され、出力はMOSトランジスタ122のゲートおよびMOSトランジスタ112のゲートに接続される。MOSトランジスタ112のソースは接地され、ドレインはMOSトランジスタ111のソースに接続される。MOSトランジスタ111のドレインは配線11に接続され、ゲートは選択部103の出力に接続される。選択部103の制御入力は信号線3に接続される。選択部103の一方の入力は接地され、他方の入力は電圧源102の一端およびMOSトランジスタ121のゲートに接続される。電圧源102の他の一端は接地される。MOSトランジスタ121のソースはMOSトランジスタ122のドレインに接続され、ドレインは配線12および抵抗123の一端に接続される。抵抗123の他の一端は、電源線Vddに接続される。MOSトランジスタ122のソースは、接地される。
 電圧源102は、MOSトランジスタ111および121のゲートにバイアス電圧を供給する電源である。この電圧源102は、正極性のバイアス電圧を供給する。
 選択部103は、2つの入力端子のうちの1つに入力された信号を選択して出力端子から出力するものである。この選択部103は、制御入力に接続された発光信号に基づいて信号の選択を行う。例えば、発光信号の電圧が高レベルの時に電圧源102のバイアス電圧を選択し、発光信号の電圧が低レベルの時に接地電圧を選択することができる。このように、発光信号により表される発光期間にバイアス電圧が選択され、MOSトランジスタ111のゲートに入力される。
 MOSトランジスタ111および112は、発光駆動部110を構成し、配線11に接続される発光素子20に発光電流を供給する。同図の発光駆動部110は、シンク電流を発光電流として供給する。上述のように、MOSトランジスタ111のゲートは、選択部103を介して電圧源102に接続される。MOSトランジスタ111のゲートには、発光期間にバイアス電圧が供給される。このため、MOSトランジスタ111には、供給されたバイアス電圧に応じたドレイン電流が流れる。このように、MOSトランジスタ111は、一定のドレイン電流を供給する定電流回路として動作する。MOSトランジスタ111のドレイン電流が発光素子20の発光閾値を超える電流となるように電圧源102のバイアス電圧を設定することにより、発光電流を供給することができる。一方、非発光期間にはMOSトランジスタのゲートが接地され、MOSトランジスタ111は非導通の状態となる。これにより、非発光期間における発光電流の供給が停止される。
 MOSトランジスタ112は、MOSトランジスタ111に直列に接続され、発光電流の供給を制御するMOSトランジスタである。MOSトランジスタ112は、ゲートに印加される駆動信号の電圧が高レベルの時に導通状態になり、発光電流が配線11を介して供給される。一方、駆動信号の電圧が低レベルの時には、MOSトランジスタ112が非導通の状態になり、発光電流の供給が停止される。このように、発光駆動部110は、発光信号および駆動信号が高レベルの際に発光電流を供給する。
 MOSトランジスタ121および122は、模擬駆動部120を構成する。この模擬駆動部120は、発光駆動部110が供給する発光電流と略同期した電流を供給するものである。この模擬駆動部120は、抵抗123に流れる電流を供給する。MOSトランジスタ122のゲートには駆動信号が印加され、MOSトランジスタ112と略同時に導通状態および非導通状態に遷移する。また、MOSトランジスタ121は、MOSトランジスタ111と同様に定電流回路を構成する。MOSトランジスタ121のゲートには常時バイアス電圧が印加される。このMOSトランジスタ121のチャネル幅を調整することにより、MOSトランジスタ121のドレイン電流を調整することができる。例えば、MOSトランジスタ121のチャネル幅をMOSトランジスタ111の1/Nにすることにより、MOSトランジスタ121のドレイン電流をMOSトランジスタ111の1/Nにすることができる。このように、模擬駆動部120は、発光駆動部110とは異なる電流を供給することができる。模擬駆動部120が供給する電流を発光電流より低くすることにより、消費電力を低減することができる。また、MOSトランジスタ121のゲートには常時バイアス電圧が印加されるため、非発光期間においても抵抗123に電流を供給することができる。
 この抵抗123による電圧降下を検出することにより、発光電流を検出することができる。具体的には、発光電流が流れる発光駆動部110のMOSトランジスタ111のドレインに接続される配線11の電圧を検出する代わりに、発光電流と略同期した電流が流れるMOSトランジスタ121のドレインおよび抵抗123を接続するノードの電圧を検出する。これにより、駆動信号に応じて変化する発光電流を検出し、発光電流の位相を検出することができる。MOSトランジスタ121のドレインおよび抵抗123を接続するノードには配線12が接続され、検出された発光電流は図2において説明した反転バッファ401の入力に伝達される。MOSトランジスタ121のドレインおよび抵抗123を接続するノードの電圧は発光電流に対して逆相となるため、反転バッファ401により論理が反転される。
 模擬駆動部120を配置することにより、非発光期間においても位相差検出部300に発光信号を供給することができる。上述のDLLにおいて閉ループを維持することができ、位相の同期状態(ロック)を維持することが可能となる。これに対し、発光駆動部110から発光信号を検出する場合には、非発光期間に発光信号の検出が途絶えることとなる。その後発光期間に移行した際に、駆動信号および発光信号が非同期の状態となり、両者の位相が同期するまでに時間を要することとなる。このため、距離測定の開始に遅延を生じる。
 なお、模擬駆動部120の構成は、この例に限定されない。例えば、抵抗123の代わりに半導体素子、例えば、ダイオードを配置することもできる。このダイオードとして、発光素子20と同じ構成、例えば、同じ化合物半導体に構成されるダイオードを配置すると好適である。発光素子20と同じ特性の負荷を模擬駆動部120に接続することができ、温度特性等を発光素子20に近似させることができるためである。また、抵抗123には、電源線Vddによる電源の代わりに、図1において説明した電源部21の電源を供給することもできる。また、MOSトランジスタ121のチャネル幅をMOSトランジスタ111と同じにすることもできる。
 [遅延部]
 図4は、本開示の実施の形態に係る遅延部の構成例を示す図である。同図は、遅延部200の構成例を表す回路図である。同図の遅延部200は、非反転バッファ201と、複数のインバータ回路(インバータ回路210、220、240および250)とを備える。
 非反転バッファ201は、位相差検出部300からの信号を複数のインバータ回路に分配するバッファである。後述するように、位相差検出部300からの信号は、駆動信号および発光電流との位相差に応じた電圧の信号であり、発光信号が駆動信号に対して遅れ位相の時上昇し、発光信号が駆動信号に対して進み位相の時低下する信号である。この信号が非反転バッファ201によりそれぞれのインバータ回路の電源として分配される。
 複数のインバータ回路は、信号線2および配線15の間に縦続接続される。インバータ回路210を例に挙げて、それぞれのインバータ回路の構成を説明する。インバータ回路210は、MOSトランジスタ211および212により構成される。MOSトランジスタ211および212には、それぞれpチャネルMOSトランジスタおよびnチャネルMOSトランジスタを使用することができる。MOSトランジスタ211および212のゲートは、共通に接続されて入力ノードを構成する。MOSトランジスタ211および212のドレインは、共通に接続されて出力ノードを構成する。インバータ回路210の入力ノードは信号線2に接続され、インバータ回路210の出力ノードは次段のインバータ回路220の入力ノードに接続される。MOSトランジスタ211のソースは非反転バッファ201の出力に接続され、MOSトランジスタ212のソースは接地される。
 インバータ回路210等は、入力された駆動信号の論理を反転して出力する。この反転した駆動信号の出力には伝達遅延を伴う。この伝播遅延は、インバータ回路210の電源電圧を制御することにより変化させることができる。MOSトランジスタ211および212の伝達関数が電源電圧により変化するためである。電源電圧が高いほど、MOSトランジスタ211等の駆動能力が上昇し、伝播遅延が短くなる。このようなインバータ回路210を多数縦続接続することにより、比較的大きな遅延時間を得ることができる。また、位相差検出部300の出力信号に応じて、駆動信号の遅延時間を調整することが可能となる。遅延時間が調整された駆動信号は、配線15を介して駆動部100に出力される。
 なお、遅延部200の遅延回路は、偶数個のインバータ回路210等により構成する必要がある。信号線2により伝達された駆動信号と駆動部100のMOSトランジスタ112のゲートに入力される駆動信号との極性を揃えるためである。また、非反転バッファ201は、位相差検出部300からの信号の増幅を行い、増幅した信号を各インバータ回路に分配することもできる。これにより、DLLのループ利得を向上させることができる。
 [遅延特性]
 図5は、本開示の実施の形態に係る遅延部による遅延の一例を示す図である。同図は、位相差検出部300の出力信号および遅延部200の伝播遅延の関係を表した図である。同図の横軸は、位相差検出部300の出力信号の電圧を表す。同図の縦軸は、遅延部200の伝播遅延時間を表す。同図のグラフ601に表したように、位相差検出部300の出力信号の電圧が上昇すると遅延部200の伝播遅延が短縮される。
 [位相差検出部]
 図6は、本開示の実施の形態に係る位相差検出部の構成例を示す図である。同図は、位相差検出部300の構成例を表す回路図である。同図の位相差検出部300は、フリップフロップ301および302と、NANDゲート303と、反転バッファ304と、非反転バッファ305と、MOSトランジスタ311および312と、定電流回路313および314とを備える。また、同図の位相差検出部300は、キャパシタ320をさらに備える。フリップフロップ301および302には、D型フリップフロップを使用することができる。MOSトランジスタ311および312には、それぞれpチャネルMOSトランジスタおよびnチャネルMOSトランジスタを使用することができる。
 フリップフロップ301および302のD入力は、電源線Vddに接続される。フリップフロップ301および302のリセット(R)入力は、NANDゲート303の出力に共通に接続される。フリップフロップ301のクロック入力は信号線2に接続され、Q出力は反転バッファ304の入力およびNANDゲート303の一方の入力に接続される。NANDゲート303の他方の入力は、フリップフロップ302のQ出力および非反転バッファ305の入力に接続される。フリップフロップ302のクロック入力は、配線13に接続される。MOSトランジスタ311のゲートは反転バッファ304の出力に接続され、ソースは定電流回路313の一端に接続される。定電流回路313の他の一端は、電源線Vddに接続される。
 MOSトランジスタ311のドレインは、MOSトランジスタ312のドレイン、キャパシタ320の一端および配線14に接続される。キャパシタ320の他の一端は、接地される。MOSトランジスタ312のゲートは非反転バッファ305の出力に接続され、ソースは定電流回路314の一端に接続される。定電流回路314の他の一端は、接地される。
 フリップフロップ301および302ならびにNANDゲート303は、位相比較回路を構成する。フリップフロップ301および302のクロック入力の信号のうちの進み位相となる信号が入力される側のフリップフロップのQ出力が先に反転し、反転バッファ304および非反転バッファ305の何れかに値「1」の信号を出力する。フリップフロップ301および302のクロック入力の信号のうちの遅れ位相となる信号が入力されると、フリップフロップ301および302が同時にリセットされる。これにより、進み位相となる信号が入力される側のフリップフロップ301および302に接続される反転バッファ304等に値「1」の信号が出力される。
 反転バッファ304は、フリップフロップ301の出力をMOSトランジスタ311のゲートに伝達してMOSトランジスタ311を駆動するバッファである。非反転バッファ305は、フリップフロップ302の出力をMOSトランジスタ312のゲートに伝達してMOSトランジスタ312を駆動するバッファである。
 MOSトランジスタ311および312ならびに定電流回路313および314は、チャージポンプ回路を構成する。MOSトランジスタ311が導通状態になると、ソースに接続された定電流回路313によるソース電流が配線14に出力される。一方、MOSトランジスタ312が導通状態になると、ソースに接続された定電流回路314によるシンク電流が配線14に出力される。このチャージポンプ回路により、位相比較回路の出力に応じてソース電流およびシンク電流の何れかが出力される。
 キャパシタ320は、チャージポンプ回路から出力される電流の変化を電圧の変化に変換するキャパシタである。チャージポンプ回路からソース電流が供給される際には当該ソース電流により充電され、チャージポンプ回路からシンク電流が供給される際には当該シンク電流により放電される。キャパシタ320により、信号線2により伝達される駆動信号および配線13により伝達される発光信号の位相差に応じた電圧の信号が出力される。なお、キャパシタ320は、ローパスフィルタを構成する。
 [位相差の検出]
 図7は、本開示の実施の形態に係る位相差の検出の一例を示す図である。同図は、位相差検出部300における位相差の検出の一例を表す図であり、位相差の検出の様子を表す図である。同図の「駆動信号」は、信号線2により伝達される駆動信号の波形を表す。同図の「検出された発光電流」は、配線13により伝達される反転バッファ401の出力電圧の波形を表し、発光電流に相当する信号の波形を表す。同図の「フリップフロップ301出力電圧」および「フリップフロップ302出力電圧」は、それぞれフリップフロップ301および302のQ出力の電圧の波形を表す。「チャージポンプ回路出力電流」は、図6において説明したチャージポンプ回路から配線14に出力される電流の波形を表す。同図の「位相差検出部出力電圧」は、配線14の電圧の波形を表す。
 同図における点線は、電圧または電流が値「0」のレベルを表す。また、「駆動信号」、「検出された発光電流」、「フリップフロップ301出力電圧」および「フリップフロップ302出力電圧」は、2値化された電圧波形を表す。「駆動信号」が値「1」の時、駆動部100の発光駆動部110により発光電流が供給される。また、駆動部100の模擬駆動部120において発光電流に同期した電流が供給される時、「検出された発光電流」が値「1」になる。また、「チャージポンプ回路出力電流」の正極性および負極性は、それぞれソース電流およびシンク電流の供給を表す。
 同図の波形の左半分は、駆動信号に対して検出された発光電流が遅れ位相の場合の例を表したものである。フリップフロップ301は、駆動信号の立ち上がりに同期してQ出力が値「1」になり、検出された発光電流の立ち上がりに同期してQ出力が値「0」になる。この駆動信号の立ち上がりから検出された発光電流の立ち上がりまでの期間にチャージポンプ回路からソース電流が供給されてキャパシタ320が充電され、位相差検出部300の出力電圧が上昇する。
 一方、同図の波形の右半分は、駆動信号に対して検出された発光電流が進み位相の場合の例を表したものである。フリップフロップ302は、検出された発光信号の立ち上がりに同期してQ出力が値「1」になり、駆動信号の立ち上がりに同期してQ出力が値「0」になる。この検出された発光電流の立ち上がりから駆動信号の立ち上がりまでの期間にチャージポンプ回路からシンク電流が供給されてキャパシタ320が放電され、位相差検出部300の出力電圧が低下する。このように、位相差検出部300による位相差の検出が行われる。
 [発光駆動装置の動作]
 図8は、本開示の実施の形態に係る発光駆動装置の動作の一例を示す図である。同図は、発光駆動装置10の動作の一例を表す図である。同図の「発光信号」は、信号線3により伝達される発光信号の波形を表す。この「発光信号」が値「1」の期間および「0」の期間がそれぞれ発光期間(実線の矢印)および非発光期間(点線の矢印)に該当する。同図の「発光駆動部ゲート電圧」は、図3において説明した発光駆動部110のMOSトランジスタ112のゲート電圧の波形を表す。同図の「発光電流」は、発光素子20に供給される電流の波形を表す。なお、図7と共通する部分については、同じ記載を用いた。
 同図の発光期間においては、駆動信号に対して検出された発光信号が遅れ位相および進み位相の場合において、位相差検出部300の出力電圧が上昇および低下する。これにより、遅延部200の遅延時間が調整され、発光駆動部110のMOSトランジスタ112のゲートの駆動波形の位相が調整される。駆動信号および発光素子20の発光電流を同期させることができる。発光駆動装置10の電源電圧や温度の変化等により駆動信号の遅延時間が変動した場合であっても、発光素子20の発光電流を駆動信号に同期させることができる。
 また、非発光期間に移行した場合には、発光駆動部110のMOSトランジスタ111が非導通の状態になる。このため、発光素子20に発光電流が供給されず、発光が停止される。しかし、反転バッファ401が模擬駆動部120から発光電流を検出するため、DLLがロック状態を保つことができる。発光駆動部110のMOSトランジスタ112のゲートには駆動信号に同期したゲート駆動信号が供給される。このため、非発光期間から発光期間に移行した直後においても、駆動信号および発光素子20の発光電流の同期状態を維持することができる。
 なお、発光駆動装置10の構成は、この例に限定されない。例えば、信号線2により伝達される駆動信号が負論理の場合には、模擬駆動部120から検出される発光信号と駆動信号の論理が等しくなるため、反転バッファ401を省略することができる。この場合、遅延部200は、奇数個のインバータ回路を配置する必要がある。なお、この場合には、配線12が発光電流検出部を構成することとなる。
 以上説明したように、本開示の第1の実施の形態の発光駆動装置10は、位相差検出部300により駆動信号および発光信号の位相差を検出し、検出した位相差に応じて遅延部200による駆動信号の遅延時間を調整する。これにより、発光素子20の発光を駆動信号に同期させることができる。発光素子20の発光の遅延を補償することができ、距離計測の誤差を低減することができる。
 <2.第2の実施の形態>
 上述の第1の実施の形態の発光駆動装置10は、発光駆動部110により発光電流を供給していた。これに対し、本開示の第2の実施の形態の発光駆動装置10は、複数の発光駆動部により発光電流を供給する点で、上述の第1の実施の形態と異なる。
 [発光駆動装置]
 図9は、本開示の第2の実施の形態に係る発光駆動装置の構成例を示す図である。同図は、図2と同様に発光装置1および発光駆動装置10の構成例を表す図である。駆動部100の代わりに駆動部150を備え、第2の駆動信号生成部500をさらに備える点で、図2において説明した発光駆動装置10と異なる。第2の駆動信号生成部500は、駆動部150に配置される第2の発光駆動部130の駆動信号である第2の駆動信号を生成するものである。この第2の駆動信号生成部500には、配線15を介して遅延部200からの駆動信号が入力される。また、第2の駆動信号生成部500により生成された第2の駆動信号は、配線16を介して駆動部150に供給される。
 [駆動部]
 図10は、本開示の第2の実施の形態に係る駆動部の構成例を示す図である。同図は、駆動部150の構成例を表す回路図である。MOSトランジスタ131および132、非反転バッファ104ならびに選択部105をさらに備える点で、図3において説明した駆動部100と異なる。MOSトランジスタ131および132には、nチャネルMOSトランジスタを使用することができる。
 非反転バッファ104の入力は配線16に接続され、出力はMOSトランジスタ132のゲートに接続される。MOSトランジスタ132のソースは接地され、ドレインはMOSトランジスタ131のソースに接続される。MOSトランジスタ131のドレインは配線11に接続され、ゲートは選択部105の出力に接続される。選択部105の制御入力は信号線3に接続される。選択部105の一方の入力は接地され、他方の入力は電圧源102の一端に接続される。これ以外の結線は図3において説明した駆動部100と同様であるため、説明を省略する。
 MOSトランジスタ131および132は、第2の発光駆動部130を構成する。MOSトランジスタ131は、MOSトランジスタ111と同様に定電流回路として動作し、MOSトランジスタ111とともに発光電流を供給する。MOSトランジスタ132はMOSトランジスタ112と同様に、発光電流の供給を制御する。この第2の発光駆動部130は、発光駆動部110による発光電流の供給の開始の際の比較的短い期間において、発光電流を重畳して供給する。これにより、発光素子20から照射されるレーザ光を急峻な立ち上がりにすることができる。なお、MOSトランジスタ131には、MOSトランジスタ111と同じチャネル幅のMOSトランジスタを使用することができる。この場合には、第2の発光駆動部130は、発光駆動部110と同じ値の発光電流を供給する。一方、MOSトランジスタ131のチャネル幅を調整することにより、MOSトランジスタ131のドレイン電流をMOSトランジスタ111のドレイン電流とは異なる値にすることもできる。この場合には、第2の発光駆動部130の発光電流を変更することができ、発光素子20のレーザ光の立ち上がりを調整することが可能となる。
 [第2の駆動信号生成部]
 図11は、本開示の第2の実施の形態に係る第2の駆動信号生成部の構成例を示す図である。同図は、第2の駆動信号生成部500の構成例を表す回路図である。第2の駆動信号生成部500は、反転ゲート502乃至504と、ANDゲート501とを備える。ANDゲート501の一方の入力は配線15に接続され、他方の入力は反転ゲート504の出力に接続される。ANDゲート501の出力は、配線16に接続される。反転ゲート502の入力は配線15に接続され、出力は反転ゲート503の入力に接続される。反転ゲート503の出力は、反転ゲート504の入力に接続される。
 反転ゲート502乃至504は、縦続接続されて配線15により伝達される信号を遅延させるとともに論理を反転する。この遅延された信号と遅延前の信号との論理積演算を行うことにより配線15により伝達される駆動信号の立ち上がりに同期したパルス電圧を生成することができる。このパルス電圧が第2の駆動信号として第2の発光駆動部130に供給される。
 [発光素子の駆動]
 図12は、本開示の第2の実施の形態に係る発光素子の駆動の一例を示す図である。同図は、本開示の第2の実施の形態に係る発光駆動装置10における発光素子20の駆動の一例を表す図である。同図において、「遅延部出力電圧」は、遅延部200から出力される駆動信号を表す。「第2の駆動信号」は、第2の駆動信号生成部500により生成される第2の駆動信号を表す。「発光駆動部110供給電流」および「発光駆動部130供給電流」は、それぞれ発光駆動部110および発光駆動部130により発光素子20に供給される電流を表す。「発光電流」は、発光素子20の電流を表す。
 同図に表したように、第2の駆動信号生成部500により生成される第2の駆動信号は、遅延部200により遅延時間が調整された駆動信号の立ち上がりに同期したパルス状の駆動信号となる。第2の駆動信号生成部500により生成される第2の駆動信号に基づいて、第2の発光駆動部130による発光電流が供給される。この第2の発光駆動部130の発光電流が発光駆動部110による発光電流に重畳され、発光素子20の発光開始の初期に略2倍の発光電流が流れる。この2倍の発光電流により発光素子20におけるレーザ光の照射の立ち上がりを速くすることができる。
 これ以外の発光駆動装置10の構成は本開示の第1の実施の形態において説明した発光駆動装置10の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第2の実施の形態の発光駆動装置10は、第2の発光駆動部130を備えて発光素子20の発光開始の際に発光電流を増加させる。これにより、発光素子20のレーザ光の照射の立ち上がりを速くすることができ、レーザ光の波形を矩形形状に改善することができる。
 <3.第3の実施の形態>
 上述の第1の実施の形態の発光駆動装置10は、信号線2により駆動信号が伝達されていた。これに対し、本開示の第3の実施の形態の発光駆動装置10は、差動信号に変換された駆動信号が伝達される点で、上述の第1の実施の形態と異なる。
 [発光駆動装置]
 図13は、本開示の第3の実施の形態に係る発光駆動装置の構成例を示す図である。同図は、図2と同様に発光装置1および発光駆動装置10の構成例を表す図である。受信部402および403をさらに備え、反転バッファ401の代わりにバッファ410を備える点で、図2において説明した発光駆動装置10と異なる。また、信号線2は、2本の信号線からなる差動伝送路により構成される。互いに逆相の駆動信号がこの2本の信号線により伝達される。この差動信号のインターフェイスには、例えば、LVDS(Low Voltage Differential Signaling)を採用することができる。このLVDSでは、0.35Vの振幅の差動信号が伝達される。0Vが低レベル、0.35Vが高レベルの論理に対応する。
 受信部402および403は、差動信号に変換されて伝達された駆動信号を受信するものである。この受信部402および403は、受信した駆動信号を位相差検出部300等に入力可能な信号レベルのシングルエンドの駆動信号に変換する。受信部402は変換した駆動信号の位相差検出部300への伝達を配線17により行い、受信部403は変換した駆動信号の遅延部200への伝達を配線18により行う。受信部402および403には、例えば、LVDSレシーバを使用することができる。
 バッファ410は、配線12により伝達される発光信号の論理を反転して出力するバッファである。このバッファ410には、上述の受信部402等を使用することができる。すなわち、受信部402の差動信号をシングルエンドの信号に変換する機能により発光信号の論理を変換するバッファとして使用することができる。なお、バッファ410および配線12は、請求の範囲に記載の発光電流検出部の一例である。
 図14は、本開示の第3の実施の形態に係る発光駆動装置の構成例を示す回路図である。同図は、発光駆動装置10のうちの受信部402および403ならびにバッファ410の配置例を表す回路図である。同図の信号線2は、DATA信号線およびXDATA信号線により構成される。DATA信号線は駆動信号と同じ極性の信号を伝達し、XDATA信号線は駆動信号の論理を反転させた信号を伝達する。
 受信部402の非反転入力はDATA信号線に接続され、反転入力はXDATA信号線に接続される。受信部402の出力は配線17に接続される。受信部403の非反転入力はDATA信号線に接続され、反転入力はXDATA信号線に接続される。受信部403の出力は配線18に接続される。これら受信部402および403により、DATA信号線およびXDATA信号線を介して伝達される差動信号形式の駆動信号が変換される。受信部402および403を備えてLVDSに基づいた信号の伝達を行うことにより、高速かつノイズの影響が少ない信号の伝達を行うことができる。しかし、差動信号の変換を行うため、受信部402および403による駆動信号の受信から変換された駆動信号の出力には遅延時間が発生する。
 同図のバッファ410は、受信部404および電圧源405を備える。受信部404の反転入力は配線12に接続され、出力は配線13に接続される。電圧源405の一端は受信部404の非反転入力に接続され、他端は接地される。 
 受信部404は、上述の受信部402および403と同様に差動信号を受信し、シングルエンドの信号に変換して出力するものである。また、電圧源405は、バイアス電圧を受信部404の非反転入力に供給する。このバイアス電圧は、受信部404の反転入力に入力される発光電流の振幅の中間の電圧にすることができる。非反転入力に中間電圧をバイアス電圧として印加することにより、受信部404は、反転入力に入力された信号(検出された発光電流)の論理を反転するバッファとして使用することができる。また、受信部404をDLLのループに配置することにより、上述の受信部402および403による遅延時間を補償することができる。差動伝送路により駆動信号を伝達する場合であっても、発光素子20の発光を駆動信号に同期させることができる。
 なお、発光装置1の構成は、この例に限定されない。例えば、信号線2にシングルエンドの信号を伝送する信号線を適用することもできる。
 これ以外の発光駆動装置10の構成は本開示の第1の実施の形態において説明した発光駆動装置10の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第3の実施の形態の発光駆動装置10は、差動伝送路により駆動信号を伝達する場合においても、発光素子20の発光の遅延を補償することができる。
 <4.第4の実施の形態>
 上述の第1の実施の形態の発光駆動装置10は、駆動部100に配置した模擬駆動部120から発光電流を検出していた。これに対し、本開示の第4の実施の形態の発光駆動装置10は、模擬駆動部120を省略する点で、上述の第1の実施の形態と異なる。
 [駆動部]
 図15は、本開示の第4の実施の形態に係る駆動部100の構成例を示す図である。同図は、図3と同様に駆動部100の構成例を表す回路図である。模擬駆動部120および抵抗123を省略する点で、図3において説明した駆動部100と異なる。
 同図の駆動部100において、配線12はMOSトランジスタ111のドレインに接続される。これ以外の結線は図3の駆動部100と同様であるため、説明を省略する。
 配線12は、MOSトランジスタ111のドレインおよび発光素子20を接続するノードである配線11に接続される。これにより、発光駆動装置10から発光電流が検出される。このため、非発光期間においては発光電流の検出ができなくなる。発光期間に移行した直後に駆動信号および発光電流の位相差が大きくなる。駆動信号および発光信号が同期状態になるまで距離の計測を遅らせる必要がある。
 これ以外の発光駆動装置10の構成は本開示の第1の実施の形態において説明した発光駆動装置10の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第4の実施の形態の発光駆動装置10は、発光素子20と発光駆動部110との間の配線11から発光電流を検出する。模擬駆動部120を省略することができ、発光駆動装置10の構成を簡略化することができる。
 <5.カメラへの応用例>
 本開示に係る技術(本技術)は、様々な製品に応用することができる。例えば、本技術は、カメラ等の撮像装置に搭載される撮像素子として実現されてもよい。 
 図16は、本技術が適用され得る撮像装置の一例であるカメラの概略的な構成例を示すブロック図である。同図のカメラ1000は、レンズ1001と、撮像素子1002と、撮像制御部1003と、レンズ駆動部1004と、画像処理部1005と、操作入力部1006と、フレームメモリ1007と、表示部1008と、記録部1009と、発光装置1010を備える。
 レンズ1001は、カメラ1000の撮影レンズである。このレンズ1001は、被写体からの光を集光し、後述する撮像素子1002に入射させて被写体を結像させる。
 撮像素子1002は、レンズ1001により集光された被写体からの光を撮像する半導体素子である。この撮像素子1002は、照射された光に応じたアナログの画像信号を生成し、デジタルの画像信号に変換して出力する。
 撮像制御部1003は、撮像素子1002における撮像を制御するものである。この撮像制御部1003は、制御信号を生成して撮像素子1002に対して出力することにより、撮像素子1002の制御を行う。また、撮像制御部1003は、撮像素子1002から出力された画像信号に基づいてカメラ1000におけるオートフォーカスを行うことができる。ここでオートフォーカスとは、レンズ1001の焦点位置を検出して、自動的に調整するシステムである。このオートフォーカスとして、撮像素子1002に配置された位相差画素により像面位相差を検出して焦点位置を検出する方式(像面位相差オートフォーカス)を使用することができる。また、画像のコントラストが最も高くなる位置を焦点位置として検出する方式(コントラストオートフォーカス)を適用することもできる。撮像制御部1003は、検出した焦点位置に基づいてレンズ駆動部1004を介してレンズ1001の位置を調整し、オートフォーカスを行う。なお、撮像制御部1003は、例えば、ファームウェアを搭載したDSP(Digital Signal Processor)により構成することができる。
 レンズ駆動部1004は、撮像制御部1003の制御に基づいて、レンズ1001を駆動するものである。このレンズ駆動部1004は、内蔵するモータを使用してレンズ1001の位置を変更することによりレンズ1001を駆動することができる。
 画像処理部1005は、撮像素子1002により生成された画像信号を処理するものである。この処理には、例えば、画素毎の赤色、緑色および青色に対応する画像信号のうち不足する色の画像信号を生成するデモザイク、画像信号のノイズを除去するノイズリダクションおよび画像信号の符号化等が該当する。画像処理部1005は、例えば、ファームウェアを搭載したマイコンにより構成することができる。
 操作入力部1006は、カメラ1000の使用者からの操作入力を受け付けるものである。この操作入力部1006には、例えば、押しボタンやタッチパネルを使用することができる。操作入力部1006により受け付けられた操作入力は、撮像制御部1003や画像処理部1005に伝達される。その後、操作入力に応じた処理、例えば、被写体の撮像等の処理が起動される。
 フレームメモリ1007は、1画面分の画像信号であるフレームを記憶するメモリである。このフレームメモリ1007は、画像処理部1005により制御され、画像処理の過程におけるフレームの保持を行う。
 表示部1008は、画像処理部1005により処理された画像を表示するものである。この表示部1008には、例えば、液晶パネルを使用することができる。 
 記録部1009は、画像処理部1005により処理された画像を記録するものである。この記録部1009には、例えば、メモリカードやハードディスクを使用することができる。
 発光装置1010は、被写体までの距離を測定するためのレーザ光を照射するものである。また、上述の撮像制御部1003は、発光装置1010の制御および被写体までの距離の測定をさらに行う。カメラ1000における被写体までの距離の測定は、次のように行うことができる。まず、撮像制御部1003が発光装置1010を制御してレーザ光を出射させる。次に、被写体により反射されたレーザ光を撮像素子1002により検出する。次に、撮像制御部1003が、発光装置1010におけるレーザ光の出射から撮像素子1002におけるレーザ光の検出までの時間を計測し、被写体までの距離を算出する。
 以上、本発明が適用され得るカメラについて説明した。本技術は以上において説明した構成のうち、発光装置1010に適用され得る。具体的には、図1において説明した発光装置1は、発光装置1010に適用することができる。発光装置1010に発光装置1を適用することにより距離計測の際の誤差を低減することができる。
 なお、ここでは、一例としてカメラについて説明したが、本発明に係る技術は、その他、例えば携帯端末や無人搬送車等に適用されてもよい。
 最後に、上述した各実施の形態の説明は本開示の一例であり、本開示は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本開示に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
 また、上述の実施の形態における図面は、模式的なものであり、各部の寸法の比率等は現実のものとは必ずしも一致しない。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれることは勿論である。
 なお、本技術は以下のような構成もとることができる。
(1)発光駆動部から供給される発光素子を発光させるための発光電流を検出する発光電流検出部と、
 前記検出された発光電流と前記発光駆動部における前記発光電流の供給を制御する駆動信号との位相差を検出する位相差検出部と、
 前記検出された位相差に応じて前記駆動信号の伝播遅延を調整して当該調整された駆動信号を前記駆動信号として前記発光駆動部に供給する遅延部と
を具備する発光駆動装置。
(2)前記調整された駆動信号により制御されて前記発光電流と略同期した電流を供給する模擬駆動部をさらに具備し、
 前記発光電流検出部は、前記模擬駆動部から供給される電流を検出することにより前記発光電流を検出する
前記(1)に記載の発光駆動装置。
(3)前記発光駆動部は、前記発光素子の発光を停止させる期間である非発光期間に前記発光電流の供給を停止する前記(2)に記載の発光駆動装置。
(4)前記遅延部は、前記位相差に応じて前記伝播遅延時間が変化する複数の遅延回路が縦続接続されて構成される前記(1)から(3)の何れかに記載の発光駆動装置。
(5)前記発光駆動部に並列に接続されて前記発光素子に第2の発光電流を供給する第2の発光駆動部をさらに具備する前記(1)から(4)の何れかに記載の発光駆動装置。
(6)前記調整された駆動信号に基づいて前記第2の発光駆動部の駆動信号である第2の駆動信号を生成する第2の駆動信号生成部をさらに具備する前記(5)に記載の発光駆動装置。
(7)信号線路により伝達される前記駆動信号を受信して当該受信した駆動信号を出力する受信部をさらに具備し、
 前記位相差検出部は、前記検出された発光電流と前記受信部から出力された駆動信号との差分を検出し、
 前記遅延部は前記受信部から出力された駆動信号の遅延を調整する
前記(1)から(6)の何れかに記載の発光駆動装置。
(8)前記信号線路は、差動信号に変換された前記駆動信号を伝達し、
 前記受信部は、前記伝達された差動信号に変換された駆動信号を受信する
前記(7)に記載の発光駆動装置。
(9)前記発光電流検出部は、前記受信部における前記駆動の出力遅延時間と略同じ遅延時間のバッファ回路を備える前記(7)に記載の発光駆動装置。
(10)発光素子と、
 前記発光素子を発光させるための発光電流を供給する発光駆動部と、
 前記供給された発光電流を検出する発光電流検出部と、
 前記検出された発光電流と前記発光駆動部における前記発光電流の供給を制御する駆動信号との位相差を検出する位相差検出部と、
 前記検出された位相差に応じて前記駆動信号の伝播遅延を調整して当該調整された駆動信号を前記駆動信号として前記発光駆動部に供給する遅延部と
を具備する発光装置。
 1 発光装置
 2、3 信号線
 10 発光駆動装置
 11~18 配線
 20 発光素子
 100、150 駆動部
 110 発光駆動部
 120 模擬駆動部
 130 第2の発光駆動部
 200 遅延部
 210、220、240、250 インバータ回路
 300 位相差検出部
 401 反転バッファ
 402~404 受信部
 410 バッファ
 500 第2の駆動信号生成部
 1000 カメラ
 1003 撮像制御部
 1010 発光装置

Claims (10)

  1.  発光駆動部から供給される発光素子を発光させるための発光電流を検出する発光電流検出部と、
     前記検出された発光電流と前記発光駆動部における前記発光電流の供給を制御する駆動信号との位相差を検出する位相差検出部と、
     前記検出された位相差に応じて前記駆動信号の伝播遅延を調整して当該調整された駆動信号を前記駆動信号として前記発光駆動部に供給する遅延部と
    を具備する発光駆動装置。
  2.  前記調整された駆動信号により制御されて前記発光電流と略同期した電流を供給する模擬駆動部をさらに具備し、
     前記発光電流検出部は、前記模擬駆動部から供給される電流を検出することにより前記発光電流を検出する
    請求項1記載の発光駆動装置。
  3.  前記発光駆動部は、前記発光素子の発光を停止させる期間である非発光期間に前記発光電流の供給を停止する請求項2記載の発光駆動装置。
  4.  前記遅延部は、前記位相差に応じて前記伝播遅延時間が変化する複数の遅延回路が縦続接続されて構成される請求項1記載の発光駆動装置。
  5.  前記発光駆動部に並列に接続されて前記発光素子に第2の発光電流を供給する第2の発光駆動部をさらに具備する請求項1記載の発光駆動装置。
  6.  前記調整された駆動信号に基づいて前記第2の発光駆動部の駆動信号である第2の駆動信号を生成する第2の駆動信号生成部をさらに具備する請求項5記載の発光駆動装置。
  7.  信号線路により伝達される前記駆動信号を受信して当該受信した駆動信号を出力する受信部をさらに具備し、
     前記位相差検出部は、前記検出された発光電流と前記受信部から出力された駆動信号との差分を検出し、
     前記遅延部は前記受信部から出力された駆動信号の遅延を調整する
    請求項1記載の発光駆動装置。
  8.  前記信号線路は、差動信号に変換された前記駆動信号を伝達し、
     前記受信部は、前記伝達された差動信号に変換された駆動信号を受信する
    請求項7記載の発光駆動装置。
  9.  前記発光電流検出部は、前記受信部における前記駆動の出力遅延時間と略同じ遅延時間のバッファ回路を備える請求項7記載の発光駆動装置。
  10.  発光素子と、
     前記発光素子を発光させるための発光電流を供給する発光駆動部と、
     前記供給された発光電流を検出する発光電流検出部と、
     前記検出された発光電流と前記発光駆動部における前記発光電流の供給を制御する駆動信号との位相差を検出する位相差検出部と、
     前記検出された位相差に応じて前記駆動信号の伝播遅延を調整して当該調整された駆動信号を前記駆動信号として前記発光駆動部に供給する遅延部と
    を具備する発光装置。
PCT/JP2020/005078 2019-04-12 2020-02-10 発光駆動装置および発光装置 WO2020208927A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/594,051 US20220200237A1 (en) 2019-04-12 2020-02-10 Light-emission driving device and light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-076084 2019-04-12
JP2019076084A JP2020173199A (ja) 2019-04-12 2019-04-12 発光駆動装置および発光装置

Publications (1)

Publication Number Publication Date
WO2020208927A1 true WO2020208927A1 (ja) 2020-10-15

Family

ID=72751669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005078 WO2020208927A1 (ja) 2019-04-12 2020-02-10 発光駆動装置および発光装置

Country Status (3)

Country Link
US (1) US20220200237A1 (ja)
JP (1) JP2020173199A (ja)
WO (1) WO2020208927A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259617A1 (ja) * 2021-06-10 2022-12-15 ソニーセミコンダクタソリューションズ株式会社 駆動回路、光源装置及び遅延回路

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3144655A1 (fr) * 2022-12-29 2024-07-05 Valeo Vision Dispositif lumineux pour la détection d’objet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268659A (ja) * 2004-03-19 2005-09-29 Ricoh Co Ltd 半導体レーザ変調駆動装置及び画像形成装置
JP2009236650A (ja) * 2008-03-27 2009-10-15 Panasonic Electric Works Co Ltd 発光装置およびそれを用いる空間情報検出装置
JP2012210751A (ja) * 2011-03-31 2012-11-01 Kyocera Document Solutions Inc 画像形成装置
JP2017191815A (ja) * 2016-04-11 2017-10-19 株式会社豊田中央研究所 光周波数掃引レーザ光源、及びレーザレーダ
US20180278017A1 (en) * 2017-03-23 2018-09-27 Infineon Technologies Ag Circuit and method for driving a laser diode
JP2018206848A (ja) * 2017-05-31 2018-12-27 株式会社リコー 駆動回路及び発光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268659A (ja) * 2004-03-19 2005-09-29 Ricoh Co Ltd 半導体レーザ変調駆動装置及び画像形成装置
JP2009236650A (ja) * 2008-03-27 2009-10-15 Panasonic Electric Works Co Ltd 発光装置およびそれを用いる空間情報検出装置
JP2012210751A (ja) * 2011-03-31 2012-11-01 Kyocera Document Solutions Inc 画像形成装置
JP2017191815A (ja) * 2016-04-11 2017-10-19 株式会社豊田中央研究所 光周波数掃引レーザ光源、及びレーザレーダ
US20180278017A1 (en) * 2017-03-23 2018-09-27 Infineon Technologies Ag Circuit and method for driving a laser diode
JP2018206848A (ja) * 2017-05-31 2018-12-27 株式会社リコー 駆動回路及び発光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259617A1 (ja) * 2021-06-10 2022-12-15 ソニーセミコンダクタソリューションズ株式会社 駆動回路、光源装置及び遅延回路

Also Published As

Publication number Publication date
US20220200237A1 (en) 2022-06-23
JP2020173199A (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
US11397249B2 (en) Light detection device and electronic apparatus comprising a reverse bias voltage adjustment in accordance with a pulse number output by a first SPAD array
US10048357B2 (en) Time-of-flight (TOF) system calibration
WO2020208927A1 (ja) 発光駆動装置および発光装置
US20160351130A1 (en) Light emitting device driving circuit, display, and a/d conversion circuit
US20080180650A1 (en) 3-D Imaging System
US20060192938A1 (en) Distance image sensor
CN111198382B (zh) 飞时测距传感器以及飞时测距方法
CN113242957B (zh) 测距摄像装置
CN112114323A (zh) 飞时测距装置以及飞时测距方法
TWI826448B (zh) 時間測量裝置
TWI745024B (zh) 脈衝寬度調變信號產生電路、源極驅動晶片、及led顯示裝置
WO2020183935A1 (ja) 故障検出装置、発光駆動装置および発光装置
CN113196008B (zh) Dll电路、时间差放大电路、以及测距摄像装置
JP2021197284A (ja) 光源駆動装置、光源装置および測距装置
US20220013981A1 (en) Light emission drive circuit and light emission device
US20240222932A1 (en) Drive circuit, light source device, and delay circuit
WO2023074436A1 (ja) 発光装置及び測距装置
US20240176026A1 (en) Illumination circuitry, illumination method, time-of-flight module
WO2022176498A1 (ja) 測距センサ及び測距装置
CN117269973A (zh) 高精确度光子测距电路及距离量测方法
US20080080855A1 (en) Optical pulse generator and optical pulse tester
CN113424072A (zh) 飞行时间装置和方法
CN117269972A (zh) 激光雷达设备及其测距调节方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787606

Country of ref document: EP

Kind code of ref document: A1