WO2020206642A1 - Oled触摸屏及其制造方法 - Google Patents

Oled触摸屏及其制造方法 Download PDF

Info

Publication number
WO2020206642A1
WO2020206642A1 PCT/CN2019/082133 CN2019082133W WO2020206642A1 WO 2020206642 A1 WO2020206642 A1 WO 2020206642A1 CN 2019082133 W CN2019082133 W CN 2019082133W WO 2020206642 A1 WO2020206642 A1 WO 2020206642A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic bonding
transparent conductive
touch screen
bonding layer
Prior art date
Application number
PCT/CN2019/082133
Other languages
English (en)
French (fr)
Inventor
朱剑磊
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2019/082133 priority Critical patent/WO2020206642A1/zh
Priority to CN201980079844.0A priority patent/CN113330403A/zh
Publication of WO2020206642A1 publication Critical patent/WO2020206642A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • This application relates to the field of touch screens, in particular to an OLED touch screen and a manufacturing method thereof.
  • Organic light-emitting diode ON CELL technology is to fabricate a touch sensor on an encapsulation layer.
  • the ON CELL pattern is generally made by the metal mesh (METAL MESH) process. Due to the extremely fine mesh and high alignment accuracy, a high-precision alignment mask (MASK) is required to make it, which results in high process difficulty and yield Instability, the corresponding production cost is also high, and few manufacturers can scale production with this process. In addition, the yellow light process is used in the process, so acid (for example, phosphoric acid) etching is used, which easily damages the packaging layer and affects product life and yield.
  • This application proposes a new OLED touch screen and its manufacturing method.
  • An embodiment of the present application provides a method for manufacturing an OLED touch screen, including the following steps:
  • Step S10 forming an organic bonding layer in a predetermined area on the packaging layer of the OLED package;
  • Step S20 coating and forming a transparent conductive layer on the organic bonding layer and the area on the encapsulation layer where the organic bonding layer is not formed;
  • Step S30 forming a water and oxygen barrier layer on the transparent conductive layer
  • Step S40 etching the transparent conductive layer and the water and oxygen barrier layer to form conductive pattern units.
  • the method further includes step S15: forming a laser absorption layer on the organic bonding layer, and in step S20, the organic bonding layer is not formed on the laser absorption layer and the encapsulation layer. The area of the layer is coated to form the transparent conductive layer.
  • a predetermined number of new conductive pattern units are formed by repeatedly performing steps S10, S15, S20, S30, and S40 and/or repeatedly performing steps S10, S20, S30, and S40;
  • step S10 when step S10 is repeatedly performed, a new organic bonding layer is formed on the water and oxygen barrier layer of the latest conductive pattern unit; when step S20 is repeatedly performed, a new organic bonding layer is formed on the new organic bonding layer or the laser
  • the transparent conductive layer is formed by coating on the absorption layer.
  • a predetermined number of new conductive pattern units are formed by repeatedly performing steps S10, S20, S30, and S40.
  • step S10 the water and oxygen barrier layer of the newest conductive pattern unit is The position corresponding to the predetermined area forms an organic bonding layer.
  • the process of forming at least one new conductive pattern unit further includes step S15: forming a laser absorbing layer on the organic bonding layer, and in step S20, on the laser absorbing layer
  • the transparent conductive layer is formed by coating.
  • a new conductive pattern unit is formed.
  • a mask is used to physically or chemically etch the transparent conductive layer and the water and oxygen barrier layer.
  • step S40 without a mask, the transparent conductive layer and the water and oxygen barrier layer are directly etched by a laser.
  • the organic bonding layer, the water and oxygen barrier layer and the laser absorbing layer are formed by coating or vapor deposition.
  • step S10 includes:
  • Step S11 coating and forming an organic bonding material layer on the packaging layer of the OLED package;
  • Step S12 curing the predetermined area of the organic bonding material layer by laser irradiation using a mask
  • Step S13 removing the uncured area in the organic bonding material layer to form the organic bonding layer.
  • the material used to form the transparent conductive layer is graphene, carbon nanotubes or nanometal wires.
  • the material forming the organic bonding layer is propylene-based polymer, silicon-based polymer or epoxy-based polymer.
  • Another embodiment of the present application provides an OLED touch screen, including an OLED package and a first conductive pattern unit laminated on the package layer of the OLED package;
  • the first conductive pattern unit includes a first organic bonding layer, a first transparent conductive layer, and a first water and oxygen barrier layer;
  • the first organic bonding layer is laminated on a predetermined area of the encapsulation layer
  • the first transparent conductive layer includes a first transparent conductive region and a second transparent conductive region and has a first predetermined pattern, the first transparent conductive region is laminated on the first organic bonding layer, and the second transparent conductive region is The conductive area is laminated on the area of the encapsulation layer where the first organic bonding layer is not formed;
  • the first water and oxygen barrier layer is laminated on the first transparent conductive layer and has the first predetermined pattern.
  • the first conductive pattern unit further includes a laser absorption layer between the first organic bonding layer and the first transparent conductive layer.
  • it further includes a second conductive pattern unit laminated on the first conductive pattern unit, and the second conductive pattern unit includes a second organic bonding layer, a second transparent conductive layer, and a second aqueous oxygen.
  • Barrier layer
  • the second organic bonding layer is laminated on the first water and oxygen protective layer
  • the second transparent conductive layer is laminated on the second organic bonding layer and has a second predetermined pattern
  • the second water and oxygen barrier layer is laminated on the second transparent conductive layer and has the second predetermined pattern.
  • the second conductive pattern unit further includes a laser absorbing layer between the second organic bonding layer and the second transparent conductive layer.
  • a plurality of second conductive pattern units are sequentially stacked on the first conductive pattern unit; in the second conductive pattern units that are not directly stacked on the first conductive pattern unit, the second conductive pattern unit The organic bonding layer is laminated on the second water and oxygen protection layer of the adjacent second conductive pattern unit.
  • At least one second conductive pattern unit among the plurality of second conductive pattern units further includes a laser absorbing layer between the second organic bonding layer and the second transparent conductive layer .
  • the material of the transparent conductive layer is graphene, carbon nanotube or nano metal wire.
  • the material forming the organic bonding layer is propylene-based polymer, silicon-based polymer or epoxy-based polymer.
  • the manufacturing process is simple and efficient.
  • the process of adopting the acid etching patterning process by forming an organic bonding layer on the packaging layer, it is not easy to be damaged by acid in the etching process, and the use of the organic bonding layer is more conducive to the folding deformation of the flexible screen.
  • laser etching can be used for patterning.
  • the organic bonding layer serves to connect the laser absorbing layer and the encapsulation layer, making production possible. Therefore, the OLED touch screen manufactured by the process of the embodiment of the present application has a high yield rate and a longer product life.
  • FIG. 1A shows a schematic cross-sectional view of an encapsulation example of an OLED touch screen.
  • FIG. 1B shows a schematic top view of an example of packaging of an OLED touch screen.
  • 2A to 5 show schematic diagrams of steps of manufacturing an embodiment of an OLED touch screen.
  • 6A to 9 show schematic diagrams of the steps of another embodiment of manufacturing an OLED touch screen.
  • FIG. 10 shows a schematic cross-sectional view of an embodiment of an OLED touch screen.
  • the manufacturing method of the OLED touch screen relates to an OLED package.
  • the OLED package includes an OLED device and an encapsulation layer for encapsulating the OLED device.
  • the encapsulation layer is used to ensure a good seal inside the OLED device and minimize the contact of the OLED device with oxygen and water vapor in the external environment.
  • the OLED package may be, for example, the structure shown in FIG. 1A and FIG. 1B. It should be noted that the OLED package is not limited to the structure shown in the drawings, and FIG. 1A and FIG. 1B are not drawn to scale, the same below.
  • the OLED package 10 may include a substrate 20, an active area 31, an anode 32, an OLED light emitting area 33, a cathode 34, and an encapsulation layer 40.
  • the active area 31, the anode 32, the OLED light emitting area 33, and the cathode 34 are located in each area 30 in the top view of FIG. 1B.
  • the manufacturing process of the OLED package is not described in detail.
  • the technical solution of this application can be applied to OLED touch screens, AMOLED touch screens, PMOLED touch screens, etc.
  • the substrate 20 may be, for example, a glass substrate or a flexible substrate. Flexible substrates can use high molecular polymers, metal flakes and ultra-thin glass.
  • the anode 32 may be gold, transparent conductive polymer (such as polyaniline), and indium tin oxide (ITO) conductive glass.
  • the OLED light-emitting area 33 is made of organic light-emitting materials, which include high molecular polymers and small molecular organic compounds. High molecular polymers are usually conductive conjugated polymers or semiconductor conjugated polymers. Small molecule organic compounds include organic small molecule light-emitting materials and complex light-emitting materials.
  • the cathode 34 can be a single-layer metal cathode, an alloy cathode, a layered cathode, and a doped composite cathode.
  • the layered cathode adds a barrier layer between the light-emitting layer and the metal electrode, such as LiF, CsF, RbF, etc., to obtain higher luminous efficiency and better I-V characteristic curve.
  • the doped composite electrode sandwiches an organic layer doped with a low work function metal between the cathode and the organic light-emitting layer, which can greatly improve device performance.
  • the packaging layer 40 may use inorganic packaging materials, organic packaging materials, and inorganic-organic composite packaging materials.
  • the inorganic-organic composite packaging material is preferred because it combines the advantages of good water and oxygen barrier properties of inorganic packaging materials and good film-forming properties of organic packaging materials.
  • the encapsulation layer 40 can also be prepared by atomic layer deposition (ALD) technology to prepare different types of thin films, such as aluminum oxide, aluminum oxide/silicon oxide double layer, and the like.
  • An embodiment of the present application provides a method for manufacturing an OLED touch screen, including the following steps: Step S10: forming an organic bonding layer on a predetermined area on the packaging layer of the OLED package; Step S20: on the organic bonding layer And the area on the encapsulation layer where the organic bonding layer is not formed is coated to form a transparent conductive layer; step S30: forming a water and oxygen barrier layer on the transparent conductive layer; step S40: treating the transparent conductive layer and the transparent conductive layer The water and oxygen barrier layer is etched to form conductive pattern units.
  • FIGS. 2A and 2B show step S10 in which an organic bonding layer 100 is formed on a predetermined area on the encapsulation layer 40 of the OLED package 10.
  • the organic bonding layer 100 may be mainly formed of an acryl-based polymer, a silicon-based polymer, or an epoxy-based polymer, and polymethyl methacrylate is more preferably used.
  • the thickness of the organic bonding layer 100 is preferably 1 to 5 microns, for example, it can be 1.2, 1.5, 2, 2.5, 3.0, 3.5, 4, or 4.5 microns.
  • the organic bonding layer 100 is used to combine the encapsulation layer 40 and the transparent conductive layer 300 located thereon, that is, the first transparent conductive region 310 in FIG. 3A.
  • the organic bonding layer 100 can be formed by, for example, coating or vapor deposition.
  • vapor deposition equipment and a mask may be used to vapor deposit the organic bonding material to a predetermined area to form the organic bonding layer 100. Since the organic bonding layer 100 is formed on the encapsulation layer, acid damage to the encapsulation layer in the later etching process is avoided, thereby prolonging the life of the OLED touch screen.
  • the use of an organic overlap layer is more conducive to the folding and deformation of the flexible screen, and it is also conducive to extending the life of the flexible OLED touch screen.
  • the organic bonding material can be coated on the entire encapsulation layer 40 first, and then a mask can be used to control the curing area.
  • a mask can be used to control the curing area.
  • the predetermined area can be removed by UV laser or infrared laser.
  • the organic lap material is cured.
  • the uncured organic bonding material may be removed using, for example, an organic solvent, thereby forming the organic bonding layer 100 in FIGS. 2A and 2B. Since the organic bonding layer 100 has a relatively thick thickness, it does not require high film-forming uniformity and density. Therefore, it is preferable to use a coating method with a fast coating speed.
  • FIGS. 3A and 3B show step S20 in which a transparent conductive layer 300 is coated on the organic bonding layer 100 and on the encapsulation layer 40 where the organic bonding layer 100 is not formed.
  • the transparent conductive layer 300 includes a first transparent conductive region 310 and a second transparent conductive region 320.
  • the first transparent conductive region 310 is laminated on the first organic bonding layer, and the second transparent conductive region 320 is laminated on the encapsulation layer 40 where the organic bonding layer 100 is not formed.
  • the transparent conductive layer 300 can use graphene, carbon nanotubes or nano metal wires, and the nano metal wires can be, for example, nano silver wires.
  • the thickness of the transparent conductive layer 300 is preferably 0.01 to 1 ⁇ m, for example, it may be 0.02, 0.05, 0.08, 0.1, 0.2, 0.5 or 0.8 ⁇ m.
  • the transparent conductive layer 300 is formed by coating. Due to the thick thickness of the transparent conductive layer, the film formation uniformity and density are not high, and it can be formed, and the general deposition/sputtering method cannot be applied to transparent conductive materials such as graphene, carbon nanotubes, nano metal wires, or deposition /The sputtering speed is too slow. Therefore, the transparent conductive layer uses a coating method and the coating speed is fast.
  • the water and oxygen barrier layer 400 is used to block the penetration of water vapor and oxygen to protect the transparent conductive layer 300.
  • the water and oxygen barrier layer 400 also includes a first water and oxygen barrier layer 410 and a second water and oxygen barrier layer 420 formed on the first transparent conductive region 310 and the second transparent conductive region 320, respectively.
  • the water and oxygen barrier layer 400 may be mainly formed of inorganic materials, for example, may be selected from silicon nitride, silicon dioxide, aluminum oxide, and the like.
  • the thickness of the water and oxygen barrier layer 400 is preferably 0.01-2 microns, for example, it can be 0.02, 0.05, 0.08, 0.1, 0.2, 0.5, 0.8, 1.0, 1.2, 1.5, or 1.8 microns.
  • the water and oxygen barrier layer 400 can be formed by, for example, coating or vapor deposition.
  • vapor deposition equipment and a mask are used to deposit the water and oxygen barrier material on the transparent conductive layer 300.
  • step S40 the transparent conductive layer 300 and the water and oxygen barrier layer 400 are physically or chemically etched using a mask to form a conductive pattern, thereby obtaining a single conductive pattern unit as shown in FIG. 5.
  • the etching here is for the first transparent conductive region 310 and the first water and oxygen barrier layer 410 located above the organic bonding layer 100.
  • the single-layer conductive image formed after etching includes an organic bonding layer 100, a transparent conductive layer 300' with a predetermined pattern, and a water and oxygen barrier layer 400'.
  • the organic bonding layer 100 is laminated on a predetermined area of the encapsulation layer 40; the transparent conductive layer 300' with a predetermined pattern includes a first transparent conductive region 310' and a second transparent conductive region 320.
  • the first transparent conductive region 310' is laminated on the organic
  • the bonding layer 100, the second transparent conductive area 320 is laminated on the encapsulation layer 40 where the organic bonding layer 100 is not formed; the water and oxygen barrier layer 400' with a predetermined pattern is laminated on the transparent conductive layer 300'.
  • the difference from Embodiment 1 is: after step S10, a laser absorption layer 200 is also formed, and then a transparent conductive layer 300 is formed; in step S40, a laser is used without a mask.
  • the transparent conductive layer 300 and the water and oxygen barrier layer 400 are directly etched. The differences are described in detail below.
  • step S15 a laser absorption layer 200 is formed on the organic bonding layer 100, and as shown in FIG. 7, in step S20, the laser absorption layer 200 and the encapsulation layer 40 are not
  • the area where the organic bonding layer 100 is formed is coated to form a transparent conductive layer 300.
  • the organic bonding layer 100 is used to combine the encapsulation layer 40 and the laser absorption layer 200 located above it.
  • the water and oxygen barrier material and the transparent conductive material are etched by laser.
  • the laser absorption layer can use ultraviolet absorbers, infrared absorbers, etc., for example, salicylic acid esters, benzophenones, benzotriazoles, substituted acrylonitriles, triazines, polyimides Amine etc.
  • Ultraviolet absorbers can be used together with quenchers to have a synergistic effect.
  • the quencher can be a metal complex, such as a divalent nickel complex.
  • infrared absorber infrared absorber 970, near infrared absorber NIR, etc. can be used.
  • the laser absorption layer 200 can be used to absorb the etching laser to protect the underlying OLED components.
  • the thickness of the laser absorption layer 200 is preferably 1 to 5 microns, for example, it can be 1.2, 1.5, 2, 2.5, 3.0, 3.5, 4, or 4.5 microns. Due to the use of transparent conductive materials, no precise mask is required, and general laser equipment can be used to complete the production, and because the dry process that does not require a mask is used, it avoids damage to the packaging layer as easily as the yellow light process .
  • the laser absorption layer 200 can be formed by, for example, coating or vapor deposition.
  • a vapor deposition device and a mask are used to deposit the laser absorbing material to a predetermined area to form the laser absorbing layer 200.
  • the laser absorbing material in the predetermined area is cured by, for example, a UV laser or an infrared laser.
  • the uncured laser absorbing material may be removed using, for example, an organic solvent, thereby forming the laser absorbing layer 200 in FIGS. 6A and 6B.
  • the single-layer conductive image formed after etching includes an organic bonding layer 100, a laser absorbing layer 200, a transparent conductive layer 300' with a predetermined pattern, and a water and oxygen barrier layer 400'. As shown in FIG. 7, the laser absorption layer 200 has the same pattern as the organic bonding layer 100.
  • steps S10, S20, S30, and S40 are performed again on the water and oxygen barrier layer 400 to form a new conductive pattern unit; and in step S40 performed again, a mask is used to The transparent conductive layer and the water and oxygen barrier layer are physically or chemically etched.
  • steps S10, S20, S30, and S40 are performed again on the water and oxygen barrier layer 400 to form a new conductive pattern unit; and in step S40 performed again, a mask is used to The transparent conductive layer and the water and oxygen barrier layer are physically or chemically etched.
  • the conductive pattern unit adjacent to the encapsulation layer 40 includes an organic bonding layer 100, a laser absorbing layer 200, a transparent conductive layer 300' having a predetermined pattern, and a water and oxygen barrier layer 400' as the first conductive pattern unit.
  • the new conductive pattern unit further includes an organic bonding layer 500, a transparent conductive layer 600, and a water and oxygen barrier layer 700 stacked on the water and oxygen barrier layer 400 in sequence as the second conductive pattern unit.
  • the patterns of the new conductive pattern unit and the conductive pattern unit below it may be different, and the same applies below.
  • steps S10, S15, S20, S30, and S40 may be performed again on the water and oxygen barrier layer 400 to form a new conductive pattern unit; and in step S40 performed again, the mask is not required
  • a laser is used to directly etch the transparent conductive layer and the water and oxygen barrier layer.
  • the new conductive pattern unit also includes an organic bonding layer, a laser absorbing layer, a transparent conductive layer, and a water and oxygen barrier layer sequentially stacked on the water and oxygen barrier layer 400 as the second conductive pattern unit.
  • steps S10, S15, S20, S30, and S40 and/or steps S10, S20, S30, and S40 may be repeatedly performed multiple times to form a plurality of predetermined number of first conductive patterns.
  • two conductive pattern units. Therefore, each second conductive pattern unit may or may not include a laser absorbing layer.
  • a predetermined number of second conductive pattern units can also be formed on the single-layer conductive pattern unit of Embodiment 1 (that is, the first conductive pattern unit does not include a laser absorbing layer).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请的实施方式公开了一种OLED触摸屏及其制造方法。OLED触摸屏的制造方法包括以下步骤:步骤S10:在OLED封装件的封装层上的预定区域形成有机搭接层;步骤S20:在所述有机搭接层上以及所述封装层上未形成所述有机搭接层的区域涂布形成透明导电层;步骤S30:在所述透明导电层上形成水氧阻挡层;步骤S40:对所述透明导电层和所述水氧阻挡层进行蚀刻以形成导电图案单元。现有技术中采用金属网格工艺,由于网格极细,对位精度高,需要高精度的对位掩膜来制作,本申请实施方式的制造方法的工艺简单、高效并可靠,避免了现有技术中的上述问题。

Description

OLED触摸屏及其制造方法 技术领域
本申请涉及触摸屏领域,具体而言,涉及一种OLED触摸屏及其制造方法。
背景技术
有机发光二极管(OLED,Organic light-emitting Diode)ON CELL技术是将触摸传感器制作在封装层上。
ON CELL图案一般采用金属网格(METAL MESH)工艺制作,由于网格极细,对位精度高,需要高精度的对位掩膜(MASK)来制作,由此造成工艺难度较高,良率不稳定,相应生产成本也高,并且很少有厂家能够以此工艺规模化生产。另外,在该工艺过程中采用了黄光工艺,因此会使用酸(例如磷酸)蚀刻,容易对封装层造成损伤,影响产品寿命和良率。
发明内容
本申请提出了一种新的OLED触摸屏及其制造方法。
本申请的一个实施方案提供一种OLED触摸屏的制造方法,包括以下步骤:
步骤S10:在OLED封装件的封装层上的预定区域形成有机搭接层;
步骤S20:在所述有机搭接层上以及所述封装层上未形成所述有机搭接层的区域涂布形成透明导电层;
步骤S30:在所述透明导电层上形成水氧阻挡层;
步骤S40:对所述透明导电层和所述水氧阻挡层进行蚀刻以形成导电图案单元。
在部分实施例中,还包括步骤S15:在所述有机搭接层上形成激光吸收层,并且在步骤S20中,在所述激光吸收层上以及所述封装层上未形成所述有机搭接层的区域涂布形成所述透明导电层。
在部分实施例中,通过重复执行步骤S10、S15、S20、S30和S40和/或重复执行步骤S10、S20、S30和S40形成预定数量的新的导电图案单元;
其中,在重复执行步骤S10时,在最新的导电图案单元的水氧阻挡层上形成新的有机搭接层;在重复执行步骤S20时,在所述新的有机搭接层上或所述激光吸收层上涂布形成所述透明导电层。
在部分实施例中,通过重复执行步骤S10、S20、S30和S40形成预定数量的新的导电图案单元,其中,在重复执行步骤S10时,在最新的导电图案单元的水氧阻挡层上与所述预定区域对应的位置形成有机搭接层。
在部分实施例中,在至少一个新的导电图案单元的形成过程中,还包括步骤S15:在所述有机搭接层上形成激光吸收层,并且在步骤S20中,在所述激光吸收层上涂布形成所述透明导电层。
在部分实施例中,形成一个新的导电图案单元。
在部分实施例中,在步骤S40中,利用掩膜对所述透明导电层和所述水氧阻挡层进行物理或化学蚀刻。
在部分实施例中,在步骤S40中,在无需掩膜的情况下,利用激光直接对所述透明导电层和所述水氧阻挡层进行蚀刻。
在部分实施例中,采用涂布或气相沉积方式形成所述有机搭接层、水氧阻挡层和激光吸收层。
在部分实施例中,步骤S10包括:
步骤S11:在OLED封装件的封装层上涂布形成有机搭接材料层;
步骤S12:利用掩膜通过激光照射使所述有机搭接材料层的所述预定区域固化;
步骤S13:清除所述有机搭接材料层中未固化区域以形成所述有机搭接层。
在部分实施例中,用于形成所述透明导电层的材料为石墨烯、碳纳米管或纳米金属线。
在部分实施例中,形成所述有机搭接层的材料为丙烯基聚合物、硅基聚合物或环氧树脂基聚合物。
本申请的另一个实施方案提供一种OLED触摸屏,包括OLED封装件和层叠在所述OLED封装件的封装层上第一导电图案单元;
所述第一导电图案单元包括第一有机搭接层、第一透明导电层和第一水氧阻挡层;
所述第一有机搭接层层叠在所述封装层的预定区域上;
所述第一透明导电层包括第一透明导电区和第二透明导电区并且具有第一预定图案,所述第一透明导电区层叠在所述第一有机搭接层上,所述第二透明导电区层叠在所述封装层上未形成所述第一有机搭接层的区域;
所述第一水氧阻挡层层叠在所述第一透明导电层上并且具有所述第一预定图案。
在部分实施例中,所述第一导电图案单元还包括在所述第一有机搭接层和第一透明导电层之间的激光吸收层。
在部分实施例中,还包括层叠在所述第一导电图案单元上的第二导电图案单元,所述第二导电图案单元包括第二有机搭接层、第二透明导电层 和第二水氧阻挡层;
所述第二有机搭接层层叠在所述第一水氧保护层上;
所述第二透明导电层层叠在所述第二有机搭接层并且具有第二预定图案;
所述第二水氧阻挡层层叠在所述第二透明导电层上并且具有所述第二预定图案。
在部分实施例中,所述第二导电图案单元还包括在所述第二有机搭接层和第二透明导电层之间的激光吸收层。
在部分实施例中,在所述第一导电图案单元上依次层叠有多个第二导电图案单元;未直接层叠在所述第一导电图案单元上的第二导电图案单元中,所述第二有机搭接层层叠在相邻的第二导电图案单元的第二水氧保护层上。
在部分实施例中,在所述多个第二导电图案单元中的至少一个第二导电图案单元还包括在所述第二有机搭接层和所述第二透明导电层之间的激光吸收层。
在部分实施例中,所述透明导电层的材料为石墨烯、碳纳米管或纳米金属线。
在部分实施例中,形成所述有机搭接层的材料为丙烯基聚合物、硅基聚合物或环氧树脂基聚合物。
在本申请实施方式的OLED触摸屏由于不需要高精度的对位掩膜,制造工艺简单、高效。在采用酸蚀刻图形化工艺过程中,通过在封装层上形成有机搭接层,在蚀刻工艺中不容易被酸破坏,而且采用有机搭接层更有利于柔性屏的折叠变形。此外,在有机搭接层上形成有激光吸收层时,可采用激光蚀刻图形化,此时,有机搭接层起到了连接激光吸收层和封装层 的作用,使得生产成为可能。因此,通过本申请实施方式的工艺制造的OLED触摸屏的良品率高,产品寿命更长。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对本申请保护范围的限定。
图1A示出了一种OLED触摸屏的封装示例的截面示意图。
图1B示出了一种OLED触摸屏的封装示例的俯视示意图。
图2A至图5示出了制造OLED触摸屏的实施例的步骤的示意图。
图6A至图9示出了制造OLED触摸屏的另一实施例的步骤的示意图。
图10示出了OLED触摸屏的一个实施例的截面示意图。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
在下文中,可在本申请的各种实施例中使用的术语“包括”、“具有”及其同源词仅意在表示特定特征、数字、步骤、操作、元件、组件或前述项的组合,并且不应被理解为首先排除一个或更多个其它特征、数字、步骤、操作、元件、组件或前述项的组合的存在或增加一个或更多个特征、数字、步骤、操作、元件、组件或前述项的组合的可能性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示 例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
除非另有限定,否则在这里使用的所有术语(包括技术术语和科学术语)具有与本申请的各种实施例所属领域普通技术人员通常理解的含义相同的含义。所述术语(诸如在一般使用的词典中限定的术语)将被解释为具有与在相关技术领域中的语境含义相同的含义并且将不被解释为具有理想化的含义或过于正式的含义,除非在本申请的各种实施例中被清楚地限定。
本申请实施方案提供的OLED触摸屏的制造方法涉及OLED封装件。OLED封装件包括OLED器件和对其进行封装的封装层,封装层用于保证OLED器件内部良好的密封性,尽可能的减少OLED器件与外部环境中氧气、水汽的接触。OLED封装件可以是例如图1A和图1B所示的结构,需要说明的是,OLED封装件并不限于附图所示结构,并且图1A和图1B并非按照比例绘制,下同。OLED封装件10可包括基板20、有源区31、阳极32、OLED发光区33、阴极34和封装层40。有源区31、阳极32、OLED发光区33、阴极34在图1B的俯视图中位于各个区域30内。OLED封装件的制造过程不做详细描述。本申请的技术方案可适用于OLED触摸屏、AMOLED触摸屏、PMOLED触摸屏等。
基板20可以为例如玻璃基板、柔性基板。柔性基板可以采用高分子聚合物、金属薄片和超薄玻璃。阳极32可以为金、透明导电聚合物(如聚苯胺)和氧化铟锡(ITO)导电玻璃。OLED发光区33采用有机发光材 料制成,有机发光材料包括高分子聚合物和小分子有机化合物。高分子聚合物通常是导电共轭聚合物或半导体共轭聚合物。小分子有机化合物包括有机小分子发光材料和配合物发光材料。
阴极34可采用单层金属阴极、合金阴极、层状阴极和掺杂复合型阴极。层状阴极在发光层与金属电极之间加入一层阻挡层,如LiF、CsF、RbF等,可得到更高的发光效率和更好的I-V特性曲线。掺杂复合型电极将掺杂有低功函数金属的有机层夹在阴极和有机发光层之间,可大大改善器件性能。
封装层40可采用无机封装材料、有机封装材料和无机有机复合封装材料。优选无机有机复合封装材料,因为其兼具了无机封装材料水氧阻隔性好和有机封装材料成膜性好的优势。封装层40也可以通过原子层沉积(ALD)技术来制备不同类型薄膜,比如氧化铝、氧化铝/氧化硅双层等。
实施例1
本申请的一个实施方案提供一种OLED触摸屏的制造方法,包括以下步骤:步骤S10:在OLED封装件的封装层上的预定区域形成有机搭接层;步骤S20:在所述有机搭接层上以及所述封装层上未形成所述有机搭接层的区域涂布形成透明导电层;步骤S30:在所述透明导电层上形成水氧阻挡层;步骤S40:对所述透明导电层和所述水氧阻挡层进行蚀刻以形成导电图案单元。
参考图2A至图5,图2A和2B示出了步骤S10,在OLED封装件10的封装层40上的预定区域形成有机搭接层100。有机搭接层100可以主要用丙烯基聚合物、硅基聚合物或环氧树脂基聚合物形成,更优选使用聚甲基丙烯酸甲酯。有机搭接层100的厚度优选为1~5微米,例如可为1.2、1.5、 2、2.5、3.0、3.5、4或4.5微米。有机搭接层100用于结合封装层40和位于其上方的透明导电层300,即图3A中的第一透明导电区310。
有机搭接层100可以采用例如涂布、气相沉积方式形成。在使用气相沉积方式时,可使用气相沉积设备和掩膜,将有机搭接材料气相沉积到预定区域以形成有机搭接层100。由于在封装层上形成了有机搭接层100,避免后期在蚀刻过程中酸对于封装层的损伤,由此延长了OLED触摸屏的寿命。而且,采用有机搭接层更有利于柔性屏的折叠变形,也有利于延长柔性OLED触摸屏的寿命。
采用涂布方式时,可以首先在整个封装层40上涂布有机搭接材料,然后使用掩膜来控制其固化区域,例如在掩膜的遮挡下,通过例如UV激光或红外激光等将预定区域的有机搭接材料固化。在去除掩膜后,可采用例如有机溶剂将未固化的有机搭接材料去除,从而形成图2A和2B中的有机搭接层100。由于有机搭接层100厚度较厚,对于成膜均匀性和密度要求不高,因此,优选使用涂布方式,涂布速度快。
图3A和图3B示出了步骤S20,在有机搭接层100上以及封装层40上未形成所述有机搭接层100的区域涂布形成透明导电层300。透明导电层300包括第一透明导电区310和第二透明导电区320。第一透明导电区310层叠在所述第一有机搭接层上,第二透明导电区320层叠在所述封装层40上未形成有机搭接层100的区域。透明导电层300可以使用石墨烯、碳纳米管或纳米金属线,纳米金属线可采用例如纳米银线。透明导电层300的厚度优选为0.01~1微米,例如可为0.02、0.05、0.08、0.1、0.2、0.5或0.8微米。透明导电层300采用涂布方式形成。由于透明导电层厚度较厚,对于成膜均匀性和密度要求不高,即可成形,而且一般沉积/溅镀方法无法应用于石墨烯、碳纳米管、纳米金属线等透明导电材料,或者沉积/溅镀速度 过慢,因此,透明导电层使用涂布方式,涂布速度快。
图4A和图4B示出了步骤S30,在透明导电层300上形成水氧阻挡层400。水氧阻挡层400用于阻挡水汽及氧气的渗透,以保护透明导电层300。水氧阻挡层400也包括分别形成在第一透明导电区310和第二透明导电区320上的第一水氧阻挡层410和第二水氧阻挡层420。水氧阻挡层400可以主要使用无机材料形成,例如可选自氮化硅、二氧化硅和氧化铝等。水氧阻挡层400的厚度优选为0.01~2微米,例如可为0.02、0.05、0.08、0.1、0.2、0.5、0.8、1.0、1.2、1.5或1.8微米。
水氧阻挡层400可以采用例如涂布、气相沉积方式形成。在使用气相沉积方式时,使用气相沉积设备和掩膜,将水氧阻挡材料沉积到透明导电层300上。
在步骤S40中,利用掩膜对透明导电层300和所述水氧阻挡层400进行物理或化学蚀刻以形成导电图案,从而获得了如图5所示的单个导电图案单元。这里的蚀刻针对位于有机搭接层100上方的第一透明导电区310和第一水氧阻挡层410。
蚀刻后形成的单层导电图像包括有机搭接层100、具有预定图案的透明导电层300’和水氧阻挡层400’。有机搭接层100层叠在封装层40的预定区域上;具有预定图案的透明导电层300’包括第一透明导电区310’和第二透明导电区320,第一透明导电区310’层叠在有机搭接层100,第二透明导电区320层叠在封装层40上未形成所述有机搭接层100的区域;具有预定图案的水氧阻挡层400’层叠在透明导电层300’上。
实施例2
参考图6A至图9,与实施例1不同之处在于:在步骤S10之后,还形 成激光吸收层200,然后形成透明导电层300;在步骤S40中,在无需掩膜的情况下,利用激光直接对透明导电层300和水氧阻挡层400进行蚀刻。下面对不同之处进行详细描述。
如图6A和6B所示,在步骤S15中,在有机搭接层100上形成激光吸收层200,并且如图7所示,在步骤S20中,在激光吸收层200上以及封装层40上未形成有机搭接层100的区域涂布形成透明导电层300。有机搭接层100用于结合封装层40和位于其上方的激光吸收层200。如图9所示,在后续步骤S40中对水氧阻挡材料和透明导电材料利用激光进行蚀刻。激光吸收层可以使用紫外线吸收剂、红外线吸收剂等,紫外线吸收剂可以使用例如水杨酸酯类、二苯甲酮类、苯并***类、取代丙烯腈类、三嗪类、聚酰亚胺等。紫外线吸收剂可以与猝灭剂一起使用,起协同作用。猝灭剂可采用金属络合物,如二价镍络合物等。红外线吸收剂可以采用红外线吸收剂970、近红外吸收剂NIR等。
激光吸收层200可用于吸收蚀刻激光,以保护下面的OLED元器件。激光吸收层200的厚度优选为1~5微米,例如可为1.2、1.5、2、2.5、3.0、3.5、4或4.5微米。由于使用透明导电材料,不需要精密的掩膜,采用一般的激光设备即可完成制作,而且由于采用的是不需要掩膜的干法工艺,避免了像黄光工艺那样容易对封装层造成损伤。
激光吸收层200可以采用例如涂布、气相沉积方式形成。在使用气相沉积方式时,使用气相沉积设备和掩膜,将激光吸收材料沉积到预定区域以形成激光吸收层200。采用涂布方式时,可以首先在有机搭接层100以及封装层40上未形成有机搭接层100的区域涂布激光吸收材料,然后使用掩膜来控制其固化区域,例如在掩膜的遮挡下,通过例如UV激光或红外激光将预定区域的激光吸收材料固化。在去除掩膜后,可采用例如有机溶剂 将未固化的激光吸收材料去除,从而形成图6A和图6B中的激光吸收层200。
蚀刻后形成的单层导电图像包括有机搭接层100、激光吸收层200、具有预定图案的透明导电层300’和水氧阻挡层400’。如图7所示,激光吸收层200具有与有机搭接层100相同的图案。
实施例3
参考图10,与实施例2不同之处在于:在水氧阻挡层400上再次执行步骤S10、S20、S30和S40形成新的导电图案单元;并且在再次执行的步骤S40中,利用掩膜对所述透明导电层和所述水氧阻挡层进行物理或化学蚀刻。下面对不同之处进行详细描述。
紧邻封装层40的导电图案单元包括有机搭接层100、激光吸收层200、具有预定图案的透明导电层300’和水氧阻挡层400’,作为第一导电图案单元。新的导电图案单元还包括在水氧阻挡层400上依次层叠的有机搭接层500、透明导电层600和水氧阻挡层700,作为第二导电图案单元。新的导电图案单元与其下方的导电图案单元的的图案可不相同,下同。
此外,尽管未图示,但是也可以在水氧阻挡层400上再次执行步骤S10、S15、S20、S30和S40形成新的导电图案单元;并且在再次执行的步骤S40中,在无需掩膜的情况下,利用激光直接对所述透明导电层和所述水氧阻挡层进行蚀刻。新的导电图案单元还包括在水氧阻挡层400上依次层叠的有机搭接层、激光吸收层、透明导电层和水氧阻挡层,作为第二导电图案单元。
另外,尽管未图示,在形成第一导电图案单元后,也可以多次重复执行步骤S10、S15、S20、S30和S40和/或步骤S10、S20、S30和S40形成 多个预定数量的第二导电图案单元。因此,各个第二导电图案单元可以包括或不包括激光吸收层。此外,也可以在实施例1的单层导电图案单元(即第一导电图案单元不包含激光吸收层)上形成预定数量的第二导电图案单元。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (20)

  1. 一种OLED触摸屏的制造方法,其特征在于:包括以下步骤:
    步骤S10:在OLED封装件的封装层上的预定区域形成有机搭接层;
    步骤S20:在所述有机搭接层上以及所述封装层上未形成所述有机搭接层的区域涂布形成透明导电层;
    步骤S30:在所述透明导电层上形成水氧阻挡层;
    步骤S40:对所述透明导电层和所述水氧阻挡层进行蚀刻以形成导电图案单元。
  2. 根据权利要求1所述的OLED触摸屏的制造方法,其特征在于:还包括步骤S15:在所述有机搭接层上形成激光吸收层,并且在步骤S20中,在所述激光吸收层上以及所述封装层上未形成所述有机搭接层的区域涂布形成所述透明导电层。
  3. 根据权利要求2所述的OLED触摸屏的制造方法,其特征在于:通过重复执行步骤S10、S15、S20、S30和S40和/或重复执行步骤S10、S20、S30和S40形成预定数量的新的导电图案单元;
    其中,在重复执行步骤S10时,在最新的导电图案单元的水氧阻挡层上形成新的有机搭接层;在重复执行步骤S20时,在所述新的有机搭接层上或所述激光吸收层上涂布形成所述透明导电层。
  4. 根据权利要求1所述的OLED触摸屏的制造方法,其特征在于:通过重复执行步骤S10、S20、S30和S40形成预定数量的新的导电图案单元,其中,在重复执行步骤S10时,在最新的导电图案单元的水氧阻挡层上与所述预定区域对应的位置形成有机搭接层。
  5. 根据权利要求4所述的OLED触摸屏的制造方法,其特征在于:在 至少一个新的导电图案单元的形成过程中,还包括步骤S15:在所述有机搭接层上形成激光吸收层,并且在步骤S20中,在所述激光吸收层上涂布形成所述透明导电层。
  6. 根据权利要求3或4所述的OLED触摸屏的制造方法,其特征在于:形成一个新的导电图案单元。
  7. 根据权利要求1所述的OLED触摸屏的制造方法,其特征在于:在步骤S40中,利用掩膜对所述透明导电层和所述水氧阻挡层进行物理或化学蚀刻。
  8. 根据权利要求2所述的OLED触摸屏的制造方法,其特征在于:在步骤S40中,在无需掩膜的情况下,利用激光直接对所述透明导电层和所述水氧阻挡层进行蚀刻。
  9. 根据权利要求2所述的OLED触摸屏的制造方法,其特征在于:采用涂布或气相沉积方式形成所述有机搭接层、水氧阻挡层和激光吸收层。
  10. 根据权利要求1所述的OLED触摸屏的制造方法,其特征在于:步骤S10包括:
    步骤S11:在OLED封装件的封装层上涂布形成有机搭接材料层;
    步骤S12:利用掩膜通过激光照射使所述有机搭接材料层的所述预定区域固化;
    步骤S13:清除所述有机搭接材料层中未固化区域以形成所述有机搭接层。
  11. 根据权利要求1所述的OLED触摸屏的制造方法,其特征在于:用于形成所述透明导电层的材料为石墨烯、碳纳米管或纳米金属线。
  12. 根据权利要求1所述的OLED触摸屏的制造方法,其特征在于:用于形成所述有机搭接层的材料为丙烯基聚合物、硅基聚合物或环氧树脂 基聚合物。
  13. 一种OLED触摸屏,其特征在于:包括OLED封装件和层叠在所述OLED封装件的封装层上第一导电图案单元;
    所述第一导电图案单元包括第一有机搭接层、第一透明导电层和第一水氧阻挡层;
    所述第一有机搭接层层叠在所述封装层的预定区域上;
    所述第一透明导电层包括第一透明导电区和第二透明导电区并且具有第一预定图案,所述第一透明导电区层叠在所述第一有机搭接层上,所述第二透明导电区层叠在所述封装层上未形成所述第一有机搭接层的区域;
    所述第一水氧阻挡层层叠在所述第一透明导电层上并且具有所述第一预定图案。
  14. 根据权利要求13所述的OLED触摸屏,其特征在于:所述第一导电图案单元还包括在所述第一有机搭接层和第一透明导电层之间的激光吸收层。
  15. 根据权利要求13所述的OLED触摸屏,其特征在于:还包括层叠在所述第一导电图案单元上的第二导电图案单元,所述第二导电图案单元包括第二有机搭接层、第二透明导电层和第二水氧阻挡层;
    所述第二有机搭接层层叠在所述第一水氧保护层上;
    所述第二透明导电层层叠在所述第二有机搭接层并且具有第二预定图案;
    所述第二水氧阻挡层层叠在所述第二透明导电层上并且具有所述第二预定图案。
  16. 根据权利要求15所述的OLED触摸屏,其特征在于:所述第二导电图案单元还包括在所述第二有机搭接层和第二透明导电层之间的激光吸 收层。
  17. 根据权利要求15所述的OLED触摸屏,其特征在于:在所述第一导电图案单元上依次层叠有多个第二导电图案单元;未直接层叠在所述第一导电图案单元上的第二导电图案单元中,所述第二有机搭接层层叠在相邻的第二导电图案单元的第二水氧保护层上。
  18. 根据权利要求17所述的OLED触摸屏,其特征在于:在所述多个第二导电图案单元中的至少一个第二导电图案单元还包括在所述第二有机搭接层和所述第二透明导电层之间的激光吸收层。
  19. 根据权利要求13所述的OLED触摸屏,其特征在于:所述透明导电层的材料为石墨烯、碳纳米管或纳米金属线。
  20. 根据权利要求13所述的OLED触摸屏,其特征在于:所述有机搭接层的材料为丙烯基聚合物、硅基聚合物或环氧树脂基聚合物。
PCT/CN2019/082133 2019-04-10 2019-04-10 Oled触摸屏及其制造方法 WO2020206642A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/082133 WO2020206642A1 (zh) 2019-04-10 2019-04-10 Oled触摸屏及其制造方法
CN201980079844.0A CN113330403A (zh) 2019-04-10 2019-04-10 Oled触摸屏及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/082133 WO2020206642A1 (zh) 2019-04-10 2019-04-10 Oled触摸屏及其制造方法

Publications (1)

Publication Number Publication Date
WO2020206642A1 true WO2020206642A1 (zh) 2020-10-15

Family

ID=72751800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082133 WO2020206642A1 (zh) 2019-04-10 2019-04-10 Oled触摸屏及其制造方法

Country Status (2)

Country Link
CN (1) CN113330403A (zh)
WO (1) WO2020206642A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114546159A (zh) * 2022-01-14 2022-05-27 湖南德福隆科技有限责任公司 一种使用寿命长的触摸屏

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101889351A (zh) * 2007-12-05 2010-11-17 株式会社钟化 集成型薄膜光电转换装置及其制造方法
CN102820092A (zh) * 2011-06-09 2012-12-12 天津富纳源创科技有限公司 图案化导电元件的制备方法
US20140198266A1 (en) * 2013-01-16 2014-07-17 Samsung Display Co., Ltd. Touch screen panel and method for manufacturing the same
CN104423746A (zh) * 2013-09-02 2015-03-18 天津富纳源创科技有限公司 触摸屏的制备方法
CN107820595A (zh) * 2016-11-28 2018-03-20 深圳市柔宇科技有限公司 触控屏及柔性显示器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129082B (zh) * 2016-06-24 2019-04-12 上海天马微电子有限公司 一种触控显示面板和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101889351A (zh) * 2007-12-05 2010-11-17 株式会社钟化 集成型薄膜光电转换装置及其制造方法
CN102820092A (zh) * 2011-06-09 2012-12-12 天津富纳源创科技有限公司 图案化导电元件的制备方法
US20140198266A1 (en) * 2013-01-16 2014-07-17 Samsung Display Co., Ltd. Touch screen panel and method for manufacturing the same
CN104423746A (zh) * 2013-09-02 2015-03-18 天津富纳源创科技有限公司 触摸屏的制备方法
CN107820595A (zh) * 2016-11-28 2018-03-20 深圳市柔宇科技有限公司 触控屏及柔性显示器

Also Published As

Publication number Publication date
CN113330403A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2016033931A1 (zh) 显示面板及其制备方法和显示装置
US9722205B2 (en) Active-matrix organic light-emitting diode (AMOLED) display panel, manufacturing method thereof and display device
JP2019536249A (ja) 放射領域上に配置された導電性コーティングを含むデバイスおよびそのための方法
US9954170B2 (en) Recess structure for print deposition process and manufacturing method thereof
US20180212187A1 (en) Packaging method for organic semiconductor device
WO2015096764A1 (zh) 一种触控显示装置及其制备方法
TWM529276U (zh) 顯示模組封裝結構
WO2016019638A1 (zh) 像素单元及其制作方法、显示面板、显示装置
TW201526225A (zh) 一種觸控顯示裝置及其製備方法
KR102185577B1 (ko) Oled 기판 및 그 제조 방법
KR102076034B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
US11289685B2 (en) Display panel with patterned light absorbing layer, and manufacturing method thereof
TW201308705A (zh) 有機發光裝置及其製造方法
WO2019051940A1 (zh) 柔性oled面板的制作方法
WO2018232949A1 (zh) Oled面板的封装方法
WO2016026225A1 (zh) 一种有机发光显示装置及有机发光二极管的封装方法
US11258038B2 (en) Flexible organic light-emitting diode (OLED) device of reduced stess at bending place and fabrication method thereof
KR101654360B1 (ko) 유기 발광소자용 기판 및 그 제조방법
KR20100124012A (ko) 플렉시블 디스플레이의 기판 처리 방법
JP2002252082A (ja) 表示装置及び表示装置の製造方法
CN110048024B (zh) 显示基板及其制造方法、显示装置
WO2020206642A1 (zh) Oled触摸屏及其制造方法
KR20130030148A (ko) 유기 전계 발광 표시 패널 및 그의 제조 방법
US20190221614A1 (en) Display panel and method of manufacturing the same
TWI686654B (zh) 顯示面板的製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923832

Country of ref document: EP

Kind code of ref document: A1