WO2020206599A1 - 一种利用水合物法分离氙气氪气混合气的***及方法 - Google Patents

一种利用水合物法分离氙气氪气混合气的***及方法 Download PDF

Info

Publication number
WO2020206599A1
WO2020206599A1 PCT/CN2019/081844 CN2019081844W WO2020206599A1 WO 2020206599 A1 WO2020206599 A1 WO 2020206599A1 CN 2019081844 W CN2019081844 W CN 2019081844W WO 2020206599 A1 WO2020206599 A1 WO 2020206599A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
water
tower
hydrate
xenon
Prior art date
Application number
PCT/CN2019/081844
Other languages
English (en)
French (fr)
Inventor
宋永臣
赵佳飞
国宪伟
杨磊
刘卫国
杨明军
李洋辉
凌铮
刘瑜
张毅
王大勇
蒋兰兰
赵越超
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/968,817 priority Critical patent/US11389766B2/en
Priority to PCT/CN2019/081844 priority patent/WO2020206599A1/zh
Publication of WO2020206599A1 publication Critical patent/WO2020206599A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0094Combined chemical and physical processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1418Recovery of products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/11Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2319/00Membrane assemblies within one housing
    • B01D2319/06Use of membranes of different materials or properties within one module

Definitions

  • the invention belongs to the technical application field of hydrates, and relates to a system and method for separating xenon and krypton mixed gas by using a hydrate method.
  • Nuclear energy has the characteristics of no emissions and high energy density, and has become a potential new energy source to replace fossil fuels.
  • the highly radioactive waste gas generated during the utilization of nuclear energy must be recovered from nuclear waste and sealed in a pressure vessel until the gas is no longer radioactive.
  • the volume ratio of xenon (Xe) to krypton (Kr) is 91:9
  • the radioactive element 85 Kr has a half-life of 10.8 years
  • the half-life of 127 Xe is relatively short (36.3 days). Radioactive elements are easy to cause air pollution and endanger human health, so they need to be recovered from waste.
  • xenon is an important rare resource, widely used in research fields such as semiconductors, lasers, and medical equipment.
  • the main source of xenon is captured from the air, and its concentration in the air is 0.09 ppm.
  • the separation methods of xenon and krypton mainly include: cryogenic distillation and solid adsorption separation.
  • the principle of cryogenic distillation is to use the different boiling points of xenon and krypton (xenon: -108.12 °C, krypton: -153.22 °C), and through multiple partial condensation and partial evaporation processes, the components are separated in the distillation tower.
  • This method is technically difficult, and the production operation procedures are extremely strict.
  • the equipment needs to withstand the test of high pressure and low temperature, and the energy consumption is huge.
  • the solid adsorption separation method uses the selective adsorption properties of adsorbents to achieve separation or purification of gas components. The method has low energy consumption and high separation efficiency, but the preparation cost is expensive, and it is not suitable for large-scale commercial production.
  • the hydrate method is a new type of gas separation technology.
  • the principle is to use different gases to form hydrates with different phase equilibrium conditions and different degrees of difficulty.
  • the components that are easy to form hydrates in the mixed gas are preferentially combined with water to form hydrates.
  • the gas molecules are wrapped in a cage structure formed by water molecules. , So as to achieve effective separation of mixed gas.
  • the corresponding phase equilibrium pressures of xenon hydrate and krypton hydrate are 0.17 and 1.82 MPa, respectively.
  • the huge difference in phase equilibrium provides a theoretical basis for the separation of xenon and krypton by the hydrate method.
  • the main purpose of the present invention is to provide a method and system for separating xenon and krypton gas mixture by using hydrate method
  • a system for separating a mixture of xenon and krypton by a hydrate method comprising a gas hydrate generating unit, a heat exchange unit, and a gas-water separation unit;
  • the main equipment of the gas hydrate generation unit is the reaction tower.
  • the pre-cooled xenon and krypton gas mixture is injected into the tower from the bottom of the reaction tower through gate valve A and flow control valve A. Place the gas at the bottom of the perforated tray where the mixture first contacts.
  • Liquid separation membrane The interface area of the gas-liquid separation membrane is larger than the cross-sectional area of the reaction tower, and it is built in an inclined form between the perforated tray and the tower bottom to prevent the hydrate slurry from blocking the inlet of the tower bottom, and at the same time to guide the hydrate slurry Collection of
  • the xenon gas contacts the water attached to the perforated tower plate to generate xenon hydrate particles, and the residual gas is discharged from the top of the reaction tower.
  • a back pressure control valve is installed at the top of the reaction tower to stabilize the reaction. The pressure in the tower ensures the continuous generation of xenon hydrate in the tower; pre-cooled water is injected from the top of the tower through gate valve B and flow control valve F.
  • the hydrate particles on the porous tray are injected It is flushed into the space enclosed by the gas-liquid separation membrane and the tower wall, converges into a hydrate slurry, and enters the heat exchange unit through the flow regulating valve B.
  • the main equipment of the heat exchange unit is heat exchanger A and heat exchanger B.
  • the hydrate slurry passes through the fluid splitting device, it is divided into two paths and enters the heat exchange unit; one of the hydrate slurry passes through the flow regulating valve C as a cold fluid
  • the transfer pump B enters the heat exchanger B after being pressurized.
  • the hot fluid of the heat exchanger B is the split water from the gas-water separation unit.
  • the hydrate particles in the slurry absorb the split water and carry it
  • the hydrate slurry is transformed into a two-phase flow of gas and water, and enters the gas-water separation unit through the transfer pump E.
  • the cooled decomposed water is injected into the reaction tower through the transfer pump G and the flow regulating valve F; the other hydrate slurry flows through the flow
  • the regulating valve D and the transfer pump A enter the heat exchanger A as the cold fluid.
  • the hot fluid of the heat exchanger A is a mixture of xenon and krypton gas at room temperature pressurized by the transfer pump D.
  • the slurry The hydrate particles in the hydrate are decomposed by absorbing the heat carried by the mixed gas at room temperature.
  • the hydrate slurry is transformed into a gas-water two-phase flow, and enters the gas-water separation unit through the transfer pump E.
  • the cooled mixed gas is passed through the transfer pump C and the flow control valve A.
  • the bottom of the tower enters the reaction tower.
  • the heat exchange unit makes full use of the heat carried by the raw materials (the mixture of xenon and krypton at room temperature, decomposed water), and realizes hydrate decomposition and raw material pre-cooling at a low energy cost.
  • the main equipment of the gas-water separation unit is a gas-water separation tower.
  • the gas-water two-phase flow containing xenon gas is pressurized by the delivery pump E and injected from the middle of the gas-water separation tower. Under the action of gravity, the xenon gas is separated from the split water , The xenon gas rises to the top of the tower, is produced by the flow control valve E after the drying bed dehumidification treatment; the decomposition water sinks to the bottom of the tower, is pressurized by the transfer pump F and enters the heat exchanger B to participate in heat exchange. Hydrate decomposition water contains a large number of xenon micro-nano bubbles, and the decomposed water is injected back into the reaction tower to participate in the formation of hydrate, which can greatly increase the formation rate of xenon hydrate.
  • the above-mentioned device also includes refrigerators A and B under the condition of larger mixed gas processing capacity, which are respectively used to treat the xenon and krypton mixture from heat exchanger A and the decomposed water of heat exchanger B.
  • the electric heating device performs auxiliary heating on the gas-water two-phase flow from heat exchanger A and heat exchanger B to ensure hydration in the fluid The particles are completely decomposed.
  • the above-mentioned porous tray specifically refers to the use of powder metallurgy or electroplating to obtain plate-shaped foamed copper with a porosity of 40% to 50%; dry etching is used to surface the foamed copper to increase the metal surface roughness, which is hydration Object nucleation provides more sites.
  • the present invention also provides a method for separating xenon and krypton gas mixture by using the hydrate method.
  • the above-mentioned device includes the following steps:
  • Step 1 Normal temperature water is injected from the side of the top of the reaction tower, flows through all the porous trays from top to bottom, and then gathers in the space enclosed by the gas-liquid separation membrane and the tower wall, and passes through the fluid splitting device, heat exchanger A and heat exchange After the device B enters and is stored in the gas-water separation tower, it is used as the thermal fluid of the heat exchanger when the system is started.
  • Step 2 Adjust the back pressure control valve at the top of the reaction tower to the preset operating pressure; pre-cooled water is injected from the side of the reaction tower, after wetting the perforated trays, the pre-cooled xenon and krypton mixture is injected from the bottom of the tower, and the water is in the porous Xenon gas hydrate is formed on the tray, and the inflow water flow is increased through the flow regulating valve F, so that the water washes the hydrate particles on the tray into the space enclosed by the gas-liquid separation membrane and the tower wall, and gathers into hydrate slurry into the exchange Thermal unit; residual gas is discharged from the top of the tower;
  • Step 3 Start the fluid splitting device to divide the hydrate slurry into two paths; one of them enters the heat exchanger B as a cold fluid, starts the flow regulating valve F at the bottom of the gas-water separation tower, and the pre-stored room temperature water enters the heat exchange as the hot fluid
  • the hydrate particles in the cold fluid are decomposed and converted into a gas-water two-phase flow into the gas-water separation unit.
  • the cooled water is injected into the reaction tower through a transfer pump.
  • the gas from the gas-water separation unit Decomposed water replaces normal temperature water and enters heat exchanger B as a hot fluid for heat exchange; the other hydrate slurry enters heat exchanger A as a cold fluid, starts delivery pump D, and injects the mixture to be separated into the heat exchanger as hot fluid A.
  • the hydrate particles in the cold fluid are decomposed and converted into a gas-water two-phase flow into the gas-water separation unit, and the cooled mixed gas is injected into the reaction tower through the transfer pump C;
  • Step 4 Start the transfer pump E to inject the gas-water two-phase flow from the middle of the gas-water separation tower.
  • the xenon gas is separated from the split water under the action of gravity, and the xenon gas goes up to the drying bed and is produced after dehumidification treatment; split water Converge at the bottom of the tower and enter the heat exchanger B as a hot fluid through the transfer pump F.
  • the beneficial effects of the present invention are: to achieve continuous separation of xenon and krypton at 0 °C and lower pressure (0.5-2 MPa), using foamed copper plates as perforated trays and surface treatment on them, which can increase xenon hydrate
  • the formation site accelerates the rate of hydrate formation, and fluidizes the hydrate particles to achieve continuous separation of xenon and krypton; use the mixed gas source and the heat carried by the water to decompose xenon hydrate, avoiding conventional hydrate thermal decomposition
  • the refrigerator and electric heating equipment are used as auxiliary heat exchange equipment, which can make the separation system meet the needs of xenon and krypton separation under large processing capacity; the system has low pressure resistance and heat preservation requirements of the equipment, and It can achieve continuous separation of xenon and krypton under low energy consumption, which has great practical application value.
  • Figure 1 is a schematic diagram of the system structure of the present invention
  • Figure 2 is a schematic diagram of the system structure designed to deal with larger gas processing capacity according to the present invention
  • the ratio (v/v) of the mixture of xenon and krypton in this embodiment is Xe: 20%, Kr: 80%, that is, the intermediate product obtained in the process of capturing xenon from air; because the proportion of xenon is low, it is necessary to The mixed gas injection flow rate is controlled in a lower range to ensure that xenon stays in the tower for enough time to form hydrate with water, so the system structure diagram shown in Figure 1 is selected
  • the water washes the hydrate particles on the tray into the space enclosed by the gas-liquid separation membrane and the tower wall, and converges into hydrate slurry and enters the heat exchange unit; the residual gas is discharged from the top of the tower; the fluid split device is activated to remove the hydrate slurry Divided into two paths; one of them enters the heat exchanger B7-2 as a cold fluid, starts the transfer pump F6-6 at the bottom of the gas-water separation tower, and the pre-stored room temperature water (20 °C) enters the heat exchanger B7-2 as the hot fluid, After heat exchange, the hydrate particles in the cold fluid are decomposed and converted into a gas-water two-phase flow into the gas-water separation unit.
  • the cooled water (0 °C) is injected into the reaction tower through the transfer pump. After the entire system runs, it comes from the gas-water separation unit.
  • the decomposed water replaces normal temperature water and enters the heat exchanger B as the hot fluid for heat exchange; the other hydrate slurry enters the heat exchanger A7-1 as the cold fluid, and the mixed gas to be separated (20 °C) enters the heat exchanger as the hot fluid.
  • Heater A7-1 after heat exchange, the hydrate particles in the cold fluid are decomposed and converted into a gas-water two-phase flow into the gas-water separation unit.
  • the cooled mixed gas (0 °C) is injected into the reaction tower through the transfer pump; the transfer pump is started , The gas-water two-phase flow is injected from the middle position of the gas-water separation tower, the xenon gas is separated from the decomposed water under the action of gravity, and the xenon gas goes up to the drying bed and is produced after dehumidification treatment; the decomposed water gathers at the bottom of the tower and is transported The pump enters the heat exchanger B7-2 as a hot fluid.
  • the ratio (v/v) of the xenon and krypton mixed gas components (v/v) is Xe: 91%, Kr: 9%, that is, the ratio of xenon to krypton in the exhaust gas discharged from the nuclear industry; because the proportion of xenon is higher, it can be increased
  • the gas injection flow rate is used to increase the gas processing capacity of the system. Considering that there are many xenon hydrate particles in the hydrate slurry produced in the reaction tower, the temperature of the fluid produced after only relying on the heat exchange of the heat exchanger cannot meet the requirements of the working conditions, so it is adopted
  • Figure 2 shows the system structure diagram.
  • pre-cooling water (0°C) is injected from the side of the reaction tower, after wetting the perforated trays, pre-cooling the xenon and krypton gas mixture (0°C) It is injected from the bottom of the tower to form xenon hydrate on the porous tray with water, and the flow of water is increased through the flow regulating valve F5-7, so that the water washes the hydrate particles on the tray to the gas-liquid
  • the fluid splitting device is activated to divide the hydrate slurry into two paths; one of them enters the heat exchanger B as a cold fluid, and the gas-water separation tower is started
  • the pre-stored room temperature water (20°C) enters the heat exchanger B as the hot fluid.
  • the hydrate particles in the cold fluid are completely decomposed and converted into gas The water two-phase flow enters the gas-water separation unit.
  • the decomposed water from the gas-water separation unit replaces Normal temperature water enters the heat exchanger B7-2 as the hot fluid for heat exchange; the other hydrate slurry enters the heat exchanger A7-1 as the cold fluid, and the mixed gas to be separated (20°C) enters the heat exchanger as the hot fluid A7-1: After the auxiliary heating by the heat exchange and electric heating equipment 12, the hydrate particles in the cold fluid are decomposed and converted into a gas-water two-phase flow into the gas-water separation unit.
  • the mixed gas is passed through the heat exchange and the refrigerator A11-1 After auxiliary cooling, the temperature drops to (0°C) and is injected into the reaction tower; start the transfer pump E to inject the gas-water two-phase flow from the middle of the gas-water separation tower, the xenon gas is separated from the decomposed water under the action of gravity, and the xenon gas goes up to dryness
  • the bed is produced after dehumidification treatment; the decomposed water gathers at the bottom of the tower and enters the heat exchanger B7-2 as a hot fluid through the transfer pump F.
  • the xenon gas can be efficiently separated in the form of hydrate under the working condition of large gas processing capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种利用水合物法分离氙气氪气混合气的***及其操作方法,***包括气体水合物生成单元,换热单元,气水分离单元;气体水合物生成单元的主要设备为反应塔(1),在混合气最先接触的多孔塔板(3)底部,放置气液分离膜(2),混合气体在反应塔内上行过程中,氙气与附着在多孔塔板(3)上的水接触生成氙气水合物颗粒;换热单元的主要设备为换热器A(7-1)和换热器B(7-2);气水分离单元的主要设备为气水分离塔(8),含氙气的气水两相流经输送泵E(6-5)加压后由气水分离塔(8)的中部位置注入,在重力作用下,氙气与分解水分离,其中氙气上升至塔顶处,经过干燥床(9)脱湿处理后由流量调节阀E(5-6)产出;分解水下沉至塔底,经过输送泵F(6-6)加压后由进入换热器B(7-2)参与热交换。

Description

一种利用水合物法分离氙气氪气混合气的***及方法 技术领域
本发明属于水合物技术应用领域,涉及一种利用水合物法分离氙气氪气混合气的***及方法。
背景技术
核能具有无排放、高能量密度等特点,成为潜在的取代化石燃料的新能源。然而,在核能利用过程中产生的高放射性废气必须从核废料中回收并封存到压力容器内,直至这些气体不再具有放射性。在这些放射性废气中,氙气(Xe)与氪气(Kr)的体积比为91:9,放射性元素 85Kr具有长达10.8年的半衰期, 127Xe的半衰期相对较短(36.3天),上述的放射性元素易造成空气污染及危害人类健康,因此需从废料中回收。此外,氙气(Xe)是一种重要的稀有资源,广泛应用在半导体、激光、医疗设备等研究领域。目前氙气的主要来源为从空气中捕集,其在空气的浓度为0.09 ppm。工业上较为成熟的方法是采用低温蒸馏从空气中获得高纯度的的氙气和氪气(Kr),空气液化后在蒸馏塔中不同温度下获得各产品,最终获得氙气氪气混合气(氙气/氪气=20/80,v/v)。如果能从核工业废气中将氙气从氪气中分离出来,不仅减少废气处理量,更能增加氙气来源,提高氙气产量。
目前,氙气氪气的分离方法主要包括:低温蒸馏和固体吸附分离。低温蒸馏的原理是利用氙气氪气沸点不同(氙气:-108.12 °C,氪气:-153.22 °C),通过多次的部分冷凝和部分蒸发的过程,在精馏塔内使组分分离。此方法技术难度大,生产操作程序要求极为严格。设备需要经受高压、低温考验,而且能耗巨大。固体吸附分离方法是利用吸附剂的选择性吸附属性,实现对气体组分的分离或提纯。该方法生成能耗低、分离效率高,但是制备成本昂贵,不适于大规模的商业化生产。
水合物法是一种新型气体分离技术。其原理是利用不同气体形成水合物的相平衡条件及难易程度不同,将混合气中易生成水合物的组分优先与水结合生成水合物,气体分子包裹在水分子形成的笼型结构中,从而实现混合气的有效分离。在2°C的温度条件下,氙气水合物、氪气水合物对应相平衡压力分别为0.17、1.82 MPa,巨大的相平衡差别为水合物法分离氙气氪气提供了理论依据。
技术问题
本发明的主要目的在于提供一种利用水合物法分离氙气氪气混合气的方法及***
技术解决方案
本发明是通过以下技术方案实现的:
一种利用水合物法分离氙气氪气混合气的***,包括气体水合物生成单元,换热单元,气水分离单元;
气体水合物生成单元的主要设备为反应塔,预冷的氙气氪气混合气从反应塔底部经闸阀A以及流量调节阀A注入塔内,在混合气最先接触的多孔塔板底部,放置气液分离膜,气液分离膜界面面积大于反应塔横截面面积,并以倾斜形式搭建在多孔塔板和塔底之间,用于防止水合物浆液堵塞塔底进气口,同时引导水合物浆液的汇集;
混合气体在反应塔内上行过程中,氙气与附着在多孔塔板上的水接触生成氙气水合物颗粒,残余气从反应塔顶排出,反应塔顶出口处安装背压控制阀,用于稳定反应塔内气压,保证氙气水合物在塔内的持续生成;预冷水从塔顶经闸阀B以及流量调节阀F注入,一方面用于生成水合物,另一方面将多孔塔板上的水合物颗粒冲刷至气液分离膜与塔壁围成的空间中,汇聚成水合物浆液,经流量调节阀B进入换热单元。
所述换热单元的主要设备为换热器A和换热器B,水合物浆液经流体分流装置后,分为两路进入换热单元;其中一路水合物浆液作为冷流体经流量调节阀C以及输送泵B加压后进入换热器B,换热器B的热流体为来自气水分离单元的分解水,通过冷热流体之间的热交换,浆液中的水合物颗粒吸收分解水携带的热量而分解,水合物浆液转化为气水两相流,经输送泵E进入气水分离单元,冷却的分解水经输送泵G及流量调节阀F注入反应塔;另一路水合物浆液经流量调节阀D及输送泵A作为冷流体进入换热器A,换热器A的热流体为经过输送泵D加压后的常温氙气氪气混合气,通过冷热流体之间的热交换,浆液中的水合物颗粒吸收常温混合气携带的热量而分解,水合物浆液转化为气水两相流,经输送泵E进入气水分离单元,冷却的混合气经输送泵C及流量调节阀A由塔底进入反应塔。所述换热单元充分利用原料(常温氙气氪气混合气、分解水)携带的热量,以较低的能耗代价实现水合物分解和原料预冷。
所述气水分离单元的主要设备为气水分离塔,含氙气的气水两相流经输送泵E加压后由气水分离塔的中部位置注入,在重力作用下,氙气与分解水分离,其中氙气上升至塔顶处,经过干燥床脱湿处理后由流量调节阀E产出;分解水下沉至塔底,经过输送泵F加压后由进入换热器B参与热交换。水合物分解水含有大量的氙气微纳米气泡,将分解水返注反应塔参与水合物生成,可以极大提高氙气水合物生成速率。
进一步地,上述装置还包括在较大混合气处理量的工况下,还包括制冷器A、B,分别用于对来自换热器A的氙气氪气混合气、换热器B的分解水进行辅助冷却,确保混合气、分解水的预冷温度达到工况设定温度;电加热设备对来自换热器A、换热器B的气水两相流进行辅助加热,确保流体中的水合物颗粒完全分解。
进一步地,上述多孔塔板特指采用粉末冶金法或者电镀法获得孔隙度在40%~50%的板状泡沫铜;采用干腐蚀法对泡沫铜进行表面处理,增加金属表面粗糙度,为水合物成核提供更多位点。
本发明还提供一种利用水合物法分离氙气氪气混合气的方法,利用上述装置,包括如下步骤:
步骤1,常温水从反应塔顶侧面注入,自上而下流经所有多孔塔板后,汇聚在气液分离膜与塔壁围成的空间中,经流体分流装置、换热器A和换热器B后进入并储存在气水分离塔,作为***启动时换热器的热流体。
步骤2,调节反应塔顶处背压控制阀至预设工况压力;预冷水从反应塔侧面注入,润湿多孔塔板后,预冷氙气氪气混合气从塔底注入,与水在多孔塔板上生成氙气水合物,通过流量调节阀F增加进水流量,使水将塔板上的水合物颗粒冲刷至气液分离膜与塔壁围成的空间中,汇聚成水合物浆液进入换热单元;残余气从塔顶排出;
步骤3,启动流体分流装置,将水合物浆液分成两路;其中一路作为冷流体进入换热器B,启动气水分离塔底处的流量调节阀F,预存的常温水作为热流体进入换热器B,经热交换,冷流体中的水合物颗粒分解,转化为气水两相流进入气水分离单元,冷却的水经输送泵注入反应塔,整个***运行后,来自气水分离单元的分解水替代常温水,作为热流体进入换热器B进行换热;另一路水合物浆液作为冷流体进入换热器A,启动输送泵D,将待分离的混合气作为热流体注入换热器A,经热交换,冷流体中的水合物颗粒分解,转化为气水两相流进入气水分离单元,冷却的混合气经输送泵C注入反应塔;
步骤4,启动输送泵E,使气水两相流从气水分离塔的中部位置注入,氙气与分解水在重力作用下分离,氙气上行至干燥床,经脱湿处理后产出;分解水在塔底汇聚,通过输送泵F作为热流体进入换热器B。
有益效果
本发明的有益效果是:实现氙气氪气在0 ℃、较低压力(0.5-2 MPa)下的连续分离,以泡沫铜板作为多孔塔板,并对其进行表面处理,既能增加氙气水合物生成位点,加快水合物生成速率,又能使水合物颗粒流态化,实现氙气氪气连续分离;利用混合气气源以及分解水携带的热量分解氙气水合物,避免了常规水合物热分解所造成的能源消耗;同时,制冷器以及电加热设备作为辅助热交换设备,可以使分离***满足大处理量下的氙气氪气分离需求;该***对装备的耐压、保温要求较低,又能实现低能耗下的氙气氪气连续分离,具有极大的现实应用价值。
附图说明
图1是本发明***结构示意图;
图2是本发明应对较大气体处理量时设计的***结构示意图;
图中:1反应塔;2气液分离膜;3多孔塔板;4流体分流装置;5-1流量调节阀A;5-2背压控制阀;5-3流量调节阀B;5-4流量调节阀C;5-5流量调节阀D;5-6流量调节阀E;5-7流量调节阀F;6-1输送泵A;6-2输送泵B;6-3输送泵C;6-4输送泵D;6-5输送泵E;6-6输送泵F;6-7输送泵G;7-1换热器A;7-2换热器B;8气水分离塔;9干燥床;10-1 闸阀A;10-2 闸阀B;11-1制冷器A;11-2制冷器B;12电加热设备。
本发明的实施方式
具体实施方式
以下结合附图和具体的实施例对本发明作进一步的详细说明:
实施例 1
本实施例分离氙气氪气混合气组分比例(v/v)为Xe:20%、Kr:80%,即从空气捕集氙气过程中,得到的中间产品;由于氙气比例较低,需要将混合气注入流量控制在较低范围内,保证氙气在塔内停留足够时间与水生成水合物,故选择附图一所示***结构图
具体步骤如下:常温水(20 ℃)从反应塔1顶侧面注入,自上而下流经所有多孔塔板3后,汇聚在气液分离膜2与塔壁围成的空间中,经流体分流装置、换热器A和B后进入并储存在气水分离塔,作为***启动时换热器的热流体。调节反应塔顶处背压控制阀5-2至预设工况压力(1.5 MPa);预冷水(0℃)从反应塔侧面注入,润湿多孔塔板后,预冷氙气氪气混合气(0℃)从塔底注入,与水在多孔塔板上生成氙气水合物,调节流量调节阀A5-1将注气流量控制在较低范围,通过流量调节阀F5-7增加进水流量,使水将塔板上的水合物颗粒冲刷至气液分离膜与塔壁围成的空间中,汇聚成水合物浆液进入换热单元;残余气从塔顶排出;启动流体分流装置,将水合物浆液分成两路;其中一路作为冷流体进入换热器B7-2,启动气水分离塔底处的输送泵F6-6,预存的常温水(20 ℃)作为热流体进入换热器B7-2,经热交换,冷流体中的水合物颗粒分解,转化为气水两相流进入气水分离单元,冷却的水(0 ℃)经输送泵注入反应塔,整个***运行后,来自气水分离单元的分解水替代常温水,作为热流体进入换热器B进行换热;另一路水合物浆液作为冷流体进入换热器A7-1,同时待分离的混合气(20 ℃)作为热流体进入换热器A7-1,经热交换,冷流体中的水合物颗粒分解,转化为气水两相流进入气水分离单元,冷却的混合气(0 ℃)经输送泵注入反应塔;启动输送泵,使气水两相流从气水分离塔的中部位置注入,氙气与分解水在重力作用下分离,氙气上行至干燥床,经脱湿处理后产出;分解水在塔底汇聚,通过输送泵作为热流体进入换热器B7-2。通过控制反应塔内压力以及混合气注入流量,确保含量仅为20%的Xe能够从混合气中以水合物形式有效分离出来。
实施例 2
本实施例分离氙气氪气混合气组分比例(v/v)为Xe:91%、Kr:9%,即从核工业排放的废气中氙气与氪气比例;由于氙气比例较高,可以增加注气流量,以此提高***气体处理量,考虑产自反应塔的水合物浆液中氙气水合物颗粒较多,只依靠换热器换热后产出的流体温度无法满足工况要求,因此采用图二所示***结构图。
具体步骤如下:常温水(20 ℃)从反应塔1顶侧面注入,自上而下流经所有多孔塔板3后,汇聚在气液分离膜2与塔壁围成的空间中,经流体分流装置、换热器A和换热器B后进入并储存在气水分离塔,作为***启动时换热器的热流体。调节反应塔顶处背压控制阀至预设工况压力(0.5 MPa);预冷水(0℃)从反应塔侧面注入,润湿多孔塔板后,预冷氙气氪气混合气(0℃)从塔底注入,与水在多孔塔板上生成氙气水合物,通过流量调节阀F5-7增加进水流量,使水将塔板上的水合物颗粒冲刷至气液分离膜与塔壁围成的空间中,汇聚成水合物浆液进入换热单元;残余气从塔顶排出;启动流体分流装置,将水合物浆液分成两路;其中一路作为冷流体进入换热器B,启动气水分离塔底处的输送泵F6-6,预存的常温水(20℃)作为热流体进入换热器B,经热交换和电加热设备辅助加热后,冷流体中的水合物颗粒完全分解,转化为气水两相流进入气水分离单元,常温水经热交换和制冷器B11-2辅助冷却后,温度降至(0℃)注入反应塔,整个***运行后,来自气水分离单元的分解水替代常温水,作为热流体进入换热器B7-2进行换热;另一路水合物浆液作为冷流体进入换热器A7-1,同时待分离的混合气(20℃)作为热流体进入换热器A7-1,经热交换和电加热设备12辅助加热后,冷流体中的水合物颗粒分解,转化为气水两相流进入气水分离单元,混合气经经热交换和制冷器A11-1辅助冷却后,温度降至(0℃)注入反应塔;启动输送泵E,使气水两相流从气水分离塔的中部位置注入,氙气与分解水在重力作用下分离,氙气上行至干燥床,经脱湿处理后产出;分解水在塔底汇聚,通过输送泵F作为热流体进入换热器B7-2。通过引入制冷设备以及电加热设备12,可以实现在较大气体处理量工况下,氙气以水合物形式高效分离出来。

Claims (4)

  1. 一种利用水合物法分离氙气氪气混合气的***,其特征在于,包括气体水合物生成单元,换热单元,气水分离单元;
    气体水合物生成单元的主要设备为反应塔(1),预冷的氙气氪气混合气从反应塔底部经闸阀A(10-1)以及流量调节阀A(5-1)注入塔内,在混合气最先接触的多孔塔板(3)底部,放置气液分离膜(2),气液分离膜界面面积大于反应塔横截面面积,并以倾斜形式搭建在多孔塔板和塔底之间,用于防止水合物浆液堵塞塔底进气口,同时引导水合物浆液的汇集;
    混合气体在反应塔内上行过程中,氙气与附着在多孔塔板(3)上的水接触生成氙气水合物颗粒,残余气从反应塔顶排出,反应塔顶出口处安装背压控制阀(5-2),用于稳定反应塔内气压,保证氙气水合物在塔内的持续生成;预冷水从塔顶经闸阀B(10-2)以及流量调节阀F(5-7)注入,一方面用于生成水合物,另一方面将多孔塔板上的水合物颗粒冲刷至气液分离膜与塔壁围成的空间中,汇聚成水合物浆液,经流量调节阀B(5-3)进入换热单元;
    所述换热单元的主要设备为换热器A(7-1)和换热器B(7-2),水合物浆液经流体分流装置(4)后,分为两路进入换热单元;其中一路水合物浆液作为冷流体经流量调节阀C(5-4)以及输送泵B(6-2)加压后进入换热器B(7-2),换热器B的热流体为来自气水分离单元的分解水,通过冷热流体之间的热交换,浆液中的水合物颗粒吸收分解水携带的热量而分解,水合物浆液转化为气水两相流,经输送泵E(6-5)进入气水分离单元,冷却的分解水经输送泵G(6-7)及流量调节阀F(5-7)注入反应塔(1);另一路水合物浆液经流量调节阀D(5-5)及输送泵A(6-1)作为冷流体进入换热器A(7-1),换热器A的热流体为经过输送泵D(6-4)加压后的常温氙气氪气混合气,通过冷热流体之间的热交换,浆液中的水合物颗粒吸收常温混合气携带的热量而分解,水合物浆液转化为气水两相流,经输送泵E(6-5)进入气水分离单元,冷却的混合气经输送泵C(6-3)及流量调节阀A(5-1)由塔底进入反应塔(1);
    所述气水分离单元的主要设备为气水分离塔(8),含氙气的气水两相流经输送泵E(6-5)加压后由气水分离塔的中部位置注入,在重力作用下,氙气与分解水分离,其中氙气上升至塔顶处,经过干燥床(9)脱湿处理后由流量调节阀E(5-6)产出;分解水下沉至塔底,经过输送泵F(6-6)加压后由进入换热器B(7-2)参与热交换。
  2. 根据权利要求1所述利用水合物法分离氙气氪气混合气的***,其特征在于,在较大混合气处理量的工况下,还包括制冷器A(11-1)、制冷器B(11-2),分别用于对来自换热器A(7-1)的氙气氪气混合气、换热器B(7-2)的分解水进行辅助冷却,确保混合气、分解水的预冷温度达到工况设定温度;电加热设备(12)对来自换热器A(7-1)、换热器B(7-2)的气水两相流进行辅助加热,确保流体中的水合物颗粒完全分解。
  3. 根据权利要求1所述利用水合物法分离含氙气氪气混合气的***,其特征在于,多孔塔板为采用粉末冶金法或电镀法获得孔隙度在40%~50%的板状泡沫铜;采用干腐蚀法对泡沫铜进行表面处理,增加金属表面粗糙度,为水合物成核提供更多位点。
  4. 权利要求1-3任一所述利用水合物法分离氙气氪气混合气的***的操作方法,其特征在于,包括如下步骤:
    步骤1,常温水从反应塔(1)顶侧面注入,自上而下流经所有多孔塔板(3)后,汇聚在气液分离膜(2)与塔壁围成的空间中,经流体分流装置(4)、换热器A(7-1)和换热器B(7-2)后进入并储存在气水分离塔(8),作为***启动时换热器的热流体;
    步骤2,调节反应塔顶处背压控制阀(5-2)至预设工况压力;预冷水从反应塔侧面注入,润湿多孔塔板后,预冷氙气氪气混合气从塔底注入,与水在多孔塔板上生成氙气水合物,通过流量调节阀F(5-7)增加进水流量,使水将塔板上的水合物颗粒冲刷至气液分离膜与塔壁围成的空间中,汇聚成水合物浆液进入换热单元;残余气从塔顶排出;
    步骤3,启动流体分流装置,将水合物浆液分成两路;其中一路作为冷流体进入换热器B(7-2),启动气水分离塔底处的输送泵F(6-6),预存的常温水作为热流体进入换热器B,经热交换,冷流体中的水合物颗粒分解,转化为气水两相流进入气水分离单元,冷却的水经输送泵注入反应塔,整个***运行后,来自气水分离单元的分解水替代常温水,作为热流体进入换热器B进行换热;另一路水合物浆液作为冷流体进入换热器A(7-1),启动输送泵D(6-4),将待分离的混合气作为热流体注入换热器A,经热交换,冷流体中的水合物颗粒分解,转化为气水两相流进入气水分离单元,冷却的混合气经输送泵C(6-3)注入反应塔;
    步骤4,启动输送泵E(6-5),使气水两相流从气水分离塔的中部位置注入,氙气与分解水在重力作用下分离,氙气上行至干燥床,经脱湿处理后产出;分解水在塔底汇聚,通过输送泵F(6-6)作为热流体进入换热器B。
PCT/CN2019/081844 2019-04-09 2019-04-09 一种利用水合物法分离氙气氪气混合气的***及方法 WO2020206599A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/968,817 US11389766B2 (en) 2019-04-09 2019-04-09 System and method for separating xenon-krypton mixed gas by hydrate formation process
PCT/CN2019/081844 WO2020206599A1 (zh) 2019-04-09 2019-04-09 一种利用水合物法分离氙气氪气混合气的***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081844 WO2020206599A1 (zh) 2019-04-09 2019-04-09 一种利用水合物法分离氙气氪气混合气的***及方法

Publications (1)

Publication Number Publication Date
WO2020206599A1 true WO2020206599A1 (zh) 2020-10-15

Family

ID=72751736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081844 WO2020206599A1 (zh) 2019-04-09 2019-04-09 一种利用水合物法分离氙气氪气混合气的***及方法

Country Status (2)

Country Link
US (1) US11389766B2 (zh)
WO (1) WO2020206599A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702481A (zh) * 2021-08-27 2021-11-26 中国科学院地质与地球物理研究所 一种水中氮气和氙气纯化***及其同位素静态分析方法
CN114702995A (zh) * 2022-04-06 2022-07-05 中国科学院广州能源研究所 一种气体水合物合成方法及装置
CN115417577B (zh) * 2022-05-13 2023-07-18 大连理工大学 一种基于水合物法常压连续污泥调质***及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267711A (ja) * 2002-03-18 2003-09-25 Osaka Gas Co Ltd 希ガスの分離回収方法および装置
CN1537667A (zh) * 2003-04-14 2004-10-20 石油大学(北京) 利用水合物法分离低沸点气体混合物方法及其***
CN102448579A (zh) * 2009-05-26 2012-05-09 三井造船株式会社 被分离气体的分离装置及方法
US20160184768A1 (en) * 2014-12-24 2016-06-30 The Board Of Regents Of The University Of Oklahoma Treatment of natural gas to remove contaminants
CN107063784A (zh) * 2016-10-31 2017-08-18 核工业北京地质研究院 一种用于水中溶解氙气的提取纯化***及其提取纯化方法
CN107344063A (zh) * 2017-07-31 2017-11-14 中国科学院广州能源研究所 一种水合物法连续分离气体的装置与方法
CN109420417A (zh) * 2017-08-20 2019-03-05 中国石油化工股份有限公司 一种水合法分离酸性气工艺及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806583A (en) * 1971-03-15 1974-04-23 Babcock & Wilcox Co Recovery of radioactive noble gases from gaseous effluents
JPS503480B2 (zh) * 1972-02-25 1975-02-05
US4054427A (en) * 1972-03-03 1977-10-18 Bergwerksverband Gmbh Method of recovering krypton and xenon nuclides from waste gases
DE3039604A1 (de) * 1980-10-21 1982-05-19 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zum abtrennen der spaltedelgase xenon und krypton aus abgasen kerntechnischer anlagen
US4371383A (en) * 1981-01-12 1983-02-01 Rost K Lennart Radon removal system
US4816041A (en) * 1984-05-22 1989-03-28 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Process and installation for the adsorptive separation of krypton from a krypton nitrogen gas mixture
FR2798076B1 (fr) * 1999-09-06 2002-05-24 Air Liquide Procede d'elimination par permeation des composes fluores ou fluorosoufres d'un flux de xenon et/ou de krypton
ITTO20110763A1 (it) * 2011-08-11 2013-02-12 Marcopolo Engineering S P A Sistem I Ecologici Sistema per la cattura e/o lâ??abbattimento di emissioni nocive in atmosfera da un impianto in caso di incidente, particolarmente un impianto nucleare

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267711A (ja) * 2002-03-18 2003-09-25 Osaka Gas Co Ltd 希ガスの分離回収方法および装置
CN1537667A (zh) * 2003-04-14 2004-10-20 石油大学(北京) 利用水合物法分离低沸点气体混合物方法及其***
CN102448579A (zh) * 2009-05-26 2012-05-09 三井造船株式会社 被分离气体的分离装置及方法
US20160184768A1 (en) * 2014-12-24 2016-06-30 The Board Of Regents Of The University Of Oklahoma Treatment of natural gas to remove contaminants
CN107063784A (zh) * 2016-10-31 2017-08-18 核工业北京地质研究院 一种用于水中溶解氙气的提取纯化***及其提取纯化方法
CN107344063A (zh) * 2017-07-31 2017-11-14 中国科学院广州能源研究所 一种水合物法连续分离气体的装置与方法
CN109420417A (zh) * 2017-08-20 2019-03-05 中国石油化工股份有限公司 一种水合法分离酸性气工艺及装置

Also Published As

Publication number Publication date
US20210146301A1 (en) 2021-05-20
US11389766B2 (en) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2020206599A1 (zh) 一种利用水合物法分离氙气氪气混合气的***及方法
JP6232435B2 (ja) 吸着剤再生装置
CN103657381A (zh) 烟气的预处理及二氧化碳捕集纯化回收装置
CN100364643C (zh) 一种从排气中吸附回收净化有机物的方法和装置
CN105268282A (zh) 一种低温变压吸附制备超纯氢的方法
CN113477051A (zh) 一种双床水合物法连续捕集co2装置和方法
CN108993615A (zh) 一种甲醇重整制氢铜基催化剂的还原、钝化方法
CN105771559A (zh) 一种适用于煤气化燃烧前的二氧化碳捕获装置及方法
KR101442673B1 (ko) 새로운 열교환 시스템을 이용한 온도 압력 변동 이동상 흡착 공정 시스템
CN104556035A (zh) 一种食品级高纯度液体二氧化碳的制备方法及其制备装置
CN109872828B (zh) 一种利用水合物法分离氙气氪气混合气的***及方法
CN109701364B (zh) 一种水合法分离气体的***及方法
CN106914104B (zh) 一种适应于连续捕集烟气中二氧化碳的吸收-再生器
CN104248946A (zh) 粒状活性炭节能再生炉
CN203635055U (zh) 烟气的预处理及二氧化碳捕集纯化回收装置
CN210001582U (zh) 低水分含量氯化氢合成***
JP2005519733A (ja) 同位体ガス分離方法および同位体ガス分離装置
KR101433036B1 (ko) 기체분리를 위한 이동상 온도 압력 변동 흡착공정 시스템
Hassan et al. Integration of vacuum multi effect membrane distillation with adsorption/cooling system
CN112473572A (zh) 水合反应装置
Artemov et al. The effect of non-absorbable gas impurities on heat and mass transfer in metal-hydride devices for storage and purification of hydrogen
JPS557565A (en) Helium or hydrogen gas purification apparatus
CN109200747B (zh) 一种基于变温吸附的氨气干燥装置和干燥方法
CN216320966U (zh) 一种便携式离线脱附装置
CN211636552U (zh) 一种活性炭吸附蒸汽再生***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924041

Country of ref document: EP

Kind code of ref document: A1