WO2020203879A1 - Solid-state battery - Google Patents

Solid-state battery Download PDF

Info

Publication number
WO2020203879A1
WO2020203879A1 PCT/JP2020/014306 JP2020014306W WO2020203879A1 WO 2020203879 A1 WO2020203879 A1 WO 2020203879A1 JP 2020014306 W JP2020014306 W JP 2020014306W WO 2020203879 A1 WO2020203879 A1 WO 2020203879A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
state battery
substrate
circuit
battery
Prior art date
Application number
PCT/JP2020/014306
Other languages
French (fr)
Japanese (ja)
Inventor
西出 充良
友裕 加藤
高之 長野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080024250.2A priority Critical patent/CN113614968A/en
Priority to JP2021512065A priority patent/JP7396352B2/en
Priority to EP20783174.4A priority patent/EP3951975A4/en
Publication of WO2020203879A1 publication Critical patent/WO2020203879A1/en
Priority to US17/487,565 priority patent/US20220013846A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/16Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/157Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/164Lids or covers characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid state battery. More specifically, the present invention relates to a packaged solid state battery.
  • a secondary battery may be used as a power source for electronic devices such as smartphones and laptop computers.
  • a liquid electrolyte is generally used as a medium for ion transfer that contributes to charging and discharging. That is, a so-called electrolytic solution is used in the secondary battery.
  • electrolytic solution is used in the secondary battery.
  • safety is generally required in terms of preventing leakage of the electrolytic solution.
  • the organic solvent used in the electrolytic solution is a flammable substance, safety is also required in that respect.
  • a solid battery needs a structure that shields the material itself that causes the battery reaction from the external environment and prevents the intrusion of water vapor and foreign substances and the leakage of the battery reactant.
  • lithium-ion batteries widely used as secondary batteries are sealed using, for example, an aluminum laminate film as a pouch (hereinafter, such a pouch is also referred to as an "aluminum lami pouch").
  • Peripheral circuit boards are connected to the positive and negative terminals taken out from the aluminum lami pouch, and the battery is provided as an integrated package.
  • the aluminum lami pouch protects the battery body. Only the tabs drawn from the electrodes are exposed to the outside of the aluminum lami pouch, and electricity is obtained through the tabs.
  • the aluminum lami pouch it is necessary to project the "glue portion" used for sealing to the surroundings, and it is structurally difficult to reduce the package volume.
  • the peripheral circuit board in the space outside the aluminum lami pouch for packaging, but this is not particularly effective in reducing the overall volume. Rather, since it has a double package structure, such packaging may increase unnecessary volume.
  • the present invention has been made in view of such a problem. That is, a main object of the present invention is to provide a solid-state battery packaging technology that contributes to compactification while having sealing characteristics.
  • the present invention provides a solid-state battery provided with a substrate, wherein the solid-state battery is coated on the substrate and a circuit for the solid-state battery is provided on the substrate.
  • the solid-state battery according to the present invention is a solid-state battery package product that has sealing characteristics and is suitable for compactification.
  • the solid-state battery is coated on the substrate and packaged, and from the viewpoint of compactification, a "circuit for the solid-state battery" is placed on the substrate. It is provided. That is, the “circuit for solid-state battery” is provided on the surface of the substrate, not inside the substrate.
  • the board is originally used for packaging, it is also used for installing peripheral circuits of solid-state batteries, so the overall size has not increased inconveniently. Therefore, the present invention provides a compact packaged product as a whole while sealing the solid-state battery.
  • FIG. 1 is a cross-sectional view schematically showing the internal configuration of a solid-state battery.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of a solid-state battery according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of a solid-state battery according to another embodiment of the present invention (a covering member composed of a coating insulating film and a coating inorganic film).
  • 4 (a) to 4 (d) are circuit diagrams of battery peripheral circuits provided on the substrate (FIG. 4 (a): protection circuit, FIG. 4 (b): charge control circuit, FIG. 4 (c): temperature. The control circuit, FIG. 4D: output compensation circuit).
  • FIG. 5 (a) to 5 (c) are circuit diagrams in which a plurality of battery peripheral circuits provided on the substrate are combined
  • FIG. 6A is a schematic cross-sectional view for explaining an embodiment in which a circuit is provided on a substrate side by side with a solid-state battery.
  • FIG. 6B is a schematic cross-sectional view for explaining an embodiment in which a circuit is provided on a substrate side by side with a solid-state battery.
  • FIG. 6A is a schematic cross-sectional view for explaining an embodiment in which a circuit is provided on a substrate side by side with a solid-state battery.
  • FIG. 6B is a schematic cross-sectional view for explaining an embodiment in which a circuit is provided on a substrate side by side with a
  • FIG. 7 is a schematic cross-sectional view for explaining a modified mode of the coating insulating film.
  • FIG. 8 is a schematic cross-sectional view for explaining a modified mode of the coated inorganic film.
  • FIG. 9 is a schematic cross-sectional view for explaining a modified mode (using a metal pad) of the coated inorganic film.
  • FIG. 10 is a schematic cross-sectional view for explaining a modified mode of the coated insulating film and the coated inorganic film.
  • FIG. 11 shows another embodiment of the present invention (a filler-containing embodiment of the coating insulating layer, a configuration in which the coating inorganic film extends so as to extend to the support substrate, and a support substrate and the coating inorganic film.
  • FIG. 12 is a schematic cross-sectional view for explaining the morphology of the coating film formed by the coating method.
  • the solid-state battery of the present invention corresponds to a packaged solid-state battery.
  • packaged solid-state battery means, in a broad sense, a solid-state battery protected from the external environment, and in a narrow sense, water vapor in the external environment enters the inside of the solid-state battery. It refers to a solid-state battery that is sealed so that it does not.
  • the solid-state battery of the present invention in which such moisture permeation is prevented is packaged to be suitable for mounting on a secondary substrate, and particularly to be suitable for surface mounting. Therefore, in a preferred embodiment, the battery of the present invention is an SMD (Surface Mount Device) type battery.
  • SMD Surface Mount Device
  • the "cross-sectional view” referred to in the present specification is a form when viewed from a direction substantially perpendicular to the thickness direction based on the stacking direction of each layer constituting the solid-state battery (in short, a plane parallel to the thickness direction). It is based on the form when cut out with.
  • the "vertical direction” and “horizontal direction” used directly or indirectly in the present specification correspond to the vertical direction and the horizontal direction in the drawings, respectively. Unless otherwise specified, the same code or symbol shall indicate the same member / part or the same meaning.
  • the vertical downward direction that is, the direction in which gravity acts
  • the opposite direction corresponds to the "upward” / "top side”. Can be done.
  • the “solid-state battery” as used in the present invention refers to a battery whose components are composed of solids in a broad sense, and in a narrow sense, all of its components (particularly preferably all components) are composed of solids.
  • the solid-state battery in the present invention is a laminated solid-state battery in which the layers forming the battery building unit are laminated to each other, and preferably such layers are made of a sintered body.
  • the "solid-state battery” includes not only a so-called “secondary battery” capable of repeating charging and discharging, but also a "primary battery” capable of only discharging.
  • a “solid-state battery” is a secondary battery.
  • the "secondary battery” is not overly bound by its name and may include, for example, a power storage device.
  • a solid-state battery includes at least positive and negative electrode layers and a solid electrolyte.
  • the solid-state battery 100 has a solid-state battery laminate including a battery building block consisting of a positive electrode layer 110, a negative electrode layer 120, and a solid electrolyte 130 interposed therein. Consists of.
  • a positive electrode layer, a negative electrode layer, a solid electrolyte, and the like form a sintered layer.
  • the positive electrode layer, the negative electrode layer and the solid electrolyte are each integrally fired, and therefore the solid-state battery laminate forms an integrally sintered body.
  • the positive electrode layer 110 is an electrode layer including at least a positive electrode active material.
  • the positive electrode layer may further contain a solid electrolyte.
  • the positive electrode layer is composed of a sintered body containing at least positive electrode active material particles and solid electrolyte particles.
  • the negative electrode layer is an electrode layer including at least a negative electrode active material.
  • the negative electrode layer may further contain a solid electrolyte.
  • the negative electrode layer is composed of a sintered body containing at least negative electrode active material particles and solid electrolyte particles.
  • the positive electrode active material and the negative electrode active material are substances involved in the transfer of electrons in a solid-state battery. Ions move (conduct) between the positive electrode layer and the negative electrode layer via the solid electrolyte, and electrons are transferred to perform charging and discharging.
  • the positive electrode layer and the negative electrode layer are particularly preferably layers capable of occluding and releasing lithium ions or sodium ions. That is, the solid-state battery is preferably an all-solid-state secondary battery in which lithium ions or sodium ions move between the positive electrode layer and the negative electrode layer via the solid electrolyte to charge and discharge the battery.
  • Examples of the positive electrode active material contained in the positive electrode layer include a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and lithium-containing having a spinel-type structure. At least one selected from the group consisting of oxides and the like can be mentioned.
  • Examples of the lithium-containing phosphoric acid compound having a pear-con type structure include Li 3 V 2 (PO 4 ) 3 .
  • Examples of lithium-containing phosphoric acid compounds having an olivine-type structure include Li 3 Fe 2 (PO 4 ) 3 , LiFePO 4, and / or LiMnPO 4 .
  • lithium-containing layered oxides examples include LiCoO 2 and / or LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and the like.
  • lithium-containing oxides having a spinel-type structure examples include LiMn 2 O 4 and / or LiNi 0.5 Mn 1.5 O 4 and the like.
  • the positive electrode active material capable of occluding and releasing sodium ions a sodium-containing phosphoric acid compound having a pearcon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing layered oxide, and a sodium-containing material having a spinel-type structure are contained. At least one selected from the group consisting of oxides and the like can be mentioned.
  • Examples of the negative electrode active material contained in the negative electrode layer 120 include oxides containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, graphite-lithium compounds, and lithium alloys. At least one selected from the group consisting of a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing oxide having a spinel-type structure, and the like can be mentioned.
  • An example of a lithium alloy is Li—Al or the like.
  • lithium-containing phosphoric acid compounds having a pear-con type structure examples include Li 3 V 2 (PO 4 ) 3 and / or LiTi 2 (PO 4 ) 3 .
  • lithium-containing phosphoric acid compounds having an olivine-type structure examples include Li 3 Fe 2 (PO 4 ) 3 and / or LiCuPO 4 .
  • lithium-containing oxides having a spinel-type structure include Li 4 Ti 5 O 12 and the like.
  • the negative electrode active material capable of occluding and releasing sodium ions is composed of a sodium-containing phosphoric acid compound having a pearcon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing oxide having a spinel-type structure, and the like. At least one selected from the group is mentioned.
  • the positive electrode layer and / or the negative electrode layer may contain a conductive auxiliary agent.
  • the conductive auxiliary agent contained in the positive electrode layer and the negative electrode layer include at least one composed of a metal material such as silver, palladium, gold, platinum, aluminum, copper and nickel, carbon and the like.
  • copper is preferable in that it is difficult to react with the positive electrode active material, the negative electrode active material, the solid electrolyte material, and the like, and is effective in reducing the internal resistance of the solid battery.
  • the positive electrode layer and / or the negative electrode layer may contain a sintering aid.
  • a sintering aid at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide and phosphorus oxide can be mentioned.
  • the solid electrolyte is a material capable of conducting lithium ions or sodium ions.
  • the solid electrolyte that forms the battery constituent unit of a solid-state battery forms a layer in which lithium ions or sodium ions can be conducted between the positive electrode layer and the negative electrode layer.
  • the solid electrolyte may be provided at least between the positive electrode layer and the negative electrode layer. That is, the solid electrolyte may also be present around the positive electrode layer and / or the negative electrode layer so as to protrude from between the positive electrode layer and the negative electrode layer.
  • the solid electrolyte examples include a lithium-containing phosphoric acid compound having a pearcon structure, an oxide having a perovskite structure, an oxide having a garnet type or a garnet type similar structure, and the like.
  • the lithium-containing phosphoric acid compound having a NASICON structure Li x M y (PO 4 ) 3 (1 ⁇ x ⁇ 2,1 ⁇ y ⁇ 2, M is, Ti, Ge, Al, from the group consisting of Ga and Zr At least one selected).
  • Examples of the lithium-containing phosphoric acid compound having a pear-con structure include Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 .
  • oxide having a perovskite structure La 0.55 Li 0.35 TiO 3 and the like can be mentioned.
  • oxides having a garnet type or a garnet type similar structure include Li 7 La 3 Zr 2 O 12 and the like.
  • Examples of the solid electrolyte in which sodium ions can be conducted include sodium-containing phosphoric acid compounds having a pearcon structure, oxides having a perovskite structure, oxides having a garnet type or a garnet type similar structure, and the like.
  • the sodium-containing phosphate compound having a NASICON structure, Na x M y (PO 4 ) 3 (1 ⁇ x ⁇ 2,1 ⁇ y ⁇ 2, M is, Ti, Ge, Al, from the group consisting of Ga and Zr At least one selected).
  • the solid electrolyte layer may contain a sintering aid.
  • the sintering aid contained in the solid electrolyte layer may be selected from, for example, the same materials as the sintering aid that can be contained in the positive electrode layer and the negative electrode layer.
  • the positive electrode layer 110 and the negative electrode layer 120 may include a positive electrode current collector layer and a negative electrode current collector layer, respectively.
  • the positive electrode current collector layer and the negative electrode current collector layer may each have a foil form, but from the viewpoint of reducing the manufacturing cost of the solid-state battery and reducing the internal resistance of the solid-state battery by integral firing, the form of the sintered body is adopted. You may have.
  • the positive electrode current collector layer and the negative electrode current collector layer have the form of a sintered body, they may be composed of a sintered body containing a conductive auxiliary agent and a sintered auxiliary agent.
  • the conductive auxiliary agent contained in the positive electrode current collector layer and the negative electrode current collector layer may be selected from, for example, the same materials as the conductive auxiliary agent that can be contained in the positive electrode layer and the negative electrode layer.
  • the sintering aid contained in the positive electrode current collector layer and the negative electrode current collector layer may be selected from, for example, the same materials as the sintering aid that can be contained in the positive electrode layer and the negative electrode layer.
  • the positive electrode current collector layer and the negative electrode current collector layer are not indispensable, and a solid-state battery in which such a positive electrode current collector layer and the negative electrode current collector layer are not provided can be considered. That is, the solid-state battery in the present invention may be a solid-state battery without a current collector layer.
  • the solid-state battery is generally provided with an end face electrode 150.
  • an end face electrode is provided on the side surface of the solid-state battery. More specifically, an end face electrode 150A on the positive electrode side connected to the positive electrode layer 110 and an end face electrode 150B on the negative electrode side connected to the negative electrode layer 120 are provided (see FIG. 1).
  • Such end face electrodes preferably include a material having high conductivity.
  • the specific material of the end face electrode is not particularly limited, but at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin and nickel can be mentioned.
  • the solid-state battery of the present invention is a solid-state battery provided with a substrate.
  • a battery according to the present invention is a packaged solid state battery. That is, the solid-state battery has a package structure that contributes to protection from the external environment.
  • the solid-state battery is packaged together with the peripheral circuit and the support substrate in a state where the peripheral circuit (preferably a circuit for controlling the solid-state battery) is arranged on the support substrate.
  • a solid-state battery is coated on the substrate, and a circuit for the solid-state battery is provided on the substrate.
  • the circuit is not embedded in the support substrate that supports the solid-state battery, but is arranged on the surface (particularly on the main surface) of the substrate.
  • FIG. 2 shows the basic configuration of the packaged battery of the present invention.
  • the solid-state battery 100 includes a substrate 10 and a covering member 50, and further integrally includes a circuit 80 on the substrate as a whole.
  • Circuit 80 is a peripheral circuit for a solid-state battery. Any kind of circuit may be used as long as it is a circuit related to a solid-state battery. As an example, the circuit 80 may be a protection circuit and / or a charge / discharge control circuit. In the present invention, a solid-state battery is packaged together with such a circuit and a support substrate. As can be seen from the aspect shown in FIG. 2, a circuit for a solid-state battery (particularly a circuit for controlling the solid-state battery) is provided on the main surface of the substrate 10, and the circuit is in the plane direction of the main surface of the substrate. May be extended to.
  • the circuit 80 is arranged on the main surface of the substrate 10 so as to be perpendicular to the stacking direction of the solid-state battery laminate (that is, the stacking direction of the electrode layers of the solid-state battery).
  • the circuit is provided so as to stick to the main surface of the substrate.
  • the main surface of the substrate 10 can be more effectively used as the battery control surface.
  • the heat from the circuit on the substrate is easily transferred to the solid-state battery, and the effect that the charging efficiency of the battery can be improved due to the heat. Can also be played.
  • the "main surface” in the present invention refers to a surface having a normal line in the stacking direction of the electrode layers in the solid-state battery.
  • the substrate 10 and the substrate 10 and the solid-state battery 100 are surrounded by the solid-state battery 100 (so that all the surfaces forming the solid-state battery are not exposed to the outside).
  • a covering member 50 is provided. Because of such a sealed form, in the present invention, a solid-state battery is preferably packaged to contribute to the prevention of water vapor permeation.
  • the circuit for the solid-state battery is provided on the substrate as a package product to prevent water vapor permeation.
  • the substrate 10 is a substrate that supports at least the solid-state battery 100.
  • the substrate is positioned proximal to one side of the main surface of the solid-state battery to provide such "support".
  • the main surface size of the substrate may be larger than the main surface size of the solid state battery rather than the same as the main surface size of the solid state battery. Further, since it is a "substrate", it preferably has a thin plate-like form as a whole.
  • the substrate 10 supports not only the solid-state battery 100 but also the circuit 80 on the surface of the substrate (see FIG. 2). That is, the substrate 10 in the present invention is a substrate that supports both the solid-state battery 100 and the circuit 80. Because of this aspect, the substrate 20 can also be referred to as a "support substrate” (hereinafter, the substrate will be appropriately referred to as a “support substrate”).
  • the substrate 10 may be a resin substrate or a ceramic substrate.
  • the substrate 10 does not have to be a silicon substrate in particular.
  • the substrate 10 is a ceramic substrate. That is, the substrate 10 is made of a ceramic, which occupies the base material component of the substrate.
  • a support substrate made of ceramic is a substrate that contributes to the prevention of water vapor permeation and is also preferable in terms of heat resistance in mounting.
  • Such a ceramic rack substrate can be obtained by firing, for example, by firing a green sheet laminate.
  • the ceramic substrate may be, for example, an LTCC substrate (LTCC: Low Temperature Co-fired Ceramics) or an HTCC substrate (HTCC: High Temperature Co-fired Ceramic).
  • the thickness of the substrate may be 20 ⁇ m or more and 1000 ⁇ m or less, for example, 100 ⁇ m or more and 300 ⁇ m or less.
  • the covering member 50 is provided so as to cover the top surface and the side surface of the solid-state battery on the substrate 10 so as to be used for sealing. Further, as shown in FIG. 2, the covering member 50 may be provided so as to extend beyond the side surface of the solid-state battery.
  • the coating member 50 is preferably composed of a coating insulating layer 30 and a coating inorganic film 40 as shown in FIG.
  • the coated insulating layer 30 is provided so as to cover the top surface and the side surface of the solid-state battery 100, and the coated inorganic film 40 is provided on the coated insulating layer.
  • the property of preventing water vapor permeation can be effectively improved.
  • the covering member 50 is preferably a layer provided so as to cover at least the top surface 100A and the side surface 100B of the solid-state battery 100.
  • the solid-state battery 100 provided on the support substrate 10 is largely wrapped by the covering member 50 as a whole.
  • the covering member 50 is provided on the entire battery surface region (at least all of the battery "top surface” region and the battery “side surface” region) on the top surface 100A and the side surface 100B of the solid-state battery 100.
  • the covering member 50 is provided so as to extend beyond the side surface of the battery toward the substrate side in a cross-sectional view as shown in the drawing.
  • the “top surface” in the present specification means a surface that is positioned relatively upward among the surfaces constituting the battery. Assuming a typical solid-state battery in which there are two opposing main surfaces, the “top surface” as used herein refers to one of these main surfaces, especially the main surface proximal to the support substrate. It means a main surface on a side different from the surface (that is, the mounting surface side in the SMD type battery described later). Therefore, in the present invention, "provided so as to cover the top surface and the side surface of the solid-state battery” means that, assuming that the solid-state battery is placed on a flat surface, the surface other than the surface and the surface region that are in contact with the flat surface are not included. It substantially means that at least a covering member is provided on the battery surface.
  • the coating insulating layer 30 of the coating member 50 preferably corresponds to a resin layer. That is, it is preferable that the coating insulating layer 30 includes a resin material, which forms a base material for the layer. As can be seen from the illustrated embodiment, this means that the solid-state battery provided on the support substrate 10 is sealed with the resin material of the coating insulating layer 30.
  • the coated insulating layer 30 made of such a resin material contributes to a suitable water vapor barrier in combination with the coated inorganic film 40.
  • the material of the covering insulating layer 30 may be any kind as long as it exhibits insulating properties.
  • the resin may be either a thermosetting resin or a thermoplastic resin.
  • examples of the specific resin material of the coating insulating layer include an epoxy resin, a silicone resin, and a liquid crystal polymer.
  • the thickness of the coating insulating layer may be 30 ⁇ m or more and 1000 ⁇ m or less, for example, 50 ⁇ m or more and 300 ⁇ m or less.
  • the coating inorganic film 40 of the coating member 50 is preferably provided so as to cover the coating insulating layer 30.
  • the coated inorganic film 40 since the coated inorganic film 40 is positioned on the coated insulating layer 30, it has a form that largely encloses the solid-state battery 100 on the support substrate 10 together with the coated insulating layer 30.
  • the coated inorganic film 40 preferably has a thin film form. Therefore, in the covering member 50, the thickness of the covering inorganic film 40 is smaller than the thickness of the covering insulating layer 30.
  • the material of the coated inorganic film 40 is not particularly limited as long as it contributes to the inorganic layer having a thin film form, and may be any of metal, glass, oxide ceramics, or a mixture thereof.
  • the coated inorganic film 40 comprises a metal component. That is, the coated inorganic film 40 is preferably a metal thin film.
  • the thickness of the coated inorganic film may be 0.1 ⁇ m or more and 100 ⁇ m or less, for example, 1 ⁇ m or more and 50 ⁇ m or less.
  • the coating inorganic film 40 having a thin film form may be a plating film.
  • the coating inorganic film 40 may be a dry plating film, if it depends on the production method.
  • a dry plating film is a film obtained by a vapor phase method such as physical vapor deposition (PVD) or chemical vapor deposition (CVD), and has a very small thickness on the order of nano or micron. are doing.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • Such a thin dry plating film contributes to more compact packaging.
  • the dry plating film is, for example, aluminum (Al), nickel (Ni), palladium (Pd), silver (Ag), tin (Sn), gold (Au), copper (Cu), titanium (Ti), platinum (Pt).
  • the dry plating film composed of such components is chemically and / or thermally stable, it is excellent in chemical resistance, weather resistance and / or heat resistance, and even a solid-state battery having further improved long-term reliability can be used. Can be punished.
  • the coating inorganic film 40 does not have to be made of tantalum.
  • the solid-state battery is packaged by wrapping it with a substrate and a covering member.
  • the solid-state battery is packaged so as to be suitable for surface mounting, and the substrate is a terminal substrate.
  • the support substrate is preferably a terminal substrate.
  • the substrate according to a preferred embodiment forms a support substrate for the solid-state battery and peripheral circuits, and is a terminal substrate for the external terminals of the packaged solid-state battery.
  • a solid-state battery having a support board as a terminal board can be mounted on another secondary board such as a printed wiring board and / or a motherboard in such a form that the board is interposed.
  • a solid-state battery having a support substrate that can be used as a terminal substrate may be mounted on a printed wiring board including electronic components and / or an IC and / or an external substrate such as a motherboard.
  • the solid-state battery can be surface-mounted via the support substrate through solder reflow or the like. From this, it can be said that the packaged solid-state battery of the present invention is an SMD type battery (that is, a surface mount product).
  • the solid-state battery of the present invention can be an SMD type battery having high heat resistance and solder mountable.
  • the board Since it is a terminal board, it is preferable that the board has wiring, and in particular, it is preferable that the board is provided with wiring that electrically connects the upper and lower surfaces and the upper and lower surface layers. That is, a support substrate of a preferred embodiment is provided with wiring for electrically connecting the upper and lower surfaces of the substrate, and is a terminal substrate for an external terminal of a packaged solid-state battery. In short, the solid-state battery and the support substrate that supports the circuit may have a connection conductive portion that electrically connects both main surfaces of the substrate to each other.
  • the wiring of the support substrate can be used to take out the solid-state battery to the external terminal, it is not necessary to take it out of the package while packing it with a water vapor barrier layer with a metal tag, and the degree of freedom in designing the external terminal is high. It has become.
  • the wiring on the terminal board is not particularly limited, and may have any form as long as it contributes to the electrical connection between the upper surface and the lower surface of the board. Since it contributes to electrical connection, it can be said that the wiring on the terminal board is the conductive portion 17 of the board (see FIG. 2 or 3).
  • the conductive portion of such a substrate may have a form such as a wiring layer, vias and / or lands. For example, in the form shown in FIG.
  • the support substrate 10 is provided with vias 14 and / or lands 16.
  • via refers to a member for electrically connecting the vertical direction of the support substrate / the thickness direction of the substrate, and for example, a filled via is preferable, and an inner via may be used.
  • the “land” referred to here is a terminal portion / connection portion (preferably a terminal portion connected to a via) for electrical connection provided on the upper main surface and / or the lower main surface of the support substrate. It refers to a connection portion), and may be, for example, a corner land or a round land.
  • the pull-out position of the external terminal as a battery package product can be arbitrarily provided at the lower part of the package.
  • the drawer shape of such an external terminal can be provided as a smooth surface in the same surface as the mounting package without substantially unevenness.
  • terminals can be taken out of the package at a relatively short distance (preferably the shortest distance) from the battery, so that a battery package product with less loss can be obtained.
  • the upper surface and the lower surface facing each other are electrically connected to each other. Therefore, as long as it is such a thing, the type of the terminal board is not particularly limited.
  • a board that can be connected up and down and contributes to component mounting may be used as the terminal board.
  • an interposer in which the upper surface and the lower surface are electrically connected to each other may be used (in such a case, the substrate material of the interposer may be ceramic, not particularly silicon).
  • the wiring of the support board and the terminal portion of the solid-state battery are electrically connected to each other. That is, the conductive portion of the support substrate and the end face electrode of the solid-state battery are electrically connected to each other.
  • the end face electrode on the positive electrode side of the solid-state battery is electrically connected to the conductive portion on the positive electrode side of the support substrate, while the end face electrode on the negative electrode side of the solid-state battery is the conductive portion on the negative electrode side of the support substrate. Is electrically connected to.
  • the conductive portions (particularly the lower land / bottom land) on the positive electrode side and the negative electrode side of the support substrate can be provided as the positive electrode terminal and the negative electrode terminal of the solid-state battery package, respectively.
  • the solid-state battery of the present invention may further have a conductive connecting member 60 on the substrate that electrically connects the end face electrode 150 and the conductive portion 17 to each other (see FIG. 3).
  • the conductive connecting member 60 is at least selected from the group consisting of silver (Ag), copper (Cu), palladium (Pd), gold (Au), platinum (Pt), aluminum (Al), nickel (Ni) and the like. It may be formed by using a paste containing one kind.
  • the conductive connecting member 60 that is, the conductive connecting member 60 that electrically connects the end face electrode 150 of the solid-state battery and the conductive portion 17 such as the wiring of the substrate.
  • the circuit 80 is positioned in the "gap between the solid-state battery 100 and the substrate 10" that is brought about. In such a case, the gap caused by the conductive connecting member 60 can be effectively used as an installation space for the circuit 80, which can contribute to lowering the height of the solid-state battery.
  • the solid-state battery 100 of the present invention is at least characterized in that it is packaged together with the circuit 80 using the substrate 10. That is, in the present invention, the active element, the passive element, and / or the auxiliary element that constitute the circuit for the solid-state battery may be packaged by being arranged on the substrate together with the solid-state battery.
  • the active element include at least one selected from the group consisting of transistors, ICs, diodes, operational amplifiers, and the like.
  • the passive element at least one selected from the group consisting of a resistor, a coil, a capacitor and the like can be mentioned.
  • As the auxiliary element at least one selected from the group consisting of a connector, a terminal, a wiring, a wire rod, and the like can be mentioned.
  • Such a circuit element may have a chip form.
  • circuit elements used for battery peripheral circuits such as protection circuits and / or charge / discharge control circuits are packaged together with solid-state batteries. That is, a protection circuit element for preventing charging when the solid battery is overcharged, preventing discharge when overdischarging, and / or stopping a large current discharge such as a short circuit, and / or charging and / or discharging the solid battery.
  • a charge / discharge control circuit element for control is integrally packaged together with a solid-state battery.
  • the circuit provided on the substrate may be a circuit for controlling a solid-state battery. As shown in FIGS. 2 and 3, such a circuit 80 may be in contact with the main surface of the substrate 10 but not with the solid-state battery 100 itself. As a result, inconvenient events caused by physical contact between the battery and the circuit can be suppressed.
  • At least one type of battery peripheral circuit selected from the group consisting of a protection circuit, a charge control circuit, a temperature control circuit, an output compensation circuit and an output stabilized power supply circuit is packaged together with a solid-state battery. You may be.
  • FIG. 4A shows an example of a circuit diagram when the circuit provided on the substrate serves as a protection circuit. Although it is merely an illustration, the protection circuit is controlled so that a predetermined voltage or current does not become excessive.
  • FIG. 4B shows an example of a circuit diagram when the circuit provided on the substrate serves as a charge control circuit.
  • the charge control circuit controls the charging so as to obtain a desired constant current constant voltage (CCCV) charge.
  • FIG. 4C shows an example of a circuit diagram when the circuit provided on the substrate serves as a temperature control circuit.
  • a temperature detecting means such as a thermocouple or a thermista
  • power may be supplied to the thermoelectric element via the temperature control circuit to heat and / or cool the battery.
  • FIG. 4D shows an example of a circuit diagram when the circuit provided on the substrate serves as an output compensation circuit.
  • FIG. 5 (a) shows a combination of a charge control circuit and a protection circuit
  • FIG. 5 (b) shows a combination of a charge control circuit, a protection circuit and an output regulated power supply circuit
  • FIG. 5 (c) shows charging.
  • the combination with the control circuit, the protection circuit, the output stabilization power supply circuit and the output compensation circuit is shown.
  • the output stabilized power supply circuit may have a DC-DC converter incorporated therein.
  • the circuit 80 is provided on the substrate 10 that supports the solid-state battery 100. That is, the circuit dedicated to the solid-state battery is arranged not inside the substrate (that is, the "battery package substrate") constituting the solid-state battery package but on the surface of the substrate.
  • the circuit may be provided on the battery package substrate, and therefore, the circuit is not particularly limited to the form shown in FIG. 3, and may be the form shown in FIGS. 6A and 6B.
  • the circuit 80 is positioned between the substrate 10 and the solid-state battery 100. That is, the solid-state battery provided on the substrate has a gap between the lower side surface thereof and the substrate, and a circuit is provided for such a gap.
  • the circuit 80 is provided on the surface of the substrate 10 side by side with the solid-state battery 100. That is, a circuit is provided on the main surface of the substrate on which the solid-state battery is provided in a non-battery installation area that does not overlap with the solid-state battery.
  • a solid-state battery and a peripheral circuit dedicated to the battery are integrated via the same substrate.
  • the dedicated circuit and the solid-state battery are arranged adjacent to each other on the substrate.
  • the term "arranged adjacent to each other" as used herein means that the circuit and the solid-state battery have a close positional relationship in a broad sense, and in a narrow sense, immediately below or immediately below the solid-state battery. It means that the circuit is arranged on the board so as to be right next to it.
  • the circuit is provided as a package product, the size of the package product as a whole is not unnecessarily large. That is, in the present invention, it is a compact solid-state battery package product, and a more suitable SMD (surface mount device) is provided.
  • various electronic components such as ICs and / or other chip components, wiring, and the like may be provided.
  • various electronic components 80 and wiring represented by ICs and / or other chip components for protection circuits and / or charge / discharge control circuits are provided adjacent to the solid-state battery 100 on the main surface of the substrate. ing.
  • the fact that the circuit includes an IC or the like means that the effect of utilizing heat generation can be achieved in addition to the control effect of the circuit.
  • Circuit chip parts and the like can generate heat, and the present invention can effectively utilize the heat.
  • the circuit and the solid-state battery are arranged adjacent to each other on the substrate, the heat from the circuit on the substrate is easily transferred to the solid-state battery, which is caused by the heat. The effect of improving the charging efficiency of the battery can also be achieved.
  • FIG. 3 and FIGS. 6A and 6B will be described in detail.
  • the circuit 80 is positioned in the gap between the substrate 10 and the solid-state battery 100.
  • a conductive connecting portion 60 for electrically connecting the end face electrode 150 and the conductive portion 17 to each other is preferably provided, but this is caused by the conductive connecting portion 60.
  • the circuit 80 is positioned in the gap portion formed therein. Since the circuit is provided in the area where the solid-state battery and the support board overlap each other, the packaged product does not become bulky due to the presence of electronic components and wiring for the circuit, and is a compact battery packaged product. It is especially easy to contribute to the realization of.
  • the plan view size of the board is approximately the same as or larger than the plan view size of the solid-state battery (battery main surface size). Is also preferably large. Further, it is preferable that the plan view size of the substrate is larger than the circuit size. For example, if the plan view size of the substrate is S1 and the plan view size of the solid-state battery is S2, it may be 1.1 ⁇ S2 ⁇ S1 ⁇ 1.5 ⁇ S2, and therefore 1.1 ⁇ S2 ⁇ S1 ⁇ . It may be 1.4 ⁇ S2, 1.1 ⁇ S2 ⁇ S1 ⁇ 1.3 ⁇ S2, 1.1 ⁇ S2 ⁇ S1 ⁇ 1.2 ⁇ S2, or the like. When the plan view size of the substrate is larger than the plan view size of the solid state battery, not only is it preferable in terms of supporting the solid state battery and the circuit, but also the main surface of the board becomes large and the degree of freedom in designing the circuit can be increased.
  • the circuit 80 is provided on the main surface of the substrate 10 directly below the solid-state battery 100, the solid-state battery 100 and the circuit 80 are particularly close to each other. Therefore, the heat from the circuit is easily transferred to the solid-state battery, and the effect that the charging efficiency of the solid-state battery can be improved is particularly easy to be exhibited.
  • the conductive connecting member 60 between the substrate and the solid-state battery not only contributes to the mutual electrical connection between the solid-state battery and the substrate (particularly, the terminal substrate), but also provides a circuit installation between the solid-state battery and the substrate. Contributes to the formation of gaps for Therefore, the conductive connecting member forms a spacer, and therefore such a connecting member corresponds to the conductive spacer.
  • a conductive spacer is provided between the substrate and the solid-state battery.
  • the conductive spacer is, for example, a member containing a metal component.
  • Such metal components are selected from the group consisting of silver (Ag), copper (Cu), palladium (Pd), gold (Au), platinum (Pt), aluminum (Al), nickel (Ni) and the like.
  • the metal component can be exemplified.
  • the conductive spacer may be composed of a single part, or may be composed of at least two parts.
  • the conductive spacer may have a non-cleaning type member (hereinafter, also referred to as a “non-cleaning type bonding material”) that does not require flux cleaning by soldering.
  • at least a part of the conductive spacer may be a non-cleaning type bonding material.
  • the portion in direct contact with the solid-state battery may include a non-cleaning type bonding material.
  • the non-cleaning type bonding material is provided due to the packaging process. Specifically, the non-cleaning type bonding material can be provided by mounting the solid-state battery on the substrate without performing flux cleaning after the circuit is provided on the substrate.
  • a resin material may be provided between the substrate and the solid-state battery. That is, the resin material may be provided in the "gap between the solid-state battery and the support substrate" formed due to the intervention of the conductive connecting member such as the conductive spacer.
  • the resin material 30' may be provided so as to fill the gap portion between the substrate and the solid-state battery excluding the circuit.
  • the resin material 30' may be provided inside the conductive connecting portion 60 so as to fill the gap between the substrate 10 and the solid-state battery 100.
  • the resin material 30'that fills the gap between the substrate 10 and the solid-state battery 100 is positioned inside the coated inorganic film 40.
  • the resin material may be either a thermosetting resin material or a thermoplastic resin material.
  • examples thereof include an epoxy resin, a silicone resin, and a liquid crystal polymer, as in the case of the coating insulating layer.
  • the resin material between the substrate and the solid-state battery may be provided integrally with the above-mentioned covering member (particularly, the covering insulating layer).
  • the coating insulating layer 30' is provided not only on the top surface and the side surface of the solid-state battery 100, but also in the gap located between the bottom surface of the solid-state battery 100 and the upper surface of the support substrate 10. It may have been.
  • Such a resin material can function as a protective material that suitably protects the circuit between the substrate and the solid-state battery in the packaged product according to the present invention. Further, when the gap between the substrate and the solid-state battery is filled with the resin material, the reliability of the circuit can be improved due to the insulating effect. Therefore, such a resin material can also be referred to as a circuit protection material.
  • the circuit is provided not on the gap between the substrate and the solid-state battery but on the substrate other than that.
  • the circuit is provided in the board area deviated from the battery installation area in the main surface of the board on which the solid-state battery is installed.
  • FIGS. 6A and 6B The form of FIGS. 6A and 6B is the same as the form of FIG. 3, and the peripheral circuit dedicated to the solid-state battery is provided on the same substrate, but since it is not a gap between the solid-state battery and the substrate, the height direction of the entire package product It is easy to reduce the size.
  • the circuit 80 for the solid-state battery is covered with the covering member 50. More specifically, various electronic components such as ICs and chip components used in the circuit 80 are covered with the covering member 50. In particular, it is preferable that various electronic components of such a circuit 80 are covered with a covering insulating layer 30 of the covering member 50.
  • the circuit 80 for the solid-state battery is not covered with the covering member 50. More specifically, various electronic components such as ICs and / or chip components used in the circuit 80 provided on the substrate are not covered with the covering member 50. If the viewpoint of sealing is more important, it is preferable that the circuit 80 is covered with the covering member 50 as shown in FIG.
  • the circuit 80 is sealed with the covering insulating layer 30. It may not be suitable for stopping. This is because when a large-sized electronic component is covered with the covering insulating layer 30, the thickness of the covering insulating layer 30 inevitably increases, and the sealing portion becomes large.
  • the circuit may be individually sealed by another covering member different from the covering member that seals the solid-state battery.
  • the present invention has a feature that the solid-state battery is packaged together with the circuit, but the present invention also has a feature in terms of preventing water vapor permeation. This will also be described in detail below.
  • the solid-state battery of the present invention is packaged with a support substrate, a coated insulating layer, and a coated inorganic film, and thus has particularly excellent water vapor permeation prevention. That is, in the battery package product according to the present invention, deterioration of battery characteristics due to water vapor (more specifically, more specifically, due to at least the coating insulating layer and the coating inorganic film covering the top surface and side surface of the solid-state battery on the support substrate). The phenomenon that the characteristics of the solid-state battery deteriorate due to the mixing of water vapor in the external environment) is more reliably prevented.
  • a coated insulating layer and a coated inorganic film are preferably provided as a package layer for preventing the invasion of water vapor in the external environment around the solid-state battery.
  • the coated inorganic film is a water vapor barrier film. That is, a coated inorganic film covers the top and side surfaces of the solid-state battery so as to be preferably provided as a barrier to prevent moisture from entering the solid-state battery.
  • the coated inorganic film may extend beyond the main surface of the substrate (ie, the surface of the substrate on which the circuit is provided) as shown in the cross-sectional view shown. As a result, the coated inorganic film is provided as a more suitable water vapor barrier for the circuit on the main surface of the substrate.
  • the term "barrier” as used herein has a property of blocking water vapor permeation to such an extent that water vapor in the external environment does not pass through the coated inorganic film and cause deterioration of properties that are inconvenient for the solid-state battery.
  • the water vapor permeability is less than 1.0 ⁇ 10 -3 g / (m 2 ⁇ Day). Therefore, in short, it can be said that the water vapor barrier film preferably has a water vapor transmittance of 0 or more and less than 1.0 ⁇ 10 -3 g / (m 2 ⁇ Day).
  • the "water vapor transmittance" referred to here is the transmittance obtained by using a gas permeability measuring device of model GTms-1 manufactured by Advance Riko Co., Ltd. and the measurement condition is 40 ° C. 90% RH differential pressure 1 atm. It refers to the rate.
  • the present invention according to a certain preferred embodiment is a battery package product composed of a support substrate, an all-solid-state battery, a non-conductive material, and a water vapor barrier layer, and in particular, a capacitor, a resistor, an IC, etc. of a peripheral circuit. It is a battery package product in which electronic components are stored inside the water vapor barrier layer.
  • the coating insulating layer and the coating inorganic film may be integrated with each other. Therefore, the coated inorganic film, together with the coated insulating layer, forms a water vapor barrier for the solid-state battery. That is, the combination of the integrated coated insulating layer and the coated inorganic film more preferably prevents the invasion of water vapor in the external environment into the solid-state battery. That is, it can be said that the coated inorganic film is a water vapor barrier layer in combination with the coated insulating layer, and the coated insulating layer is also a water vapor barrier in combination with the coated inorganic film.
  • the support substrate that supports the solid-state battery is positioned so as to cover the lower side (bottom side) of the solid-state battery, and thus contributes to the prevention of water vapor permeation from the lower side (bottom side). That is, the support substrate is preferably a water vapor barrier substrate.
  • the term "barrier” as used herein has the same meaning as described above, and has a water vapor permeation blocking property to the extent that water vapor in the external environment does not pass through the coated inorganic film and cause deterioration of properties that are inconvenient for the solid-state battery. In a narrow sense, it means that the water vapor permeability of the substrate is less than 1.0 ⁇ 10 -3 g / (m 2 ⁇ Day).
  • the water vapor barrier substrate preferably has a water vapor permeability of 0 or more and less than 1.0 ⁇ 10 -3 g / (m 2 ⁇ Day).
  • the barrier effect is exerted by the substrate itself, so that it is conceivable that the coating inorganic film is not provided on the bottom surface side of the substrate.
  • the coated inorganic film is provided so as to largely enclose the solid-state battery, it is conceivable that the coated inorganic film is not provided on a part (specifically, the bottom surface) of the support substrate (specifically, the bottom surface). That is, in one preferred embodiment, the coated inorganic film may be provided on most surfaces of the battery package, but may not be provided on all surfaces).
  • the support substrate is a ceramic substrate
  • the effect of preventing water vapor permeation of the support substrate is likely to be exhibited.
  • the support substrate has water vapor barrier properties
  • water vapor permeation from the upper and side sides of the solid-state battery can be prevented mainly by the coated insulating layer and the coated inorganic film, while water vapor from the lower side (bottom side) of the solid-state battery. Permeation can be prevented primarily by the supporting substrate.
  • the support substrate is preferably a terminal substrate, it can be said that the prevention of water vapor permeation from the lower side (bottom side) of the solid-state battery is mainly performed by the terminal substrate.
  • water vapor permeation from the lower side (bottom side) can be prevented not only by the support substrate 10 but also by the combination with the coating insulating layer 30'provided on the upper surface thereof. ..
  • the end face electrode 150 of the solid-state battery 100 is surrounded by a combination of the coating insulating layer 30, the coating inorganic film 40, and the support substrate 10. It has been. That is, it can be said that the periphery of the end face electrode 150 of the solid-state battery 100 is sealed so as to be wrapped by the combination of these three members. Therefore, the possibility that water vapor in the external environment enters from the end face electrode 150 of the solid-state battery 100 is more reliably prevented.
  • Such sealing can be particularly advantageous when the end face electrodes of the solid state battery are made of sintered metal. This is because such end face electrodes may have pores or defects depending on the material, form, manufacturing process, etc., and may not always be sufficient for water vapor permeation in the air. ..
  • the support substrate is a resin substrate, it can be a water vapor barrier substrate. It is conceivable that the resin substrate itself forms a water vapor barrier substrate. Further, for example, by providing the resin substrate with a metal layer (only one example, a metal foil such as a copper foil), the effect of preventing water vapor permeation of the substrate can be further enhanced. Therefore, in such an embodiment, the resin substrate can be more suitable as the water vapor barrier substrate of the battery package product.
  • the coated insulating layer can also serve as a cushioning material. Specifically, even when the expansion and contraction of the solid-state battery occurs due to charge / discharge or thermal expansion, the effect does not directly affect the coating inorganic film, and the coating insulating layer intervenes. The effect can be mitigated by the buffering effect. Therefore, even with a thin film such as a coated inorganic film, the occurrence of cracks and the like can be reduced, and a more suitable water vapor barrier can be provided. This is especially true when the coated insulating layer is made of a resin material, and the coated insulating layer made of a resin material can have a large buffering effect.
  • the coated insulating layer may have an elastic modulus in which the influence of expansion and contraction of the above-mentioned solid-state battery is more effectively suppressed. That is, in order to reduce the occurrence of cracks and the like caused by the expansion and contraction of the solid-state battery, a coating insulating layer exhibiting a relatively low elastic modulus may be provided.
  • the elastic modulus of the coating insulating layer may be 1 MPa or less, more specifically 0.5 MPa or less or 0.1 MPa or less.
  • the lower limit of the elastic modulus is not particularly limited and is, for example, 10 Pa.
  • the "elastic modulus” here refers to the so-called Young's modulus [Pa], and the value means a value obtained by a method according to JIS standards (JIS K 7161, JIS K 7181, etc.). ..
  • the covering insulating layer 30 is not limited to the form shown in FIG. 3, and may be in the form shown in FIG. 7. That is, the covering insulating layer 30 may extend to the side surface of the substrate 10. In other words, the covering insulating layer 30 covering the top surface and the side surface of the solid-state battery 100 may cover the side surface of the substrate 10. This means that not only the coated inorganic film 40 but also the coated insulating layer 30 extends onto the side surface of the substrate. That is, both the coated inorganic film and the coated insulating layer may extend beyond the main surface of the substrate (that is, the surface of the substrate on which the circuit is provided) as shown in FIG. 7. ..
  • the coated inorganic film and the coated insulating layer are provided as a more suitable water vapor barrier for the circuit on the main surface of the substrate.
  • the extending form of the coated inorganic film and the coated insulating layer can also contribute to avoiding inconvenient peeling of the coated insulating layer due to expansion and contraction of the solid-state battery. This will be described in detail.
  • the phenomenon that the coating insulating layer 30 is peeled off from the substrate 10 is likely to occur starting from the bonding interface a) that forms the outermost edge along the direction, but such a possibility is reduced in the form shown in FIG.
  • the coated insulating layer 30 shown in FIG. 7 does not form a bonding surface that forms the outermost edge with the main surface of the substrate 10, and therefore has an unfavorable effect due to expansion and contraction of the solid-state battery in the stacking direction. This is because it is difficult to reach the coating insulating layer 30.
  • the coated inorganic film 40 may also be less likely to peel off from the substrate.
  • the coated inorganic film 40 may have a form as shown in FIG. Specifically, the coated inorganic film 40 may extend from the upper side surface of the substrate 10 to the lower main surface of the substrate 10. In such a case, the bonding area between the coated inorganic film 40 and the substrate 10 is relatively increased, and the coated inorganic film 40 becomes more resistant to peeling. That is, in the illustrated cross-sectional view, the coated inorganic film 40 has a bent form that follows the outer contour of the substrate 10. Further, when the substrate is made of ceramic or the like, a metal pad may be interposed to strengthen the bond between the coated inorganic film 40 and the substrate 10.
  • a metal pad 19 may be provided on the substrate, and a coated inorganic film 40 may be provided so as to extend over the metal pad 19 (see FIG. 9). As shown in the figure, such a metal pad 19 may be provided, for example, on the peripheral edge of the back side main surface (that is, the bottom side main surface) of the substrate 10.
  • the coated insulating layer 30 and the coated inorganic film 40 may have the form shown in FIG. Specifically, the coated insulating layer 30 may cover the side surface of the substrate 10, and the coated inorganic film 40 may extend to the lower main surface of the substrate 10. That is, the coated insulating layer 30 covering the top surface and the side surface of the solid-state battery 100 extends to the side surface of the substrate 10, and the coated inorganic film 40 on the coated insulating layer 30 extends beyond the side surface of the substrate 10. It may extend to the lower main surface of 10. In such a form, a battery package product in which moisture permeation (moisture permeation leading from the outside to the solid-state battery laminate) is more preferably prevented can be provided.
  • moisture permeation moisture permeation leading from the outside to the solid-state battery laminate
  • the members contributing to the prevention are a coated inorganic thin film integrated with the coated insulating layer and a supporting substrate which can have a thin plate shape.
  • Package size does not increase inconveniently. That is, a compact packaged product can be provided while allowing water vapor to permeate.
  • the solid-state battery of the present invention can be provided as a battery having a high energy density (packaged battery) in which water vapor permeation is prevented.
  • the solid-state battery of the present invention can be embodied in various aspects. For example, the following aspects can be considered.
  • the support substrate has the form of a multilayer wiring board. That is, the solid-state battery is supported by a support substrate having a plurality of layers of wiring.
  • the degree of freedom in designing external terminals as a package product will increase. That is, the external terminal can be positioned at an arbitrary position on the bottom surface of the battery package product.
  • the part where the wiring is provided on the support board or its vicinity is the part where the wiring and the body part of the support board are made of different materials, and although it may unintentionally cause water vapor permeation, the support
  • the substrate has the form of a multi-layer wiring board
  • the "location with relatively high water vapor permeability" that can correspond to the water vapor ingress path becomes long.
  • such a water vapor ingress path can reach the water vapor permeation path length of the capacitor terminal structure (about 200 ⁇ m at the longest).
  • the support substrate has the form of a multilayer wiring board
  • the movement resistance increases with respect to the moisture path from the external environment to the solid-state battery, and it becomes more difficult for water vapor to enter from the external environment.
  • a solid-state battery in which water vapor permeation is more preferably prevented can be realized.
  • the upper and lower wirings in the multilayer wiring board may be shifted to the left and right instead of being connected by series vias so that the wiring extending in the vertical direction meanders. As a result, the longer the via, the longer the water vapor entry path can be, which leads to more preferable prevention of water vapor entry.
  • the covering insulating layer 30 (see FIG. 11) of the covering member 50 contains a filler.
  • the inorganic filler 35 is preferably dispersed in such a resin material.
  • the filler is preferably mixed in the coating insulating layer and compositely integrated with the base material material (for example, resin material) of the coating insulating layer.
  • the shape of the filler is not particularly limited and may be granular, spherical, needle-like, plate-like, fibrous and / or amorphous.
  • the size of the filler is also not particularly limited and may be 10 nm or more and 100 ⁇ m or less, for example, a nanofiller of 10 nm or more and less than 100 nm, a microfiller of 100 nm or more and less than 10 um, or a macrofiller of 10 ⁇ m or more and 100 ⁇ m or less. ..
  • Examples of the filler material include, but are not limited to, metal oxides such as silica, alumina, titanium oxide and zirconium oxide, minerals such as mica, and / or glass.
  • the filler is preferably a water vapor permeation prevention filler.
  • the coating insulating layer comprises a water vapor permeation inhibitor in its resin material. This facilitates the coated insulating layer as a more suitable water vapor permeation barrier along with the coated inorganic film.
  • the water vapor permeation prevention filler is not particularly limited, but may be a plate-shaped filler or the like. Further, the water vapor permeation prevention filler may have a material such as silica or alumina. Furthermore, it may have a material such as mica such as synthetic mica.
  • the water vapor permeation prevention filler contained in the resin material preferably has a content of 50% by weight or more and 95% by weight or less based on the overall standard of the coating insulating layer in order to contribute to more suitable water vapor permeation prevention, for example, 60. It may be 70% by weight or more and 95% by weight or less, or 70% by weight or more and 95% by weight or less.
  • the coating inorganic film 40 (see FIG. 11) of the coating member 50 is a sputter film. That is, a sputtering thin film is provided as a dry plating film provided so as to cover the coating insulating layer.
  • the sputtered film is a thin film obtained by sputtering. That is, a film in which ions are sputtered onto a target to knock out the atoms and deposited on the coating insulating layer is used as the coating inorganic thin film.
  • Such a sputtered film is preferable as a water vapor permeation barrier for a solid-state battery because it has a very thin morphology of nano-order or micro-order, but is a dense and / or homogeneous film. Further, since the sputtered film is formed by atomic deposition, it has a relatively high adhesive force and can be more preferably integrated with the coated inorganic thin film. Therefore, the sputtered film can more preferably form a water vapor barrier film for a solid-state battery together with the coating insulating layer.
  • the sputter film provided so as to cover at least the top surface and the side surface of the solid-state battery together with the coating insulating layer can be more preferably provided as a barrier for preventing water vapor in the external environment from entering the solid-state battery.
  • the sputtered film comprises at least one selected from the group consisting of, for example, Al (aluminum), Cu (copper) and Ti (titanium), the film thickness of which is 1 ⁇ m or more and 100 ⁇ m or less. For example, it is 5 ⁇ m or more and 50 ⁇ m or less.
  • the sputtered film has substantially the same thickness dimension regardless of whether it is a local portion located on the top surface or a local portion located on the side surface of the solid-state battery. It is preferable to have. This is because the infiltration of water vapor in the external environment into the battery can be prevented more uniformly as the entire package product.
  • the dry plating film typified by such a sputtered film can be realized with a more suitable thickness from the viewpoint of the water vapor barrier.
  • a thicker film can be provided by relatively increasing the number of sputterings, while a thinner film can be provided by relatively decreasing the number of sputterings.
  • it can be provided as a coated inorganic film having a laminated structure by changing the type of target during sputtering.
  • a wet plating film may be provided on the dry plating film. That is, the coating inorganic film 40 may be composed of a dry plating film and a wet plating film.
  • the wet plating film generally has a higher film forming rate than the dry plating film. Therefore, when a thick film is provided as a coating inorganic film, efficient film formation can be performed by combining the dry plating film with the wet plating film.
  • the solid-state battery has features particularly due to its packaging.
  • the packaged solid-state battery of the present invention has characteristics derived from it, which is obtained by a production method described later.
  • the coated inorganic film is provided so as to cover the coated insulating layer, but is provided large so as to extend to the support substrate.
  • the coated inorganic film 40 extends beyond the coated insulating layer 30 to the side surface 10A of the support substrate 10.
  • the solid-state battery of such an embodiment can be obtained by further coating the precursor obtained by coating the solid-state battery on the support substrate with a coating insulating layer with a coating inorganic film. That is, due to the formation of such a large coating, the coating inorganic film 40 extends beyond the coating insulating layer 30 to the side surface 10A of the support substrate 10. For example, such a peculiar form of a coated inorganic film can be obtained by applying sputtering to the precursor obtained by coating the solid-state battery on the support substrate with a coated insulating layer. In the cross-sectional view as shown in FIG.
  • the coated inorganic film 40 on the side surface of the battery package product has a form extending straight (a form in which the coated inorganic film 40 extends straight in the vertical direction when viewed in cross section).
  • the present invention is not necessarily limited thereto.
  • the lateral outer surface 30A of the covering insulating layer 30 is positioned slightly inside (slightly inside in the left-right direction and horizontal direction) from the side surface 10A of the support substrate 10 as a whole.
  • the coated inorganic film 40 will be extended accordingly.
  • the coated inorganic film 40 when it is considered that the coated inorganic film 40 extends in the direction from the upper side to the lower side in the cross-sectional view, the coated inorganic film 40 spreads slightly outward in the vicinity of the boundary between the coated insulating layer 30 and the supporting substrate 10. It may be in a form that extends.
  • the support substrate and the coated inorganic film are flush with each other on the bottom side surface of the integrated body of the solid-state battery and the substrate. That is, on the bottom side surface of the packaged solid-state battery, the support substrate 10 and the coated inorganic film 40 are preferably flush with each other (see FIG. 11). That is, on the mounting surface of the packaged product of the solid-state battery, the surface level of the support substrate and the level of the coated inorganic film are the same or substantially the same.
  • a "facial" feature is due to the fact that the coated inorganic film was formed with the precursor placed on an appropriate table or the like.
  • a solid-state battery having a "facial” characteristic means that the mounting surface is suitably flattened and smoothed as a packaged product, and therefore tends to have more suitable mounting characteristics (particularly SMD characteristics). That is, the coated inorganic film 40 that extends beyond the coated insulating layer 30 to the side surface 10A of the support substrate 10 and is flush with the support substrate 10 not only contributes suitably to the prevention of water vapor permeation, but is more preferable. It can also contribute to various surface mount characteristics.
  • the advantages of the solid-state battery described above can be summarized as follows. It should be noted that the following advantages are merely exemplary and not limited, and may have additional advantages. -The package size can be reduced by including peripheral circuits, and it can be used as a battery package product with high energy density. -The wiring distance between the solid-state battery and the peripheral circuit can be shortened, the failure rate can be reduced in the middle of the circuit, and a highly reliable battery package product can be obtained. -The electronic components mounted on the support substrate are not only barriered to water vapor, but are also fixed to the support substrate with high rigidity, so they are resistant to physical stress such as thermal stress / deflection drop vibration impact.
  • -Since the electrical contacts between the peripheral circuit and the support substrate can be joined with a solder-based highly reliable contact material, a highly reliable battery package product can be obtained.
  • -Peripheral circuits including multi-terminal electronic devices can be integrated with high reliability, and can be made into a small module including solid-state batteries.
  • -Multi-terminals can be placed at any position on one plane with SMD-capable lands. Therefore, the degree of freedom in designing the motherboard is improved, and the density can be increased.
  • a non-cleaning bonding material a bonding material that does not require flux cleaning after soldering
  • the object of the present invention goes through a process of preparing a solid-state battery including a positive electrode layer, a negative electrode layer, and a battery building block having a solid electrolyte between the electrodes, and then packaging the solid-state battery together with peripheral circuits. Can be obtained by
  • the production of such a solid-state battery can be roughly divided into the production of the solid-state battery itself (hereinafter, also referred to as "pre-package battery") corresponding to the pre-packaging stage, the preparation of the support substrate, and the packaging.
  • the pre-packaged battery can be manufactured by a printing method such as a screen printing method, a green sheet method using a green sheet, or a composite method thereof. That is, the pre-packaged battery itself may be manufactured according to a conventional solid-state battery manufacturing method (therefore, a solid electrolyte, an organic binder, a solvent, an arbitrary additive, a positive electrode active material, a negative electrode active material, etc., which will be described below. As the raw material of the above, those used in the production of known solid-state batteries may be used).
  • the negative electrode paste is printed on the sheet, and the current collector layer and / or the negative layer is printed as required.
  • -A sheet on which the positive electrode paste is printed and a sheet on which the negative electrode paste is printed are alternately laminated to obtain a laminate.
  • the outermost layer (top layer / bottom layer) of the laminated body it may be an electrolyte layer, an insulating layer, or an electrode layer.
  • the laminate is pressure-bonded and integrated, it is cut to a predetermined size.
  • the obtained pre-cut laminate is degreased and fired.
  • a sintered laminate is obtained.
  • the laminate may be degreased and fired before cutting, and then cut.
  • the end face electrode on the positive electrode side can be formed by applying a conductive paste to the exposed side surface of the positive electrode in the sintered laminate.
  • the end face electrode on the negative electrode side can be formed by applying a conductive paste to the exposed side surface of the negative electrode in the sintered laminate. If the end face electrodes on the positive electrode side and the negative electrode side are provided so as to extend to the main surface of the sintered laminate, they can be connected to the mounting land in a small area in the next step (more specifically, the sintered laminate
  • the end face electrode provided so as to extend to the main surface has a folded portion on the main surface, and such a folded portion can be electrically connected to the support substrate).
  • the component of the end face electrode may be selected from at least one selected from silver, gold, platinum, aluminum, copper, tin and nickel.
  • the end face electrodes on the positive electrode side and the negative electrode side are not limited to being formed after sintering the laminate, but may be formed before firing and subjected to simultaneous sintering.
  • the desired pre-packaged battery can be finally obtained.
  • the support substrate can be prepared, for example, by laminating and firing a plurality of green sheets. This is especially true when the support substrate is a ceramic substrate.
  • the support substrate can be prepared, for example, according to the preparation of the LTCC substrate.
  • the support board provided as the terminal board may have vias and / or lands.
  • vias and / or lands In such a case, for example, holes (diameter size: about 50 ⁇ m to about 200 ⁇ m) are formed in the green sheet by punch press or carbon dioxide laser, and the holes are filled with a conductive paste material, or a printing method.
  • Conductive portions / wiring precursors such as vias, lands and / or wiring layers may be formed through such practices.
  • a land or the like is provided on the surface of the support substrate so as to be used for mounting components of peripheral circuits.
  • the support substrate may have a non-connected metal layer that is not electrically connected as a water vapor permeation prevention layer.
  • a metal layer (precursor thereof) to be a non-connecting metal layer may be formed on the green sheet.
  • a metal layer may be formed by a printing method, or may be formed by arranging a metal foil or the like.
  • a green sheet laminate is formed by stacking a predetermined number of such green sheets and thermocompression bonding, and the green sheet laminate is subjected to firing to obtain a support substrate. It should be noted that lands and the like can also be formed after firing the green sheet laminate.
  • the green sheet when the support substrate is obtained as a ceramic substrate will be described in detail.
  • the green sheet itself may be a sheet-like member including a ceramic component, a glass component and an organic binder component.
  • the ceramic component may be alumina powder (average particle size: about 0.5 to 10 ⁇ m)
  • the glass component may be borosilicate glass powder (average particle size: about 1 to 20 ⁇ m).
  • the organic binder component may be, for example, at least one component selected from the group consisting of polyvinyl butyral resin, acrylic resin, vinyl acetate copolymer, polyvinyl alcohol and vinyl chloride resin.
  • the green sheet may contain 40 to 50 wt% of alumina powder, 30 to 40 wt% of glass powder, and 10 to 30 wt% of an organic binder component (based on the total weight of the green sheet).
  • the green sheet has a weight ratio of a solid component (50 to 60 wt% of alumina powder and 40 to 50 wt% of glass powder: weight standard of the solid component) and an organic binder component, that is, a solid.
  • Component weight The organic binder component weight may be about 80 to 90:10 to 20.
  • the green sheet component may contain other components as needed, such as phthalates and / or plasticizers that impart flexibility to the green sheet such as dibutyl phthalate, and ketones such as glycols. Dispersant, organic solvent, etc. may be contained.
  • the thickness of each green sheet itself may be about 30 ⁇ m to 500 ⁇ m.
  • a solder material is provided to the support substrate obtained above. More specifically, for example, a metal mask is applied to the land provided on the surface of the substrate and the solder paste is applied.
  • a peripheral circuit for the solid-state battery is provided. More specifically, electronic components such as active elements, passive elements and / or auxiliary elements required for battery peripheral circuits are mounted at predetermined positions on the substrate.
  • members such as conductive spacers that contribute to the electrical connection (positive electrode connection and negative electrode connection) between the solid-state battery and the support substrate and to form a gap between them (for example, jumper pins, metal pillars, metal lumps, etc.) Height adjustment terminal pin) is also mounted.
  • the support substrate is subjected to reflow soldering and flux cleaning is performed. From the above, a support substrate in which a circuit has been formed can be obtained.
  • a substrate having a substrate form in advance may be used as long as it has a water vapor transmittance of less than 1.0 ⁇ 10 -3 g / (m 2 ⁇ Day).
  • another method uses a printed wiring board, an LTCC board, an HTCC board, or the like having a water vapor transmittance of less than 1.0 ⁇ 10 -3 g / (m 2 ⁇ Day) and having a circuit on the surface. You may.
  • ⁇ Packaging ⁇ 12 (a) to 12 (d) schematically show a step of obtaining the solid-state battery of the present invention by packaging.
  • the solid-state battery 100 hereinafter, also referred to as “pre-package battery”
  • the support substrate 10 obtained above are used (FIG. 12 (a)).
  • a connecting member 60'' that contributes to electrical connection between the solid-state battery 100 and the support substrate 10 is formed on the conductive spacer 60'provided on the support substrate, and the solid-state battery 100 is mounted on the substrate through the connecting member 60'' (FIG. 12 (FIG. 12).
  • Ag conductive paste is supplied by a dispenser on the conductive spacers (the conductive spacers on the positive electrode side and the negative electrode side that contribute to the connection between the positive electrode and the negative electrode of the solid-state battery, respectively).
  • the bottom portions of the end face electrodes on the positive side and the negative side of the solid cell are placed on the conductive spacers on the positive side and the negative side, respectively, and are brought into close contact with the Ag conductive paste and cured to perform bonding. More specifically, the conductive spacer on the positive electrode side provided on the surface of the support substrate and the folded portion of the end face electrode on the positive electrode side of the solid-state battery are aligned, and the conductive spacer on the negative electrode side and the solid state are aligned. The alignment is performed so that the folded portion of the end face electrode on the negative electrode side of the battery is aligned, and the joint connection is made via the Ag conductive paste.
  • any conductive paste such as nanopaste, alloy-based paste, and brazing material that does not require cleaning of flux or the like after formation can be used.
  • the final conductive spacer 60 has a non-cleaning type member 60''.
  • the coating insulating layer 30 is formed so as to cover the solid-state battery 100 on the support substrate 10. Therefore, the raw material of the coating insulating layer is provided so that the solid-state battery on the support substrate is entirely covered.
  • the coating insulating layer is made of a resin material
  • a resin precursor is provided on the support substrate and subjected to curing or the like to form the coating insulating layer.
  • the coating insulating layer may be molded by subjecting it to pressure with a mold.
  • a coating insulating layer that seals a solid-state battery on a support substrate may be molded through a compression mold.
  • the form of the raw material of the coating insulating layer may be granular, and the type may be thermoplastic.
  • such molding is not limited to mold molding, and may be performed through polishing, laser processing, and / or chemical processing.
  • the coated inorganic film 40 is formed. Specifically, the coated inorganic film 40 is formed on the “coated precursor in which each solid-state battery 100 is covered with the coated insulating layer 30 on the support substrate 10”.
  • dry plating may be carried out to form a dry plating film as a coating inorganic film. More specifically, dry plating is carried out to form a coated inorganic film on an exposed surface other than the bottom surface of the coating precursor (that is, other than the bottom surface of the support substrate).
  • sputtering is performed to form a sputtered film on an exposed outer surface other than the bottom surface of the coating precursor.
  • the "packaged solid-state battery" according to the present invention can be finally obtained.
  • the present invention is not particularly limited to this.
  • the number of upper lands and lower lands connected by vias may differ from each other.
  • the end face electrodes of a solid state battery can also contribute to the formation of a gap between the substrate and the solid state battery.
  • the end face electrode of the solid-state battery extends not only to the end face of the sintered laminate but also to a part of the main surface, the thickness of the end face electrode portion on the main face is the thickness of the substrate and the solid-state battery. It will contribute to the formation of a gap between the two.
  • the end face electrode may be provided with an appropriate leg member that particularly contributes to the formation of a gap between the substrate and the solid-state battery.
  • the solid-state battery on the substrate has a form in which the stacking direction of each layer constituting the solid-state battery is along the normal direction of the main surface of the substrate.
  • the solid-state battery may be provided on the substrate so that the stacking direction of the solid-state battery is orthogonal to the normal direction of the main surface of the substrate. In such a case, an inconvenient event such as the battery coming into contact with the circuit on the substrate due to the expansion / contraction of the solid-state battery (particularly the expansion / contraction in the stacking direction of the solid-state battery) is less likely to occur.
  • the coating insulating layer may be formed by using a coating method such as spray spraying.
  • the cross-sectional shape of the coating insulating layer 30 may reflect the contours of the substrate 10 and the solid-state battery 100 on the substrate 10 relatively largely.
  • the cross-sectional shape of the coated inorganic film 40 provided on the coated insulating layer 30 may also reflect the contours of the substrate 10 and the solid-state battery 100 on the substrate 10 relatively largely.
  • an additional film may be provided on the coated inorganic film from the viewpoint of preventing rust on the coated inorganic film.
  • an organic film formed of a resin or the like may be provided on the coated inorganic film.
  • the packaged solid-state battery of the present invention can be used in various fields where battery use and storage are expected.
  • the packaged solid-state battery of the present invention can be used in the field of electronics mounting.
  • electric / information / communication fields for example, mobile phones, smartphones, laptop computers and digital cameras, activity meters, arm computers, electronic papers, RFID tags, card-type electronic money, smarts, etc., in which electric / electronic devices are used.
  • Electrical / electronic equipment field including small electronic devices such as watches or mobile equipment field), home / small industrial use (for example, power tool, golf cart, home / nursing / industrial robot field), large industrial use (For example, forklift, elevator, bay port crane field), transportation system field (for example, hybrid car, electric car, bus, train, electric assist bicycle, electric motorcycle, etc.), power system application (for example, various power generation, Road conditioners, smart grids, general household-installed power storage systems, etc.), medical applications (medical equipment fields such as earphone hearing aids), pharmaceutical applications (dose management systems, etc.), IoT fields, space / deep sea applications
  • the electrodes of the present invention can also be used in (for example, fields such as space probes and submersible research vessels).
  • Support board 14 Via 16 Land 17 Conductive part of support board (board wiring) 19 Metal pad 30 Coated insulation layer 30'Coated insulation layer (especially the coating insulation layer between the solid-state battery and the support substrate) 35 Filler 40 Coated inorganic film 50 Coated member 60 Conductive connection 80 Circuit for solid-state battery 100 Solid-state battery 100A Top surface (upper surface) of solid-state battery 100B Side of solid-state battery 110 Positive electrode layer 120 Negative electrode layer 130 Solid electrolyte 150 End face electrode 150A Positive electrode side end face electrode 150B Negative electrode side end face electrode 200 Battery packaged product (packaged solid state battery)

Abstract

This solid-state battery is coated and disposed on a substrate, wherein a circuit for the solid-state battery is provided on the substrate.

Description

固体電池Solid state battery
 本発明は、固体電池に関する。より具体的には、本発明は、パッケージ化された固体電池に関する。 The present invention relates to a solid state battery. More specifically, the present invention relates to a packaged solid state battery.
 従前より、繰り返しの充放電が可能な二次電池が様々な用途に用いられている。例えば、二次電池は、スマートフォンおよびノートパソコン等の電子機器の電源として用いられたりする。 Conventionally, secondary batteries that can be repeatedly charged and discharged have been used for various purposes. For example, a secondary battery may be used as a power source for electronic devices such as smartphones and laptop computers.
 二次電池では、充放電に寄与するイオン移動のための媒体として液体の電解質が一般に使用されている。つまり、いわゆる電解液が二次電池に用いられている。しかしながら、そのような二次電池においては、電解液の漏出防止点で安全性が一般に求められる。また、電解液に用いられる有機溶媒等は可燃性物質ゆえ、その点でも安全性が求められる。 In secondary batteries, a liquid electrolyte is generally used as a medium for ion transfer that contributes to charging and discharging. That is, a so-called electrolytic solution is used in the secondary battery. However, in such a secondary battery, safety is generally required in terms of preventing leakage of the electrolytic solution. In addition, since the organic solvent used in the electrolytic solution is a flammable substance, safety is also required in that respect.
 そこで、電解液に代えて、固体電解質を用いた固体電池について研究が進められている。 Therefore, research is underway on solid-state batteries that use solid electrolytes instead of electrolytes.
特開2015-220107号公報JP 2015-220107 特開2007-5279号公報JP-A-2007-5279
 本願発明者は、固体電池では克服すべき課題が依然あることに気付き、そのための対策を取る必要性を見出した。具体的には以下の課題があることを本願発明者は見出した。 The inventor of the present application noticed that there are still problems to be overcome with solid-state batteries, and found the need to take measures for that purpose. Specifically, the inventor of the present application has found that there are the following problems.
 固体電池は、電池反応を発現させる材料そのものを、外部環境から遮断し、水蒸気および異物の浸入や電池反応物質の漏洩を防止する構造が必要である。この点、二次電池として広く用いられているリチウムイオン電池については、例えばアルミラミネートフィルムをパウチとして用いて封止されている(以下では、かかるパウチを「アルミラミパウチ」とも称す)。アルミラミパウチから取り出された正負端子には、周辺回路基板を結線し、電池ごと一体化したパッケージとして供される。 A solid battery needs a structure that shields the material itself that causes the battery reaction from the external environment and prevents the intrusion of water vapor and foreign substances and the leakage of the battery reactant. In this regard, lithium-ion batteries widely used as secondary batteries are sealed using, for example, an aluminum laminate film as a pouch (hereinafter, such a pouch is also referred to as an "aluminum lami pouch"). Peripheral circuit boards are connected to the positive and negative terminals taken out from the aluminum lami pouch, and the battery is provided as an integrated package.
 かかるリチウムイオン電池では、アルミラミパウチが電池本体を保護している。電極から引き出されたタブのみがアルミラミパウチの外部に露出しており、タブを通じて電気を得る。しかしながら、アルミラミパウチは封止に供される“のりしろ部”を周囲に出っ張らせる必要があり、構造上パッケージ体積の小型化が困難である。また、周辺回路基板をアルミラミパウチの外側のスペースに格納してパッケージ化することも考えられるが、全体の体積低減には特に効かない。むしろ2重のパッケージ構造になることから、そのようなパッケージ化により無駄な体積が増えることにもなり兼ねない。 In such a lithium-ion battery, the aluminum lami pouch protects the battery body. Only the tabs drawn from the electrodes are exposed to the outside of the aluminum lami pouch, and electricity is obtained through the tabs. However, in the aluminum lami pouch, it is necessary to project the "glue portion" used for sealing to the surroundings, and it is structurally difficult to reduce the package volume. It is also conceivable to store the peripheral circuit board in the space outside the aluminum lami pouch for packaging, but this is not particularly effective in reducing the overall volume. Rather, since it has a double package structure, such packaging may increase unnecessary volume.
 このようなことから、固体電池の封止では、リチウム電池のアルミラミパウチの考え方を踏襲することは必ずしも得策とはいえず、固体電池としてそのコンパクト化の観点などから新たな切り口で対応する必要がある。 For this reason, it is not always a good idea to follow the concept of lithium battery aluminum pouches when sealing solid-state batteries, and it is necessary to take a new approach from the perspective of making solid-state batteries compact. There is.
 本発明はかかる課題に鑑みて為されたものである。即ち、本発明の主たる目的は、封止特性を有しつつもコンパクト化に資する固体電池のパッケージ技術を提供することである。 The present invention has been made in view of such a problem. That is, a main object of the present invention is to provide a solid-state battery packaging technology that contributes to compactification while having sealing characteristics.
 本願発明者は、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記課題の解決を試みた。その結果、上記主たる目的が達成された固体電池の発明に至った。 The inventor of the present application tried to solve the above problem by dealing with it in a new direction, instead of dealing with it as an extension of the conventional technology. As a result, the invention of the solid-state battery which achieved the above-mentioned main purpose was reached.
 本発明では、基板上において固体電池が被覆され、固体電池のための回路が基板上に設けられている、基板を備えた固体電池が提供される。 The present invention provides a solid-state battery provided with a substrate, wherein the solid-state battery is coated on the substrate and a circuit for the solid-state battery is provided on the substrate.
 本発明に係る固体電池は、封止特性を有しつつもコンパクト化に好適な固体電池パッケージ品となっている。 The solid-state battery according to the present invention is a solid-state battery package product that has sealing characteristics and is suitable for compactification.
 より具体的には、水蒸気透過防止などの観点から、基板上にて固体電池が被覆されてパッケージ化が為されていると共に、コンパクト化の観点から“固体電池のための回路”が基板上に設けられている。つまり、基板の内部ではなく、基板の表面上に“固体電池のための回路”が設けられている。基板は、そもそもパッケージ化のために供されるところ、固体電池の周辺回路の設置にも利用するので、全体サイズは不都合に増していない。よって、本発明では、固体電池の封止を図りつつも全体としてコンパクトなパッケージ品がもたらされる。 More specifically, from the viewpoint of preventing water vapor permeation, the solid-state battery is coated on the substrate and packaged, and from the viewpoint of compactification, a "circuit for the solid-state battery" is placed on the substrate. It is provided. That is, the "circuit for solid-state battery" is provided on the surface of the substrate, not inside the substrate. Although the board is originally used for packaging, it is also used for installing peripheral circuits of solid-state batteries, so the overall size has not increased inconveniently. Therefore, the present invention provides a compact packaged product as a whole while sealing the solid-state battery.
図1は、固体電池の内部構成を模式的に示した断面図である。FIG. 1 is a cross-sectional view schematically showing the internal configuration of a solid-state battery. 図2は、本発明の一実施形態に係る固体電池の構成を模式的に示した断面図である。FIG. 2 is a cross-sectional view schematically showing the configuration of a solid-state battery according to an embodiment of the present invention. 図3は、本発明の別の一実施形態(被覆絶縁膜および被覆無機膜から構成される被覆部材)に係る固体電池の構成を模式的に示した断面図である。FIG. 3 is a cross-sectional view schematically showing the configuration of a solid-state battery according to another embodiment of the present invention (a covering member composed of a coating insulating film and a coating inorganic film). 図4(a)~(d)は、基板上に設けられた電池周辺回路の回路図(図4(a):保護回路、図4(b):充電制御回路、図4(c):温度制御回路、図4(d):出力補償回路)である。4 (a) to 4 (d) are circuit diagrams of battery peripheral circuits provided on the substrate (FIG. 4 (a): protection circuit, FIG. 4 (b): charge control circuit, FIG. 4 (c): temperature. The control circuit, FIG. 4D: output compensation circuit). 図5(a)~(c)は、基板上に設けられた複数の電池周辺回路を組み合わせた回路図(図5(a):充電制御・保護回路、図5(b):充電制御・保護・出力安定化電源回路、図5(c):充電制御・保護・出力安定化電源・出力補償回路)である。5 (a) to 5 (c) are circuit diagrams in which a plurality of battery peripheral circuits provided on the substrate are combined (FIG. 5 (a): charge control / protection circuit, FIG. 5 (b): charge control / protection. -Output stabilized power supply circuit, FIG. 5 (c): charge control / protection / output stabilized power supply / output compensation circuit). 図6Aは、固体電池と横並びで回路が基板上に設けられる態様を説明するための模式的断面図である。FIG. 6A is a schematic cross-sectional view for explaining an embodiment in which a circuit is provided on a substrate side by side with a solid-state battery. 図6Bは、固体電池と横並びで回路が基板上に設けられる態様を説明するための模式的断面図である。FIG. 6B is a schematic cross-sectional view for explaining an embodiment in which a circuit is provided on a substrate side by side with a solid-state battery. 図7は、被覆絶縁膜の変更態様を説明するための模式的断面図である。FIG. 7 is a schematic cross-sectional view for explaining a modified mode of the coating insulating film. 図8は、被覆無機膜の変更態様を説明するための模式的断面図である。FIG. 8 is a schematic cross-sectional view for explaining a modified mode of the coated inorganic film. 図9は、被覆無機膜の変更態様(金属パッド使用)を説明するための模式的断面図である。FIG. 9 is a schematic cross-sectional view for explaining a modified mode (using a metal pad) of the coated inorganic film. 図10は、被覆絶縁膜および被覆無機膜の変更態様を説明するための模式的断面図である。FIG. 10 is a schematic cross-sectional view for explaining a modified mode of the coated insulating film and the coated inorganic film. 図11は、本発明の別の一実施形態(被覆絶縁層のフィラー含有態様、被覆無機膜が支持基板にまで及ぶように大きく延在している態様、および、支持基板と被覆無機膜とが面一になっている態様)に係る固体電池の構成を模式的に示した断面図である。FIG. 11 shows another embodiment of the present invention (a filler-containing embodiment of the coating insulating layer, a configuration in which the coating inorganic film extends so as to extend to the support substrate, and a support substrate and the coating inorganic film. It is sectional drawing which shows typically the structure of the solid-state battery which concerns on a flush aspect). 図12(a)~(d)は、本発明の固体電池を得るプロセスを模式的に示した工程断面図である。12 (a) to 12 (d) are process cross-sectional views schematically showing the process of obtaining the solid-state battery of the present invention. 図13は、塗布法で形成された被覆膜の形態を説明するための模式的断面図である。FIG. 13 is a schematic cross-sectional view for explaining the morphology of the coating film formed by the coating method.
 以下、本発明の固体電池を詳細に説明する。必要に応じて図面を参照して説明を行うものの、図示する内容は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。 Hereinafter, the solid-state battery of the present invention will be described in detail. Although the description will be given with reference to the drawings as necessary, the contents shown are merely schematic and exemplary for the purpose of understanding the present invention, and the appearance, dimensional ratio, and the like may differ from the actual product.
 本発明の固体電池は、パッケージ化された固体電池に相当する。本明細書でいう「パッケージ化された固体電池」とは、広義には、外部環境から保護された固体電池を意味しており、狭義には、外部環境の水蒸気が固体電池の内部へと進入しないように封止されている固体電池のことを指している。好ましくは、そのような水分透過が防止された本発明の固体電池は、2次基板への実装に適するようにパッケージ化されており、特には表面実装に適するようにパッケージ化されている。よって、ある好適な態様では、本発明の電池はSMD(Surface Mount Device)タイプの電池となっている。 The solid-state battery of the present invention corresponds to a packaged solid-state battery. The term "packaged solid-state battery" as used herein means, in a broad sense, a solid-state battery protected from the external environment, and in a narrow sense, water vapor in the external environment enters the inside of the solid-state battery. It refers to a solid-state battery that is sealed so that it does not. Preferably, the solid-state battery of the present invention in which such moisture permeation is prevented is packaged to be suitable for mounting on a secondary substrate, and particularly to be suitable for surface mounting. Therefore, in a preferred embodiment, the battery of the present invention is an SMD (Surface Mount Device) type battery.
 本明細書でいう「断面視」とは、固体電池を構成する各層の積層方向に基づく厚み方向に対して略垂直な方向から捉えた場合の形態(端的にいえば、厚み方向に平行な面で切り取った場合の形態)に基づいている。本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」/「底面側」に相当し、その逆向きが「上方向」/「頂面側」に相当すると捉えることができる。 The "cross-sectional view" referred to in the present specification is a form when viewed from a direction substantially perpendicular to the thickness direction based on the stacking direction of each layer constituting the solid-state battery (in short, a plane parallel to the thickness direction). It is based on the form when cut out with. The "vertical direction" and "horizontal direction" used directly or indirectly in the present specification correspond to the vertical direction and the horizontal direction in the drawings, respectively. Unless otherwise specified, the same code or symbol shall indicate the same member / part or the same meaning. In one preferred embodiment, the vertical downward direction (that is, the direction in which gravity acts) corresponds to the "downward" / "bottom side", and the opposite direction corresponds to the "upward" / "top side". Can be done.
 本発明でいう「固体電池」は、広義にはその構成要素が固体から構成されている電池を指し、狭義にはその構成要素(特に好ましくは全ての構成要素)が固体から構成されている全固体電池を指している。ある好適な態様では、本発明における固体電池は、電池構成単位を成す各層が互いに積層するように構成された積層型固体電池であり、好ましくはそのような各層が焼結体から成っている。なお、「固体電池」は、充電および放電の繰り返しが可能な、いわゆる「二次電池」のみならず、放電のみが可能な「一次電池」をも包含する。本発明のある好適な態様に従うと「固体電池」は二次電池である。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、蓄電デバイスなども包含し得る。 The "solid-state battery" as used in the present invention refers to a battery whose components are composed of solids in a broad sense, and in a narrow sense, all of its components (particularly preferably all components) are composed of solids. Refers to a solid-state battery. In one preferred embodiment, the solid-state battery in the present invention is a laminated solid-state battery in which the layers forming the battery building unit are laminated to each other, and preferably such layers are made of a sintered body. The "solid-state battery" includes not only a so-called "secondary battery" capable of repeating charging and discharging, but also a "primary battery" capable of only discharging. According to certain preferred embodiments of the present invention, a "solid-state battery" is a secondary battery. The "secondary battery" is not overly bound by its name and may include, for example, a power storage device.
 以下では、まず、本発明の固体電池の基本的構成について説明する。ここで説明される固体電池の構成は、あくまでも発明の理解のための例示にすぎず、発明を限定するものではない。 In the following, first, the basic configuration of the solid-state battery of the present invention will be described. The configuration of the solid-state battery described here is merely an example for understanding the invention, and does not limit the invention.
[固体電池の基本的構成]
 固体電池は、正極・負極の電極層と固体電解質とを少なくとも有して成る。具体的には図1に示すように、固体電池100は、正極層110、負極層120、およびそれらの間に少なくとも介在する固体電解質130から成る電池構成単位を含んだ固体電池積層体を有して成る。
[Basic configuration of solid-state battery]
A solid-state battery includes at least positive and negative electrode layers and a solid electrolyte. Specifically, as shown in FIG. 1, the solid-state battery 100 has a solid-state battery laminate including a battery building block consisting of a positive electrode layer 110, a negative electrode layer 120, and a solid electrolyte 130 interposed therein. Consists of.
 固体電池は、それを構成する各層が焼成によって形成されるところ、正極層、負極層および固体電解質などが焼結層を成している。好ましくは、正極層、負極層および固体電解質は、それぞれが互いに一体焼成されており、それゆえ固体電池積層体が一体焼結体を成している。 In a solid-state battery, where each layer constituting the battery is formed by firing, a positive electrode layer, a negative electrode layer, a solid electrolyte, and the like form a sintered layer. Preferably, the positive electrode layer, the negative electrode layer and the solid electrolyte are each integrally fired, and therefore the solid-state battery laminate forms an integrally sintered body.
 正極層110は、少なくとも正極活物質を含んで成る電極層である。正極層は、更に固体電解質を含んで成っていてよい。ある好適な態様では、正極層は、正極活物質粒子と固体電解質粒子とを少なくとも含む焼結体から構成されている。一方、負極層は、少なくとも負極活物質を含んで成る電極層である。負極層は、更に固体電解質を含んで成っていてよい。ある好適な態様では、負極層は、負極活物質粒子と固体電解質粒子とを少なくとも含む焼結体から構成されている。 The positive electrode layer 110 is an electrode layer including at least a positive electrode active material. The positive electrode layer may further contain a solid electrolyte. In one preferred embodiment, the positive electrode layer is composed of a sintered body containing at least positive electrode active material particles and solid electrolyte particles. On the other hand, the negative electrode layer is an electrode layer including at least a negative electrode active material. The negative electrode layer may further contain a solid electrolyte. In one preferred embodiment, the negative electrode layer is composed of a sintered body containing at least negative electrode active material particles and solid electrolyte particles.
 正極活物質および負極活物質は、固体電池において電子の受け渡しに関与する物質である。固体電解質を介してイオンは正極層と負極層との間で移動(伝導)して電子の受け渡しが行われることで充放電がなされる。正極層および負極層は特にリチウムイオンまたはナトリウムイオンを吸蔵放出可能な層であることが好ましい。つまり、固体電池は、固体電解質を介してリチウムイオンまたはナトリウムイオンが正極層と負極層との間で移動して電池の充放電が行われる全固体型二次電池であることが好ましい。 The positive electrode active material and the negative electrode active material are substances involved in the transfer of electrons in a solid-state battery. Ions move (conduct) between the positive electrode layer and the negative electrode layer via the solid electrolyte, and electrons are transferred to perform charging and discharging. The positive electrode layer and the negative electrode layer are particularly preferably layers capable of occluding and releasing lithium ions or sodium ions. That is, the solid-state battery is preferably an all-solid-state secondary battery in which lithium ions or sodium ions move between the positive electrode layer and the negative electrode layer via the solid electrolyte to charge and discharge the battery.
(正極活物質)
 正極層に含まれる正極活物質としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、および、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiFe(PO、LiFePO4、および/またはLiMnPO等が挙げられる。リチウム含有層状酸化物の一例としては、LiCoO、および/またはLiCo1/3Ni1/3Mn1/3等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiMn、および/またはLiNi0.5Mn1.5等が挙げられる。
(Positive electrode active material)
Examples of the positive electrode active material contained in the positive electrode layer include a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and lithium-containing having a spinel-type structure. At least one selected from the group consisting of oxides and the like can be mentioned. Examples of the lithium-containing phosphoric acid compound having a pear-con type structure include Li 3 V 2 (PO 4 ) 3 . Examples of lithium-containing phosphoric acid compounds having an olivine-type structure include Li 3 Fe 2 (PO 4 ) 3 , LiFePO 4, and / or LiMnPO 4 . Examples of lithium-containing layered oxides include LiCoO 2 and / or LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and the like. Examples of lithium-containing oxides having a spinel-type structure include LiMn 2 O 4 and / or LiNi 0.5 Mn 1.5 O 4 and the like.
 また、ナトリウムイオンを吸蔵放出可能な正極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、ナトリウム含有層状酸化物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。 Further, as the positive electrode active material capable of occluding and releasing sodium ions, a sodium-containing phosphoric acid compound having a pearcon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing layered oxide, and a sodium-containing material having a spinel-type structure are contained. At least one selected from the group consisting of oxides and the like can be mentioned.
(負極活物質)
 負極層120に含まれる負極活物質としては、例えば、Ti、Si、Sn、Cr、Fe、NbおよびMoから成る群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、ならびに、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。リチウム合金の一例としては、Li-Al等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO、および/またはLiTi(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiFe(PO、および/またはLiCuPO等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiTi12等が挙げられる。
(Negative electrode active material)
Examples of the negative electrode active material contained in the negative electrode layer 120 include oxides containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, graphite-lithium compounds, and lithium alloys. At least one selected from the group consisting of a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing oxide having a spinel-type structure, and the like can be mentioned. An example of a lithium alloy is Li—Al or the like. Examples of lithium-containing phosphoric acid compounds having a pear-con type structure include Li 3 V 2 (PO 4 ) 3 and / or LiTi 2 (PO 4 ) 3 . Examples of lithium-containing phosphoric acid compounds having an olivine-type structure include Li 3 Fe 2 (PO 4 ) 3 and / or LiCuPO 4 . Examples of lithium-containing oxides having a spinel-type structure include Li 4 Ti 5 O 12 and the like.
 また、ナトリウムイオンを吸蔵放出可能な負極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。 The negative electrode active material capable of occluding and releasing sodium ions is composed of a sodium-containing phosphoric acid compound having a pearcon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing oxide having a spinel-type structure, and the like. At least one selected from the group is mentioned.
 正極層および/または負極層は、導電助剤を含んでいてもよい。正極層および負極層に含まれる導電助剤として、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケル等の金属材料、ならびに炭素などから成る少なくとも1種を挙げることができる。特に限定されるわけではないが、銅は、正極活物質、負極活物質および固体電解質材などと反応し難く、固体電池の内部抵抗の低減に効果を奏するのでその点で好ましい。 The positive electrode layer and / or the negative electrode layer may contain a conductive auxiliary agent. Examples of the conductive auxiliary agent contained in the positive electrode layer and the negative electrode layer include at least one composed of a metal material such as silver, palladium, gold, platinum, aluminum, copper and nickel, carbon and the like. Although not particularly limited, copper is preferable in that it is difficult to react with the positive electrode active material, the negative electrode active material, the solid electrolyte material, and the like, and is effective in reducing the internal resistance of the solid battery.
 さらに、正極層および/または負極層は、焼結助剤を含んでいてもよい。焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、酸化ケイ素、酸化ビスマスおよび酸化リンから成る群から選択される少なくとも1種を挙げることができる。 Further, the positive electrode layer and / or the negative electrode layer may contain a sintering aid. As the sintering aid, at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide and phosphorus oxide can be mentioned.
(固体電解質)
 固体電解質は、リチウムイオンまたはナトリウムイオンが伝導可能な材質である。特に固体電池で電池構成単位を成す固体電解質は、正極層と負極層との間においてリチウムイオンまたはナトリウムイオンが伝導可能な層を成している。なお、固体電解質は、正極層と負極層との間に少なくとも設けられていればよい。つまり、固体電解質は、正極層と負極層との間からはみ出すように当該正極層および/または負極層の周囲においても存在していてもよい。具体的な固体電解質としては、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物としては、Li(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、LiLaZr12等が挙げられる。
(Solid electrolyte)
The solid electrolyte is a material capable of conducting lithium ions or sodium ions. In particular, the solid electrolyte that forms the battery constituent unit of a solid-state battery forms a layer in which lithium ions or sodium ions can be conducted between the positive electrode layer and the negative electrode layer. The solid electrolyte may be provided at least between the positive electrode layer and the negative electrode layer. That is, the solid electrolyte may also be present around the positive electrode layer and / or the negative electrode layer so as to protrude from between the positive electrode layer and the negative electrode layer. Specific examples of the solid electrolyte include a lithium-containing phosphoric acid compound having a pearcon structure, an oxide having a perovskite structure, an oxide having a garnet type or a garnet type similar structure, and the like. As the lithium-containing phosphoric acid compound having a NASICON structure, Li x M y (PO 4 ) 3 (1 ≦ x ≦ 2,1 ≦ y ≦ 2, M is, Ti, Ge, Al, from the group consisting of Ga and Zr At least one selected). Examples of the lithium-containing phosphoric acid compound having a pear-con structure include Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 . As an example of an oxide having a perovskite structure, La 0.55 Li 0.35 TiO 3 and the like can be mentioned. Examples of oxides having a garnet type or a garnet type similar structure include Li 7 La 3 Zr 2 O 12 and the like.
 なお、ナトリウムイオンが伝導可能な固体電解質としては、例えば、ナシコン構造を有するナトリウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するナトリウム含有リン酸化合物としては、Na(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。 Examples of the solid electrolyte in which sodium ions can be conducted include sodium-containing phosphoric acid compounds having a pearcon structure, oxides having a perovskite structure, oxides having a garnet type or a garnet type similar structure, and the like. The sodium-containing phosphate compound having a NASICON structure, Na x M y (PO 4 ) 3 (1 ≦ x ≦ 2,1 ≦ y ≦ 2, M is, Ti, Ge, Al, from the group consisting of Ga and Zr At least one selected).
 固体電解質層は、焼結助剤を含んでいてもよい。固体電解質層に含まれる焼結助剤は、例えば、正極層・負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。 The solid electrolyte layer may contain a sintering aid. The sintering aid contained in the solid electrolyte layer may be selected from, for example, the same materials as the sintering aid that can be contained in the positive electrode layer and the negative electrode layer.
(正極集電層および負極集電層)
 正極層110および負極層120は、それぞれ正極集電層および負極集電層を備えていてもよい。正極集電層および負極集電層はそれぞれ箔の形態を有していてもよいが、一体焼成による固体電池の製造コスト低減および固体電池の内部抵抗低減などの観点から、焼結体の形態を有していてよい。なお、正極集電層および負極集電層が焼結体の形態を有する場合、導電助剤および焼結助剤を含む焼結体により構成されてもよい。正極集電層および負極集電層に含まれる導電助剤は、例えば、正極層および負極層に含まれ得る導電助剤と同様の材料から選択されてよい。正極集電層および負極集電層に含まれる焼結助剤は、例えば、正極層・負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。なお、固体電池において、正極集電層および負極集電層が必須というわけではなく、そのような正極集電層および負極集電層が設けられていない固体電池も考えられる。つまり、本発明における固体電池は、集電層レスの固体電池であってもよい。
(Positive current collector layer and negative electrode current collector layer)
The positive electrode layer 110 and the negative electrode layer 120 may include a positive electrode current collector layer and a negative electrode current collector layer, respectively. The positive electrode current collector layer and the negative electrode current collector layer may each have a foil form, but from the viewpoint of reducing the manufacturing cost of the solid-state battery and reducing the internal resistance of the solid-state battery by integral firing, the form of the sintered body is adopted. You may have. When the positive electrode current collector layer and the negative electrode current collector layer have the form of a sintered body, they may be composed of a sintered body containing a conductive auxiliary agent and a sintered auxiliary agent. The conductive auxiliary agent contained in the positive electrode current collector layer and the negative electrode current collector layer may be selected from, for example, the same materials as the conductive auxiliary agent that can be contained in the positive electrode layer and the negative electrode layer. The sintering aid contained in the positive electrode current collector layer and the negative electrode current collector layer may be selected from, for example, the same materials as the sintering aid that can be contained in the positive electrode layer and the negative electrode layer. In addition, in the solid-state battery, the positive electrode current collector layer and the negative electrode current collector layer are not indispensable, and a solid-state battery in which such a positive electrode current collector layer and the negative electrode current collector layer are not provided can be considered. That is, the solid-state battery in the present invention may be a solid-state battery without a current collector layer.
(端面電極)
 固体電池には、一般に端面電極150が設けられている。特に、固体電池の側面に端面電極が設けられている。より具体的には、正極層110と接続された正極側の端面電極150Aと、負極層120と接続された負極側の端面電極150Bとが設けられている(図1参照)。そのような端面電極は、導電率が大きい材料を含んで成ることが好ましい。端面電極の具体的な材質としては、特に制限されるわけではないが、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから成る群から選択される少なくとも一種を挙げることができる。
(End face electrode)
The solid-state battery is generally provided with an end face electrode 150. In particular, an end face electrode is provided on the side surface of the solid-state battery. More specifically, an end face electrode 150A on the positive electrode side connected to the positive electrode layer 110 and an end face electrode 150B on the negative electrode side connected to the negative electrode layer 120 are provided (see FIG. 1). Such end face electrodes preferably include a material having high conductivity. The specific material of the end face electrode is not particularly limited, but at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin and nickel can be mentioned.
[本発明の固体電池の特徴]
 本発明の固体電池は、基板を備えた固体電池である。好ましくは、そのような本発明に係る電池は、パッケージ化された固体電池となっている。つまり、外部環境からの保護に資するパッケージ構造を固体電池が有している。特に、本発明では、固体電池が、その周辺回路(好ましくは固体電池制御のための回路)を支持基板上に配した状態で該周辺回路および支持基板と共にパッケージ化されている。
[Characteristics of the solid-state battery of the present invention]
The solid-state battery of the present invention is a solid-state battery provided with a substrate. Preferably, such a battery according to the present invention is a packaged solid state battery. That is, the solid-state battery has a package structure that contributes to protection from the external environment. In particular, in the present invention, the solid-state battery is packaged together with the peripheral circuit and the support substrate in a state where the peripheral circuit (preferably a circuit for controlling the solid-state battery) is arranged on the support substrate.
 具体的には、基板上において固体電池が被覆されており、その固体電池のための回路が当該基板上に設けられている。特に、固体電池を支持する支持基板に回路が埋め込まれているのではなく、当該基板の表面上(特に主面上)に回路が配置されている。図2に本発明のパッケージ化電池の基本構成を示す。かかる図を参照すると、固体電池100は、基板10および被覆部材50を備えており、さらには基板上の回路80も全体として一体的に備えている。 Specifically, a solid-state battery is coated on the substrate, and a circuit for the solid-state battery is provided on the substrate. In particular, the circuit is not embedded in the support substrate that supports the solid-state battery, but is arranged on the surface (particularly on the main surface) of the substrate. FIG. 2 shows the basic configuration of the packaged battery of the present invention. Referring to such a figure, the solid-state battery 100 includes a substrate 10 and a covering member 50, and further integrally includes a circuit 80 on the substrate as a whole.
 回路80は、固体電池のための周辺回路である。固体電池に関連する回路であれば、どのような種類の回路であってもよい。一例を挙げると、回路80が保護回路および/または充放電制御回路となっていてよい。本発明では、そのような回路および支持基板とともに固体電池がワンパッケージ化している。図2に示す態様から分かるように、固体電池のための回路(特に固体電池を制御するための回路)が基板10の主面に設けられており、当該回路が該基板の主面の面方向に延在していてよい。つまり、回路80が、固体電池積層体の積層方向(即ち、固体電池の電極層の積層方向)に直交する方向に沿うように基板10の主面上に配置されている。端的にいえば、基板主面に貼り付くように回路が設けられている。このように回路が設けられることによって、基板10の主面を電池制御面としてより有効活用できる。また、回路と固体電池とが基板上で互いに近接しているので、そのような基板上の回路からの熱が固体電池に伝わり易く、その熱に起因して電池の充電効率が向上し得る効果も奏され得る。なお、本発明でいう「主面」とは、固体電池における電極層の積層方向に法線を有する面を指している。 Circuit 80 is a peripheral circuit for a solid-state battery. Any kind of circuit may be used as long as it is a circuit related to a solid-state battery. As an example, the circuit 80 may be a protection circuit and / or a charge / discharge control circuit. In the present invention, a solid-state battery is packaged together with such a circuit and a support substrate. As can be seen from the aspect shown in FIG. 2, a circuit for a solid-state battery (particularly a circuit for controlling the solid-state battery) is provided on the main surface of the substrate 10, and the circuit is in the plane direction of the main surface of the substrate. May be extended to. That is, the circuit 80 is arranged on the main surface of the substrate 10 so as to be perpendicular to the stacking direction of the solid-state battery laminate (that is, the stacking direction of the electrode layers of the solid-state battery). In short, the circuit is provided so as to stick to the main surface of the substrate. By providing the circuit in this way, the main surface of the substrate 10 can be more effectively used as the battery control surface. Further, since the circuit and the solid-state battery are close to each other on the substrate, the heat from the circuit on the substrate is easily transferred to the solid-state battery, and the effect that the charging efficiency of the battery can be improved due to the heat. Can also be played. The "main surface" in the present invention refers to a surface having a normal line in the stacking direction of the electrode layers in the solid-state battery.
 図示するように、本発明に係るパッケージ品では、固体電池100が全体に包囲されるように(固体電池を成す全ての面が外部に露出することのないように)、その周囲に基板10および被覆部材50が設けられている。このような封止形態ゆえ、本発明では、好ましくは水蒸気透過防止に資すべく固体電池がパッケージ化されている。特に、固体電池のための回路がパッケージ品として基板上に設けられた形態で水蒸気透過防止が図られている。 As shown in the figure, in the packaged product according to the present invention, the substrate 10 and the substrate 10 and the solid-state battery 100 are surrounded by the solid-state battery 100 (so that all the surfaces forming the solid-state battery are not exposed to the outside). A covering member 50 is provided. Because of such a sealed form, in the present invention, a solid-state battery is preferably packaged to contribute to the prevention of water vapor permeation. In particular, the circuit for the solid-state battery is provided on the substrate as a package product to prevent water vapor permeation.
 図2に示す形態から分かるように、基板10は、少なくとも固体電池100を支持する基板である。かかる“支持”に供すべく固体電池の主面を成す一方の側に近位となるように基板が位置付けられている。基板の主面サイズは、固体電池の主面サイズと同じというよりもむしろ固体電池の主面サイズよりも大きくなっていてよい。また、“基板”ゆえ全体として薄板状の形態を好ましくは有している。 As can be seen from the form shown in FIG. 2, the substrate 10 is a substrate that supports at least the solid-state battery 100. The substrate is positioned proximal to one side of the main surface of the solid-state battery to provide such "support". The main surface size of the substrate may be larger than the main surface size of the solid state battery rather than the same as the main surface size of the solid state battery. Further, since it is a "substrate", it preferably has a thin plate-like form as a whole.
 本発明では、基板10が、固体電池100のみならず回路80も該基板の表面上において支持している(図2参照)。つまり、本発明における基板10は、固体電池100および回路80を共に支持する基板となっている。かかる態様ゆえ、基板20を“支持基板”と称すこともできる(以下では基板のことを適宜「支持基板」と称して説明する)。 In the present invention, the substrate 10 supports not only the solid-state battery 100 but also the circuit 80 on the surface of the substrate (see FIG. 2). That is, the substrate 10 in the present invention is a substrate that supports both the solid-state battery 100 and the circuit 80. Because of this aspect, the substrate 20 can also be referred to as a "support substrate" (hereinafter, the substrate will be appropriately referred to as a "support substrate").
 基板10は、樹脂基板であってよく、あるいは、セラミック基板であってもよい。基板10は特にシリコン基板でなくてもよい。ある好適な態様では基板10が、セラミック基板となっている。つまり、基板10はセラミックを含んで成り、それが基板の母材成分を占めるようになっている。セラミックから成る支持基板は、水蒸気透過防止に資するところ、実装における耐熱性などの点でも好ましい基板である。このようなセラミラック基板は、焼成を通じて得ることができ、例えばグリーンシート積層体の焼成によって得ることができる。これにつき、セラミック基板は、例えばLTCC基板(LTCC:Low Temperature Co-fired Ceramics)であってよく、あるいは、HTCC基板(HTCC:High Temperature Co-fired Ceramic)であってもよい。あくまでも例示にすぎないが、基板の厚さは、20μm以上1000μm以下であってよく、例えば100μm以上300μm以下である。 The substrate 10 may be a resin substrate or a ceramic substrate. The substrate 10 does not have to be a silicon substrate in particular. In one preferred embodiment, the substrate 10 is a ceramic substrate. That is, the substrate 10 is made of a ceramic, which occupies the base material component of the substrate. A support substrate made of ceramic is a substrate that contributes to the prevention of water vapor permeation and is also preferable in terms of heat resistance in mounting. Such a ceramic rack substrate can be obtained by firing, for example, by firing a green sheet laminate. Regarding this, the ceramic substrate may be, for example, an LTCC substrate (LTCC: Low Temperature Co-fired Ceramics) or an HTCC substrate (HTCC: High Temperature Co-fired Ceramic). Although it is merely an example, the thickness of the substrate may be 20 μm or more and 1000 μm or less, for example, 100 μm or more and 300 μm or less.
 被覆部材50は、封止に供すべく、基板10上の固体電池の頂面および側面を覆うように設けられていることが好ましい。また、図2に示すように、被覆部材50は固体電池の側面を超えるように設けられていてよい。より好適な封止の観点でいえば、被覆部材50は、図3に示すように被覆絶縁層30および被覆無機膜40から成ることが好ましい。例えば、固体電池100の頂面および側面を覆うように被覆絶縁層30が設けられ、その被覆絶縁層上に被覆無機膜40が設けられていることが好ましい。特に水蒸気透過防止の特性が効果的に向上し得るからである。 It is preferable that the covering member 50 is provided so as to cover the top surface and the side surface of the solid-state battery on the substrate 10 so as to be used for sealing. Further, as shown in FIG. 2, the covering member 50 may be provided so as to extend beyond the side surface of the solid-state battery. From the viewpoint of more preferable sealing, the coating member 50 is preferably composed of a coating insulating layer 30 and a coating inorganic film 40 as shown in FIG. For example, it is preferable that the coated insulating layer 30 is provided so as to cover the top surface and the side surface of the solid-state battery 100, and the coated inorganic film 40 is provided on the coated insulating layer. In particular, the property of preventing water vapor permeation can be effectively improved.
 換言すれば、被覆部材50は、固体電池100の頂面100Aおよび側面100Bを少なくとも覆うように設けられた層であることが好ましい。図3に示されるように、支持基板10上に設けられた固体電池100は被覆部材50によって全体として大きく包み込まれるようになっている。ある好適な態様では、固体電池100の頂面100Aおよび側面100Bにおける全電池面領域(少なくとも電池“頂面”領域および電池“側面”領域についていえば全て)に被覆部材50が設けられており、図示するような断面視にて電池側面を超えて基板側に向けて延在するように被覆部材50が設けられている。 In other words, the covering member 50 is preferably a layer provided so as to cover at least the top surface 100A and the side surface 100B of the solid-state battery 100. As shown in FIG. 3, the solid-state battery 100 provided on the support substrate 10 is largely wrapped by the covering member 50 as a whole. In one preferred embodiment, the covering member 50 is provided on the entire battery surface region (at least all of the battery "top surface" region and the battery "side surface" region) on the top surface 100A and the side surface 100B of the solid-state battery 100. The covering member 50 is provided so as to extend beyond the side surface of the battery toward the substrate side in a cross-sectional view as shown in the drawing.
 上記説明から分かるように、本明細書でいう「頂面」とは、電池を構成する面のうちで相対的に上側に位置付けられる面のことを意味している。対向する主面が2つ存在するような典型的な固体電池を想定すると、本明細書でいう「頂面」とは、かかる主面の一方を指しており、特に支持基板に近位する主面(すなわち、後述するSMDタイプの電池における実装面側)とは異なる側の主面のことを意味している。したがって、本発明でいう「固体電池の頂面および側面を覆うように設けられた」とは、固体電池を平面に据え置いたと仮定した場合、当該平面と接することになる面以外・面領域以外の電池面に対して少なくとも被覆部材が設けられていることを実質的に意味している。 As can be seen from the above description, the "top surface" in the present specification means a surface that is positioned relatively upward among the surfaces constituting the battery. Assuming a typical solid-state battery in which there are two opposing main surfaces, the "top surface" as used herein refers to one of these main surfaces, especially the main surface proximal to the support substrate. It means a main surface on a side different from the surface (that is, the mounting surface side in the SMD type battery described later). Therefore, in the present invention, "provided so as to cover the top surface and the side surface of the solid-state battery" means that, assuming that the solid-state battery is placed on a flat surface, the surface other than the surface and the surface region that are in contact with the flat surface are not included. It substantially means that at least a covering member is provided on the battery surface.
 被覆部材50の被覆絶縁層30は樹脂層に相当することが好ましい。つまり、被覆絶縁層30は樹脂材を含んで成り、それが当該層の母材を成していることが好ましい。図示される態様から分かるように、これは支持基板10上に設けられた固体電池が被覆絶縁層30の樹脂材で封止されていることを意味している。このような樹脂材から成る被覆絶縁層30は、被覆無機膜40と相俟って好適な水蒸気バリアに資する。 The coating insulating layer 30 of the coating member 50 preferably corresponds to a resin layer. That is, it is preferable that the coating insulating layer 30 includes a resin material, which forms a base material for the layer. As can be seen from the illustrated embodiment, this means that the solid-state battery provided on the support substrate 10 is sealed with the resin material of the coating insulating layer 30. The coated insulating layer 30 made of such a resin material contributes to a suitable water vapor barrier in combination with the coated inorganic film 40.
 被覆絶縁層30の材質は、絶縁性を呈するものであればいずれの種類であってよい。例えば被覆絶縁層が樹脂を含んで成る場合、その樹脂は熱硬化性樹脂または熱可塑性樹脂のいずれであってもよい。特に制限されるわけではないが、被覆絶縁層の具体的な樹脂材としては、例えばエポキシ系樹脂、シリコーン系樹脂や液晶ポリマーなどを挙げることができる。あくまでも例示にすぎないが、被覆絶縁層の厚さは、30μm以上1000μm以下であってよく、例えば50μm以上300μm以下である。 The material of the covering insulating layer 30 may be any kind as long as it exhibits insulating properties. For example, when the coating insulating layer contains a resin, the resin may be either a thermosetting resin or a thermoplastic resin. Although not particularly limited, examples of the specific resin material of the coating insulating layer include an epoxy resin, a silicone resin, and a liquid crystal polymer. Although it is merely an example, the thickness of the coating insulating layer may be 30 μm or more and 1000 μm or less, for example, 50 μm or more and 300 μm or less.
 被覆部材50の被覆無機膜40は、好ましくは被覆絶縁層30を覆うように設けられている。かかる場合、被覆無機膜40は、被覆絶縁層30上に位置付けられているので、被覆絶縁層30とともに、支持基板10上の固体電池100を全体として大きく包み込む形態を有している。 The coating inorganic film 40 of the coating member 50 is preferably provided so as to cover the coating insulating layer 30. In such a case, since the coated inorganic film 40 is positioned on the coated insulating layer 30, it has a form that largely encloses the solid-state battery 100 on the support substrate 10 together with the coated insulating layer 30.
 被覆無機膜40は、薄膜形態を有することが好ましい。よって、被覆部材50において、被覆無機膜40の厚さは被覆絶縁層30の厚さよりも小さくなっている。薄膜形態を有する無機層に資するものであれば、被覆無機膜40の材質は特に制限されず、金属、ガラス、酸化物セラミックスまたはそれらの混合物などのいずれであってもよい。ある好適な態様では被覆無機膜40が金属成分を含んで成っている。つまり、被覆無機膜40が好ましくは金属薄膜となっている。あくまでも例示にすぎないが、被覆無機膜の厚さは、0.1μm以上100μm以下であってよく、例えば1μm以上50μm以下である。 The coated inorganic film 40 preferably has a thin film form. Therefore, in the covering member 50, the thickness of the covering inorganic film 40 is smaller than the thickness of the covering insulating layer 30. The material of the coated inorganic film 40 is not particularly limited as long as it contributes to the inorganic layer having a thin film form, and may be any of metal, glass, oxide ceramics, or a mixture thereof. In one preferred embodiment, the coated inorganic film 40 comprises a metal component. That is, the coated inorganic film 40 is preferably a metal thin film. Although it is merely an example, the thickness of the coated inorganic film may be 0.1 μm or more and 100 μm or less, for example, 1 μm or more and 50 μm or less.
 薄膜形態を有する被覆無機膜40はめっき膜であってよい。特に製法に依拠していえば、被覆無機膜40は、乾式めっき膜であってよい。かかる乾式めっき膜は、物理的気相成長法(PVD)や化学的気相成長法(CVD)といった気相法で得られる膜であって、ナノオーダーまたはミクロンオーダーの非常に小さい厚さを有している。このような薄い乾式めっき膜は、よりコンパクトなパッケージ化に資する。乾式めっき膜は、例えば、アルミニウム(Al)、ニッケル(Ni)、パラジウム(Pd)、銀(Ag)、スズ(Sn)、金(Au)、銅(Cu)、チタン(Ti)、白金(Pt)、ケイ素/シリコン(Si)およびSUSなどから成る群から選択される少なくとも1種の金属成分・半金属成分、無機酸化物および/またはガラス成分などから成るものであってよい。このような成分から成る乾式めっき膜は、化学的および/または熱的に安定であるので、耐薬品性、耐候性および/また耐熱性などに優れ、長期信頼性がより向上した固体電池がもたらされ得る。なお、上記例示した材質から分かるように、被覆無機膜40はタンタルからなっていなくてよい。 The coating inorganic film 40 having a thin film form may be a plating film. In particular, the coating inorganic film 40 may be a dry plating film, if it depends on the production method. Such a dry plating film is a film obtained by a vapor phase method such as physical vapor deposition (PVD) or chemical vapor deposition (CVD), and has a very small thickness on the order of nano or micron. are doing. Such a thin dry plating film contributes to more compact packaging. The dry plating film is, for example, aluminum (Al), nickel (Ni), palladium (Pd), silver (Ag), tin (Sn), gold (Au), copper (Cu), titanium (Ti), platinum (Pt). ), Silicon / silicon (Si), SUS and the like, and at least one metal component / semi-metal component selected from the group, an inorganic oxide and / or a glass component and the like. Since the dry plating film composed of such components is chemically and / or thermally stable, it is excellent in chemical resistance, weather resistance and / or heat resistance, and even a solid-state battery having further improved long-term reliability can be used. Can be punished. As can be seen from the materials exemplified above, the coating inorganic film 40 does not have to be made of tantalum.
 本発明では、固体電池を基板および被覆部材で包み込むように構成することによってパッケージ化している。特に、固体電池は表面実装に適するようにパッケージ化され、基板が端子基板となっていることが好ましい。支持基板が好ましくは端子基板になっているともいえる。これは、ある好適な態様に従った基板は、固体電池および周辺回路の支持基板を成すとともに、パッケージ化された固体電池の外部端子のための端子基板となっていることを意味している。 In the present invention, the solid-state battery is packaged by wrapping it with a substrate and a covering member. In particular, it is preferable that the solid-state battery is packaged so as to be suitable for surface mounting, and the substrate is a terminal substrate. It can be said that the support substrate is preferably a terminal substrate. This means that the substrate according to a preferred embodiment forms a support substrate for the solid-state battery and peripheral circuits, and is a terminal substrate for the external terminals of the packaged solid-state battery.
 端子基板として支持基板を備える固体電池は、基板が介在するような形態で固体電池をプリント配線板および/またはマザーボードなどの別の2次基板上に実装することができる。例えば電子部品および/もしくはICなどを備えたプリント配線板ならびに/またはマザーボードなどの外部基板に対して、端子基板として供し得る支持基板を備えた固体電池を実装してもよい。また例えば、半田リフローなどを通じで、支持基板を介して固体電池を表面実装できる。このようなことから、本発明のパッケージ化された固体電池は、SMDタイプの電池(即ち、表面実装品)であるといえる。特に端子基板がセラミック基板から成る場合では、本発明の固体電池は、耐熱性が高く、半田実装可能なSMDタイプの電池となり得る。 A solid-state battery having a support board as a terminal board can be mounted on another secondary board such as a printed wiring board and / or a motherboard in such a form that the board is interposed. For example, a solid-state battery having a support substrate that can be used as a terminal substrate may be mounted on a printed wiring board including electronic components and / or an IC and / or an external substrate such as a motherboard. Further, for example, the solid-state battery can be surface-mounted via the support substrate through solder reflow or the like. From this, it can be said that the packaged solid-state battery of the present invention is an SMD type battery (that is, a surface mount product). In particular, when the terminal substrate is made of a ceramic substrate, the solid-state battery of the present invention can be an SMD type battery having high heat resistance and solder mountable.
 端子基板ゆえ、基板が配線を有していることが好ましく、特に、上下表面・上下表層を電気的に結線する配線を備えていることが好ましい。つまり、ある好適な態様の支持基板は、当該基板の上下面を電気的に結線する配線を備え、パッケージ化された固体電池の外部端子のための端子基板となっている。端的にいえば、固体電池および回路を支持する支持基板は、基板の両主面を互いに電気接続する接続導通部を有していてよい。かかる態様では、固体電池からの外部端子への取り出しに支持基板の配線を使用できるので、金属タグで水蒸気バリア層でパッキングしながらパッケージ外部に取り出すといった必要がなく、外部端子の設計自由度が高くなっている。端子基板における配線は、特に制限されず、当該基板の上面と下面との間の電気的接続に資するものであれば、いずれの形態を有していてもよい。電気的接続に資するがゆえ、端子基板における配線は、基板の導電性部分17であるともいえる(図2または図3参照)。そのような基板の導電性部分は、配線層、ビアおよび/またはランドなどの形態を有していてよい。例えば、図3に示す形態では、支持基板10にビア14および/またはランド16が設けられている。ここでいう「ビア」は、支持基板の上下方向/基板厚み方向を電気的に接続するための部材を指しており、例えばフィルドビアなどが好ましく、また、インナービアの形態などであってもよい。また、ここでいう「ランド」は、支持基板の上側主面および/または下側主面に設けられた電気的接続のための端子部分・接続部分(好ましくはビアと接続されている端子部分・接続部分)を指しており、例えば角ランドであってよいし、あるいは、丸ランドなどであってもよい。 Since it is a terminal board, it is preferable that the board has wiring, and in particular, it is preferable that the board is provided with wiring that electrically connects the upper and lower surfaces and the upper and lower surface layers. That is, a support substrate of a preferred embodiment is provided with wiring for electrically connecting the upper and lower surfaces of the substrate, and is a terminal substrate for an external terminal of a packaged solid-state battery. In short, the solid-state battery and the support substrate that supports the circuit may have a connection conductive portion that electrically connects both main surfaces of the substrate to each other. In this embodiment, since the wiring of the support substrate can be used to take out the solid-state battery to the external terminal, it is not necessary to take it out of the package while packing it with a water vapor barrier layer with a metal tag, and the degree of freedom in designing the external terminal is high. It has become. The wiring on the terminal board is not particularly limited, and may have any form as long as it contributes to the electrical connection between the upper surface and the lower surface of the board. Since it contributes to electrical connection, it can be said that the wiring on the terminal board is the conductive portion 17 of the board (see FIG. 2 or 3). The conductive portion of such a substrate may have a form such as a wiring layer, vias and / or lands. For example, in the form shown in FIG. 3, the support substrate 10 is provided with vias 14 and / or lands 16. The term "via" as used herein refers to a member for electrically connecting the vertical direction of the support substrate / the thickness direction of the substrate, and for example, a filled via is preferable, and an inner via may be used. Further, the “land” referred to here is a terminal portion / connection portion (preferably a terminal portion connected to a via) for electrical connection provided on the upper main surface and / or the lower main surface of the support substrate. It refers to a connection portion), and may be, for example, a corner land or a round land.
 導電性部分17を有する端子基板では、電池パッケージ品としての外部端子の引き出し位置をパッケージ下部で任意に設けることができる。また、図2および図3に示す形態から分かるように、そのような外部端子の引き出し形状は、実質的な凹凸無く、実装パッケージと同一面内で平滑な面として供すことができる。このような基板を備えた固体電池では、電池から比較的短い距離(好ましくは最短距離)でパッケージ外部に端子を取り出すことができるので、ロスの少ない電池パッケージ品がもたらされ得る。 In the terminal board having the conductive portion 17, the pull-out position of the external terminal as a battery package product can be arbitrarily provided at the lower part of the package. Further, as can be seen from the forms shown in FIGS. 2 and 3, the drawer shape of such an external terminal can be provided as a smooth surface in the same surface as the mounting package without substantially unevenness. In a solid-state battery provided with such a substrate, terminals can be taken out of the package at a relatively short distance (preferably the shortest distance) from the battery, so that a battery package product with less loss can be obtained.
 本発明における端子基板は、対向する上面と下面とが互いに電気的に接続されている。よって、そのようなものであれば、端子基板の種類は特に制限されない。例えば、端子基板として、上下の結線が可能であり部品実装に資する基板を利用してもよい。あくまでも1つの例示であるが、上面と下面とが互いに電気的に接続されたインターポーザを用いてもよい(かかる場合、インターポーザの基板材質は、特にシリコンでなくてよく、セラミックであってよい)。 In the terminal board of the present invention, the upper surface and the lower surface facing each other are electrically connected to each other. Therefore, as long as it is such a thing, the type of the terminal board is not particularly limited. For example, as the terminal board, a board that can be connected up and down and contributes to component mounting may be used. Although only one example is used, an interposer in which the upper surface and the lower surface are electrically connected to each other may be used (in such a case, the substrate material of the interposer may be ceramic, not particularly silicon).
 端子基板として支持基板を備える固体電池では、支持基板の配線と固体電池の端子部分とが互いに電気的に接続されている。つまり、支持基板の導電性部分と固体電池の端面電極とが互いに電気的に接続されている。例えば、固体電池の正極側の端面電極が、支持基板の正極側の導電性部分と電気的に接続されている一方、固体電池の負極側の端面電極が、支持基板の負極側の導電性部分と電気的に接続されている。これによって、支持基板の正極側および負極側の導電性部分(特に下側ランド/底面ランド)が、それぞれ、固体電池パッケージ品の正極端子および負極端子として供され得る。 In a solid-state battery having a support board as a terminal board, the wiring of the support board and the terminal portion of the solid-state battery are electrically connected to each other. That is, the conductive portion of the support substrate and the end face electrode of the solid-state battery are electrically connected to each other. For example, the end face electrode on the positive electrode side of the solid-state battery is electrically connected to the conductive portion on the positive electrode side of the support substrate, while the end face electrode on the negative electrode side of the solid-state battery is the conductive portion on the negative electrode side of the support substrate. Is electrically connected to. As a result, the conductive portions (particularly the lower land / bottom land) on the positive electrode side and the negative electrode side of the support substrate can be provided as the positive electrode terminal and the negative electrode terminal of the solid-state battery package, respectively.
 本発明では、端子基板と固体電池との間の好適な電気的接続に資する部材が設けられていてよい。例えば、本発明の固体電池は、端面電極150と導電性部分17とを互いに電気的に接続する導電性接続部材60を基板上に更に有していてよい(図3参照)。導電性接続部材60は、銀(Ag)、銅(Cu)、パラジウム(Pd)、金(Au)、白金(Pt)、アルミニウム(Al)およびニッケル(Ni)などから成る群から選択される少なくとも1種を含んで成るペーストを用いて形成されるものであってよい。 In the present invention, a member that contributes to a suitable electrical connection between the terminal board and the solid-state battery may be provided. For example, the solid-state battery of the present invention may further have a conductive connecting member 60 on the substrate that electrically connects the end face electrode 150 and the conductive portion 17 to each other (see FIG. 3). The conductive connecting member 60 is at least selected from the group consisting of silver (Ag), copper (Cu), palladium (Pd), gold (Au), platinum (Pt), aluminum (Al), nickel (Ni) and the like. It may be formed by using a paste containing one kind.
 図3に示す態様から分かるように、導電性接続部材60(すなわち、固体電池の端面電極150と基板の配線などの導電性部分17とを互いに電気的に接続する導電性接続部材60)に起因してもたらされる“固体電池100と基板10との間の隙間”において回路80が位置付けられている。かかる場合では、導電性接続部材60に起因した隙間を回路80の設置スペースとして有効活用できるので、固体電池の低背化に寄与し得る。 As can be seen from the aspect shown in FIG. 3, it is caused by the conductive connecting member 60 (that is, the conductive connecting member 60 that electrically connects the end face electrode 150 of the solid-state battery and the conductive portion 17 such as the wiring of the substrate). The circuit 80 is positioned in the "gap between the solid-state battery 100 and the substrate 10" that is brought about. In such a case, the gap caused by the conductive connecting member 60 can be effectively used as an installation space for the circuit 80, which can contribute to lowering the height of the solid-state battery.
 本発明の固体電池100は、基板10を用いて回路80とともにパッケージ化されている点に少なくとも特徴を有する。つまり、本発明では、固体電池のための回路を構成する能動素子、受動素子および/または補助素子などが当該固体電池とともに基板上に配されることでパッケージ化されていてよい。能動素子としては、トランジスタ、IC、ダイオードおよびオペアンプなどから成る群から選択される少なくとも1種を挙げることができる。受動素子としては、抵抗、コイルおよびコンデンサなどから成る群から選択される少なくとも1種を挙げることができる。補助素子としては、コネクタ、端子、配線および線材などから成る群から選択される少なくとも1種を挙げることができる。このような回路素子は、チップ形態を有しているものであってもよい。 The solid-state battery 100 of the present invention is at least characterized in that it is packaged together with the circuit 80 using the substrate 10. That is, in the present invention, the active element, the passive element, and / or the auxiliary element that constitute the circuit for the solid-state battery may be packaged by being arranged on the substrate together with the solid-state battery. Examples of the active element include at least one selected from the group consisting of transistors, ICs, diodes, operational amplifiers, and the like. As the passive element, at least one selected from the group consisting of a resistor, a coil, a capacitor and the like can be mentioned. As the auxiliary element, at least one selected from the group consisting of a connector, a terminal, a wiring, a wire rod, and the like can be mentioned. Such a circuit element may have a chip form.
 例えば、保護回路および/または充放電制御回路などの電池周辺回路のために用いられる回路素子が固体電池とともにパッケージ化されている。つまり、固体電池の過充電時の充電防止、過放電時の放電防止および/もしくは短絡時などの大電流放電の停止のための保護回路素子、ならびに/または、固体電池の充電および/もしくは放電を制御するための充放電制御回路素子などが固体電池とともに一体的にパッケージ化されている。端的にいえば、本発明において、基板上に設けられている回路は、固体電池の制御のための回路であってよい。なお、図2および図3に示すように、このような回路80は基板10の主面に接しつつも、固体電池100自体には接しないようになっていてよい。これにより、電池と回路との物理的接触に起因する不都合な事象などを抑制することができる。 For example, circuit elements used for battery peripheral circuits such as protection circuits and / or charge / discharge control circuits are packaged together with solid-state batteries. That is, a protection circuit element for preventing charging when the solid battery is overcharged, preventing discharge when overdischarging, and / or stopping a large current discharge such as a short circuit, and / or charging and / or discharging the solid battery. A charge / discharge control circuit element for control is integrally packaged together with a solid-state battery. In short, in the present invention, the circuit provided on the substrate may be a circuit for controlling a solid-state battery. As shown in FIGS. 2 and 3, such a circuit 80 may be in contact with the main surface of the substrate 10 but not with the solid-state battery 100 itself. As a result, inconvenient events caused by physical contact between the battery and the circuit can be suppressed.
 より広範に捉えれば、本発明では、保護回路、充電制御回路、温度制御回路、出力補償回路および出力安定化電源回路から成る群から選択される少なくとも一種の電池周辺回路が固体電池とともにパッケージ化されていてよい。 Broadly speaking, in the present invention, at least one type of battery peripheral circuit selected from the group consisting of a protection circuit, a charge control circuit, a temperature control circuit, an output compensation circuit and an output stabilized power supply circuit is packaged together with a solid-state battery. You may be.
 電池周辺回路が保護回路である場合、固体電池の過放電、過充電、過電流および/または過熱などを防止することができる。図4(a)は、基板上に設けられた回路が保護回路となる場合の回路図の一例を示す。あくまでも例示説明にすぎないが、保護回路では、所定の電圧または電流が過度にならないように制御される。 When the battery peripheral circuit is a protection circuit, it is possible to prevent over-discharging, over-charging, over-current and / or over-heating of the solid-state battery. FIG. 4A shows an example of a circuit diagram when the circuit provided on the substrate serves as a protection circuit. Although it is merely an illustration, the protection circuit is controlled so that a predetermined voltage or current does not become excessive.
 電池周辺回路が充電制御回路である場合、固体電池の充電を制御することができる。図4(b)は、基板上に設けられた回路が充電制御回路となる場合の回路図の一例を示す。あくまでも例示説明にすぎないが、充電制御回路は、所望の定電流定電圧(CCCV)充電となるように制御する。 When the battery peripheral circuit is a charge control circuit, it is possible to control the charge of the solid-state battery. FIG. 4B shows an example of a circuit diagram when the circuit provided on the substrate serves as a charge control circuit. By way of example only, the charge control circuit controls the charging so as to obtain a desired constant current constant voltage (CCCV) charge.
 電池周辺回路が温度制御回路である場合、充放電効率を向上させるように固体電池を適正な温度に制御することができる。図4(c)は、基板上に設けられた回路が温度制御回路となる場合の回路図の一例を示す。あくまでも例示説明にすぎないが、温度制御回路によって固体電池の温度が制御される場合、熱電対やサーミスタ等の温度検知手段によって固体電池の温度を検出し、それによって得られた温度情報をもとに、温度制御回路を介して熱電素子に電力を供給し、電池の加熱および/または冷却を行ってよい。 When the battery peripheral circuit is a temperature control circuit, the solid-state battery can be controlled to an appropriate temperature so as to improve the charge / discharge efficiency. FIG. 4C shows an example of a circuit diagram when the circuit provided on the substrate serves as a temperature control circuit. Although it is only an example explanation, when the temperature of the solid-state battery is controlled by the temperature control circuit, the temperature of the solid-state battery is detected by a temperature detecting means such as a thermocouple or a thermista, and the temperature information obtained by the detection is used. In addition, power may be supplied to the thermoelectric element via the temperature control circuit to heat and / or cool the battery.
 電池周辺回路が出力補償回路である場合、固体電池の内部インピーダンスを低く抑えることができ、電池電圧の低下を緩和することができる。図4(d)は、基板上に設けられた回路が出力補償回路となる場合の回路図の一例を示す。 When the battery peripheral circuit is an output compensation circuit, the internal impedance of the solid-state battery can be suppressed low, and the decrease in battery voltage can be mitigated. FIG. 4D shows an example of a circuit diagram when the circuit provided on the substrate serves as an output compensation circuit.
 上記回路は、単体の機能を有するように設けられてよいものの、複数の機能を有するように組み合わせて設けられてもよい。例えば、複数のサブ回路を組み合わせて設けることで、固体電池の制御に対して各回路の特性を付与することができる。図示する例示態様として、図5(a)に充電制御回路および保護回路の組合せ、図5(b)に充電制御回路、保護回路および出力安定化電源回路との組合せ、図5(c)に充電制御回路、保護回路、出力安定化電源回路および出力補償回路との組合せを示す。なお、出力安定化電源回路は、DC-DCコンバータが組み込まれたものとなっていてよい。 Although the above circuits may be provided so as to have a single function, they may be provided in combination so as to have a plurality of functions. For example, by providing a plurality of subcircuits in combination, the characteristics of each circuit can be imparted to the control of the solid-state battery. As an exemplary embodiment shown, FIG. 5 (a) shows a combination of a charge control circuit and a protection circuit, FIG. 5 (b) shows a combination of a charge control circuit, a protection circuit and an output regulated power supply circuit, and FIG. 5 (c) shows charging. The combination with the control circuit, the protection circuit, the output stabilization power supply circuit and the output compensation circuit is shown. The output stabilized power supply circuit may have a DC-DC converter incorporated therein.
 本発明に係るパッケージ品では、固体電池100を支持する基板10上に回路80が設けられている。つまり、固体電池パッケージを構成する基板(すなわち「電池パッケージ基板」)の内部でなく、当該基板の表面上に固体電池専用の回路が配置されている。回路は、かかる電池パッケージ基板上に設けられていればよく、それゆえ、図3に示す形態に特に限らず、図6Aおよび図6Bに示される形態であってもよい。 In the packaged product according to the present invention, the circuit 80 is provided on the substrate 10 that supports the solid-state battery 100. That is, the circuit dedicated to the solid-state battery is arranged not inside the substrate (that is, the "battery package substrate") constituting the solid-state battery package but on the surface of the substrate. The circuit may be provided on the battery package substrate, and therefore, the circuit is not particularly limited to the form shown in FIG. 3, and may be the form shown in FIGS. 6A and 6B.
 図3に示される形態では、基板10と固体電池100との間に回路80が位置付けられている。つまり、基板上に設けられた固体電池は、その下側面と基板との間に隙間を有しており、かかる隙間に対して回路が設けられている。図6Aおよび図6Bは、基板10と固体電池100との間ではないものの、固体電池100と横並びで回路80が基板10の表面上に設けられている。つまり、固体電池が設けられた基板主面につき、その固体電池とオーバーラップしない非電池設置領域に回路が設けられている。 In the form shown in FIG. 3, the circuit 80 is positioned between the substrate 10 and the solid-state battery 100. That is, the solid-state battery provided on the substrate has a gap between the lower side surface thereof and the substrate, and a circuit is provided for such a gap. Although not between the substrate 10 and the solid-state battery 100 in FIGS. 6A and 6B, the circuit 80 is provided on the surface of the substrate 10 side by side with the solid-state battery 100. That is, a circuit is provided on the main surface of the substrate on which the solid-state battery is provided in a non-battery installation area that does not overlap with the solid-state battery.
 本発明は、同一基板を介して固体電池と、その電池専用の周辺回路とが一体化している。図3ならびに図6Aおよび図6Bに示されるように、同一基板ゆえ、専用回路と固体電池とが基板上にて互いに隣接して配置されている。ここでいう「互いに隣接して配置されている」とは、広義には、回路と固体電池とが近接した位置関係を有することを意味しており、狭義には、固体電池の直ぐ真下または直ぐ真横となるように回路が基板上に配置されていることを意味している。図示される形態から分かるように、パッケージ品として回路が設けられているものの、パッケージ品全体としてサイズが不必要に大きくなっていない。つまり、本発明では、コンパクトな固体電池パッケージ品となっており、より好適なSMD(表面実装デバイス)がもたらされている。 In the present invention, a solid-state battery and a peripheral circuit dedicated to the battery are integrated via the same substrate. As shown in FIGS. 3 and 6A and 6B, since the same substrate, the dedicated circuit and the solid-state battery are arranged adjacent to each other on the substrate. The term "arranged adjacent to each other" as used herein means that the circuit and the solid-state battery have a close positional relationship in a broad sense, and in a narrow sense, immediately below or immediately below the solid-state battery. It means that the circuit is arranged on the board so as to be right next to it. As can be seen from the illustrated form, although the circuit is provided as a package product, the size of the package product as a whole is not unnecessarily large. That is, in the present invention, it is a compact solid-state battery package product, and a more suitable SMD (surface mount device) is provided.
 より具体的な態様でいえば、固体電池を制御するための回路として、ICおよび/または他のチップ部品などの各種電子部品ならびに配線などが設けられていてよい。例えば、保護回路および/または充放電制御回路のためのICおよび/または他のチップ部品などに代表される各種電子部品80ならびに配線などが固体電池100と隣接して基板の主面上に設けられている。 More specifically, as a circuit for controlling the solid-state battery, various electronic components such as ICs and / or other chip components, wiring, and the like may be provided. For example, various electronic components 80 and wiring represented by ICs and / or other chip components for protection circuits and / or charge / discharge control circuits are provided adjacent to the solid-state battery 100 on the main surface of the substrate. ing.
 ここで、回路にICなどが含まれていることは、その回路による制御効果以外にも発熱利用の効果が奏され得ることを意味している。回路のチップ部品などは熱を発生し得るが、本発明はその熱を有効利用できる。具体的には、回路と固体電池とが基板上にて互いに隣接して配置されているので、そのような基板上の回路からの熱が固体電池に伝わり易くなっており、その熱に起因して電池の充電効率が向上し得る効果も奏され得る。 Here, the fact that the circuit includes an IC or the like means that the effect of utilizing heat generation can be achieved in addition to the control effect of the circuit. Circuit chip parts and the like can generate heat, and the present invention can effectively utilize the heat. Specifically, since the circuit and the solid-state battery are arranged adjacent to each other on the substrate, the heat from the circuit on the substrate is easily transferred to the solid-state battery, which is caused by the heat. The effect of improving the charging efficiency of the battery can also be achieved.
 図3ならびに図6Aおよび図6Bの各形態について詳述しておく。 Each form of FIG. 3 and FIGS. 6A and 6B will be described in detail.
 図3に示される形態では、基板10と固体電池100との隙間部分に回路80が位置付けられている。上述したように、本発明の固体電池では、端面電極150と導電性部分17とを互いに電気的に接続する導電性接続部60が好ましくは設けられているが、かかる導電性接続部60に起因して形成される隙間部分に回路80が位置付けられている。固体電池と支持基板とが互いにオーバーラップする領域範囲に回路が設けられているので、回路のための電子部品や配線などの存在によりパッケージ品が嵩高くなるということはなく、コンパクトな電池パッケージ品の実現に特に寄与し易い。 In the form shown in FIG. 3, the circuit 80 is positioned in the gap between the substrate 10 and the solid-state battery 100. As described above, in the solid-state battery of the present invention, a conductive connecting portion 60 for electrically connecting the end face electrode 150 and the conductive portion 17 to each other is preferably provided, but this is caused by the conductive connecting portion 60. The circuit 80 is positioned in the gap portion formed therein. Since the circuit is provided in the area where the solid-state battery and the support board overlap each other, the packaged product does not become bulky due to the presence of electronic components and wiring for the circuit, and is a compact battery packaged product. It is especially easy to contribute to the realization of.
 コンパクトな電池パッケージ品についていえば、基板の平面視サイズ(電池が搭載されている基板主面サイズ)は、固体電池の平面視サイズ(電池主面サイズ)と略同じになっているか、それよりも大きくなっていることが好ましい。また、回路サイズよりも基板の平面視サイズの方が大きくなっていることが好ましい。例えば、基板の平面視サイズをS1とし、固体電池の平面視サイズをS2とすると、1.1×S2<S1<1.5×S2であってよく、それゆえ1.1×S2<S1<1.4×S2、1.1×S2<S1<1.3×S2、または1.1×S2<S1<1.2×S2などであってよい。基板の平面視サイズが固体電池の平面視サイズよりも大きいと、固体電池および回路の支持の点で好ましいだけでなく、基板の主面が大きくなり回路の設計自由度がより高いものとなり得る。 Speaking of compact battery packages, the plan view size of the board (board main surface size on which the battery is mounted) is approximately the same as or larger than the plan view size of the solid-state battery (battery main surface size). Is also preferably large. Further, it is preferable that the plan view size of the substrate is larger than the circuit size. For example, if the plan view size of the substrate is S1 and the plan view size of the solid-state battery is S2, it may be 1.1 × S2 <S1 <1.5 × S2, and therefore 1.1 × S2 <S1 <. It may be 1.4 × S2, 1.1 × S2 <S1 <1.3 × S2, 1.1 × S2 <S1 <1.2 × S2, or the like. When the plan view size of the substrate is larger than the plan view size of the solid state battery, not only is it preferable in terms of supporting the solid state battery and the circuit, but also the main surface of the board becomes large and the degree of freedom in designing the circuit can be increased.
 図3に示す態様では、固体電池100の直下となる基板10の主面上に回路80が設けられているので、固体電池100と回路80とが互いに特に近接している。よって、回路からの熱が固体電池に効率的に伝わり易く、固体電池の充電効率が向上し得る効果が特に奏され易い。 In the embodiment shown in FIG. 3, since the circuit 80 is provided on the main surface of the substrate 10 directly below the solid-state battery 100, the solid-state battery 100 and the circuit 80 are particularly close to each other. Therefore, the heat from the circuit is easily transferred to the solid-state battery, and the effect that the charging efficiency of the solid-state battery can be improved is particularly easy to be exhibited.
 基板と固体電池との間の導電性接続部材60は、固体電池と基板(特に、端子基板)との相互の電気的接続に資するだけでなく、固体電池と基板との間にもたらされる回路設置用の隙間形成に寄与する。したがって、導電性接続部材がスペーサを成しており、それゆえ、このような接続部材は導電性スペーサに相当する。換言すれば、本発明の好適な態様では、基板と固体電池との間において導電性スペーサを有しているといえる。導電性スペーサは、例えば金属成分を含んで成る部材である。そのような金属成分としては、銀(Ag)、銅(Cu)、パラジウム(Pd)、金(Au)、白金(Pt)、アルミニウム(Al)およびニッケル(Ni)などから成る群から選択される金属成分を例示的に挙げることができる。 The conductive connecting member 60 between the substrate and the solid-state battery not only contributes to the mutual electrical connection between the solid-state battery and the substrate (particularly, the terminal substrate), but also provides a circuit installation between the solid-state battery and the substrate. Contributes to the formation of gaps for Therefore, the conductive connecting member forms a spacer, and therefore such a connecting member corresponds to the conductive spacer. In other words, in a preferred embodiment of the present invention, it can be said that a conductive spacer is provided between the substrate and the solid-state battery. The conductive spacer is, for example, a member containing a metal component. Such metal components are selected from the group consisting of silver (Ag), copper (Cu), palladium (Pd), gold (Au), platinum (Pt), aluminum (Al), nickel (Ni) and the like. The metal component can be exemplified.
 導電性スペーサは、単一パーツから構成されていてよく、あるいは、少なくとも2つのパーツから構成されていてもよい。例えば、導電性スペーサは、はんだ付けにてフラックス洗浄を要しない無洗浄タイプの部材(以下では、「無洗浄タイプ接合材」とも称する)を有するものであってよい。特に、導電性スペーサの少なくとも一部が無洗浄タイプ接合材となっていてよい。これにつき、固体電池と直接的に接する部分が無洗浄タイプ接合材を含んでいてよい。無洗浄タイプの接合材は、パッケージ化プロセスに起因して設けられるものである。具体的には、無洗浄タイプの接合材は、回路を基板に設けた後にてフラックス洗浄を行わずに固体電池を基板へと実装することによって設けることができる。 The conductive spacer may be composed of a single part, or may be composed of at least two parts. For example, the conductive spacer may have a non-cleaning type member (hereinafter, also referred to as a “non-cleaning type bonding material”) that does not require flux cleaning by soldering. In particular, at least a part of the conductive spacer may be a non-cleaning type bonding material. For this, the portion in direct contact with the solid-state battery may include a non-cleaning type bonding material. The non-cleaning type bonding material is provided due to the packaging process. Specifically, the non-cleaning type bonding material can be provided by mounting the solid-state battery on the substrate without performing flux cleaning after the circuit is provided on the substrate.
 本発明に係るパッケージ品では、基板と固体電池との間に樹脂材が設けられていてもよい。つまり、導電性スペーサなどの導電性接続部材の介在に起因して形成される「固体電池と支持基板との間隙」において樹脂材が設けられていてもよい。特に図3に示される態様では、基板と固体電池との間において回路を除いた隙間部分が埋められるように樹脂材30’が設けられていてよい。例えば、図3に示されるような断面視において、導電性接続部60の内側にて基板10と固体電池100との間の隙間を満たすように樹脂材30’が設けられていてよい。なお、図示する形態から分かるように、基板10と固体電池100との間の隙間を満たす樹脂材30’は被覆無機膜40の内側に位置付けられている。 In the packaged product according to the present invention, a resin material may be provided between the substrate and the solid-state battery. That is, the resin material may be provided in the "gap between the solid-state battery and the support substrate" formed due to the intervention of the conductive connecting member such as the conductive spacer. In particular, in the embodiment shown in FIG. 3, the resin material 30'may be provided so as to fill the gap portion between the substrate and the solid-state battery excluding the circuit. For example, in the cross-sectional view as shown in FIG. 3, the resin material 30'may be provided inside the conductive connecting portion 60 so as to fill the gap between the substrate 10 and the solid-state battery 100. As can be seen from the illustrated form, the resin material 30'that fills the gap between the substrate 10 and the solid-state battery 100 is positioned inside the coated inorganic film 40.
 樹脂材は、熱硬化性樹脂材または熱可塑性樹脂材のいずれであってもよい。特に制限されるわけではないが、被覆絶縁層と同様、例えばエポキシ系樹脂、シリコーン系樹脂や液晶ポリマーなどを挙げることができる。これにつき、基板と固体電池との間の樹脂材は、上述の被覆部材(特に被覆絶縁層)と一体的に設けられてもよい。換言すれば、被覆絶縁層30’は、固体電池100の頂面および側面上に設けられているだけでなく、固体電池100の底面と支持基板10の上面との間に位置する間隙にも設けられていてもよい。このような樹脂材は、本発明に係るパッケージ品にて、基板と固体電池との間の回路を好適に保護する保護材として機能し得る。また、基板と固体電池との間の隙間が樹脂材で埋められていると、その絶縁効果に起因して回路の信頼性向上も奏され得る。よって、かかる樹脂材は、回路保護材とも称すことができる。 The resin material may be either a thermosetting resin material or a thermoplastic resin material. Although not particularly limited, examples thereof include an epoxy resin, a silicone resin, and a liquid crystal polymer, as in the case of the coating insulating layer. Regarding this, the resin material between the substrate and the solid-state battery may be provided integrally with the above-mentioned covering member (particularly, the covering insulating layer). In other words, the coating insulating layer 30'is provided not only on the top surface and the side surface of the solid-state battery 100, but also in the gap located between the bottom surface of the solid-state battery 100 and the upper surface of the support substrate 10. It may have been. Such a resin material can function as a protective material that suitably protects the circuit between the substrate and the solid-state battery in the packaged product according to the present invention. Further, when the gap between the substrate and the solid-state battery is filled with the resin material, the reliability of the circuit can be improved due to the insulating effect. Therefore, such a resin material can also be referred to as a circuit protection material.
 図6Aおよび図6Bに示される形態では、基板と固体電池との隙間部分ではなく、それ以外となる基板上に回路が設けられている。固体電池が設置されている基板主面のうちで、電池設置領域からずれた基板領域に回路が設けられている。 In the form shown in FIGS. 6A and 6B, the circuit is provided not on the gap between the substrate and the solid-state battery but on the substrate other than that. The circuit is provided in the board area deviated from the battery installation area in the main surface of the board on which the solid-state battery is installed.
 図6Aおよび図6Bの形態は、図3の形態と同様で同一基板上に固体電池専用の周辺回路が設けられているが、固体電池と基板との隙間ではないのでパッケージ品全体として高さ方向寸法の低減化を図り易い。 The form of FIGS. 6A and 6B is the same as the form of FIG. 3, and the peripheral circuit dedicated to the solid-state battery is provided on the same substrate, but since it is not a gap between the solid-state battery and the substrate, the height direction of the entire package product It is easy to reduce the size.
 図6Aでは、固体電池のための回路80が被覆部材50で覆われている。より具体的には、かかる回路80に用いられるICやチップ部品などの各種電子部品などが被覆部材50で覆われている。特に、そのような回路80の各種電子部品が被覆部材50の被覆絶縁層30で覆われた形態となっていることが好ましい。一方、図6Bでは、固体電池のための回路80が被覆部材50で覆われてはいない。より具体的には、基板上に設けられる回路80に用いられるICおよび/またはチップ部品などの各種電子部品などは被覆部材50で覆われていない。封止の観点をより重視するのであれば、図6Aのように回路80が被覆部材50で覆われている方が好ましいものの、回路に用いられる電子部品のサイズによっては、被覆絶縁層30による封止に適さない場合があり得る。サイズの大きい電子部品を被覆絶縁層30で被覆すると、必然的に被覆絶縁層30の厚みが増してしまい、封止部が大きくなってしまうからである。なお、図6Bに示される態様においては、固体電池を封止している被覆部材と異なる別の被覆部材でもって、個別に回路が封止されてもよい。 In FIG. 6A, the circuit 80 for the solid-state battery is covered with the covering member 50. More specifically, various electronic components such as ICs and chip components used in the circuit 80 are covered with the covering member 50. In particular, it is preferable that various electronic components of such a circuit 80 are covered with a covering insulating layer 30 of the covering member 50. On the other hand, in FIG. 6B, the circuit 80 for the solid-state battery is not covered with the covering member 50. More specifically, various electronic components such as ICs and / or chip components used in the circuit 80 provided on the substrate are not covered with the covering member 50. If the viewpoint of sealing is more important, it is preferable that the circuit 80 is covered with the covering member 50 as shown in FIG. 6A, but depending on the size of the electronic component used in the circuit, the circuit 80 is sealed with the covering insulating layer 30. It may not be suitable for stopping. This is because when a large-sized electronic component is covered with the covering insulating layer 30, the thickness of the covering insulating layer 30 inevitably increases, and the sealing portion becomes large. In the embodiment shown in FIG. 6B, the circuit may be individually sealed by another covering member different from the covering member that seals the solid-state battery.
 このように本発明では固体電池がその回路とともにワンパッケージ化している特徴があるが、水蒸気透過防止の点でも本発明は特徴を有している。以下これについても詳述しておく。 As described above, the present invention has a feature that the solid-state battery is packaged together with the circuit, but the present invention also has a feature in terms of preventing water vapor permeation. This will also be described in detail below.
 本発明の固体電池は、支持基板、被覆絶縁層および被覆無機膜によってパッケージ化されているところ、水蒸気透過防止性が特に優れた電池となっている。つまり、本発明に係る電池パッケージ品では、支持基板上の固体電池の頂面および側面を覆う被覆絶縁層ならびに被覆無機膜に少なくとも起因して、水蒸気による電池特性の劣化(より具体的には、外部環境の水蒸気が混入して固体電池の特性が劣化してしまう事象)がより確実に防止されている。つまり、固体電池の内部の成分に対するバリアの意図というよりも、好ましくは固体電池の周囲の外部環境の水蒸気の侵入を防ぐパッケージ層として被覆絶縁層および被覆無機膜が設けられている。 The solid-state battery of the present invention is packaged with a support substrate, a coated insulating layer, and a coated inorganic film, and thus has particularly excellent water vapor permeation prevention. That is, in the battery package product according to the present invention, deterioration of battery characteristics due to water vapor (more specifically, more specifically, due to at least the coating insulating layer and the coating inorganic film covering the top surface and side surface of the solid-state battery on the support substrate). The phenomenon that the characteristics of the solid-state battery deteriorate due to the mixing of water vapor in the external environment) is more reliably prevented. That is, rather than the intention of a barrier to the internal components of the solid-state battery, a coated insulating layer and a coated inorganic film are preferably provided as a package layer for preventing the invasion of water vapor in the external environment around the solid-state battery.
 好ましくは、被覆無機膜は、水蒸気バリア膜となっている。つまり、固体電池への水分進入を阻止するバリアとして好ましくは供されるように被覆無機膜が固体電池の頂面および側面を覆っている。好ましくは、被覆無機膜は図示される断面視のように基板の主面(即ち、回路が設けられている基板面)を超えるように延在していてよい。これにより、基板主面上の回路に対して被覆無機膜がより好適な水蒸気バリアとして供されることになる。本明細書でいう「バリア」とは、広義には、外部環境の水蒸気が被覆無機膜を通過して固体電池にとって不都合な特性劣化を引き起すことがない程度の水蒸気透過の阻止特性を有することを意味しており、狭義には、水蒸気透過率が1.0×10-3g/(m・Day)未満となっていることを意味している。よって、端的にいえば、水蒸気バリア膜は、好ましくは0以上1.0×10-3g/(m・Day)未満の水蒸気透過率を有しているといえる。なお、ここでいう「水蒸気透過率」は、アドバンス理工(株)社製、型式GTms-1のガス透過率測定装置を用いて、測定条件は40℃ 90%RH 差圧1atmによって得られた透過率のことを指している。ある好適な態様に従った本発明は、支持基板と全固体電池と非導電性材と水蒸気バリア層で構成された電池パッケージ品となっており、特に、周辺回路のコンデンサ、抵抗、ICなどの電子部品が水蒸気バリア層の内側において格納されている電池パッケージ品となっている。 Preferably, the coated inorganic film is a water vapor barrier film. That is, a coated inorganic film covers the top and side surfaces of the solid-state battery so as to be preferably provided as a barrier to prevent moisture from entering the solid-state battery. Preferably, the coated inorganic film may extend beyond the main surface of the substrate (ie, the surface of the substrate on which the circuit is provided) as shown in the cross-sectional view shown. As a result, the coated inorganic film is provided as a more suitable water vapor barrier for the circuit on the main surface of the substrate. In a broad sense, the term "barrier" as used herein has a property of blocking water vapor permeation to such an extent that water vapor in the external environment does not pass through the coated inorganic film and cause deterioration of properties that are inconvenient for the solid-state battery. In a narrow sense, it means that the water vapor permeability is less than 1.0 × 10 -3 g / (m 2 · Day). Therefore, in short, it can be said that the water vapor barrier film preferably has a water vapor transmittance of 0 or more and less than 1.0 × 10 -3 g / (m 2 · Day). The "water vapor transmittance" referred to here is the transmittance obtained by using a gas permeability measuring device of model GTms-1 manufactured by Advance Riko Co., Ltd. and the measurement condition is 40 ° C. 90% RH differential pressure 1 atm. It refers to the rate. The present invention according to a certain preferred embodiment is a battery package product composed of a support substrate, an all-solid-state battery, a non-conductive material, and a water vapor barrier layer, and in particular, a capacitor, a resistor, an IC, etc. of a peripheral circuit. It is a battery package product in which electronic components are stored inside the water vapor barrier layer.
 被覆絶縁層と被覆無機膜とが互いに一体化していてよい。よって、被覆無機膜は、被覆絶縁層とともに固体電池のための水蒸気バリアを成している。つまり、一体化した被覆絶縁層と被覆無機膜との組合せによって、外部環境の水蒸気の固体電池への侵入がより好適に防止されている。つまり、被覆無機膜は被覆絶縁層と相俟って、水蒸気バリア層となっていると共に、被覆絶縁層も被覆無機膜と相俟って水蒸気バリアになっているといえる。 The coating insulating layer and the coating inorganic film may be integrated with each other. Therefore, the coated inorganic film, together with the coated insulating layer, forms a water vapor barrier for the solid-state battery. That is, the combination of the integrated coated insulating layer and the coated inorganic film more preferably prevents the invasion of water vapor in the external environment into the solid-state battery. That is, it can be said that the coated inorganic film is a water vapor barrier layer in combination with the coated insulating layer, and the coated insulating layer is also a water vapor barrier in combination with the coated inorganic film.
 本発明において、固体電池を支持する支持基板は、固体電池の下側(底側)を覆うように位置付けられているので、かかる下側(底側)からの水蒸気透過防止に資する。つまり、支持基板は、好ましくは、水蒸気バリア基板となっている。ここでいう「バリア」も、上記と同様の意味であり、外部環境の水蒸気が被覆無機膜を通過して固体電池にとって不都合な特性劣化を引き起こすことがない程度の水蒸気透過の阻止特性を有することを意味しており、狭義には、基板の水蒸気透過率が1.0×10-3g/(m・Day)未満となっていることを意味している。よって、水蒸気バリア基板は、好ましくは0以上1.0×10-3g/(m・Day)未満の水蒸気透過率を有している。このように、支持基板が水蒸気バリア基板となる場合、基板自体でバリア効果が奏されるので、基板の底面側には被覆無機膜が設けられていない態様も考えられる。換言すれば、被覆無機膜は、固体電池を大きく包み込むように設けられているといえども、支持基板の一部(具体的には、底面)に対しては設けられていない態様も考えられる(つまり、ある好適な態様では、被覆無機膜が電池パッケージ品の大部分の面に設けられているといえども、全ての面に対して設けられていなくてよい)。 In the present invention, the support substrate that supports the solid-state battery is positioned so as to cover the lower side (bottom side) of the solid-state battery, and thus contributes to the prevention of water vapor permeation from the lower side (bottom side). That is, the support substrate is preferably a water vapor barrier substrate. The term "barrier" as used herein has the same meaning as described above, and has a water vapor permeation blocking property to the extent that water vapor in the external environment does not pass through the coated inorganic film and cause deterioration of properties that are inconvenient for the solid-state battery. In a narrow sense, it means that the water vapor permeability of the substrate is less than 1.0 × 10 -3 g / (m 2 · Day). Therefore, the water vapor barrier substrate preferably has a water vapor permeability of 0 or more and less than 1.0 × 10 -3 g / (m 2 · Day). As described above, when the support substrate is a water vapor barrier substrate, the barrier effect is exerted by the substrate itself, so that it is conceivable that the coating inorganic film is not provided on the bottom surface side of the substrate. In other words, although the coated inorganic film is provided so as to largely enclose the solid-state battery, it is conceivable that the coated inorganic film is not provided on a part (specifically, the bottom surface) of the support substrate (specifically, the bottom surface). That is, in one preferred embodiment, the coated inorganic film may be provided on most surfaces of the battery package, but may not be provided on all surfaces).
 支持基板がセラミック基板となる場合、支持基板の水蒸気透過防止の効果が奏され易くなる。支持基板が水蒸気バリア特性を有する場合、固体電池の上側および側方側からの水蒸気透過が主に被覆絶縁層および被覆無機膜によって防止され得る一方、固体電池の下側(底側)からの水蒸気透過は主に支持基板によって防止され得る。支持基板が好ましくは端子基板であることに鑑みれば、固体電池の下側(底側)からの水蒸気透過防止は主に端子基板によって為されているといえる。なお、図3に示す態様から分かるように、下側(底側)からの水蒸気透過は、支持基板10のみならず、その上面に設けられた被覆絶縁層30’との組合せによっても防止され得る。 When the support substrate is a ceramic substrate, the effect of preventing water vapor permeation of the support substrate is likely to be exhibited. When the support substrate has water vapor barrier properties, water vapor permeation from the upper and side sides of the solid-state battery can be prevented mainly by the coated insulating layer and the coated inorganic film, while water vapor from the lower side (bottom side) of the solid-state battery. Permeation can be prevented primarily by the supporting substrate. Considering that the support substrate is preferably a terminal substrate, it can be said that the prevention of water vapor permeation from the lower side (bottom side) of the solid-state battery is mainly performed by the terminal substrate. As can be seen from the aspect shown in FIG. 3, water vapor permeation from the lower side (bottom side) can be prevented not only by the support substrate 10 but also by the combination with the coating insulating layer 30'provided on the upper surface thereof. ..
 別の切り口で捉えてみると、例えば図3に示す態様から分かるように、固体電池100の端面電極150は、被覆絶縁層30と被覆無機膜40と支持基板10との組合せによってその周囲が囲まれている。つまり、固体電池100の端面電極150の周囲は、それら3つの部材が成す組合せによって包み込まれるように封止されているといえる。よって、固体電池100の端面電極150から外部環境の水蒸気が進入する虞などはより確実に防止されている。このような封止は、固体電池の端面電極が焼結金属系から成る場合に特に有利となり得る。なぜなら、そのような端面電極では、材料、形態や製法プロセスなどによってはポア・欠陥などが生じている場合もあり得、空気中の水蒸気透過にとって必ずしも十分となっていない場合もあり得るからである。 Looking at it from another perspective, for example, as can be seen from the aspect shown in FIG. 3, the end face electrode 150 of the solid-state battery 100 is surrounded by a combination of the coating insulating layer 30, the coating inorganic film 40, and the support substrate 10. It has been. That is, it can be said that the periphery of the end face electrode 150 of the solid-state battery 100 is sealed so as to be wrapped by the combination of these three members. Therefore, the possibility that water vapor in the external environment enters from the end face electrode 150 of the solid-state battery 100 is more reliably prevented. Such sealing can be particularly advantageous when the end face electrodes of the solid state battery are made of sintered metal. This is because such end face electrodes may have pores or defects depending on the material, form, manufacturing process, etc., and may not always be sufficient for water vapor permeation in the air. ..
 なお、支持基板が樹脂基板である場合であっても、水蒸気バリア基板となり得る。樹脂基板そのものが水蒸気バリア基板を成すことが考えられる。また、例えば、金属層(あくまでも1つの例示であるが銅箔などの金属箔)が樹脂基板に設けられることによって基板の水蒸気透過防止効果をより高めることができる。よって、このような態様では、樹脂基板が、電池パッケージ品の水蒸気バリア基板としてより好適なものとなり得る。 Even when the support substrate is a resin substrate, it can be a water vapor barrier substrate. It is conceivable that the resin substrate itself forms a water vapor barrier substrate. Further, for example, by providing the resin substrate with a metal layer (only one example, a metal foil such as a copper foil), the effect of preventing water vapor permeation of the substrate can be further enhanced. Therefore, in such an embodiment, the resin substrate can be more suitable as the water vapor barrier substrate of the battery package product.
 ある1つの態様では、支持基板上の固体電池が被覆絶縁層を介した被覆無機膜で覆われた形態を有しているところ、被覆絶縁層が緩衝材の役目も果たし得る。具体的には、充放電や熱膨張などに起因した固体電池の膨張収縮が生じた場合であっても、その影響が直接的に被覆無機膜には及ばず、被覆絶縁層が介在することで緩衝効果で影響が緩和され得る。よって、被覆無機膜などの薄膜であっても、クラックなどの発生が減じられ、より好適な水蒸気バリアがもたらされ得る。これは、被覆絶縁層が樹脂材を含んで成る場合に特にいえ、樹脂材から成る被覆絶縁層は、そのような緩衝効果が大きくなり得る。 In one embodiment, where the solid-state battery on the support substrate has a form of being covered with a coated inorganic film via a coated insulating layer, the coated insulating layer can also serve as a cushioning material. Specifically, even when the expansion and contraction of the solid-state battery occurs due to charge / discharge or thermal expansion, the effect does not directly affect the coating inorganic film, and the coating insulating layer intervenes. The effect can be mitigated by the buffering effect. Therefore, even with a thin film such as a coated inorganic film, the occurrence of cracks and the like can be reduced, and a more suitable water vapor barrier can be provided. This is especially true when the coated insulating layer is made of a resin material, and the coated insulating layer made of a resin material can have a large buffering effect.
 被覆絶縁層は、上記の固体電池の膨張収縮の影響がより効果的に抑制される弾性率を有していてよい。つまり、固体電池の膨張収縮に起因したクラックなどの発生を減じるべく、比較的低い弾性率を呈する被覆絶縁層が設けられてよい。例えば、被覆絶縁層の弾性率は1MPa以下、より具体的には0.5MPa以下または0.1MPa以下などであってよい。かかる弾性率の下限値は、特に制限はなく例えば10Paである。ここでいう「弾性率」は、いわゆるヤング率[Pa]のことを指しており、その値はJIS規格(JIS K 7161やJIS K 7181等)に則った手法によって得られる値を意味している。 The coated insulating layer may have an elastic modulus in which the influence of expansion and contraction of the above-mentioned solid-state battery is more effectively suppressed. That is, in order to reduce the occurrence of cracks and the like caused by the expansion and contraction of the solid-state battery, a coating insulating layer exhibiting a relatively low elastic modulus may be provided. For example, the elastic modulus of the coating insulating layer may be 1 MPa or less, more specifically 0.5 MPa or less or 0.1 MPa or less. The lower limit of the elastic modulus is not particularly limited and is, for example, 10 Pa. The "elastic modulus" here refers to the so-called Young's modulus [Pa], and the value means a value obtained by a method according to JIS standards (JIS K 7161, JIS K 7181, etc.). ..
 なお、被覆絶縁層30は、図3に示す形態に限らず、図7に示すような形態であってもよい。つまり、被覆絶縁層30が、基板10の側面上にまで及んでいてもよい。換言すれば、固体電池100の頂面および側面を覆っている被覆絶縁層30が、基板10の側面を覆っていてもよい。これは、被覆無機膜40だけでなく、被覆絶縁層30も基板の側面上にまで延在していることを意味する。つまり、被覆無機膜および被覆絶縁層の双方は、図7に示される断面視のように、基板の主面(即ち、回路が設けられている基板面)を超えるように延在していてよい。これにより、基板主面上の回路に対して被覆無機膜および被覆絶縁層がより好適な水蒸気バリアとして供されることになる。なお、このような被覆無機膜および被覆絶縁層の延在形態は、固体電池の膨張収縮に起因した被覆絶縁層の不都合な剥離の回避にも寄与し得る。これについて詳述しておく。図3に示す形態で固体電池の膨張収縮(特に固体電池の積層方向における膨張収縮)が過度になる場合、被覆絶縁層30と基板10の主面との接合界面(特に、積層方向に直交する方向に沿って最外縁を成すような接合界面a)を起点にして、被覆絶縁層30が基板10から剥離する現象が生じ易くなるが、図7に示す形態ではそのような虞が減じられる。図7に示される被覆絶縁層30は基板10の主面との間で最外縁を成すような接合面を形成しておらず、それゆえ、固体電池の積層方向の膨張収縮による不都合な影響が被覆絶縁層30に及ぼされにくいからである。 The covering insulating layer 30 is not limited to the form shown in FIG. 3, and may be in the form shown in FIG. 7. That is, the covering insulating layer 30 may extend to the side surface of the substrate 10. In other words, the covering insulating layer 30 covering the top surface and the side surface of the solid-state battery 100 may cover the side surface of the substrate 10. This means that not only the coated inorganic film 40 but also the coated insulating layer 30 extends onto the side surface of the substrate. That is, both the coated inorganic film and the coated insulating layer may extend beyond the main surface of the substrate (that is, the surface of the substrate on which the circuit is provided) as shown in FIG. 7. .. As a result, the coated inorganic film and the coated insulating layer are provided as a more suitable water vapor barrier for the circuit on the main surface of the substrate. The extending form of the coated inorganic film and the coated insulating layer can also contribute to avoiding inconvenient peeling of the coated insulating layer due to expansion and contraction of the solid-state battery. This will be described in detail. When the expansion and contraction of the solid-state battery (particularly the expansion and contraction in the stacking direction of the solid-state battery) becomes excessive in the form shown in FIG. 3, the bonding interface between the coating insulating layer 30 and the main surface of the substrate 10 (particularly orthogonal to the stacking direction). The phenomenon that the coating insulating layer 30 is peeled off from the substrate 10 is likely to occur starting from the bonding interface a) that forms the outermost edge along the direction, but such a possibility is reduced in the form shown in FIG. The coated insulating layer 30 shown in FIG. 7 does not form a bonding surface that forms the outermost edge with the main surface of the substrate 10, and therefore has an unfavorable effect due to expansion and contraction of the solid-state battery in the stacking direction. This is because it is difficult to reach the coating insulating layer 30.
 剥離についていえば、被覆無機膜40もまた基板に対する剥離がより生じにくいものとなっていてよい。例えば、被覆無機膜40は、図8に示すような形態であってもよい。具体的には、被覆無機膜40が、基板10の側面上から更に基板10の下側主面にまで及んでいてよい。かかる場合、被覆無機膜40と基板10との接合面積が相対的に増えることになり、被覆無機膜40が剥離に対してより強いものとなる。つまり、図示する断面視において、被覆無機膜40は基板10の外輪郭に沿うような屈曲形態を有している。また、基板がセラミックなどから成る場合、被覆無機膜40と基板10との接合をより強固にすべく金属パッドを介在させてもよい。例えば、基板上に金属パッド19を設け、その金属パッド19に及ぶように被覆無機膜40を設けてもよい(図9参照)。このような金属パッド19は、図示するように、例えば基板10の裏側主面(すなわち底側主面)の周縁に設けられていてよい。 Regarding peeling, the coated inorganic film 40 may also be less likely to peel off from the substrate. For example, the coated inorganic film 40 may have a form as shown in FIG. Specifically, the coated inorganic film 40 may extend from the upper side surface of the substrate 10 to the lower main surface of the substrate 10. In such a case, the bonding area between the coated inorganic film 40 and the substrate 10 is relatively increased, and the coated inorganic film 40 becomes more resistant to peeling. That is, in the illustrated cross-sectional view, the coated inorganic film 40 has a bent form that follows the outer contour of the substrate 10. Further, when the substrate is made of ceramic or the like, a metal pad may be interposed to strengthen the bond between the coated inorganic film 40 and the substrate 10. For example, a metal pad 19 may be provided on the substrate, and a coated inorganic film 40 may be provided so as to extend over the metal pad 19 (see FIG. 9). As shown in the figure, such a metal pad 19 may be provided, for example, on the peripheral edge of the back side main surface (that is, the bottom side main surface) of the substrate 10.
 さらにいえば、被覆絶縁層30および被覆無機膜40は図10に示すような形態を有していてもよい。具体的には、被覆絶縁層30が基板10の側面まで覆っていると共に、被覆無機膜40が基板10の下側主面にまで及んでいてよい。つまり、固体電池100の頂面および側面を覆う被覆絶縁層30が基板10の側面にまで延在していると共に、被覆絶縁層30上の被覆無機膜40が基板10の側方を超えて基板10の下側主面にまで延在していてよい。このような形態の場合、水分透過(外部から固体電池積層体へと至るような水分透過)がより好適に防止された電池パッケージ品がもたらされ得る。 Furthermore, the coated insulating layer 30 and the coated inorganic film 40 may have the form shown in FIG. Specifically, the coated insulating layer 30 may cover the side surface of the substrate 10, and the coated inorganic film 40 may extend to the lower main surface of the substrate 10. That is, the coated insulating layer 30 covering the top surface and the side surface of the solid-state battery 100 extends to the side surface of the substrate 10, and the coated inorganic film 40 on the coated insulating layer 30 extends beyond the side surface of the substrate 10. It may extend to the lower main surface of 10. In such a form, a battery package product in which moisture permeation (moisture permeation leading from the outside to the solid-state battery laminate) is more preferably prevented can be provided.
 また、本発明における電池パッケージ品では、水蒸気透過が防止されているといえども、それに資する部材は、被覆絶縁層と一体化した被覆無機薄膜、および、薄板形状を有し得る支持基板であるので、パッケージ・サイズは、不都合に大きくならない。つまり、水蒸気透過が図られつつもコンパクトなパッケージ品がもたらされ得る。これは、本発明の固体電池は、水蒸気透過が防止されたエネルギー密度の高い電池(パッケージ化された電池)として供され得ることを意味している。 Further, in the battery package product of the present invention, even though water vapor permeation is prevented, the members contributing to the prevention are a coated inorganic thin film integrated with the coated insulating layer and a supporting substrate which can have a thin plate shape. , Package size does not increase inconveniently. That is, a compact packaged product can be provided while allowing water vapor to permeate. This means that the solid-state battery of the present invention can be provided as a battery having a high energy density (packaged battery) in which water vapor permeation is prevented.
 本発明の固体電池は、種々の態様で具現化され得る。例えば、以下の態様が考えられる。 The solid-state battery of the present invention can be embodied in various aspects. For example, the following aspects can be considered.
(多層配線板の態様)
 かかる態様では、支持基板が多層配線板の形態を有している。つまり、配線が複数層に及ぶ支持基板によって固体電池が支持されている。
(Aspect of multi-layer wiring board)
In such an embodiment, the support substrate has the form of a multilayer wiring board. That is, the solid-state battery is supported by a support substrate having a plurality of layers of wiring.
 基板が多層配線を有していると、パッケージ品として外部端子の設計自由度が増すことになる。つまり、電池パッケージ品の底面の任意の箇所に外部端子を位置付けることができる。 If the board has multi-layer wiring, the degree of freedom in designing external terminals as a package product will increase. That is, the external terminal can be positioned at an arbitrary position on the bottom surface of the battery package product.
 支持基板で配線が設けられている箇所又はその近傍は、配線と支持基板ボディ部との異種材の界面の箇所であり、水蒸気透過を意図せず引き起こす箇所になってしまう場合があるものの、支持基板が多層配線板の形態を有していると、水蒸気進入経路に相当し得る“水蒸気透過性が相対的に高い箇所”が長くなる。あくまでも例示にすぎないが、そのような水蒸気進入経路がコンデンサ端子構造(長くとも200μm程度)の水蒸気透過経路長に達し得る。つまり、支持基板が多層配線板の形態を有する場合、外部環境から固体電池に至るまでの水分経路につき移動抵抗(水分が受け得る抵抗)が大きくなり、外部環境から水蒸気がより進入し難くなり、ひいては、水蒸気透過がより好適に防止された固体電池が実現され得る。ある好適な態様では、多層配線板における上下配線を直列ビアでつなぐのではなくビア位置を左右にずらして、上下方向に延在する配線を蛇行させるようにしてもよい。これにより、ビアが長くなれば水蒸気進入経路をより長くすることが可能となり、水蒸気進入のより好適な防止につながる。 The part where the wiring is provided on the support board or its vicinity is the part where the wiring and the body part of the support board are made of different materials, and although it may unintentionally cause water vapor permeation, the support When the substrate has the form of a multi-layer wiring board, the "location with relatively high water vapor permeability" that can correspond to the water vapor ingress path becomes long. Although it is merely an example, such a water vapor ingress path can reach the water vapor permeation path length of the capacitor terminal structure (about 200 μm at the longest). That is, when the support substrate has the form of a multilayer wiring board, the movement resistance (resistance that moisture can receive) increases with respect to the moisture path from the external environment to the solid-state battery, and it becomes more difficult for water vapor to enter from the external environment. As a result, a solid-state battery in which water vapor permeation is more preferably prevented can be realized. In one preferred embodiment, the upper and lower wirings in the multilayer wiring board may be shifted to the left and right instead of being connected by series vias so that the wiring extending in the vertical direction meanders. As a result, the longer the via, the longer the water vapor entry path can be, which leads to more preferable prevention of water vapor entry.
(フィラー含有の態様)
 かかる態様では、被覆部材50の被覆絶縁層30(図11参照)がフィラーを含んでいる。被覆絶縁層30が樹脂材から成る場合、そのような樹脂材中に無機フィラー35が好ましくは分散している。
(Aspect containing filler)
In such an embodiment, the covering insulating layer 30 (see FIG. 11) of the covering member 50 contains a filler. When the coating insulating layer 30 is made of a resin material, the inorganic filler 35 is preferably dispersed in such a resin material.
 フィラーは、好ましくは、被覆絶縁層中に混ぜ込まれて被覆絶縁層の母材材質(例えば樹脂材)と複合一体化している。フィラーの形状は、特に制限されず、粒状、球状、針状、板状、繊維状および/または不定型などであってよい。フィラーの大きさも、特に制限されず、10nm以上100μm以下であってよく、例えば10nm以上100nm未満のナノフィラー、100nm以上10um未満のミクロフィラー、あるいは、10μm以上100μm以下のマクロフィラーなどであってよい。フィラーの材質としては、シリカ、アルミナ、酸化チタン、酸化ジルコニウム等の金属酸化物、マイカ等の鉱物、および/またはガラス等を挙げることができるが、これらに限定されるものではない。 The filler is preferably mixed in the coating insulating layer and compositely integrated with the base material material (for example, resin material) of the coating insulating layer. The shape of the filler is not particularly limited and may be granular, spherical, needle-like, plate-like, fibrous and / or amorphous. The size of the filler is also not particularly limited and may be 10 nm or more and 100 μm or less, for example, a nanofiller of 10 nm or more and less than 100 nm, a microfiller of 100 nm or more and less than 10 um, or a macrofiller of 10 μm or more and 100 μm or less. .. Examples of the filler material include, but are not limited to, metal oxides such as silica, alumina, titanium oxide and zirconium oxide, minerals such as mica, and / or glass.
 フィラーは水蒸気透過防止フィラーとなっていることが好ましい。ある好適な態様では、被覆絶縁層は、その樹脂材質中に水蒸気透過防止フィラーを含んで成る。これにより、被覆絶縁層が、被覆無機膜とともに更に好適な水蒸気透過バリアとして供され易くなる。 The filler is preferably a water vapor permeation prevention filler. In one preferred embodiment, the coating insulating layer comprises a water vapor permeation inhibitor in its resin material. This facilitates the coated insulating layer as a more suitable water vapor permeation barrier along with the coated inorganic film.
 水蒸気透過防止フィラーは、特に限定するわけではないが、板状のフィラーなどであってよい。また、水蒸気透過防止フィラーは、シリカもしくはアルミナなどの材質を有するものであってよい。更には、合成マイカなどのマイカ系などの材質を有するものであってもよい。樹脂材質中に含まれる水蒸気透過防止フィラーは、より好適な水蒸気透過防止に資すべく、被覆絶縁層の全体基準で含有量が50重量%以上95重量%以下となっていることが好ましく、例えば60重量%以上95重量%以下あるいは70重量%以上95重量%以下などとなっていてよい。 The water vapor permeation prevention filler is not particularly limited, but may be a plate-shaped filler or the like. Further, the water vapor permeation prevention filler may have a material such as silica or alumina. Furthermore, it may have a material such as mica such as synthetic mica. The water vapor permeation prevention filler contained in the resin material preferably has a content of 50% by weight or more and 95% by weight or less based on the overall standard of the coating insulating layer in order to contribute to more suitable water vapor permeation prevention, for example, 60. It may be 70% by weight or more and 95% by weight or less, or 70% by weight or more and 95% by weight or less.
(スパッタ膜の態様)
 かかる態様では、被覆部材50の被覆無機膜40(図11参照)がスパッタ膜となっている。つまり、被覆絶縁層を覆うように設けられる乾式めっき膜としてスパッタリング薄膜が設けられている。
(Aspect of sputtered film)
In such an embodiment, the coating inorganic film 40 (see FIG. 11) of the coating member 50 is a sputter film. That is, a sputtering thin film is provided as a dry plating film provided so as to cover the coating insulating layer.
 スパッタ膜は、スパッタリングによって得られる薄膜である。つまり、ターゲットにイオンをスパッタリングしてその原子を叩き出して被覆絶縁層上に堆積させた膜が被覆無機薄膜として用いられている。 The sputtered film is a thin film obtained by sputtering. That is, a film in which ions are sputtered onto a target to knock out the atoms and deposited on the coating insulating layer is used as the coating inorganic thin film.
 かかるスパッタ膜は、ナノオーダーないしはマイクロオーダーの非常に薄い形態を有しつつも、緻密および/または均質な膜となるので、固体電池のための水蒸気透過バリアに好ましい。また、スパッタ膜は、原子堆積により成膜されたものゆえ付着力が比較的高く、被覆無機薄膜とより好適に一体化し得る。よって、スパッタ膜は、被覆絶縁層とともに固体電池のための水蒸気バリア膜をより好適に構成し易い。つまり、被覆絶縁層とともに固体電池の頂面および側面を少なくとも覆うように設けられているスパッタ膜は、外部環境の水蒸気が固体電池へと進入しないためのバリアとしてより好適に供され得る。 Such a sputtered film is preferable as a water vapor permeation barrier for a solid-state battery because it has a very thin morphology of nano-order or micro-order, but is a dense and / or homogeneous film. Further, since the sputtered film is formed by atomic deposition, it has a relatively high adhesive force and can be more preferably integrated with the coated inorganic thin film. Therefore, the sputtered film can more preferably form a water vapor barrier film for a solid-state battery together with the coating insulating layer. That is, the sputter film provided so as to cover at least the top surface and the side surface of the solid-state battery together with the coating insulating layer can be more preferably provided as a barrier for preventing water vapor in the external environment from entering the solid-state battery.
 ある好適な態様では、スパッタ膜は、例えばAl(アルミニウム)、Cu(銅)およびTi(チタン)から成る群から選択される少なくとも1種を含んで成り、その膜厚は、1μm以上100μm以下、例えば5μm以上50μm以下である。また、特に限定されるわけではないが、スパッタ膜は、固体電池の頂面に位置する局所箇所および側面に位置する局所箇所のいずれであっても実質的に同じ厚さ寸法を有していていることが好ましい。外部環境の水蒸気の電池浸入をパッケージ品全体としてより均一に防止できるからである。 In one preferred embodiment, the sputtered film comprises at least one selected from the group consisting of, for example, Al (aluminum), Cu (copper) and Ti (titanium), the film thickness of which is 1 μm or more and 100 μm or less. For example, it is 5 μm or more and 50 μm or less. Further, although not particularly limited, the sputtered film has substantially the same thickness dimension regardless of whether it is a local portion located on the top surface or a local portion located on the side surface of the solid-state battery. It is preferable to have. This is because the infiltration of water vapor in the external environment into the battery can be prevented more uniformly as the entire package product.
 なお、このようなスパッタ膜に代表される乾式めっき膜は、水蒸気バリアの観点から、より好適な厚みで実現することができる。例えば、スパッタリングの回数を相対的に増やすことでより厚い膜として供すことができる一方、スパッタリングの回数を相対的に減らすことでより薄い膜として供することもできる。また、例えばスパッタリングに際してターゲットの種類を変えることなどを通じて積層構造を備えた被覆無機膜として供すこともできる。 It should be noted that the dry plating film typified by such a sputtered film can be realized with a more suitable thickness from the viewpoint of the water vapor barrier. For example, a thicker film can be provided by relatively increasing the number of sputterings, while a thinner film can be provided by relatively decreasing the number of sputterings. Further, for example, it can be provided as a coated inorganic film having a laminated structure by changing the type of target during sputtering.
 なお、乾式めっき膜上には湿式めっき膜が設けられてもよい。つまり、被覆無機膜40が乾式めっき膜および湿式めっき膜から構成されていてよい。湿式めっき膜は、乾式めっき膜よりも成膜速度が一般に速い。したがって、厚みの大きい膜を被覆無機膜として設ける場合などにおいては、乾式めっき膜を湿式めっき膜と組み合わせることで効率的な膜形成を行うことができる。 A wet plating film may be provided on the dry plating film. That is, the coating inorganic film 40 may be composed of a dry plating film and a wet plating film. The wet plating film generally has a higher film forming rate than the dry plating film. Therefore, when a thick film is provided as a coating inorganic film, efficient film formation can be performed by combining the dry plating film with the wet plating film.
(製法起因の態様)
 かかる態様では、固体電池が、そのパッケージ化に特に起因した特徴を有している。本発明のパッケージ化された固体電池は、後述する製法で得られるところ、それに起因した特徴を有している。
(Aspects derived from the manufacturing method)
In such an embodiment, the solid-state battery has features particularly due to its packaging. The packaged solid-state battery of the present invention has characteristics derived from it, which is obtained by a production method described later.
 例えば、本発明の固体電池において、被覆無機膜は、被覆絶縁層を覆うように設けられているが、支持基板にまで及ぶように大きく設けられている。具体的には、図11に示すように、パッケージ化された固体電池100の断面視において、被覆無機膜40が被覆絶縁層30を超えて支持基板10の側面10A上にまで及んでいる。図示する断面視の形態から分かるように、これは、被覆無機膜40が被覆絶縁層30と支持基板10との境界を越える位置にまで延在していることを意味している。よって、このような被覆無機膜は、被覆絶縁層とともに固体電池の水蒸気透過バリアとしてより好適に供され得る。かかる態様の固体電池は、支持基板上の固体電池を被覆絶縁層で被覆することで得られる前駆体を被覆無機膜でさらに大きく被覆することで得ることができる。つまり、そのような大きな被覆形成に起因して、被覆無機膜40が被覆絶縁層30を超えて支持基板10の側面10A上にまで及ぶことになる。例えば、支持基板上の固体電池を被覆絶縁層で被覆することで得られる前駆体に対してスパッタリングを全体的に施すことによって、そのような特異な形態の被覆無機膜を得ることができる。なお、図11に示すような断面視においては、電池パッケージ品の側面における被覆無機膜40は、真っ直ぐに延在する形態(断面視で捉えて上下方向に真っ直ぐ延在するような形態)を有しているが、本発明は必ずしもそれに限定されない。例えば断面視において、被覆絶縁層30の側方外面30Aが全体的に支持基板10の側面10Aよりも僅かに内側(左右方向・水平方向に僅かに内側)に位置付けられたような場合にあっては、それに応じて被覆無機膜40が延在することになる。つまり、断面視において被覆無機膜40が仮に上方から下方へと向かう方向に延在すると捉えた場合、被覆無機膜40が被覆絶縁層30と支持基板10との境界の近傍で僅かに外側に広がって延在するような形態であってもよい。 For example, in the solid-state battery of the present invention, the coated inorganic film is provided so as to cover the coated insulating layer, but is provided large so as to extend to the support substrate. Specifically, as shown in FIG. 11, in a cross-sectional view of the packaged solid-state battery 100, the coated inorganic film 40 extends beyond the coated insulating layer 30 to the side surface 10A of the support substrate 10. As can be seen from the illustrated cross-sectional view, this means that the coated inorganic film 40 extends beyond the boundary between the coated insulating layer 30 and the supporting substrate 10. Therefore, such a coated inorganic film can be more preferably provided as a water vapor permeation barrier of a solid-state battery together with a coated insulating layer. The solid-state battery of such an embodiment can be obtained by further coating the precursor obtained by coating the solid-state battery on the support substrate with a coating insulating layer with a coating inorganic film. That is, due to the formation of such a large coating, the coating inorganic film 40 extends beyond the coating insulating layer 30 to the side surface 10A of the support substrate 10. For example, such a peculiar form of a coated inorganic film can be obtained by applying sputtering to the precursor obtained by coating the solid-state battery on the support substrate with a coated insulating layer. In the cross-sectional view as shown in FIG. 11, the coated inorganic film 40 on the side surface of the battery package product has a form extending straight (a form in which the coated inorganic film 40 extends straight in the vertical direction when viewed in cross section). However, the present invention is not necessarily limited thereto. For example, in a cross-sectional view, there is a case where the lateral outer surface 30A of the covering insulating layer 30 is positioned slightly inside (slightly inside in the left-right direction and horizontal direction) from the side surface 10A of the support substrate 10 as a whole. The coated inorganic film 40 will be extended accordingly. That is, when it is considered that the coated inorganic film 40 extends in the direction from the upper side to the lower side in the cross-sectional view, the coated inorganic film 40 spreads slightly outward in the vicinity of the boundary between the coated insulating layer 30 and the supporting substrate 10. It may be in a form that extends.
 ある好適な態様では、固体電池と基板との一体化物の底側面において、支持基板と被覆無機膜とは面一になっている。つまり、パッケージ化された固体電池の底側面において、好ましくは支持基板10と被覆無機膜40とは面一になっている(図11参照)。つまり、固体電池のパッケージ品の実装面は、支持基板の表面レベルと、被覆無機膜のレベルとが同一または実質的に同一となっている。このような“面一”の特徴は、上記前駆体が適当な台などに置かれた状態で被覆無機膜が形成されたことに起因する。 In one preferred embodiment, the support substrate and the coated inorganic film are flush with each other on the bottom side surface of the integrated body of the solid-state battery and the substrate. That is, on the bottom side surface of the packaged solid-state battery, the support substrate 10 and the coated inorganic film 40 are preferably flush with each other (see FIG. 11). That is, on the mounting surface of the packaged product of the solid-state battery, the surface level of the support substrate and the level of the coated inorganic film are the same or substantially the same. Such a "facial" feature is due to the fact that the coated inorganic film was formed with the precursor placed on an appropriate table or the like.
 “面一”の特徴を有する固体電池は、パッケージ品として実装面が好適に平坦化・平滑されていることを意味し、それゆえ、より好適な実装特性(特にSMD特性)を有し易い。つまり、被覆絶縁層30を超えて支持基板10の側面10A上にまで及んで支持基板10と面一となっている被覆無機膜40は、水蒸気透過防止に好適に寄与するだけでなく、より好適な表面実装特性にも寄与し得る。 A solid-state battery having a "facial" characteristic means that the mounting surface is suitably flattened and smoothed as a packaged product, and therefore tends to have more suitable mounting characteristics (particularly SMD characteristics). That is, the coated inorganic film 40 that extends beyond the coated insulating layer 30 to the side surface 10A of the support substrate 10 and is flush with the support substrate 10 not only contributes suitably to the prevention of water vapor permeation, but is more preferable. It can also contribute to various surface mount characteristics.
 以上説明を行った固体電池については、その利点を次のように要約することもできる。尚、以下の利点は、あくまでも例示であって限定されるものではなく、また、付加的な利点があってもよい。

 ・周辺回路込みでパッケージ・サイズを小さくでき、エネルギー密度が高い電池パッケージ品として供すことができる。
 ・固体電池と周辺回路との配線距離を短くでき、回路途中で不具合発生率を減らせて信頼性が高い電池パッケージ品を得ることができる。
 ・支持基板に実装された電子部品は、水蒸気バリアされているだけでなく、剛性度の高い支持基板に固定化されているので熱応力/たわみ落下振動衝撃などの物理的応力に強い。
 ・周辺回路と支持基板との電気的接点は、半田系の高信頼性接点材料で接合され得るので、信頼性が高い電池パッケージ品を得ることができる。
 ・多端子電子デバイスを含む周辺回路を信頼性の高く一体化でき、固体電池込みで小型モジュール化できる。
 ・多端子を一平面の自由な位置にSMD可能なランドで配置できる。よって、マザーボードの設計自由度が向上し、高密度化が可能となる。
 ・電池と直接的に接する接合材として無洗浄接合材(半田付けの後にフラックス洗浄を行う必要のない接合材)を用いることで、製造過程において、電子部品実装/洗浄後に固体電池を実装できる。よって、電子部品は、より安価で、実装面積を高密度化できる信頼性の高い半田で接合してもフラックス洗浄が可能となる。一方、固体電池は必ず無洗浄での接合が必要であるところ、パッケージ内で電池もSMD部品もともに最適な接合材で実装が可能となる。
 ・全固体電池を水蒸気から守るバリア膜が広域に隙間無くカバーしているので、外部環境の水蒸気による特性劣化を防止できる。
 ・SMDタイプの表面実装部品として、あらゆる電子機器に半田搭載できる。特に、耐熱性および/または耐薬品性が向上したSMDとして半田搭載できる。
 ・SMDタイプの場合であって、支持基板が実装のため表面に耐候性処理(例えば、Ni/Auなどのめっき処理)が施される場合においては、かかる耐候性処理に起因して水蒸気透過防止の効果がより向上する。
The advantages of the solid-state battery described above can be summarized as follows. It should be noted that the following advantages are merely exemplary and not limited, and may have additional advantages.

-The package size can be reduced by including peripheral circuits, and it can be used as a battery package product with high energy density.
-The wiring distance between the solid-state battery and the peripheral circuit can be shortened, the failure rate can be reduced in the middle of the circuit, and a highly reliable battery package product can be obtained.
-The electronic components mounted on the support substrate are not only barriered to water vapor, but are also fixed to the support substrate with high rigidity, so they are resistant to physical stress such as thermal stress / deflection drop vibration impact.
-Since the electrical contacts between the peripheral circuit and the support substrate can be joined with a solder-based highly reliable contact material, a highly reliable battery package product can be obtained.
-Peripheral circuits including multi-terminal electronic devices can be integrated with high reliability, and can be made into a small module including solid-state batteries.
-Multi-terminals can be placed at any position on one plane with SMD-capable lands. Therefore, the degree of freedom in designing the motherboard is improved, and the density can be increased.
-By using a non-cleaning bonding material (a bonding material that does not require flux cleaning after soldering) as a bonding material that comes into direct contact with the battery, it is possible to mount a solid-state battery after mounting / cleaning electronic components in the manufacturing process. Therefore, electronic components can be flux-cleaned even if they are joined with highly reliable solder that is cheaper and can increase the mounting area. On the other hand, solid-state batteries always need to be joined without cleaning, so both the battery and SMD parts can be mounted in the package with the optimum joining material.
-Since the barrier film that protects the all-solid-state battery from water vapor covers a wide area without gaps, it is possible to prevent the deterioration of characteristics due to water vapor in the external environment.
-As an SMD type surface mount component, it can be solder-mounted on any electronic device. In particular, it can be soldered as an SMD having improved heat resistance and / or chemical resistance.
-In the case of SMD type, when the surface of the support substrate is subjected to weather resistance treatment (for example, plating treatment such as Ni / Au) for mounting, water vapor permeation prevention due to such weather resistance treatment. The effect of is improved.
[固体電池の製造方法]
 本発明の対象物は、正極層、負極層、およびそれらの電極間に固体電解質を有する電池構成単位を含んだ固体電池を調製し、次いで、その固体電池を周辺回路と共にパッケージ化するプロセスを経ることで得ることができる。
[Manufacturing method of solid-state battery]
The object of the present invention goes through a process of preparing a solid-state battery including a positive electrode layer, a negative electrode layer, and a battery building block having a solid electrolyte between the electrodes, and then packaging the solid-state battery together with peripheral circuits. Can be obtained by
 かかる固体電池の製造は、パッケージ化の前段階に相当する固体電池自体(以下では、「パッケージ前電池」とも称する)の製造と、支持基板の調製と、パッケージ化とに大きく分けることができる。 The production of such a solid-state battery can be roughly divided into the production of the solid-state battery itself (hereinafter, also referred to as "pre-package battery") corresponding to the pre-packaging stage, the preparation of the support substrate, and the packaging.
≪パッケージ前電池の製造方法≫
 パッケージ前電池は、スクリーン印刷法等の印刷法、グリーンシートを用いるグリーンシート法、またはそれらの複合法により製造することができる。つまり、パッケージ前電池自体は、常套的な固体電池の製法に準じて作製してよい(よって、下記で説明する固体電解質、有機バインダ、溶剤、任意の添加剤、正極活物質、負極活物質などの原料物質は、既知の固体電池の製造で用いられているものを用いてよい)。
≪Manufacturing method of pre-packaged battery≫
The pre-packaged battery can be manufactured by a printing method such as a screen printing method, a green sheet method using a green sheet, or a composite method thereof. That is, the pre-packaged battery itself may be manufactured according to a conventional solid-state battery manufacturing method (therefore, a solid electrolyte, an organic binder, a solvent, an arbitrary additive, a positive electrode active material, a negative electrode active material, etc., which will be described below. As the raw material of the above, those used in the production of known solid-state batteries may be used).
 以下では、本発明のより良い理解のために、ある1つの製法を例示説明するが、本発明は当該方法に限定されない。また、以下の記載順序など経時的な事項は、あくまでも説明のための便宜上のものにすぎず、必ずしもそれに拘束されるわけではない。 In the following, for a better understanding of the present invention, a certain manufacturing method will be exemplified, but the present invention is not limited to this method. In addition, the following items over time, such as the order of description, are merely for convenience of explanation and are not necessarily bound by them.
(積層体ブロック形成)
 ・固体電解質、有機バインダ、溶剤および任意の添加剤を混合してスラリーを調製する。次いで、調製されたスラリーからシート成形によって、焼成後の厚みが約10μmのシートを得る。
 ・正極活物質、固体電解質、導電助剤、有機バインダ、溶剤および任意の添加剤を混合して正極用ペーストを作成する。同様にして、負極活物質、固体電解質、導電助剤、有機バインダー、溶剤および任意の添加剤を混合して負極用ペーストを作成する。
 ・シート上に正極用ペーストを印刷し、また、必要に応じて集電層および/またはネガ層を印刷する。同様にして、シート上に負極用ペーストを印刷し、また、必要に応じて集電層および/またはネガ層を印刷する。
 ・正極用ペーストを印刷したシートと、負極用ペーストを印刷したシートとを交互に積層して積層体を得る。なお、積層体の最外層(最上層・最下層)についていえば、それが電解質層でも絶縁層でもよく、あるいは、電極層であってもよい。
(Laminate block formation)
-Mix solid electrolytes, organic binders, solvents and any additives to prepare a slurry. Next, a sheet having a thickness of about 10 μm after firing is obtained from the prepared slurry by sheet molding.
-Mix a positive electrode active material, a solid electrolyte, a conductive auxiliary agent, an organic binder, a solvent and any additive to prepare a positive electrode paste. Similarly, the negative electrode active material, the solid electrolyte, the conductive auxiliary agent, the organic binder, the solvent and any additive are mixed to prepare a negative electrode paste.
-Print the positive electrode paste on the sheet, and print the current collector layer and / or the negative layer as needed. Similarly, the negative electrode paste is printed on the sheet, and the current collector layer and / or the negative layer is printed as required.
-A sheet on which the positive electrode paste is printed and a sheet on which the negative electrode paste is printed are alternately laminated to obtain a laminate. Regarding the outermost layer (top layer / bottom layer) of the laminated body, it may be an electrolyte layer, an insulating layer, or an electrode layer.
(電池焼結体形成)
 積層体を圧着一体化させた後、所定のサイズにカットする。得られたカット済み積層体を脱脂および焼成に付す。これにより、焼結された積層体を得る。なお、カット前に積層体を脱脂および焼成に付し、その後にカットを行ってもよい。
(Battery sintered body formation)
After the laminate is pressure-bonded and integrated, it is cut to a predetermined size. The obtained pre-cut laminate is degreased and fired. As a result, a sintered laminate is obtained. The laminate may be degreased and fired before cutting, and then cut.
(端面電極形成)
 正極側の端面電極は、焼結積層体における正極露出側面に対して導電性ペーストを塗布することを通じて形成できる。同様にして、負極側の端面電極は、焼結積層体における負極露出側面に対して導電性ペーストを塗布することを通じて形成できる。正極側および負極側の端面電極は、焼結積層体の主面にまで及ぶように設けると、次工程において実装ランドに小面積で接続できるので好ましい(より具体的には、焼結積層体の主面にまで及ぶように設けられた端面電極は、折り返し部分を当該主面に有することになるが、そのような折り返し部分を支持基板へと電気接続させることができる)。端面電極の成分としては、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから選択される少なくとも一種から選択され得る。
(End face electrode formation)
The end face electrode on the positive electrode side can be formed by applying a conductive paste to the exposed side surface of the positive electrode in the sintered laminate. Similarly, the end face electrode on the negative electrode side can be formed by applying a conductive paste to the exposed side surface of the negative electrode in the sintered laminate. If the end face electrodes on the positive electrode side and the negative electrode side are provided so as to extend to the main surface of the sintered laminate, they can be connected to the mounting land in a small area in the next step (more specifically, the sintered laminate The end face electrode provided so as to extend to the main surface has a folded portion on the main surface, and such a folded portion can be electrically connected to the support substrate). The component of the end face electrode may be selected from at least one selected from silver, gold, platinum, aluminum, copper, tin and nickel.
 なお、正極側および負極側の端面電極は、積層体の焼結後に形成することに限らず、焼成前に形成し、同時焼結に付してもよい。 The end face electrodes on the positive electrode side and the negative electrode side are not limited to being formed after sintering the laminate, but may be formed before firing and subjected to simultaneous sintering.
 以上の如くの工程を経ることによって、最終的に所望のパッケージ前電池を得ることができる。 By going through the steps as described above, the desired pre-packaged battery can be finally obtained.
≪部品実装された支持基板の調製≫
(支持基板の調製)
 支持基板の調製は、例えば、複数のグリーンシートを積層して焼成することによって得ることができる。これは支持基板がセラミック基板である場合に特にいえる。支持基板の調製は、例えばLTCC基板の作成に準じで行うことができる。
≪Preparation of support board with components mounted≫
(Preparation of support substrate)
The support substrate can be prepared, for example, by laminating and firing a plurality of green sheets. This is especially true when the support substrate is a ceramic substrate. The support substrate can be prepared, for example, according to the preparation of the LTCC substrate.
 端子基板として供される支持基板はビアおよび/またはランドを有していたりする。このような場合、例えば、グリーンシートに対してパンチプレスまたは炭酸ガスレーザなどによって孔(径サイズ:約50μm~約200μm)を形成し、その孔に導電性ペースト材料を充填したり、あるいは、印刷法などを実施することを通じてビア、ランドおよび/または配線層などの導電性部分/配線の前駆体を形成してよい。特に、周辺回路の部品実装に供すべく支持基板の表面にランドなどが設けられることが好ましい。また、支持基板は、水蒸気透過防止層として電気的接続が為されていない非接続金属層を有している場合がある。かかる場合、非接続金属層となる金属層(その前駆体)をグリーンシート上に形成しておいてよい。かかる金属層は印刷法で形成してもよいし、あるいは、金属箔などを配置することで形成してもよい。次いで、そのようなグリーンシートを所定の枚数重ねて熱圧着することによってグリーンシート積層体を形成し、グリーンシート積層体を焼成に付すことによって、支持基板を得ることができる。なお、ランドなどは、グリーンシート積層体の焼成後において形成することもできる。 The support board provided as the terminal board may have vias and / or lands. In such a case, for example, holes (diameter size: about 50 μm to about 200 μm) are formed in the green sheet by punch press or carbon dioxide laser, and the holes are filled with a conductive paste material, or a printing method. Conductive portions / wiring precursors such as vias, lands and / or wiring layers may be formed through such practices. In particular, it is preferable that a land or the like is provided on the surface of the support substrate so as to be used for mounting components of peripheral circuits. Further, the support substrate may have a non-connected metal layer that is not electrically connected as a water vapor permeation prevention layer. In such a case, a metal layer (precursor thereof) to be a non-connecting metal layer may be formed on the green sheet. Such a metal layer may be formed by a printing method, or may be formed by arranging a metal foil or the like. Next, a green sheet laminate is formed by stacking a predetermined number of such green sheets and thermocompression bonding, and the green sheet laminate is subjected to firing to obtain a support substrate. It should be noted that lands and the like can also be formed after firing the green sheet laminate.
 あくまでも1つの例示にすぎず本発明を制限するものではないが、支持基板をセラミック基板として得る場合のグリーンシートについて詳述しておく。グリーンシート自体は、セラミック成分、ガラス成分および有機バインダ成分を含んで成るシート状部材であってよい。例えば、セラミック成分としては、アルミナ粉末(平均粒径:0.5~10μm程度)であってよく、ガラス成分としては、ホウケイ酸塩ガラス粉末(平均粒径:1~20μm程度)であってよい。そして、有機バインダ成分としては、例えば、ポリビニルブチラール樹脂、アクリル樹脂、酢酸ビニル共重合体、ポリビニルアルコールおよび塩化ビニル樹脂から成る群から選択される少なくとも1種以上の成分であってよい。あくまでも例示にすぎないが、グリーンシートは、アルミナ粉末40~50wt%、ガラス粉末を30~40wt%、および、有機バインダ成分10~30wt%であってよい(グリーンシートの全重量基準)。また、別の観点で捉えるとすると、グリーンシートは、固体成分(アルミナ粉末50~60wt%およびガラス粉末を40~50wt%:固体成分の重量基準)と有機バインダ成分との重量比、即ち、固体成分重量:有機バインダ成分重量が80~90:10~20程度となっているものであってもよい。グリーンシート成分としては、必要に応じてその他の成分が含まれていてよく、例えば、フタル酸エステル、および/またはフタル酸ジブチルなどのグリーンシートに柔軟性を付与する可塑剤、グリコールなどのケトン類の分散剤や有機溶剤などが含まれていてよい。各グリーンシートの厚さ自体は30μm~500μm程度であってよい。 Although it is merely an example and does not limit the present invention, the green sheet when the support substrate is obtained as a ceramic substrate will be described in detail. The green sheet itself may be a sheet-like member including a ceramic component, a glass component and an organic binder component. For example, the ceramic component may be alumina powder (average particle size: about 0.5 to 10 μm), and the glass component may be borosilicate glass powder (average particle size: about 1 to 20 μm). .. The organic binder component may be, for example, at least one component selected from the group consisting of polyvinyl butyral resin, acrylic resin, vinyl acetate copolymer, polyvinyl alcohol and vinyl chloride resin. As an example, the green sheet may contain 40 to 50 wt% of alumina powder, 30 to 40 wt% of glass powder, and 10 to 30 wt% of an organic binder component (based on the total weight of the green sheet). From another point of view, the green sheet has a weight ratio of a solid component (50 to 60 wt% of alumina powder and 40 to 50 wt% of glass powder: weight standard of the solid component) and an organic binder component, that is, a solid. Component weight: The organic binder component weight may be about 80 to 90:10 to 20. The green sheet component may contain other components as needed, such as phthalates and / or plasticizers that impart flexibility to the green sheet such as dibutyl phthalate, and ketones such as glycols. Dispersant, organic solvent, etc. may be contained. The thickness of each green sheet itself may be about 30 μm to 500 μm.
 以上の如くの工程を経ることによって、最終的に所望の支持基板を得ることができる。 By going through the steps as described above, a desired support substrate can be finally obtained.
(支持基板への回路形成)
 まず、上記で得られた支持基板に対して半田材を供する。より具体的には、基板表面に設けられたランドに例えばメタルマスクして半田ペーストを塗布する。次いで、固体電池のための周辺回路を設ける。より具体的には、電池周辺回路に必要な能動素子、受動素子および/または補助素子といった電子部品などを基板の所定位置にマウントする。また、導電性スペーサなど、固体電池と支持基板との電気的接続(正極接続および負極接続)に資すると共に、それらの間における間隙形成に資する部材(例えば、ジャンパーピン、金属ピラーや金属の塊などの高さ調整端子ピン)もマウントする。このような所望のマウントが完了したら、支持基板をリフロー半田付けに付し、フラックス洗浄を行う。以上より、回路形成済みの支持基板が得られる。
(Circuit formation on the support board)
First, a solder material is provided to the support substrate obtained above. More specifically, for example, a metal mask is applied to the land provided on the surface of the substrate and the solder paste is applied. Next, a peripheral circuit for the solid-state battery is provided. More specifically, electronic components such as active elements, passive elements and / or auxiliary elements required for battery peripheral circuits are mounted at predetermined positions on the substrate. In addition, members such as conductive spacers that contribute to the electrical connection (positive electrode connection and negative electrode connection) between the solid-state battery and the support substrate and to form a gap between them (for example, jumper pins, metal pillars, metal lumps, etc.) Height adjustment terminal pin) is also mounted. When such a desired mounting is completed, the support substrate is subjected to reflow soldering and flux cleaning is performed. From the above, a support substrate in which a circuit has been formed can be obtained.
 なお、支持基板自体は、水蒸気透過率が1.0×10-3g/(m・Day)未満を有するものであれば、予め基板形態を有している基板を用いてよい。また、別法にて、水蒸気透過率が1.0×10-3g/(m・Day)未満を有し、表面に回路を備えるプリント配線基板、LTCC基板、またはHTCC基板などを利用してもよい。 As the support substrate itself, a substrate having a substrate form in advance may be used as long as it has a water vapor transmittance of less than 1.0 × 10 -3 g / (m 2 · Day). In addition, another method uses a printed wiring board, an LTCC board, an HTCC board, or the like having a water vapor transmittance of less than 1.0 × 10 -3 g / (m 2 · Day) and having a circuit on the surface. You may.
≪パッケージ化≫
 図12(a)~(d)には、パッケージ化によって本発明の固体電池を得る工程が模式的に示されている。パッケージ化には、上記で得られた固体電池100(以下では「パッケージ前電池」とも称する)および支持基板10が用いられる(図12(a))。
≪Packaging≫
12 (a) to 12 (d) schematically show a step of obtaining the solid-state battery of the present invention by packaging. For packaging, the solid-state battery 100 (hereinafter, also referred to as “pre-package battery”) and the support substrate 10 obtained above are used (FIG. 12 (a)).
 まず、支持基板に設けた導電性スペーサ60’に、固体電池100と支持基板10との電気的接続に資する接続部材60''を形成し、それを通じて固体電池100を基板実装する(図12(b))。具体的には、導電性スペーサ(固体電池の正極および負極との接続にそれぞれ資する正極側および負極側の導電性スペーサ)上に例えばAg導電性ペーストをディスペンサーで供給する。そして、固体電池の正極側および負極側の端面電極の底部分をそれぞれ正極側および負極側の導電性スペーサ上に載せ、Ag導電性ペーストと密着させて、硬化させることで接合を行う。より具体的に例示説明しておくと、支持基板の表面に設けた正極側の導電性スペーサと固体電池の正極側の端面電極の折り返し部分とが整合するとともに、負極側の導電性スペーサと固体電池の負極側の端面電極の折り返し部分とが整合するように位置合わせを行い、Ag導電性ペーストを介して接合結線する。このような接合材は、Ag導電ペーストの他、ナノペーストや合金系ペースト、ロー材など、形成後にフラックスなどの洗浄を必要としない導電性ペーストであれば、それを用いることができる。電池接続材としてこのような導電性ペーストを用いることによって、結果として最終的な導電性スペーサ60が無洗浄タイプの部材60''を有することになる。 First, a connecting member 60'' that contributes to electrical connection between the solid-state battery 100 and the support substrate 10 is formed on the conductive spacer 60'provided on the support substrate, and the solid-state battery 100 is mounted on the substrate through the connecting member 60'' (FIG. 12 (FIG. 12). b)). Specifically, for example, Ag conductive paste is supplied by a dispenser on the conductive spacers (the conductive spacers on the positive electrode side and the negative electrode side that contribute to the connection between the positive electrode and the negative electrode of the solid-state battery, respectively). Then, the bottom portions of the end face electrodes on the positive side and the negative side of the solid cell are placed on the conductive spacers on the positive side and the negative side, respectively, and are brought into close contact with the Ag conductive paste and cured to perform bonding. More specifically, the conductive spacer on the positive electrode side provided on the surface of the support substrate and the folded portion of the end face electrode on the positive electrode side of the solid-state battery are aligned, and the conductive spacer on the negative electrode side and the solid state are aligned. The alignment is performed so that the folded portion of the end face electrode on the negative electrode side of the battery is aligned, and the joint connection is made via the Ag conductive paste. As such a bonding material, in addition to Ag conductive paste, any conductive paste such as nanopaste, alloy-based paste, and brazing material that does not require cleaning of flux or the like after formation can be used. By using such a conductive paste as the battery connecting material, as a result, the final conductive spacer 60 has a non-cleaning type member 60''.
 次いで、図12(c)に示すように、支持基板10上の固体電池100が覆われるように被覆絶縁層30を形成する。それゆえ、支持基板上の固体電池が全体的に覆われるように被覆絶縁層の原料を供する。被覆絶縁層が樹脂材から成る場合、樹脂前駆体を支持基板上に設けて硬化などに付して被覆絶縁層を成型する。ある好適な態様では、金型で加圧に付すことを通じて被覆絶縁層の成型を行ってもよい。例示にすぎないが、コンプレッション・モールドを通じて支持基板上の固体電池を封止する被覆絶縁層を成型してよい。一般的にモールドで用いられる樹脂材であるならば、被覆絶縁層の原料の形態は、顆粒状でもよく、また、その種類は熱可塑性であってもよい。なお、このような成型は、金型成型に限らず、研磨加工、レーザー加工および/または化学的処理などを通じて行ってもよい。 Next, as shown in FIG. 12 (c), the coating insulating layer 30 is formed so as to cover the solid-state battery 100 on the support substrate 10. Therefore, the raw material of the coating insulating layer is provided so that the solid-state battery on the support substrate is entirely covered. When the coating insulating layer is made of a resin material, a resin precursor is provided on the support substrate and subjected to curing or the like to form the coating insulating layer. In one preferred embodiment, the coating insulating layer may be molded by subjecting it to pressure with a mold. By way of example only, a coating insulating layer that seals a solid-state battery on a support substrate may be molded through a compression mold. If it is a resin material generally used in a mold, the form of the raw material of the coating insulating layer may be granular, and the type may be thermoplastic. In addition, such molding is not limited to mold molding, and may be performed through polishing, laser processing, and / or chemical processing.
 次いで、図12(d)に示すように、被覆無機膜40を形成する。具体的には、「個々の固体電池100が支持基板10上にて被覆絶縁層30で覆われた被覆前駆体」に対して被覆無機膜40を形成する。例えば、乾式めっきを実施し、被覆無機膜として乾式めっき膜を形成してよい。より具体的には、乾式めっきを実施し、被覆前駆体の底面以外(即ち、支持基板の底面以外)の露出面に対して被覆無機膜を形成する。ある好適な態様では、スパッタリングを実施し、スパッタ膜を被覆前駆体の底面以外の露出外面に形成する。 Next, as shown in FIG. 12 (d), the coated inorganic film 40 is formed. Specifically, the coated inorganic film 40 is formed on the “coated precursor in which each solid-state battery 100 is covered with the coated insulating layer 30 on the support substrate 10”. For example, dry plating may be carried out to form a dry plating film as a coating inorganic film. More specifically, dry plating is carried out to form a coated inorganic film on an exposed surface other than the bottom surface of the coating precursor (that is, other than the bottom surface of the support substrate). In one preferred embodiment, sputtering is performed to form a sputtered film on an exposed outer surface other than the bottom surface of the coating precursor.
 以上のような工程を経ることによって、回路を備えつつも支持基板上の固体電池が被覆絶縁層および被覆無機膜で全体的に覆われたパッケージ品を得ることができる。つまり、本発明に係る「パッケージ化された固体電池」を最終的に得ることができる。 By going through the above steps, it is possible to obtain a packaged product in which the solid-state battery on the support substrate is entirely covered with a coated insulating layer and a coated inorganic film while having a circuit. That is, the "packaged solid-state battery" according to the present invention can be finally obtained.
 このようなパッケージ化についていえば、固体電池の端子引き出しが、設計的にも接合プロセス的にも比較的容易であるといった利点がある。また、固体電池が小型化するほど、電池に対するパッケージの面積割合が小さくなるが、本発明に係わるパッケージ化ではこのエリアが極端に小さくできるため特に小容量の電池の小型化に資するものとなり得る。 Speaking of such packaging, there is an advantage that the terminal extraction of the solid-state battery is relatively easy in terms of design and joining process. Further, as the size of the solid-state battery becomes smaller, the area ratio of the package to the battery becomes smaller, but in the packaging according to the present invention, this area can be made extremely small, which can contribute to the miniaturization of a battery having a particularly small capacity.
 以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。本発明はこれに限定されず、本発明の要旨を変更しない範囲において種々の態様が考えられることを当業者は容易に理解されよう。 Although the embodiments of the present invention have been described above, they are merely examples of typical examples. Those skilled in the art will easily understand that the present invention is not limited to this, and various aspects can be considered without changing the gist of the present invention.
 例えば、上記説明では、支持基板のランドが上側と下側とで1対1対応となった形態が示された図面を用いたが、本発明は特にこれに限定されない。ビアで接続された上側ランドと下側ランドについて、それらの個数が互いに異なっていてもよい。例えば、ビアで互いに接続された上側ランドと下側ランドの対につき、上側ランドが1つに対して、下側ランドが2つまたはそれ以上となっていてもよい。これにより、本発明に係る電池パッケージ品として、設計自由度がより高いSMDが実現され得る。 For example, in the above description, a drawing showing a form in which the lands of the support substrate have a one-to-one correspondence between the upper side and the lower side is used, but the present invention is not particularly limited to this. The number of upper lands and lower lands connected by vias may differ from each other. For example, for a pair of upper lands and lower lands connected to each other by vias, there may be one upper land and two or more lower lands. As a result, an SMD having a higher degree of freedom in design can be realized as the battery package product according to the present invention.
 また、上記説明では、基板と固体電池との間に形成される隙間部分が主に導電性スペーサによってもたらされる態様について説明したが本発明はこれに限定されない。例えば、固体電池の端面電極もまた基板と固体電池との間の隙間形成に寄与し得る。具体的には、固体電池の端面電極が、焼結積層体の端面のみならず主面の一部にまで延在する場合、その主面上の端面電極部分の厚さが、基板と固体電池との間の隙間形成に寄与することになる。また、端面電極が、基板と固体電池との間の隙間形成に特に寄与する適当な脚部材を備えるものであってもよい。 Further, in the above description, the mode in which the gap portion formed between the substrate and the solid-state battery is mainly provided by the conductive spacer has been described, but the present invention is not limited to this. For example, the end face electrodes of a solid state battery can also contribute to the formation of a gap between the substrate and the solid state battery. Specifically, when the end face electrode of the solid-state battery extends not only to the end face of the sintered laminate but also to a part of the main surface, the thickness of the end face electrode portion on the main face is the thickness of the substrate and the solid-state battery. It will contribute to the formation of a gap between the two. Further, the end face electrode may be provided with an appropriate leg member that particularly contributes to the formation of a gap between the substrate and the solid-state battery.
 さらには、上記説明では、基板上の固体電池は、それを構成する各層の積層方向が基板の主面の法線方向に沿った形態となっていることを前提としたが、本発明はこれに限定されない。例えば、固体電池の積層方向が基板の主面の法線方向と直交するような向きで固体電池が基板に設けられてもよい。かかる場合、固体電池の膨張収縮(特に固体電池の積層方向の膨張収縮)に起因して電池が基板上の回路に接触するといった不都合な事象はより生じにくくなる。 Further, in the above description, it is assumed that the solid-state battery on the substrate has a form in which the stacking direction of each layer constituting the solid-state battery is along the normal direction of the main surface of the substrate. Not limited to. For example, the solid-state battery may be provided on the substrate so that the stacking direction of the solid-state battery is orthogonal to the normal direction of the main surface of the substrate. In such a case, an inconvenient event such as the battery coming into contact with the circuit on the substrate due to the expansion / contraction of the solid-state battery (particularly the expansion / contraction in the stacking direction of the solid-state battery) is less likely to occur.
 さらには、上記説明では、コンプレッション・モールドを通じて基板上の固体電池を大きく封止するように被覆絶縁層を成型する態様について説明したが、本発明はこれに限定されない。被覆絶縁層は、例えばスプレー噴霧などの塗布法を利用して形成してよい。塗布法を用いる場合、図13に示されるように、被覆絶縁層30の断面視形状は、基板10およびその上の固体電池100の輪郭が比較的大きく反映されたものとなり得る。この場合、かかる被覆絶縁層30上に設けられた被覆無機膜40の断面視形状もまた基板10およびその上の固体電池100の輪郭が比較的大きく反映されたものとなり得る。 Further, in the above description, the embodiment in which the coating insulating layer is molded so as to largely seal the solid-state battery on the substrate through the compression mold has been described, but the present invention is not limited to this. The coating insulating layer may be formed by using a coating method such as spray spraying. When the coating method is used, as shown in FIG. 13, the cross-sectional shape of the coating insulating layer 30 may reflect the contours of the substrate 10 and the solid-state battery 100 on the substrate 10 relatively largely. In this case, the cross-sectional shape of the coated inorganic film 40 provided on the coated insulating layer 30 may also reflect the contours of the substrate 10 and the solid-state battery 100 on the substrate 10 relatively largely.
 さらには、必要に応じて、被覆無機膜のさび防止などの観点から付加的な被膜を被覆無機膜上に設けてもよい。例えば、樹脂などから形成される有機被膜を被覆無機膜上に設けてよい。 Furthermore, if necessary, an additional film may be provided on the coated inorganic film from the viewpoint of preventing rust on the coated inorganic film. For example, an organic film formed of a resin or the like may be provided on the coated inorganic film.
 本発明のパッケージ化された固体電池は、電池使用や蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明のパッケージ化された固体電池は、エレクトロニクス実装分野で用いることができる。また、電気・電子機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などにも本発明の電極を利用することができる。 The packaged solid-state battery of the present invention can be used in various fields where battery use and storage are expected. By way of example only, the packaged solid-state battery of the present invention can be used in the field of electronics mounting. In addition, electric / information / communication fields (for example, mobile phones, smartphones, laptop computers and digital cameras, activity meters, arm computers, electronic papers, RFID tags, card-type electronic money, smarts, etc., in which electric / electronic devices are used. Electrical / electronic equipment field including small electronic devices such as watches or mobile equipment field), home / small industrial use (for example, power tool, golf cart, home / nursing / industrial robot field), large industrial use (For example, forklift, elevator, bay port crane field), transportation system field (for example, hybrid car, electric car, bus, train, electric assist bicycle, electric motorcycle, etc.), power system application (for example, various power generation, Road conditioners, smart grids, general household-installed power storage systems, etc.), medical applications (medical equipment fields such as earphone hearing aids), pharmaceutical applications (dose management systems, etc.), IoT fields, space / deep sea applications The electrodes of the present invention can also be used in (for example, fields such as space probes and submersible research vessels).
 10    支持基板
 14    ビア
 16    ランド
 17    支持基板の導電性部分(基板配線)
 19    金属パッド
 30    被覆絶縁層
 30’   被覆絶縁層(特に固体電池と支持基板との間の被覆絶縁層)
 35    フィラー
 40    被覆無機膜
 50    被覆部材
 60    導電性接続部
 80    固体電池のための回路
 100   固体電池
 100A  固体電池の頂面(上面)
 100B  固体電池の側面
 110   正極層
 120   負極層
 130   固体電解質
 150   端面電極
 150A  正極側の端面電極
 150B  負極側の端面電極
 200   電池パッケージ品(パッケージ化された固体電池)
10 Support board 14 Via 16 Land 17 Conductive part of support board (board wiring)
19 Metal pad 30 Coated insulation layer 30'Coated insulation layer (especially the coating insulation layer between the solid-state battery and the support substrate)
35 Filler 40 Coated inorganic film 50 Coated member 60 Conductive connection 80 Circuit for solid-state battery 100 Solid-state battery 100A Top surface (upper surface) of solid-state battery
100B Side of solid-state battery 110 Positive electrode layer 120 Negative electrode layer 130 Solid electrolyte 150 End face electrode 150A Positive electrode side end face electrode 150B Negative electrode side end face electrode 200 Battery packaged product (packaged solid state battery)

Claims (20)

  1. 基板を備えた固体電池であって、
     前記基板上において前記固体電池が被覆されており、該固体電池のための回路が該基板上に設けられている、固体電池。
    A solid-state battery with a substrate
    A solid-state battery in which the solid-state battery is coated on the substrate and a circuit for the solid-state battery is provided on the substrate.
  2. 前記固体電池のための前記回路が前記基板の主面に設けられており、該回路が該主面の面方向に延在している、請求項1に記載の固体電池。 The solid-state battery according to claim 1, wherein the circuit for the solid-state battery is provided on the main surface of the substrate, and the circuit extends in the surface direction of the main surface.
  3. 前記回路と前記固体電池とが前記基板上にて互いに隣接して配置されている、請求項1または2に記載の固体電池。 The solid-state battery according to claim 1 or 2, wherein the circuit and the solid-state battery are arranged adjacent to each other on the substrate.
  4. 前記回路として、前記固体電池のための保護回路、充電制御回路、温度制御回路、出力補償回路および出力安定化電源回路から成る群から選択される少なくとも一種が設けられている、請求項1~3のいずれかに記載の固体電池。 Claims 1 to 3 include, as the circuit, at least one selected from the group consisting of a protection circuit for the solid-state battery, a charge control circuit, a temperature control circuit, an output compensation circuit, and an output stabilized power supply circuit. The solid-state battery described in any of.
  5. 前記固体電池の頂面および側面を覆うように被覆絶縁層が設けられ、該被覆絶縁層上に被覆無機膜が設けられている、請求項1~4のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 4, wherein a coated insulating layer is provided so as to cover the top surface and the side surface of the solid-state battery, and a coated inorganic film is provided on the coated insulating layer.
  6. 前記被覆無機膜が、断面視にて、前記回路が設けられている基板面を超えるように延在している、請求項1~5のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 5, wherein the coated inorganic film extends so as to extend beyond the substrate surface on which the circuit is provided in a cross-sectional view.
  7. 前記被覆無機膜および前記被覆絶縁層の双方が、断面視にて、前記回路が設けられている基板面を超えるように延在している、請求項1~5のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 5, wherein both the coated inorganic film and the coated insulating layer extend beyond the substrate surface on which the circuit is provided in a cross-sectional view. ..
  8. 前記基板は、前記固体電池および前記回路の双方を該基板の表面で支持する支持基板となっている、請求項1~7のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 7, wherein the substrate is a support substrate that supports both the solid-state battery and the circuit on the surface of the substrate.
  9. 前記基板が、該基板の上下面を電気的に結線する配線を備え、前記固体電池の外部端子のための端子基板となっている、請求項1~8のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 8, wherein the substrate includes wiring for electrically connecting the upper and lower surfaces of the substrate and serves as a terminal substrate for external terminals of the solid-state battery.
  10. 前記基板と前記固体電池との間に前記回路が位置付けられている、請求項1~9のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 9, wherein the circuit is positioned between the substrate and the solid-state battery.
  11. 前記基板と前記固体電池との間では前記回路を除いた隙間部分が埋まるように樹脂材が設けられている、請求項10に記載の固体電池。 The solid-state battery according to claim 10, wherein a resin material is provided between the substrate and the solid-state battery so as to fill a gap portion excluding the circuit.
  12. 前記基板と前記固体電池との間に導電性スペーサを有して成る、請求項10または11に記載の固体電池。 The solid-state battery according to claim 10 or 11, wherein a conductive spacer is provided between the substrate and the solid-state battery.
  13. 前記導電性スペーサは、半田付けにおいてフラックス洗浄を要しない無洗浄タイプの部材を有する、請求項12に記載の固体電池。 The solid-state battery according to claim 12, wherein the conductive spacer has a non-cleaning type member that does not require flux cleaning in soldering.
  14. 前記固体電池の端面電極と前記基板の前記配線とを互いに接続する導電性接続部材に起因した前記固体電池と前記基板との隙間に前記回路が位置付けられている、請求項9に記載の固体電池。 The solid-state battery according to claim 9, wherein the circuit is positioned in a gap between the solid-state battery and the substrate due to a conductive connecting member that connects the end face electrode of the solid-state battery and the wiring of the substrate to each other. ..
  15. 前記被覆無機膜が金属薄膜である、請求項5に従属する請求項6~14のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 6 to 14, which is dependent on claim 5, wherein the coated inorganic film is a metal thin film.
  16. 前記被覆絶縁層が樹脂材を含んで成る、請求項5に従属する請求項6~15のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 6 to 15, which is dependent on claim 5, wherein the coating insulating layer comprises a resin material.
  17. 前記固体電池と前記基板との一体化物の底側面において、前記基板と前記被覆無機膜とが面一になっている、請求項5に従属する請求項6~16のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 6 to 16, wherein the substrate and the coated inorganic film are flush with each other on the bottom side surface of the integrated body of the solid-state battery and the substrate. ..
  18. 前記基板がセラミックを含んで成る、請求項1~17のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 17, wherein the substrate comprises ceramic.
  19. 前記固体電池が焼結体から構成されている、請求項1~18のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 18, wherein the solid-state battery is made of a sintered body.
  20. 前記固体電池の正極層および負極層は、リチウムイオンを吸蔵放出可能な層となっている、請求項1~19のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 19, wherein the positive electrode layer and the negative electrode layer of the solid-state battery are layers capable of storing and releasing lithium ions.
PCT/JP2020/014306 2019-03-29 2020-03-27 Solid-state battery WO2020203879A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080024250.2A CN113614968A (en) 2019-03-29 2020-03-27 Solid-state battery
JP2021512065A JP7396352B2 (en) 2019-03-29 2020-03-27 solid state battery
EP20783174.4A EP3951975A4 (en) 2019-03-29 2020-03-27 Solid-state battery
US17/487,565 US20220013846A1 (en) 2019-03-29 2021-09-28 Solid-state battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068107 2019-03-29
JP2019-068107 2019-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/487,565 Continuation US20220013846A1 (en) 2019-03-29 2021-09-28 Solid-state battery

Publications (1)

Publication Number Publication Date
WO2020203879A1 true WO2020203879A1 (en) 2020-10-08

Family

ID=72668355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014306 WO2020203879A1 (en) 2019-03-29 2020-03-27 Solid-state battery

Country Status (5)

Country Link
US (1) US20220013846A1 (en)
EP (1) EP3951975A4 (en)
JP (1) JP7396352B2 (en)
CN (1) CN113614968A (en)
WO (1) WO2020203879A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004547A1 (en) * 2020-07-01 2022-01-06 株式会社村田製作所 Solid-state battery
WO2022078327A1 (en) * 2020-10-13 2022-04-21 广东微电新能源有限公司 Battery coating method and battery
WO2022230900A1 (en) * 2021-04-26 2022-11-03 株式会社村田製作所 Solid-state battery package
WO2023167100A1 (en) * 2022-03-04 2023-09-07 株式会社村田製作所 Solid-state battery package
WO2023171759A1 (en) * 2022-03-11 2023-09-14 株式会社村田製作所 Solid state battery module
WO2023182513A1 (en) * 2022-03-25 2023-09-28 株式会社村田製作所 Solid-state battery package
WO2024014345A1 (en) * 2022-07-13 2024-01-18 株式会社村田製作所 Solid-state battery module

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005279A (en) 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it
JP2010503957A (en) * 2006-09-14 2010-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrochemical energy source and electronic device comprising such an electrochemical energy source
JP2011216235A (en) * 2010-03-31 2011-10-27 Namics Corp Lithium ion secondary battery
JP2013084624A (en) * 2007-02-09 2013-05-09 Cymbet Corp Charging system and charging method
JP2015220107A (en) 2014-05-19 2015-12-07 Tdk株式会社 All-solid lithium ion secondary battery
JP2015220102A (en) * 2014-05-19 2015-12-07 Tdk株式会社 Battery mounting substrate
JP2017523575A (en) * 2014-08-13 2017-08-17 ヴェリリー ライフ サイエンシズ エルエルシー Sealed solid battery
JP2018163870A (en) * 2017-03-24 2018-10-18 株式会社東芝 Electrode group, secondary battery, battery pack, and vehicle
WO2018212120A1 (en) * 2017-05-16 2018-11-22 株式会社村田製作所 Solid-state battery, battery pack, vehicle, electricity storage system, electric tool and electronic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5050858B2 (en) * 2006-01-24 2012-10-17 株式会社村田製作所 Chip battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005279A (en) 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it
JP2010503957A (en) * 2006-09-14 2010-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrochemical energy source and electronic device comprising such an electrochemical energy source
JP2013084624A (en) * 2007-02-09 2013-05-09 Cymbet Corp Charging system and charging method
JP2011216235A (en) * 2010-03-31 2011-10-27 Namics Corp Lithium ion secondary battery
JP2015220107A (en) 2014-05-19 2015-12-07 Tdk株式会社 All-solid lithium ion secondary battery
JP2015220102A (en) * 2014-05-19 2015-12-07 Tdk株式会社 Battery mounting substrate
JP2017523575A (en) * 2014-08-13 2017-08-17 ヴェリリー ライフ サイエンシズ エルエルシー Sealed solid battery
JP2018163870A (en) * 2017-03-24 2018-10-18 株式会社東芝 Electrode group, secondary battery, battery pack, and vehicle
WO2018212120A1 (en) * 2017-05-16 2018-11-22 株式会社村田製作所 Solid-state battery, battery pack, vehicle, electricity storage system, electric tool and electronic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951975A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004547A1 (en) * 2020-07-01 2022-01-06 株式会社村田製作所 Solid-state battery
WO2022078327A1 (en) * 2020-10-13 2022-04-21 广东微电新能源有限公司 Battery coating method and battery
WO2022230900A1 (en) * 2021-04-26 2022-11-03 株式会社村田製作所 Solid-state battery package
WO2023167100A1 (en) * 2022-03-04 2023-09-07 株式会社村田製作所 Solid-state battery package
WO2023171759A1 (en) * 2022-03-11 2023-09-14 株式会社村田製作所 Solid state battery module
WO2023182513A1 (en) * 2022-03-25 2023-09-28 株式会社村田製作所 Solid-state battery package
WO2024014345A1 (en) * 2022-07-13 2024-01-18 株式会社村田製作所 Solid-state battery module

Also Published As

Publication number Publication date
EP3951975A4 (en) 2023-08-09
CN113614968A (en) 2021-11-05
JP7396352B2 (en) 2023-12-12
US20220013846A1 (en) 2022-01-13
EP3951975A1 (en) 2022-02-09
JPWO2020203879A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP7192866B2 (en) solid state battery
WO2020203879A1 (en) Solid-state battery
WO2012081366A1 (en) Solid battery
US10074830B2 (en) Battery housing structure
JP2007095455A (en) Ceramic vessel, and battery or electric double layer capacitor using it
US20220013816A1 (en) Solid-state battery
US20230128747A1 (en) Solid state battery
JP7206836B2 (en) Electronic component manufacturing method
US20230163365A1 (en) Solid state battery
US20220328882A1 (en) Solid-state battery
WO2022114155A1 (en) Solid-state battery and method for manufacturing solid-state battery
US11942605B2 (en) Solid-state battery
WO2021235451A1 (en) Solid-state battery and exterior body for solid-state battery
JP7131298B2 (en) electronic components
WO2023243489A1 (en) Solid battery package
US20220302498A1 (en) Solid-state battery
US20240047792A1 (en) Solid-state battery package
US20240047793A1 (en) Solid-state battery package
WO2023171759A1 (en) Solid state battery module
WO2024014261A1 (en) Packaged solid-state battery
WO2024009963A1 (en) Solid-state battery
JP2023180885A (en) Solid state battery package
JP2023143252A (en) solid battery package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512065

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020783174

Country of ref document: EP

Effective date: 20211029