WO2020203664A1 - Nonaqueous electrolyte solution for electricity storage devices, and electricity storage device using same - Google Patents

Nonaqueous electrolyte solution for electricity storage devices, and electricity storage device using same Download PDF

Info

Publication number
WO2020203664A1
WO2020203664A1 PCT/JP2020/013736 JP2020013736W WO2020203664A1 WO 2020203664 A1 WO2020203664 A1 WO 2020203664A1 JP 2020013736 W JP2020013736 W JP 2020013736W WO 2020203664 A1 WO2020203664 A1 WO 2020203664A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte solution
mass
storage device
aqueous electrolyte
formula
Prior art date
Application number
PCT/JP2020/013736
Other languages
French (fr)
Japanese (ja)
Inventor
一成 垣田
晶 久留宮
松尾 孝
雅人 田渕
俊平 浜谷
Original Assignee
宇部興産株式会社
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社, 株式会社大阪ソーダ filed Critical 宇部興産株式会社
Priority to JP2021511936A priority Critical patent/JP7378462B2/en
Priority to KR1020217029757A priority patent/KR20210146293A/en
Priority to CN202080024217.XA priority patent/CN114008830A/en
Publication of WO2020203664A1 publication Critical patent/WO2020203664A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte solution capable of suppressing gas generation even when stored at a high temperature without lowering the initial discharge capacity of the power storage device, and a power storage device using the same.
  • lithium secondary batteries have been widely used for small electronic devices such as mobile phones and notebook computers, electric vehicles, and power storage.
  • the proportion of laminated pouch type batteries has been increasing from the viewpoint of increasing the capacity per weight and volume, and gas swelling due to decomposition of non-aqueous electrolyte solution often becomes a problem.
  • Development of a non-aqueous electrolyte solution that suppresses gas generation is required.
  • the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.
  • Patent Document 1 discloses a method in which a polymerizable monomer is added to an electrolytic solution for a lithium polymer secondary battery and heat-polymerized for several hours after the battery is manufactured, but heat polymerization is required as a process.
  • Patent Document 2 discloses a composition for a gel electrolyte of an electrochemical capacitor containing a polyether polymer.
  • the solid content concentration of the polyether polymer is 5 to 20% of the total solid content of the composition for gel electrolyte, but it exhibits high ionic conductivity as a gel electrolyte.
  • the polyether polymer is added to the electrolytic solution in an amount of 5% by mass or more, the viscosity increases and the charge / discharge characteristics of the lithium ion secondary battery deteriorate.
  • An object of the present invention is to provide a non-aqueous electrolyte solution capable of suppressing gas generation even when stored at a high temperature without lowering the initial discharge capacity of the power storage device.
  • the present inventors prepared a non-aqueous electrolyte solution by adding a specific polymer to the non-aqueous electrolyte solution without going through a heat polymerization step. Even in this case, the present invention has been completed by finding that gas generation during high-temperature storage can be suppressed without lowering the initial discharge capacity of the power storage device.
  • the present invention provides the following (1) to (5).
  • a polyether polymer having an ethylene oxide unit having a weight average molecular weight of 100,000 to 2.5 million is a repeating unit derived from the following formula (1). 0 to 50 mol%, the repeating unit derived from the following formula (2) is 30 to 100 mol%, and the repeating unit derived from the following formula (3) is 0 to 20 mol%, and the of the polyether polymer.
  • a non-aqueous electrolyte solution for a power storage device having a concentration of 0.01 to 2% by mass of the non-aqueous electrolyte solution.
  • R is an alkyl group having 1 to 12 carbon atoms or -CH 2 O (CR 1 R 2 R 3 ).
  • R 1 , R 2 , R 3 are hydrogen atoms or -CH 2 O (CH 2 CH 2 O) n R 4 , and n and R 4 may differ between R 1 , R 2 , and R 3. ..
  • R 4 is an alkyl group having 1 to 12 carbon atoms or an aryl group which may have a substituent, and n is an integer of 0 to 12.
  • Equation (3) Wherein, R 5 is a group having an ethylenically unsaturated group. ]
  • a power storage device including a positive electrode, a negative electrode, and a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolytic solution corresponds to any one of (1) to (4).
  • a non-aqueous electrolyte solution capable of suppressing gas generation even when stored at a high temperature without lowering the initial discharge capacity of the power storage device, and a power storage device such as a lithium battery using the non-aqueous electrolyte solution are provided. Can be done.
  • the present invention relates to a non-aqueous electrolyte solution and a power storage device using the same.
  • the non-aqueous electrolyte solution of the present invention is a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent, and is a non-aqueous electrolyte solution containing a polyether polymer having an ethylene oxide unit having a weight average molecular weight of 100,000 to 2.5 million. It is characterized by being contained therein.
  • the polyether polymer contained in the non-aqueous electrolyte solution of the present invention has at least a repeating unit derived from the following formula (2), a repeating unit derived from the formula (1), and a repeating unit derived from the formula (3). Is preferable.
  • R is an alkyl group having 1 to 12 carbon atoms or -CH 2 O (CR 1 R 2 R 3 ).
  • R 1 , R 2 , R 3 are hydrogen atoms or -CH 2 O (CH 2 CH 2 O) n R 4 , and n and R 4 may differ between R 1 , R 2 , and R 3. ..
  • R 4 is an alkyl group having 1 to 12 carbon atoms or an aryl group which may have a substituent, and n is an integer of 0 to 12.
  • Equation (3) Wherein, R 5 is a group having an ethylenically unsaturated group. ]
  • repeating unit derived from the formula (1) and the repeating unit derived from the formula (3) may be derived from two or more different monomers, respectively.
  • the compound of the formula (1) can be easily synthesized by obtaining it from a commercially available product, or by a general ether synthesis method from epihalohydrin and alcohol.
  • the phenyl group is mentioned as an aryl group.
  • Examples of compounds available from commercial products include propylene oxide, butylene oxide, methyl glycidyl ether, ethyl glycidyl ether, butyl glycidyl ether, t-butyl glycidyl ether, benzyl glycidyl ether, 1,2-epoxydodecane, 1,2.
  • R is preferably -CH 2 O (CR 1 R 2 R 3 ), and at least one of R 1 , R 2 and R 3 is -CH 2 O. (CH 2 CH 2 O) n R 4 is preferable.
  • R 4 is preferably an alkyl group having 1 to 6 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms. n is preferably 0 to 6, more preferably 0 to 4.
  • the compound of formula (2) is a basic chemical product, and a commercially available product is easily available.
  • R 5 is a substituent containing an ethylenically unsaturated group, it is preferable carbon number is 2 to 13.
  • the monomer component containing an ethylenically unsaturated group include allyl glycidyl ether, 4-vinylcyclohexyl glycidyl ether, ⁇ -terpinyl glycidyl ether, cyclohexenylmethyl glycidyl ether, p-vinylbenzyl glycidyl ether, allylphenyl glycidyl ether, and vinyl.
  • Glycidyl ether 3,4-epoxy-1-butene, 3,4-epoxy-1-pentene, 4,5-epoxy-2-pentene, 1,2-epoxy-5,9-cyclododecandien, 3,4 -Epoxy-1-vinylcyclohexene, 1,2-epoxy-5-cyclooctene, glycidyl acrylate, glycidyl methacrylate, glycidyl sorbate, glycidyl silicate, glycidyl crotonate, glycidyl-4-hexenoate are used.
  • the molar ratios of the repeating unit derived from the formula (1), the repeating unit derived from the formula (2), and the repeating unit derived from the formula (3) are (1) 0 to 50 mol%, (2). ) 30 to 100 mol%, and (3) 0 to 20 mol%, (1) 0 to 40 mol%, (2) 45 to 100 mol%, and (3) 0 to 15 mol%. More preferably, it is (1) 0 to 30 mol%, (2) 60 to 100 mol%, and (3) 0 to 10 mol%.
  • the polyether polymer preferably has any of a repeating unit derived from the formula (2), a repeating unit derived from the formula (1), and a repeating unit derived from the formula (3).
  • the molar ratio of the repeating unit derived from the formula (1) is preferably 1 mol% or more. It is more preferably 3 mol% or more, particularly preferably 5 mol% or more, preferably 50 mol% or less, more preferably 40 mol% or less, and particularly preferably 30 mol% or less.
  • the molar ratio of the repeating unit derived from the formula (2) is preferably 30 mol% or more, more preferably 45 mol% or more, further preferably 50 mol% or more, and particularly preferably 60 mol% or more. , 99 mol% or less, more preferably 97 mol% or less, and particularly preferably 95 mol% or less.
  • the molar ratio of the repeating unit derived from the formula (2) is preferably 30 mol% or more. , 45 mol% or more is more preferable, 60 mol% or more is particularly preferable, 80 mol% or more is most preferable, 99 mol% or less is preferable, and 97 mol% or less is more preferable. It is particularly preferable to have 95 mol% or less.
  • the molar ratio of the repeating unit derived from the formula (3) is preferably 0.5 mol% or more, more preferably 1 mol% or more, particularly preferably 1.5 mol% or more, and 20 mol% or less. However, it is preferable to have 15 mol% or less, more preferably 12 mol% or less, and particularly preferably 10 mol% or less.
  • the molar ratio of the repeating unit derived from the formula (1) is preferably 1 mol% or more, more preferably 3 mol% or more, particularly preferably 5 mol% or more, preferably 50 mol% or less, more preferably 40 mol% or less, and 30 It is particularly preferable to have mol% or less.
  • the molar ratio of the repeating unit derived from the formula (2) is preferably 30 mol% or more, more preferably 45 mol% or more, particularly preferably 60 mol% or more, and preferably 98.5 mol% or less.
  • the molar ratio of the repeating unit derived from the formula (3) is preferably 0.5 mol% or more, more preferably 1 mol% or more, particularly preferably 1.5 mol% or more, and 15 mol% or less. It is preferable to have 12 mol% or less, and it is particularly preferable to have 10 mol% or less.
  • the molar ratio of the polymerization composition of the polyether polymer can be determined by obtaining the integrated value of each unit by 1 H-NMR and the calculation result.
  • the weight average molecular weight is measured by gel permeation chromatography (GPC), and the weight average molecular weight is calculated in terms of standard polystyrene.
  • the polyether polymer may be a polymerization type of either a block polymer or a random polymer. Random polymers are preferable because they have a greater effect of lowering the crystallinity of polyethylene oxide.
  • the lower limit of the weight average molecular weight is preferably 100,000 or more, more preferably 150,000 or more, further preferably 200,000 or more, and the weight average molecular weight.
  • the upper limit is preferably 2.5 million or less, more preferably 2.1 million or less, further preferably 1.8 million or less, even more preferably 1.5 million or less, and most preferably 1.4 million or less.
  • GPC Gel permeation chromatography
  • the synthesis of the polyether polymer can be carried out as follows.
  • a catalyst system mainly composed of organoaluminum a catalyst system mainly composed of organozinc, a coordination anion initiator such as an organotin-phosphate condensate catalyst system, or potassium containing K + as a counter ion.
  • a polyether polymer is obtained by reacting each monomer in the presence or absence of a solvent at a reaction temperature of 10 to 120 ° C. and under stirring using an anion initiator such as alkoxide, diphenylmethyl potassium, or potassium hydroxide. Be done.
  • the present invention does not require a heating process when preparing the electrolyte solution when the non-aqueous electrolyte solution of the present invention is used for a power storage device. It is possible to achieve the suppression of gas generation, which is the effect of.
  • the content of the polyether polymer is preferably such that the viscosity of the electrolytic solution is not too high, the initial discharge capacity is not lowered, and a gas suppressing effect is exhibited. It is preferably 0.01 to 2% by mass.
  • the content is more preferably 0.03% by mass or more, more preferably 0.05% by mass or more in the non-aqueous electrolytic solution.
  • the upper limit thereof is more preferably 1.5% by mass or less, and particularly preferably 1% by mass or less.
  • the effect of suppressing gas generation is synergistically improved by combining the polyether polymer with the non-aqueous solvent, the electrolyte salt, and other additives described below. It exerts its effect.
  • the "solvent” refers to a substance for dissolving a solute.
  • the non-aqueous solvent used in the non-aqueous electrolyte solution of the present invention one or more selected from cyclic carbonates, chain carbonates, chain esters, lactones, ethers, and amides are preferably used.
  • the non-aqueous solvent preferably contains a cyclic carbonate, more preferably a chain carbonate or a chain carboxylic acid ester. It is more preferred that both the cyclic carbonate and the chain carbonate, or both the cyclic carbonate and the chain carboxylic acid ester are included.
  • chain ester is used as a concept including a chain carbonate and a chain carboxylic acid ester. Further, “chain carbonate” is defined as a linear alkyl carbonate derivative.
  • chain ester one selected from methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl butyl carbonate, ethyl propyl carbonate, and methyl (2,2,2-trifluoroethyl) carbonate (MTEC).
  • MEC methyl ethyl carbonate
  • MPC methyl propyl carbonate
  • MTEC methyl (2,2,2-trifluoroethyl) carbonate
  • symmetric chain carbonates selected from the group consisting of two or more asymmetric chain carbonates, dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, and dibutyl carbonate (DBC).
  • Acetate esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propanoate, ethyl propanoate (EP), propyl propanoate, propanoate such as butyl propanoate, methyl butanoate, ethyl butanoate, butanoic acid
  • One or more chain carboxylic acid esters selected from the group consisting of butanoic acid esters such as propyl and butyl butanoate and fluorine-containing carboxylic acid esters such as methyl 3,3,3-trifluoropropanoate are preferable. is there.
  • Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolane-2-one (FEC), trans or Sis-4,5-difluoro-1,3-dioxolane-2-one (hereinafter collectively referred to as "DFEC"), vinylene carbonate (VC), vinylethylene carbonate (VEC), and 4-ethynyl-1.
  • DFEC 4-fluoro-1,3-dioxolane-2-one
  • VC vinylene carbonate
  • VEC vinylethylene carbonate
  • 4-ethynyl-1 4-ethynyl-1.
  • 3-Dioxolane-2-one (EEC) is preferably selected from the group consisting of one or more, and ethylene carbonate, propylene carbonate, 4-fluoro-1,3-dioxolane-2-one, vinylene.
  • One or more selected from the group consisting of carbonate and 4-ethynyl-1,3-dioxolane-2-one (EEC) is more preferable.
  • Examples of the combination when two or more kinds of cyclic carbonates are used include a combination of ethylene carbonate and vinylene carbonate.
  • a cyclic carbonate having an unsaturated bond is also preferably mentioned.
  • the cyclic carbonate having an unsaturated bond is not particularly limited as long as it is a cyclic carbonate having a carbon-carbon double bond in the molecule, but vinylene carbonate (VC), vinylethylene carbonate (VEC), and 4-ethynyl-1.
  • VC vinylene carbonate
  • VEC vinylethylene carbonate
  • 4-ethynyl-1 4-ethynyl-1.
  • 3-Dioxolane-2-one (EEC) is preferably selected from the group consisting of one or more, and among them, VC is preferable.
  • the cyclic carbonate having an unsaturated bond can also be used in combination with the cyclic carbonate having no unsaturated bond.
  • cyclic carbonate having no unsaturated bond examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolane-2-one. (FEC), and one or more selected from the group consisting of trans or cis-4,5-difluoro-1,3-dioxolane-2-one are preferably mentioned.
  • the content of the chain ester is not particularly limited, but it is preferably used in the range of 5 to 90% by mass with respect to the total amount of the non-aqueous electrolyte solution. It is more preferably 10% by mass or more, further preferably 30% by mass or more, and particularly preferably 50% by mass or more. Further, when it is 90% by mass or less, gas generation can be further suppressed, which is preferable.
  • the content of the cyclic carbonate is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more, and preferably 90% by mass or less, based on the total amount of the non-aqueous electrolyte solution. It is preferably 70% by mass or less, more preferably 50% by mass or less, and most preferably 40% by mass or less because gas generation can be further suppressed.
  • the content of the cyclic carbonate having an unsaturated bond is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.3% by mass or more, based on the total amount of the non-aqueous electrolyte solution. Further, it is preferably 5% by mass or less, more preferably 3% by mass or less, further preferably 1% by mass or less, and most preferably 0.8% by mass or less because gas generation can be further suppressed.
  • the ratio of the cyclic carbonate to the chain ester is preferably 10:90 to 50:50, more preferably 30:70 to 40:60, with a cyclic carbonate: chain ester (mass ratio).
  • non-aqueous solvents include cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and 1,4-dioxane, chains such as 1,2-dimethoxyethane, 1,2-diethoxyethane and 1,2-dibutoxyethane.
  • amides such as ether, dimethylformamide, sulfones such as sulfolane, and lactones such as ⁇ -butyrolactone (GBL), ⁇ -valerolactone, and ⁇ -angelica lactone are preferably mentioned.
  • the content of the other non-aqueous solvent is usually 1% by mass or more, preferably 2% by mass or more, and usually 40% by mass or less, preferably 30% by mass or less, more preferably more than the total amount of the non-aqueous electrolyte solution. Is 20% by mass or less.
  • additives can be added to the non-aqueous electrolyte.
  • specific examples of other additives include the following compounds (A) to (I).
  • nitriles selected from acetonitrile, propionitrile, succinonitrile, glutaronitrile, adiponitrile, pimeronitrile, suberonitrile, and sebaconitrile.
  • Aromatic compounds having a branched alkyl group such as cyclohexylbenzene, tert-butylbenzene, tert-amylbenzene, or 1-fluoro-4-tert-butylbenzene, biphenyl, turphenyl (o-, m-). , P-form), fluorobenzene, methylphenyl carbonate, ethylphenyl carbonate, or aromatic compounds such as diphenyl carbonate.
  • (C) Select from methyl isocyanate, ethyl isocyanate, butyl isocyanate, phenylisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, 1,4-phenylenediisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate.
  • One or more isocyanate compounds One or more isocyanate compounds.
  • One or more triple bond-containing compounds selected from propynyl, di (2-propynyl) oxalate, 2-butyne-1,4-diyl dimethanesulfonate, and 2-butyne-1,4-diyl diformate.
  • E 1,3-Propane sultone (PS), 1,3-butane sultone, 2,4-butane sultone, 1,4-butane sultone, 1,3-propensultone, or 2,2-dioxide-1,2-oxathiolane Sultone such as -4-yl acetate, cyclic sulphite such as ethylene sulfide, cyclic sulphate such as ethylene sulphate, butane-2,3-diyl dimethanesulfonate, butane-1,4-diyl dimethanesulfonate, or methylenemethane
  • S selected from sulfonic acid esters such as disulfonate and vinyl sulfone compounds such as divinyl sulfone, 1,2-bis (vinylsulfonyl) ethane, or bis (2-vinylsulfonylethyl) ether.
  • O group-containing compound such
  • the type of the (F) cyclic acetal compound is not particularly limited as long as it is a compound having an "acetal group" in the molecule. Specific examples thereof include cyclic acetal compounds such as 1,3-dioxolane, 1,3-dioxane, and 1,3,5-trioxane.
  • Specific examples thereof include chain carboxylic acid anhydrides such as acetic anhydride and propionic anhydride, succinic anhydride, maleic anhydride, 3-allyl succinic anhydride, glutaric anhydride, itaconic anhydride, or 3-sulfo-. Cyclic acid anhydride such as propionic anhydride.
  • Specific examples thereof include cyclic phosphazene compounds such as methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, and ethoxyheptafluorocyclotetraphosphazene.
  • nitriles (A) one or more selected from succinonitrile, glutaronitrile, adiponitrile, and pimeronitrile are more preferable.
  • aromatic compounds one or two selected from biphenyl, terphenyl (o-, m-, p-form), fluorobenzene, cyclohexylbenzene, tert-butylbenzene, and tert-amylbenzene.
  • the above is more preferable, and one or more selected from biphenyl, o-terphenyl, fluorobenzene, cyclohexylbenzene, and tert-amylbenzene are particularly preferable.
  • (C) isocyanate compounds one or more selected from hexamethylene diisocyanate, octamethylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate are more preferable.
  • the content of the compounds (A) to (C) is preferably 0.01 to 7% by mass in the non-aqueous electrolytic solution. In this range, the film is sufficiently formed without becoming too thick, and gas generation can be suppressed.
  • the content is more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, and the upper limit thereof is more preferably 5% by mass or less, further preferably 3% by mass or less in the non-aqueous electrolytic solution. ..
  • (D) a triple bond-containing compound, (E) sulton, cyclic sulfite, a sulfonic acid ester, a cyclic or chain S O group-containing compound selected from vinyl sulfone, (F) a cyclic acetal compound, (G). It is preferable to include a phosphorus-containing compound, (H) cyclic acid anhydride, and (I) cyclic phosphazene compound because gas generation can be suppressed.
  • (D) Triple bond-containing compounds include 2-propynyl methyl carbonate, 2-propynyl methacrylate, 2-propynyl methanesulfonic acid, 2-propynyl vinylsulfonic acid, di (2-propynyl) oxalate, and 2-butin-1.
  • 4-Diyl Dimethanesulfonate preferably one or more, preferably methanesulfonic acid 2-propynyl, vinylsulfonic acid 2-propynyl, di (2-propynyl) oxalate, and 2-butin-1,4- One or more selected from diyl dimethanesulfonate is more preferable.
  • Cyclic or chain S O group-containing compound selected from sultone, cyclic sulfite, cyclic sulfate, sulfonic acid ester, and vinyl sulfone (provided that it is represented by a triple bond-containing compound and any of the above formulas. It is preferable to use (does not contain a specific compound).
  • One or more selected from 1,2-oxathiolan-4-yl acetate, methylene methanedisulfonate, ethylene sulphite, and ethylene sulfate are preferably used.
  • cyclic or chain S O group-containing compounds, 1,3-propanesulfone, 1,4-butanesulfone, 2,4-butanesulfone, 2,2-dioxide-1,2-oxathiolan-4-yl acetate. , Ethylene sulphate, pentafluorophenyl methanesulfonate, and one or more selected from divinyl sulfone are more preferable.
  • 1,3-dioxolane or 1,3-dioxane is preferable, and 1,3-dioxane is more preferable.
  • (G) phosphorus-containing compound ethyl 2- (diethoxyphosphoryl) acetate or 2-propynyl 2- (diethoxyphosphoryl) acetate is preferable, and 2-propynyl 2- (diethoxyphosphoryl) acetate is more preferable.
  • succinic anhydride As the (H) cyclic acid anhydride, succinic anhydride, maleic anhydride, or 3-allyl succinic anhydride is preferable, and succinic anhydride or 3-allyl succinic anhydride is more preferable.
  • a cyclic phosphazene compound such as methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, or phenoxypentafluorocyclotriphosphazene is preferable, and methoxypentafluorocyclotriphosphazene or ethoxypentafluorocyclocyclo Triphosphazene is more preferred.
  • each of the compounds (D) to (I) is preferably 0.001 to 5% by mass with respect to the total amount of the non-aqueous electrolyte solution. In this range, the film is sufficiently formed without becoming too thick, and gas generation can be further suppressed.
  • the content is more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, and the upper limit thereof is more preferably 3% by mass or less, further preferably 2% by mass or less in the non-aqueous electrolytic solution. ..
  • Lithium salt having at least one oxalic acid skeleton selected from phosphate [LiDFOP], lithium salt having a phosphoric acid skeleton such as LiPO 2 F 2 and Li 2 PO 3 F, lithium trifluoro ((methanesulfonyl) oxy) Borate [LiTFMSB], Lithium pentafluoro ((methanesulfonyl) oxy) phosphate [LiPFMSP], Lithium methyl sulfate [LMS], Lithium ethyl sulfate [LES], Lithium 2,2,2-Trifluoroethyl sulfate [LFES], Lithium Lithium salts having one or more S O groups selected from 2,2,3,3-tetrafluoropropyl sulfate [LTFPS] and FSO 3 Li are preferably mentioned, and LiBOB, LiDFOB, LiTFOP, LiDFOP, LiPO 2 More preferably, it contains a lithium salt selected from Li
  • the ratio of each lithium salt selected from the above group to the non-aqueous solvent is preferably 0.01% by mass or more and 8% by mass or less with respect to the total amount of the non-aqueous electrolyte solution.
  • the gas generation suppressing effect and the capacity reduction suppressing effect can be further improved. It is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and particularly preferably 0.4% by mass or more with respect to the total amount of the non-aqueous electrolyte solution.
  • the upper limit is more preferably 6% by mass or less, particularly preferably 3% by mass or less, based on the total amount of the non-aqueous electrolyte solution.
  • Lithium salts include inorganic lithium salts such as LiPF 6 , LiBF 4 , and LiClO 4 , LiN (SO 2 F) 2 [LiFSI], LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C 3 F 7 ) 3 , Lithium salt containing a chain-like alkyl fluoride group such as LiPF 5 (iso-C 3 F 7 ), (CF 2 ) 2 (SO 2 ) 2 NLi, (CF 2 ) 3 (SO 2 ) 2 Lithium salts having a cyclic fluorinated alkylene chain such as LiPF 5 (iso-C 3 F 7 ), (CF 2 ) 2 (SO 2 ) 2 NLi
  • LiPF 6 LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , and LiN (SO 2 F) 2 [LiFSI].
  • LiPF 6 LiPF 6 from the viewpoint of the performance of the power storage device (particularly the lithium secondary battery) such as a high initial discharge capacity.
  • the concentration of each of the electrolyte salts is preferably 4% by mass or more, more preferably 8% by mass or more, still more preferably 10% by mass or more, based on the total amount of the non-aqueous electrolyte solution.
  • the upper limit thereof is preferably 28% by mass or less, more preferably 23% by mass or less, still more preferably 20% by mass or less, based on the total amount of the non-aqueous electrolyte solution.
  • a suitable combination of these electrolyte salts includes LiPF 6 , and at least one lithium selected from LiBF 4 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 F) 2 [LiFSI].
  • LiPF 6 LiPF 6
  • LiN (SO 2 CF 3 ) 2 LiN (SO 2 F) 2 [LiFSI].
  • It is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, more preferably 0.4% by mass or more, particularly preferably 0.46% by mass or more, most preferably 0.46% by mass or more, based on the total amount of the non-aqueous electrolyte solution. It is 0.6% by mass or more.
  • the upper limit is preferably 11% by mass or less, more preferably 9% by mass or less, and particularly preferably 6% by mass or less.
  • the viscosity of the non-aqueous electrolyte solution of the present invention at 25 ° C. is preferably 2 to 20 mPa ⁇ s, more preferably 15 mPa ⁇ s or less, and further preferably 10 mPa ⁇ s or less.
  • the non-aqueous electrolyte solution of the present invention can be obtained, for example, by mixing the non-aqueous solvent and adding the polyether polymer to the electrolyte salt and the non-aqueous electrolyte solution.
  • it is not necessary to carry out a heating process or irradiate with active energy rays. All operations for producing the non-aqueous electrolyte solution of the present invention can be performed at room temperature, and can also be performed at 5 to 30 ° C.
  • the compounds to be added to the non-aqueous solvent and the non-aqueous electrolytic solution to be used are those that have been purified in advance and contain as few impurities as possible within a range that does not significantly reduce the productivity.
  • the non-aqueous electrolyte solution of the present invention can be used in the following first to fourth power storage devices. Among them, it is preferably used for a first power storage device (that is, for a lithium battery) or a fourth power storage device (that is, for a lithium ion capacitor) that uses a lithium salt as an electrolyte salt, and is preferably used for a lithium battery. More preferably, it is most suitable for use in a lithium secondary battery.
  • the lithium battery is a general term for a lithium primary battery and a lithium secondary battery. Further, in the present specification, the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.
  • the lithium battery which is the first power storage device of the present invention, comprises the positive electrode, the negative electrode, and the non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent. Constituent members such as positive electrodes and negative electrodes other than the non-aqueous electrolytic solution can be used without particular limitation.
  • the positive electrode active material for a lithium secondary battery a composite metal oxide containing one or more selected from the group consisting of cobalt, manganese, and nickel is used. These positive electrode active materials can be used alone or in combination of two or more.
  • lithium composite metal oxides include LiCoO 2 , LiCo 1-x M x O 2 (where M is Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, and One or more elements selected from Cu, 0.001 ⁇ x ⁇ 0.05), LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 ⁇ x ⁇ 1), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , Li 2 MnO 3 and LiMO 2
  • LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 are preferably mentioned.
  • a lithium-containing olivine-type phosphate can also be used as the positive electrode active material.
  • a lithium-containing olivine-type phosphate containing at least one selected from iron, cobalt, nickel and manganese is preferable. Specific examples thereof include LiFePO 4 , LiCoPO 4 , LiNiPO 4 , and LiMnPO 4 . Some of these lithium-containing olivine phosphates may be replaced with other elements, and some of iron, cobalt, nickel and manganese may be replaced with Co, Mn, Ni, Mg, Al, B, Ti, V and Nb.
  • LiFePO 4 or LiMnPO 4 is preferred.
  • the lithium-containing olivine-type phosphate can also be used, for example, by mixing with the above-mentioned positive electrode active material.
  • the positive electrode for the lithium primary battery CuO, Cu 2 O, Ag 2 O, Ag 2 CrO 4 , CuS, CuSO 4 , TiO 2 , TiS 2 , SiO 2 , SnO, V 2 O 5 , V 6 O 12 , VO x , Nb 2 O 5 , Bi 2 O 3 , Bi 2 Pb 2 O 5 , Sb 2 O 3 , CrO 3 , Cr 2 O 3 , MoO 3 , WO 3 , SeO 2 , MnO 2 , Mn 2 O 3 , Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 , NiO, CoO 3 , CoO, and other oxides or chalcogen compounds of one or more metal elements, SO 2 , SOCl 2, etc. Examples thereof include sulfur compounds and fluorocarbon (fluorinated graphite) represented by the general formula (CF x ) n . Of these, MnO 2 , V 2 O 5 , and graphite
  • the conductive agent for the positive electrode is not particularly limited as long as it is an electron conductive material that does not cause a chemical change.
  • natural graphite scaling graphite or the like
  • graphite such as artificial graphite
  • carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and the like
  • graphite and carbon black may be appropriately mixed and used.
  • the amount of the conductive agent added to the positive electrode mixture is preferably 1 to 10% by mass, and particularly preferably 2 to 5% by mass.
  • the positive electrode is made of the above-mentioned positive electrode active material, which is a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a polymer of styrene and butadiene (SBR), and a weight of acrylonitrile and butadiene. It was mixed with a binder such as coalescence (NBR), carboxymethyl cellulose (CMC), and ethylene propylene transmer, and a high boiling point solvent such as 1-methyl-2-pyrrolidone was added thereto and kneaded to obtain a positive electrode mixture.
  • a binder such as coalescence (NBR), carboxymethyl cellulose (CMC), and ethylene propylene transmer
  • this positive electrode mixture is applied to an aluminum foil of a current collector, a lath plate made of stainless steel, etc., dried and pressure-molded, and then heated at a temperature of about 50 ° C. to 250 ° C. under vacuum for about 2 hours. It can be produced by processing.
  • the density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, for further increasing the capacity of the battery, it is preferably 2 g / cm 3 or more, more preferably, 3 g / cm 3 The above is more preferably 3.6 g / cm 3 or more. The upper limit is preferably 4 g / cm 3 or less.
  • lithium metal, lithium alloy, and carbon material capable of storing and releasing lithium [graphitized carbon and (002) plane spacing of 0.37 nm (nanometer) ) Or more graphitized carbon, graphite with (002) plane spacing of 0.34 nm or less], tin (elemental substance), tin compound, silicon (elemental substance), silicon compound, Li 4 Ti 5 O 12, etc.
  • Lithium titanate compounds and the like can be used alone or in combination of two or more.
  • a highly crystalline carbon material such as artificial graphite or natural graphite in terms of the ability to occlude and release lithium ions, and the interplanar spacing (d 002 ) of the lattice plane ( 002 ) is 0. It is particularly preferable to use a carbon material having a graphite-type crystal structure having a graphite-type crystal structure of 340 nm or less, particularly 0.335 to 0.337 nm.
  • the ratio I (110) / I (004) of the peak intensity I (110) on the (110) plane and the peak strength I (004) on the (004) plane of the graphite crystal is 0.01 or more, it is further from the positive electrode active material. It is preferable because the amount of metal elution is improved and the charge storage characteristics are improved, and it is more preferably 0.05 or more, and further preferably 0.1 or more. Further, the upper limit is preferably 0.5 or less, more preferably 0.3 or less, because the crystallinity may be lowered due to excessive treatment and the discharge capacity of the battery may be lowered.
  • the highly crystalline carbon material (core material) is coated with a carbon material having a lower crystallinity than the core material because gas generation can be further suppressed.
  • the crystallinity of the coated carbon material can be confirmed by TEM.
  • a highly crystalline carbon material it reacts with a non-aqueous electrolytic solution during charging, and gas generation tends to increase due to an increase in interfacial resistance.
  • the lithium secondary battery according to the present invention further generates gas. Can be suppressed.
  • Examples of the metal compound capable of occluding and releasing lithium as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni and Cu. , Zn, Ag, Mg, Sr, Ba and other compounds containing at least one metal element.
  • These metal compounds may be used in any form such as elemental substances, alloys, oxides, nitrides, sulfides, borides, alloys with lithium, etc., but any of elemental substances, alloys, oxides, alloys with lithium, etc. It is preferable because the capacity can be increased.
  • those containing at least one element selected from Si, Ge and Sn are preferable, and those containing at least one element selected from Si and Sn are particularly preferable because the capacity of the battery can be increased.
  • the negative electrode is kneaded with a conductive agent, a binder, and a high boiling point solvent similar to those for producing the positive electrode to obtain a negative electrode mixture, and then this negative electrode mixture is applied to a copper foil or the like of a current collector. After drying and pressure molding, it can be produced by heat treatment under vacuum for about 2 hours at a temperature of about 50 ° C. to 250 ° C.
  • the density of the portion of the negative electrode excluding the current collector is usually 1.1 g / cm 3 or more, and is preferably 1.3 g / cm 3 or more, particularly preferably 1.5 g, in order to further increase the capacity of the battery. / Cm 3 or more.
  • the upper limit is preferably 2 g / cm 3 or less.
  • a negative electrode active material for a lithium primary battery a lithium metal or a lithium alloy can be mentioned.
  • the structure of the lithium battery is not particularly limited, and a coin-type battery having a single-layer or multi-layer separator, a cylindrical battery, a square battery, a laminated battery, or the like can be applied.
  • the battery separator is not particularly limited, but a monolayer or laminated microporous film of polyolefin such as polypropylene or polyethylene, a woven fabric, a non-woven fabric or the like can be used.
  • the lithium secondary battery of the present invention has good characteristics in suppressing gas generation even when the charge termination voltage is 4.2 V or higher.
  • the discharge end voltage can usually be 2.8 V or higher, further 2.5 V or higher, but the lithium secondary battery in the present invention can be 2.0 V or higher.
  • the current value is not particularly limited, but is usually used in the range of 0.05 to 20C. Further, the lithium battery in the present invention can be charged and discharged at ⁇ 40 to 100 ° C., preferably ⁇ 10 to 80 ° C.
  • a method of providing a safety valve on the battery lid or making a notch in a member such as a battery can or a gasket can also be adopted.
  • a current cutoff mechanism that senses the internal pressure of the battery and cuts off the current can be provided on the battery lid.
  • the second power storage device is a power storage device that stores energy by utilizing the electric double layer capacity at the interface between the electrolytic solution and the electrode.
  • An example of the present invention is an electric double layer capacitor.
  • the most typical electrode active material used in this power storage device is activated carbon.
  • the double layer capacity increases roughly in proportion to the surface area.
  • the third storage device is a storage device that stores energy by utilizing the doping / dedoping reaction of the electrodes.
  • the electrode active material used in this power storage device include metal oxides such as ruthenium oxide, iridium oxide, tungsten oxide, molybdenum oxide and copper oxide, and ⁇ -conjugated polymers such as polyacene and polythiophene derivatives. Capacitors using these electrode active materials can store energy associated with the doping / dedoping reaction of the electrodes.
  • the fourth power storage device is a power storage device that stores energy by utilizing the intercalation of lithium ions with a carbon material such as graphite, which is a negative electrode. It is called a lithium ion capacitor (LIC).
  • a lithium ion capacitor Examples of the positive electrode include those using an electric double layer between the activated carbon electrode and the electrolytic solution, those using the doping / dedoping reaction of the ⁇ -conjugated polymer electrode, and the like.
  • the electrolytic solution contains at least a lithium salt such as LiPF 6 .
  • the polyether polymer was measured by the following method.
  • [Composition molar ratio] 1 Obtained from the signal intensity ratio derived from the composition unit by 1 H-NMR spectrum.
  • [Weight average molecular weight] Gel permeation chromatography (GPC) measurements were performed and the weight average molecular weight was calculated in terms of standard polystyrene. GPC measurement was performed at 60 ° C. using RID-6A manufactured by Shimadzu Corporation, Showadex KD-807, KD-806, KD-806M and KD-803 columns manufactured by Showa Denko KK, and DMF as a solvent. ..
  • Table 1 shows the weight average molecular weight and the monomer-equivalent composition analysis results of the obtained polyether polymer.
  • Table 1 shows the weight average molecular weight and the monomer-equivalent composition analysis results of the obtained polyether polymer.
  • Table 1 shows the composition molar ratio and the weight average molecular weight of the polyether polymers used in Examples 1 to 20 and Comparative Example 2.
  • LiCoO 2 LiCoO 2
  • acetylene black conductive agent
  • polyvinylidene fluoride binding agent
  • 3% by mass is dissolved in 1-methyl-2-pyrrolidone in advance. It was added to the existing solution and mixed to prepare a positive electrode mixture paste.
  • This positive electrode mixture paste was applied to one side on an aluminum foil (current collector), dried and pressure-treated, and cut out to a predetermined size to prepare a positive electrode sheet.
  • the density of the portion of the positive electrode excluding the current collector was 3.6 g / cm 3 .
  • the ratio of the peak intensity I (110) on the (110) plane and the peak intensity I (004) on the (004) plane [I (110) / I) of the graphite crystal. (004)] was 0.1. Then, the positive electrode sheet, the microporous polyethylene film separator, and the negative electrode sheet are laminated in this order, and the non-aqueous electrolytic solution having the composition shown in Tables 2 and 4 prepared by mixing each component at room temperature is added and laminated. A mold battery was manufactured.
  • LiNi 0.8 Mn 0.1 Co 0.1 O 2 (NMC811); 94% by mass, acetylene black (conductive agent); 3% by mass are mixed, and polyvinylidene fluoride (binding agent); 3% by mass is mixed in advance.
  • the mixture was added to the solution dissolved in 1-methyl-2-pyrrolidone and mixed to prepare a positive electrode mixture paste.
  • This positive electrode mixture paste was applied to one side on an aluminum foil (current collector), dried and pressure-treated, and cut into a predetermined size to prepare a rectangular positive electrode sheet.
  • the density of the portion of the positive electrode excluding the current collector was 3.6 g / cm 3 .
  • the ratio [I (110) / I) of the peak intensity I (110) on the (110) plane and the peak intensity I (004) on the (004) plane of the graphite crystal. (004)] was 0.1. Then, a positive electrode sheet, a microporous polyethylene film separator, and a negative electrode sheet are laminated in this order, and a non-aqueous electrolytic solution having the composition shown in Table 3 prepared by mixing each component at room temperature is added to prepare a laminated battery. Made.
  • the viscosity of the non-aqueous electrolyte was measured by the following method. ⁇ viscosity ⁇ The viscosity at 25 ° C. was measured according to JIS Z 8803.
  • Table 2 shows the composition, viscosity, and initial discharge capacity of the electrodes (positive electrode active material / negative electrode active material) and non-aqueous electrolyte solution used in Example 1 and Comparative Examples 1 and 2.
  • the initial discharge capacity of Comparative Example 1 was set to 100%, and the relative initial discharge capacities of Example 1 and Comparative Example 2 were examined.
  • Table 3 shows the electrodes (positive electrode active material / negative electrode active material) used, the composition and viscosity of the non-aqueous electrolytic solution, and the amount of gas generated after high-temperature storage in Examples 2 to 11 and Comparative Example 3.
  • the relative initial discharge capacities of Examples 2 to 11 were examined with reference to the initial discharge capacity of Comparative Example 3, no decrease in the initial discharge capacity was observed in any of the examples. Further, the gas generation amount of Comparative Example 3 was set to 100%, and the relative gas generation amount of Examples 2 to 11 was examined.
  • Table 4 shows the electrodes (positive electrode active material / negative electrode active material) used, the composition and viscosity of the non-aqueous electrolyte solution, and the amount of gas generated after high-voltage high-temperature storage in Examples 12 to 20 and Comparative Example 4.
  • Example 1 had a higher initial discharge capacity than Comparative Example 2, and had an initial discharge capacity equivalent to that of Comparative Example 1.
  • Examples 2 to 11 had the same initial discharge capacity as Comparative Example 3, and the amount of gas generated after high-temperature storage was reduced.
  • Examples 12 to 20 had the same initial discharge capacity as Comparative Example 4, and the amount of gas generated after high-voltage and high-temperature storage was reduced. From this result, it can be said that the non-aqueous electrolyte solution of the present invention can suppress gas generation during high-temperature storage and high-voltage high-temperature storage without lowering the initial discharge capacity.
  • the power storage device using the non-aqueous electrolyte solution of the present invention is useful as a power storage device such as a lithium secondary battery which has an excellent effect of suppressing gas generation when the battery is used at a high temperature and has excellent electrochemical characteristics such as initial discharge capacity. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides a nonaqueous electrolyte solution for electricity storage devices, wherein: an electrolyte salt is dissolved in a nonaqueous solvent; a polyether polymer having an ethylene oxide unit, which has a weight average molecular weight of from 100,000 to 2,500,000, contains 0-50% by mole of a repeating unit derived from formula (1), 30-100% by mole of a repeating unit derived from formula (2), and 0-20% by mole of a repeating unit derived from formula (3); and the concentration of the polyether polymer is 0.01-2% by mass of the nonaqueous electrolyte solution. Formula (1) (In the formula, R represents an alkyl group having 1-12 carbon atoms or –CH2O(CR1R2R3); each of R1, R2 and R3 represents a hydrogen atom or –CH2O(CH2CH2O)nR4; the R1, R2 and R3 moieties may have different n and different R4 from each other; R4 represents an alkyl group having 1-12 carbon atoms or an optionally substituted aryl group; and n represents an integer of 0-12.) Formula (2), Formula (3) (In the formulae, R5 represents a group having an ethylenically unsaturated group.)

Description

蓄電デバイス用非水電解液およびそれを用いた蓄電デバイスNon-aqueous electrolyte for power storage devices and power storage devices using it
 本発明は、蓄電デバイスの初期放電容量を低下させることなく、高温で保存した場合でもガス発生を抑制可能な非水電解液およびそれを用いた蓄電デバイスに関する。 The present invention relates to a non-aqueous electrolyte solution capable of suppressing gas generation even when stored at a high temperature without lowering the initial discharge capacity of the power storage device, and a power storage device using the same.
 近年、蓄電デバイス、特にリチウム二次電池は、携帯電話やノート型パソコン等の小型電子機器、電気自動車や電力貯蔵用として広く使用されている。最近ではリチウム二次電池の中でも、重量や体積あたりの高容量化の観点から、ラミネートパウチ型電池の割合が増加傾向にあり、非水電解液の分解によるガス膨れが問題となる場合が多く、ガス発生を抑制する非水電解液の開発が求められている。
 尚、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。
 特許文献1にはリチウムポリマー二次電池用に重合性のモノマーを電解液に添加し、電池作製後に数時間加熱重合させる方法が開示されているが、加熱重合がプロセスとして必要である。
 特許文献2には電気化学キャパシタのゲル電解質用組成物としてポリエーテル重合体を含むものが開示されている。ポリエーテル重合体の固形分濃度はゲル電解質用組成物の全固形分の5~20%であるが、ゲル電解質としては高いイオン伝導性を示している。しかし、ポリエーテル重合体を5質量%以上となるように電解液に添加すると粘度が高くなり、リチウムイオン二次電池の充放電特性が低下する。
In recent years, power storage devices, particularly lithium secondary batteries, have been widely used for small electronic devices such as mobile phones and notebook computers, electric vehicles, and power storage. Recently, among lithium secondary batteries, the proportion of laminated pouch type batteries has been increasing from the viewpoint of increasing the capacity per weight and volume, and gas swelling due to decomposition of non-aqueous electrolyte solution often becomes a problem. Development of a non-aqueous electrolyte solution that suppresses gas generation is required.
In the present specification, the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.
Patent Document 1 discloses a method in which a polymerizable monomer is added to an electrolytic solution for a lithium polymer secondary battery and heat-polymerized for several hours after the battery is manufactured, but heat polymerization is required as a process.
Patent Document 2 discloses a composition for a gel electrolyte of an electrochemical capacitor containing a polyether polymer. The solid content concentration of the polyether polymer is 5 to 20% of the total solid content of the composition for gel electrolyte, but it exhibits high ionic conductivity as a gel electrolyte. However, when the polyether polymer is added to the electrolytic solution in an amount of 5% by mass or more, the viscosity increases and the charge / discharge characteristics of the lithium ion secondary battery deteriorate.
特開2003-92146号公報Japanese Unexamined Patent Publication No. 2003-92146 国際公開第2017/057602号International Publication No. 2017/507602
 本発明は、蓄電デバイスの初期放電容量を低下させることなく、高温で保存した場合でもガス発生を抑制可能な非水電解液を提供することを目的とする。 An object of the present invention is to provide a non-aqueous electrolyte solution capable of suppressing gas generation even when stored at a high temperature without lowering the initial discharge capacity of the power storage device.
 本発明者らは、上記の課題を解決するために鋭意研究を重ねた結果、非水電解液に特定のポリマーを添加することにより、加熱重合の工程を経ることなく非水電解液を調製した場合であっても、蓄電デバイスの初期放電容量を低下させることなく、高温保存時のガス発生を抑制できることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors prepared a non-aqueous electrolyte solution by adding a specific polymer to the non-aqueous electrolyte solution without going through a heat polymerization step. Even in this case, the present invention has been completed by finding that gas generation during high-temperature storage can be suppressed without lowering the initial discharge capacity of the power storage device.
 すなわち、本発明は、下記の(1)~(5)を提供するものである。 That is, the present invention provides the following (1) to (5).
 (1)非水溶媒に電解質塩が溶解されている非水電解液において、重量平均分子量が10万~250万であるエチレンオキシドユニットを有するポリエーテル重合体が、下記式(1)由来の繰り返し単位を0~50モル%と、下記式(2)由来の繰り返し単位を30~100モル%と、下記式(3)由来の繰り返し単位を0~20モル%とを含み、前記ポリエーテル重合体の濃度が、前記非水電解液の0.01~2質量%である蓄電デバイス用非水電解液。 (1) In a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent, a polyether polymer having an ethylene oxide unit having a weight average molecular weight of 100,000 to 2.5 million is a repeating unit derived from the following formula (1). 0 to 50 mol%, the repeating unit derived from the following formula (2) is 30 to 100 mol%, and the repeating unit derived from the following formula (3) is 0 to 20 mol%, and the of the polyether polymer. A non-aqueous electrolyte solution for a power storage device having a concentration of 0.01 to 2% by mass of the non-aqueous electrolyte solution.
式(1):
Figure JPOXMLDOC01-appb-C000004
[式中、Rは炭素数1~12のアルキル基、または-CHO(CR)である。R、R、Rは水素原子または-CHO(CHCHO)であり、nおよびRはR、R、Rの間で異なっていてもよい。Rは炭素数1~12のアルキル基、または置換基を有してもよいアリール基であり、nは0~12の整数である。]
Equation (1):
Figure JPOXMLDOC01-appb-C000004
[In the formula, R is an alkyl group having 1 to 12 carbon atoms or -CH 2 O (CR 1 R 2 R 3 ). R 1 , R 2 , R 3 are hydrogen atoms or -CH 2 O (CH 2 CH 2 O) n R 4 , and n and R 4 may differ between R 1 , R 2 , and R 3. .. R 4 is an alkyl group having 1 to 12 carbon atoms or an aryl group which may have a substituent, and n is an integer of 0 to 12. ]
式(2):
Figure JPOXMLDOC01-appb-C000005
Equation (2):
Figure JPOXMLDOC01-appb-C000005
式(3):
Figure JPOXMLDOC01-appb-C000006
[式中、Rはエチレン性不飽和基を有する基である。]
Equation (3):
Figure JPOXMLDOC01-appb-C000006
Wherein, R 5 is a group having an ethylenically unsaturated group. ]
 (2)前記非水電解液の25℃での粘度が2~20mPa・sである(1)に記載の蓄電デバイス用非水電解液。
 (3)前記非水電解液が、前記電解質塩として、LiPFを含有することを特徴とする(1)または(2)に記載の蓄電デバイス用非水電解液。
 (4)前記非水電解液が、前記非水溶媒として、不飽和結合を有する環状カーボネートを含有することを特徴とする(1)~(3)のいずれか1項に記載の蓄電デバイス用非水電解液。
 (5)正極、負極、および非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が(1)~(4)のいずれか1項に記載の蓄電デバイス用非水電解液であることを特徴とする蓄電デバイス。
(2) The non-aqueous electrolyte solution for a power storage device according to (1), wherein the non-aqueous electrolyte solution has a viscosity of 2 to 20 mPa · s at 25 ° C.
(3) The non-aqueous electrolyte solution for a power storage device according to (1) or (2), wherein the non-aqueous electrolyte solution contains LiPF 6 as the electrolyte salt.
(4) The non-aqueous storage device according to any one of (1) to (3), wherein the non-aqueous electrolytic solution contains a cyclic carbonate having an unsaturated bond as the non-aqueous solvent. Water electrolyte.
(5) A power storage device including a positive electrode, a negative electrode, and a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolytic solution corresponds to any one of (1) to (4). The power storage device according to the above, which is a non-aqueous electrolyte solution for a power storage device.
 本発明によれば、蓄電デバイスの初期放電容量を低下させることなく、高温で保存した場合でもガス発生を抑制可能な非水電解液および、それを用いたリチウム電池等の蓄電デバイスを提供することができる。 According to the present invention, a non-aqueous electrolyte solution capable of suppressing gas generation even when stored at a high temperature without lowering the initial discharge capacity of the power storage device, and a power storage device such as a lithium battery using the non-aqueous electrolyte solution are provided. Can be done.
 本発明は、非水電解液およびそれを用いた蓄電デバイスに関する。 The present invention relates to a non-aqueous electrolyte solution and a power storage device using the same.
〔非水電解液〕
 本発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、重量平均分子量が10万~250万であるエチレンオキシドユニットを有するポリエーテル重合体を非水電解液中に含有することを特徴とする。
[Non-aqueous electrolyte]
The non-aqueous electrolyte solution of the present invention is a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent, and is a non-aqueous electrolyte solution containing a polyether polymer having an ethylene oxide unit having a weight average molecular weight of 100,000 to 2.5 million. It is characterized by being contained therein.
〔ポリエーテル重合体〕
 本発明の非水電解液中に含まれるポリエーテル重合体は、下記式(2)由来の繰り返し単位を少なくとも有し、式(1)由来の繰り返し単位、式(3)由来の繰り返し単位を有することが好ましい。
[Polyether polymer]
The polyether polymer contained in the non-aqueous electrolyte solution of the present invention has at least a repeating unit derived from the following formula (2), a repeating unit derived from the formula (1), and a repeating unit derived from the formula (3). Is preferable.
式(1):
Figure JPOXMLDOC01-appb-C000007
[式中、Rは炭素数1~12のアルキル基、または-CHO(CR)である。R、R、Rは水素原子または-CHO(CHCHO)であり、nおよびRはR、R、Rの間で異なっていてもよい。Rは炭素数1~12のアルキル基、または置換基を有してもよいアリール基であり、nは0~12の整数である。]
Equation (1):
Figure JPOXMLDOC01-appb-C000007
[In the formula, R is an alkyl group having 1 to 12 carbon atoms or -CH 2 O (CR 1 R 2 R 3 ). R 1 , R 2 , R 3 are hydrogen atoms or -CH 2 O (CH 2 CH 2 O) n R 4 , and n and R 4 may differ between R 1 , R 2 , and R 3. .. R 4 is an alkyl group having 1 to 12 carbon atoms or an aryl group which may have a substituent, and n is an integer of 0 to 12. ]
式(2):
Figure JPOXMLDOC01-appb-C000008
Equation (2):
Figure JPOXMLDOC01-appb-C000008
式(3):
Figure JPOXMLDOC01-appb-C000009
[式中、Rはエチレン性不飽和基を有する基である。]
Equation (3):
Figure JPOXMLDOC01-appb-C000009
Wherein, R 5 is a group having an ethylenically unsaturated group. ]
 ここで式(1)由来の繰り返し単位及び式(3)由来の繰り返し単位は、それぞれ2種以上の異なるモノマーから誘導されるものであってもよい。 Here, the repeating unit derived from the formula (1) and the repeating unit derived from the formula (3) may be derived from two or more different monomers, respectively.
 式(1)の化合物は市販品からの入手、またはエピハロヒドリンとアルコールからの一般的なエーテル合成法等により容易に合成が可能である。また、アリール基としては、フェニル基が挙げられる。
 市販品から入手可能な化合物としては、例えば、プロピレンオキシド、ブチレンオキシド、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、t-ブチルグリシジルエーテル、ベンジルグリシジルエーテル、1,2-エポキシドデカン、1,2-エポキシオクタン、1,2-エポキシヘプタン、2-エチルヘキシルグリシジルエーテル、1,2-エポキシデカン、1,2-エポキシへキサン、グリシジルフェニルエーテル、1,2-エポキシペンタン、グリシジルイソプロピルエーテルなどが使用できる。これら市販品のなかでは、プロピレンオキシド、ブチレンオキシド、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、グリシジルイソプロピルエーテルが好ましく、プロピレンオキシド、ブチレンオキシド、メチルグリシジルエーテル、エチルグリシジルエーテルが特に好ましい。
 合成によって得られる式(1)で表される単量体では、Rは-CHO(CR)が好ましく、R、R、Rの少なくとも一つが-CHO(CHCHO)であることが好ましい。Rは炭素数1~6のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。nは0~6が好ましく、0~4がより好ましい。
The compound of the formula (1) can be easily synthesized by obtaining it from a commercially available product, or by a general ether synthesis method from epihalohydrin and alcohol. Moreover, the phenyl group is mentioned as an aryl group.
Examples of compounds available from commercial products include propylene oxide, butylene oxide, methyl glycidyl ether, ethyl glycidyl ether, butyl glycidyl ether, t-butyl glycidyl ether, benzyl glycidyl ether, 1,2-epoxydodecane, 1,2. -Epoxyoctane, 1,2-epoxyheptane, 2-ethylhexyl glycidyl ether, 1,2-epoxydecane, 1,2-epoxyhexane, glycidylphenyl ether, 1,2-epoxypentane, glycidyl isopropyl ether, etc. can be used. .. Among these commercially available products, propylene oxide, butylene oxide, methyl glycidyl ether, ethyl glycidyl ether, butyl glycidyl ether and glycidyl isopropyl ether are preferable, and propylene oxide, butylene oxide, methyl glycidyl ether and ethyl glycidyl ether are particularly preferable.
In the monomer represented by the formula (1) obtained by synthesis, R is preferably -CH 2 O (CR 1 R 2 R 3 ), and at least one of R 1 , R 2 and R 3 is -CH 2 O. (CH 2 CH 2 O) n R 4 is preferable. R 4 is preferably an alkyl group having 1 to 6 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms. n is preferably 0 to 6, more preferably 0 to 4.
 式(2)の化合物は基礎化学品であり、市販品を容易に入手可能である。 The compound of formula (2) is a basic chemical product, and a commercially available product is easily available.
 式(3)の化合物において、Rはエチレン性不飽和基を含む置換基であり、炭素数としては2~13であることが好ましい。エチレン性不飽和基含有のモノマー成分としては、アリルグリシジルエーテル、4-ビニルシクロヘキシルグリシジルエーテル、α-テルピニルグリシジルエーテル、シクロヘキセニルメチルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、アリルフェニルグリシジルエーテル、ビニルグリシジルエーテル、3,4-エポキシ-1-ブテン、3,4-エポキシ-1-ペンテン、4,5-エポキシ-2-ペンテン、1,2-エポキシ-5,9-シクロドデカンジエン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5-シクロオクテン、アクリル酸グリシジル、メタクリル酸グリシジル、ソルビン酸グリシジル、ケイ皮酸グリシジル、クロトン酸グリシジル、グリシジル-4-ヘキセノエートが用いられる。好ましくは、アリルグリシジルエーテル、アクリル酸グリシジル、メタクリル酸グリシジルである。 In the compounds of formula (3), R 5 is a substituent containing an ethylenically unsaturated group, it is preferable carbon number is 2 to 13. Examples of the monomer component containing an ethylenically unsaturated group include allyl glycidyl ether, 4-vinylcyclohexyl glycidyl ether, α-terpinyl glycidyl ether, cyclohexenylmethyl glycidyl ether, p-vinylbenzyl glycidyl ether, allylphenyl glycidyl ether, and vinyl. Glycidyl ether, 3,4-epoxy-1-butene, 3,4-epoxy-1-pentene, 4,5-epoxy-2-pentene, 1,2-epoxy-5,9-cyclododecandien, 3,4 -Epoxy-1-vinylcyclohexene, 1,2-epoxy-5-cyclooctene, glycidyl acrylate, glycidyl methacrylate, glycidyl sorbate, glycidyl silicate, glycidyl crotonate, glycidyl-4-hexenoate are used. Preferred are allyl glycidyl ether, glycidyl acrylate, and glycidyl methacrylate.
 ポリエーテル重合体としては、式(1)由来の繰り返し単位、式(2)由来の繰り返し単位、及び式(3)由来の繰り返し単位のモル比率が、(1)0~50モル%、(2)30~100モル%、及び(3)0~20モル%であることが好ましく、(1)0~40モル%、(2)45~100モル%、及び(3)0~15モル%であることがより好ましく、(1)0~30モル%、(2)60~100モル%、及び(3)0~10モル%であることがさらに好ましい。 As the polyether polymer, the molar ratios of the repeating unit derived from the formula (1), the repeating unit derived from the formula (2), and the repeating unit derived from the formula (3) are (1) 0 to 50 mol%, (2). ) 30 to 100 mol%, and (3) 0 to 20 mol%, (1) 0 to 40 mol%, (2) 45 to 100 mol%, and (3) 0 to 15 mol%. More preferably, it is (1) 0 to 30 mol%, (2) 60 to 100 mol%, and (3) 0 to 10 mol%.
 ポリエーテル重合体としては、式(2)由来の繰り返し単位と、式(1)由来の繰り返し単位、式(3)由来の繰り返し単位のいずれかを有することが好ましい。 The polyether polymer preferably has any of a repeating unit derived from the formula (2), a repeating unit derived from the formula (1), and a repeating unit derived from the formula (3).
 ポリエーテル重合体としては、式(1)由来の繰り返し単位と式(2)由来の繰り返し単位を有する場合には、式(1)由来の繰り返し単位のモル比率は1モル%以上有することが好ましく、3モル%以上有することがより好ましく、5モル%以上有することが特に好ましく、50モル%以下有することが好ましく、40モル%以下有することがより好ましく、30モル%以下有することが特に好ましい。式(2)由来の繰り返し単位のモル比率は30モル%以上有することが好ましく、45モル%以上有することがより好ましく、50モル%以上有することがさらに好ましく、60モル%以上有することが特に好ましく、99モル%以下有することが好ましく、97モル%以下有することがより好ましく、95モル%以下有することが特に好ましい。 When the polyether polymer has a repeating unit derived from the formula (1) and a repeating unit derived from the formula (2), the molar ratio of the repeating unit derived from the formula (1) is preferably 1 mol% or more. It is more preferably 3 mol% or more, particularly preferably 5 mol% or more, preferably 50 mol% or less, more preferably 40 mol% or less, and particularly preferably 30 mol% or less. The molar ratio of the repeating unit derived from the formula (2) is preferably 30 mol% or more, more preferably 45 mol% or more, further preferably 50 mol% or more, and particularly preferably 60 mol% or more. , 99 mol% or less, more preferably 97 mol% or less, and particularly preferably 95 mol% or less.
 ポリエーテル重合体としては、式(2)由来の繰り返し単位と式(3)由来の繰り返し単位を有する場合には、式(2)由来の繰り返し単位のモル比率は30モル%以上有することが好ましく、45モル%以上有することがより好ましく、60モル%以上有することが特に好ましく、80モル%以上有することが最も好ましく、99モル%以下有することが好ましく、97モル%以下有することがより好ましく、95モル%以下有することが特に好ましい。式(3)由来の繰り返し単位のモル比率は0.5モル%以上有することが好ましく、1モル%以上有することがより好ましく、1.5モル%以上有することが特に好ましく、20モル%以下有することであってもよいが、15モル%以下有することが好ましく、12モル%以下有することがより好ましく、10モル%以下有することが特に好ましい。 When the polyether polymer has a repeating unit derived from the formula (2) and a repeating unit derived from the formula (3), the molar ratio of the repeating unit derived from the formula (2) is preferably 30 mol% or more. , 45 mol% or more is more preferable, 60 mol% or more is particularly preferable, 80 mol% or more is most preferable, 99 mol% or less is preferable, and 97 mol% or less is more preferable. It is particularly preferable to have 95 mol% or less. The molar ratio of the repeating unit derived from the formula (3) is preferably 0.5 mol% or more, more preferably 1 mol% or more, particularly preferably 1.5 mol% or more, and 20 mol% or less. However, it is preferable to have 15 mol% or less, more preferably 12 mol% or less, and particularly preferably 10 mol% or less.
 ポリエーテル重合体としては、式(1)由来の繰り返し単位と式(2)由来の繰り返し単位と式(3)由来の繰り返し単位を有する場合には、式(1)由来の繰り返し単位のモル比率は1モル%以上有することが好ましく、3モル%以上有することがより好ましく、5モル%以上有することが特に好ましく、50モル%以下有することが好ましく、40モル%以下有することがより好ましく、30モル%以下有することが特に好ましい。式(2)由来の繰り返し単位のモル比率は30モル%以上有することが好ましく、45モル%以上有することがより好ましく、60モル%以上有することが特に好ましく、98.5モル%以下有することが好ましく、96モル%以下有することがより好ましく、93.5モル%以下有することが特に好ましい。式(3)由来の繰り返し単位のモル比率は0.5モル%以上有することが好ましく、1モル%以上有することがより好ましく、1.5モル%以上有することが特に好ましく、15モル%以下有することが好ましく、12モル%以下有することがより好ましく、10モル%以下有することが特に好ましい。 When the polyether polymer has a repeating unit derived from the formula (1), a repeating unit derived from the formula (2), and a repeating unit derived from the formula (3), the molar ratio of the repeating unit derived from the formula (1). Is preferably 1 mol% or more, more preferably 3 mol% or more, particularly preferably 5 mol% or more, preferably 50 mol% or less, more preferably 40 mol% or less, and 30 It is particularly preferable to have mol% or less. The molar ratio of the repeating unit derived from the formula (2) is preferably 30 mol% or more, more preferably 45 mol% or more, particularly preferably 60 mol% or more, and preferably 98.5 mol% or less. It is preferable to have 96 mol% or less, and particularly preferably 93.5 mol% or less. The molar ratio of the repeating unit derived from the formula (3) is preferably 0.5 mol% or more, more preferably 1 mol% or more, particularly preferably 1.5 mol% or more, and 15 mol% or less. It is preferable to have 12 mol% or less, and it is particularly preferable to have 10 mol% or less.
 ポリエーテル重合体の重合組成のモル比率は、H-NMRにより各ユニットの積分値を求め、その算出結果から組成を決定することができる。 The molar ratio of the polymerization composition of the polyether polymer can be determined by obtaining the integrated value of each unit by 1 H-NMR and the calculation result.
 なお、本発明において、重量平均分子量の測定は、ゲルパーミエーションクロマトグラフィー(GPC)にて、測定を行い、標準ポリスチレン換算により重量平均分子量を算出する。
 ポリエーテル重合体は、ブロック重合体、ランダム重合体何れの重合タイプでも良い。ランダム重合体がよりポリエチレンオキシドの結晶性を低下させる効果が大きいので好ましい。
In the present invention, the weight average molecular weight is measured by gel permeation chromatography (GPC), and the weight average molecular weight is calculated in terms of standard polystyrene.
The polyether polymer may be a polymerization type of either a block polymer or a random polymer. Random polymers are preferable because they have a greater effect of lowering the crystallinity of polyethylene oxide.
 ポリエーテル重合体の重量平均分子量に関しては、重量平均分子量の下限が10万以上であることが好ましく、15万以上であることがより好ましく、20万以上であることが更に好ましく、重量平均分子量の上限は250万以下であることが好ましく、210万以下であることがより好ましく、180万以下がさらに好ましく、150万以下が尚さらに好ましく、140万以下が最も好ましい。ポリエーテル重合体の分子量測定にはゲルパーミエーションクロマトグラフィー(GPC)測定を行い、標準ポリスチレン換算により重量平均分子量を算出した。尚、溶媒にはDMF(N,N-ジメチルホルムアミド)を用いる。 Regarding the weight average molecular weight of the polyether polymer, the lower limit of the weight average molecular weight is preferably 100,000 or more, more preferably 150,000 or more, further preferably 200,000 or more, and the weight average molecular weight. The upper limit is preferably 2.5 million or less, more preferably 2.1 million or less, further preferably 1.8 million or less, even more preferably 1.5 million or less, and most preferably 1.4 million or less. Gel permeation chromatography (GPC) was used to measure the molecular weight of the polyether polymer, and the weight average molecular weight was calculated in terms of standard polystyrene. DMF (N, N-dimethylformamide) is used as the solvent.
 ポリエーテル重合体の合成は次のようにして行える。開環重合触媒として有機アルミニウムを主体とする触媒系、有機亜鉛を主体とする触媒系、有機錫-リン酸エステル縮合物触媒系などの配位アニオン開始剤、または対イオンにKを含むカリウムアルコキシド、ジフェニルメチルカリウム、水酸化カリウムなどのアニオン開始剤を用いて、各モノマーを溶媒の存在下又は不存在下、反応温度10~120℃、撹拌下で反応させることによってポリエーテル重合体が得られる。 The synthesis of the polyether polymer can be carried out as follows. As a ring-opening polymerization catalyst, a catalyst system mainly composed of organoaluminum, a catalyst system mainly composed of organozinc, a coordination anion initiator such as an organotin-phosphate condensate catalyst system, or potassium containing K + as a counter ion. A polyether polymer is obtained by reacting each monomer in the presence or absence of a solvent at a reaction temperature of 10 to 120 ° C. and under stirring using an anion initiator such as alkoxide, diphenylmethyl potassium, or potassium hydroxide. Be done.
 本発明の非水電解液が前記ポリエーテル重合体を含有することから、本発明の非水電解液を蓄電デバイスに用いた場合に、電解液の調製時に加熱プロセスを実施することなく、本発明の効果であるガス発生の抑制を達成し得る。 Since the non-aqueous electrolyte solution of the present invention contains the polyether polymer, the present invention does not require a heating process when preparing the electrolyte solution when the non-aqueous electrolyte solution of the present invention is used for a power storage device. It is possible to achieve the suppression of gas generation, which is the effect of.
 本発明の非水電解液において、ポリエーテル重合体の含有量は、電解液の粘度が高すぎず、初期放電容量を低下させず、かつガス抑制効果を示す含有量が好ましく、非水電解液中に0.01~2質量%が好ましい。該含有量は、非水電解液中に0.03質量%以上がより好ましく、0.05質量%以上がより好ましい。また、その上限は、1.5質量%以下がより好ましく、1質量%以下が特に好ましい。 In the non-aqueous electrolytic solution of the present invention, the content of the polyether polymer is preferably such that the viscosity of the electrolytic solution is not too high, the initial discharge capacity is not lowered, and a gas suppressing effect is exhibited. It is preferably 0.01 to 2% by mass. The content is more preferably 0.03% by mass or more, more preferably 0.05% by mass or more in the non-aqueous electrolytic solution. Further, the upper limit thereof is more preferably 1.5% by mass or less, and particularly preferably 1% by mass or less.
 本発明の非水電解液において、前記ポリエーテル重合体を以下に述べる非水溶媒、電解質塩、更にその他の添加剤を組み合わせることにより、ガス発生を抑制できる効果が相乗的に向上するという特異な効果を発現する。 In the non-aqueous electrolyte solution of the present invention, the effect of suppressing gas generation is synergistically improved by combining the polyether polymer with the non-aqueous solvent, the electrolyte salt, and other additives described below. It exerts its effect.
〔非水溶媒〕
 まず本明細書において、「溶媒」とは溶質を溶解するための物質を示す。
 本発明の非水電解液に使用される非水溶媒としては、環状カーボネート、鎖状カーボネート、鎖状エステル、ラクトン、エーテル、およびアミドから選ばれる1種又は2種以上が好適に挙げられる。非水溶媒には、環状カーボネートが含まれることが好ましく、鎖状カーボネートまたは鎖状カルボン酸エステルが含まれることがより好ましい。環状カーボネートと鎖状カーボネートの両方、または、環状カーボネートと鎖状カルボン酸エステルの両方が含まれることが更に好ましい。
[Non-aqueous solvent]
First, in the present specification, the "solvent" refers to a substance for dissolving a solute.
As the non-aqueous solvent used in the non-aqueous electrolyte solution of the present invention, one or more selected from cyclic carbonates, chain carbonates, chain esters, lactones, ethers, and amides are preferably used. The non-aqueous solvent preferably contains a cyclic carbonate, more preferably a chain carbonate or a chain carboxylic acid ester. It is more preferred that both the cyclic carbonate and the chain carbonate, or both the cyclic carbonate and the chain carboxylic acid ester are included.
 なお、「鎖状エステル」なる用語は、鎖状カーボネートおよび鎖状カルボン酸エステルを含む概念として用いる。
 さらに、「鎖状カーボネート」とは炭酸直鎖アルキル誘導体であるものと定義する。
The term "chain ester" is used as a concept including a chain carbonate and a chain carboxylic acid ester.
Further, "chain carbonate" is defined as a linear alkyl carbonate derivative.
 鎖状エステルとしては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルブチルカーボネート、およびエチルプロピルカーボネート、メチル(2,2,2-トリフルオロエチル)カーボネート(MTEC)から選ばれる1種又は2種以上の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、およびジブチルカーボネート(DBC)からなる群より選ばれる1種又は2種以上の対称鎖状カーボネート、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等の酢酸エステル、プロパン酸メチル、プロパン酸エチル(EP)、プロパン酸プロピル、プロパン酸ブチル等のプロパン酸エステル、ブタン酸メチル、ブタン酸エチル、ブタン酸プロピル、ブタン酸ブチル等のブタン酸エステル、3,3,3-トリフルオロプロパン酸メチル等のフッ素含有カルボン酸エステルからなる群より選ばれる1種又は2種以上の鎖状カルボン酸エステルが好適である。 As the chain ester, one selected from methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl butyl carbonate, ethyl propyl carbonate, and methyl (2,2,2-trifluoroethyl) carbonate (MTEC). Alternatively, one or more symmetric chain carbonates selected from the group consisting of two or more asymmetric chain carbonates, dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, and dibutyl carbonate (DBC). Acetate esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propanoate, ethyl propanoate (EP), propyl propanoate, propanoate such as butyl propanoate, methyl butanoate, ethyl butanoate, butanoic acid One or more chain carboxylic acid esters selected from the group consisting of butanoic acid esters such as propyl and butyl butanoate and fluorine-containing carboxylic acid esters such as methyl 3,3,3-trifluoropropanoate are preferable. is there.
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランスもしくはシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、および4-エチニル-1,3-ジオキソラン-2-オン(EEC)からなる群より選ばれる1種又は2種以上が好適に挙げられ、エチレンカーボネート、プロピレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン、ビニレンカーボネート、および4-エチニル-1,3-ジオキソラン-2-オン(EEC)からなる群より選ばれる1種又は2種以上がより好適である。環状カーボネートを2種以上用いる場合の組み合わせとしては、エチレンカーボネートとビニレンカーボネートの組み合わせが挙げられる。 Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolane-2-one (FEC), trans or Sis-4,5-difluoro-1,3-dioxolane-2-one (hereinafter collectively referred to as "DFEC"), vinylene carbonate (VC), vinylethylene carbonate (VEC), and 4-ethynyl-1. , 3-Dioxolane-2-one (EEC) is preferably selected from the group consisting of one or more, and ethylene carbonate, propylene carbonate, 4-fluoro-1,3-dioxolane-2-one, vinylene. One or more selected from the group consisting of carbonate and 4-ethynyl-1,3-dioxolane-2-one (EEC) is more preferable. Examples of the combination when two or more kinds of cyclic carbonates are used include a combination of ethylene carbonate and vinylene carbonate.
 環状カーボネートとしては、不飽和結合を有する環状カーボネートも好適に挙げられる。不飽和結合を有する環状カーボネートとしては、分子中に炭素-炭素二重結合を有する環状カーボネートであれば特に限定されないが、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、および4-エチニル-1,3-ジオキソラン-2-オン(EEC)からなる群より選ばれる1種又は2種以上が好適に挙げられ、なかでも、VCが好ましい。また、不飽和結合を有する環状カーボネートは、不飽和結合を有しない環状カーボネートと組み合わせて用いることもできる。不飽和結合を有しない環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、およびトランスもしくはシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オンからなる群より選ばれる1種又は2種以上が好適に挙げられる。 As the cyclic carbonate, a cyclic carbonate having an unsaturated bond is also preferably mentioned. The cyclic carbonate having an unsaturated bond is not particularly limited as long as it is a cyclic carbonate having a carbon-carbon double bond in the molecule, but vinylene carbonate (VC), vinylethylene carbonate (VEC), and 4-ethynyl-1. , 3-Dioxolane-2-one (EEC) is preferably selected from the group consisting of one or more, and among them, VC is preferable. Further, the cyclic carbonate having an unsaturated bond can also be used in combination with the cyclic carbonate having no unsaturated bond. Examples of the cyclic carbonate having no unsaturated bond include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolane-2-one. (FEC), and one or more selected from the group consisting of trans or cis-4,5-difluoro-1,3-dioxolane-2-one are preferably mentioned.
 鎖状エステルの含有量は、特に制限されないが、非水電解液全量に対して5~90質量%の範囲で用いるのが好ましい。より好ましくは10質量%以上であり、さらに好ましくは30質量%以上であり、特に好ましくは50質量%以上である。また、90質量%以下であれば、ガス発生をより一層抑制できるので好ましい。 The content of the chain ester is not particularly limited, but it is preferably used in the range of 5 to 90% by mass with respect to the total amount of the non-aqueous electrolyte solution. It is more preferably 10% by mass or more, further preferably 30% by mass or more, and particularly preferably 50% by mass or more. Further, when it is 90% by mass or less, gas generation can be further suppressed, which is preferable.
 環状カーボネートの含有量は、非水電解液全量に対して好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上であり、また、好ましくは90質量%以下、より好ましくは70質量%以下、更に好ましくは50質量%以下、最も好ましくは40質量%以下であると、ガス発生をより一層抑制できるので好ましい。 The content of the cyclic carbonate is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more, and preferably 90% by mass or less, based on the total amount of the non-aqueous electrolyte solution. It is preferably 70% by mass or less, more preferably 50% by mass or less, and most preferably 40% by mass or less because gas generation can be further suppressed.
 不飽和結合を有する環状カーボネートの含有量は、非水電解液全量に対して好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上であり、また、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは1質量%以下、最も好ましくは0.8質量%以下であると、ガス発生をより一層抑制できるので好ましい。 The content of the cyclic carbonate having an unsaturated bond is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.3% by mass or more, based on the total amount of the non-aqueous electrolyte solution. Further, it is preferably 5% by mass or less, more preferably 3% by mass or less, further preferably 1% by mass or less, and most preferably 0.8% by mass or less because gas generation can be further suppressed.
 これらの溶媒は1種類で使用してもよく、また2種類以上を組み合わせて使用した場合は、ガス発生をより一層抑制できるので好ましい。
 環状カーボネートと鎖状エステルの割合は、環状カーボネート:鎖状エステル(質量比)が10:90~50:50が好ましく、30:70~40:60がさらに好ましい。
One type of these solvents may be used, and when two or more types are used in combination, gas generation can be further suppressed, which is preferable.
The ratio of the cyclic carbonate to the chain ester is preferably 10:90 to 50:50, more preferably 30:70 to 40:60, with a cyclic carbonate: chain ester (mass ratio).
 その他の非水溶媒としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等の環状エーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等の鎖状エーテル、ジメチルホルムアミド等のアミド、スルホラン等のスルホン、およびγ-ブチロラクトン(GBL)、γ-バレロラクトン、α-アンゲリカラクトン等のラクトンから選ばれる1種又は2種以上が好適に挙げられる。 Other non-aqueous solvents include cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and 1,4-dioxane, chains such as 1,2-dimethoxyethane, 1,2-diethoxyethane and 1,2-dibutoxyethane. One or more selected from amides such as ether, dimethylformamide, sulfones such as sulfolane, and lactones such as γ-butyrolactone (GBL), γ-valerolactone, and α-angelica lactone are preferably mentioned.
 その他の非水溶媒の含有量は、非水電解液全量に対して、通常1質量%以上、好ましくは2質量%以上であり、また通常40質量%以下、好ましくは30質量%以下、更に好ましくは20質量%以下である。 The content of the other non-aqueous solvent is usually 1% by mass or more, preferably 2% by mass or more, and usually 40% by mass or less, preferably 30% by mass or less, more preferably more than the total amount of the non-aqueous electrolyte solution. Is 20% by mass or less.
 非水電解液中にさらにその他の添加剤を加えることができる。
 その他の添加剤の具体例としては、以下の(A)~(I)の化合物が挙げられる。
Other additives can be added to the non-aqueous electrolyte.
Specific examples of other additives include the following compounds (A) to (I).
 (A)アセトニトリル、プロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、およびセバコニトリルから選ばれる1種又は2種以上のニトリル。 (A) One or more nitriles selected from acetonitrile, propionitrile, succinonitrile, glutaronitrile, adiponitrile, pimeronitrile, suberonitrile, and sebaconitrile.
 (B)シクロヘキシルベンゼン、tert-ブチルベンゼン、tert-アミルベンゼン、又は1-フルオロ-4-tert-ブチルベンゼン等の分枝アルキル基を有する芳香族化合物や、ビフェニル、ターフェニル(o-、m-、p-体)、フルオロベンゼン、メチルフェニルカーボネート、エチルフェニルカーボネート、又はジフェニルカーボネート等の芳香族化合物。 (B) Aromatic compounds having a branched alkyl group such as cyclohexylbenzene, tert-butylbenzene, tert-amylbenzene, or 1-fluoro-4-tert-butylbenzene, biphenyl, turphenyl (o-, m-). , P-form), fluorobenzene, methylphenyl carbonate, ethylphenyl carbonate, or aromatic compounds such as diphenyl carbonate.
 (C)メチルイソシアネート、エチルイソシアネート、ブチルイソシアネート、フェニルイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、1,4-フェニレンジイソシアネート、2-イソシアナトエチル アクリレート、および2-イソシアナトエチル メタクリレートから選ばれる1種又は2種以上のイソシアネート化合物。 (C) Select from methyl isocyanate, ethyl isocyanate, butyl isocyanate, phenylisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, 1,4-phenylenediisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate. One or more isocyanate compounds.
 (D)2-プロピニル メチル カーボネート、酢酸 2-プロピニル、ギ酸 2-プロピニル、メタクリル酸 2-プロピニル、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸2-プロピニル、ジ(2-プロピニル)オギザレート、2-ブチン-1,4-ジイル ジメタンスルホネート、および2-ブチン-1,4-ジイル ジホルメートから選ばれる1種又は2種以上の三重結合含有化合物。 (D) 2-propynyl methyl carbonate, acetic acid 2-propynyl, formate 2-propynyl, methacrylate 2-propynyl, methanesulfonic acid 2-propynyl, vinylsulfonic acid 2-propynyl, 2- (methanesulfonyloxy) propionic acid 2- One or more triple bond-containing compounds selected from propynyl, di (2-propynyl) oxalate, 2-butyne-1,4-diyl dimethanesulfonate, and 2-butyne-1,4-diyl diformate.
 (E)1,3-プロパンスルトン(PS)、1,3-ブタンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、もしくは2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート等のスルトン、エチレンサルファイト等の環状サルファイト、エチレンサルフェート等の環状サルフェート、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、もしくはメチレンメタンジスルホネート等のスルホン酸エステル、およびジビニルスルホン、1,2-ビス(ビニルスルホニル)エタン、もしくはビス(2-ビニルスルホニルエチル)エーテル等のビニルスルホン化合物から選ばれる1種又は2種以上のS=O基含有化合物。 (E) 1,3-Propane sultone (PS), 1,3-butane sultone, 2,4-butane sultone, 1,4-butane sultone, 1,3-propensultone, or 2,2-dioxide-1,2-oxathiolane Sultone such as -4-yl acetate, cyclic sulphite such as ethylene sulfide, cyclic sulphate such as ethylene sulphate, butane-2,3-diyl dimethanesulfonate, butane-1,4-diyl dimethanesulfonate, or methylenemethane One or more S = selected from sulfonic acid esters such as disulfonate and vinyl sulfone compounds such as divinyl sulfone, 1,2-bis (vinylsulfonyl) ethane, or bis (2-vinylsulfonylethyl) ether. O group-containing compound.
 (F)環状アセタール化合物としては、分子内に「アセタール基」を有する化合物であれば、その種類は特に限定されない。その具体例としては、1,3-ジオキソラン、1,3-ジオキサン、又は1,3,5-トリオキサン等の環状アセタール化合物。 The type of the (F) cyclic acetal compound is not particularly limited as long as it is a compound having an "acetal group" in the molecule. Specific examples thereof include cyclic acetal compounds such as 1,3-dioxolane, 1,3-dioxane, and 1,3,5-trioxane.
 (G)リン酸トリメチル、リン酸トリブチル、リン酸トリオクチル、リン酸トリス(2,2,2-トリフルオロエチル)、エチル 2-(ジエトキシホスホリル)アセテート、及び2-プロピニル 2-(ジエトキシホスホリル)アセテートから選ばれる1種又は2種以上のリン含有化合物。 (G) Trimethyl phosphate, tributyl phosphate, trioctyl phosphate, tris (2,2,2-trifluoroethyl) phosphate, ethyl 2- (diethoxyphosphoryl) acetate, and 2-propynyl 2- (diethoxyphosphoryl) ) One or more phosphorus-containing compounds selected from acetate.
 (H)カルボン酸無水物としては、分子内に「C(=O)-O-C(=O)基」を有する化合物であれば特にその種類は限定されない。その具体例としては、無水酢酸、無水プロピオン酸等の鎖状のカルボン酸無水物、無水コハク酸、無水マレイン酸、3-アリル無水コハク酸、無水グルタル酸、無水イタコン酸、又は3-スルホ-プロピオン酸無水物等の環状酸無水物。 The type of (H) carboxylic acid anhydride is not particularly limited as long as it is a compound having an "C (= O) -OC (= O) group" in the molecule. Specific examples thereof include chain carboxylic acid anhydrides such as acetic anhydride and propionic anhydride, succinic anhydride, maleic anhydride, 3-allyl succinic anhydride, glutaric anhydride, itaconic anhydride, or 3-sulfo-. Cyclic acid anhydride such as propionic anhydride.
 (I)ホスファゼン化合物としては、分子内に「N=P-N基」を有する化合物であれば、その種類は特に限定されない。その具体例としては、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、又はエトキシヘプタフルオロシクロテトラホスファゼン等の環状ホスファゼン化合物。 The type of the (I) phosphazene compound is not particularly limited as long as it is a compound having an "N = PN group" in the molecule. Specific examples thereof include cyclic phosphazene compounds such as methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, and ethoxyheptafluorocyclotetraphosphazene.
 上記の中でも、(A)ニトリル、(B)芳香族化合物、および(C)イソシアネート化合物から選ばれる少なくとも1種以上を含むと一段と高温での電気化学特性が向上するので好ましい。 Among the above, it is preferable to include at least one selected from (A) nitrile, (B) aromatic compound, and (C) isocyanate compound because the electrochemical properties at high temperature are further improved.
 (A)ニトリルの中では、スクシノニトリル、グルタロニトリル、アジポニトリル、およびピメロニトリルから選ばれる1種又は2種以上がより好ましい。 Among the nitriles (A), one or more selected from succinonitrile, glutaronitrile, adiponitrile, and pimeronitrile are more preferable.
 (B)芳香族化合物の中では、ビフェニル、ターフェニル(o-、m-、p-体)、フルオロベンゼン、シクロヘキシルベンゼン、tert-ブチルベンゼン、およびtert-アミルベンゼンから選ばれる1種又は2種以上がより好ましく、ビフェニル、o-ターフェニル、フルオロベンゼン、シクロヘキシルベンゼン、およびtert-アミルベンゼンから選ばれる1種又は2種以上が特に好ましい。 (B) Among aromatic compounds, one or two selected from biphenyl, terphenyl (o-, m-, p-form), fluorobenzene, cyclohexylbenzene, tert-butylbenzene, and tert-amylbenzene. The above is more preferable, and one or more selected from biphenyl, o-terphenyl, fluorobenzene, cyclohexylbenzene, and tert-amylbenzene are particularly preferable.
 (C)イソシアネート化合物の中では、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、2-イソシアナトエチル アクリレート、および2-イソシアナトエチル メタクリレートから選ばれる1種又は2種以上がより好ましい。 Among the (C) isocyanate compounds, one or more selected from hexamethylene diisocyanate, octamethylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate are more preferable.
 前記(A)~(C)の化合物の含有量は、非水電解液中に0.01~7質量%が好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、ガス発生を抑制できる。該含有量は、非水電解液中に0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、その上限は、5質量%以下がより好ましく、3質量%以下が更に好ましい。 The content of the compounds (A) to (C) is preferably 0.01 to 7% by mass in the non-aqueous electrolytic solution. In this range, the film is sufficiently formed without becoming too thick, and gas generation can be suppressed. The content is more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, and the upper limit thereof is more preferably 5% by mass or less, further preferably 3% by mass or less in the non-aqueous electrolytic solution. ..
 また、(D)三重結合含有化合物、(E)スルトン、環状サルファイト、スルホン酸エステル、ビニルスルホンから選ばれる環状又は鎖状のS=O基含有化合物、(F)環状アセタール化合物、(G)リン含有化合物、(H)環状酸無水物、および(I)環状ホスファゼン化合物を含むと、ガス発生を抑制できるので好ましい。 Further, (D) a triple bond-containing compound, (E) sulton, cyclic sulfite, a sulfonic acid ester, a cyclic or chain S = O group-containing compound selected from vinyl sulfone, (F) a cyclic acetal compound, (G). It is preferable to include a phosphorus-containing compound, (H) cyclic acid anhydride, and (I) cyclic phosphazene compound because gas generation can be suppressed.
 (D)三重結合含有化合物としては、2-プロピニル メチル カーボネート、メタクリル酸 2-プロピニル、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、ジ(2-プロピニル)オギザレート、および2-ブチン-1,4-ジイル ジメタンスルホネートから選ばれる1種又は2種以上が好ましく、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、ジ(2-プロピニル)オギザレート、および2-ブチン-1,4-ジイル ジメタンスルホネートから選ばれる1種又は2種以上が更に好ましい。 (D) Triple bond-containing compounds include 2-propynyl methyl carbonate, 2-propynyl methacrylate, 2-propynyl methanesulfonic acid, 2-propynyl vinylsulfonic acid, di (2-propynyl) oxalate, and 2-butin-1. , 4-Diyl Dimethanesulfonate, preferably one or more, preferably methanesulfonic acid 2-propynyl, vinylsulfonic acid 2-propynyl, di (2-propynyl) oxalate, and 2-butin-1,4- One or more selected from diyl dimethanesulfonate is more preferable.
 (E)スルトン、環状サルファイト、環状サルフェート、スルホン酸エステル、およびビニルスルホンから選ばれる環状又は鎖状のS=O基含有化合物(但し、三重結合含有化合物、および前記式のいずれかで表される特定の化合物は含まない)を用いることが好ましい。 (E) Cyclic or chain S = O group-containing compound selected from sultone, cyclic sulfite, cyclic sulfate, sulfonic acid ester, and vinyl sulfone (provided that it is represented by a triple bond-containing compound and any of the above formulas. It is preferable to use (does not contain a specific compound).
 前記環状のS=O基含有化合物としては、1,3-プロパンスルトン、1,3-ブタンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、メチレン メタンジスルホネート、エチレンサルファイト、およびエチレンサルフェートから選ばれる1種又は2種以上が好適に挙げられる。 Examples of the cyclic S = O group-containing compound include 1,3-propane sultone, 1,3-butane sultone, 1,4-butane sultone, 2,4-butane sultone, 1,3-propene sultone, and 2,2-dioxide-. One or more selected from 1,2-oxathiolan-4-yl acetate, methylene methanedisulfonate, ethylene sulphite, and ethylene sulfate are preferably used.
 また、鎖状のS=O基含有化合物としては、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、ジメチル メタンジスルホネート、ペンタフルオロフェニル メタンスルホネート、ジビニルスルホン、およびビス(2-ビニルスルホニルエチル)エーテルから選ばれる1種又は2種以上が好適に挙げられる。 Examples of the chain S = O group-containing compound include butane-2,3-diyl dimethanesulfonate, butane-1,4-diyl dimethanesulfonate, dimethyl methanedisulfonate, pentafluorophenyl methanesulfonate, and divinyl sulfone. And one or more selected from bis (2-vinylsulfonylethyl) ethers are preferred.
 前記環状又は鎖状のS=O基含有化合物の中でも、1,3-プロパンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、エチレンサルフェート、ペンタフルオロフェニル メタンスルホネート、およびジビニルスルホンから選ばれる1種又は2種以上が更に好ましい。 Among the cyclic or chain S = O group-containing compounds, 1,3-propanesulfone, 1,4-butanesulfone, 2,4-butanesulfone, 2,2-dioxide-1,2-oxathiolan-4-yl acetate. , Ethylene sulphate, pentafluorophenyl methanesulfonate, and one or more selected from divinyl sulfone are more preferable.
 (F)環状アセタール化合物としては、1,3-ジオキソラン、又は1,3-ジオキサンが好ましく、1,3-ジオキサンが更に好ましい。 As the (F) cyclic acetal compound, 1,3-dioxolane or 1,3-dioxane is preferable, and 1,3-dioxane is more preferable.
 (G)リン含有化合物としては、エチル 2-(ジエトキシホスホリル)アセテート、又は2-プロピニル 2-(ジエトキシホスホリル)アセテートが好ましく、2-プロピニル 2-(ジエトキシホスホリル)アセテートが更に好ましい。 As the (G) phosphorus-containing compound, ethyl 2- (diethoxyphosphoryl) acetate or 2-propynyl 2- (diethoxyphosphoryl) acetate is preferable, and 2-propynyl 2- (diethoxyphosphoryl) acetate is more preferable.
 (H)環状酸無水物としては、無水コハク酸、無水マレイン酸、又は3-アリル無水コハク酸が好ましく、無水コハク酸又は3-アリル無水コハク酸が更に好ましい。 As the (H) cyclic acid anhydride, succinic anhydride, maleic anhydride, or 3-allyl succinic anhydride is preferable, and succinic anhydride or 3-allyl succinic anhydride is more preferable.
 (I)環状ホスファゼン化合物としては、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、又はフェノキシペンタフルオロシクロトリホスファゼン等の環状ホスファゼン化合物が好ましく、メトキシペンタフルオロシクロトリホスファゼン、又はエトキシペンタフルオロシクロトリホスファゼンが更に好ましい。 As the cyclic phosphazene compound (I), a cyclic phosphazene compound such as methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, or phenoxypentafluorocyclotriphosphazene is preferable, and methoxypentafluorocyclotriphosphazene or ethoxypentafluorocyclocyclo Triphosphazene is more preferred.
 前記(D)~(I)の化合物のそれぞれの含有量は、非水電解液全量に対して0.001~5質量%が好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、一段とガス発生を抑制できる。該含有量は、非水電解液中に0.01質量%以上がより好ましく、0.1質量%以上が更に好ましく、その上限は、3質量%以下がより好ましく、2質量%以下が更に好ましい。 The content of each of the compounds (D) to (I) is preferably 0.001 to 5% by mass with respect to the total amount of the non-aqueous electrolyte solution. In this range, the film is sufficiently formed without becoming too thick, and gas generation can be further suppressed. The content is more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, and the upper limit thereof is more preferably 3% by mass or less, further preferably 2% by mass or less in the non-aqueous electrolytic solution. ..
 また、一段と高温でのガス発生を抑制させる目的で、非水電解液中にさらに、シュウ酸骨格を有するリチウム塩、リン酸骨格を有するリチウム塩およびS=O基を有するリチウム塩の中からなる群より選ばれる1種以上のリチウム塩を含むことが好ましい。
 前記群から選ばれるリチウム塩の具体例としては、リチウム ビス(オキサラト)ボレート〔LiBOB〕、リチウム ジフルオロ(オキサラト)ボレート〔LiDFOB〕、リチウム テトラフルオロ(オキサラト)ホスフェート〔LiTFOP〕、およびリチウム ジフルオロビス(オキサラト)ホスフェート〔LiDFOP〕から選ばれる少なくとも1種のシュウ酸骨格を有するリチウム塩、LiPOやLiPOF等のリン酸骨格を有するリチウム塩、リチウム トリフルオロ((メタンスルホニル)オキシ)ボレート〔LiTFMSB〕、リチウム ペンタフルオロ((メタンスルホニル)オキシ)ホスフェート〔LiPFMSP〕、リチウム メチルサルフェート〔LMS〕、リチウムエチルサルフェート〔LES〕、リチウム 2,2,2-トリフルオロエチルサルフェート〔LFES〕、リチウム 2,2,3,3-テトラフルオロプロピルサルフェート〔LTFPS〕およびFSOLiから選ばれる1種以上のS=O基を有するリチウム塩が好適に挙げられ、LiBOB、LiDFOB、LiTFOP、LiDFOP、LiPO、LiTFMSB、LMS、LES、LFES、LTFPS、およびFSOLiから選ばれるリチウム塩を含むことがより好ましい。
Further, for the purpose of suppressing gas generation at a higher temperature, the non-aqueous electrolyte solution is further composed of a lithium salt having a oxalic acid skeleton, a lithium salt having a phosphoric acid skeleton, and a lithium salt having an S = O group. It preferably contains one or more lithium salts selected from the group.
Specific examples of the lithium salt selected from the above group include lithium bis (oxalat) borate [LiBOB], lithium difluoro (oxalat) borate [LiDFOB], lithium tetrafluoro (oxalat) phosphate [LiTFOP], and lithium difluorobis (oxalat). ) Lithium salt having at least one oxalic acid skeleton selected from phosphate [LiDFOP], lithium salt having a phosphoric acid skeleton such as LiPO 2 F 2 and Li 2 PO 3 F, lithium trifluoro ((methanesulfonyl) oxy) Borate [LiTFMSB], Lithium pentafluoro ((methanesulfonyl) oxy) phosphate [LiPFMSP], Lithium methyl sulfate [LMS], Lithium ethyl sulfate [LES], Lithium 2,2,2-Trifluoroethyl sulfate [LFES], Lithium Lithium salts having one or more S = O groups selected from 2,2,3,3-tetrafluoropropyl sulfate [LTFPS] and FSO 3 Li are preferably mentioned, and LiBOB, LiDFOB, LiTFOP, LiDFOP, LiPO 2 More preferably, it contains a lithium salt selected from F 2 , LiTFMSB, LMS, LES, LFES, LTFPS, and FSO 3 Li.
 前記群から選ばれるそれぞれのリチウム塩が非水溶媒中に占める割合は、非水電解液全量に対して0.01質量%以上8質量%以下である場合が好ましい。この範囲にあると一段とガス発生抑制効果および容量低下抑制効果を向上させることができる。好ましくは非水電解液全量に対して0.1質量%以上、更に好ましくは0.3質量%以上、特に好ましくは0.4質量%以上である。その上限は、更に好ましくは非水電解液全量に対して6質量%以下、特に好ましくは3質量%以下である。 The ratio of each lithium salt selected from the above group to the non-aqueous solvent is preferably 0.01% by mass or more and 8% by mass or less with respect to the total amount of the non-aqueous electrolyte solution. Within this range, the gas generation suppressing effect and the capacity reduction suppressing effect can be further improved. It is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and particularly preferably 0.4% by mass or more with respect to the total amount of the non-aqueous electrolyte solution. The upper limit is more preferably 6% by mass or less, particularly preferably 3% by mass or less, based on the total amount of the non-aqueous electrolyte solution.
(電解質塩)
 本発明に使用される電解質塩としては、下記のリチウム塩が好適に挙げられる。
 リチウム塩としては、LiPF、LiBF、LiClO等の無機リチウム塩、LiN(SOF)〔LiFSI〕、LiN(SOCF、LiN(SO、LiCFSO、LiC(SOCF、LiPF(CF、LiPF(C、LiPF(CF、LiPF(iso-C、LiPF(iso-C)等の鎖状のフッ化アルキル基を含有するリチウム塩や、(CF(SONLi、(CF(SONLi等の環状のフッ化アルキレン鎖を有するリチウム塩等が好適に挙げられ、これらの中から選ばれる少なくとも1種のリチウム塩を含有することが好ましく、これらの1種又は2種以上を混合して使用することができる。
(Electrolyte salt)
The following lithium salts are preferably mentioned as the electrolyte salt used in the present invention.
Lithium salts include inorganic lithium salts such as LiPF 6 , LiBF 4 , and LiClO 4 , LiN (SO 2 F) 2 [LiFSI], LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C 3 F 7 ) 3 , Lithium salt containing a chain-like alkyl fluoride group such as LiPF 5 (iso-C 3 F 7 ), (CF 2 ) 2 (SO 2 ) 2 NLi, (CF 2 ) 3 (SO 2 ) 2 Lithium salts having a cyclic fluorinated alkylene chain such as NLi are preferably mentioned, and it is preferable to contain at least one lithium salt selected from these, and one or two or more of these are mixed. Can be used.
 これらの中でも、LiPF、LiBF、LiN(SOCF、LiN(SO、およびLiN(SOF)〔LiFSI〕から選ばれる1種又は2種以上がより好ましく、LiPFを含有することがもっとも好ましい。LiPFを含有することは、高い初期放電容量などの蓄電デバイス(特にリチウム二次電池)の性能の観点からも好ましい。電解質塩のそれぞれの濃度は、前記の非水電解液全量に対して、4質量%以上であることが好ましく、8質量%以上がより好ましく、10質量%以上が更に好ましい。またその上限は、非水電解液全量に対して28質量%以下であることが好ましく、23質量%以下がより好ましく、20質量%以下が更に好ましい。 Among these, one or more selected from LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , and LiN (SO 2 F) 2 [LiFSI]. Is more preferable, and it is most preferable to contain LiPF 6 . It is preferable to contain LiPF 6 from the viewpoint of the performance of the power storage device (particularly the lithium secondary battery) such as a high initial discharge capacity. The concentration of each of the electrolyte salts is preferably 4% by mass or more, more preferably 8% by mass or more, still more preferably 10% by mass or more, based on the total amount of the non-aqueous electrolyte solution. The upper limit thereof is preferably 28% by mass or less, more preferably 23% by mass or less, still more preferably 20% by mass or less, based on the total amount of the non-aqueous electrolyte solution.
 また、これらの電解質塩の好適な組み合わせとしては、LiPFを含み、更にLiBF、LiN(SOCF、およびLiN(SOF)〔LiFSI〕から選ばれる少なくとも1種のリチウム塩が非水電解液全量に占めるそれぞれの割合は、0.01質量%以上であると、ガス発生の抑制効果も高まる。非水電解液全量に対して10質量%以下であるとガス抑制効果が低下する懸念が少ないので好ましい。好ましくは0.1質量%以上、より好ましくは非水電解液全量に対して0.3質量%以上、より好ましくは0.4質量%以上、特に好ましくは0.46質量%以上、最も好ましくは0.6質量%以上である。その上限は、好ましくは11質量%以下、さらに好ましくは9質量%以下、特に好ましくは6質量%以下である。 In addition, a suitable combination of these electrolyte salts includes LiPF 6 , and at least one lithium selected from LiBF 4 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 F) 2 [LiFSI]. When the ratio of each salt to the total amount of the non-aqueous electrolyte solution is 0.01% by mass or more, the effect of suppressing gas generation is enhanced. When it is 10% by mass or less with respect to the total amount of the non-aqueous electrolyte solution, there is little concern that the gas suppression effect will be reduced, which is preferable. It is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, more preferably 0.4% by mass or more, particularly preferably 0.46% by mass or more, most preferably 0.46% by mass or more, based on the total amount of the non-aqueous electrolyte solution. It is 0.6% by mass or more. The upper limit is preferably 11% by mass or less, more preferably 9% by mass or less, and particularly preferably 6% by mass or less.
 本発明の非水電解液の25℃での粘度は、好ましくは2~20mPa・sであり、より好ましくは15mPa・s以下であり、さらに好ましくは10mPa・s以下である。 The viscosity of the non-aqueous electrolyte solution of the present invention at 25 ° C. is preferably 2 to 20 mPa · s, more preferably 15 mPa · s or less, and further preferably 10 mPa · s or less.
〔非水電解液の製造〕
 本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩および該非水電解液に対して前記ポリエーテル重合体を添加することにより得ることができる。本発明の非水電解液の製造時には、加熱プロセスを実施したり、活性エネルギー線を照射したりする必要がない。本発明の非水電解液を製造するための全ての操作を常温で行うことができ、5~30℃で行うこともできる。
 この際、用いる非水溶媒および非水電解液に加える化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
[Manufacturing of non-aqueous electrolyte]
The non-aqueous electrolyte solution of the present invention can be obtained, for example, by mixing the non-aqueous solvent and adding the polyether polymer to the electrolyte salt and the non-aqueous electrolyte solution. When producing the non-aqueous electrolyte solution of the present invention, it is not necessary to carry out a heating process or irradiate with active energy rays. All operations for producing the non-aqueous electrolyte solution of the present invention can be performed at room temperature, and can also be performed at 5 to 30 ° C.
At this time, it is preferable that the compounds to be added to the non-aqueous solvent and the non-aqueous electrolytic solution to be used are those that have been purified in advance and contain as few impurities as possible within a range that does not significantly reduce the productivity.
 本発明の非水電解液は、下記の第1~第4の蓄電デバイスに使用することができる。中でも電解質塩にリチウム塩を使用する第1の蓄電デバイス用(即ち、リチウム電池用)または第4の蓄電デバイス用(即ち、リチウムイオンキャパシタ用)として用いることが好ましく、リチウム電池用として用いることが更に好ましく、リチウム二次電池用として用いることが最も適している。 The non-aqueous electrolyte solution of the present invention can be used in the following first to fourth power storage devices. Among them, it is preferably used for a first power storage device (that is, for a lithium battery) or a fourth power storage device (that is, for a lithium ion capacitor) that uses a lithium salt as an electrolyte salt, and is preferably used for a lithium battery. More preferably, it is most suitable for use in a lithium secondary battery.
〔第1の蓄電デバイス(リチウム電池)〕
 本明細書においてリチウム電池とは、リチウム一次電池及びリチウム二次電池の総称である。また、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。本発明の第1の蓄電デバイスであるリチウム電池は、正極、負極および非水溶媒に電解質塩が溶解されている前記非水電解液からなる。非水電解液以外の正極、負極等の構成部材は特に制限なく使用できる。
 例えば、リチウム二次電池用正極活物質としては、コバルト、マンガン、およびニッケルからなる群より選ばれる1種又は2種以上を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、1種単独で用いるか又は2種以上を組み合わせて用いることができる。
 このようなリチウム複合金属酸化物としては、例えば、LiCoO、LiCo1-x(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、およびCuから選ばれる1種又は2種以上の元素、0.001≦x≦0.05)、LiMn、LiNiO、LiCo1-xNi(0.01<x<1)、LiCo1/3Ni1/3Mn1/3、LiNi0.5Mn0.3Co0.2、LiNi0.6Mn0.2Co0.2、LiNi0.8Mn0.1Co0.1、LiNi0.8Co0.15Al0.05、LiMnOとLiMO(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体、およびLiNi1/2Mn3/2から選ばれる1種以上が好適に挙げられ、2種以上がより好適である。また、LiCoOとLiMn、LiCoOとLiNiO、LiMnとLiNiOのように併用してもよい。
[First power storage device (lithium battery)]
In the present specification, the lithium battery is a general term for a lithium primary battery and a lithium secondary battery. Further, in the present specification, the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery. The lithium battery, which is the first power storage device of the present invention, comprises the positive electrode, the negative electrode, and the non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent. Constituent members such as positive electrodes and negative electrodes other than the non-aqueous electrolytic solution can be used without particular limitation.
For example, as the positive electrode active material for a lithium secondary battery, a composite metal oxide containing one or more selected from the group consisting of cobalt, manganese, and nickel is used. These positive electrode active materials can be used alone or in combination of two or more.
Examples of such lithium composite metal oxides include LiCoO 2 , LiCo 1-x M x O 2 (where M is Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, and One or more elements selected from Cu, 0.001 ≤ x ≤ 0.05), LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 <x <1), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , Li 2 MnO 3 and LiMO 2 (M is a transition metal such as Co, Ni, Mn, Fe) solid solution, and one or more selected from LiNi 1/2 Mn 3/2 O 4 is preferably mentioned, two or more is more preferable. Further, LiCoO 2 and LiMn 2 O 4 , LiCoO 2 and LiNiO 2 , LiMn 2 O 4 and LiNiO 2 may be used in combination.
 高温で動作するリチウム複合金属酸化物を使用すると、充電時および高温保存時における電解液との反応によりガス発生、容量低下が起こりやすいが、本発明に係るリチウム二次電池ではこれらを抑制することができる。
 特に、正極活物質中の全遷移金属元素の原子濃度に対するNiの原子濃度の割合が、30atomic%を超える正極活物質を用いた場合に上記効果が顕著になるので好ましく、50atomic%以上が特に好ましい。具体的には、LiCo1/3Ni1/3Mn1/3、LiNi0.5Mn0.3Co0.2、LiNi0.6Mn0.2Co0.2、LiNi0.8Mn0.1Co0.1、LiNi0.8Co0.15Al0.05等が好適に挙げられる。
When a lithium composite metal oxide that operates at a high temperature is used, gas generation and capacity reduction are likely to occur due to the reaction with the electrolytic solution during charging and storage at a high temperature, but these are suppressed in the lithium secondary battery according to the present invention. Can be done.
In particular, when the ratio of the atomic concentration of Ni to the atomic concentration of all transition metal elements in the positive electrode active material exceeds 30 atomic%, the above effect becomes remarkable, and 50 atomic% or more is particularly preferable. .. Specifically, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 are preferably mentioned.
 更に、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。特に鉄、コバルト、ニッケルおよびマンガンから選ばれる少なくとも1種以上含むリチウム含有オリビン型リン酸塩が好ましい。その具体例としては、LiFePO、LiCoPO、LiNiPO、LiMnPO等が挙げられる。
 これらのリチウム含有オリビン型リン酸塩の一部は他元素で置換してもよく、鉄、コバルト、ニッケル、マンガンの一部をCo、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、WおよびZr等から選ばれる1種以上の元素で置換したり、またはこれらの他元素を含有する化合物や炭素材料で被覆することもできる。これらの中では、LiFePOまたはLiMnPOが好ましい。
 また、リチウム含有オリビン型リン酸塩は、例えば前記の正極活物質と混合して用いることもできる。
Further, a lithium-containing olivine-type phosphate can also be used as the positive electrode active material. In particular, a lithium-containing olivine-type phosphate containing at least one selected from iron, cobalt, nickel and manganese is preferable. Specific examples thereof include LiFePO 4 , LiCoPO 4 , LiNiPO 4 , and LiMnPO 4 .
Some of these lithium-containing olivine phosphates may be replaced with other elements, and some of iron, cobalt, nickel and manganese may be replaced with Co, Mn, Ni, Mg, Al, B, Ti, V and Nb. , Cu, Zn, Mo, Ca, Sr, W, Zr and the like, can be replaced with one or more elements, or can be coated with a compound or carbon material containing these other elements. Of these, LiFePO 4 or LiMnPO 4 is preferred.
Further, the lithium-containing olivine-type phosphate can also be used, for example, by mixing with the above-mentioned positive electrode active material.
 また、リチウム一次電池用正極としては、CuO、CuO、AgO、AgCrO、CuS、CuSO、TiO、TiS、SiO、SnO、V、V12、VO、Nb、Bi、BiPb,Sb、CrO、Cr、MoO、WO、SeO、MnO、Mn、Fe、FeO、Fe、Ni、NiO、CoO、CoOなどの、1種もしくは2種以上の金属元素の酸化物あるいはカルコゲン化合物、SO、SOClなどの硫黄化合物、一般式(CFで表されるフッ化炭素(フッ化黒鉛)などが挙げられる。中でも、MnO、V、フッ化黒鉛などが好ましい。 Further, as the positive electrode for the lithium primary battery, CuO, Cu 2 O, Ag 2 O, Ag 2 CrO 4 , CuS, CuSO 4 , TiO 2 , TiS 2 , SiO 2 , SnO, V 2 O 5 , V 6 O 12 , VO x , Nb 2 O 5 , Bi 2 O 3 , Bi 2 Pb 2 O 5 , Sb 2 O 3 , CrO 3 , Cr 2 O 3 , MoO 3 , WO 3 , SeO 2 , MnO 2 , Mn 2 O 3 , Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 , NiO, CoO 3 , CoO, and other oxides or chalcogen compounds of one or more metal elements, SO 2 , SOCl 2, etc. Examples thereof include sulfur compounds and fluorocarbon (fluorinated graphite) represented by the general formula (CF x ) n . Of these, MnO 2 , V 2 O 5 , and graphite fluoride are preferable.
 正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック等が挙げられる。また、グラファイトとカーボンブラックを適宜混合して用いてもよい。導電剤の正極合剤への添加量は、1~10質量%が好ましく、特に2~5質量%が好ましい。 The conductive agent for the positive electrode is not particularly limited as long as it is an electron conductive material that does not cause a chemical change. For example, natural graphite (scaly graphite or the like), graphite such as artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and the like can be mentioned. Further, graphite and carbon black may be appropriately mixed and used. The amount of the conductive agent added to the positive electrode mixture is preferably 1 to 10% by mass, and particularly preferably 2 to 5% by mass.
 正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、およびポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの重合体(SBR)、アクリロニトリルとブタジエンの重合体(NBR)、カルボキシメチルセルロース(CMC)、エチレンプロピレンジエンターポリマー等の結着剤と混合し、これに1-メチル-2-ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成形した後、50℃~250℃程度の温度で、2時間程度真空下で加熱処理することにより作製することができる。 The positive electrode is made of the above-mentioned positive electrode active material, which is a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a polymer of styrene and butadiene (SBR), and a weight of acrylonitrile and butadiene. It was mixed with a binder such as coalescence (NBR), carboxymethyl cellulose (CMC), and ethylene propylene dienter polymer, and a high boiling point solvent such as 1-methyl-2-pyrrolidone was added thereto and kneaded to obtain a positive electrode mixture. After that, this positive electrode mixture is applied to an aluminum foil of a current collector, a lath plate made of stainless steel, etc., dried and pressure-molded, and then heated at a temperature of about 50 ° C. to 250 ° C. under vacuum for about 2 hours. It can be produced by processing.
 正極の集電体を除く部分の密度は、通常は1.5g/cm以上であり、電池の容量をさらに高めるため、好ましくは2g/cm以上であり、より好ましくは、3g/cm以上であり、更に好ましくは、3.6g/cm以上である。なお、上限としては、4g/cm以下が好ましい。 The density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, for further increasing the capacity of the battery, it is preferably 2 g / cm 3 or more, more preferably, 3 g / cm 3 The above is more preferably 3.6 g / cm 3 or more. The upper limit is preferably 4 g / cm 3 or less.
 リチウム二次電池用負極活物質としては、リチウム金属やリチウム合金、およびリチウムを吸蔵および放出することが可能な炭素材料〔易黒鉛化炭素や、(002)面の面間隔が0.37nm(ナノメータ)以上の難黒鉛化炭素や、(002)面の面間隔が0.34nm以下の黒鉛など〕、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、LiTi12などのチタン酸リチウム化合物等を1種単独又は2種以上を組み合わせて用いることができる。
 これらの中では、リチウムイオンの吸蔵および放出能力において、人造黒鉛や天然黒鉛等の高結晶性の炭素材料を使用することが更に好ましく、格子面(002)の面間隔(d002)が0.340nm以下、特に0.335~0.337nmである黒鉛型結晶構造を有する炭素材料を使用することが特に好ましい。
As the negative electrode active material for lithium secondary batteries, lithium metal, lithium alloy, and carbon material capable of storing and releasing lithium [graphitized carbon and (002) plane spacing of 0.37 nm (nanometer) ) Or more graphitized carbon, graphite with (002) plane spacing of 0.34 nm or less], tin (elemental substance), tin compound, silicon (elemental substance), silicon compound, Li 4 Ti 5 O 12, etc. Lithium titanate compounds and the like can be used alone or in combination of two or more.
Among these, it is more preferable to use a highly crystalline carbon material such as artificial graphite or natural graphite in terms of the ability to occlude and release lithium ions, and the interplanar spacing (d 002 ) of the lattice plane ( 002 ) is 0. It is particularly preferable to use a carbon material having a graphite-type crystal structure having a graphite-type crystal structure of 340 nm or less, particularly 0.335 to 0.337 nm.
 複数の扁平状の黒鉛質微粒子が互いに非平行に集合或いは結合した塊状構造を有する人造黒鉛粒子や、例えば鱗片状天然黒鉛粒子に圧縮力、摩擦力、剪断力等の機械的作用を繰り返し与え、球形化処理を施した黒鉛粒子を用いることにより、負極の集電体を除く部分の密度を1.5g/cm以上の密度に加圧成形したときの負極シートのX線回折測定から得られる黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比I(110)/I(004)が0.01以上となると一段と正極活物質からの金属溶出量の改善と、充電保存特性が向上するので好ましく、0.05以上となることがより好ましく、0.1以上となることが更に好ましい。また、過度に処理し過ぎて結晶性が低下し電池の放電容量が低下する場合があるので、上限は0.5以下が好ましく、0.3以下がより好ましい。 By repeatedly applying mechanical actions such as compressive force, frictional force, and shearing force to artificial graphite particles having a massive structure in which a plurality of flat graphite fine particles are aggregated or bonded in a non-parallel manner to each other, or scaly natural graphite particles, for example. It can be obtained from the X-ray diffraction measurement of the negative electrode sheet when the density of the portion of the negative electrode excluding the current collector is pressure-molded to a density of 1.5 g / cm 3 or more by using the spheroidized graphite particles. When the ratio I (110) / I (004) of the peak intensity I (110) on the (110) plane and the peak strength I (004) on the (004) plane of the graphite crystal is 0.01 or more, it is further from the positive electrode active material. It is preferable because the amount of metal elution is improved and the charge storage characteristics are improved, and it is more preferably 0.05 or more, and further preferably 0.1 or more. Further, the upper limit is preferably 0.5 or less, more preferably 0.3 or less, because the crystallinity may be lowered due to excessive treatment and the discharge capacity of the battery may be lowered.
 また、高結晶性の炭素材料(コア材)はコア材よりも低結晶性の炭素材料によって被膜されていると、ガス発生をより一層抑制できるので好ましい。被覆の炭素材料の結晶性は、TEMにより確認することができる。
 高結晶性の炭素材料を使用すると、充電時において非水電解液と反応し、界面抵抗の増加によってガス発生が増加する傾向があるが、本発明に係るリチウム二次電池ではガス発生をより一層抑制できる。
Further, it is preferable that the highly crystalline carbon material (core material) is coated with a carbon material having a lower crystallinity than the core material because gas generation can be further suppressed. The crystallinity of the coated carbon material can be confirmed by TEM.
When a highly crystalline carbon material is used, it reacts with a non-aqueous electrolytic solution during charging, and gas generation tends to increase due to an increase in interfacial resistance. However, the lithium secondary battery according to the present invention further generates gas. Can be suppressed.
 また、負極活物質としてのリチウムを吸蔵および放出可能な金属化合物としては、Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr、Ba等の金属元素を少なくとも1種含有する化合物が挙げられる。これらの金属化合物は単体、合金、酸化物、窒化物、硫化物、硼化物、リチウムとの合金等、何れの形態で用いてもよいが、単体、合金、酸化物、リチウムとの合金の何れかが高容量化できるので好ましい。中でも、Si、GeおよびSnから選ばれる少なくとも1種の元素を含有するものが好ましく、SiおよびSnから選ばれる少なくとも1種の元素を含むものが電池を高容量化できるので特に好ましい。 Examples of the metal compound capable of occluding and releasing lithium as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni and Cu. , Zn, Ag, Mg, Sr, Ba and other compounds containing at least one metal element. These metal compounds may be used in any form such as elemental substances, alloys, oxides, nitrides, sulfides, borides, alloys with lithium, etc., but any of elemental substances, alloys, oxides, alloys with lithium, etc. It is preferable because the capacity can be increased. Among them, those containing at least one element selected from Si, Ge and Sn are preferable, and those containing at least one element selected from Si and Sn are particularly preferable because the capacity of the battery can be increased.
 負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成形した後、50℃~250℃程度の温度で2時間程度真空下加熱処理することにより作製することができる。 The negative electrode is kneaded with a conductive agent, a binder, and a high boiling point solvent similar to those for producing the positive electrode to obtain a negative electrode mixture, and then this negative electrode mixture is applied to a copper foil or the like of a current collector. After drying and pressure molding, it can be produced by heat treatment under vacuum for about 2 hours at a temperature of about 50 ° C. to 250 ° C.
 負極の集電体を除く部分の密度は、通常は1.1g/cm以上であり、電池の容量をさらに高めるため、好ましくは1.3g/cm以上であり、特に好ましくは1.5g/cm以上である。なお、上限としては、2g/cm以下が好ましい。 The density of the portion of the negative electrode excluding the current collector is usually 1.1 g / cm 3 or more, and is preferably 1.3 g / cm 3 or more, particularly preferably 1.5 g, in order to further increase the capacity of the battery. / Cm 3 or more. The upper limit is preferably 2 g / cm 3 or less.
 また、リチウム一次電池用の負極活物質としては、リチウム金属又はリチウム合金が挙げられる。 Further, as a negative electrode active material for a lithium primary battery, a lithium metal or a lithium alloy can be mentioned.
 リチウム電池の構造には特に限定はなく、単層または複層のセパレータを有するコイン型電池、円筒型電池、角型電池、ラミネート型電池等を適用できる。
 電池用セパレータとしては、特に制限はされないが、ポリプロピレン、ポリエチレン等のポリオレフィンの単層または積層の微多孔性フィルム、織布、不織布等を使用できる。
The structure of the lithium battery is not particularly limited, and a coin-type battery having a single-layer or multi-layer separator, a cylindrical battery, a square battery, a laminated battery, or the like can be applied.
The battery separator is not particularly limited, but a monolayer or laminated microporous film of polyolefin such as polypropylene or polyethylene, a woven fabric, a non-woven fabric or the like can be used.
 本発明におけるリチウム二次電池は、充電終止電圧が4.2V以上でもガス発生抑制において特性は良好である。放電終止電圧は、通常2.8V以上、更には2.5V以上とすることができるが、本発明におけるリチウム二次電池は、2.0V以上とすることができる。電流値については特に限定されないが、通常0.05~20Cの範囲で使用される。また、本発明におけるリチウム電池は、-40~100℃、好ましくは-10~80℃で充放電することができる。 The lithium secondary battery of the present invention has good characteristics in suppressing gas generation even when the charge termination voltage is 4.2 V or higher. The discharge end voltage can usually be 2.8 V or higher, further 2.5 V or higher, but the lithium secondary battery in the present invention can be 2.0 V or higher. The current value is not particularly limited, but is usually used in the range of 0.05 to 20C. Further, the lithium battery in the present invention can be charged and discharged at −40 to 100 ° C., preferably −10 to 80 ° C.
 本発明においては、リチウム電池の内圧上昇の対策として、電池蓋に安全弁を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を電池蓋に設けることができる。 In the present invention, as a countermeasure against an increase in the internal pressure of the lithium battery, a method of providing a safety valve on the battery lid or making a notch in a member such as a battery can or a gasket can also be adopted. Further, as a safety measure for preventing overcharging, a current cutoff mechanism that senses the internal pressure of the battery and cuts off the current can be provided on the battery lid.
〔第2の蓄電デバイス(電気二重層キャパシタ)〕
 第2の蓄電デバイスは、電解液と電極界面の電気二重層容量を利用してエネルギーを貯蔵する蓄電デバイスである。本発明の一例は、電気二重層キャパシタである。この蓄電デバイスに用いられる最も典型的な電極活物質は、活性炭である。二重層容量は概ね表面積に比例して増加する。
[Second power storage device (electric double layer capacitor)]
The second power storage device is a power storage device that stores energy by utilizing the electric double layer capacity at the interface between the electrolytic solution and the electrode. An example of the present invention is an electric double layer capacitor. The most typical electrode active material used in this power storage device is activated carbon. The double layer capacity increases roughly in proportion to the surface area.
〔第3の蓄電デバイス〕
 第3の蓄電デバイスは、電極のドープ/脱ドープ反応を利用してエネルギーを貯蔵する蓄電デバイスである。この蓄電デバイスに用いられる電極活物質として、酸化ルテニウム、酸化イリジウム、酸化タングステン、酸化モリブデン、酸化銅等の金属酸化物や、ポリアセン、ポリチオフェン誘導体等のπ共役高分子が挙げられる。これらの電極活物質を用いたキャパシタは、電極のドープ/脱ドープ反応にともなうエネルギー貯蔵が可能である。
[Third power storage device]
The third storage device is a storage device that stores energy by utilizing the doping / dedoping reaction of the electrodes. Examples of the electrode active material used in this power storage device include metal oxides such as ruthenium oxide, iridium oxide, tungsten oxide, molybdenum oxide and copper oxide, and π-conjugated polymers such as polyacene and polythiophene derivatives. Capacitors using these electrode active materials can store energy associated with the doping / dedoping reaction of the electrodes.
〔第4の蓄電デバイス(リチウムイオンキャパシタ)〕
 第4の蓄電デバイスは、負極であるグラファイト等の炭素材料へのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する蓄電デバイスである。リチウムイオンキャパシタ(LIC)と呼ばれる。正極は、例えば活性炭電極と電解液との間の電気ニ重層を利用したものや、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。電解液には少なくともLiPFなどのリチウム塩が含まれる。
[Fourth power storage device (lithium ion capacitor)]
The fourth power storage device is a power storage device that stores energy by utilizing the intercalation of lithium ions with a carbon material such as graphite, which is a negative electrode. It is called a lithium ion capacitor (LIC). Examples of the positive electrode include those using an electric double layer between the activated carbon electrode and the electrolytic solution, those using the doping / dedoping reaction of the π-conjugated polymer electrode, and the like. The electrolytic solution contains at least a lithium salt such as LiPF 6 .
 以下に、合成例、重合例、実施例および比較例を示し、本発明を具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to synthetic examples, polymerization examples, examples and comparative examples, but the present invention is not limited thereto.
 ポリエーテル重合体は以下の方法で測定した。
〔組成モル比率〕
 H-NMRスペクトルにより組成単位に由来するシグナル強度比から求めた。
〔重量平均分子量〕
 ゲルパーミエーションクロマトグラフィー(GPC)測定を行い、標準ポリスチレン換算により重量平均分子量を算出した。GPC測定は(株)島津製作所製RID-6A、昭和電工(株)製ショウデックスKD-807、KD-806、KD-806MおよびKD-803カラム、および溶媒にDMFを用いて60℃で行った。
The polyether polymer was measured by the following method.
[Composition molar ratio]
1 Obtained from the signal intensity ratio derived from the composition unit by 1 H-NMR spectrum.
[Weight average molecular weight]
Gel permeation chromatography (GPC) measurements were performed and the weight average molecular weight was calculated in terms of standard polystyrene. GPC measurement was performed at 60 ° C. using RID-6A manufactured by Shimadzu Corporation, Showadex KD-807, KD-806, KD-806M and KD-803 columns manufactured by Showa Denko KK, and DMF as a solvent. ..
[合成例(ポリエーテル重合用触媒の製造)]
 撹拌機、温度計及び蒸留装置を備えた3つ口フラスコにトリブチル錫クロライド10g及びトリブチルホスフェート35gを入れ、窒素気流下に撹拌しながら250℃で20分間加熱して留出物を留去させ残留物として固体状の縮合物質を得た。以下の重合例で重合触媒として用いた。
[Synthesis Example (Production of Catalyst for Polyether Polymerization)]
10 g of tributyltin chloride and 35 g of tributyl phosphate are placed in a three-necked flask equipped with a stirrer, a thermometer and a distillation apparatus, and heated at 250 ° C. for 20 minutes while stirring under a nitrogen stream to distill off the distillate and remain. A solid condensing substance was obtained as a substance. It was used as a polymerization catalyst in the following polymerization examples.
[重合例1 ポリエーテル重合体A1]
 内容量3Lのガラス製4つ口フラスコの内部を窒素置換し、これに重合触媒として触媒の合成例で示した縮合物質1gと水分10ppm以下に調整したグリシジルエーテル化合物(a):
Figure JPOXMLDOC01-appb-C000010
114g、及び溶媒としてn-ヘキサン1000gを仕込み、化合物(a)の重合率をガスクロマトグラフィーで追跡しながら、エチレンオキシド136gを逐次添加した。このときの重合温度は20℃とし、10時間反応を行った。重合反応はメタノールを1mL加え反応を停止した。デカンテーションによりポリマーを取り出した後、常圧下40℃で24時間、更に減圧下45℃で10時間乾燥してポリマー210gを得た。得られたポリエーテル重合体の重量平均分子量およびモノマー換算組成分析結果を表1に示す。
[Polymerization Example 1 Polyether Polymer A1]
The inside of a glass four-necked flask having an internal volume of 3 L was substituted with nitrogen, and 1 g of the condensing substance shown in the example of catalyst synthesis and the glycidyl ether compound (a) prepared to have a water content of 10 ppm or less as a polymerization catalyst:
Figure JPOXMLDOC01-appb-C000010
114 g and 1000 g of n-hexane as a solvent were charged, and 136 g of ethylene oxide was sequentially added while tracking the polymerization rate of compound (a) by gas chromatography. The polymerization temperature at this time was 20 ° C., and the reaction was carried out for 10 hours. In the polymerization reaction, 1 mL of methanol was added to stop the reaction. After removing the polymer by decantation, the polymer was dried at 40 ° C. under normal pressure for 24 hours and further at 45 ° C. under reduced pressure for 10 hours to obtain 210 g of the polymer. Table 1 shows the weight average molecular weight and the monomer-equivalent composition analysis results of the obtained polyether polymer.
[重合例2 ポリエーテル重合体A2]
 重合例1の仕込みにおいてグリシジルエーテル化合物(a)107g、アリルグリシジルエーテル9g、n-ブタノール0.13g及び溶媒としてn-ヘキサン1000gを仕込み、化合物(a)の重合率をガスクロマトグラフィーで追跡しながら、エチレンオキシド135gを逐次添加した。このときの重合温度は20℃とし、10時間反応を行った。重合反応はメタノールを1mL加え反応を停止した。デカンテーションによりポリマーを取り出した後、常圧下40℃で24時間、更に減圧下45℃で10時間乾燥してポリマー215gを得た。得られたポリエーテル重合体の重量平均分子量およびモノマー換算組成分析結果を表1に示す。
[Polymerization Example 2 Polyether Polymer A2]
In the preparation of Polymerization Example 1, 107 g of the glycidyl ether compound (a), 9 g of the allyl glycidyl ether, 0.13 g of n-butanol and 1000 g of n-hexane as a solvent were charged, and the polymerization rate of the compound (a) was tracked by gas chromatography. , 135 g of ethylene oxide was sequentially added. The polymerization temperature at this time was 20 ° C., and the reaction was carried out for 10 hours. In the polymerization reaction, 1 mL of methanol was added to stop the reaction. After removing the polymer by decantation, the polymer was dried at 40 ° C. under normal pressure for 24 hours and further at 45 ° C. under reduced pressure for 10 hours to obtain 215 g of the polymer. Table 1 shows the weight average molecular weight and the monomer-equivalent composition analysis results of the obtained polyether polymer.
[重合例3 ポリエーテル重合体A3]
 重合例1の仕込みにおいてメタクリル酸グリシジル48g、n-ブタノール1.25g及び溶媒としてn-ヘキサン1000gを仕込み、メタクリル酸グリシジルの重合率をガスクロマトグラフィーで追跡しながら、エチレンオキシド193gを逐次添加した。このときの重合温度は20℃とし、10時間反応を行った。重合反応はメタノールを1mL加え反応を停止した。デカンテーションによりポリマーを取り出した後、常圧下40℃で24時間、更に減圧下45℃で10時間乾燥してポリマー207gを得た。得られたポリエーテル重合体の重量平均分子量およびモノマー換算組成分析結果を表1に示す。
[Polymerization Example 3 Polyether Polymer A3]
In the preparation of Polymerization Example 1, 48 g of glycidyl methacrylate, 1.25 g of n-butanol and 1000 g of n-hexane as a solvent were charged, and 193 g of ethylene oxide was sequentially added while tracking the polymerization rate of glycidyl methacrylate by gas chromatography. The polymerization temperature at this time was 20 ° C., and the reaction was carried out for 10 hours. In the polymerization reaction, 1 mL of methanol was added to stop the reaction. After removing the polymer by decantation, the polymer was dried at 40 ° C. under normal pressure for 24 hours and further at 45 ° C. under reduced pressure for 10 hours to obtain 207 g of the polymer. Table 1 shows the weight average molecular weight and the monomer-equivalent composition analysis results of the obtained polyether polymer.
[重合例4 ポリエーテル重合体A4]
 重合例1の仕込みにおいてグリシジルエーテル化合物(a)68g、アリルグリシジルエーテル34g、n-ブタノール0.13g及び溶媒としてn-ヘキサン1000gを仕込み、化合物(a)の重合率をガスクロマトグラフィーで追跡しながら、エチレンオキシド148gを逐次添加した。このときの重合温度は20℃とし、10時間反応を行った。重合反応はメタノールを1mL加え反応を停止した。デカンテーションによりポリマーを取り出した後、常圧下40℃で24時間、更に減圧下45℃で10時間乾燥してポリマー210gを得た。得られたポリエーテル重合体の重量平均分子量およびモノマー換算組成分析結果を表1に示す。
[Polymerization Example 4 Polyether Polymer A4]
In the preparation of Polymerization Example 1, 68 g of the glycidyl ether compound (a), 34 g of the allyl glycidyl ether, 0.13 g of n-butanol and 1000 g of n-hexane as a solvent were charged, and the polymerization rate of the compound (a) was followed by gas chromatography. , 148 g of ethylene oxide were added sequentially. The polymerization temperature at this time was 20 ° C., and the reaction was carried out for 10 hours. In the polymerization reaction, 1 mL of methanol was added to stop the reaction. After removing the polymer by decantation, the polymer was dried at 40 ° C. under normal pressure for 24 hours and further at 45 ° C. under reduced pressure for 10 hours to obtain 210 g of the polymer. Table 1 shows the weight average molecular weight and the monomer-equivalent composition analysis results of the obtained polyether polymer.
[重合例5 ポリエーテル重合体A5]
 重合例1の仕込みにおいてグリシジルエーテル化合物(a)93g、アリルグリシジルエーテル11g、n-ブタノール0.19g及び溶媒としてn-ヘキサン1000gを仕込み、化合物(a)の重合率をガスクロマトグラフィーで追跡しながら、エチレンオキシド145gを逐次添加した。このときの重合温度は20℃とし、10時間反応を行った。重合反応はメタノールを1mL加え反応を停止した。デカンテーションによりポリマーを取り出した後、常圧下40℃で24時間、更に減圧下45℃で10時間乾燥してポリマー215gを得た。得られたポリエーテル重合体の重量平均分子量およびモノマー換算組成分析結果を表1に示す。
[Polymerization Example 5 Polyether Polymer A5]
In the preparation of Polymerization Example 1, 93 g of glycidyl ether compound (a), 11 g of allyl glycidyl ether, 0.19 g of n-butanol and 1000 g of n-hexane as a solvent were charged, and the polymerization rate of the compound (a) was followed by gas chromatography. , 145 g of ethylene oxide were added sequentially. The polymerization temperature at this time was 20 ° C., and the reaction was carried out for 10 hours. In the polymerization reaction, 1 mL of methanol was added to stop the reaction. After removing the polymer by decantation, the polymer was dried at 40 ° C. under normal pressure for 24 hours and further at 45 ° C. under reduced pressure for 10 hours to obtain 215 g of the polymer. Table 1 shows the weight average molecular weight and the monomer-equivalent composition analysis results of the obtained polyether polymer.
 実施例1~20および比較例2における、使用したポリエーテル重合体の組成モル比率、重量平均分子量を表1に示す。
Figure JPOXMLDOC01-appb-T000011
Table 1 shows the composition molar ratio and the weight average molecular weight of the polyether polymers used in Examples 1 to 20 and Comparative Example 2.
Figure JPOXMLDOC01-appb-T000011
実施例1~20、比較例1~4
〔リチウムイオン二次電池の作製1〕
 LiCoO(LCO);94質量%、アセチレンブラック(導電剤);3質量%を混合し、予めポリフッ化ビニリデン(結着剤);3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに切り抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cmであった。また、人造黒鉛(d002=0.335nm、負極活物質)95質量%を、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに切り抜き負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cmであった。また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、各成分を常温で混合することにより調製した表2及び表4に記載の組成の非水電解液を加えて、ラミネート型電池を作製した。
Examples 1 to 20, Comparative Examples 1 to 4
[Preparation of lithium-ion secondary battery 1]
LiCoO 2 (LCO); 94% by mass, acetylene black (conductive agent); 3% by mass are mixed, and polyvinylidene fluoride (binding agent); 3% by mass is dissolved in 1-methyl-2-pyrrolidone in advance. It was added to the existing solution and mixed to prepare a positive electrode mixture paste. This positive electrode mixture paste was applied to one side on an aluminum foil (current collector), dried and pressure-treated, and cut out to a predetermined size to prepare a positive electrode sheet. The density of the portion of the positive electrode excluding the current collector was 3.6 g / cm 3 . Further, 95% by mass of artificial graphite (d 002 = 0.335 nm, negative electrode active material) was added to a solution in which 5% by mass of polyvinylidene fluoride (binder) was previously dissolved in 1-methyl-2-pyrrolidone. And mixed to prepare a negative electrode mixture paste. This negative electrode mixture paste was applied to one side on a copper foil (current collector), dried and pressure-treated, and cut out to a predetermined size to prepare a negative electrode sheet. The density of the portion of the negative electrode excluding the current collector was 1.5 g / cm 3 . Further, as a result of X-ray diffraction measurement using this electrode sheet, the ratio of the peak intensity I (110) on the (110) plane and the peak intensity I (004) on the (004) plane [I (110) / I) of the graphite crystal. (004)] was 0.1. Then, the positive electrode sheet, the microporous polyethylene film separator, and the negative electrode sheet are laminated in this order, and the non-aqueous electrolytic solution having the composition shown in Tables 2 and 4 prepared by mixing each component at room temperature is added and laminated. A mold battery was manufactured.
〔リチウムイオン二次電池の作製2〕
 LiNi0.8Mn0.1Co0.1(NMC811);94質量%、アセチレンブラック(導電剤);3質量%を混合し、予めポリフッ化ビニリデン(結着剤);3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、矩形の正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cmであった。また、人造黒鉛(d002=0.335nm、負極活物質);95質量%と、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cmであった。また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、各成分を常温で混合することにより調製した表3に記載の組成の非水電解液を加えて、ラミネート型電池を作製した。
[Preparation of lithium-ion secondary battery 2]
LiNi 0.8 Mn 0.1 Co 0.1 O 2 (NMC811); 94% by mass, acetylene black (conductive agent); 3% by mass are mixed, and polyvinylidene fluoride (binding agent); 3% by mass is mixed in advance. The mixture was added to the solution dissolved in 1-methyl-2-pyrrolidone and mixed to prepare a positive electrode mixture paste. This positive electrode mixture paste was applied to one side on an aluminum foil (current collector), dried and pressure-treated, and cut into a predetermined size to prepare a rectangular positive electrode sheet. The density of the portion of the positive electrode excluding the current collector was 3.6 g / cm 3 . In addition, a solution in which artificial graphite (d 002 = 0.335 nm, negative electrode active material); 95% by mass and polyvinylidene fluoride (binding agent); 5% by mass were previously dissolved in 1-methyl-2-pyrrolidone. Was mixed to prepare a negative electrode mixture paste. This negative electrode mixture paste was applied to one side on a copper foil (current collector), dried and pressurized, and cut into a predetermined size to prepare a negative electrode sheet. The density of the portion of the negative electrode excluding the current collector was 1.5 g / cm 3 . Further, as a result of X-ray diffraction measurement using this electrode sheet, the ratio [I (110) / I) of the peak intensity I (110) on the (110) plane and the peak intensity I (004) on the (004) plane of the graphite crystal. (004)] was 0.1. Then, a positive electrode sheet, a microporous polyethylene film separator, and a negative electrode sheet are laminated in this order, and a non-aqueous electrolytic solution having the composition shown in Table 3 prepared by mixing each component at room temperature is added to prepare a laminated battery. Made.
 非水電解液の粘度は以下の方法で測定した。
〔粘度〕
 JIS Z 8803に準拠して25℃での粘度を測定した。
The viscosity of the non-aqueous electrolyte was measured by the following method.
〔viscosity〕
The viscosity at 25 ° C. was measured according to JIS Z 8803.
〔初期放電容量の評価〕
 上記の方法で作製した電池を用いて25℃の恒温槽中、0.2Cの定電流および定電圧で終止電圧4.2Vまで充電後0.2Cの定電流で終止電圧2.7Vまで放電することを1サイクルとし、これを3サイクル行った。3サイクル目の放電容量を初期放電容量として評価した。
[Evaluation of initial discharge capacity]
Using the battery produced by the above method, the battery is charged to a final voltage of 4.2 V at a constant current and constant voltage of 0.2 C and then discharged to a final voltage of 2.7 V at a constant current of 0.2 C in a constant temperature bath at 25 ° C. This was set as one cycle, and this was performed for three cycles. The discharge capacity in the third cycle was evaluated as the initial discharge capacity.
〔高温保存後のガス発生量の評価〕
 上記の方法で作製した電池を用いて60℃の恒温槽中、0.2Cの定電流および定電圧で終止電圧4.2Vで20日間静置した。その後、45℃の恒温槽中、0.2Cの定電流下終止電圧2.7Vまで放電した。高温保存後のガス発生量はアルキメデス法により測定した。
[Evaluation of gas generation after high temperature storage]
Using the battery produced by the above method, the battery was allowed to stand in a constant temperature bath at 60 ° C. for 20 days at a constant current and constant voltage of 0.2 C and a final voltage of 4.2 V. Then, it was discharged to a final voltage of 2.7 V under a constant current of 0.2 C in a constant temperature bath at 45 ° C. The amount of gas generated after storage at high temperature was measured by the Archimedes method.
〔高電圧高温保存後のガス発生量の評価〕
 上記の方法で作成した電池を用いて60℃の恒温槽中、0.2Cの定電流および定電圧で終止電圧4.4Vで2日間静置した。高電圧高温保存後のガス発生量はアルキメデス法により測定した。
[Evaluation of gas generation after high voltage and high temperature storage]
Using the battery prepared by the above method, the battery was allowed to stand in a constant temperature bath at 60 ° C. for 2 days at a constant current and constant voltage of 0.2 C and a final voltage of 4.4 V. The amount of gas generated after high-voltage and high-temperature storage was measured by the Archimedes method.
 実施例1および比較例1~2における、使用した電極(正極活物質/負極活物質)、非水電解液の組成、粘度、初期放電容量を表2に示す。
 比較例1の初期放電容量を100%とし、実施例1および比較例2の相対的な初期放電容量を調べた。
Table 2 shows the composition, viscosity, and initial discharge capacity of the electrodes (positive electrode active material / negative electrode active material) and non-aqueous electrolyte solution used in Example 1 and Comparative Examples 1 and 2.
The initial discharge capacity of Comparative Example 1 was set to 100%, and the relative initial discharge capacities of Example 1 and Comparative Example 2 were examined.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 また、実施例2~11および比較例3における、使用した電極(正極活物質/負極活物質)、非水電解液の組成、粘度、高温保存後のガス発生量を表3に示す。
 比較例3の初期放電容量を基準とし、実施例2~11の相対的な初期放電容量を調べたところ、いずれの実施例においても初期放電容量の低下は見られなかった。また、比較例3のガス発生量を100%とし、実施例2~11の相対的なガス発生量を調べた。
Table 3 shows the electrodes (positive electrode active material / negative electrode active material) used, the composition and viscosity of the non-aqueous electrolytic solution, and the amount of gas generated after high-temperature storage in Examples 2 to 11 and Comparative Example 3.
When the relative initial discharge capacities of Examples 2 to 11 were examined with reference to the initial discharge capacity of Comparative Example 3, no decrease in the initial discharge capacity was observed in any of the examples. Further, the gas generation amount of Comparative Example 3 was set to 100%, and the relative gas generation amount of Examples 2 to 11 was examined.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 さらに、実施例12~20および比較例4における、使用した電極(正極活物質/負極活物質)、非水電解液の組成、粘度、高電圧高温保存後のガス発生量を表4に示す。
 比較例4の初期放電容量を基準とし、実施例12~20の相対的な初期放電容量を調べたところ、いずれの実施例においても初期放電容量の低下は見られなかった。また、比較例4のガス発生量を100%とし、実施例12~20の相対的なガス発生量を調べた。
Further, Table 4 shows the electrodes (positive electrode active material / negative electrode active material) used, the composition and viscosity of the non-aqueous electrolyte solution, and the amount of gas generated after high-voltage high-temperature storage in Examples 12 to 20 and Comparative Example 4.
When the relative initial discharge capacities of Examples 12 to 20 were examined with reference to the initial discharge capacity of Comparative Example 4, no decrease in the initial discharge capacity was observed in any of the examples. Further, the gas generation amount of Comparative Example 4 was set to 100%, and the relative gas generation amount of Examples 12 to 20 was examined.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 上記表2において実施例1は比較例2より初期放電容量が高く、比較例1と同等の初期放電容量であった。また、上記表3において実施例2~11は比較例3と同等の初期放電容量であり、高温保存後のガス発生量が減少していた。さらに、表4において実施例12~20は比較例4と同等の初期放電容量であり、高電圧高温保存後のガス発生量が減少していた。この結果から本発明の非水電解液は初期放電容量を低下させることなく高温保存、高電圧高温保存時におけるガス発生を抑制出来るといえる。 In Table 2 above, Example 1 had a higher initial discharge capacity than Comparative Example 2, and had an initial discharge capacity equivalent to that of Comparative Example 1. Further, in Table 3 above, Examples 2 to 11 had the same initial discharge capacity as Comparative Example 3, and the amount of gas generated after high-temperature storage was reduced. Further, in Table 4, Examples 12 to 20 had the same initial discharge capacity as Comparative Example 4, and the amount of gas generated after high-voltage and high-temperature storage was reduced. From this result, it can be said that the non-aqueous electrolyte solution of the present invention can suppress gas generation during high-temperature storage and high-voltage high-temperature storage without lowering the initial discharge capacity.
 本発明の非水電解液を用いた蓄電デバイスは、電池を高温で使用した場合のガス発生の抑制効果および初期放電容量などの電気化学特性に優れたリチウム二次電池等の蓄電デバイスとして有用である。 The power storage device using the non-aqueous electrolyte solution of the present invention is useful as a power storage device such as a lithium secondary battery which has an excellent effect of suppressing gas generation when the battery is used at a high temperature and has excellent electrochemical characteristics such as initial discharge capacity. is there.

Claims (5)

  1.  非水溶媒に電解質塩が溶解されている非水電解液において、重量平均分子量が10万~250万であるエチレンオキシドユニットを有するポリエーテル重合体が、下記式(1)由来の繰り返し単位を0~50モル%と、下記式(2)由来の繰り返し単位を30~100モル%と、下記式(3)由来の繰り返し単位を0~20モル%とを含み、前記ポリエーテル重合体の濃度が、前記非水電解液の0.01~2質量%である蓄電デバイス用非水電解液。
    式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは炭素数1~12のアルキル基、または-CHO(CR)である。R、R、Rは水素原子または-CHO(CHCHO)であり、nおよびRはR、R、Rの間で異なっていてもよい。Rは炭素数1~12のアルキル基、または置換基を有してもよいアリール基であり、nは0~12の整数である。]
    式(2):
    Figure JPOXMLDOC01-appb-C000002
    式(3):
    Figure JPOXMLDOC01-appb-C000003
    [式中、Rはエチレン性不飽和基を有する基である。]
    In a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent, a polyether polymer having an ethylene oxide unit having a weight average molecular weight of 100,000 to 2.5 million has a repeating unit derived from the following formula (1) of 0 to 0 to. It contains 50 mol%, a repeating unit derived from the following formula (2) of 30 to 100 mol%, and a repeating unit derived from the following formula (3) of 0 to 20 mol%, and the concentration of the polyether polymer is determined. A non-aqueous electrolyte solution for a power storage device, which is 0.01 to 2% by mass of the non-aqueous electrolyte solution.
    Equation (1):
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, R is an alkyl group having 1 to 12 carbon atoms or -CH 2 O (CR 1 R 2 R 3 ). R 1 , R 2 , R 3 are hydrogen atoms or -CH 2 O (CH 2 CH 2 O) n R 4 , and n and R 4 may differ between R 1 , R 2 , and R 3. .. R 4 is an alkyl group having 1 to 12 carbon atoms or an aryl group which may have a substituent, and n is an integer of 0 to 12. ]
    Equation (2):
    Figure JPOXMLDOC01-appb-C000002
    Equation (3):
    Figure JPOXMLDOC01-appb-C000003
    Wherein, R 5 is a group having an ethylenically unsaturated group. ]
  2.  前記非水電解液の25℃での粘度が2~20mPa・sである請求項1に記載の蓄電デバイス用非水電解液。 The non-aqueous electrolyte solution for a power storage device according to claim 1, wherein the non-aqueous electrolyte solution has a viscosity of 2 to 20 mPa · s at 25 ° C.
  3.  前記非水電解液が、前記電解質塩として、LiPFを含有することを特徴とする請求項1または2に記載の蓄電デバイス用非水電解液。 The non-aqueous electrolyte solution for a power storage device according to claim 1 or 2, wherein the non-aqueous electrolyte solution contains LiPF 6 as the electrolyte salt.
  4.  前記非水電解液が、前記非水溶媒として、不飽和結合を有する環状カーボネートを含有することを特徴とする請求項1~3のいずれか1項に記載の蓄電デバイス用非水電解液。 The non-aqueous electrolytic solution for a power storage device according to any one of claims 1 to 3, wherein the non-aqueous electrolytic solution contains a cyclic carbonate having an unsaturated bond as the non-aqueous solvent.
  5.  正極、負極、および非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が請求項1~4のいずれか1項に記載の蓄電デバイス用非水電解液であることを特徴とする蓄電デバイス。 The storage device comprising a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a non-aqueous solvent, wherein the non-aqueous electrolytic solution is for the storage device according to any one of claims 1 to 4. A power storage device characterized by being a non-aqueous electrolyte solution.
PCT/JP2020/013736 2019-03-29 2020-03-26 Nonaqueous electrolyte solution for electricity storage devices, and electricity storage device using same WO2020203664A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021511936A JP7378462B2 (en) 2019-03-29 2020-03-26 Non-aqueous electrolyte for power storage devices and power storage devices using the same
KR1020217029757A KR20210146293A (en) 2019-03-29 2020-03-26 Non-aqueous electrolyte for power storage device and power storage device using same
CN202080024217.XA CN114008830A (en) 2019-03-29 2020-03-26 Nonaqueous electrolyte solution for electricity storage device and electricity storage device using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019065820 2019-03-29
JP2019-065820 2019-03-29
JP2019151252 2019-08-21
JP2019-151252 2019-08-21

Publications (1)

Publication Number Publication Date
WO2020203664A1 true WO2020203664A1 (en) 2020-10-08

Family

ID=72668270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013736 WO2020203664A1 (en) 2019-03-29 2020-03-26 Nonaqueous electrolyte solution for electricity storage devices, and electricity storage device using same

Country Status (4)

Country Link
JP (1) JP7378462B2 (en)
KR (1) KR20210146293A (en)
CN (1) CN114008830A (en)
WO (1) WO2020203664A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230167874A (en) * 2022-06-03 2023-12-12 에스케이이노베이션 주식회사 Electrolyte solution for lithium secondary battery and lithium secondary battery including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268870A (en) * 1999-03-17 2000-09-29 Mitsubishi Chemicals Corp Manufacture of secondary battery
JP2013155318A (en) * 2012-01-31 2013-08-15 Daiso Co Ltd Electrolyte composition and nonaqueous electrolyte secondary battery using the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3631185B2 (en) 2001-09-19 2005-03-23 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5382536B2 (en) 2010-02-25 2014-01-08 ダイソー株式会社 Polymer solid electrolyte and use thereof
JP5959089B2 (en) 2011-03-30 2016-08-02 株式会社大阪ソーダ Nonaqueous electrolyte secondary battery
JP5879720B2 (en) 2011-03-30 2016-03-08 株式会社大阪ソーダ Nonaqueous electrolyte secondary battery
JP2012216347A (en) 2011-03-31 2012-11-08 Daiso Co Ltd Nonaqueous electrolyte secondary battery
JP2012226854A (en) 2011-04-15 2012-11-15 Daiso Co Ltd Nonaqueous electrolyte secondary battery
JP5626531B2 (en) 2011-04-19 2014-11-19 ダイソー株式会社 Nonaqueous electrolyte secondary battery
JP6061066B2 (en) 2011-07-29 2017-01-18 株式会社大阪ソーダ Electrochemical capacitor
JP2013175393A (en) 2012-02-27 2013-09-05 Daiso Co Ltd Electrolyte composition and nonaqueous electrolyte secondary battery using the same
JP5934531B2 (en) 2012-03-22 2016-06-15 一般財団法人電力中央研究所 Nonaqueous electrolyte secondary battery
JP5934532B2 (en) 2012-03-22 2016-06-15 一般財団法人電力中央研究所 Nonaqueous electrolyte secondary battery
WO2017047554A1 (en) * 2015-09-15 2017-03-23 宇部興産株式会社 Nonaqueous electrolyte solution for electricity storage devices and electricity storage device using same
US20180277313A1 (en) 2015-09-30 2018-09-27 Osaka Soda Co., Ltd. Gel electrolyte composition
WO2018198618A1 (en) * 2017-04-28 2018-11-01 宇部興産株式会社 Non-aqueous electrolyte solution and electricity storage device in which same is used

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268870A (en) * 1999-03-17 2000-09-29 Mitsubishi Chemicals Corp Manufacture of secondary battery
JP2013155318A (en) * 2012-01-31 2013-08-15 Daiso Co Ltd Electrolyte composition and nonaqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JPWO2020203664A1 (en) 2020-10-08
JP7378462B2 (en) 2023-11-13
KR20210146293A (en) 2021-12-03
CN114008830A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
JP6866183B2 (en) Non-aqueous electrolyte and storage device using it
JP6614146B2 (en) Non-aqueous electrolyte and power storage device using the same
JP6777087B2 (en) Non-aqueous electrolyte and storage device using it
JP6222106B2 (en) Non-aqueous electrolyte and power storage device using the same
JP5907070B2 (en) Non-aqueous electrolyte for lithium battery or lithium ion capacitor and electrochemical device using the same
US20110045361A1 (en) Nonaqueous electrolyte for lithium battery and lithium battery using same
KR20140083031A (en) Non-aqueous electrolyte solution and electricity-storage device using same
KR20140082978A (en) Non-aqueous electrolyte solution and electricity-storage device using same
KR20140116154A (en) Non-aqueous electrolyte and electrical storage device using same
JP6773041B2 (en) Non-aqueous electrolyte and storage device using it
KR20140063672A (en) Nonaqueous electrolyte solution and electrochemical element using same
JP6229453B2 (en) Non-aqueous electrolyte and power storage device using the same
JP7019598B2 (en) Non-aqueous electrolyte and storage device using it
JP2023099207A (en) Nonaqueous electrolyte solution, and power storage device arranged by use thereof
JP7051422B2 (en) Non-aqueous electrolyte and storage device using it
JP7082613B2 (en) Non-aqueous electrolyte and storage device using it
JP2019207890A (en) Non-aqueous electrolyte and power storage device using the same
JP7105077B2 (en) NONAQUEOUS ELECTROLYTE AND POWER STORAGE DEVICE USING THE SAME
JP7378462B2 (en) Non-aqueous electrolyte for power storage devices and power storage devices using the same
JP6957179B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP7051512B2 (en) Cations for non-aqueous electrolytes, non-aqueous electrolytes, storage devices using them, and phosphonium salts used for them.
JP6710804B1 (en) Non-aqueous electrolyte and power storage device using the same
WO2020241506A1 (en) Non-aqueous electrolyte solution and power storage device using same
JP2022063588A (en) Nonaqueous electrolyte and power storage device using the same
JP2022024391A (en) Nonaqueous electrolyte solution, and power storage device arranged by use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511936

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784998

Country of ref document: EP

Kind code of ref document: A1