WO2020202469A1 - Electric motor control device - Google Patents

Electric motor control device Download PDF

Info

Publication number
WO2020202469A1
WO2020202469A1 PCT/JP2019/014654 JP2019014654W WO2020202469A1 WO 2020202469 A1 WO2020202469 A1 WO 2020202469A1 JP 2019014654 W JP2019014654 W JP 2019014654W WO 2020202469 A1 WO2020202469 A1 WO 2020202469A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
electric motors
electric
motors
control device
Prior art date
Application number
PCT/JP2019/014654
Other languages
French (fr)
Japanese (ja)
Inventor
瑞貴 山本
康彦 和田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021511831A priority Critical patent/JPWO2020202469A1/en
Priority to PCT/JP2019/014654 priority patent/WO2020202469A1/en
Publication of WO2020202469A1 publication Critical patent/WO2020202469A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/54Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting two or more dynamo-electric motors
    • H02P1/58Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting two or more dynamo-electric motors sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another

Definitions

  • the present invention relates to an electric motor control device that controls a plurality of electric motors.
  • the load may be concentrated on some of the plurality of motors. Therefore, a motor having a larger load than other motors cannot be used at an earlier stage than the normal life. Other motors with a light load can be used, but the motors that have reached the end of their life must be replaced at an early stage.
  • the present invention has been made to solve the above-mentioned problems, and provides an electric motor control device capable of operating all of a plurality of electric motors for a longer period of time.
  • the electric motor control device is provided corresponding to a power conversion device that supplies a voltage to a plurality of electric motors connected in parallel to each other and the plurality of electric motors, and is in a connected state and a disconnected state with the power conversion device.
  • the controller includes an information holding means for storing the operation history of the plurality of electric motors, and the information holding means for controlling the power conversion device and the plurality of relays. It has a switching control means for controlling the plurality of relays so that the load of each electric motor is equalized based on the operation history of each electric motor to be stored.
  • the load of the electric motors can be equalized by distributing the load to the plurality of electric motors. Therefore, a plurality of electric motors can be operated evenly and longer, and the life of all the electric motors can be extended.
  • FIG. 7 It is a block diagram which shows one configuration example of the electric motor control device which concerns on Embodiment 1.
  • FIG. It is a figure which shows one configuration example of the power conversion apparatus shown in FIG.
  • FIG. 7 It is a block diagram which shows one configuration example of the electric motor control device which concerns on Embodiment 2.
  • FIG. 1 It is a flowchart which shows an example of the operation procedure of the electric motor control device shown in FIG. It is a figure for demonstrating an example of the relay switching control shown in FIG. It is a block diagram which shows one configuration example of the electric motor control device which concerns on Embodiment 3. It is a functional block diagram which shows one configuration example of the controller shown in FIG. It is a block diagram which shows one structural example of the machine learning means shown in FIG. It is a flowchart which shows an example of the operation procedure of the electric motor control device shown in FIG. It is a flowchart which shows an example of the operation procedure of the process of step S304 shown in FIG. It is a block diagram which shows one configuration example of the electric motor control device which concerns on Embodiment 4. FIG.
  • FIG. 1 is a block diagram showing a configuration example of the electric motor control device according to the first embodiment.
  • the electric motor control device 1 includes a power conversion device 3 that converts a DC voltage into a three-phase AC voltage, relays 4a and 4b connected in parallel with the power conversion device 3, and a power conversion device 3. It has a controller 10 that controls the relays 4a and 4b.
  • the three-phase power line 21 connected to the output side of the power conversion device 3 is branched into two, one of the branched three-phase power lines 21a is connected to the relay 4a, and the other branched three-phase power line 21b is connected to the relay 4b. Has been done.
  • An electric motor 6a is connected to the relay 4a via a three-phase power line 22a.
  • An electric motor 6b is connected to the relay 4b via a three-phase power line 22b.
  • a fan 5a is attached to the rotating shaft of the electric motor 6a.
  • a fan 5b is attached to the rotating shaft of the electric motor 6b.
  • the electric motors 6a and 6b are electric motors having equivalent specifications and performance. Therefore, the electric motors 6a and 6b have the same life as the service life.
  • the relay 4a has an on state in which the electric motor 6a is electrically connected to the power conversion device 3 and an off state in which the electric motor 6a is electrically disconnected from the power conversion device 3 according to the switching instruction signal SW received from the controller 10. Switch between the two states.
  • the relay 4b has an on state in which the electric motor 6b is electrically connected to the power converter 3 and an off state in which the electric motor 6b is electrically disconnected from the power converter 3 according to the switching instruction signal SW received from the controller 10. Switch between the two states.
  • Each of the motors 6a and 6b has a rotor and a stator not shown in the figure.
  • the stator has a U-phase, V-phase and W-phase three-phase winding.
  • a permanent magnet is provided on the rotor.
  • a three-phase voltage is applied from the power converter 3 to each electric motor, and a current flows through the windings, so that the stator generates a rotating magnetic field around the rotor.
  • each of the electric motors 6a and 6b may be provided with a magnetic sensor for detecting the position of the rotor. Further, instead of the magnetic sensor, a current sensor may be provided on each of the three-phase power lines 22a and 22b. These sensors are connected to the controller 10 via signal lines (not shown).
  • a command CS regarding the operation of the electric motors 6a and 6b is input to the controller 10 from a higher-level control device (not shown in the figure).
  • the command CS is, for example, a stop command and a start command for single drive or both drive for the electric motors 6a and 6b.
  • the command CS may include a speed command value which is a command value of the rotation speed with respect to the electric motor to be driven.
  • the electric motors 6a and 6b are provided in, for example, an air conditioner having a refrigerant circuit including a heat exchanger.
  • the electric motors 6a and 6b serve to supply air to one heat exchanger.
  • the control device (not shown) that controls the air conditioner corresponds to a higher-level control device that sends a command CS to the controller 10.
  • FIG. 2 is a diagram showing a configuration example of the power conversion device shown in FIG. FIG. 2 shows a case where the power conversion device 3 shown in FIG. 1 is an inverter 25.
  • the power supply 7 is connected to the inverter 25.
  • the inverter 25 converts the DC voltage output from the power supply 7 into a three-phase AC voltage.
  • the inverter 25 includes three sets of a pair of switching elements corresponding to the three phases of the U phase, the V phase, and the W phase.
  • the inverter 25 has a switching element 51 connected to the positive electrode side of the power supply 7 and a switching element 52 connected to the negative electrode side of the power supply 7 with respect to the U phase.
  • a backflow prevention element 61 is connected in parallel to the switching element 51, and a backflow prevention element 62 is connected in parallel to the switching element 52.
  • the inverter 25 has a switching element 53 connected to the positive electrode side of the power supply 7 and a switching element 54 connected to the negative electrode side of the power supply 7 with respect to the V phase.
  • the backflow prevention element 63 is connected in parallel to the switching element 53, and the backflow prevention element 64 is connected in parallel to the switching element 54.
  • the inverter 25 has a switching element 55 connected to the positive electrode side of the power supply 7 and a switching element 56 connected to the negative electrode side of the power supply 7 with respect to the W phase.
  • the backflow prevention element 65 is connected in parallel to the switching element 55, and the backflow prevention element 66 is connected in parallel to the switching element 56.
  • FIG. 3 is a functional block diagram showing a configuration example of the controller shown in FIG.
  • the controller 10 has a memory 12 for storing a program and a CPU (Central Processing Unit) 11 for executing processing according to the program.
  • the controller 10 includes a power control means 13 that controls the output of the inverter 25, an information holding means 14 that stores the operation history of the electric motors 6a and 6b, and a switching control means that controls the relays 4a and 4b. It has 15 and a timer 16 for measuring time.
  • the information holding means 14 is provided in the memory 12.
  • the power control means 13 and the switching control means 15 are configured by the CPU 11 executing the program.
  • the power control means 13 generates PWM (Pulse Width Modulation) control for the inverter 25 by generating a three-phase voltage command value corresponding to the speed command value included in the command CS and outputting it to the inverter 25.
  • PWM Pulse Width Modulation
  • the power control means 13 grasps the rotation speed of the electric motor to be driven based on the detection value of the magnetic sensor of each electric motor. To do.
  • the power control means 13 grasps the rotation speed of the electric motor to be driven by performing sensorless vector control using the detected values of these current sensors. To do.
  • the power control means 13 notifies the switching control means 15 of the information of the command CS.
  • the switching control means 15 measures the on-state time of each of the relays 4a and 4b with the timer 16 and records the measurement result in the information holding means 14.
  • the measurement time in the on state of the relay 4a corresponds to the drive time Tda of the electric motor 6a
  • the measurement time in the on state of the relay 4b corresponds to the drive time Tdb of the electric motor 6b.
  • the information holding means 14 stores the driving time of the electric motors 6a and 6b as the operation history of the electric motors 6a and 6b.
  • the drive time of each electric motor stored in the information holding means 14 is updated at any time according to the operating state of each of the electric motors 6a and 6b.
  • the switching control means 15 controls the relays 4a and 4b so that the load of each electric motor is equalized based on the operation history of each electric motor stored in the information holding means 14.
  • FIG. 4 is a table showing an example of switching control performed by the switching control means shown in FIG. This table is stored in the information holding means 14.
  • the switching control means 15 compares the drive time Tda of the electric motor 6a with the drive time Tdb of the electric motor 6b. As a result of comparison, when Tda> Tdb, the switching control means 15 transmits the switching instruction signal SW instructing the off state to the relay 4a, and transmits the switching instruction signal SW instructing the on state to the relay 4b. In this case, since the relay 4a is turned off and the relay 4b is turned on, electric power is supplied from the inverter 25 to the electric motor 6b, and the electric motor 6b is driven independently.
  • the switching control means 15 transmits a switching instruction signal SW instructing the on state to the relay 4a when Tda ⁇ Tdb, and indicates a switching instruction signal in the off state.
  • the SW is transmitted to the relay 4b.
  • the switching control means 15 turns the relay 4a on and the relay 4b off, but turns the relay 4a off and sets the relay 4b. It may be turned on.
  • the switching control means 15 transmits a switching instruction signal SW instructing the ON state to the relays 4a and 4b.
  • a switching instruction signal SW instructing the ON state to the relays 4a and 4b.
  • FIG. 1 shows a case where the motors to be controlled are two electric motors 6a and 6b, but the number of electric motors to be controlled is not limited to two and may be three or more.
  • the switching control means 15 corresponds to the electric motors corresponding to the number of some of the three or more electric motors in ascending order of load.
  • the relay may be turned on and the relay corresponding to the other motor may be controlled to be turned off.
  • the switching control means 15 turns on the relay corresponding to the two electric motors having the smaller load among the three electric motors.
  • the relay corresponding to the remaining one electric motor is controlled to the off state.
  • FIG. 5 is a flowchart showing an example of the operation procedure of the electric motor control device shown in FIG.
  • the switching control means 15 determines whether or not the power control means 13 intends to operate the inverter 25 (step S101). When the power control means 13 is trying to operate the inverter 25, the switching control means 15 is trying to drive the electric motor 6a or 6b independently from the information of the command CS notified from the power control means 13. Whether or not it is determined (step S102).
  • the switching control means 15 compares the drive time Tda with the drive time Tdb (step S103). As a result of comparison, when Tda> Tdb (step S104), the switching control means 15 turns the relay 4a into an off state and turns the relay 4b into an on state (step S105). After that, when the power control means 13 starts the operation of the inverter 25, the electric motor 6b starts driving, but the electric motor 6a maintains the stopped state.
  • the switching control means 15 turns the relay 4a into the on state and the relay 4b into the off state (step S106). After that, when the power control means 13 starts the operation of the inverter 25, the electric motor 6a starts driving, but the electric motor 6b keeps the stopped state. On the other hand, if the inverter 25 does not operate as a result of the determination in step S101, the switching control means 15 keeps both the relays 4a and 4b in the off state (step S108). Further, as a result of the determination in step S102, the switching control means 15 turns on the relays 4a and 4b when the power control means 13 intends to drive both the electric motors 6a and 6b.
  • FIG. 6 is a flowchart showing another example of the operation procedure of the electric motor control device shown in FIG. FIG. 6 also shows the operation when neither of the electric motors 6a and 6b is operating.
  • the switching control means 15 operates in the cycle T1 according to the procedure shown in FIG.
  • the cycle T1 is, for example, 30 minutes to 1 hour.
  • the switching control means 15 determines whether or not the inverter 25 is operating (step S121). When the inverter 25 is in operation, the switching control means 15 determines whether or not the electric motor 6a or 6b is driven independently (step S122). The switching control means 15 can determine whether or not the electric motor 6a or 6b is independently driven from the current states of the relays 4a and 4b.
  • the switching control means 15 compares the drive time Tda with the drive time Tdb (step S123). As a result of comparison, when Tda> Tdb (step S124), the switching control means 15 turns off the relay 4a and turns on the relay 4b at the timing when the power control means 13 stops the operation of the inverter 25. (Step S125). After that, when the power control means 13 causes the inverter 25 to start operating, the electric motor 6b starts driving instead of the electric motor 6a.
  • step S124 when Tda ⁇ Tdb, the switching control means 15 turns the relay 4a on and the relay 4b off at the timing when the power control means 13 stops the operation of the inverter 25. (Step S126). After that, when the power control means 13 causes the inverter 25 to start operating, the electric motor 6a starts driving instead of the electric motor 6b. When the inverter 25 is not operating, the switching control means 15 keeps both the relays 4a and 4b in the off state (step S128). Further, the switching control means 15 keeps the relays 4a and 4b in the ON state when both the electric motors 6a and 6b are driven (step S127).
  • the switching control means 15 drives the electric motor at the timing when the inverter 25 resumes the output after the inverter 25 temporarily stops the output. Switch to a shorter motor. As a result, the load is distributed to the electric motors 6a and 6b, and the life of each of the electric motors 6a and 6b can be extended.
  • the electric motor control device 1 of the first embodiment is a power conversion device 3 that supplies a voltage to the electric motors 6a and 6b connected in parallel to each other, and a plurality of relays 4a that switch between a connection state and a disconnection state of the power conversion device 3. And 4b and a controller 10.
  • the controller 10 has an information holding means 14 that stores the operation history of the electric motors 6a and 6b, and a plurality of relays 4a so that the load of each electric motor is equalized based on the operation history of each electric motor stored by the information holding means 14. And a switching control means 15 for controlling 4b.
  • the load of the electric motors can be equalized by distributing the drive time related to the load for the plurality of electric motors 6a and 6b. Therefore, the electric motors 6a and 6b can be operated evenly and longer, and the life of all the electric motors 6a and 6b can be extended. Further, by driving the plurality of electric motors 6a and 6b in a distributed manner, it is possible to prevent some of the electric motors having a large load from being forcibly driven and to prevent the drive efficiency from being lowered. As a result, the energy saving effect is improved.
  • a plurality of motors are classified into a traction motor and a sub-motor, the traction motor is normally driven independently, and when a large driving force is required, the traction motor and the sub-motor are used. There is a way to drive both.
  • the traction motor is selected to have a longer life than the sub-motor.
  • the specifications of the traction motor have a life of 15 years
  • the specifications of the auxiliary motor have a life of 10 years.
  • the performance of multiple electric motors may have to be the same due to restrictions on devices equipped with multiple electric motors and manufacturing costs.
  • the purchase cost may be lower due to the mass production effect if more electric motors with the same performance are purchased than if two types of electric motors having different performances are purchased from the electric motor manufacturer for each type.
  • the performance of multiple motors is the same, if the life of the motors is 15 years, all motors must be driven for 15 years or more regardless of the load of any motor. It is necessary to select one with a life of 15 years or more.
  • the electric motor control device 1 of the first embodiment controls to distribute the loads of a plurality of electric motors. Therefore, in the first embodiment, by controlling the load of the plurality of electric motors having a life of 10 years to be distributed and driven, the life of all of the plurality of electric motors can be apparently set to 15 years. As a result, the cost cost of the device equipped with the plurality of electric motors can be reduced as compared with the case of selecting the one having a life of 15 years for all of the plurality of electric motors.
  • Embodiment 2 the parameters used for the load determination of the electric motors 6a and 6b are different from those in the first embodiment.
  • the same reference numerals are given to the same configurations as those described in the first embodiment, and detailed description thereof will be omitted.
  • FIG. 7 is a block diagram showing a configuration example of the electric motor control device according to the second embodiment.
  • FIG. 8 is a functional block diagram showing a configuration example of the controller shown in FIG. 7.
  • the electric motor control device 1a shown in FIG. 7 is further provided with current sensors 31a and 31b and rotation detectors 32a and 32b as compared with the configuration shown in FIG.
  • the current sensor 31a is provided on the three-phase power line 22a
  • the current sensor 31b is provided on the three-phase power line 22b.
  • the rotation detector 32a is provided in the electric motor 6a
  • the rotation detector 32b is provided in the electric motor 6b.
  • the measuring unit 30 shown in FIG. 8 has a configuration including current sensors 31a and 31b and rotation detectors 32a and 32b.
  • the current sensor 31a detects the current flowing through the three-phase power line 22a.
  • the current sensor 31b detects the current flowing through the three-phase power line 22b.
  • the rotation detector 32a detects the rotation speed [rpm] of the electric motor 6a.
  • the rotation detector 32b detects the rotation speed [rpm] of the electric motor 6b.
  • the rotation detectors 32a and 32b have, for example, a photo interrupter.
  • a disk having a slit is provided on the rotation shaft of the electric motor 6a, and the photo interrupter detects light passing through the slit.
  • the rotation detector 32a calculates the rotation speed of the electric motor 6a by counting the number of times light is detected by the photo interrupter in one minute.
  • Each of the current sensors 31a and 31b is connected to the controller 10a via a signal line, and each of the rotation detectors 32a and 32b is connected to the controller 10a via a signal line. It is omitted as shown in.
  • Each of the current sensors 31a and 31b outputs the detected current value to the controller 10a.
  • Each of the rotation detectors 32a and 32b outputs the detected rotation speed to the controller 10a.
  • the controller 10a has a calculation means 17 for calculating a value indicating the load of each electric motor based on the operation history of each of the electric motors 6a and 6b. ..
  • the calculation means 17 calculates the current integral value INTIA by time-integrating the value obtained by multiplying the drive time Tda and the current detected by the current sensor 31a for the electric motor 6a.
  • the calculation means 17 calculates the rotation speed integration value INTra by time-integrating the value obtained by multiplying the drive time Tda and the rotation speed detected by the rotation detector 32a with respect to the electric motor 6a.
  • the calculation means 17 also uses the drive time Tdb, the current value detected by the current sensor 31b, and the rotation speed detected by the rotation detector 32b for the electric motor 6b as well as the current integral value INTib and the electric motor 6a. Calculate the rotation speed integral value INTrb.
  • the switching control means 15 controls the relays 4a and 4b of the electric motors 6a and 6b so that the load of each electric motor is equalized based on one or both of the current integrated value and the rotation speed integrated value. For example, when the current integral value is used for determining the load, the switching control means 15 compares the current integral value INTIA and the current integral value INTib, and when INTia> INTib, the relay 4a is turned off and the relay 4b is turned on. Turn it on.
  • the power control means 13 grasps the rotation speeds of the electric motors 6a and 6b by performing sensorless vector control using the detected values of the current sensors 31a and 31b. May be good.
  • the rotation detectors 32a and 32b may be photo interrupters.
  • the calculation means 17 may calculate the rotation speed by counting the number of times light is detected by the photo interrupter in one minute.
  • FIG. 9 is a flowchart showing an example of the operation procedure of the electric motor control device shown in FIG. 7. Since steps S207 and S208 shown in FIG. 9 are similar to the operations of steps S127 and S128 described with reference to FIG. 6, detailed description thereof will be omitted in the second embodiment.
  • the switching control means 15 operates in the cycle T1 according to the procedure shown in FIG.
  • the switching control means 15 determines whether or not the inverter 25 is operating (step S201).
  • the switching control means 15 determines whether or not the electric motor 6a or 6b is driven independently (step S202).
  • the switching control means 15 can determine whether or not the electric motor 6a or 6b is independently driven from the current states of the relays 4a and 4b.
  • the switching control means 15 compares the current integral value INTIA and the current integral value INTib calculated by the calculation means 17 (step S203). As a result of comparison, when INTia> INTib (step S204), the switching control means 15 turns off the relay 4a and turns on the relay 4b at the timing when the power control means 13 stops the operation of the inverter 25. (Step S205). After that, when the power control means 13 causes the inverter 25 to start operating, the electric motor 6b starts driving instead of the electric motor 6a.
  • step S204 when INTia ⁇ INTib, the switching control means 15 turns the relay 4a on and the relay 4b off at the timing when the power control means 13 stops the operation of the inverter 25. (Step S206). After that, when the power control means 13 causes the inverter 25 to start operating, the electric motor 6a starts driving instead of the electric motor 6b.
  • control based on the flow shown in FIG. 5 may be performed. Further, the control when the value used for the load determination of the electric motors 6a and 6b is the current integrated value has been described with reference to FIG. 9, but the value used for the load determination may be the rotation speed integrated value, and the current may be used. It may be both an integral value and a rotation speed integral value.
  • FIG. 10 is a diagram for explaining an example of the relay switching control shown in FIG.
  • the horizontal axis of the graph shown in FIG. 10 is time, and the vertical axis is the current value or rotation speed of the electric motors 6a and 6b.
  • the vertical axis of the graph is the current value of the electric motors 6a and 6b.
  • the solid line shows the current value of the motor 6a
  • the broken line shows the current value of the motor 6b.
  • the switching control means 15 turns the relay 4a on and the relay 4b off. From time t0 to time t1, the electric motor 6a is driven independently. In the period from time t0 to time t1, the area surrounded by the time axis and the solid line is the current integral value INTIA. Subsequently, during the stop period toff1, the switching control means 15 also turns on the relay 4b. From time t2, both the electric motors 6a and 6b are driven. In the period from time t2 to time t3, the area surrounded by the time axis and the solid line is the current integral value INTia, and the area surrounded by the time axis and the broken line is the current integral value INTib.
  • the switching control means 15 When any of the electric motors 6a and 6b is driven independently from the time t4 after the time t3 has elapsed, the switching control means 15 has the current integral value INTia and the current for the period from the time t0 to the time t3. Compare with the integrated value INTib. As shown in FIG. 10, the load of the electric motor 6a is larger than that of the electric motor 6b by the amount of the integrated current value from the time t0 to the time t1. Therefore, during the stop period toff2, the switching control means 15 turns the relay 4a into an off state and turns the relay 4b into an on state. The electric motor 6b is independently driven from time t4 to time t5.
  • the load of each electric motor is equalized for the electric motors 6a and 6b based on one or both of the current integrated value and the rotation speed integrated value calculated by the calculation means 17.
  • the relays 4a and 4b are controlled so as to be.
  • the lengths of the plurality of electric motors are obtained by distributing the load so that one or both of the current integrated value and the rotation speed integrated value related to the load are equal for the plurality of electric motors. The life can be extended.
  • Embodiment 3 the types of parameters used for load determination of the electric motors 6a and 6b are increased as compared with the case of the second embodiment.
  • the same reference numerals are given to the same configurations as those described in the first and second embodiments, and detailed description thereof will be omitted.
  • the drive time, the current integrated value, and the rotation speed integrated value described in the first and second embodiments are the main parameters for determining whether or not the load applied to the electric motor is large, but cannot be detected by these parameters. There is also a load. For example, even if the driving time of the electric motor is short, if the sound generated by the electric motor is loud, the user can determine that the electric motor has an abnormality and the load applied to the electric motor is large.
  • the effect on the life of the motors may differ for each motor.
  • the electric motors 6a and 6b are installed in a room, the electric motors 6a are located near the window, but the electric motors 6b are located away from the window.
  • the electric motor 6a is more susceptible to changes in the outside air temperature than the electric motor 6b.
  • the electric motor 6a is more susceptible to changes in the humidity of the outside air than the electric motor 6b.
  • the sound generated by the electric motor, the winding resistance value of the electric motor, the power consumption of the electric motor, the temperature and humidity of the air surrounding the electric motor, and the current value of the electric motor described in the first embodiment are used as state variables related to the load.
  • the electric motor control device of the third embodiment calculates the degree of fatigue from the state variables for each electric motor. Further, the electric motor control device improves the calculation accuracy of the fatigue degree of the electric motor by performing machine learning about the fatigue degree calculation formula.
  • FIG. 11 is a block diagram showing a configuration example of the electric motor control device according to the third embodiment.
  • FIG. 12 is a functional block diagram showing a configuration example of the controller shown in FIG.
  • the electric motor control device 1b shown in FIG. 11 is further provided with temperature sensors 33a and 33b, humidity sensors 34a and 34b, and sound sensors 35a and 35b.
  • the temperature sensor 33a, the humidity sensor 34a, and the sound sensor 35a are provided in the electric motor 6a.
  • the temperature sensor 33b, the humidity sensor 34b, and the sound sensor 35b are provided in the electric motor 6b.
  • the temperature sensors 33a and 33b, the humidity sensors 34a and 34b, and the sound sensors 35a and 35b are connected to the controller 10b via a signal line. There is.
  • the temperature sensors 33a and 33b detect the temperature and output the detected value to the controller 10b.
  • the humidity sensors 34a and 34b detect the humidity and output the detected value to the controller 10b.
  • the sound sensors 35a and 35b detect the loudness and frequency of the sound, and output the detected values to the controller 10b.
  • the measuring unit 30a shown in FIG. 12 includes current sensors 31a and 31b, rotation detectors 32a and 32b, temperature sensors 33a and 33b, humidity sensors 34a and 34b, and sound sensors 35a and 35b.
  • the information holding means 14 stores a fatigue degree calculation formula for calculating the fatigue degree of each electric motor using the state variables related to the load for each of the electric motors 6a and 6b.
  • the information holding means 14 stores a plurality of reference fatigue degrees indicating aged fatigue degrees that differ depending on the performance of the electric motors 6a and 6b. Since the reference fatigue degree is the aged fatigue degree, for example, it is the information of the graph showing the time-series change of the fatigue degree with the driving time or the usage period as the horizontal axis and the fatigue degree as the vertical axis.
  • the information holding means 14 stores a plurality of reference fatigue degrees having different slopes indicating changes in the fatigue degree per unit time.
  • the standard fatigue level may differ depending on the environment in which the electric motors 6a and 6b are installed. For example, even if the motors have the same performance, the standard fatigue level when used in a warm environment all year round and the standard fatigue level when used in a cold environment all year round may be different. ..
  • a plurality of candidate reference fatigue degrees are stored in the information holding means 14 according to the environment in which the electric motors 6a and 6b are installed.
  • the plurality of reference fatigue degrees may be stored in the information holding means 14 in the manufacturing process of the electric motor control device 1b according to the environment in which the electric motors 6a and 6b are installed, and information is provided when the electric motors 6a and 6b are installed. It may be stored in the holding means 14.
  • the information holding means 14 stores the drive time, the current, and the rotation speed described in the first and second embodiments in time series as state variables for each of the electric motors 6a and 6b.
  • the information holding means 14 stores sound information detected by the sound sensors 35a and 35b, the temperature detected by the temperature sensors 33a and 33b, and the humidity detected by the humidity sensors 34a and 34b in time series as state variables. To do. Further, the information holding means 14 stores the winding resistance value and the power consumption calculated by the calculating means 17a for each of the electric motors 6a and 6b in time series as state variables.
  • the calculation means 17a of the third embodiment calculates the winding resistance value and the power consumption of each electric motor based on the currents of the electric motors 6a and 6b detected by the measuring unit 30a. For example, when calculating the power consumption of the electric motor 6a, the calculation means 17a acquires the voltage value applied to the electric motor 6a from the power control means 13 and reads out the current value detected by the current sensor 31a from the information holding means 14. The power consumption is calculated using the voltage value and the current value.
  • the calculation means 17a executes a measurement mode for calculating the winding resistance values of the electric motors 6a and 6b by using, for example, a time zone in which the electric motors 6a and 6b are not used.
  • the calculation means 17a causes the switching control means 15 to turn on the relay 4a and turn off the relay 4b.
  • the calculation means 17a sequentially changes the combination of two of the three phases of the U phase, the V phase, and the W phase via the switching control means 15, and puts the two phases of each set on both ends for a certain period of time. , Notifies the power control means 13 to apply the determined voltage.
  • the calculation means 17a reads the current flowing through the two phases of each set from the information holding means 14, solves three sets of simultaneous equations including the voltage, the current, and the winding resistance value, and calculates the winding resistance value of the three phases. To do.
  • the calculation means 17a uses one or more state variables and a fatigue degree calculation formula among the plurality of state variables stored in the information holding means 14 for the electric motors 6a and 6b to obtain the fatigue degree FATa of the electric motor 6a.
  • the fatigue level FATb of the electric motor 6b is calculated.
  • the calculation means 17a has a machine learning means 18 for updating the fatigue degree calculation formula.
  • FIG. 13 is a block diagram showing a configuration example of the machine learning means shown in FIG.
  • the input is a state variable and the output is the degree of fatigue.
  • the machine learning means 18 has a state variable acquisition unit 81, a function update unit 82, an intention test unit 83, and a reward calculation unit 84.
  • the state variable acquisition unit 81 acquires a state variable from the information holding means 14 via the calculation means 17a, and passes the acquired state variable to the function update unit 82.
  • the function update unit 82 substitutes the updated state variable into the fatigue degree calculation formula, calculates the fatigue degree, and outputs it to the intention test unit 83. Further, when the reward received from the reward calculation unit 84 is small, the function update unit 82 updates the current fatigue degree calculation formula so that the calculated fatigue degree approaches the reference fatigue degree.
  • the intention test unit 83 outputs the degree of fatigue received from the function update unit 82, and predicts the life of the electric motor based on the degree of fatigue. Further, the intention test unit 83 calculates an error between the predicted life and the reference life obtained from the reference fatigue degree.
  • the reward calculation unit 84 calculates a reward that is inversely proportional to the calculated error, sets the calculated reward as the degree of fatigue, and outputs the calculated reward to the function update unit 82.
  • the machine learning means 18 selects one reference fatigue degree from a plurality of reference fatigue degrees according to the environment in which the electric motors 6a and 6b are used, and the fatigue degree calculated from the fatigue degree calculation formula is the selected reference. Update the fatigue calculation formula so that it approaches the fatigue level. For example, the machine learning means 18 extracts a characteristic variable that has a great influence on the degree of fatigue of the electric motors 6a and 6b from a plurality of state variables, and increases the weighting of the extracted characteristic variable. The weighting of state variables that are not feature variables may be set to zero. Of the plurality of state variables, at least one variable extracted by the machine learning means 18 as a feature variable may remain in the fatigue degree calculation formula.
  • FIG. 14 is a flowchart showing an example of the operation procedure of the electric motor control device shown in FIG. Since steps S309 and S310 shown in FIG. 14 are similar to the operations of steps S127 and S128 described with reference to FIG. 6, detailed description thereof will be omitted in the third embodiment.
  • the switching control means 15 operates in the cycle T1 according to the procedure shown in FIG.
  • the switching control means 15 determines whether or not the inverter 25 is operating (step S301).
  • the switching control means 15 determines whether or not the electric motor 6a or 6b is driven independently (step S302).
  • the switching control means 15 can determine whether or not the electric motor 6a or 6b is independently driven from the current states of the relays 4a and 4b.
  • step S303 When the electric motor 6a or 6b is driven independently, the calculation means 17a reads out the state variable from the information holding means 14 (step S303).
  • the state variables read out in step S303 are state variables used in the fatigue degree calculation formula corresponding to the electric motors 6a and 6b, and the number of the state variables may differ depending on the electric motor to be controlled.
  • one of the state variables of the sound generated in the motor, winding resistance value, power consumption, temperature, humidity, current value of the motor, rotation speed, and drive time is read out. It shall be one.
  • step S304 the machine learning means 18 calculates the degree of fatigue of each of the electric motors 6a and 6b (step S305).
  • step S304 the machine learning process (step S304) and the fatigue degree calculation process (step S305) are shown in separate steps, but these processes are shown in one step as processes for state variables. You may. The details of the process in step S304 will be described later.
  • the machine learning means 18 may execute the machine learning process (step S304) shown in FIG. 14 in a cycle T2 different from the cycle T1. In this case, step S304 may not be incorporated into the procedure shown in FIG.
  • the calculation means 17a may calculate the fatigue degree FATa of the electric motor 6a and the fatigue degree FATb of the electric motor 6b by using the fatigue degree calculation formula updated by the machine learning means 18.
  • the switching control means 15 compares the fatigue degree FATa and the fatigue degree FATb calculated by the calculation means 17a (step S306). As a result of comparison, when FATA> FATb, the switching control means 15 turns the relay 4a off and the relay 4b on at the timing when the power control means 13 stops the operation of the inverter 25 (step). S307). After that, when the power control means 13 causes the inverter 25 to start operating, the electric motor 6b starts driving instead of the electric motor 6a.
  • step S306 when FATa ⁇ FATb, the switching control means 15 turns the relay 4a on and the relay 4b off at the timing when the power control means 13 stops the operation of the inverter 25. (Step S308). After that, when the power control means 13 causes the inverter 25 to start operating, the electric motor 6a starts driving instead of the electric motor 6b.
  • the motor control device 1b calculates the fatigue level by using a fatigue level calculation formula including one or more state variables corresponding to the performance and operating conditions of the motors 6a and 6b among a plurality of state variables related to the load of the motor. , The degree of fatigue of each electric motor can be calculated more appropriately.
  • the operation procedure of the switching control means 15 has been described based on the flow shown in FIG. 6, but the control based on the flow shown in FIG. 5 may be performed.
  • FIG. 15 is a flowchart showing an example of the operation procedure of the process of step S304 shown in FIG.
  • the flow shown in FIG. 15 is an example of reinforcement learning.
  • the state variable acquisition unit 81 acquires the latest state variable from the information holding means 14 and passes it to the function update unit 82 (step S351).
  • the function update unit 82 determines whether or not the processing of the state variable received from the state variable acquisition unit 81 has been completed (step S352). When the processing of the state variable is not completed, the function update unit 82 substitutes the updated state variable into the fatigue degree calculation formula to calculate the fatigue degree (step S353).
  • the function update unit 82 passes the fatigue level calculated by the updated state variable to the intention test unit 83.
  • the intention test unit 83 determines whether or not the processing has been completed for the fatigue level passed from the function update unit 82 (step S354). When the processing for the fatigue degree is not completed, the intention test unit 83 outputs the fatigue degree received from the function update unit 82. Further, the intention verification unit 83 predicts the life of the electric motor based on the received fatigue level (step S355). Subsequently, the intention test unit 83 calculates an error between the predicted life and the reference life obtained from the reference fatigue degree. The reward calculation unit 84 calculates a reward that is inversely proportional to the calculated error (step S356). Subsequently, the reward calculation unit 84 sets the calculated reward as the fatigue level and outputs it to the function update unit 82 as an allocation of the intention test (step S357).
  • the function update unit 82 receives the fatigue degree for which the reward is set from the reward calculation unit 84, and if the reward is large, the function update unit 82 maintains the fatigue degree calculation formula as it is (step S352). On the other hand, when the reward received from the reward calculation unit 84 is small, the function update unit 82 updates the current fatigue degree calculation formula so that the calculated fatigue degree approaches the reference fatigue degree.
  • the fatigue degree calculation formula is optimized so that the fatigue degree predicted by the fatigue degree calculation formula approaches the actual fatigue degree of the electric motors 6a and 6b.
  • the electric motor control device 1b of the third embodiment calculates the degree of fatigue of the electric motors 6a and 6b by using one or more state variables and a fatigue degree calculation formula among a plurality of state variables, and fatigue of each electric motor.
  • the relays 4a and 4b are controlled so that the degrees are equal.
  • the fatigue degree of each of the electric motors 6a and 6b is calculated by using the fatigue degree calculation formula optimized by machine learning, so that the calculation accuracy of the fatigue degree of each electric motor is improved. To do. Therefore, since the loads of the electric motors 6a and 6b are distributed based on a value close to the actual fatigue degree, the life of the electric motors 6a and 6b can be extended more evenly.
  • Embodiment 4 the abnormality and the replacement timing of the electric motors 6a and 6b are reported based on the fatigue degree of the electric motors 6a and 6b calculated in the third embodiment.
  • the same reference numerals are given to the same configurations as those described in the first to third embodiments, and detailed description thereof will be omitted.
  • the case where the electric motors 6a and 6b are provided in the air conditioner will be described.
  • FIG. 16 is a block diagram showing a configuration example of the electric motor control device according to the fourth embodiment.
  • FIG. 17 is a functional block diagram showing a configuration example of the controller shown in FIG.
  • the controller 10c is communicated with the remote controller 71 of the air conditioner.
  • the communication connection means between the controller 10c and the remote controller 71 may be wired or wireless.
  • the remote controller 71 has a display unit 72. Although not shown in the figure, the remote controller 71 includes a microcomputer and an operation unit.
  • the remote controller 71 transmits air conditioning parameters such as a set temperature and an air volume input by the user to a controller (not shown) of the air conditioner.
  • the remote controller 71 displays the operating state of the air conditioner on the display unit 72.
  • the controller 10c is connected to the network 100 via one or both of wired and wireless.
  • a server 90 operated by a maintenance company for an air conditioner is connected to the network 100.
  • the server 90 has a storage unit 92 and a control unit 91.
  • the control unit 91 has a memory and a CPU (not shown in the figure), and the CPU executes processing according to a program stored in the memory.
  • the storage unit 92 is, for example, an HDD (Hard Disk Drive) device.
  • the server 90 may include an operation unit for operation by a worker of a maintenance company and a display unit for displaying information stored in the storage unit 92.
  • the controller 10c has a communication means 19 that outputs the calculation result of the calculation means 17a to the outside.
  • the calculation means 17a compares the predicted fatigue level with the reference life of the electric motor 6a, and calculates the remaining time REMta until the reference life of the electric motor 6a.
  • the calculation means 17a compares the predicted fatigue level with the reference life of the electric motor 6b, and calculates the remaining time REMtb until the reference life of the electric motor 6b.
  • the calculation means 17a compares each remaining time REMt of the remaining time REMta and REMtb with the determined threshold time TPth.
  • the calculation means 17a When at least one of the remaining time REMta and REMtb, the remaining time REMt is equal to or less than the threshold time TPth, the calculation means 17a notifies the communication means 19 of the result.
  • the information holding means 14 stores the threshold time TPth.
  • the communication means 19 outputs an alarm to the remote controller 71 and the server 90 when at least one of the remaining time REMta and REMtb is equal to or less than the threshold time TPth. Further, when an abnormality occurs in any of the electric motors 6a and 6b, the communication means 19 outputs abnormality information indicating the electric motor in which the abnormality has occurred to the remote controller 71 and the server 90.
  • steps S410 and S411 shown in FIG. 18 are similar to the operations of steps S128 and S127 described with reference to FIG. 6, detailed description thereof will be omitted in the fourth embodiment. Further, since steps S401 to S405 and S416 to S418 shown in FIG. 18 are the same as the operations of steps S301 to S308 described with reference to FIG. 14, detailed description thereof will be omitted in the fourth embodiment. ..
  • step S406 the calculation means 17a calculates the remaining time REMta to the reference life of the electric motor 6a and the remaining time REMtb to the reference life of the electric motor 6b based on the degree of fatigue predicted for the electric motors 6a and 6b (step S406). ..
  • the calculation means 17a determines whether or not there is an abnormality in the electric motors 6a and 6b based on the calculated remaining time REMta and REMtb (step S407). For example, when the calculation means 17a stores the remaining time REMta to be calculated in the information holding means 14 in time series, and the latest remaining time REMta is longer than the remaining time REMta finally stored in the information holding means 14. , It is determined that the electric motor 6a has an abnormality.
  • the values that serve as the criteria for determining the presence or absence of abnormalities in the electric motors 6a and 6b in step S407 are not limited to the remaining time REMta and REMtb.
  • the calculation means 17a may determine that the electric motor 6a has an abnormality, for example, when the current flowing through the current sensor 31a shows an abnormal value. Further, the calculation means 17a may be notified from the power control means 13 via the switching control means 15 of information indicating an abnormality for one or both of the electric motors 6a and 6b.
  • step S407 when the calculation means 17a determines that one or both of the electric motors 6a and 6b has an abnormality, the communication means 19 outputs the abnormality information indicating the electric motor in which the abnormality has occurred to the remote controller 71 and the server 90.
  • Step S408 a case where an abnormality occurs in the electric motor 6a will be described.
  • the remote controller 71 receives the abnormality information from the controller 10c, the remote controller 71 causes the display unit 72 to display that the abnormality has occurred in the electric motor 6a.
  • the user of the air conditioner can investigate the abnormality of the electric motor 6a and deal with it more quickly. Further, the user can request the maintenance company to repair the electric motor 6a if he / she determines that he / she cannot deal with it by himself / herself.
  • the control unit 91 stores the abnormality information in the storage unit 92. Then, the control unit 91 causes a display unit (not shown) to indicate that an abnormality has occurred in the electric motor 6a installed in the air conditioner.
  • the worker of the maintenance company recognizes that an abnormality has occurred in the electric motor 6a by looking at the contents displayed on the server 90. In this case, the worker can prepare for the repair of the electric motor 6a without contact from the user of the air conditioner. As a result, the worker can deal with the abnormality generated in the electric motor 6a more quickly.
  • step S408 the controller 10c shifts to the emergency operation mode (step S409). Specifically, when an abnormality occurs in the electric motor 6a, the switching control means 15 turns off the relay 4a corresponding to the electric motor 6a and turns on the relay 4b corresponding to the electric motor 6b that operates normally. In this case, the air conditioner can continue the air conditioning operation by driving the electric motor 6b until the electric motor 6a is repaired.
  • the calculation means 17a determines whether or not the remaining time REMta of the electric motor 6a is larger than the threshold time TPth (step S412). As a result of the determination, when REMta ⁇ TPth, the calculation means 17a notifies the communication means 19 that the remaining time REMta is equal to or less than the threshold time TPth.
  • the communication means 19 outputs an alarm including the information of the remaining time REMta to the remote controller 71 and the server 90 (step S413).
  • the remote controller 71 When the remote controller 71 receives an alarm from the controller 10c, the remote controller 71 causes the display unit 72 to display that the threshold time TPth or less has reached the end of the life of the electric motor 6a. In this case, the user of the air conditioner knows that the motor 6a is nearing the end of its life and can prepare for replacement of the motor 6a.
  • the server 90 receives an alarm from the controller 10c via the network 100, the control unit 91 stores the information included in the alarm in the storage unit 92. Then, the control unit 91 causes the display unit (not shown) to display that the threshold time TPth or less has reached the end of the life of the electric motor 6a. By looking at the contents displayed on the server 90, the worker of the maintenance company knows that the life of the electric motor 6a is near and can prepare for the replacement of the electric motor 6a.
  • the calculation means 17a determines whether or not the remaining time REMtb of the electric motor 6b is larger than the threshold time TPth (step S414). As a result of the determination, when REMtb ⁇ TPth, the calculation means 17a notifies the communication means 19 that the remaining time REMtb is equal to or less than the threshold time TPth. The communication means 19 outputs an alarm including the information of the remaining time REMtb to the remote controller 71 and the server 90 (step S415).
  • the remote controller 71 When the remote controller 71 receives an alarm from the controller 10c, the remote controller 71 causes the display unit 72 to display that the threshold time has reached TPth or less until the life of the electric motor 6b.
  • the control unit 91 When the server 90 receives an alarm from the controller 10c via the network 100, the control unit 91 causes a display unit (not shown) to indicate that the threshold time TPth or less has reached the end of the life of the electric motor 6b. Users of the air conditioner and workers of the maintenance company can recognize that the motor 6b is nearing the end of its life and prepare to replace the motor 6b.
  • the electric motor control device 1c of the fourth embodiment calculates the remaining time REMt until the life of the electric motors 6a and 6b based on the degree of fatigue, and outputs an alarm to the outside when the remaining time REMt is equal to or less than the threshold time TPth. To do. If the electric motor control device 1c outputs an alarm to the remote controller 71 of the air conditioner in which the electric motors 6a and 6b are installed, the user can know that one or both of the electric motors 6a and 6b are near the end of their service life. .. The user can stably operate the electric motors 6a and 6b by utilizing the information of the life prediction, and the operating rate of the unit on which the electric motors 6a and 6b are mounted is improved.
  • the maintenance company worker can know that one or both of the motors 6a and 6b are near the end of their life. it can. The worker can predict the occurrence of failure of the electric motors 6a and 6b in advance by monitoring the alarm including the remaining time REMt in chronological order.
  • the maintenance company can propose maintenance of the electric motor to the user before one or both of the electric motors 6a and 6b are completely stopped due to a failure. The user can formulate a stable maintenance plan. As a result, unscheduled maintenance can be suppressed, the cost of emergency response can be suppressed, and the management cost can be reduced.
  • the electric motor control device 1c of the fourth embodiment may output abnormality information indicating the electric motor in which the abnormality has occurred to the outside when an abnormality occurs in any of the electric motors 6a and 6b. If the electric motor control device 1c outputs the abnormality information to the remote controller 71, the user can know earlier that an abnormality has occurred in one or both of the electric motors 6a and 6b. If the electric motor control device 1c outputs the abnormality information to the server 90, the worker of the maintenance company can know that one or both of the electric motors 6a and 6b have an abnormality. As a result, the worker can quickly deal with the abnormality generated in the electric motor and can perform maintenance immediately.
  • the electric motor control device 1c may shift to the response operation mode when an abnormality occurs in one of the electric motors 6a and 6b.
  • the air conditioner equipped with the electric motors 6a and 6b can continue the air conditioning operation by driving the normal electric motor until the abnormal electric motor is repaired.
  • the drive target of the electric motor is a fan
  • the drive target is not limited to the fan.
  • the abnormality determination processing of the electric motors 6a and 6b described in steps S407 to S409 of FIG. 18 can be applied to any of the embodiments of the first to third embodiments.
  • two or more embodiments may be combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Motor And Converter Starters (AREA)

Abstract

This electric motor control device has: a power conversion device for supplying a voltage to a plurality of electric motors connected in parallel with each other; a plurality of relays provided corresponding to the plurality of electric motors and switching between the connection state and the disconnection state between the power conversion device and the plurality of electric motors; and a controller for controlling the power conversion device and the plurality of relays. The controller has: an information holding means for storing the opeartion histories of the plurality of electric motors; and a switching control means for controlling, on the basis of the operation histories of the respective electric motors stored in the information holding means, the plurality of relays so that the loads of the respective electric motors are equalized.

Description

電動機制御装置Electric motor control device
 本発明は、複数の電動機を制御する電動機制御装置に関する。 The present invention relates to an electric motor control device that controls a plurality of electric motors.
 従来、モータの駆動装置では、モータが自由に回転できる状態になっていると、自由に回転するモータが回生充電を行ったり、他のモータの負荷になったりすることで、基板に破損が生じることがあった。その対策の一例として、インバータと各モータとがスイッチを介して接続され、モータ毎にインバータと接続および切断することで、自由な回転状態のモータを他のモータから切り離す駆動装置が提案されている(例えば、特許文献1参照)。 Conventionally, in a motor drive device, when the motor is in a state where it can rotate freely, the freely rotating motor performs regenerative charging or becomes a load of another motor, causing damage to the substrate. There was something. As an example of the countermeasure, a drive device has been proposed in which an inverter and each motor are connected via a switch, and each motor is connected to and disconnected from the inverter to separate the motor in a freely rotating state from other motors. (See, for example, Patent Document 1).
特開2007-259554号公報JP-A-2007-259554
 特許文献1に開示された駆動装置では、複数のモータのうち、一部のモータに負荷が集中してしまうことがある。そのため、他のモータに比べて負荷が大きいモータは、通常の寿命よりも早い段階で使用できなくなってしまう。負荷の小さい他のモータは使用できるのに、早い段階で寿命に達してしまったモータを交換しなければならない。 In the drive device disclosed in Patent Document 1, the load may be concentrated on some of the plurality of motors. Therefore, a motor having a larger load than other motors cannot be used at an earlier stage than the normal life. Other motors with a light load can be used, but the motors that have reached the end of their life must be replaced at an early stage.
 本発明は、上記のような課題を解決するためになされたもので、複数の電動機の全てをより長く運転できるようにした電動機制御装置を提供するものである。 The present invention has been made to solve the above-mentioned problems, and provides an electric motor control device capable of operating all of a plurality of electric motors for a longer period of time.
 本発明に係る電動機制御装置は、互いに並列に接続される複数の電動機に電圧を供給する電力変換装置と、前記複数の電動機に対応して設けられ、前記電力変換装置との接続状態および切断状態を切り替える複数のリレーと、前記電力変換装置および前記複数のリレーを制御するコントローラと、を有し、前記コントローラは、前記複数の電動機の運転履歴を記憶する情報保持手段と、前記情報保持手段が記憶する前記各電動機の運転履歴に基づいて、各電動機の負荷が均等になるように前記複数のリレーを制御する切替制御手段と、を有するものである。 The electric motor control device according to the present invention is provided corresponding to a power conversion device that supplies a voltage to a plurality of electric motors connected in parallel to each other and the plurality of electric motors, and is in a connected state and a disconnected state with the power conversion device. The controller includes an information holding means for storing the operation history of the plurality of electric motors, and the information holding means for controlling the power conversion device and the plurality of relays. It has a switching control means for controlling the plurality of relays so that the load of each electric motor is equalized based on the operation history of each electric motor to be stored.
 本発明によれば、複数の電動機について負荷が分散することで、電動機の負荷を均等化できる。そのため、複数の電動機が均等により長く運転することができ、全ての電動機の長寿命化を図ることができる。 According to the present invention, the load of the electric motors can be equalized by distributing the load to the plurality of electric motors. Therefore, a plurality of electric motors can be operated evenly and longer, and the life of all the electric motors can be extended.
実施の形態1に係る電動機制御装置の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the electric motor control device which concerns on Embodiment 1. FIG. 図1に示した電力変換装置の一構成例を示す図である。It is a figure which shows one configuration example of the power conversion apparatus shown in FIG. 図1に示したコントローラの一構成例を示す機能ブロック図である。It is a functional block diagram which shows one configuration example of the controller shown in FIG. 図3に示した切替制御手段が行う切り替え制御の一例を示すテーブルである。It is a table which shows an example of the switching control performed by the switching control means shown in FIG. 図1に示した電動機制御装置の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the electric motor control device shown in FIG. 図1に示した電動機制御装置の動作手順について別の例を示すフローチャートである。It is a flowchart which shows another example about the operation procedure of the electric motor control device shown in FIG. 実施の形態2に係る電動機制御装置の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the electric motor control device which concerns on Embodiment 2. 図7に示したコントローラの一構成例を示す機能ブロック図である。It is a functional block diagram which shows one configuration example of the controller shown in FIG. 7. 図7に示した電動機制御装置の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the electric motor control device shown in FIG. 図9に示したリレー切り替え制御の一例を説明するための図である。It is a figure for demonstrating an example of the relay switching control shown in FIG. 実施の形態3に係る電動機制御装置の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the electric motor control device which concerns on Embodiment 3. 図11に示したコントローラの一構成例を示す機能ブロック図である。It is a functional block diagram which shows one configuration example of the controller shown in FIG. 図12に示した機械学習手段の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the machine learning means shown in FIG. 図11に示した電動機制御装置の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the electric motor control device shown in FIG. 図14に示したステップS304の処理の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the process of step S304 shown in FIG. 実施の形態4に係る電動機制御装置の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the electric motor control device which concerns on Embodiment 4. FIG. 図16に示したコントローラの一構成例を示す機能ブロック図である。It is a functional block diagram which shows one configuration example of the controller shown in FIG. 図16に示した電動機制御装置の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the electric motor control device shown in FIG. 図16に示した電動機制御装置の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the electric motor control device shown in FIG.
実施の形態1.
 本実施の形態1の電動機制御装置の構成を説明する。図1は、実施の形態1に係る電動機制御装置の一構成例を示すブロック図である。図1に示すように、電動機制御装置1は、直流電圧を三相交流電圧に変換する電力変換装置3と、電力変換装置3と並列に接続されるリレー4aおよび4bと、電力変換装置3とリレー4aおよび4bとを制御するコントローラ10とを有する。電力変換装置3の出力側に接続される三相電力線21は2つに分岐され、分岐した一方の三相電力線21aはリレー4aに接続され、分岐した他方の三相電力線21bはリレー4bに接続されている。
Embodiment 1.
The configuration of the electric motor control device of the first embodiment will be described. FIG. 1 is a block diagram showing a configuration example of the electric motor control device according to the first embodiment. As shown in FIG. 1, the electric motor control device 1 includes a power conversion device 3 that converts a DC voltage into a three-phase AC voltage, relays 4a and 4b connected in parallel with the power conversion device 3, and a power conversion device 3. It has a controller 10 that controls the relays 4a and 4b. The three-phase power line 21 connected to the output side of the power conversion device 3 is branched into two, one of the branched three-phase power lines 21a is connected to the relay 4a, and the other branched three-phase power line 21b is connected to the relay 4b. Has been done.
 リレー4aには三相電力線22aを介して電動機6aが接続されている。リレー4bには三相電力線22bを介して電動機6bが接続されている。電動機6aの回転軸にファン5aが取り付けられている。電動機6bの回転軸にファン5bが取り付けられている。電動機6aおよび6bは、同等の仕様および性能の電動機である。そのため、電動機6aおよび6bは使用耐用年数である寿命が同等である。 An electric motor 6a is connected to the relay 4a via a three-phase power line 22a. An electric motor 6b is connected to the relay 4b via a three-phase power line 22b. A fan 5a is attached to the rotating shaft of the electric motor 6a. A fan 5b is attached to the rotating shaft of the electric motor 6b. The electric motors 6a and 6b are electric motors having equivalent specifications and performance. Therefore, the electric motors 6a and 6b have the same life as the service life.
 リレー4aは、コントローラ10から受信する切替指示信号SWにしたがって、電動機6aを電力変換装置3と電気的に接続するオン状態と、電動機6aを電力変換装置3と電気的に切断するオフ状態との2つの状態を相互に切り替える。リレー4bは、コントローラ10から受信する切替指示信号SWにしたがって、電動機6bを電力変換装置3と電気的に接続するオン状態と、電動機6bを電力変換装置3と電気的に切断するオフ状態との2つの状態を相互に切り替える。 The relay 4a has an on state in which the electric motor 6a is electrically connected to the power conversion device 3 and an off state in which the electric motor 6a is electrically disconnected from the power conversion device 3 according to the switching instruction signal SW received from the controller 10. Switch between the two states. The relay 4b has an on state in which the electric motor 6b is electrically connected to the power converter 3 and an off state in which the electric motor 6b is electrically disconnected from the power converter 3 according to the switching instruction signal SW received from the controller 10. Switch between the two states.
 電動機6aおよび6bのそれぞれは、図に示さない回転子および固定子を有する。固定子は、U相、V相およびW相の三相の巻線を有する。回転子には永久磁石が設けられている。電力変換装置3から各電動機に三相電圧が印加され、巻線に電流が流れることで、固定子は、回転子の周囲に回転磁界を発生させる。なお、図に示していないが、電動機6aおよび6bの各電動機に、回転子の位置を検出する磁気センサが設けられていてもよい。また、磁気センサの代わりに、三相電力線22aおよび22bのそれぞれに電流センサが設けられていてもよい。これらのセンサは、図に示さない信号線を介してコントローラ10と接続される。 Each of the motors 6a and 6b has a rotor and a stator not shown in the figure. The stator has a U-phase, V-phase and W-phase three-phase winding. A permanent magnet is provided on the rotor. A three-phase voltage is applied from the power converter 3 to each electric motor, and a current flows through the windings, so that the stator generates a rotating magnetic field around the rotor. Although not shown in the figure, each of the electric motors 6a and 6b may be provided with a magnetic sensor for detecting the position of the rotor. Further, instead of the magnetic sensor, a current sensor may be provided on each of the three- phase power lines 22a and 22b. These sensors are connected to the controller 10 via signal lines (not shown).
 コントローラ10には、図に示さない、上位の制御装置から電動機6aおよび6bの動作に関する指令CSが入力される。指令CSは、例えば、電動機6aおよび6bに対する単独駆動または両方駆動についての停止命令および開始命令である。指令CSは、駆動対象の電動機に対する回転速度の指令値である速度指令値を含んでいてもよい。 A command CS regarding the operation of the electric motors 6a and 6b is input to the controller 10 from a higher-level control device (not shown in the figure). The command CS is, for example, a stop command and a start command for single drive or both drive for the electric motors 6a and 6b. The command CS may include a speed command value which is a command value of the rotation speed with respect to the electric motor to be driven.
 本実施の形態1では、電動機6aおよび6bは、例えば、熱交換器を含む冷媒回路を有する空気調和装置に設けられている。電動機6aおよび6bは、1つの熱交換器に空気を供給する役目を果たす。空気調和装置を制御する制御装置(不図示)が、コントローラ10に指令CSを送る上位の制御装置に相当する。 In the first embodiment, the electric motors 6a and 6b are provided in, for example, an air conditioner having a refrigerant circuit including a heat exchanger. The electric motors 6a and 6b serve to supply air to one heat exchanger. The control device (not shown) that controls the air conditioner corresponds to a higher-level control device that sends a command CS to the controller 10.
 図2は、図1に示した電力変換装置の一構成例を示す図である。図2は、図1に示した電力変換装置3がインバータ25の場合を示す。以下では、電力変換装置3がインバータ25の場合で説明する。図2に示す構成例では、インバータ25に電源7が接続されている。インバータ25は電源7から出力される直流電圧を三相交流電圧に変換する。インバータ25は、U相、V相およびW相の3相に対応して、一対のスイッチング素子を3組備えている。 FIG. 2 is a diagram showing a configuration example of the power conversion device shown in FIG. FIG. 2 shows a case where the power conversion device 3 shown in FIG. 1 is an inverter 25. Hereinafter, the case where the power conversion device 3 is the inverter 25 will be described. In the configuration example shown in FIG. 2, the power supply 7 is connected to the inverter 25. The inverter 25 converts the DC voltage output from the power supply 7 into a three-phase AC voltage. The inverter 25 includes three sets of a pair of switching elements corresponding to the three phases of the U phase, the V phase, and the W phase.
 図2に示すように、インバータ25は、U相に関して、電源7の正極側に接続されるスイッチング素子51と、電源7の負極側に接続されるスイッチング素子52とを有する。スイッチング素子51には逆流防止素子61が並列に接続され、スイッチング素子52には逆流防止素子62が並列に接続されている。また、インバータ25は、V相に関して、電源7の正極側に接続されるスイッチング素子53と、電源7の負極側に接続されるスイッチング素子54とを有する。スイッチング素子53に逆流防止素子63が並列に接続され、スイッチング素子54に逆流防止素子64が並列に接続されている。インバータ25は、W相に関して、電源7の正極側に接続されるスイッチング素子55と、電源7の負極側に接続されるスイッチング素子56とを有する。スイッチング素子55に逆流防止素子65が並列に接続され、スイッチング素子56に逆流防止素子66が並列に接続されている。 As shown in FIG. 2, the inverter 25 has a switching element 51 connected to the positive electrode side of the power supply 7 and a switching element 52 connected to the negative electrode side of the power supply 7 with respect to the U phase. A backflow prevention element 61 is connected in parallel to the switching element 51, and a backflow prevention element 62 is connected in parallel to the switching element 52. Further, the inverter 25 has a switching element 53 connected to the positive electrode side of the power supply 7 and a switching element 54 connected to the negative electrode side of the power supply 7 with respect to the V phase. The backflow prevention element 63 is connected in parallel to the switching element 53, and the backflow prevention element 64 is connected in parallel to the switching element 54. The inverter 25 has a switching element 55 connected to the positive electrode side of the power supply 7 and a switching element 56 connected to the negative electrode side of the power supply 7 with respect to the W phase. The backflow prevention element 65 is connected in parallel to the switching element 55, and the backflow prevention element 66 is connected in parallel to the switching element 56.
 次に、図1に示したコントローラ10の構成を説明する。図3は、図1に示したコントローラの一構成例を示す機能ブロック図である。図1に示すように、コントローラ10は、プログラムを記憶するメモリ12と、プログラムにしたがって処理を実行するCPU(Central Processing Unit)11とを有する。図3に示すように、コントローラ10は、インバータ25の出力を制御する電力制御手段13と、電動機6aおよび6bの運転履歴を記憶する情報保持手段14と、リレー4aおよび4bを制御する切替制御手段15と、時間を計測するタイマー16とを有する。情報保持手段14はメモリ12に設けられている。CPU11がプログラムを実行することで、電力制御手段13および切替制御手段15が構成される。 Next, the configuration of the controller 10 shown in FIG. 1 will be described. FIG. 3 is a functional block diagram showing a configuration example of the controller shown in FIG. As shown in FIG. 1, the controller 10 has a memory 12 for storing a program and a CPU (Central Processing Unit) 11 for executing processing according to the program. As shown in FIG. 3, the controller 10 includes a power control means 13 that controls the output of the inverter 25, an information holding means 14 that stores the operation history of the electric motors 6a and 6b, and a switching control means that controls the relays 4a and 4b. It has 15 and a timer 16 for measuring time. The information holding means 14 is provided in the memory 12. The power control means 13 and the switching control means 15 are configured by the CPU 11 executing the program.
 電力制御手段13は、指令CSに含まれる速度指令値に対応する三相電圧指令値を生成してインバータ25に出力することで、インバータ25に対してPWM(Pulse Width Modulation)制御を行う。電動機6aおよび6bの各電動機に回転子の位置を検出する磁気センサが設けられている場合、電力制御手段13は、各電動機の磁気センサの検出値に基づいて、駆動する電動機の回転速度を把握する。三相電力線22aおよび22bのそれぞれに電流センサが設けられている場合、電力制御手段13は、これらの電流センサの検出値を用いてセンサレスベクトル制御を行うことで、駆動する電動機の回転速度を把握する。電力制御手段13は、指令CSの情報を切替制御手段15に通知する。 The power control means 13 generates PWM (Pulse Width Modulation) control for the inverter 25 by generating a three-phase voltage command value corresponding to the speed command value included in the command CS and outputting it to the inverter 25. When each of the electric motors 6a and 6b is provided with a magnetic sensor for detecting the position of the rotor, the power control means 13 grasps the rotation speed of the electric motor to be driven based on the detection value of the magnetic sensor of each electric motor. To do. When current sensors are provided in each of the three- phase power lines 22a and 22b, the power control means 13 grasps the rotation speed of the electric motor to be driven by performing sensorless vector control using the detected values of these current sensors. To do. The power control means 13 notifies the switching control means 15 of the information of the command CS.
 切替制御手段15は、リレー4aおよび4bの各リレーについて、オン状態の時間をタイマー16で計測し、計測結果を情報保持手段14に記録する。リレー4aのオン状態の計測時間は電動機6aの駆動時間Tdaに相当し、リレー4bのオン状態の計測時間は電動機6bの駆動時間Tdbに相当する。本実施の形態1では、情報保持手段14は、電動機6aおよび6bの運転履歴として、電動機6aおよび6bの駆動時間を記憶する。情報保持手段14が記憶する各電動機の駆動時間は、電動機6aおよび6bの各電動機の運転状態に対応して随時、更新される。 The switching control means 15 measures the on-state time of each of the relays 4a and 4b with the timer 16 and records the measurement result in the information holding means 14. The measurement time in the on state of the relay 4a corresponds to the drive time Tda of the electric motor 6a, and the measurement time in the on state of the relay 4b corresponds to the drive time Tdb of the electric motor 6b. In the first embodiment, the information holding means 14 stores the driving time of the electric motors 6a and 6b as the operation history of the electric motors 6a and 6b. The drive time of each electric motor stored in the information holding means 14 is updated at any time according to the operating state of each of the electric motors 6a and 6b.
 切替制御手段15は、情報保持手段14が記憶する、各電動機の運転履歴に基づいて、各電動機の負荷が均等になるように、リレー4aおよび4bを制御する。図4は、図3に示した切替制御手段が行う切り替え制御の一例を示すテーブルである。このテーブルは情報保持手段14に記憶されている。切替制御手段15は、指令CSが単独駆動の指示である場合、電動機6aの駆動時間Tdaと電動機6bの駆動時間Tdbとを比較する。比較の結果、Tda>Tdbである場合、切替制御手段15は、オフ状態を指示する切替指示信号SWをリレー4aに送信し、オン状態を指示する切替指示信号SWをリレー4bに送信する。この場合、リレー4aがオフ状態になり、リレー4bがオン状態になるため、インバータ25から電力が電動機6bに供給され、電動機6bが単独で駆動する。 The switching control means 15 controls the relays 4a and 4b so that the load of each electric motor is equalized based on the operation history of each electric motor stored in the information holding means 14. FIG. 4 is a table showing an example of switching control performed by the switching control means shown in FIG. This table is stored in the information holding means 14. When the command CS is an instruction for independent drive, the switching control means 15 compares the drive time Tda of the electric motor 6a with the drive time Tdb of the electric motor 6b. As a result of comparison, when Tda> Tdb, the switching control means 15 transmits the switching instruction signal SW instructing the off state to the relay 4a, and transmits the switching instruction signal SW instructing the on state to the relay 4b. In this case, since the relay 4a is turned off and the relay 4b is turned on, electric power is supplied from the inverter 25 to the electric motor 6b, and the electric motor 6b is driven independently.
 切替制御手段15は、駆動時間Tdaと駆動時間Tdbとを比較した結果、Tda≦Tdbである場合、オン状態を指示する切替指示信号SWをリレー4aに送信し、オフ状態を指示する切替指示信号SWをリレー4bに送信する。この場合、リレー4aがオン状態になり、リレー4bがオフ状態になるため、インバータ25から電力が電動機6aに供給され、電動機6aが単独で駆動する。なお、図4は、Tda=Tdbである場合、切替制御手段15は、リレー4aをオン状態にし、リレー4bをオフ状態にすることを示しているが、リレー4aをオフ状態にし、リレー4bをオン状態にしてもよい。Tda=Tdbである場合、切替制御手段15は、リレー4aおよび4bのうち、いずれか一方をオン状態にし、他方をオフ状態にすればよい。 As a result of comparing the drive time Tda and the drive time Tdb, the switching control means 15 transmits a switching instruction signal SW instructing the on state to the relay 4a when Tda ≦ Tdb, and indicates a switching instruction signal in the off state. The SW is transmitted to the relay 4b. In this case, since the relay 4a is turned on and the relay 4b is turned off, electric power is supplied from the inverter 25 to the electric motor 6a, and the electric motor 6a is driven independently. Note that FIG. 4 shows that when Tda = Tdb, the switching control means 15 turns the relay 4a on and the relay 4b off, but turns the relay 4a off and sets the relay 4b. It may be turned on. When Tda = Tdb, the switching control means 15 may turn one of the relays 4a and 4b on and the other off.
 一方、指令CSが両方駆動の指示である場合、切替制御手段15は、オン状態を指示する切替指示信号SWをリレー4aおよび4bに送信する。この場合、リレー4aおよび4bの両方のリレーがオン状態になるので、インバータ25から電力が電動機6aおよび6bに並列に供給され、電動機6aおよび6bの両方が駆動する。 On the other hand, when the command CS is an instruction to drive both, the switching control means 15 transmits a switching instruction signal SW instructing the ON state to the relays 4a and 4b. In this case, since both relays 4a and 4b are turned on, electric power is supplied from the inverter 25 to the electric motors 6a and 6b in parallel, and both the electric motors 6a and 6b are driven.
 なお、図1では、制御対象の電動機が電動機6aおよび6bの2台の場合を示しているが、制御対象の電動機の台数は2台に限らず、3台以上であってもよい。電動機が3台以上の場合、電動機が2台の場合と同様に、各電動機と電力変換装置3と接続する三相電力線のそれぞれにリレーが設けられる。3台以上の電動機のうち、一部の電動機が起動する場合、切替制御手段15は、3台以上の電動機のうち、負荷が小さい方から順に一部の電動機の台数に相当する電動機に対応するリレーをオン状態にし、他の電動機に対応するリレーをオフ状態に制御すればよい。例えば、3台以上の電動機のうち、2台の電動機が起動する場合、切替制御手段15は、3台の電動機のうち、負荷が小さい方の2台の電動機に対応するリレーをオン状態にし、残りの1台の電動機に対応するリレーをオフ状態に制御する。 Note that FIG. 1 shows a case where the motors to be controlled are two electric motors 6a and 6b, but the number of electric motors to be controlled is not limited to two and may be three or more. When there are three or more electric motors, relays are provided for each of the three-phase power lines connecting each electric motor and the power conversion device 3, as in the case of two electric motors. When some of the three or more electric motors are activated, the switching control means 15 corresponds to the electric motors corresponding to the number of some of the three or more electric motors in ascending order of load. The relay may be turned on and the relay corresponding to the other motor may be controlled to be turned off. For example, when two of the three or more electric motors are activated, the switching control means 15 turns on the relay corresponding to the two electric motors having the smaller load among the three electric motors. The relay corresponding to the remaining one electric motor is controlled to the off state.
 次に、本実施の形態1の電動機制御装置1の動作を説明する。電動機6aおよび6bが停止している状態で、2台の電動機のうち、一方または両方を起動する場合について説明する。図5は、図1に示した電動機制御装置の動作手順の一例を示すフローチャートである。 Next, the operation of the electric motor control device 1 of the first embodiment will be described. A case where one or both of the two electric motors are started while the electric motors 6a and 6b are stopped will be described. FIG. 5 is a flowchart showing an example of the operation procedure of the electric motor control device shown in FIG.
 切替制御手段15は、電力制御手段13がインバータ25を動作させようとしているか否かを判定する(ステップS101)。電力制御手段13がインバータ25を動作しようとしている場合、切替制御手段15は、電力制御手段13から通知される指令CSの情報から、電力制御手段13が電動機6aまたは6bを単独で駆動させようとしているか否かを判定する(ステップS102)。 The switching control means 15 determines whether or not the power control means 13 intends to operate the inverter 25 (step S101). When the power control means 13 is trying to operate the inverter 25, the switching control means 15 is trying to drive the electric motor 6a or 6b independently from the information of the command CS notified from the power control means 13. Whether or not it is determined (step S102).
 電動機6aまたは6bが単独で駆動する場合、切替制御手段15は、駆動時間Tdaと駆動時間Tdbとを比較する(ステップS103)。比較の結果、Tda>Tdbである場合(ステップS104)、切替制御手段15は、リレー4aをオフ状態にし、リレー4bをオン状態にする(ステップS105)。その後、電力制御手段13がインバータ25に動作を開始させると、電動機6bが駆動を開始するが、電動機6aは停止した状態を維持する。 When the electric motor 6a or 6b is driven independently, the switching control means 15 compares the drive time Tda with the drive time Tdb (step S103). As a result of comparison, when Tda> Tdb (step S104), the switching control means 15 turns the relay 4a into an off state and turns the relay 4b into an on state (step S105). After that, when the power control means 13 starts the operation of the inverter 25, the electric motor 6b starts driving, but the electric motor 6a maintains the stopped state.
 ステップS104の判定の結果、Tda≦Tdbである場合、切替制御手段15は、リレー4aをオン状態にし、リレー4bをオフ状態にする(ステップS106)。その後、電力制御手段13がインバータ25に動作を開始させると、電動機6aが駆動を開始するが、電動機6bは停止した状態を維持する。一方、ステップS101の判定の結果、インバータ25が動作しない場合、切替制御手段15は、リレー4aおよび4bの両方をオフ状態に維持する(ステップS108)。また、ステップS102の判定の結果、切替制御手段15は、電力制御手段13が電動機6aおよび6bの両方を駆動させようとしている場合、リレー4aおよび4bの各リレーをオン状態にする。 If Tda ≦ Tdb as a result of the determination in step S104, the switching control means 15 turns the relay 4a into the on state and the relay 4b into the off state (step S106). After that, when the power control means 13 starts the operation of the inverter 25, the electric motor 6a starts driving, but the electric motor 6b keeps the stopped state. On the other hand, if the inverter 25 does not operate as a result of the determination in step S101, the switching control means 15 keeps both the relays 4a and 4b in the off state (step S108). Further, as a result of the determination in step S102, the switching control means 15 turns on the relays 4a and 4b when the power control means 13 intends to drive both the electric motors 6a and 6b.
 このようにして、電動機制御装置1は、電動機6aおよび6bのうち、一方を起動する際、運転履歴を参照して、駆動時間の短い電動機を起動させることで、電動機6aおよび6bに負荷を分散する。その結果、電動機6aおよび6bの各電動機の長寿命化を図ることができる。 In this way, when the electric motor control device 1 starts one of the electric motors 6a and 6b, the load is distributed to the electric motors 6a and 6b by starting the electric motor having a short drive time with reference to the operation history. To do. As a result, the life of each of the electric motors 6a and 6b can be extended.
 次に、電動機6aおよび6bのうち、一方または両方が運転している状態における、電動機制御装置1の動作を説明する。図6は、図1に示した電動機制御装置の動作手順について別の例を示すフローチャートである。図6では、電動機6aおよび6bのいずれもが動作していない場合の動作も示している。 Next, the operation of the electric motor control device 1 in a state where one or both of the electric motors 6a and 6b are operating will be described. FIG. 6 is a flowchart showing another example of the operation procedure of the electric motor control device shown in FIG. FIG. 6 also shows the operation when neither of the electric motors 6a and 6b is operating.
 切替制御手段15は、周期T1で、図6に示す手順にしたがって動作する。周期T1は、例えば、30分~1時間である。切替制御手段15は、インバータ25が動作中か否かを判定する(ステップS121)。インバータ25が動作中の場合、切替制御手段15は、電動機6aまたは6bが単独で駆動しているか否かを判定する(ステップS122)。切替制御手段15は、現在のリレー4aおよび4bの状態から、電動機6aまたは6bが単独駆動であるか否かを判定できる。 The switching control means 15 operates in the cycle T1 according to the procedure shown in FIG. The cycle T1 is, for example, 30 minutes to 1 hour. The switching control means 15 determines whether or not the inverter 25 is operating (step S121). When the inverter 25 is in operation, the switching control means 15 determines whether or not the electric motor 6a or 6b is driven independently (step S122). The switching control means 15 can determine whether or not the electric motor 6a or 6b is independently driven from the current states of the relays 4a and 4b.
 電動機6aまたは6bが単独で駆動している場合、切替制御手段15は、駆動時間Tdaと駆動時間Tdbとを比較する(ステップS123)。比較の結果、Tda>Tdbである場合(ステップS124)、切替制御手段15は、電力制御手段13がインバータ25の動作を停止させるタイミングに合わせて、リレー4aをオフ状態にし、リレー4bをオン状態にする(ステップS125)。その後、電力制御手段13がインバータ25に動作を開始させると、電動機6aの代わりに、電動機6bが駆動を開始する。 When the electric motor 6a or 6b is driven independently, the switching control means 15 compares the drive time Tda with the drive time Tdb (step S123). As a result of comparison, when Tda> Tdb (step S124), the switching control means 15 turns off the relay 4a and turns on the relay 4b at the timing when the power control means 13 stops the operation of the inverter 25. (Step S125). After that, when the power control means 13 causes the inverter 25 to start operating, the electric motor 6b starts driving instead of the electric motor 6a.
 ステップS124の判定の結果、Tda≦Tdbである場合、切替制御手段15は、電力制御手段13がインバータ25の動作を停止させるタイミングに合わせて、リレー4aをオン状態にし、リレー4bをオフ状態にする(ステップS126)。その後、電力制御手段13がインバータ25に動作を開始させると、電動機6bの代わりに、電動機6aが駆動を開始する。なお、インバータ25が動作していない場合、切替制御手段15は、リレー4aおよび4bの両方をオフ状態に維持する(ステップS128)。また、切替制御手段15は、電動機6aおよび6bの両方が駆動している場合、リレー4aおよび4bの各リレーをオン状態に維持する(ステップS127)。 As a result of the determination in step S124, when Tda ≦ Tdb, the switching control means 15 turns the relay 4a on and the relay 4b off at the timing when the power control means 13 stops the operation of the inverter 25. (Step S126). After that, when the power control means 13 causes the inverter 25 to start operating, the electric motor 6a starts driving instead of the electric motor 6b. When the inverter 25 is not operating, the switching control means 15 keeps both the relays 4a and 4b in the off state (step S128). Further, the switching control means 15 keeps the relays 4a and 4b in the ON state when both the electric motors 6a and 6b are driven (step S127).
 このようにして、インバータ25が動作中であっても、インバータ25が出力を一旦、停止した後、インバータ25が出力を再開するタイミングで、切替制御手段15が、駆動する電動機を、駆動時間の短い電動機に切り替える。その結果、電動機6aおよび6bに負荷が分散し、電動機6aおよび6bの各電動機の長寿命化を図ることができる。 In this way, even when the inverter 25 is in operation, the switching control means 15 drives the electric motor at the timing when the inverter 25 resumes the output after the inverter 25 temporarily stops the output. Switch to a shorter motor. As a result, the load is distributed to the electric motors 6a and 6b, and the life of each of the electric motors 6a and 6b can be extended.
 本実施の形態1の電動機制御装置1は、互いに並列に接続される電動機6aおよび6bに電圧を供給する電力変換装置3と、電力変換装置3との接続状態および切断状態を切り替える複数のリレー4aおよび4bと、コントローラ10とを有する。コントローラ10は、電動機6aおよび6bの運転履歴を記憶する情報保持手段14と、情報保持手段14が記憶する各電動機の運転履歴に基づいて、各電動機の負荷が均等になるように複数のリレー4aおよび4bを制御する切替制御手段15と、を有する。 The electric motor control device 1 of the first embodiment is a power conversion device 3 that supplies a voltage to the electric motors 6a and 6b connected in parallel to each other, and a plurality of relays 4a that switch between a connection state and a disconnection state of the power conversion device 3. And 4b and a controller 10. The controller 10 has an information holding means 14 that stores the operation history of the electric motors 6a and 6b, and a plurality of relays 4a so that the load of each electric motor is equalized based on the operation history of each electric motor stored by the information holding means 14. And a switching control means 15 for controlling 4b.
 本実施の形態1によれば、複数の電動機6aおよび6bについて負荷に関係する駆動時間が分散することで、電動機の負荷を均等化できる。そのため、電動機6aおよび6bが均等により長く運転することができ、全ての電動機6aおよび6bの長寿命化を図れる。また、複数の電動機6aおよび6bが負荷を分散して駆動することで、負荷の大きい一部の電動機が無理に駆動することが抑制され、駆動効率が低下することを防げる。その結果、省エネルギー効果が向上する。 According to the first embodiment, the load of the electric motors can be equalized by distributing the drive time related to the load for the plurality of electric motors 6a and 6b. Therefore, the electric motors 6a and 6b can be operated evenly and longer, and the life of all the electric motors 6a and 6b can be extended. Further, by driving the plurality of electric motors 6a and 6b in a distributed manner, it is possible to prevent some of the electric motors having a large load from being forcibly driven and to prevent the drive efficiency from being lowered. As a result, the energy saving effect is improved.
 従来、複数の電動機の制御方法の一例として、複数の電動機を主電動機と副電動機とに分類し、通常時は主電動機を単独駆動させ、大きな駆動力が必要な場合に主電動機および副電動機の両方を駆動する方法がある。この場合、主電動機は、副電動機よりも長寿命な電動機が選択される。例えば、主電動機の仕様は寿命が15年であり、副電動機の仕様は寿命が10年である。 Conventionally, as an example of a control method for a plurality of electric motors, a plurality of motors are classified into a traction motor and a sub-motor, the traction motor is normally driven independently, and when a large driving force is required, the traction motor and the sub-motor are used. There is a way to drive both. In this case, the traction motor is selected to have a longer life than the sub-motor. For example, the specifications of the traction motor have a life of 15 years, and the specifications of the auxiliary motor have a life of 10 years.
 一方、複数の電動機が搭載される装置の制約および製造コストなどを理由に、複数の電動機の性能が同じでなければならないことがある。例えば、電動機のメーカから、性能の異なる2種類の電動機を種類毎に購入するよりも、同じ性能の電動機を多く購入した方が、量産効果で購入コストが小さくなることがある。複数の電動機の性能が同じである場合、電動機の寿命が15年という仕様が課せられた場合、どの電動機の負荷が大きくなっても、15年間以上駆動という条件を満たすには、全ての電動機を寿命が15年以上のものを選択する必要がある。 On the other hand, the performance of multiple electric motors may have to be the same due to restrictions on devices equipped with multiple electric motors and manufacturing costs. For example, the purchase cost may be lower due to the mass production effect if more electric motors with the same performance are purchased than if two types of electric motors having different performances are purchased from the electric motor manufacturer for each type. If the performance of multiple motors is the same, if the life of the motors is 15 years, all motors must be driven for 15 years or more regardless of the load of any motor. It is necessary to select one with a life of 15 years or more.
 これに対して、本実施の形態1の電動機制御装置1は、複数の電動機の負荷を分散する制御を行う。そのため、本実施の形態1では、寿命が10年の複数の電動機の負荷を分散して駆動する制御を行うことで、見かけ上、複数の電動機の全ての寿命を15年にすることができる。その結果、複数の電動機の全てに寿命が15年のものを選択する場合に比べて、複数の電動機が搭載される装置にかかる原価コストを低減できる。 On the other hand, the electric motor control device 1 of the first embodiment controls to distribute the loads of a plurality of electric motors. Therefore, in the first embodiment, by controlling the load of the plurality of electric motors having a life of 10 years to be distributed and driven, the life of all of the plurality of electric motors can be apparently set to 15 years. As a result, the cost cost of the device equipped with the plurality of electric motors can be reduced as compared with the case of selecting the one having a life of 15 years for all of the plurality of electric motors.
実施の形態2.
 本実施の形態2は、電動機6aおよび6bの負荷判定に用いるパラメータが実施の形態1の場合と異なるものである。本実施の形態2では、実施の形態1で説明した構成と同様な構成について同一の符号を付し、その詳細な説明を省略する。
Embodiment 2.
In the second embodiment, the parameters used for the load determination of the electric motors 6a and 6b are different from those in the first embodiment. In the second embodiment, the same reference numerals are given to the same configurations as those described in the first embodiment, and detailed description thereof will be omitted.
 本実施の形態2の電動機制御装置の構成を説明する。図7は、実施の形態2に係る電動機制御装置の一構成例を示すブロック図である。図8は、図7に示したコントローラの一構成例を示す機能ブロック図である。 The configuration of the electric motor control device of the second embodiment will be described. FIG. 7 is a block diagram showing a configuration example of the electric motor control device according to the second embodiment. FIG. 8 is a functional block diagram showing a configuration example of the controller shown in FIG. 7.
 図7に示す電動機制御装置1aには、図1に示した構成と比較すると、電流センサ31aおよび31bと、回転検出器32aおよび32bとがさらに設けられている。電流センサ31aは三相電力線22aに設けられ、電流センサ31bは三相電力線22bに設けられている。回転検出器32aは電動機6aに設けられ、回転検出器32bは電動機6bに設けられている。図8に示す測定部30は、電流センサ31aおよび31bと、回転検出器32aおよび32bとを含む構成である。 The electric motor control device 1a shown in FIG. 7 is further provided with current sensors 31a and 31b and rotation detectors 32a and 32b as compared with the configuration shown in FIG. The current sensor 31a is provided on the three-phase power line 22a, and the current sensor 31b is provided on the three-phase power line 22b. The rotation detector 32a is provided in the electric motor 6a, and the rotation detector 32b is provided in the electric motor 6b. The measuring unit 30 shown in FIG. 8 has a configuration including current sensors 31a and 31b and rotation detectors 32a and 32b.
 電流センサ31aは三相電力線22aに流れる電流を検出する。電流センサ31bは三相電力線22bに流れる電流を検出する。回転検出器32aは電動機6aの回転数[rpm]を検出する。回転検出器32bは電動機6bの回転数[rpm]を検出する。回転検出器32aおよび32bは、例えば、フォトインタラプタを有する。例えば、スリットを有する円板が電動機6aの回転軸に設けられ、フォトインタラプタはスリットを通過する光を検出する。回転検出器32aは、1分間にフォトインタラプタによって光が検出される回数をカウントすることで、電動機6aの回転数を算出する。 The current sensor 31a detects the current flowing through the three-phase power line 22a. The current sensor 31b detects the current flowing through the three-phase power line 22b. The rotation detector 32a detects the rotation speed [rpm] of the electric motor 6a. The rotation detector 32b detects the rotation speed [rpm] of the electric motor 6b. The rotation detectors 32a and 32b have, for example, a photo interrupter. For example, a disk having a slit is provided on the rotation shaft of the electric motor 6a, and the photo interrupter detects light passing through the slit. The rotation detector 32a calculates the rotation speed of the electric motor 6a by counting the number of times light is detected by the photo interrupter in one minute.
 電流センサ31aおよび31bのそれぞれが信号線を介してコントローラ10aと接続され、回転検出器32aおよび32bのそれぞれが信号線を介してコントローラ10aと接続されているが、図7では、信号線を図に示すことを省略している。電流センサ31aおよび31bのそれぞれは、検出する電流値をコントローラ10aに出力する。回転検出器32aおよび32bのそれぞれは、検出する回転数をコントローラ10aに出力する。 Each of the current sensors 31a and 31b is connected to the controller 10a via a signal line, and each of the rotation detectors 32a and 32b is connected to the controller 10a via a signal line. It is omitted as shown in. Each of the current sensors 31a and 31b outputs the detected current value to the controller 10a. Each of the rotation detectors 32a and 32b outputs the detected rotation speed to the controller 10a.
 図8に示すように、コントローラ10aは、図3に示した構成の他に、電動機6aおよび6bの各電動機の運転履歴に基づいて、各電動機の負荷を示す値を算出する計算手段17を有する。計算手段17は、電動機6aについて、駆動時間Tdaと電流センサ31aによって検出される電流とを乗算した値を時間積分して電流積分値INTiaを算出する。計算手段17は、電動機6aについて、駆動時間Tdaと回転検出器32aによって検出される回転数とを乗算した値を時間積分して回転数積分値INTraを算出する。また、計算手段17は、電動機6bについても電動機6aと同様に、駆動時間Tdb、電流センサ31bによって検出される電流値および回転検出器32bによって検出される回転数を用いて、電流積分値INTibおよび回転数積分値INTrbを算出する。 As shown in FIG. 8, in addition to the configuration shown in FIG. 3, the controller 10a has a calculation means 17 for calculating a value indicating the load of each electric motor based on the operation history of each of the electric motors 6a and 6b. .. The calculation means 17 calculates the current integral value INTIA by time-integrating the value obtained by multiplying the drive time Tda and the current detected by the current sensor 31a for the electric motor 6a. The calculation means 17 calculates the rotation speed integration value INTra by time-integrating the value obtained by multiplying the drive time Tda and the rotation speed detected by the rotation detector 32a with respect to the electric motor 6a. Further, the calculation means 17 also uses the drive time Tdb, the current value detected by the current sensor 31b, and the rotation speed detected by the rotation detector 32b for the electric motor 6b as well as the current integral value INTib and the electric motor 6a. Calculate the rotation speed integral value INTrb.
 切替制御手段15は、電動機6aおよび6bについて、電流積分値および回転数積分値のうち、一方または両方に基づいて、各電動機の負荷が均等になるように、リレー4aおよび4bを制御する。例えば、負荷の判定に電流積分値を用いる場合、切替制御手段15は、電流積分値INTiaと電流積分値INTibとを比較し、INTia>INTibである場合、リレー4aをオフ状態にし、リレー4bをオン状態にする。 The switching control means 15 controls the relays 4a and 4b of the electric motors 6a and 6b so that the load of each electric motor is equalized based on one or both of the current integrated value and the rotation speed integrated value. For example, when the current integral value is used for determining the load, the switching control means 15 compares the current integral value INTIA and the current integral value INTib, and when INTia> INTib, the relay 4a is turned off and the relay 4b is turned on. Turn it on.
 本実施の形態2では、図8に示すように、電力制御手段13は、電流センサ31aおよび31bの検出値を用いてセンサレスベクトル制御を行うことで、電動機6aおよび6bの回転速度を把握してもよい。 In the second embodiment, as shown in FIG. 8, the power control means 13 grasps the rotation speeds of the electric motors 6a and 6b by performing sensorless vector control using the detected values of the current sensors 31a and 31b. May be good.
 なお、本実施の形態2では、回転検出器32aおよび32bが回転数を検出する場合で説明したが、回転検出器32aおよび32bがフォトインタラプタであってもよい。この場合、計算手段17が、1分間にフォトインタラプタによって光が検出される回数をカウントすることで回転数を算出すればよい。 Although the case where the rotation detectors 32a and 32b detect the rotation speed has been described in the second embodiment, the rotation detectors 32a and 32b may be photo interrupters. In this case, the calculation means 17 may calculate the rotation speed by counting the number of times light is detected by the photo interrupter in one minute.
 次に、本実施の形態2の電動機制御装置1aの動作を説明する。図9は、図7に示した電動機制御装置の動作手順の一例を示すフローチャートである。図9に示すステップS207およびS208は、図6を参照して説明したステップS127およびS128の動作と同様になるため、本実施の形態2では、その詳細な説明を省略する。 Next, the operation of the electric motor control device 1a according to the second embodiment will be described. FIG. 9 is a flowchart showing an example of the operation procedure of the electric motor control device shown in FIG. 7. Since steps S207 and S208 shown in FIG. 9 are similar to the operations of steps S127 and S128 described with reference to FIG. 6, detailed description thereof will be omitted in the second embodiment.
 切替制御手段15は、周期T1で、図9に示す手順にしたがって動作する。切替制御手段15は、インバータ25が動作中か否かを判定する(ステップS201)。インバータ25が動作中の場合、切替制御手段15は、電動機6aまたは6bが単独で駆動しているか否かを判定する(ステップS202)。切替制御手段15は、現在のリレー4aおよび4bの状態から、電動機6aまたは6bが単独駆動であるか否かを判定できる。 The switching control means 15 operates in the cycle T1 according to the procedure shown in FIG. The switching control means 15 determines whether or not the inverter 25 is operating (step S201). When the inverter 25 is in operation, the switching control means 15 determines whether or not the electric motor 6a or 6b is driven independently (step S202). The switching control means 15 can determine whether or not the electric motor 6a or 6b is independently driven from the current states of the relays 4a and 4b.
 電動機6aまたは6bが単独で駆動している場合、切替制御手段15は、計算手段17によって算出される、電流積分値INTiaと電流積分値INTibとを比較する(ステップS203)。比較の結果、INTia>INTibである場合(ステップS204)、切替制御手段15は、電力制御手段13がインバータ25の動作を停止させるタイミングに合わせて、リレー4aをオフ状態にし、リレー4bをオン状態にする(ステップS205)。その後、電力制御手段13がインバータ25に動作を開始させると、電動機6aの代わりに、電動機6bが駆動を開始する。 When the electric motors 6a or 6b are driven independently, the switching control means 15 compares the current integral value INTIA and the current integral value INTib calculated by the calculation means 17 (step S203). As a result of comparison, when INTia> INTib (step S204), the switching control means 15 turns off the relay 4a and turns on the relay 4b at the timing when the power control means 13 stops the operation of the inverter 25. (Step S205). After that, when the power control means 13 causes the inverter 25 to start operating, the electric motor 6b starts driving instead of the electric motor 6a.
 ステップS204の判定の結果、INTia≦INTibである場合、切替制御手段15は、電力制御手段13がインバータ25の動作を停止させるタイミングに合わせて、リレー4aをオン状態にし、リレー4bをオフ状態にする(ステップS206)。その後、電力制御手段13がインバータ25に動作を開始させると、電動機6bの代わりに、電動機6aが駆動を開始する。 As a result of the determination in step S204, when INTia ≤ INTib, the switching control means 15 turns the relay 4a on and the relay 4b off at the timing when the power control means 13 stops the operation of the inverter 25. (Step S206). After that, when the power control means 13 causes the inverter 25 to start operating, the electric motor 6a starts driving instead of the electric motor 6b.
 なお、本実施の形態2では、図6に示したフローをベースにして、切替制御手段15の動作手順を説明したが、図5に示したフローをベースにした制御を行ってもよい。また、図9を参照して、電動機6aおよび6bの負荷判定に用いる値が電流積分値の場合の制御について説明したが、負荷判定に用いる値は、回転数積分値であってもよく、電流積分値および回転数積分値の両方であってもよい。 Although the operation procedure of the switching control means 15 has been described in the second embodiment based on the flow shown in FIG. 6, control based on the flow shown in FIG. 5 may be performed. Further, the control when the value used for the load determination of the electric motors 6a and 6b is the current integrated value has been described with reference to FIG. 9, but the value used for the load determination may be the rotation speed integrated value, and the current may be used. It may be both an integral value and a rotation speed integral value.
 電流積分値および回転数積分値の両方を用いて、電動機の負荷を判定した方が望ましい。その理由を説明する。電動機は、三相電力線に電流が流れていても、流れる電流通りに回転していないこともある。また、外風で電動機が回転しているような場合には、三相電力線に電流が流れていないこともある。そのため、算出される電流積分値だけでは、実際の負荷と異なる場合がある。電流積分値および回転数積分値の両方を負荷判定の値に用いることで、電動機6aおよび6bの各電動機の負荷の算出精度が向上する。その結果、負荷分散がより適切に行われる。 It is desirable to judge the load of the motor using both the current integrated value and the rotation speed integrated value. The reason will be explained. Even if a current is flowing through the three-phase power line, the electric motor may not rotate according to the flowing current. Further, when the electric motor is rotating due to the outside wind, no current may flow in the three-phase power line. Therefore, the calculated current integral value alone may differ from the actual load. By using both the current integrated value and the rotation speed integrated value as the load determination value, the load calculation accuracy of each of the electric motors 6a and 6b is improved. As a result, load distribution is performed more appropriately.
 図10は、図9に示したリレー切り替え制御の一例を説明するための図である。図10に示すグラフの横軸は時間であり、縦軸は電動機6aおよび6bの電流値または回転数である。ここでは、グラフの縦軸が電動機6aおよび6bの電流値の場合で説明する。実線が電動機6aの電流値を示し、破線が電動機6bの電流値を示す。 FIG. 10 is a diagram for explaining an example of the relay switching control shown in FIG. The horizontal axis of the graph shown in FIG. 10 is time, and the vertical axis is the current value or rotation speed of the electric motors 6a and 6b. Here, the case where the vertical axis of the graph is the current value of the electric motors 6a and 6b will be described. The solid line shows the current value of the motor 6a, and the broken line shows the current value of the motor 6b.
 はじめに、切替制御手段15がリレー4aをオン状態にし、リレー4bをオフ状態にする。時刻t0から時刻t1まで、電動機6aが単独で駆動する。時刻t0から時刻t1までの期間において、時間軸と実線とで囲まれた面積が電流積分値INTiaとなる。続いて、停止期間toff1に、切替制御手段15がリレー4bもオン状態にする。時刻t2から電動機6aおよび6bの両方が駆動する。時刻t2から時刻t3までの期間において、時間軸と実線とで囲まれた面積が電流積分値INTiaとなり、時間軸と破線とで囲まれた面積が電流積分値INTibとなる。 First, the switching control means 15 turns the relay 4a on and the relay 4b off. From time t0 to time t1, the electric motor 6a is driven independently. In the period from time t0 to time t1, the area surrounded by the time axis and the solid line is the current integral value INTIA. Subsequently, during the stop period toff1, the switching control means 15 also turns on the relay 4b. From time t2, both the electric motors 6a and 6b are driven. In the period from time t2 to time t3, the area surrounded by the time axis and the solid line is the current integral value INTia, and the area surrounded by the time axis and the broken line is the current integral value INTib.
 時刻t3が経過した後、電動機6aおよび6bのうち、いずれかの電動機が時刻t4から単独で駆動する場合、切替制御手段15は、時刻t0から時刻t3までの期間について、電流積分値INTiaと電流積分値INTibとを比較する。図10に示すように、時刻t0から時刻t1までの電流積分値の分だけ、電動機6aの方が電動機6bよりも負荷が大きい。そのため、停止期間toff2に、切替制御手段15は、リレー4aをオフ状態にし、リレー4bをオン状態にする。電動機6bが時刻t4から時刻t5まで単独で駆動する。 When any of the electric motors 6a and 6b is driven independently from the time t4 after the time t3 has elapsed, the switching control means 15 has the current integral value INTia and the current for the period from the time t0 to the time t3. Compare with the integrated value INTib. As shown in FIG. 10, the load of the electric motor 6a is larger than that of the electric motor 6b by the amount of the integrated current value from the time t0 to the time t1. Therefore, during the stop period toff2, the switching control means 15 turns the relay 4a into an off state and turns the relay 4b into an on state. The electric motor 6b is independently driven from time t4 to time t5.
 本実施の形態2の電動機制御装置1aは、電動機6aおよび6bについて、計算手段17によって算出された、電流積分値および回転数積分値のうち、一方または両方に基づいて、各電動機の負荷が均等になるようにリレー4aおよび4bを制御するものである。本実施の形態2によれば、複数の電動機について、負荷に関連する電流積分値および回転数積分値のうち、一方または両方が均等になるように負荷を分散することで、複数の電動機の長寿命化を図ることができる。 In the electric motor control device 1a of the second embodiment, the load of each electric motor is equalized for the electric motors 6a and 6b based on one or both of the current integrated value and the rotation speed integrated value calculated by the calculation means 17. The relays 4a and 4b are controlled so as to be. According to the second embodiment, the lengths of the plurality of electric motors are obtained by distributing the load so that one or both of the current integrated value and the rotation speed integrated value related to the load are equal for the plurality of electric motors. The life can be extended.
実施の形態3.
 本実施の形態3は、電動機6aおよび6bの負荷判定に用いるパラメータの種類を実施の形態2の場合よりも増やしたものである。本実施の形態3では、実施の形態1および2で説明した構成と同様な構成について同一の符号を付し、その詳細な説明を省略する。
Embodiment 3.
In the third embodiment, the types of parameters used for load determination of the electric motors 6a and 6b are increased as compared with the case of the second embodiment. In the third embodiment, the same reference numerals are given to the same configurations as those described in the first and second embodiments, and detailed description thereof will be omitted.
 実施の形態1および2で説明した、駆動時間、電流積分値および回転数積分値は、電動機にかかる負荷が大きいか否かを判定するパラメータとして主要なものであるが、これらのパラメータでは検出できない負荷もある。例えば、電動機の駆動時間が短くても、電動機に生じる音が大きいと、ユーザは、電動機に異常があり、電動機にかかる負荷が大きいと判断することができる。 The drive time, the current integrated value, and the rotation speed integrated value described in the first and second embodiments are the main parameters for determining whether or not the load applied to the electric motor is large, but cannot be detected by these parameters. There is also a load. For example, even if the driving time of the electric motor is short, if the sound generated by the electric motor is loud, the user can determine that the electric motor has an abnormality and the load applied to the electric motor is large.
 また、複数の電動機が近接して配置されていても、複数の電動機を含む空間の環境に偏りがあると、電動機の寿命に及ぼす影響が電動機毎に異なることがある。例えば、電動機6aおよび6bが部屋の中に設置され、電動機6aが窓に近い位置にあるが、電動機6bが窓から離れた位置にある場合を考える。この場合、電動機6aは電動機6bに比べて外気温度の変化の影響を受けやすい。部屋が密閉されておらず、窓の隙間から外気が部屋に入り込む場合、電動機6aは電動機6bに比べて外気の湿度の変化の影響も受けやすくなる。 Even if multiple motors are arranged close to each other, if the environment of the space including the multiple motors is biased, the effect on the life of the motors may differ for each motor. For example, consider a case where the electric motors 6a and 6b are installed in a room, the electric motors 6a are located near the window, but the electric motors 6b are located away from the window. In this case, the electric motor 6a is more susceptible to changes in the outside air temperature than the electric motor 6b. When the room is not sealed and the outside air enters the room through the gap between the windows, the electric motor 6a is more susceptible to changes in the humidity of the outside air than the electric motor 6b.
 本実施の形態3では、電動機が発生する音と、電動機の巻線抵抗値と、電動機の消費電力と、電動機を囲む空気の温度および湿度と、実施の形態1で説明した電動機の電流値、回転数および駆動時間とを合わせて、これらを負荷に関する状態変数とする。そして、本実施の形態3の電動機制御装置は、各電動機について、状態変数から疲労度を算出する。さらに、電動機制御装置は、疲労度算出式について機械学習を行うことで、電動機の疲労度の算出精度を向上させるものである。 In the third embodiment, the sound generated by the electric motor, the winding resistance value of the electric motor, the power consumption of the electric motor, the temperature and humidity of the air surrounding the electric motor, and the current value of the electric motor described in the first embodiment. Together with the number of revolutions and the drive time, these are used as state variables related to the load. Then, the electric motor control device of the third embodiment calculates the degree of fatigue from the state variables for each electric motor. Further, the electric motor control device improves the calculation accuracy of the fatigue degree of the electric motor by performing machine learning about the fatigue degree calculation formula.
 本実施の形態3の電動機制御装置の構成を説明する。図11は、実施の形態3に係る電動機制御装置の一構成例を示すブロック図である。図12は、図11に示したコントローラの一構成例を示す機能ブロック図である。 The configuration of the electric motor control device according to the third embodiment will be described. FIG. 11 is a block diagram showing a configuration example of the electric motor control device according to the third embodiment. FIG. 12 is a functional block diagram showing a configuration example of the controller shown in FIG.
 図11に示す電動機制御装置1bには、図7に示した構成と比較すると、温度センサ33aおよび33bと、湿度センサ34aおよび34bと、音センサ35aおよび35bとがさらに設けられている。温度センサ33a、湿度センサ34aおよび音センサ35aは、電動機6aに設けられている。温度センサ33b、湿度センサ34bおよび音センサ35bは、電動機6bに設けられている。図11では、図に示すことを省略しているが、温度センサ33aおよび33bと、湿度センサ34aおよび34bと、音センサ35aおよび35bの各センサが、信号線を介してコントローラ10bと接続されている。 Compared with the configuration shown in FIG. 7, the electric motor control device 1b shown in FIG. 11 is further provided with temperature sensors 33a and 33b, humidity sensors 34a and 34b, and sound sensors 35a and 35b. The temperature sensor 33a, the humidity sensor 34a, and the sound sensor 35a are provided in the electric motor 6a. The temperature sensor 33b, the humidity sensor 34b, and the sound sensor 35b are provided in the electric motor 6b. Although not shown in FIG. 11, the temperature sensors 33a and 33b, the humidity sensors 34a and 34b, and the sound sensors 35a and 35b are connected to the controller 10b via a signal line. There is.
 温度センサ33aおよび33bは、温度を検出し、検出値をコントローラ10bに出力する。湿度センサ34aおよび34bは、湿度を検出し、検出値をコントローラ10bに出力する。音センサ35aおよび35bは、音の大きさおよび周波数を検出し、検出値をコントローラ10bに出力する。図12に示す測定部30aは、電流センサ31aおよび31bと、回転検出器32aおよび32bと、温度センサ33aおよび33bと、湿度センサ34aおよび34bと、音センサ35aおよび35bとを含む構成である。 The temperature sensors 33a and 33b detect the temperature and output the detected value to the controller 10b. The humidity sensors 34a and 34b detect the humidity and output the detected value to the controller 10b. The sound sensors 35a and 35b detect the loudness and frequency of the sound, and output the detected values to the controller 10b. The measuring unit 30a shown in FIG. 12 includes current sensors 31a and 31b, rotation detectors 32a and 32b, temperature sensors 33a and 33b, humidity sensors 34a and 34b, and sound sensors 35a and 35b.
 本実施の形態3では、情報保持手段14は、電動機6aおよび6bの各電動機について、負荷に関する状態変数を用いて各電動機の疲労度を算出する疲労度算出式を記憶する。情報保持手段14は、電動機6aおよび6bの性能毎に異なる経年疲労度を示す基準疲労度を複数、記憶している。基準疲労度は、経年疲労度なので、例えば、駆動時間または使用期間を横軸とし、疲労度を縦軸とする、疲労度の時系列変化を示すグラフの情報である。本実施の形態3では、情報保持手段14は、単位時間当たりの疲労度の変化を示す傾きが異なる複数の基準疲労度を記憶している。 In the third embodiment, the information holding means 14 stores a fatigue degree calculation formula for calculating the fatigue degree of each electric motor using the state variables related to the load for each of the electric motors 6a and 6b. The information holding means 14 stores a plurality of reference fatigue degrees indicating aged fatigue degrees that differ depending on the performance of the electric motors 6a and 6b. Since the reference fatigue degree is the aged fatigue degree, for example, it is the information of the graph showing the time-series change of the fatigue degree with the driving time or the usage period as the horizontal axis and the fatigue degree as the vertical axis. In the third embodiment, the information holding means 14 stores a plurality of reference fatigue degrees having different slopes indicating changes in the fatigue degree per unit time.
 基準疲労度は、電動機6aおよび6bが設置される環境によって異なっていてもよい。例えば、同じ性能の電動機であっても、一年中温暖な環境で使用される場合の基準疲労度と、一年中寒冷な環境で使用される場合の基準疲労度とが異なっていてもよい。電動機6aおよび6bが設置される環境に対応して、候補となる複数の基準疲労度が情報保持手段14に格納される。複数の基準疲労度は、電動機6aおよび6bが設置される環境に合わせて、電動機制御装置1bの製造過程で情報保持手段14に格納されてもよく、電動機6aおよび6bが設置される際に情報保持手段14に格納されてもよい。 The standard fatigue level may differ depending on the environment in which the electric motors 6a and 6b are installed. For example, even if the motors have the same performance, the standard fatigue level when used in a warm environment all year round and the standard fatigue level when used in a cold environment all year round may be different. .. A plurality of candidate reference fatigue degrees are stored in the information holding means 14 according to the environment in which the electric motors 6a and 6b are installed. The plurality of reference fatigue degrees may be stored in the information holding means 14 in the manufacturing process of the electric motor control device 1b according to the environment in which the electric motors 6a and 6b are installed, and information is provided when the electric motors 6a and 6b are installed. It may be stored in the holding means 14.
 また、情報保持手段14は、電動機6aおよび6bの各電動機について、実施の形態1および2で説明した、駆動時間、電流および回転数を、状態変数として時系列で記憶する。情報保持手段14は、音センサ35aおよび35bによって検出される音の情報、温度センサ33aおよび33bによって検出される温度、および湿度センサ34aおよび34bによって検出される湿度を、状態変数として時系列で記憶する。さらに、情報保持手段14は、電動機6aおよび6bの各電動機について、計算手段17aによって算出される、巻線抵抗値および消費電力を、状態変数として時系列で記憶する。 Further, the information holding means 14 stores the drive time, the current, and the rotation speed described in the first and second embodiments in time series as state variables for each of the electric motors 6a and 6b. The information holding means 14 stores sound information detected by the sound sensors 35a and 35b, the temperature detected by the temperature sensors 33a and 33b, and the humidity detected by the humidity sensors 34a and 34b in time series as state variables. To do. Further, the information holding means 14 stores the winding resistance value and the power consumption calculated by the calculating means 17a for each of the electric motors 6a and 6b in time series as state variables.
 本実施の形態3の計算手段17aは、測定部30aによって検出された、電動機6aおよび6bの各電動機の電流に基づいて、各電動機の巻線抵抗値および消費電力を算出する。例えば、計算手段17aは、電動機6aの消費電力を算出する場合、電力制御手段13から電動機6aに印加される電圧値を取得し、電流センサ31aが検出した電流値を情報保持手段14から読み出し、電圧値および電流値を用いて消費電力を算出する。 The calculation means 17a of the third embodiment calculates the winding resistance value and the power consumption of each electric motor based on the currents of the electric motors 6a and 6b detected by the measuring unit 30a. For example, when calculating the power consumption of the electric motor 6a, the calculation means 17a acquires the voltage value applied to the electric motor 6a from the power control means 13 and reads out the current value detected by the current sensor 31a from the information holding means 14. The power consumption is calculated using the voltage value and the current value.
 また、計算手段17aは、例えば、電動機6aおよび6bが使用されていない時間帯を利用して、電動機6aおよび6bの巻線抵抗値を算出する計測モードを実行する。電動機6aの巻線抵抗値を算出する計測モードにおいて、計算手段17aは、切替制御手段15にリレー4aをオン状態にさせ、リレー4bをオフ状態にさせる。続いて、計算手段17aは、切替制御手段15を介して、U相、V相およびW相の三相のうち、2つの相の組み合わせを順次変え、各組の2つの相の両端に一定時間、決められた電圧を印加するように電力制御手段13に通知する。計算手段17aは、各組の2つの相に流れる電流を情報保持手段14から読み出し、電圧、電流および巻線抵抗値を含む3組の連立方程式を解いて、三相の巻線抵抗値を算出する。 Further, the calculation means 17a executes a measurement mode for calculating the winding resistance values of the electric motors 6a and 6b by using, for example, a time zone in which the electric motors 6a and 6b are not used. In the measurement mode for calculating the winding resistance value of the electric motor 6a, the calculation means 17a causes the switching control means 15 to turn on the relay 4a and turn off the relay 4b. Subsequently, the calculation means 17a sequentially changes the combination of two of the three phases of the U phase, the V phase, and the W phase via the switching control means 15, and puts the two phases of each set on both ends for a certain period of time. , Notifies the power control means 13 to apply the determined voltage. The calculation means 17a reads the current flowing through the two phases of each set from the information holding means 14, solves three sets of simultaneous equations including the voltage, the current, and the winding resistance value, and calculates the winding resistance value of the three phases. To do.
 また、計算手段17aは、電動機6aおよび6bについて、情報保持手段14が記憶する複数の状態変数のうち、1つ以上の状態変数と疲労度算出式とを用いて、電動機6aの疲労度FATaと電動機6bの疲労度FATbとを算出する。また、計算手段17aは、疲労度計算式を更新する機械学習手段18を有する。 Further, the calculation means 17a uses one or more state variables and a fatigue degree calculation formula among the plurality of state variables stored in the information holding means 14 for the electric motors 6a and 6b to obtain the fatigue degree FATa of the electric motor 6a. The fatigue level FATb of the electric motor 6b is calculated. Further, the calculation means 17a has a machine learning means 18 for updating the fatigue degree calculation formula.
 図13は、図12に示した機械学習手段の一構成例を示すブロック図である。図13において、入力は状態変数であり、出力は疲労度である。機械学習手段18は、状態変数取得部81と、関数更新部82と、意思検定部83と、報酬計算部84とを有する。 FIG. 13 is a block diagram showing a configuration example of the machine learning means shown in FIG. In FIG. 13, the input is a state variable and the output is the degree of fatigue. The machine learning means 18 has a state variable acquisition unit 81, a function update unit 82, an intention test unit 83, and a reward calculation unit 84.
 状態変数取得部81は、計算手段17aを介して情報保持手段14から状態変数を取得し、取得した状態変数を関数更新部82に渡す。関数更新部82は、更新された状態変数を疲労度算出式に代入して疲労度を算出して意思検定部83に出力する。また、関数更新部82は、報酬計算部84から受け取る報酬が小さい場合、現在の疲労度算出式を、算出される疲労度が基準疲労度に近づくように更新する。意思検定部83は、関数更新部82から受け取る疲労度を出力するとともに、疲労度に基づいて電動機の寿命を予測する。また、意思検定部83は、予測した寿命と基準疲労度から求まる基準寿命との誤差を算出する。報酬計算部84は、算出された誤差に反比例した報酬を算出し、算出した報酬を疲労度に設定して関数更新部82に出力する。 The state variable acquisition unit 81 acquires a state variable from the information holding means 14 via the calculation means 17a, and passes the acquired state variable to the function update unit 82. The function update unit 82 substitutes the updated state variable into the fatigue degree calculation formula, calculates the fatigue degree, and outputs it to the intention test unit 83. Further, when the reward received from the reward calculation unit 84 is small, the function update unit 82 updates the current fatigue degree calculation formula so that the calculated fatigue degree approaches the reference fatigue degree. The intention test unit 83 outputs the degree of fatigue received from the function update unit 82, and predicts the life of the electric motor based on the degree of fatigue. Further, the intention test unit 83 calculates an error between the predicted life and the reference life obtained from the reference fatigue degree. The reward calculation unit 84 calculates a reward that is inversely proportional to the calculated error, sets the calculated reward as the degree of fatigue, and outputs the calculated reward to the function update unit 82.
 機械学習手段18は、電動機6aおよび6bが使用されている環境に合わせて、複数の基準疲労度から1つの基準疲労度を選択し、疲労度算出式から算出される疲労度が、選択した基準疲労度に近づくように疲労度算出式を更新する。例えば、機械学習手段18は、複数の状態変数のうち、電動機6aおよび6bの疲労度に大きな影響を及ぼす特徴変数を抽出し、抽出した特徴変数の重み付けを大きくする。特徴変数ではない状態変数の重み付けがゼロに設定されてもよい。疲労度算出式には、複数の状態変数のうち、機械学習手段18が特徴変数として抽出した変数が少なくとも1つ残ればよい。 The machine learning means 18 selects one reference fatigue degree from a plurality of reference fatigue degrees according to the environment in which the electric motors 6a and 6b are used, and the fatigue degree calculated from the fatigue degree calculation formula is the selected reference. Update the fatigue calculation formula so that it approaches the fatigue level. For example, the machine learning means 18 extracts a characteristic variable that has a great influence on the degree of fatigue of the electric motors 6a and 6b from a plurality of state variables, and increases the weighting of the extracted characteristic variable. The weighting of state variables that are not feature variables may be set to zero. Of the plurality of state variables, at least one variable extracted by the machine learning means 18 as a feature variable may remain in the fatigue degree calculation formula.
 次に、本実施の形態3の電動機制御装置1bの動作を説明する。図14は、図11に示した電動機制御装置の動作手順の一例を示すフローチャートである。図14に示すステップS309およびS310は、図6を参照して説明したステップS127およびS128の動作と同様になるため、本実施の形態3では、その詳細な説明を省略する。 Next, the operation of the electric motor control device 1b according to the third embodiment will be described. FIG. 14 is a flowchart showing an example of the operation procedure of the electric motor control device shown in FIG. Since steps S309 and S310 shown in FIG. 14 are similar to the operations of steps S127 and S128 described with reference to FIG. 6, detailed description thereof will be omitted in the third embodiment.
 切替制御手段15は、周期T1で、図14に示す手順にしたがって動作する。切替制御手段15は、インバータ25が動作中か否かを判定する(ステップS301)。インバータ25が動作中の場合、切替制御手段15は、電動機6aまたは6bが単独で駆動しているか否かを判定する(ステップS302)。切替制御手段15は、現在のリレー4aおよび4bの状態から、電動機6aまたは6bが単独駆動であるか否かを判定できる。 The switching control means 15 operates in the cycle T1 according to the procedure shown in FIG. The switching control means 15 determines whether or not the inverter 25 is operating (step S301). When the inverter 25 is in operation, the switching control means 15 determines whether or not the electric motor 6a or 6b is driven independently (step S302). The switching control means 15 can determine whether or not the electric motor 6a or 6b is independently driven from the current states of the relays 4a and 4b.
 電動機6aまたは6bが単独で駆動している場合、計算手段17aは、情報保持手段14から状態変数を読み出す(ステップS303)。ステップS303で読み出される状態変数は、電動機6aおよび6bに対応した疲労度算出式で用いられる状態変数であり、その数は制御対象の電動機によって異なってもよい。ここでは、説明を簡単にするために、電動機に生じる音、巻線抵抗値、消費電力、温度、湿度、電動機の電流値、回転数および駆動時間の状態変数のうち、読み出される状態変数が1つであるものとする。 When the electric motor 6a or 6b is driven independently, the calculation means 17a reads out the state variable from the information holding means 14 (step S303). The state variables read out in step S303 are state variables used in the fatigue degree calculation formula corresponding to the electric motors 6a and 6b, and the number of the state variables may differ depending on the electric motor to be controlled. Here, for the sake of simplicity, one of the state variables of the sound generated in the motor, winding resistance value, power consumption, temperature, humidity, current value of the motor, rotation speed, and drive time is read out. It shall be one.
 計算手段17aが状態変数を情報保持手段14から読み出すと、機械学習手段18が機械学習処理を実行する(ステップS304)。ステップS304の過程で、機械学習手段18は電動機6aおよび6bの各電動機の疲労度を算出する(ステップS305)。図14では、説明のために、機械学習処理(ステップS304)および疲労度算出処理(ステップS305)を別々のステップで示しているが、これらの処理を、状態変数に対する処理として1つのステップで示してもよい。ステップS304の処理の詳細は後述する。 When the calculation means 17a reads the state variable from the information holding means 14, the machine learning means 18 executes the machine learning process (step S304). In the process of step S304, the machine learning means 18 calculates the degree of fatigue of each of the electric motors 6a and 6b (step S305). In FIG. 14, for the sake of explanation, the machine learning process (step S304) and the fatigue degree calculation process (step S305) are shown in separate steps, but these processes are shown in one step as processes for state variables. You may. The details of the process in step S304 will be described later.
 また、機械学習手段18は、図14に示す機械学習処理(ステップS304)を、周期T1とは異なる周期T2で実行してもよい。この場合、ステップS304は図14に示す手順に組み込まれていなくてもよい。ステップS305において、計算手段17aが、機械学習手段18によって更新された疲労度算出式を用いて、電動機6aの疲労度FATaと電動機6bの疲労度FATbとを算出してもよい。 Further, the machine learning means 18 may execute the machine learning process (step S304) shown in FIG. 14 in a cycle T2 different from the cycle T1. In this case, step S304 may not be incorporated into the procedure shown in FIG. In step S305, the calculation means 17a may calculate the fatigue degree FATa of the electric motor 6a and the fatigue degree FATb of the electric motor 6b by using the fatigue degree calculation formula updated by the machine learning means 18.
 切替制御手段15は、計算手段17aによって算出された、疲労度FATaと疲労度FATbとを比較する(ステップS306)。比較の結果、FATa>FATbである場合、切替制御手段15は、電力制御手段13がインバータ25の動作を停止させるタイミングに合わせて、リレー4aをオフ状態にし、リレー4bをオン状態にする(ステップS307)。その後、電力制御手段13がインバータ25に動作を開始させると、電動機6aの代わりに、電動機6bが駆動を開始する。 The switching control means 15 compares the fatigue degree FATa and the fatigue degree FATb calculated by the calculation means 17a (step S306). As a result of comparison, when FATA> FATb, the switching control means 15 turns the relay 4a off and the relay 4b on at the timing when the power control means 13 stops the operation of the inverter 25 (step). S307). After that, when the power control means 13 causes the inverter 25 to start operating, the electric motor 6b starts driving instead of the electric motor 6a.
 ステップS306の判定の結果、FATa≦FATbである場合、切替制御手段15は、電力制御手段13がインバータ25の動作を停止させるタイミングに合わせて、リレー4aをオン状態にし、リレー4bをオフ状態にする(ステップS308)。その後、電力制御手段13がインバータ25に動作を開始させると、電動機6bの代わりに、電動機6aが駆動を開始する。 As a result of the determination in step S306, when FATa ≤ FATb, the switching control means 15 turns the relay 4a on and the relay 4b off at the timing when the power control means 13 stops the operation of the inverter 25. (Step S308). After that, when the power control means 13 causes the inverter 25 to start operating, the electric motor 6a starts driving instead of the electric motor 6b.
 電動機制御装置1bが、電動機の負荷に関する複数の状態変数のうち、電動機6aおよび6bの性能および運転状況に対応した1以上の状態変数を含む疲労度算出式を用いて疲労度を算出することで、各電動機の疲労度をより適切に算出できる。なお、本実施の形態3では、図6に示したフローをベースにして、切替制御手段15の動作手順を説明したが、図5に示したフローをベースにした制御を行ってもよい。 The motor control device 1b calculates the fatigue level by using a fatigue level calculation formula including one or more state variables corresponding to the performance and operating conditions of the motors 6a and 6b among a plurality of state variables related to the load of the motor. , The degree of fatigue of each electric motor can be calculated more appropriately. In the third embodiment, the operation procedure of the switching control means 15 has been described based on the flow shown in FIG. 6, but the control based on the flow shown in FIG. 5 may be performed.
 図15は、図14に示したステップS304の処理の動作手順の一例を示すフローチャートである。図15に示すフローは強化学習の一例である。状態変数取得部81が情報保持手段14から最新の状態変数を取得して関数更新部82に渡す(ステップS351)。関数更新部82は、状態変数取得部81から受け取った状態変数の処理が終了しているか否かを判定する(ステップS352)。状態変数の処理が終了していない場合、関数更新部82は、更新された状態変数を疲労度算出式に代入して疲労度を算出する(ステップS353)。関数更新部82は、更新された状態変数によって算出された疲労度を意思検定部83に渡す。 FIG. 15 is a flowchart showing an example of the operation procedure of the process of step S304 shown in FIG. The flow shown in FIG. 15 is an example of reinforcement learning. The state variable acquisition unit 81 acquires the latest state variable from the information holding means 14 and passes it to the function update unit 82 (step S351). The function update unit 82 determines whether or not the processing of the state variable received from the state variable acquisition unit 81 has been completed (step S352). When the processing of the state variable is not completed, the function update unit 82 substitutes the updated state variable into the fatigue degree calculation formula to calculate the fatigue degree (step S353). The function update unit 82 passes the fatigue level calculated by the updated state variable to the intention test unit 83.
 意思検定部83は、関数更新部82から渡された疲労度について処理が終了しているか否かを判定する(ステップS354)。疲労度について処理が終了していない場合、意思検定部83は、関数更新部82から受け取った疲労度を出力する。また、意思検定部83は、受け取った疲労度に基づいて電動機の寿命を予測する(ステップS355)。続いて、意思検定部83は、予測した寿命と基準疲労度から求まる基準寿命との誤差を算出する。報酬計算部84は、算出された誤差に反比例した報酬を算出する(ステップS356)。続いて、報酬計算部84は、意思検定の割り付けとして、算出した報酬を疲労度に設定して関数更新部82に出力する(ステップS357)。 The intention test unit 83 determines whether or not the processing has been completed for the fatigue level passed from the function update unit 82 (step S354). When the processing for the fatigue degree is not completed, the intention test unit 83 outputs the fatigue degree received from the function update unit 82. Further, the intention verification unit 83 predicts the life of the electric motor based on the received fatigue level (step S355). Subsequently, the intention test unit 83 calculates an error between the predicted life and the reference life obtained from the reference fatigue degree. The reward calculation unit 84 calculates a reward that is inversely proportional to the calculated error (step S356). Subsequently, the reward calculation unit 84 sets the calculated reward as the fatigue level and outputs it to the function update unit 82 as an allocation of the intention test (step S357).
 関数更新部82は、報酬が設定された疲労度を報酬計算部84から受け取り、報酬が大きい場合、疲労度算出式をそのまま維持する(ステップS352)。一方、関数更新部82は、報酬計算部84から受け取った報酬が小さい場合、算出される疲労度が基準疲労度に近づくように現在の疲労度算出式を更新する。 The function update unit 82 receives the fatigue degree for which the reward is set from the reward calculation unit 84, and if the reward is large, the function update unit 82 maintains the fatigue degree calculation formula as it is (step S352). On the other hand, when the reward received from the reward calculation unit 84 is small, the function update unit 82 updates the current fatigue degree calculation formula so that the calculated fatigue degree approaches the reference fatigue degree.
 このようにして、機械学習手段18が強化学習を行うことで、疲労度算出式によって予測される疲労度が電動機6aおよび6bの実際の疲労度に近づくように、疲労度算出式が最適化される。 In this way, by performing reinforcement learning by the machine learning means 18, the fatigue degree calculation formula is optimized so that the fatigue degree predicted by the fatigue degree calculation formula approaches the actual fatigue degree of the electric motors 6a and 6b. To.
 本実施の形態3の電動機制御装置1bは、電動機6aおよび6bについて、複数の状態変数のうち、1つ以上の状態変数と疲労度算出式とを用いて疲労度を算出し、各電動機の疲労度が均等になるようにリレー4aおよび4bを制御するものである。本実施の形態3によれば、機械学習で最適化された疲労度算出式を用いて、電動機6aおよび6bの各電動機の疲労度が算出されるため、各電動機の疲労度の算出精度が向上する。そのため、実際の疲労度に近い値に基づいて電動機6aおよび6bの負荷が分散されるため、電動機6aおよび6bをより均等に長寿命化を図ることができる。 The electric motor control device 1b of the third embodiment calculates the degree of fatigue of the electric motors 6a and 6b by using one or more state variables and a fatigue degree calculation formula among a plurality of state variables, and fatigue of each electric motor. The relays 4a and 4b are controlled so that the degrees are equal. According to the third embodiment, the fatigue degree of each of the electric motors 6a and 6b is calculated by using the fatigue degree calculation formula optimized by machine learning, so that the calculation accuracy of the fatigue degree of each electric motor is improved. To do. Therefore, since the loads of the electric motors 6a and 6b are distributed based on a value close to the actual fatigue degree, the life of the electric motors 6a and 6b can be extended more evenly.
実施の形態4.
 本実施の形態4は、実施の形態3で算出される、電動機6aおよび6bの疲労度に基づいて、電動機6aおよび6bの異常および交換時期を発報するものである。本実施の形態4では、実施の形態1~3で説明した構成と同様な構成について同一の符号を付し、その詳細な説明を省略する。本実施の形態4では、電動機6aおよび6bが空気調和装置に設けられている場合で説明する。
Embodiment 4.
In the fourth embodiment, the abnormality and the replacement timing of the electric motors 6a and 6b are reported based on the fatigue degree of the electric motors 6a and 6b calculated in the third embodiment. In the fourth embodiment, the same reference numerals are given to the same configurations as those described in the first to third embodiments, and detailed description thereof will be omitted. In the fourth embodiment, the case where the electric motors 6a and 6b are provided in the air conditioner will be described.
 本実施の形態4の電動機制御装置の構成を説明する。図16は、実施の形態4に係る電動機制御装置の一構成例を示すブロック図である。図17は、図16に示したコントローラの一構成例を示す機能ブロック図である。 The configuration of the electric motor control device according to the fourth embodiment will be described. FIG. 16 is a block diagram showing a configuration example of the electric motor control device according to the fourth embodiment. FIG. 17 is a functional block diagram showing a configuration example of the controller shown in FIG.
 コントローラ10cは、空気調和装置のリモートコントローラ71と通信接続される。コントローラ10cとリモートコントローラ71との通信接続手段は、有線であってもよく、無線であってもよい。リモートコントローラ71は表示部72を有する。リモートコントローラ71は、図に示していないが、マイクロコンピュータと、操作部とを備えている。リモートコントローラ71は、ユーザによって入力される設定温度および風量等の空調パラメータを空気調和装置の制御装置(不図示)に送信する。リモートコントローラ71は、空気調和装置の運転状態を表示部72に表示する。 The controller 10c is communicated with the remote controller 71 of the air conditioner. The communication connection means between the controller 10c and the remote controller 71 may be wired or wireless. The remote controller 71 has a display unit 72. Although not shown in the figure, the remote controller 71 includes a microcomputer and an operation unit. The remote controller 71 transmits air conditioning parameters such as a set temperature and an air volume input by the user to a controller (not shown) of the air conditioner. The remote controller 71 displays the operating state of the air conditioner on the display unit 72.
 また、コントローラ10cは、有線および無線のうち、一方または両方を介して、ネットワーク100と接続される。ネットワーク100には、空気調和装置のメンテナンス会社が運営するサーバ90が接続されている。サーバ90は、記憶部92と、制御部91とを有する。制御部91は、図に示さないメモリおよびCPUを有し、メモリが記憶するプログラムにしたがってCPUが処理を実行する。記憶部92は、例えば、HDD(Hard Disk Drive)装置である。図に示していないが、サーバ90は、メンテナンス会社の作業員が操作するための操作部と、記憶部92が記憶する情報を表示する表示部とを備えていてもよい。 Further, the controller 10c is connected to the network 100 via one or both of wired and wireless. A server 90 operated by a maintenance company for an air conditioner is connected to the network 100. The server 90 has a storage unit 92 and a control unit 91. The control unit 91 has a memory and a CPU (not shown in the figure), and the CPU executes processing according to a program stored in the memory. The storage unit 92 is, for example, an HDD (Hard Disk Drive) device. Although not shown in the figure, the server 90 may include an operation unit for operation by a worker of a maintenance company and a display unit for displaying information stored in the storage unit 92.
 図17に示すように、コントローラ10cは、図12に示した構成の他に、計算手段17aの算出結果を外部に出力する通信手段19を有する。計算手段17aは、電動機6aについて、予測した疲労度と基準寿命とを比較し、電動機6aの基準寿命までの残り時間REMtaを算出する。計算手段17aは、電動機6bについて、予測した疲労度と基準寿命とを比較し、電動機6bの基準寿命までの残り時間REMtbを算出する。計算手段17aは、残り時間REMtaおよびREMtbの各残り時間REMtと決められた閾値時間TPthとを比較する。残り時間REMtaよびREMtbのうち、少なくとも一方の残り時間REMtが閾値時間TPth以下である場合、計算手段17aは、その結果を通信手段19に通知する。情報保持手段14が閾値時間TPthを記憶している。 As shown in FIG. 17, in addition to the configuration shown in FIG. 12, the controller 10c has a communication means 19 that outputs the calculation result of the calculation means 17a to the outside. The calculation means 17a compares the predicted fatigue level with the reference life of the electric motor 6a, and calculates the remaining time REMta until the reference life of the electric motor 6a. The calculation means 17a compares the predicted fatigue level with the reference life of the electric motor 6b, and calculates the remaining time REMtb until the reference life of the electric motor 6b. The calculation means 17a compares each remaining time REMt of the remaining time REMta and REMtb with the determined threshold time TPth. When at least one of the remaining time REMta and REMtb, the remaining time REMt is equal to or less than the threshold time TPth, the calculation means 17a notifies the communication means 19 of the result. The information holding means 14 stores the threshold time TPth.
 通信手段19は、残り時間REMtaおよびREMtbのうち、少なくとも一方が閾値時間TPth以下である場合、リモートコントローラ71およびサーバ90に警報を出力する。また、通信手段19は、電動機6aおよび6bのうち、いずれかの電動機に異常が発生した場合、異常が発生した電動機を示す異常情報をリモートコントローラ71およびサーバ90に出力する。 The communication means 19 outputs an alarm to the remote controller 71 and the server 90 when at least one of the remaining time REMta and REMtb is equal to or less than the threshold time TPth. Further, when an abnormality occurs in any of the electric motors 6a and 6b, the communication means 19 outputs abnormality information indicating the electric motor in which the abnormality has occurred to the remote controller 71 and the server 90.
 次に、本実施の形態4の電動機制御装置1cの動作を説明する。図18および図19は、図16に示した電動機制御装置の動作手順の一例を示すフローチャートである。図18に示すステップS410およびS411は、図6を参照して説明したステップS128およびS127の動作と同様になるため、本実施の形態4では、その詳細な説明を省略する。また、図18に示すステップS401~S405およびS416~S418は、図14を参照して説明したステップS301~S308の動作と同様になるため、本実施の形態4では、その詳細な説明を省略する。 Next, the operation of the electric motor control device 1c according to the fourth embodiment will be described. 18 and 19 are flowcharts showing an example of the operation procedure of the electric motor control device shown in FIG. Since steps S410 and S411 shown in FIG. 18 are similar to the operations of steps S128 and S127 described with reference to FIG. 6, detailed description thereof will be omitted in the fourth embodiment. Further, since steps S401 to S405 and S416 to S418 shown in FIG. 18 are the same as the operations of steps S301 to S308 described with reference to FIG. 14, detailed description thereof will be omitted in the fourth embodiment. ..
 ステップS406において、計算手段17aは、電動機6aおよび6bについて予測した疲労度に基づいて、電動機6aの基準寿命までの残り時間REMtaおよび電動機6bの基準寿命までの残り時間REMtbを算出する(ステップS406)。計算手段17aは、算出した残り時間REMtaおよびREMtbに基づいて、電動機6aおよび6bに異常があるか否かを判定する(ステップS407)。例えば、計算手段17aは、算出する残り時間REMtaを情報保持手段14に時系列で記憶させ、情報保持手段14に最後に記憶させた残り時間REMtaよりも、最新の残り時間REMtaの方が長い場合、電動機6aに異常があると判定する。 In step S406, the calculation means 17a calculates the remaining time REMta to the reference life of the electric motor 6a and the remaining time REMtb to the reference life of the electric motor 6b based on the degree of fatigue predicted for the electric motors 6a and 6b (step S406). .. The calculation means 17a determines whether or not there is an abnormality in the electric motors 6a and 6b based on the calculated remaining time REMta and REMtb (step S407). For example, when the calculation means 17a stores the remaining time REMta to be calculated in the information holding means 14 in time series, and the latest remaining time REMta is longer than the remaining time REMta finally stored in the information holding means 14. , It is determined that the electric motor 6a has an abnormality.
 また、ステップS407における、電動機6aおよび6bの異常の有無の判定基準となる値は、残り時間REMtaおよびREMtbに限らない。ステップS407において、計算手段17aは、例えば、電流センサ31aに流れる電流が異常値を示しているとき、電動機6aに異常があると判定してもよい。さらに、計算手段17aは、電力制御手段13から切替制御手段15を介して、電動機6aおよび6bの一方または両方について異常を示す情報が通知されてもよい。 Further, the values that serve as the criteria for determining the presence or absence of abnormalities in the electric motors 6a and 6b in step S407 are not limited to the remaining time REMta and REMtb. In step S407, the calculation means 17a may determine that the electric motor 6a has an abnormality, for example, when the current flowing through the current sensor 31a shows an abnormal value. Further, the calculation means 17a may be notified from the power control means 13 via the switching control means 15 of information indicating an abnormality for one or both of the electric motors 6a and 6b.
 ステップS407において、計算手段17aが電動機6aおよび6bのうち、一方または両方に異常があると判定すると、通信手段19は、異常が発生した電動機を示す異常情報をリモートコントローラ71およびサーバ90に出力する(ステップS408)。以下では、電動機6aに異常が発生した場合で説明する。リモートコントローラ71は、コントローラ10cから異常情報を受信すると、電動機6aに異常が発生したことを表示部72に表示させる。この場合、空気調和装置のユーザは、電動機6aの異常を調べ、より早く対処できる。さらに、ユーザは、自分で対処できないと判断した場合、メンテナンス会社に電動機6aの修理を依頼することができる。 In step S407, when the calculation means 17a determines that one or both of the electric motors 6a and 6b has an abnormality, the communication means 19 outputs the abnormality information indicating the electric motor in which the abnormality has occurred to the remote controller 71 and the server 90. (Step S408). Hereinafter, a case where an abnormality occurs in the electric motor 6a will be described. When the remote controller 71 receives the abnormality information from the controller 10c, the remote controller 71 causes the display unit 72 to display that the abnormality has occurred in the electric motor 6a. In this case, the user of the air conditioner can investigate the abnormality of the electric motor 6a and deal with it more quickly. Further, the user can request the maintenance company to repair the electric motor 6a if he / she determines that he / she cannot deal with it by himself / herself.
 サーバ90はコントローラ10cからネットワーク100を介して異常情報を受信すると、制御部91は異常情報を記憶部92に格納する。そして、制御部91は、空気調和装置に設置された電動機6aに異常が発生したことを表示部(不図示)に表示させる。メンテナンス会社の作業員は、サーバ90に表示された内容を見ることで、電動機6aに異常が発生したことを認識する。この場合、作業員は、空気調和装置のユーザから連絡がなくても、電動機6aの修理の準備をすることができる。その結果、作業員は電動機6aに発生した異常に対して、より早く対処できる。 When the server 90 receives the abnormality information from the controller 10c via the network 100, the control unit 91 stores the abnormality information in the storage unit 92. Then, the control unit 91 causes a display unit (not shown) to indicate that an abnormality has occurred in the electric motor 6a installed in the air conditioner. The worker of the maintenance company recognizes that an abnormality has occurred in the electric motor 6a by looking at the contents displayed on the server 90. In this case, the worker can prepare for the repair of the electric motor 6a without contact from the user of the air conditioner. As a result, the worker can deal with the abnormality generated in the electric motor 6a more quickly.
 ステップS408の後、コントローラ10cは応急運転モードに移行する(ステップS409)。具体的には、切替制御手段15は、電動機6aに異常が発生すると、電動機6aに対応するリレー4aをオフ状態にし、正常に運転する電動機6bに対応するリレー4bをオン状態にする。この場合、電動機6aの修理が行われるまでの間、電動機6bが駆動することで、空気調和装置は空調運転を継続できる。 After step S408, the controller 10c shifts to the emergency operation mode (step S409). Specifically, when an abnormality occurs in the electric motor 6a, the switching control means 15 turns off the relay 4a corresponding to the electric motor 6a and turns on the relay 4b corresponding to the electric motor 6b that operates normally. In this case, the air conditioner can continue the air conditioning operation by driving the electric motor 6b until the electric motor 6a is repaired.
 一方、ステップS407の判定の結果、電動機6aおよび6bに異常がない場合、計算手段17aは、電動機6aの残り時間REMtaが閾値時間TPthより大きいか否かを判定する(ステップS412)。判定の結果、REMta≦TPthである場合、計算手段17aは残り時間REMtaが閾値時間TPth以下であることを通信手段19に通知する。通信手段19は、残り時間REMtaの情報を含む警報をリモートコントローラ71およびサーバ90に出力する(ステップS413)。 On the other hand, if there is no abnormality in the electric motors 6a and 6b as a result of the determination in step S407, the calculation means 17a determines whether or not the remaining time REMta of the electric motor 6a is larger than the threshold time TPth (step S412). As a result of the determination, when REMta ≤ TPth, the calculation means 17a notifies the communication means 19 that the remaining time REMta is equal to or less than the threshold time TPth. The communication means 19 outputs an alarm including the information of the remaining time REMta to the remote controller 71 and the server 90 (step S413).
 リモートコントローラ71は、コントローラ10cから警報を受け取ると、電動機6aの寿命まで閾値時間TPth以下になったことを表示部72に表示させる。この場合、空気調和装置のユーザは、電動機6aの寿命が近いことを知り、電動機6aの交換の準備をすることができる。サーバ90がコントローラ10cからネットワーク100を介して警報を受け取ると、制御部91は警報に含まれる情報を記憶部92に格納する。そして、制御部91は、電動機6aの寿命まで閾値時間TPth以下になったことを表示部(不図示)に表示させる。メンテナンス会社の作業員は、サーバ90に表示された内容を見ることで、電動機6aの寿命が近いことを知り、電動機6aの交換の準備をすることができる。 When the remote controller 71 receives an alarm from the controller 10c, the remote controller 71 causes the display unit 72 to display that the threshold time TPth or less has reached the end of the life of the electric motor 6a. In this case, the user of the air conditioner knows that the motor 6a is nearing the end of its life and can prepare for replacement of the motor 6a. When the server 90 receives an alarm from the controller 10c via the network 100, the control unit 91 stores the information included in the alarm in the storage unit 92. Then, the control unit 91 causes the display unit (not shown) to display that the threshold time TPth or less has reached the end of the life of the electric motor 6a. By looking at the contents displayed on the server 90, the worker of the maintenance company knows that the life of the electric motor 6a is near and can prepare for the replacement of the electric motor 6a.
 続いて、計算手段17aは、電動機6bの残り時間REMtbが閾値時間TPthより大きいか否かを判定する(ステップS414)。判定の結果、REMtb≦TPthである場合、計算手段17aは残り時間REMtbが閾値時間TPth以下であることを通信手段19に通知する。通信手段19は、残り時間REMtbの情報を含む警報をリモートコントローラ71およびサーバ90に出力する(ステップS415)。 Subsequently, the calculation means 17a determines whether or not the remaining time REMtb of the electric motor 6b is larger than the threshold time TPth (step S414). As a result of the determination, when REMtb ≤ TPth, the calculation means 17a notifies the communication means 19 that the remaining time REMtb is equal to or less than the threshold time TPth. The communication means 19 outputs an alarm including the information of the remaining time REMtb to the remote controller 71 and the server 90 (step S415).
 リモートコントローラ71は、コントローラ10cから警報を受け取ると、電動機6bの寿命まで閾値時間TPth以下になったことを表示部72に表示させる。サーバ90がコントローラ10cからネットワーク100を介して警報を受け取ると、制御部91は、電動機6bの寿命まで閾値時間TPth以下になったことを表示部(不図示)に表示させる。空気調和装置のユーザおよびメンテナンス会社の作業員は、電動機6bの寿命が近いことを認識し、電動機6bの交換の準備をすることができる。 When the remote controller 71 receives an alarm from the controller 10c, the remote controller 71 causes the display unit 72 to display that the threshold time has reached TPth or less until the life of the electric motor 6b. When the server 90 receives an alarm from the controller 10c via the network 100, the control unit 91 causes a display unit (not shown) to indicate that the threshold time TPth or less has reached the end of the life of the electric motor 6b. Users of the air conditioner and workers of the maintenance company can recognize that the motor 6b is nearing the end of its life and prepare to replace the motor 6b.
 本実施の形態4の電動機制御装置1cは、電動機6aおよび6bについて、疲労度に基づいて寿命までの残り時間REMtを算出し、残り時間REMtが閾値時間TPth以下である場合、警報を外部に出力する。電動機制御装置1cが警報を電動機6aおよび6bが設置された空気調和装置のリモートコントローラ71に出力すれば、ユーザは、電動機6aおよび6bのうち、一方または両方が寿命に近いことを知ることができる。ユーザは、寿命予測の情報を活用することで、安定して電動機6aおよび6bを稼動させることができ、電動機6aおよび6bが搭載されたユニットの稼働率が向上する。 The electric motor control device 1c of the fourth embodiment calculates the remaining time REMt until the life of the electric motors 6a and 6b based on the degree of fatigue, and outputs an alarm to the outside when the remaining time REMt is equal to or less than the threshold time TPth. To do. If the electric motor control device 1c outputs an alarm to the remote controller 71 of the air conditioner in which the electric motors 6a and 6b are installed, the user can know that one or both of the electric motors 6a and 6b are near the end of their service life. .. The user can stably operate the electric motors 6a and 6b by utilizing the information of the life prediction, and the operating rate of the unit on which the electric motors 6a and 6b are mounted is improved.
 電動機制御装置1cが警報を電動機6aおよび6bのメンテナンス会社が運営するサーバ90に出力すれば、メンテナンス会社の作業員は、電動機6aおよび6bのうち、一方または両方が寿命に近いことを知ることができる。作業員が、残り時間REMtを含む警報を時系列で監視することで、電動機6aおよび6bの故障の発生を事前に予測することもできる。この場合、電動機6aおよび6bのうち、一方または両方が故障で完全に動かなくなってしまう前に、メンテナンス会社からユーザに電動機のメンテナンスを提案することができる。ユーザは、安定したメンテナンス計画を立案できる。その結果、予定外のメンテナンスが発生することが抑制され、緊急対応にかかる費用を抑制し、管理コストを低減することができる。 If the motor control device 1c outputs an alarm to the server 90 operated by the maintenance company of the motors 6a and 6b, the maintenance company worker can know that one or both of the motors 6a and 6b are near the end of their life. it can. The worker can predict the occurrence of failure of the electric motors 6a and 6b in advance by monitoring the alarm including the remaining time REMt in chronological order. In this case, the maintenance company can propose maintenance of the electric motor to the user before one or both of the electric motors 6a and 6b are completely stopped due to a failure. The user can formulate a stable maintenance plan. As a result, unscheduled maintenance can be suppressed, the cost of emergency response can be suppressed, and the management cost can be reduced.
 また、本実施の形態4の電動機制御装置1cは、電動機6aおよび6bのうち、いずれかの電動機に異常が発生した場合、異常が発生した電動機を示す異常情報を外部に出力してもよい。電動機制御装置1cが異常情報をリモートコントローラ71に出力すれば、ユーザは、電動機6aおよび6bのうち、一方または両方に異常が発生したことを、より早く知ることができる。電動機制御装置1cが異常情報をサーバ90に出力すれば、メンテナンス会社の作業員は、電動機6aおよび6bのうち、一方または両方に異常が発生したことを知ることができる。その結果、作業員は、電動機に発生した異常により早く対処でき、早急にメンテナンスすることができる。 Further, the electric motor control device 1c of the fourth embodiment may output abnormality information indicating the electric motor in which the abnormality has occurred to the outside when an abnormality occurs in any of the electric motors 6a and 6b. If the electric motor control device 1c outputs the abnormality information to the remote controller 71, the user can know earlier that an abnormality has occurred in one or both of the electric motors 6a and 6b. If the electric motor control device 1c outputs the abnormality information to the server 90, the worker of the maintenance company can know that one or both of the electric motors 6a and 6b have an abnormality. As a result, the worker can quickly deal with the abnormality generated in the electric motor and can perform maintenance immediately.
 さらに、電動機制御装置1cは、電動機6aおよび6bのうち、いずれか一方の電動機に異常が発した場合、応答運転モードに移行してもよい。この場合、異常のある電動機の修理が行われるまでの間、正常な電動機が駆動することで、電動機6aおよび6bが搭載された空気調和装置は、空調運転を継続できる。 Further, the electric motor control device 1c may shift to the response operation mode when an abnormality occurs in one of the electric motors 6a and 6b. In this case, the air conditioner equipped with the electric motors 6a and 6b can continue the air conditioning operation by driving the normal electric motor until the abnormal electric motor is repaired.
 なお、上述の実施の形態1~4では、電動機の駆動対象がファンの場合で説明したが、駆動対象はファンに限らない。また、実施の形態4において、図18のステップS407~S409で説明した、電動機6aおよび6bの異常判定処理は、実施の形態1~3のいずれの実施の形態にも適用できる。実施の形態1~4のうち、2以上の実施の形態を組み合わせてもよい。 In the above-described first to fourth embodiments, the case where the drive target of the electric motor is a fan has been described, but the drive target is not limited to the fan. Further, in the fourth embodiment, the abnormality determination processing of the electric motors 6a and 6b described in steps S407 to S409 of FIG. 18 can be applied to any of the embodiments of the first to third embodiments. Of the first to fourth embodiments, two or more embodiments may be combined.
 1、1a~1c 電動機制御装置、3 電力変換装置、4a、4b リレー、5a、5b ファン、6a、6b 電動機、7 電源、10、10a~10c コントローラ、11 CPU、12 メモリ、13 電力制御手段、14 情報保持手段、15 切替制御手段、16 タイマー、17、17a 計算手段、18 機械学習手段、19 通信手段、21、21a、21b、22a、22b 三相電力線、25 インバータ、30、30a 測定部、31a、31b 電流センサ、32a、32b 回転検出器、33a、33b 温度センサ、34a、34b 湿度センサ、35a、35b 音センサ、51~56 スイッチング素子、61~66 逆流防止素子、71 リモートコントローラ、72 表示部、81 状態変数取得部、82 関数更新部、83 意思検定部、84 報酬計算部、90 サーバ、91 制御部、92 記憶部、100 ネットワーク。 1, 1a to 1c electric motor control device, 3 power converter, 4a, 4b relay, 5a, 5b fan, 6a, 6b electric motor, 7 power supply, 10, 10a to 10c controller, 11 CPU, 12 memory, 13 power control means, 14 information holding means, 15 switching control means, 16 timer, 17, 17a calculation means, 18 machine learning means, 19 communication means, 21, 21a, 21b, 22a, 22b three-phase power line, 25 inverter, 30, 30a measuring unit, 31a, 31b current sensor, 32a, 32b rotation detector, 33a, 33b temperature sensor, 34a, 34b humidity sensor, 35a, 35b sound sensor, 51-56 switching element, 61-66 backflow prevention element, 71 remote controller, 72 display Unit, 81 state variable acquisition unit, 82 function update unit, 83 intention test unit, 84 reward calculation unit, 90 server, 91 control unit, 92 storage unit, 100 network.

Claims (9)

  1.  互いに並列に接続される複数の電動機に電圧を供給する電力変換装置と、
     前記複数の電動機に対応して設けられ、前記電力変換装置との接続状態および切断状態を切り替える複数のリレーと、
     前記電力変換装置および前記複数のリレーを制御するコントローラと、を有し、
     前記コントローラは、
     前記複数の電動機の運転履歴を記憶する情報保持手段と、
     前記情報保持手段が記憶する前記各電動機の運転履歴に基づいて、各電動機の負荷が均等になるように前記複数のリレーを制御する切替制御手段と、
    を有する電動機制御装置。
    A power converter that supplies voltage to multiple electric motors connected in parallel with each other,
    A plurality of relays provided corresponding to the plurality of electric motors to switch the connection state and disconnection state with the power conversion device, and
    It has the power converter and a controller that controls the plurality of relays.
    The controller
    An information holding means for storing the operation history of the plurality of electric motors, and
    A switching control means for controlling the plurality of relays so that the load of each electric motor is equalized based on the operation history of each electric motor stored in the information holding means.
    The electric motor control device having.
  2.  前記情報保持手段は、前記各電動機の運転履歴として、前記各電動機の駆動時間を記憶し、
     前記切替制御手段は、
     前記各電動機の駆動時間が均等になるように、前記複数のリレーを制御する、請求項1に記載の電動機制御装置。
    The information holding means stores the driving time of each electric motor as the operation history of each electric motor, and stores the driving time of each electric motor.
    The switching control means
    The electric motor control device according to claim 1, wherein the plurality of relays are controlled so that the drive times of the respective electric motors are equal.
  3.  前記各電動機に流れる電流および前記各電動機の回転数を検出する測定部を有し、
     前記コントローラは、前記各電動機の運転履歴に基づいて、前記各電動機の負荷を示す値を算出する計算手段をさらに有し、
     前記情報保持手段は、前記各電動機の運転履歴として、前記各電動機の駆動時間、前記電流および前記回転数を記憶し、
     前記計算手段は、前記各電動機について、前記駆動時間と前記電流とを乗算した値を時間積分した電流積分値と、前記駆動時間と前記回転数とを乗算した値を時間積分した回転数積分値とを算出し、
     前記切替制御手段は、
     前記計算手段によって算出された、前記電流積分値および前記回転数積分値のうち、一方または両方に基づいて、前記各電動機の負荷が均等になるように前記複数のリレーを制御する、請求項1に記載の電動機制御装置。
    It has a measuring unit that detects the current flowing through each of the electric motors and the rotation speed of each of the electric motors.
    The controller further includes a calculation means for calculating a value indicating a load of each of the electric motors based on the operation history of each of the electric motors.
    The information holding means stores the driving time of each electric motor, the current, and the rotation speed as the operation history of each electric motor.
    The calculation means is a rotation speed integral value obtained by time-integrating a current integral value obtained by multiplying the drive time and the current by the drive time and a value obtained by multiplying the drive time by the rotation speed for each electric motor. And calculate
    The switching control means
    1. The plurality of relays are controlled so that the load of each electric motor is equalized based on one or both of the current integrated value and the rotation speed integrated value calculated by the calculating means. The electric motor control device described in.
  4.  前記測定部は、前記各電動機の音、温度および湿度を測定し、
     前記計算手段は、前記測定部が検出した前記各電動機に流れる前記電流に基づいて前記各電動機の巻線抵抗値および消費電力を算出し、
     前記情報保持手段は、前記各電動機の疲労度を算出する疲労度算出式と、前記各電動機について、前記駆動時間、前記電流、前記回転数、前記音、前記巻線抵抗値、前記温度、前記湿度および前記消費電力を含む複数の状態変数とを記憶し、
     前記計算手段は、前記各電動機について、前記情報保持手段が記憶する前記複数の状態変数のうち、1つ以上の状態変数と前記疲労度算出式とを用いて疲労度を算出し、
     前記切替制御手段は、
     前記各電動機の前記疲労度が均等になるように前記複数のリレーを制御する、請求項3に記載の電動機制御装置。
    The measuring unit measures the sound, temperature and humidity of each of the electric motors.
    The calculation means calculates the winding resistance value and the power consumption of each electric motor based on the current flowing through each of the electric motors detected by the measuring unit.
    The information holding means includes a fatigue degree calculation formula for calculating the fatigue degree of each electric motor, the drive time, the current, the rotation speed, the sound, the winding resistance value, the temperature, and the temperature of each electric motor. Stores multiple state variables including humidity and the power consumption,
    The calculation means calculates the degree of fatigue of each of the electric motors by using one or more state variables and the fatigue degree calculation formula among the plurality of state variables stored in the information holding means.
    The switching control means
    The electric motor control device according to claim 3, wherein the plurality of relays are controlled so that the degree of fatigue of each electric motor is equalized.
  5.  前記計算手段は、前記複数の電動機について経年疲労度を示す基準疲労度と、前記各電動機について前記疲労度算出式から算出された疲労度とを比較し、算出された疲労度が前記基準疲労度に近づくように前記疲労度算出式を更新する機械学習手段を有する、請求項4に記載の電動機制御装置。 The calculation means compares the reference fatigue degree indicating the aged fatigue degree of the plurality of electric motors with the fatigue degree calculated from the fatigue degree calculation formula for each of the electric motors, and the calculated fatigue degree is the reference fatigue degree. The electric motor control device according to claim 4, further comprising a machine learning means for updating the fatigue degree calculation formula so as to approach.
  6.  前記コントローラは、前記計算手段の算出結果を外部に出力する通信手段を有し、
     前記計算手段が、前記各電動機について前記疲労度に基づいて寿命までの残り時間を算出し、
     前記通信手段は、前記残り時間が決められた閾値時間以下である場合、警報を外部に出力し、前記複数の電動機のうち、いずれかの電動機に異常が発生した場合、異常が発生した電動機を示す異常情報を外部に出力する、請求項5に記載の電動機制御装置。
    The controller has a communication means for outputting the calculation result of the calculation means to the outside.
    The calculation means calculates the remaining time until the life of each electric motor based on the degree of fatigue.
    The communication means outputs an alarm to the outside when the remaining time is equal to or less than a predetermined threshold time, and when an abnormality occurs in any of the plurality of electric motors, the electric motor in which the abnormality has occurred is detected. The electric motor control device according to claim 5, which outputs the indicated abnormality information to the outside.
  7.  前記通信手段は、ネットワークを介してサーバと接続され、前記警報および前記異常情報のうち、一方または両方を前記サーバに出力する、請求項6に記載の電動機制御装置。 The electric motor control device according to claim 6, wherein the communication means is connected to a server via a network and outputs one or both of the alarm and the abnormality information to the server.
  8.  前記切替制御手段は、
     前記複数の電動機のうち、一部の電動機が起動する際、前記複数の電動機のうち、負荷が小さい方の前記一部の電動機の台数に相当する電動機に対応する前記リレーを接続状態にし、他の電動機に対応する前記リレーを切断状態に制御する、請求項2~7のいずれか1項に記載の電動機制御装置。
    The switching control means
    When some of the plurality of electric motors are activated, the relay corresponding to the number of the motors having the smaller load among the plurality of electric motors is connected to the other. The electric motor control device according to any one of claims 2 to 7, which controls the relay corresponding to the electric motor in the disconnected state.
  9.  前記切替制御手段は、前記複数の電動機のうち、いずれかの電動機に異常が発生すると、異常が発生した電動機に対応する前記リレーを前記切断状態にし、正常に運転する電動機に対応する前記リレーを前記接続状態にする、請求項1~8のいずれか1項に記載の電動機制御装置。 When an abnormality occurs in any of the plurality of electric motors, the switching control means sets the relay corresponding to the electric motor in which the abnormality has occurred to the disconnected state, and causes the relay corresponding to the electric motor that operates normally. The electric motor control device according to any one of claims 1 to 8, which is brought into the connected state.
PCT/JP2019/014654 2019-04-02 2019-04-02 Electric motor control device WO2020202469A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021511831A JPWO2020202469A1 (en) 2019-04-02 2019-04-02 Motor control device
PCT/JP2019/014654 WO2020202469A1 (en) 2019-04-02 2019-04-02 Electric motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014654 WO2020202469A1 (en) 2019-04-02 2019-04-02 Electric motor control device

Publications (1)

Publication Number Publication Date
WO2020202469A1 true WO2020202469A1 (en) 2020-10-08

Family

ID=72666760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014654 WO2020202469A1 (en) 2019-04-02 2019-04-02 Electric motor control device

Country Status (2)

Country Link
JP (1) JPWO2020202469A1 (en)
WO (1) WO2020202469A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373409U (en) * 1976-11-22 1978-06-20
JPH06249153A (en) * 1993-02-19 1994-09-06 Hitachi Ltd Variable displacement compressor
JP2011097677A (en) * 2009-10-27 2011-05-12 Mitsubishi Electric Corp Motor drive unit
JP2012087720A (en) * 2010-10-21 2012-05-10 Toshiba Schneider Inverter Corp Cooling fan unit and inverter device
JP2016226280A (en) * 2015-06-01 2016-12-28 エルエス産電株式会社Lsis Co., Ltd. Method of controlling multiple motors
JP2017011872A (en) * 2015-06-22 2017-01-12 株式会社神戸製鋼所 Drive controller of motor assist system
JP2017046540A (en) * 2015-08-28 2017-03-02 ファナック株式会社 Machine learning apparatus and method for learning estimated life of electric motor, life estimation apparatus having the same and motor system
JP2018207589A (en) * 2017-05-31 2018-12-27 東芝産業機器システム株式会社 Motor monitoring system and motor monitoring method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373409U (en) * 1976-11-22 1978-06-20
JPH06249153A (en) * 1993-02-19 1994-09-06 Hitachi Ltd Variable displacement compressor
JP2011097677A (en) * 2009-10-27 2011-05-12 Mitsubishi Electric Corp Motor drive unit
JP2012087720A (en) * 2010-10-21 2012-05-10 Toshiba Schneider Inverter Corp Cooling fan unit and inverter device
JP2016226280A (en) * 2015-06-01 2016-12-28 エルエス産電株式会社Lsis Co., Ltd. Method of controlling multiple motors
JP2017011872A (en) * 2015-06-22 2017-01-12 株式会社神戸製鋼所 Drive controller of motor assist system
JP2017046540A (en) * 2015-08-28 2017-03-02 ファナック株式会社 Machine learning apparatus and method for learning estimated life of electric motor, life estimation apparatus having the same and motor system
JP2018207589A (en) * 2017-05-31 2018-12-27 東芝産業機器システム株式会社 Motor monitoring system and motor monitoring method

Also Published As

Publication number Publication date
JPWO2020202469A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
CN103765118B (en) Air-conditioning device and the control method of air-conditioning device
KR101349851B1 (en) Motor controller and method of controlling motor
JP7132584B2 (en) Devices for starting and running AC motors
JP6540911B1 (en) Motor control system, motor control device, and bearing life diagnosis method
JP2005168287A (en) Method and apparatus for optimizing efficiency of motor operating under load
JP2008011670A (en) Inverter system
JP2015010579A (en) Wind generator system
CN105227043A (en) For the system that in case of emergency frequency converter operation controls
KR20150081893A (en) Apparatus for driving motor and Controlling Method thereof
JP2009225552A (en) Operation method of machine drive system
JP2013243806A (en) Power unit
JP2006322681A (en) Operation control device and operation control method for compressor
WO2020202469A1 (en) Electric motor control device
WO2020148825A1 (en) Motor control device and air conditioner
JP2012135157A (en) Motor drive system
JP2008070075A (en) Air conditioner
JP5381070B2 (en) Multiphase motor driving method, multiphase motor driving system, and heat pump device
JP5947646B2 (en) Motor control device
JP2006162213A (en) Remote control device for air conditioning
JP2007089308A (en) Converter circuit and freezing/air-conditioning machine
WO2021111856A1 (en) Power conversion device, diagonosis device, and diagnosis method
JP2005181167A (en) Failure detection device and method, and air conditioner
JP2013021807A (en) Motor drive circuit and motor device
US20160268947A1 (en) Motor efficiency analysis method for motor inverter
KR20080075432A (en) Air conditioner and control method therof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923154

Country of ref document: EP

Kind code of ref document: A1