WO2020200155A1 - 区域化设计的极片及其电池 - Google Patents

区域化设计的极片及其电池 Download PDF

Info

Publication number
WO2020200155A1
WO2020200155A1 PCT/CN2020/082009 CN2020082009W WO2020200155A1 WO 2020200155 A1 WO2020200155 A1 WO 2020200155A1 CN 2020082009 W CN2020082009 W CN 2020082009W WO 2020200155 A1 WO2020200155 A1 WO 2020200155A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
battery
conductive plate
layer
current limiting
Prior art date
Application number
PCT/CN2020/082009
Other languages
English (en)
French (fr)
Inventor
何志奇
Original Assignee
何志奇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 何志奇 filed Critical 何志奇
Publication of WO2020200155A1 publication Critical patent/WO2020200155A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of battery design, in particular, to a pole piece of regionalized design and a battery composed of such pole piece.
  • the technical problem solved by the present invention is to overcome the defects of the prior art and provide a regionally designed pole piece and a safety battery composed of the pole piece.
  • the current collector includes at least one layer of conductive plates for conducting electrons, and the conductive plates are divided into multiple area blocks;
  • Feature 2 At least one layer of electrode material is divided into multiple area blocks;
  • An electronic current limiting part that can limit the current by fuse is arranged between the adjacent area blocks of the pole piece.
  • the battery forms an internal short circuit due to external reasons (such as puncture, squeezing) or internal reasons (such as lithium dendrites penetrating the diaphragm)
  • the mutual conduction of electrons between different regions of the battery pole pieces is effectively restricted, and the battery
  • the internal short-circuit current is much smaller than that of traditional batteries, and the heating rate is greatly reduced, so it is difficult to cause catastrophic problems such as combustion and explosion.
  • the design principle and effect of at least one layer of electrode material being divided into multiple area blocks is similar to the case of conductive plates. Moreover, in some cases, the electronic volume resistivity of the electrode material is low, and the thickness far exceeds that of the conductive plate. If the regional design is not carried out, the adjacent conductive plate will be blocked after the electronic current limiting part is fused. The electronic conduction "bridge" between them greatly reduces the current limiting effect; even because of the basic principle of parallel shunting, the fuse mechanism of the electronic current limiting part cannot be performed. In these cases, it is necessary to design the electrode materials in regions.
  • the area block can be of any shape; the area block can be designed in two directions with any included angle with the length and width of the pole piece.
  • the simplest way is that the area block is rectangular and parallel to the length and width directions of the pole piece, that is, the included angle is zero.
  • the material of the conductive plate adopts any one or a combination of metal materials, PTC materials, and conductive polymers.
  • the material of the electronic current limiting part adopts any one or a combination of metal materials, PTC materials, and electrode materials mixed with PTC materials.
  • the electronic current limiting part is integrally connected with the area block. That is, the electronic current limiting part and the area block are originally integrated.
  • the electronic current limiting part is connected to the area block by any one of coating, cladding, mechanical pressing, hot melting, welding, riveting, bonding, electroplating, and evaporation, or a combination thereof.
  • the electronic current limiting part is formed by a hole forming, thinning or narrowing process; the spacing between adjacent holes when forming the hole is 0.1mm-50mm, preferably 0.5mm-5mm; The minimum thickness, preferably, is less than 50% of the non-thinned area; the minimum width of the narrowed area during narrowing is preferably less than 50% of the non-narrowed area.
  • the electronic current limiting part is provided with a liquid barrier layer, or a heat insulation layer, or a containment layer, or any combination of the three.
  • the main function of the thermal insulation layer is to insulate heat, to slow down the electronic current limiting part to lose heat to the pole piece when it is fused; the main function of the liquid barrier is to isolate the electrolyte. If the electrolyte is in direct contact with the electronic current limiting part, it will form a solid-liquid contact heat transfer, and the heat transfer rate is far higher than the solid-solid contact heat transfer (the electronic current limiting part and the electrode material or the heat insulation layer are between Solid-solid contact heat transfer).
  • the electrolytes of many systems have large heat capacities and low boiling points, which easily interfere with the smooth progress of the fusing mechanism.
  • the main function of the containment layer is to contain the volume increase effect when the electronic current limiting part is blown.
  • the density of solids in the molten state is lower than that at room temperature (for example, aluminum has a density of 2.70g/cm3 at room temperature and 2.375g/cm3 in a molten state). If this effect is not considered in the design, electronic The current limiting part may "melt and continue.”
  • a layer of insulating material is provided between adjacent area blocks.
  • the insulating material penetrates into the electrode material and occupies more than 50% of the thickness of the electrode material. This (partial) partition design can significantly reduce the electronic conduction "bridge" effect of the electrode material, which is beneficial to the smooth progress of the fusing mechanism.
  • a layer of PTC material is provided between the current collector and the electrode material.
  • This layer of PTC material can act as an electronic current limiting part between the regional blocks to limit the "parallel current” (the direction of electron flow between adjacent regional blocks, parallel to the plane of the pole piece); or limit the "vertical current” (conductive plate)
  • the direction of flow between the electrode material and the electrode material is perpendicular to the plane of the pole piece), that is, the current inside the block is restricted.
  • the pole piece also includes a structural member that connects each area block, and the structural member is made of any one or a combination of metal materials, conductive polymer materials, PTC materials, carbon fibers, and insulating materials.
  • the main function of the structural member is to connect the various area blocks and enhance the mechanical strength of the entire current collector and the pole piece, so that it is not easy to break.
  • the structure is an insulator or has poor conductivity and can directly contact the electronic current limiting part; if the structure itself is highly conductive, insulation measures should be taken between the structure and the electronic current limiting part.
  • a battery adopts the pole piece of any one of the above-mentioned regional design.
  • the positive pole piece or the negative pole piece can be regionalized design; or both the positive pole piece and the negative pole piece can be regionalized design.
  • the center normals of all the pole pieces can be distributed in a centralized manner to simplify the design and manufacturing process; or in a non-centralized distribution to achieve the maximum heat dissipation effect and reduce the internal stress of the battery.
  • the present invention has the following beneficial effects:
  • the pole pieces are regionally designed. When the internal short circuit occurs in different regions, the electronic mutual conduction is effectively restricted. The internal short-circuit current of the battery is much smaller than that of the traditional battery, and the heating rate is greatly reduced.
  • Fig. 1 is a schematic diagram of the structure of the current collector described in embodiment 1;
  • Figure 2 is a schematic diagram of the pole piece structure described in embodiment 1;
  • Figure 3 is a cross-sectional view at the dashed line of Figure 2;
  • Figure 5 is a cross-sectional view at the dashed line of Figure 4.
  • FIG. 6 is a schematic diagram of the structure of the current collector of Embodiment 3.
  • Figure 7 is a cross-sectional view at the dashed line of Figure 6;
  • Figure 9 is a cross-sectional view at the dashed line of Figure 8.
  • FIG. 10 is a schematic diagram of the structure of the structure of the embodiment 9;
  • FIG. 11 is a schematic diagram of the structure of the structure of Example 9 (including conductive bars);
  • FIG. 13 is a schematic diagram of the pole piece structure of Embodiment 9;
  • Figure 19 is a schematic diagram of the structure of the structural member of Embodiment 15 (including the PTC wafer and the back patch area);
  • Figure 21 is a cross-sectional view at the dashed line of Figure 20;
  • Figure 23 is a schematic diagram of the structure of the structure of the embodiment 17;
  • 25 is a schematic diagram of the structure of the structural member of the embodiment 18.
  • FIG. 26 is a schematic diagram of the structure of the structural member of Embodiment 19;
  • FIG. 27 is a schematic diagram of the structure of the pole piece of embodiment 20;
  • Figure 28 is a cross-sectional view at the dashed line of Figure 27;
  • FIG. 29 is a schematic diagram (section) of the structure of the pole piece of embodiment 21;
  • FIG. 30 is a schematic diagram of the structure of the current collector of Embodiment 22.
  • a lithium-manganese dioxide battery A lithium-manganese dioxide battery.
  • the negative electrode current collector is composed of a perforated conductive plate 1.
  • the main function of the conductive plate 1 is to conduct electronic current.
  • the material of the conductive plate 1 can be any one or a combination of metal materials, PTC materials, and conductive polymers.
  • the conductive plate 1 is a stainless steel foil, and an oblong hole 2 is punched in it.
  • the area enclosed by the oblong holes 2 forms a conductive plate area block 3; the distance between adjacent oblong holes 2 ranges from 0.1mm to 50mm, preferably 3mm, and the gap between adjacent oblong holes 2 is not punched Part, it forms the electronic current limiting part between adjacent area blocks.
  • the electronic current limiting part is integrally connected with the area block.
  • a metal lithium sheet is pressed onto the conductive plate area block 3 as the electrode material 4 of the negative electrode. Then die-cut the conductive plate 1 to form the negative pole lug.
  • PVDF polyvinylidene fluoride
  • NMP nitrogen-methylpyrrolidone
  • manganese dioxide, conductive carbon, and PVDF together constitute the electrode material of the positive pole piece. Then die-cut the aluminum foil to form the positive electrode tab.
  • the positive electrode, separator, and negative electrode are alternately laminated to form a battery.
  • the lithium-manganese dioxide battery is prepared through the process steps of cover plate welding, liquid injection, nailing, cleaning, and pre-discharge.
  • the conductive plate 1 stainless steel foil
  • the electrode material 4 lithium sheet
  • a lithium-manganese dioxide battery A lithium-manganese dioxide battery.
  • the battery structure and preparation process are basically the same as in Example 1, the difference is: as shown in Figures 4 and 5 (Figure 5 is a cross-sectional view along the dashed line in Figure 4), adjacent positions between the conductive plate area blocks 3 (Including the electronic current limiting part, and slightly expanded)
  • the heat insulation layer 6 and the liquid barrier layer 5 are sequentially coated.
  • the main function of the thermal insulation layer 6 is to insulate heat and slow down the heat loss of the electronic current limiting part when it is fused; the main function of the liquid insulation layer 5 is to isolate the electrolyte.
  • the components of the heat insulation layer 6 and the liquid barrier layer 5 are aluminum oxide (Al2O3) + acrylic glue.
  • the content of alumina in the thermal insulation layer 6 is higher than that of the liquid insulation layer 5, and the thermal insulation layer 6 has a certain porosity, so it also acts as a containment layer to accommodate the effect of the volume increase when the electronic current limiting part is fused and promote the fusing Smooth realization of current limitation.
  • a lithium-manganese dioxide battery A lithium-manganese dioxide battery.
  • the battery structure and preparation process are basically the same as in Example 2, except that: as shown in Figures 6 and 7 (Figure 7 is a cross-sectional view along the dashed line in Figure 6), the conductive plate 1 except for the oblong hole 2, There are also conductive plate thinning area 7, large round hole 8, and small round hole 9.
  • the oblong hole 2, the thinned area of the conductive plate 7, and the large round hole 8 jointly form the electronic current limiting part between the conductive plate area blocks 3; the small round hole 9 is conducive to the pressing of the lithium belt.
  • a lithium-manganese dioxide battery A lithium-manganese dioxide battery.
  • the battery structure and preparation process are basically the same as in Example 2, except that: as shown in Figures 8 and 9 (Figure 9 is a cross-sectional view along the dashed line in Figure 8), a whole piece of copper foil is used for die-cutting while forming a conductive plate The area block 3 and the narrow area 11 of the conductive plate, and then the adhesive 12 is used to bond the area block 3 and the narrow area 11 of the conductive plate to the structural member A10 together.
  • the narrow region 11 of the conductive plate serves as an electron current limiting part.
  • the structural member A10 connects the various regional blocks and enhances the mechanical strength of the entire current collector and the pole piece.
  • the material can be any one or a combination of metal materials, conductive polymer materials, carbon fibers, and insulating materials.
  • the structural member A10 is a polyimide (PI) film made of insulating material
  • the adhesive 12 is acrylic glue.
  • a lithium-manganese dioxide battery A lithium-manganese dioxide battery.
  • the battery structure and preparation process are basically the same as those in Example 4, except that: the structural member A10 is a polyethylene terephthalic acid (PET) film; the conductive plate area block 3 and the conductive plate narrow area 11 are formed by etching.
  • PET polyethylene terephthalic acid
  • a lithium-manganese dioxide battery A lithium-manganese dioxide battery.
  • the battery structure and preparation process are basically the same as those in Example 4, except that the structure A10 is a metal material nickel foil with PI film attached on both sides.
  • a lithium-manganese dioxide battery A lithium-manganese dioxide battery.
  • the structure and preparation process of the battery are basically the same as in Example 4, except that the structure A10 is a metal material stainless steel foil.
  • the adhesive 12 is mixed with alumina (Al2O3).
  • a lithium-manganese dioxide battery A lithium-manganese dioxide battery.
  • the battery structure and the manufacturing process are basically the same as those in Embodiment 4, except that the vapor deposition process is adopted to form a conductive plate area block 3 and a conductive plate narrow area 11 on the structure A10.
  • a lithium ion battery A lithium ion battery.
  • an oblong hole 2 is formed by die-cutting on the structural part A10, and the conductive strip 14 is inserted as the electronic current limiting part, and adhesive is applied to the patch area 13 on the front and back sides.
  • the agent 12 (not shown in the figure) is attached to the conductive plate area block 3.
  • the electronic current limiting part can be coated, cladding, mechanically pressed, hot melt, welding, riveting, bonding, electroplating, and evaporation, or a combination of them and the area block Connected.
  • the electron current limiting part ie, the conductive strip 14
  • the conductive plate area block 3 are connected together by welding to form a composite positive electrode current collector.
  • the binder polyvinylidene fluoride (PVDF) is dissolved in nitrogen-methylpyrrolidone (NMP), lithium cobaltate (LiCoO2), conductive carbon are added, and the mixture is uniformly mixed to form a slurry, which is coated on the above composite positive electrode set On the fluid, after drying, pressing, and slitting, a positive pole piece is formed.
  • a bus bar 15 is welded on the conductive plate area block 3 as a positive electrode tab.
  • lithium cobalt oxide, conductive carbon, and PVDF together constitute the electrode material of the positive pole piece.
  • the structural member A10 is a polyimide (PI) film
  • the adhesive 12 is acrylic
  • the material of the conductive plate area block 3, the conductive strip 14, and the bus bar 15 are all aluminum.
  • PVDF polyvinylidene fluoride
  • NMP nitrogen-methylpyrrolidone
  • artificial graphite and conductive carbon are added, and mixed uniformly to form a slurry, which is coated on a complete continuous copper foil, and then passes through After drying, pressing, and slitting, the negative pole piece is formed. Weld a nickel strip on the copper foil as the negative electrode tab.
  • the positive electrode, separator, and negative electrode are alternately laminated to form a battery.
  • the lithium ion battery is prepared.
  • a lithium ion battery A lithium ion battery.
  • the battery structure and preparation process are basically the same as in Example 9, the difference is: as shown in Figure 14 and Figure 15, the multiple pieces of structure A10 are placed side by side, and the conductive strip 14 is placed in between.
  • the narrow part is the narrow region 16 of the conductive strip.
  • Adhesive 12 (not shown in the figure) is coated on both the front and back sides of the structural member A10, and the conductive plate area block 3 is attached.
  • the conductive strip 14 and the conductive plate area block 3 are connected together by welding.
  • a heat insulation layer 6 and a liquid barrier layer 5 are sequentially coated (same as Example 2, the heat insulation layer 6 is covered by the liquid barrier layer 5, not shown in the figure).
  • a lithium ion battery A lithium ion battery.
  • the battery structure and preparation process are basically the same as in Example 9, the difference is: as shown in Figure 16, on both the front and back sides of the structural member A10, adhesive 12 (not shown in the figure) is coated, and conductive Plate area block 3.
  • the conductive strip 14 is placed on the conductive plate area block 3, and the conductive strip 14 and the conductive plate area block 3 are connected together by welding.
  • a heat insulation layer 6 and a liquid barrier layer 5 are sequentially coated (same as Example 2, the heat insulation layer 6 is covered by the liquid barrier layer 5, not shown in the figure).
  • a lithium ion battery A lithium ion battery.
  • the structure and preparation process of the battery are basically the same as in Example 9, the difference is: as shown in FIG. 17, the front and back sides of the structure A10 are coated with adhesive 12 (not shown in the figure). Using die cutting, an integrated conductive plate area block 3 and a conductive plate narrow area 11 are prepared, and are attached to the front and back sides of the edge material structure 10. The positions of the back conductive plate area block 17 and the back conductive plate narrow area 18 are interlaced with the front conductive plate area block 3 and the conductive plate narrow area 11 to enhance the strength of the entire current collector.
  • a heat insulation layer 6 and a liquid barrier layer 5 are sequentially coated (same as in Example 2, the heat insulation layer 6 is covered by the liquid barrier layer 5, not shown in the figure ).
  • a lithium ion battery A lithium ion battery.
  • the structure and preparation process of the battery are basically the same as in Example 12. The difference is that the material of the structural member A10 is not polyimide (PI), but aramid (Aramid).
  • a lithium ion battery A lithium ion battery.
  • the structure and preparation process of the battery are basically the same as in Example 12. The difference is that: instead of using the structure A10, the adhesive 12 is used to directly connect the conductive plate area block 3, the conductive plate narrow area 11, and the back conductive plate area block 17. The narrow regions 18 of the back conductive plate are interlaced and pasted together to form a composite current collector, and then the pole piece and battery are prepared.
  • a lithium ion battery A lithium ion battery.
  • the battery structure and preparation process are basically the same as in Example 9, the difference is: as shown in Figures 18-21 (Figure 21 is a cross-sectional view along the dashed line in Figure 20), a series of large circular holes are die-cut on the structural member A10 8, and put in the PTC wafer 19. Coat the adhesive 12 on the front patch area 13 and the back patch area 20, coat the conductive glue 21 on the PTC wafer 19, and attach the conductive plate area block 3 to form a composite current collector, and then conduct the pole piece and Battery preparation.
  • the positive electrode, separator, and negative electrode are not laminated, but wound.
  • the PTC wafer 19 serves as the electronic current limiting part, and its material is polyethylene (PE) + carbon black (C).
  • a lithium ion battery A lithium ion battery.
  • the structure and preparation process of the battery are basically the same as those of Example 15. The difference lies in that: as shown in FIG. 22, there are not two PTC wafers 19 covered by each conductive plate area block 3 (not shown in the figure), but four.
  • a lithium ion battery A lithium ion battery.
  • the battery structure and preparation process are basically the same as in Example 9, the difference is: as shown in Figure 23, Figure 24, conductive glue 21 is coated on both sides of the structural member B22 (not shown in the figure), and the patch area 13 on the front , The conductive plate area blocks 3 are interlaced on the back patch area 20 to form a composite current collector, and then the pole piece and battery are prepared.
  • the positive electrode, separator, and negative electrode are not laminated, but wound.
  • the structural part B22 is made of PTC material; the part of the structural part B22 covered by the conductive plate area block 3 also serves as an electronic current limiting part.
  • the material of the structural member B22 is polyethylene (PE) + carbon black (C).
  • a lithium ion battery A lithium ion battery.
  • the structure and preparation process of the battery are basically the same as in Example 17, the difference is: as shown in FIG. 25, the conductive adhesive 21 (not shown in the figure) is only coated on the circular conductive adhesive coating area 23, and the rest of the structure B22 Apply adhesive 12 (not shown in the figure).
  • the portion of the structural member B22 covered by the conductive adhesive coating area 23 serves as an electronic current limiting portion.
  • a lithium ion battery A lithium ion battery.
  • the battery structure and preparation process are basically the same as in Example 17, the difference is: as shown in Figure 26, only in the patch area 13 on the front of the structural member B22, the conductive plate area block 3 (not shown in the figure) is attached, that is, the composite set
  • the fluid is made of metal on one side and PTC on the other.
  • the portion of the structural member B22 between the conductive plate area blocks 3 serves as an electronic current limiting portion.
  • a lithium ion battery A lithium ion battery.
  • the battery structure and preparation process are basically the same as those in Example 17, the difference is: as shown in Figure 27, Figure 28 (Figure 28 is a cross-sectional view along the dotted line in Figure 27), in the conductive plate area block 3, electrode material 4 gap In part, there is an insulating material layer 24, which separates the electronic conduction part between the electrode material 4 area blocks.
  • a lithium ion battery A lithium ion battery.
  • the battery structure and the preparation process are basically the same as those of Embodiment 20, except that: as shown in FIG. 29, the insulating material layer 24 does not completely separate the electrode material 4, but penetrates into 75% of its thickness.
  • a lithium ion battery A lithium ion battery.
  • the battery structure and preparation process are basically the same as those in Example 17, except that: as shown in FIG. 30, between the structure A10 and the conductive plate area block 3, a PTC powder layer 25 is coated.
  • the portion of the PTC powder layer 25 between the conductive plate area blocks 3 serves as an electronic current limiting portion.
  • a lithium ion battery A lithium ion battery.
  • the battery structure and preparation process are basically the same as in Example 22.
  • the difference is that the PTC powder layer 25 is not coated between the structural member A10 and the conductive plate area block 3, but is coated on the conductive plate area block 3. Between the conductive plate area block 3 and the electrode material 4. The portion of the PTC powder layer 25 between the conductive plate area blocks 3 serves as an electronic current limiting portion.
  • a lithium ion battery A lithium ion battery.
  • the battery structure and preparation process are basically the same as those in Example 23, except that the electrode material 4 also incorporates PTC material.
  • the portion of the PTC powder layer 25 located between the conductive plate area blocks 3 and the portion of the electrode material 4 doped with PTC material also serve as an electronic current limiting portion.
  • a lithium ion battery A lithium ion battery.
  • the structure and preparation process of the battery are basically the same as in Example 22, except that the conductive plate area block 3 is not a rectangle, but a rhombus.
  • one side of the rhombus is parallel to the length direction of the pole piece, and the other side is not parallel to the width direction of the pole piece.
  • the area block can be of any shape; multiple area blocks can be designed in two directions with any included angles with the length and width of the pole piece (of course, the simplest way is that the area block is rectangular, and They are parallel to the length and width of the pole piece respectively, that is, the included angle is zero).
  • the center normals of all the pole pieces can be distributed in a centralized manner to simplify the design and manufacturing process; or in a non-centralized distribution to achieve the maximum heat dissipation effect and reduce the internal stress of the battery.
  • the batteries described in this patent include, but are not limited to, lithium ion batteries and other types of lithium storage batteries, as well as lithium primary batteries, silver-zinc batteries, aluminum-silver oxide batteries, sodium-sulfur batteries, magnesium batteries, and reserve batteries.
  • electrochemical devices such as capacitors can also adopt the same or similar designs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种区域化设计的极片及其电池,电池的正负极极片采用区域化的设计。极片包括集流体和设于集流体两侧的电极材料(4)。集流体包括至少一层导通电子的导电板(1),导电板(1)被分成多个导电板区域块(3),相邻导电板区域块(3)之间设有可通过发生熔断进行限流的电子限流部分。相应的,电极材料(4)亦可被分成多个区域块。电子限流部分设有促进熔断顺利进行的隔液层(5)、隔热层(6),以及容纳层。相邻区域块之间设有一层绝缘材料。极片中设有连接各区域块的结构件(10,22),以提高极片的机械强度。可限制导电板区域块(3)、电极材料区域块在发生内部短路之时的电子相互导通,从而显著降低电池的内部短路电流,避免燃烧、***等灾难性问题。

Description

区域化设计的极片及其电池 技术领域
本发明涉及电池设计技术领域,具体地,涉及一种区域化设计的极片和这种极片组成的电池。
背景技术
锂离子电池在安全测试和实际使用过程中,正极、负极之间容易发生内部短路而出现起火、燃烧、***,引起安全事故。为了提高锂离子电池的安全性,设计上通常使用的方法是在壳体、电解液、隔膜、电极上采取相应的措施,以阻断或者减小短路。例如CN2762362Y提出了在电池壳体上设置安全阀、保险丝或者热敏电阻;CN1145233C提出了PTC电极技术。但是,以上这些方法,都不能将内部短路点与周围电极区域有效的隔断开来,难以减小电池整体的离子电流或者电子电流,也就难以控制涌向内部短路点的电流大小,难以显著的降低电池,尤其是动力电池发生内部短路以后的危险性。因此,需要补充开发其他的技术方案。同时,某些其他电化学体系的装置,也面临着相同的技术问题。
发明内容
本发明解决的技术问题在于克服现有技术的缺陷,提供一种区域化设计的极片和这种极片组成的安全电池。
本发明的目的通过以下技术方案实现:
一种区域化设计的极片,包括集流体和设于集流体两侧的电极材料;极片包括如下的特征一和/或特征二:
特征一:集流体包括至少一层导通电子的导电板,导电板被分成多个区域块;
特征二:至少有一层电极材料被分成多个区域块;
极片的相邻区域块之间设有可通过发生熔断进行限流的电子限流部分。当电池在外部原因(例如穿刺、挤压),或者内部原因(例如锂枝晶穿透隔膜)形成内部短路的情况下,电池极片不同区域块之间的电子相互导通得到有效限制,电池内部短路电流比传统电池小很多,升温速度大大降低,因而很难发生燃烧、***等灾难性问题。
至少有一层电极材料被分成多个区域块的设计原理、效果与导电板的情况类 似。而且,在某些情况下,电极材料的电子体积电阻率较低,厚度又远远超过导电板,如果不进行区域化设计,会在电子限流部分熔断以后,起到相邻导电板区域块之间的电子导通“桥梁”,使电流限制效果大打折扣;甚至因为并联分流的基本原理,使电子限流部分的熔断机制不能进行。在这些情况下,有必要将电极材料进行区域化设计。
区域块可以是任意形状;可以在与极片长度、宽度方向存在着任意夹角的两个方向上设计区域块。最简单的方式,是区域块为长方形,而且分别平行于极片的长度、宽度方向,即夹角为零。
进一步地,导电板的材质采用金属材料、PTC材料、导电高分子中的任意一种或者组合。
进一步地,电子限流部分的材质采用金属材料、PTC材料、掺入了PTC材料的电极材料中的任意一种或者组合。
进一步地,电子限流部分与区域块一体式连接。即电子限流部分与区域块原本就是一体的。
进一步地,电子限流部分通过涂覆、包覆、机械压合、热熔、焊接、铆接、粘结、电镀和蒸镀中的任意一种方式或者其组合与区域块相连。
进一步地,电子限流部分是通过成孔、薄化或窄化工艺形成的;成孔时相邻孔之间的间距为0.1mm~50mm,优选0.5mm~5mm;薄化时薄化处的最小厚度,优选的,小于未薄化处的50%;窄化时窄化处的最小宽度,优选的,小于未窄化处的50%。
进一步地,电子限流部分,设有隔液层,或者隔热层,或者容纳层,或者三者的任意组合。隔热层的主要功能是绝热,减缓电子限流部分在熔断时向极片中散失热量;隔液层的主要功能是隔绝电解液。如果电解液与电子限流部分直接接触,就会形成固-液接触传热,传热速率远远超过固-固接触传热(电子限流部分与电极材料或者隔热层之间,就属于固-固接触传热)。而且,很多体系的电解液,热容大、沸点低,很容易干扰熔断机制的顺利进行。容纳层的主要功能是容纳电子限流部分熔断时体积增大效应。在很多情况下,固体在熔融状态下的密度低于常温下的密度(例如铝,常温下密度2.70g/cm3,熔融状态下密2.375g/cm3),如果设计中不考虑这种效应,电子限流部分可能“熔而不断”。
进一步地,相邻区域块之间设有一层绝缘材料。优选的,绝缘材料深入电极 材料中且占据电极材料50%以上的厚度。这种(部分)隔断设计,可显著降低电极材料的的电子导通“桥梁”作用,有利于熔断机制的顺利进行。
进一步地,集流体和电极材料之间设有一层PTC材料。该层PTC材料,可以在区域块之间充当电子限流部分,限制“平行电流”(相邻区域块之间的电子流通方向,平行于极片平面);或者限制“垂直电流”(导电板与电极材料之间的流通方向,垂直于极片平面),即限制区域块内部的电流大小。
进一步地,极片中还包括将各区域块连接起来的结构件,结构件材质采用金属材料、导电高分子材料、PTC材料、碳纤维、绝缘材料中的任意一种或者组合。结构件的主要功能是将各区域块连接起来,并增强整个集流体和极片的机械强度,使之不容易断裂。在理想情况下,结构件为绝缘体,或者导电性较差,可与电子限流部分直接接触;如果结构件本身导电性较强,应该在结构件与电子限流部分之间采取绝缘措施。
一种电池,采用上述任意一项所述的区域化设计的极片。在这种电池中,可以将正极极片,或者负极极片进行区域化设计;或者正极极片、负极极片均进行区域化设计。在电池中,全部极片区域块的中心法线,可以呈现集中式分布,以使设计和制造工艺简单化;亦可以呈现非集中式分布,以实现最大散热效果,并减少电池内部应力。
与现有技术相比,本发明具有以下有益效果:
1)将极片进行区域化设计,不同区域块在发生内部短路之时的电子相互导通得到有效限制,电池内部短路电流比传统电池小很多,升温速度大大降低。
2)电池的安全性显著提高,特别是当电池在穿刺、挤压的外部原因或者自发的内部短路的情况下,很难发生燃烧、***等灾难性问题。
3)采用本技术设计的电池装配成电池组时,电池组的安全性显著提高。
附图说明
图1为实施例1所述的集流体结构示意图;
图2为实施例1所述的极片结构示意图;
图3为图2虚线处的剖面图;
图4为实施例2的极片结构示意图;
图5为图4虚线处的剖面图;
图6为实施例3的集流体结构示意图;
图7为图6虚线处的剖面图;
图8为实施例4的集流体结构示意图;
图9为图8虚线处的剖面图;
图10为实施例9的结构件的结构示意图;
图11为实施例9的结构件的结构示意图(含导电条);
图12为实施例9的集流体结构示意图;
图13为实施例9的极片结构示意图;
图14为实施例10的结构件的结构示意图;
图15为实施例10的集流体结构示意图;
图16为实施例11的集流体结构示意图;
图17为实施例12的集流体结构示意图;
图18为实施例15的结构件的结构示意图;
图19为实施例15的结构件的结构示意图(含PTC圆片和背面贴片区);
图20为实施例15的集流体结构示意图;
图21为图20虚线处的剖面图;
图22为实施例16的结构件的结构示意图;
图23为实施例17的结构件的结构示意图;
图24为实施例17的集流体结构示意图;
图25为实施例18的结构件的结构示意图;
图26为实施例19的结构件的结构示意图;
图27为实施例20的极片的结构示意图;
图28为图27虚线处的剖面图;
图29为实施例21的极片的结构示意图(剖面);
图30为实施例22的集流体的结构示意图。
其中:1-导电板;2-长圆形孔;3-导电板区域块;4-电极材料;5-隔液层;6-隔热层;7-导电板减薄区;8-大圆孔;9-小圆孔;10-结构件A;11-导电板窄区;12-胶黏剂;13-贴片区;14-导电条;15-汇流片;16-导电条窄区;17-背面导电板区域块;18-背面导电板窄区;19-PTC圆片;20-背面贴片区;21-导电胶;22-结构件B;23-导电胶涂覆区;24-绝缘材料层;25-PTC粉层。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明,其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本专利的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
实施例1
一种锂-二氧化锰电池。
如图1所示,负极集流体由一块打孔的导电板1构成。导电板1的主要功能是传导电子电流,导电板1的材质可以采用金属材料、PTC材料、导电高分子中的任意一种或者组合。在本实施例中,导电板1为不锈钢箔,在其上冲出长圆形孔2。长圆形孔2围成的区域形成导电板区域块3;相邻的长圆形孔2的间距范围为0.1mm~50mm,优选为3mm,相邻长圆形孔2之间的未冲切部分,就形成相邻区域块之间的电子限流部分。在本实施例中,电子限流部分与区域块一体式连接。
如图2、图3(图3是沿着图2虚线处的剖面图)所示,将金属锂片压合在导电板区域块3上,作为负极的电极材料4。再在导电板1模切,形成负极极耳。
将粘结剂聚偏氟乙烯(PVDF)溶解在氮-甲基吡咯烷酮(NMP)中,加入二氧化锰、导电碳,并混合均匀制成浆料,涂覆在铝箔上,再经过烘干、压制、分条,就形成正极极片。其中二氧化锰、导电碳、PVDF三者一起构成正极极片的电极材料。再在铝箔上模切,形成正极极耳。
将正极、隔膜、负极交错叠片,形成电芯。
将正极极耳焊接在一起,通过汇流片连接至电池的正极极柱;将负极极耳焊接在一起,通过汇流片连接至电池的负极极柱。
再经过盖板焊接、注液、封钉、清洗、预放电等工艺步骤,制得锂-二氧化锰电池。
当电池发生内部短路,或者遇到针刺等异常情况时,电子电流会涌向发生问题的区域块,区域块周围的电子限流部分迅速熔断,电流随即减小,从而避免电池燃烧、***。
在本实施例1中,导电板1(不锈钢箔)和电极材料4(锂片),在极片的长度和宽度两个方向上,均形成区域块导电板区域块3之间,在几何形状、电子传导关系上均为部分隔断;电极材料4形成的区域块之间,在几何形状关系上完 全隔断,在电子传导关系上部分隔断。
实施例2
一种锂-二氧化锰电池。
电池结构与制备过程与实施例1基本相同,区别在于:如图4、图5(图5是沿着图4虚线处的剖面图)所示,在导电板区域块3之间的相邻位置(包含电子限流部分,并略有扩展)依次涂覆了隔热层6、隔液层5。隔热层6的主要功能是绝热,减缓电子限流部分在熔断时的热量散失;隔液层5的主要功能是隔绝电解液。所述隔热层6、隔液层5的成分均为氧化铝(Al2O3)+亚克力胶。其中隔热层6中的氧化铝含量高于隔液层5,并且隔热层6有一定的孔隙率,因此同时充当容纳层,以容纳电子限流部分熔断时体积增大的效应,促进熔断限流的顺利实现。
实施例3
一种锂-二氧化锰电池。
电池结构与制备过程与实施例2基本相同,区别在于:如图6、图7(图7是沿着图6虚线处的剖面图)所示,导电板1上除了有长圆形孔2,还有导电板减薄区7、大圆孔8、小圆孔9。长圆形孔2、导电板减薄区7、大圆孔8共同形成导电板区域块3之间的电子限流部分;小圆孔9有利于锂带的压合。
实施例4
一种锂-二氧化锰电池。
电池结构与制备过程与实施例2基本相同,区别在于:如图8、图9(图9是沿着图8虚线处的剖面图)所示,采用整片铜箔模切,同时形成导电板区域块3和导电板窄区11,然后再用胶黏剂12,将导电板区域块3和导电板窄区11,一起结合在结构件A10上。导电板窄区11充当电子限流部分。结构件A10将各区域块连接起来,并增强整个集流体和极片的机械强度,其材质可以是金属材料、导电高分子材料、碳纤维、绝缘材料中的任意一种或者组合。具体的,在本实施例中,结构件A10为绝缘材质的聚酰亚胺(PI)膜,胶黏剂12为亚克力胶。
实施例5
一种锂-二氧化锰电池。
电池结构与制备过程与实施例4基本相同,区别在于:结构件A10为聚对苯二甲酸(PET)膜;导电板区域块3和导电板窄区11的形成采用刻蚀方法。
实施例6
一种锂-二氧化锰电池。
电池结构与制备过程与实施例4基本相同,区别在于:结构件A10为双面贴附PI膜的金属材料镍箔。
实施例7
一种锂-二氧化锰电池。
电池结构与制备过程与实施例4基本相同,区别在于:结构件A10为金属材料不锈钢箔。胶黏剂12中掺入了氧化铝(Al2O3)。
实施例8
一种锂-二氧化锰电池。
电池结构与制备过程与实施例4基本相同,区别在于:采用蒸镀工艺,在结构件A10上,形成导电板区域块3和导电板窄区11。
实施例9
一种锂离子电池。
如图10~图13所示,在结构件A10上模切形成长圆形孔2,并放入导电条14作为电子限流部分,在正面、背面两侧的贴片区13涂覆胶黏剂12(图中未显示),并贴合导电板区域块3。对于这种分离式的结构,电子限流部分可通过涂覆、包覆、机械压合、热熔、焊接、铆接、粘结、电镀和蒸镀中的任意一种方式或者其组合与区域块相连。在本实施例中,通过焊接,将电子限流部分(即导电条14)和导电板区域块3连接在一起,形成复合正极集流体。
将粘结剂聚偏氟乙烯(PVDF)溶解在氮-甲基吡咯烷酮(NMP)中,加入钴酸锂(LiCoO2)、导电碳,并混合均匀制成浆料,涂覆在上述的复合正极集流体上,再经过烘干、压制、分条,就形成正极极片。在导电板区域块3上焊接汇流片15,作为正极极耳。其中钴酸锂、导电碳、PVDF三者一起构成正极极片的电极材料。在本实施例中,结构件A10为聚酰亚胺(PI)膜,胶黏剂12为亚克力胶,导电板区域块3、导电条14、汇流片15的材质均为铝。
将粘结剂聚偏氟乙烯(PVDF)溶解在氮-甲基吡咯烷酮(NMP)中,加入人造石墨、导电碳,并混合均匀制成浆料,涂覆在完整连续的铜箔上,再经过烘干、压制、分条,就形成负极极片。在铜箔上焊接镍条,作为负极极耳。
将正极、隔膜、负极交错叠片,形成电芯。
将正极极耳焊接在一起,通过汇流片连接至电池的正极极柱;将负极极耳焊接在一起,通过汇流片连接至电池的负极极柱。
再经过盖板焊接、注液、压钢珠、清洗、化成、分容等工艺步骤,制得锂离子电池。
实施例10
一种锂离子电池。
电池结构与制备过程与实施例9基本相同,区别在于:如图14、图15所示,将多片结构件A10并列平放,在之间放入导电条14,其中导电条14上有减窄部分,即导电条窄区16。在结构件A10的正面、背面两侧,均涂覆胶黏剂12(图中未显示),并贴合导电板区域块3。通过焊接,将导电条14和导电板区域块3连接在一起。在导电条窄区16上,依次涂覆有隔热层6、隔液层5(与实施例2相同,隔热层6被隔液层5覆盖,图中未显示)。
实施例11
一种锂离子电池。
电池结构与制备过程与实施例9基本相同,区别在于:如图16所示,在结构件A10的正面、背面两侧,均涂覆胶黏剂12(图中未显示),并贴合导电板区域块3。将导电条14放置在导电板区域块3上,并通过焊接,将导电条14和导电板区域块3连接在一起。在导电条窄区16上,依次涂覆有隔热层6、隔液层5(与实施例2相同,隔热层6被隔液层5覆盖,图中未显示)。
实施例12
一种锂离子电池。
电池结构与制备过程与实施例9基本相同,区别在于:如图17所示,在结构件A10的正面、背面两侧,均涂覆胶黏剂12(图中未显示)。利用模切,制备一体化的导电板区域块3、导电板窄区11,并贴合在缘材质结构件10的正面、背面两侧。背面导电板区域块17,背面导电板窄区18的位置,是与正面的导电板区域块3、导电板窄区11相互交错的,以加强整个集流体的强度。在导电板窄区11、背面导电板窄区18上,依次涂覆有隔热层6、隔液层5(与实施例2相同,隔热层6被隔液层5覆盖,图中未显示)。
实施例13
一种锂离子电池。
电池结构与制备过程与实施例12基本相同,区别在于:结构件A10的材质不是聚酰亚胺(PI),而是芳纶(Aramid)。
实施例14
一种锂离子电池。
电池结构与制备过程与实施例12基本相同,区别在于:不需要采用结构件A10,而是利用胶黏剂12直接将导电板区域块3、导电板窄区11、背面导电板区域块17,背面导电板窄区18交错黏贴在一起,形成复合集流体,然后进行极片和电池制备。
实施例15
一种锂离子电池。
电池结构与制备过程与实施例9基本相同,区别在于:如图18~图21(图21是沿着图20虚线处的剖面图)所示,在结构件A10上模切出一系列大圆孔8,并放入PTC圆片19。在正面的贴片区13、背面贴片区20涂覆胶黏剂12,在PTC圆片19涂覆导电胶21,并贴合导电板区域块3,形成复合集流体,然后进行极片和电池制备。正极、隔膜、负极形成电芯的方法不是叠片,而是卷绕。在本实施例中,PTC圆片19充当电子限流部分,其材质为聚乙烯(PE)+炭黑(C)。
实施例16
一种锂离子电池。
电池结构与制备过程与实施例15基本相同,区别在于:如图22所示,每个导电板区域块3(图中未显示)覆盖的PTC圆片19不是2个,而是4个。
实施例17
一种锂离子电池。
电池结构与制备过程与实施例9基本相同,区别在于:如图23、图24所示,在结构件B22的两面涂覆导电胶21(图中未显示),并在正面的贴片区13、背面贴片区20上交错贴合导电板区域块3,形成复合集流体,然后进行极片和电池制备。正极、隔膜、负极形成电芯的方法不是叠片,而是卷绕。结构件B22为PTC材料;结构件B22被导电板区域块3覆盖的部分亦同时充当电子限流部分。具体的,在本实施例中,结构件B22的材质为聚乙烯(PE)+炭黑(C)。
实施例18
一种锂离子电池。
电池结构与制备过程与实施例17基本相同,区别在于:如图25所示,导电胶21(图中未显示)仅涂覆在圆形的导电胶涂覆区23,结构件B22的其余部分涂覆胶黏剂12(图中未显示)。在本实施例中,导电胶涂覆区23覆盖的结构件B22部分,充当电子限流部分。
实施例19
一种锂离子电池。
电池结构与制备过程与实施例17基本相同,区别在于:如图26所示,仅在结构件B22正面的贴片区13,贴合导电板区域块3(图中未显示),即复合集流体一面为金属材质,一面为PTC材质。在本实施例中,导电板区域块3之间的结构件B22部分,充当电子限流部分。
实施例20
一种锂离子电池。
电池结构与制备过程与实施例17基本相同,区别在于:如图27、图28所示(图28是沿着图27虚线处的剖面图),在导电板区域块3、电极材料4的间隙部分,存在绝缘材料层24,将电极材料4区域块之间的电子传导部分隔断。
实施例21
一种锂离子电池。
电池结构与制备过程与实施例20基本相同,区别在于:如图29所示,绝缘材料层24没有将电极材料4完全隔断,而是深入其厚度的75%。
实施例22
一种锂离子电池。
电池结构与制备过程与实施例17基本相同,区别在于:如图30所示,在结构件A10和导电板区域块3之间,涂覆有PTC粉层25。导电板区域块3之间的PTC粉层25部分,充当电子限流部分。
实施例23
一种锂离子电池。
电池结构与制备过程与实施例22基本相同,区别在于:PTC粉层25,不是涂覆在结构件A10和导电板区域块3之间,而是涂覆在导电板区域块3之上,即导电板区域块3和电极材料4之间。导电板区域块3之间的PTC粉层25部分,充当电子限流部分。
实施例24
一种锂离子电池。
电池结构与制备过程与实施例23基本相同,区别在于:电极材料4中也掺入了PTC材料。位于导电板区域块3之间的PTC粉层25部分、掺入了PTC材料的电极材料4部分,同时充当电子限流部分。
实施例25
一种锂离子电池。
电池结构与制备过程与实施例22基本相同,区别在于:导电板区域块3不是长方形,而是菱形。在此实施例中,菱形的一条边与极片的长度方向平行,另一条边则不与极片的宽度方向平行。事实上,区域块可以是任意形状;可以在与极片长度、宽度方向存在着任意夹角的两个方向上都设计多个区域块(当然,最简单的方式,是区域块为长方形,而且分别平行于极片的长度、宽度方向,即夹角为零)。在电池中,全部极片区域块的中心法线,可以呈现集中式分布,以使设计和制造工艺简单化;亦可以呈现非集中式分布,以实现最大散热效果,并减少电池内部应力。
本专利所述的电池,包括但是不限于锂离子电池和其他种类的锂蓄电池,以及锂原电池、银锌电池、铝-氧化银电池、钠硫电池、镁电池、储备电池。同时,电容等电化学装置也可以采用相同或者类似的设计。
显然,上述实施例仅仅是为清楚地说明本发明的技术方案所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (11)

  1. 一种区域化设计的极片,其特征在于,包括集流体和设于集流体两侧的电极材料;所述极片包括如下的特征一和/或特征二:
    特征一:集流体包括至少一层导通电子的导电板,导电板被分成多个区域块;
    特征二:至少有一层电极材料被分成多个区域块;
    所述极片的相邻区域块之间设有可通过发生熔断进行限流的电子限流部分。
  2. 根据权利要求1所述的区域化设计的极片,其特征在于,导电板的材质采用金属材料、PTC材料、导电高分子中的任意一种或者组合。
  3. 根据权利要求1所述的区域化设计的极片,其特征在于,电子限流部分的材质采用金属材料、PTC材料、掺入了PTC材料的电极材料中的任意一种或者组合。
  4. 根据权利要求1所述的区域化设计的极片,其特征在于,电子限流部分与区域块一体式连接。
  5. 根据权利要求1所述的区域化设计的极片,其特征在于,电子限流部分通过涂覆、包覆、机械压合、热熔、焊接、铆接、粘结、电镀和蒸镀中的任意一种方式或者其组合与区域块相连。
  6. 根据权利要求1所述的区域化设计的极片,其特征在于,电子限流部分是通过成孔、薄化或窄化工艺形成的;成孔时相邻孔之间的间距为0.1mm~50mm。
  7. 根据权利要求1所述的区域化设计的极片,其特征在于,电子限流部分,设有隔液层,或者隔热层,或者可容纳电子限流部分熔断时体积增大的容纳层,或者三者的任意组合。
  8. 根据权利要求1所述的区域化设计的极片,其特征在于,相邻区域块之间设有一层绝缘材料。
  9. 根据权利要求1所述的区域化设计的极片,其特征在于,集流体和电极材料之间设有一层PTC材料。
  10. 根据权利要求1所述的区域化设计的极片,其特征在于,极片中还包括将各区域块连接起来的结构件,结构件材质采用金属材料、导电高分子材料、PTC材料、碳纤维、绝缘材料中的任意一种或者组合。
  11. 一种电池,其特征在于,设有如权利要求1至10任意一项所述的区域化设计的极片。
PCT/CN2020/082009 2019-04-01 2020-03-30 区域化设计的极片及其电池 WO2020200155A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910257780.0 2019-04-01
CN201910257780.0A CN109920975A (zh) 2019-04-01 2019-04-01 区域化设计的极片及其电池

Publications (1)

Publication Number Publication Date
WO2020200155A1 true WO2020200155A1 (zh) 2020-10-08

Family

ID=66968158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082009 WO2020200155A1 (zh) 2019-04-01 2020-03-30 区域化设计的极片及其电池

Country Status (2)

Country Link
CN (1) CN109920975A (zh)
WO (1) WO2020200155A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116154416A (zh) * 2023-04-24 2023-05-23 宁德时代新能源科技股份有限公司 极片、电极组件、电池单体、电池及用电设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109920975A (zh) * 2019-04-01 2019-06-21 何志奇 区域化设计的极片及其电池
CN113725440A (zh) * 2021-08-30 2021-11-30 慈溪斯昂尼电池有限公司 一种电子离子超快阻断阻燃防爆电池
CN115548258A (zh) * 2022-11-02 2022-12-30 昆山东威科技股份有限公司 一种锂电池负极结构、电芯及锂电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149794A (ja) * 2003-11-12 2005-06-09 Mitsubishi Heavy Ind Ltd 電池用電極および電池
CN106981664A (zh) * 2016-01-18 2017-07-25 丰田自动车株式会社 全固体电池
CN107507959A (zh) * 2017-08-25 2017-12-22 江西优特汽车技术有限公司 一种动力电池极片的设计方法
CN107946541A (zh) * 2016-10-12 2018-04-20 辉能科技股份有限公司 锂金属极板及其应用的锂金属电池
CN108346831A (zh) * 2018-01-04 2018-07-31 湖南立方新能源科技有限责任公司 一种电极结构及含有该电极结构的锂离子电池
CN109920975A (zh) * 2019-04-01 2019-06-21 何志奇 区域化设计的极片及其电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209544517U8 (zh) * 2019-04-01 2019-12-10 何志奇 区域化设计的极片及其电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149794A (ja) * 2003-11-12 2005-06-09 Mitsubishi Heavy Ind Ltd 電池用電極および電池
CN106981664A (zh) * 2016-01-18 2017-07-25 丰田自动车株式会社 全固体电池
CN107946541A (zh) * 2016-10-12 2018-04-20 辉能科技股份有限公司 锂金属极板及其应用的锂金属电池
CN107507959A (zh) * 2017-08-25 2017-12-22 江西优特汽车技术有限公司 一种动力电池极片的设计方法
CN108346831A (zh) * 2018-01-04 2018-07-31 湖南立方新能源科技有限责任公司 一种电极结构及含有该电极结构的锂离子电池
CN109920975A (zh) * 2019-04-01 2019-06-21 何志奇 区域化设计的极片及其电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116154416A (zh) * 2023-04-24 2023-05-23 宁德时代新能源科技股份有限公司 极片、电极组件、电池单体、电池及用电设备
CN116154416B (zh) * 2023-04-24 2023-07-18 宁德时代新能源科技股份有限公司 极片、电极组件、电池单体、电池及用电设备

Also Published As

Publication number Publication date
CN109920975A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
WO2020200155A1 (zh) 区域化设计的极片及其电池
TWI589055B (zh) 含有絕緣層於陰極耳上之陰極及含有該陰極之二次電池
JP5328034B2 (ja) 電気化学素子用セパレータ、電気化学素子およびその製造方法
WO2020168879A1 (zh) 极片、电芯以及电池
US20130022865A1 (en) Current collector and nonaqueous secondary cell
US9755213B2 (en) Cathode including insulation layer on cathode tab and secondary battery including the cathode
US11121439B2 (en) Secondary battery
US20130177787A1 (en) Current collector and nonaqueous secondary battery
JP2004119383A (ja) リチウムイオン電池の電極組立体及びこれを利用したリチウムイオン電池
JPH11345630A (ja) リチウム二次電池
JPWO2017163846A1 (ja) リチウムイオン二次電池、電極及びその製造方法
WO2018024203A1 (zh) 极片及电芯
JP6613082B2 (ja) リチウムイオン二次電池
CN215644565U (zh) 极片、电芯结构及电池
JP2015026555A (ja) 全固体二次電池及びその製造方法
US7078129B2 (en) Fire and corrosion resistant thermally stable electrodes and batteries and method for manufacturing same
KR20190026090A (ko) 전고체 전지의 제조 방법 및 이에 의해 제조된 전고체 전지
CN110783619A (zh) 一种具备自加热功能的锂电池及其制备方法
WO2009021379A1 (fr) Collecteur de courant de batterie au lithium-ion, batterie au lithium-ion cylindrique de grande capacité et son procédé de préparation
CN209544517U (zh) 区域化设计的极片及其电池
JP6927629B2 (ja) 二次電池及び二次電池用絶縁板
CN207320260U (zh) 一种磷酸铁锂电芯
CN216698666U (zh) 一种电池电芯和锂离子电池
EP3467919A1 (en) Current collector with an improved security behavior and battery cell comprising the same
JP2013179049A (ja) インターリーブ電極を有する組み合わせバッテリセル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784450

Country of ref document: EP

Kind code of ref document: A1