WO2020200044A1 - 一种通信方法及设备 - Google Patents

一种通信方法及设备 Download PDF

Info

Publication number
WO2020200044A1
WO2020200044A1 PCT/CN2020/081451 CN2020081451W WO2020200044A1 WO 2020200044 A1 WO2020200044 A1 WO 2020200044A1 CN 2020081451 W CN2020081451 W CN 2020081451W WO 2020200044 A1 WO2020200044 A1 WO 2020200044A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink data
data channel
uci
physical resources
tbs
Prior art date
Application number
PCT/CN2020/081451
Other languages
English (en)
French (fr)
Inventor
李�远
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2021557716A priority Critical patent/JP7262611B2/ja
Priority to BR112021019592A priority patent/BR112021019592A2/pt
Priority to EP20784330.1A priority patent/EP3952534A4/en
Priority to AU2020251616A priority patent/AU2020251616B2/en
Publication of WO2020200044A1 publication Critical patent/WO2020200044A1/zh
Priority to US17/487,908 priority patent/US11974287B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0858Load balancing or load distribution among entities in the uplink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the embodiment of the present invention relates to the field of communication technology, and in particular to a communication method and device.
  • the 5G new radio has introduced a multiple retransmission mechanism, that is, a data packet is repeatedly transmitted on K physical uplink shared channels (PUSCH). Times. Since the K PUSCHs are used to repeatedly transmit the same data packet, the transport block size (transport block size, TBS) needs to remain the same. When the number of physical resources included in the K PUSCHs is the same, the TBS can be calculated based on the number of physical resources of the first PUSCH in the K PUSCHs.
  • the embodiment of the present invention discloses a communication method and equipment for improving the reliability of information transmission.
  • the first aspect discloses a communication method.
  • the execution body of the method may be a terminal device or a module (for example, a chip) in the terminal device.
  • the terminal device is used as the execution body for description below.
  • the terminal device receives the first control information from the network device, receives the second control information from the network device, determines the physical resource occupied by the first UCI, and sends the first UCI to the network device through the physical resource occupied by the first UCI.
  • the first control information includes information about the first physical resource used to transmit the first data packet, the first physical resource corresponds to K uplink data channels, and each uplink data channel of the K uplink data channels is used to transmit the first data once.
  • Package, K is a positive integer.
  • the second control information includes information of the first time domain resource used to transmit the first UCI, and the first time domain resource overlaps the first uplink data channel in the K uplink data channels in the time domain. Since the first uplink data channel is different from the set of uplink data channels used to determine the first TBS, the first TBS is the TBS of the first data packet, or the number of time domain symbols included in the first uplink data channel is less than (or not greater than) The first threshold, or the number of physical resources included in the first uplink data channel is less than (or not greater than) the second threshold, or the code rate at which the first UCI is carried on the first uplink data channel is greater than (or not less than) the third threshold Therefore, if the first uplink data channel is overloaded, it is possible to determine the appropriate physical resources occupied by the first UCI, thereby improving the reliability of information transmission.
  • the number of physical resources included in the uplink data channel set is greater than the number of physical resources included in the first uplink data channel.
  • the number of physical resources occupied by the first UCI may be determined according to the equivalent TBS, and the equivalent TBS is different from the first TBS. It can be seen that instead of determining the number of physical resources occupied by the first UCI based on the first TBS, the number of physical resources occupied by the first UCI is determined based on the equivalent TBS. The equivalent TBS is different from the first TBS. Therefore, it can be resolved The physical resource occupied by the obtained UCI is too large, which can improve the reliability of information transmission.
  • the number of physical resources occupied by the first UCI may be determined according to the equivalent TBS and the number of physical resources included in the first uplink data channel, and the equivalent TBS is a TBS determined according to the first uplink data channel. Since the number of physical resources included in the equivalent TBS and the first uplink data channel are matched with the physical resources included in the first uplink data channel, it is determined that the number of physical resources occupied by the first UCI is moderate, thereby avoiding The problem of too large TBS or small number of physical resources ensures the transmission reliability of the first UCI, thereby improving the reliability of information transmission.
  • the number of physical resources occupied by the first UCI may be determined according to the number of equivalent physical resources, where the number of equivalent physical resources is different from the number of physical resources included in the first uplink data channel. It can be seen that the number of physical resources occupied by the first UCI is not determined according to the number of physical resources included in the first uplink data channel, but the number of physical resources occupied by the first UCI is determined according to the number of equivalent physical resources.
  • the equivalent physical resources The number is different from the number of physical resources included in the first uplink data channel. Therefore, the problem that the physical resources occupied by the obtained UCI is too large can be solved, thereby improving the reliability of information transmission.
  • the number of physical resources occupied by the first UCI can be determined according to the number of equivalent physical resources and the first TBS, where the number of equivalent physical resources is the number of physical resources included in the uplink data channel set. Since the number of the first TBS and the equivalent physical resources are matched with the number of physical resources included in the uplink data channel set, it is determined that the number of physical resources occupied by the first UCI is moderate, thereby avoiding excessively large TBS or physical resources. The problem of the small amount of resources ensures the transmission reliability of the first UCI, which can improve the reliability of information transmission.
  • the number of physical resources occupied by the first UCI is determined according to the number of physical resources included in the second uplink data channel, and the second uplink data channel is different from the first uplink data channel. It can be seen that the number of physical resources occupied by the first UCI is not determined based on the number of physical resources included in the first uplink data channel, but the number of physical resources occupied by the first UCI is determined based on the number of physical resources included in the second uplink data channel. The number of physical resources included in the second uplink data channel is different from the number of physical resources included in the first uplink data channel. Therefore, the problem of large physical resources occupied by the obtained UCI can be solved, thereby improving the reliability of information transmission.
  • the number of physical resources occupied by the first UCI can be determined according to the number of physical resources included in the second uplink data channel and the first TBS, and the number of physical resources included in the second uplink data channel is used to determine K The number of physical resources occupied by UCI on any one of the uplink data channels.
  • the number of physical resources included in the second uplink data channel may not match the physical resources included in the first uplink data channel, no matter which uplink data channel of the K uplink data channels the UCI is carried on, Both can ensure that the number of physical resources occupied is equal, therefore, the effect of ensuring the reliability of UCI transmission can still be achieved, thereby improving the reliability of information transmission.
  • the amount of physical resources occupied by the first UCI may be determined according to the first equalization parameter, where the first equalization parameter is different from the second equalization parameter.
  • the second equalization parameter is an equalization parameter used to determine the number of physical resources occupied by the first UCI in the first case.
  • the first case is: the uplink data channel set is the same as the first uplink data channel, or the first uplink data channel includes The number of time domain symbols is not less than (or greater than) the first threshold, or the number of physical resources included in the first uplink data channel is not less than (or greater than) the second threshold, or the first UCI is carried on the first uplink data channel
  • the code rate is not greater than (or less than) the third threshold.
  • the second equalization parameter is an equalization parameter used to determine the number of physical resources occupied by the second UCI on the third uplink data channel
  • the third uplink data channel is the uplink data channel among the K uplink data channels
  • the third The uplink data channel is not equal to the first uplink data channel. It can be seen that the number of physical resources occupied by the first UCI is not determined according to the second equalization parameter, but the number of physical resources occupied by the first UCI is determined according to the first equalization parameter.
  • the first equalization parameter is different from the second equalization parameter. Therefore, the problem of large physical resources occupied by the obtained UCI can be solved, and the reliability of information transmission can be improved.
  • the third control information from the network device is received, the third control information includes the first field, the first equalization parameter and the second equalization parameter both correspond to the first field, or the first equalization parameter and the second equalization parameter Both equalization parameters correspond to the first index value notified by the first field. It can be seen that the first equalization parameter and the second equalization parameter are notified by the network device through the same field in the same control information or the index value corresponding to the same field.
  • the number of physical resources occupied by the first UCI may be determined according to the number of physical resources included in the first uplink data channel, the first TBS, and the first equalization parameter.
  • the equalization parameters can be adjusted to make up for the amount of physical resources occupied by the first UCI, and the adjusted first equalization parameters can be used to determine a suitable first UCI location.
  • the number of physical resources occupied ensures the reliability of the first UCI transmission, thereby improving the reliability of information transmission.
  • the first equalization parameter is greater than the second equalization parameter.
  • using a larger first equalization parameter can increase the number of physical resources occupied by the first UCI, ensure the performance of the first UCI, and thereby improve the reliability of information transmission Sex.
  • the physical resources occupied by the first UCI are physical resources in the first uplink data channel.
  • the physical resource occupied by the first UCI is the physical resource in the fourth uplink data channel
  • the fourth uplink data channel is the uplink data channel among the K uplink data channels
  • the fourth uplink data channel is not Equal to the first uplink data channel. Adjusting the first UCI to be sent on another uplink data channel can improve the transmission reliability of the UCI, thereby improving the reliability of information transmission.
  • the fourth uplink data channel and the first time domain resource do not overlap in the time domain, which can ensure that the first UCI is carried to the fourth uplink data not notified by the network device for transmitting the first UCI On the channel, ensure that a suitable uplink data channel is used to send the first UCI to ensure the reliability of information transmission.
  • the number of physical resources included in the fourth uplink data channel is greater than the number of physical resources included in the first uplink data channel, or the number of time domain symbols included in the fourth uplink data channel is greater than or equal to (or greater than) the first uplink data channel.
  • a threshold, or the number of physical resources included in the fourth uplink data channel is greater than or equal to (or greater than) the second threshold, or the code rate for carrying the first UCI on the fourth uplink data channel is less than or equal to (or less than) the third Threshold.
  • the first UCI can be adjusted to be sent on another uplink data channel with a larger number of physical resources, and the transmission reliability of the UCI can be improved, thereby improving the reliability of information transmission.
  • the physical resource occupied by the first UCI is a physical resource in an uplink control channel corresponding to the first time domain resource. It can be seen that the first UCI can be adjusted to the uplink control channel for transmission, and the transmission reliability of the UCI can be improved, so that the reliability of information transmission can be improved.
  • the first uplink data channel can be discarded or the sending of information on the first uplink data channel can be stopped, which can prevent the uplink data channel and the uplink control channel from sending information at the same time.
  • the second aspect discloses a communication method.
  • the execution body of the method may be a network device or a module (for example, a chip) in the network device.
  • the network device is used as the execution body for description below.
  • the network device sends the first control information to the terminal device, sends the second control information to the terminal device, determines the physical resource occupied by the first UCI, and receives the first UCI from the terminal device through the physical resource occupied by the first UCI.
  • the first control information includes information about the first physical resource used to transmit the first data packet, the first physical resource corresponds to K uplink data channels, and each uplink data channel of the K uplink data channels is used to transmit the first data once.
  • Package, K is a positive integer.
  • the second control information includes information of the first time domain resource used to transmit the first uplink control information UCI, and the first time domain resource overlaps the first uplink data channel among the K uplink data channels in the time domain. Since the first uplink data channel is different from the set of uplink data channels used to determine the first TBS, the first TBS is the TBS of the first data packet, or the number of time domain symbols included in the first uplink data channel is less than (or not greater than) The first threshold, or the number of physical resources included in the first uplink data channel is less than (or not greater than) the second threshold, or the code rate at which the first UCI is carried on the first uplink data channel is greater than (or not less than) the third threshold Therefore, it is determined that the first uplink data channel is overloaded, so as to determine a suitable physical resource occupied by the first UCI, so that the reliability of information transmission can be improved.
  • the number of physical resources included in the uplink data channel set is greater than the number of physical resources included in the first uplink data channel.
  • the number of physical resources occupied by the first UCI corresponds to the equivalent TBS, and the equivalent TBS is different from the first TBS. It can be seen that the number of physical resources occupied by the first UCI corresponds to the equivalent TBS, not the first TBS. The equivalent TBS is different from the first TBS. Therefore, the problem that the physical resources occupied by the obtained UCI is too large can be solved. This can improve the reliability of information transmission.
  • the number of physical resources occupied by the first UCI corresponds to the equivalent TBS and the number of physical resources included in the first uplink data channel
  • the equivalent TBS is the TBS corresponding to the first uplink data channel. Since the number of physical resources included in the equivalent TBS and the first uplink data channel are matched with the physical resources included in the first uplink data channel, it is determined that the number of physical resources occupied by the first UCI is moderate, thereby avoiding The problem of too large TBS or small number of physical resources ensures the transmission reliability of the first UCI, thereby improving the reliability of information transmission.
  • the number of physical resources occupied by the first UCI corresponds to the number of equivalent physical resources, and the number of equivalent physical resources is different from the number of physical resources included in the first uplink data channel. It can be seen that the number of physical resources occupied by the first UCI corresponds to the number of equivalent physical resources, not the number of physical resources included in the first uplink data channel, and the number of equivalent physical resources is different from the number of physical resources included in the first uplink data channel. Therefore, the problem of large physical resources occupied by the obtained UCI can be solved, and the reliability of information transmission can be improved.
  • the number of physical resources occupied by the first UCI corresponds to the number of equivalent physical resources and the first TBS
  • the number of equivalent physical resources is the number of physical resources included in the uplink data channel set. Since the number of the first TBS and the equivalent physical resources are matched with the number of physical resources included in the uplink data channel set, it is determined that the number of physical resources occupied by the first UCI is moderate, thereby avoiding excessively large TBS or physical resources. The problem of the small amount of resources ensures the transmission reliability of the first UCI, which can improve the reliability of information transmission.
  • the number of physical resources occupied by the first UCI corresponds to the number of physical resources included in the second uplink data channel, and the second uplink data channel is different from the first uplink data channel. It can be seen that the number of physical resources occupied by the first UCI corresponds to the number of physical resources included in the second uplink data channel, rather than the number of physical resources included in the first uplink data channel.
  • the number of physical resources included in the second uplink data channel corresponds to the number of physical resources included in the second uplink data channel.
  • the number of physical resources included in an uplink data channel is different. Therefore, the problem that the physical resources occupied by the obtained UCI is too large can be solved, and the reliability of information transmission can be improved.
  • the number of physical resources occupied by the first UCI corresponds to the number of physical resources included in the second uplink data channel and the first TBS, and the number of physical resources included in the second uplink data channel is used to determine K The number of physical resources occupied by UCI on any one of the uplink data channels.
  • the number of physical resources included in the second uplink data channel may not match the physical resources included in the first uplink data channel, no matter which uplink data channel of the K uplink data channels the UCI is carried on, Both can ensure that the number of physical resources occupied is equal, therefore, the effect of ensuring the reliability of UCI transmission can still be achieved, thereby improving the reliability of information transmission.
  • the number of physical resources occupied by the first UCI corresponds to the first equalization parameter, and the first equalization parameter is different from the second equalization parameter.
  • the second equalization parameter is an equalization parameter used to determine the number of physical resources occupied by the first UCI in the first case.
  • the first case is: the uplink data channel set is the same as the first uplink data channel, or the first uplink data channel includes The number of time domain symbols is not less than (or greater than) the first threshold, or the number of physical resources included in the first uplink data channel is not less than (or greater than) the second threshold, or the first UCI is carried on the first uplink data channel
  • the code rate is not greater than (or less than) the third threshold.
  • the second equalization parameter is an equalization parameter used to determine the number of physical resources occupied by the second UCI on the third uplink data channel
  • the third uplink data channel is the uplink data channel among the K uplink data channels
  • the third The uplink data channel is not equal to the first uplink data channel. It can be seen that the number of physical resources occupied by the first UCI corresponds to the first equalization parameter, not the second equalization parameter.
  • the first equalization parameter is different from the second equalization parameter. Therefore, the physical resource deviation occupied by the obtained UCI can be resolved. Big problem, which can improve the reliability of information transmission.
  • third control information may be sent to the terminal device.
  • the third control information includes a first field, and both the first equalization parameter and the second equalization parameter correspond to the first field, or the first equalization parameter and the second equalization parameter Both equalization parameters correspond to the first index value notified by the first field. It can be seen that the first equalization parameter and the second equalization parameter are notified by the network device through the same field in the same control information or the index value corresponding to the same field.
  • the number of physical resources occupied by the first UCI corresponds to the number of physical resources included in the first uplink data channel, the first TBS, and the first equalization parameter.
  • the equalization parameters can be adjusted to make up for the amount of physical resources occupied by the first UCI, and the adjusted first equalization parameters can be used to determine a suitable first UCI location.
  • the number of physical resources occupied ensures the reliability of the first UCI transmission, thereby improving the reliability of information transmission.
  • the first equalization parameter is greater than the second equalization parameter.
  • using a larger first equalization parameter can increase the number of physical resources occupied by the first UCI, ensure the performance of the first UCI, and thereby improve the reliability of information transmission Sex.
  • the physical resources occupied by the first UCI are physical resources in the first uplink data channel.
  • the physical resource occupied by the first UCI is the physical resource in the fourth uplink data channel
  • the fourth uplink data channel is the uplink data channel among the K uplink data channels
  • the fourth uplink data channel is not Equal to the first uplink data channel. Adjusting the first UCI to be sent on another uplink data channel can improve the transmission reliability of the UCI, thereby improving the reliability of information transmission.
  • the fourth uplink data channel and the first time domain resource do not overlap in the time domain, which can ensure that the first UCI is carried to the fourth uplink data not notified by the network device for transmitting the first UCI On the channel, ensure that a suitable data channel is used to send the first UCI to ensure the reliability of information transmission.
  • the number of physical resources included in the fourth uplink data channel is greater than the number of physical resources included in the first uplink data channel, or the number of time domain symbols included in the fourth uplink data channel is greater than or equal to (or greater than) the first uplink data channel.
  • a threshold, or the number of physical resources included in the fourth uplink data channel is greater than or equal to (or greater than) the second threshold, or the code rate for carrying the first UCI on the fourth uplink data channel is less than or equal to (or less than) the third Threshold.
  • the first UCI can be adjusted to be sent on another uplink data channel with a larger number of physical resources, and the transmission reliability of the UCI can be improved, thereby improving the reliability of information transmission.
  • the physical resource occupied by the first UCI is a physical resource in an uplink control channel corresponding to the first time domain resource. It can be seen that the first UCI can be adjusted to the uplink control channel for transmission, and the transmission reliability of the UCI can be improved, so that the reliability of information transmission can be improved.
  • the uplink data channel that receives the uplink information does not include the first uplink data channel, or the part of the physical resources included in the first uplink data channel that overlaps the first time domain resource in the time domain is not used for Transmission of uplink information can prevent the uplink data channel and the uplink control channel from sending information at the same time.
  • a third aspect discloses a communication device, which includes a unit for executing the communication method disclosed in the first aspect or any one of the embodiments of the first aspect, or includes a unit for executing the second aspect or the second aspect Any unit of the communication method disclosed in the embodiment.
  • the fourth aspect discloses a communication device, which may be a terminal device or a module (for example, a chip) in the terminal device.
  • the communication device may include a processor, the processor and a memory are coupled to each other, the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions stored in the memory, so that the communication device executes the first aspect or any of the first aspects.
  • a fifth aspect discloses a communication device.
  • the communication device may be a network device or a module (for example, a chip) in the network device.
  • the communication device may include a processor, the processor and a memory are coupled to each other, the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions stored in the memory, so that the communication device executes the second aspect or any of the second aspects.
  • a sixth aspect discloses a readable storage medium with a program stored on the readable storage medium.
  • the communication method disclosed in the first aspect or any one of the first aspect is implemented, or The communication method as disclosed in the second aspect or any of the embodiments of the second aspect.
  • a seventh aspect discloses a communication system including the communication device of the fourth aspect and the communication device of the fifth aspect.
  • Figure 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • Figure 2 is a schematic diagram of an air interface resource disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of uplink information carried on PUSCH according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a time-domain resource pattern for multiple repeated transmissions disclosed in an embodiment of the present invention.
  • Fig. 5a is a schematic diagram of K PUSCHs disclosed in an embodiment of the present invention.
  • Figure 5b is a schematic diagram of another K PUSCH disclosed in an embodiment of the present invention.
  • FIG. 5c is a schematic diagram of another K PUSCH disclosed in an embodiment of the present invention.
  • Fig. 5d is a schematic diagram of another K PUSCH disclosed in an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a communication method disclosed in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of UL-SCH and UCI transmission disclosed in an embodiment of the present invention.
  • FIG. 8 is another schematic diagram of UL-SCH and UCI transmission disclosed in an embodiment of the present invention.
  • Fig. 9 is another schematic diagram of UL-SCH and UCI transmission disclosed in an embodiment of the present invention.
  • FIG. 10 is another schematic diagram of UL-SCH and UCI transmission disclosed in an embodiment of the present invention.
  • FIG. 11 is another schematic diagram of UL-SCH and UCI transmission disclosed in an embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of another communication method disclosed in an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a communication device disclosed in an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • 15 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a terminal device disclosed in an embodiment of the present invention.
  • Figure 17 is a schematic structural diagram of another terminal device disclosed in an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of another terminal device disclosed in an embodiment of the present invention.
  • the embodiment of the present invention discloses a communication method and equipment for improving the reliability of information transmission. Detailed descriptions are given below.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • the network architecture may include one or more terminal devices 101 (six are shown in FIG. 1) and a network device 102.
  • the network device 102 in FIG. 1 and the six terminal devices 101 ie, the terminal devices 1-6
  • the terminal devices 4-6 can also form a communication system.
  • the communication between the terminal device 101 and the network device 102 includes uplink (that is, the terminal device 101 to the network device 102) communication and the downlink (that is, the network device 102 to the terminal device 101) communication.
  • the terminal device 101 is used to send the uplink physical channel and the uplink signal to the network device 102.
  • the network device 102 is configured to receive uplink physical channels and uplink signals from the terminal device 101.
  • the uplink physical channel may include random access channel (RACH), physical uplink control channel (PUCCH), PUSCH, etc.
  • PUSCH can carry data, that is, uplink shared channel (UL-SCH), can also carry UCI, and can also carry UL-SCH and UCI.
  • PUCCH can carry UCI.
  • the uplink physical channel may also include an uplink data channel and an uplink control channel.
  • the uplink data channel is used to carry data and may be PUSCH.
  • the uplink control channel is used to carry control information, and may be PUCCH.
  • the uplink signal may include sounding reference signal (SRS), PUCCH demodulation reference signal (DMRS), PUSCH DMRS, uplink phase noise tracking signal (phase noise tracking reference signal, PTRS), etc.
  • SRS sounding reference signal
  • DMRS PUCCH demodulation reference signal
  • PUSCH DMRS uplink phase noise tracking signal
  • PTRS phase noise tracking reference signal
  • the network device 102 is used to send a downlink physical channel and a downlink signal to the terminal device 101.
  • the terminal device 101 is configured to receive downlink physical channels and downlink signals from the network device 102.
  • the downlink physical channel may include a physical broadcast channel (physical broadcast channel, PBCH), a physical downlink control channel (physical downlink control channel, PDCCH), a physical downlink shared channel (physical downlink shared channel, PDSCH), and so on.
  • PBCH physical broadcast channel
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Downlink signals can include primary synchronization signal (PSS), secondary synchronization signal (SSS), PDCCH DMRS, PDSCH DMRS, downlink PTRS, channel status information reference signal (channel status information reference signal, CSI-RS) ), cell reference signal (CRS), time domain or frequency domain tracking reference signal (tracking reference signal, TRS), positioning reference signal (positioning reference signal, PRS), etc.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PDCCH DMRS PDCCH DMRS
  • PDSCH DMRS downlink PTRS
  • channel status information reference signal channel status information reference signal
  • CSI-RS channel status information reference signal
  • CRS cell reference signal
  • TRS time domain or frequency domain tracking reference signal
  • positioning reference signal positioning reference signal
  • the terminal device 101 may be called a terminal, user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), and so on.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (Augmented Reality, AR) terminal devices, industrial control (industrial control) ), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, wireless terminals in smart grid, and wireless terminals in transportation safety (transportation safety) Terminal, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • the network device 102 is an access device for terminal devices to wirelessly access the mobile communication system. It can be a base station NodeB, an evolved NodeB (eNB), a transmission reception point (TRP), 5G mobile The next generation NodeB (gNB) in the communication system, the base station in the future mobile communication system, or the access node in the WiFi system, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the radio access network device.
  • Air interface resources include time domain resources and frequency domain resources. Time domain resources are divided according to symbols, and frequency domain resources are divided according to subcarriers.
  • a resource element (resource element, RE) is the smallest resource unit used for data transmission, and one RE corresponds to one time domain symbol and one frequency domain subcarrier.
  • the transmission time interval (TTI) is the time domain granularity used to carry data information or service information. The length of one TTI can be S time domain symbols or less than S time domain symbols. S can be 12 or 14.
  • a TTI is also called a transmission opportunity (TO).
  • a data packet can be carried by a TTI in the time domain and at least one physical resource block (PRB) in the frequency domain.
  • PRB physical resource block
  • a resource block (resource block, RB) is a basic unit for resource scheduling.
  • One RB corresponds to multiple subcarriers in one TTI, that is, one RB corresponds to multiple continuous subcarriers in the frequency domain.
  • FIG. 2 is a schematic diagram of an air interface resource disclosed in an embodiment of the present invention.
  • the horizontal axis is time (time)
  • the vertical axis is frequency (Freq)
  • 1 grid represents 1 RE
  • 1 TTI is composed of n time domain symbols
  • 1 RB is composed of 1 TTI. It is composed of P sub-carriers, and n and P are positive integers.
  • the uplink data transmission of the 5G NR system includes data transmission based on scheduling (grant-based, GB) and data transmission without scheduling permission (grantfree, GF).
  • GB uplink data transmission when the terminal device has business arrival and needs to send uplink data, it needs to send a scheduling request (SR) to the network device on the PUCCH first, and the network device sends the SR to the terminal device after receiving the SR
  • the uplink (UL) grant of the PUSCH is scheduled.
  • the terminal device After receiving the uplink grant, the terminal device sends uplink data on the uplink resources scheduled by the uplink grant.
  • SR scheduling request
  • UL uplink
  • the process of sending SR, waiting for uplink authorization scheduling, and sending uplink data on the PUSCH of the uplink authorization scheduling has a certain delay. Therefore, in order to reduce the delay, the 5G NR system introduces GF uplink transmission.
  • Network equipment can pre-configure and/or activate GF resources for GF uplink transmission. When the terminal equipment has service arrival, it may not send to the network equipment. SR, and send uplink data information directly on the GF resource.
  • GF can also be referred to as grant-less (grant-less), configured grant (CG) or transmission without grant (TWG).
  • the network equipment can semi-statically allocate resources for GF transmission to the terminal equipment.
  • the terminal equipment does not need to send SR to the network equipment, nor does it need to receive the uplink sent by the network equipment before sending the uplink data information.
  • Authorization instead of sending uplink data directly on the PUSCH resource configured and/or activated by the network device.
  • Information such as time-frequency resources, modulation and coding schemes, and pilot information used for GF transmission can be called GF parameters, which can be configured by network equipment through high-level signaling, or network equipment through the uplink authorization used to activate GF transmission.
  • the semi-static uplink authorization indication for example: the uplink authorization indication that can be scrambled by the configured scheduling radio network temporary identifier (CS-RNTI), and the semi-static uplink authorization indication can also be configured through high-level signaling.
  • the combined method is notified to the terminal device.
  • the network device notifying the terminal device of the time-frequency resource or time unit used for GF transmission in the foregoing manner can be called the network device configuring the time-frequency resource for GF transmission to the terminal device.
  • the terminal device uses the GF parameter configured by the network device to send uplink information on the time-frequency resource configured by the network device for GF transmission, which is called sending uplink information in the GF mode.
  • the PUSCH can carry UL-SCH but not UCI, or UCI but not UL-SCH, or both UL-SCH and UCI.
  • UCI is the uplink control information fed back by the terminal device, which can include at least one of hybrid automatic repeat request (HARQ)-acknowledgement (acknowledgement, ACK), SR, or channel state information (CSI).
  • HARQ hybrid automatic repeat request
  • ACK acknowledgement
  • SR SR
  • CSI channel state information
  • the terminal device can multiplex the encoded UCI with the UL-SCH in a rate-matching manner and then map it to the PUSCH, or the encoded UCI can be punctured.
  • the UL-SCH that has been mapped to the PUSCH is mapped to the PUSCH to achieve multiplexing with the UL-SCH.
  • the terminal device maps the encoded UCI to the PUSCH.
  • FIG. 3 is a schematic diagram of uplink information carried on a PUSCH disclosed in an embodiment of the present invention.
  • the uplink information includes UCI and UL-SCH
  • UCI includes DMRS and HARQ-ACK.
  • the first time domain symbol (symbol #0) of PUSCH carries DMRS
  • HARQ-ACK (ie A/N) is mapped to the first time domain symbol (symbol #1) after the DMRS symbol
  • UL-SCH mapping On the remaining time domain symbols in PUSCH.
  • the PUSCH of 5G NR also introduces a multiple repetition mechanism, which means that the same data packet is repeatedly sent K times on K time domain resources (or K PUSCHs corresponding to K time domain resources). That is, the same data packet is repeatedly transmitted K times, that is, each PUSCH in the K PUSCH is used to carry the same data packet once, that is, each time domain resource in the K time domain resources is used to carry the same data One transmission of the packet. Any one of the above K time domain resources, or a resource used to carry any one of the K repeated transmissions, is called a TO.
  • the K time domain resources used for K repeated transmissions are scheduled by the network device through the uplink authorization.
  • K time domain resources used for K repeated transmissions are configured by the network device.
  • FIG. 4 is a schematic diagram of a time-domain resource pattern for multiple repeated transmissions disclosed in an embodiment of the present invention.
  • the TBS corresponding to UL-SCH is calculated based on the number of physical resources on the PUSCH (such as the total number of REs on the PUSCH), the overhead on the PUSCH, and the modulation and coding scheme (MCS). .
  • the overhead on PUSCH may include the number of REs occupied by DMRS and the number of REs occupied by other overheads.
  • the TBS needs to remain the same.
  • the TBS calculated based on any one PUSCH is the same. Therefore, the TBS can be calculated based on the number of physical resources of the first PUSCH in the K PUSCHs.
  • the terminal device may first determine the number of effective REs contained in each PRB in PUSCH#1, and then may follow the PRBs included in PUSCH#1
  • the number determines the number of effective REs (N RE ) included in PUSCH#1, and then the system that PUSCH#1 can carry data packets can be determined according to the modulation mode (Q m ) and code rate (R) corresponding to the MCS configured or indicated by the network device
  • the number of information bits that is, the TBS corresponding to the data packet.
  • TBS can be obtained from N RE ⁇ R ⁇ Q m .
  • the number of effective REs included in each PRB is the total number of REs included in each PRB minus the number of REs occupied by overhead (for example, the aforementioned DMRS and other overheads).
  • the terminal device When the UCI collides with one or more PUSCHs of the PUSCH repeatedly transmitting the UL-SCH for multiple times, the terminal device carries the UCI on one PUSCH of the one or more PUSCHs for transmission.
  • the number of physical resources used to transmit UCI on PUSCH ie the number of REs
  • the number of physical resources used to transmit UCI on PUSCH can be based on the size of UCI, that is, the UCI payload size, and the number of physical resources that can be used to carry UCI on PUSCH
  • the number of physical resources, the TBS corresponding to the UL-SCH on the PUSCH, and the equalization parameters are determined.
  • the number of physical resources Q 'ACK UCI is occupied, O ACK number (i.e., the HARQ-ACK payload size) the HARQ-ACK bits, L ACK for the cyclic redundancy check the HARQ-ACK (cyclic redundancy check , CRC) number of bits.
  • It is an equalization parameter, which can be regarded as the ratio of the code rate of other information on the PUSCH (such as UL-SCH) to the code rate of UCI, which is notified by the network device and is a number greater than 0.
  • C UL-SCH is the number of code blocks included in the UL-SCH on the PUSCH
  • K r is the number of bits of the rth code block in the UL-SCH on the PUSCH.
  • Is the number of physical resources that can be used to carry UCI on PUSCH Is the number of physical resources that can be used to carry UCI on the l th time domain symbol on PUSCH, It is the total number of time-domain symbols on PUSCH (including the number of symbols carrying DMRS).
  • l is the time domain symbol carrying DMRS
  • is the resource scaling factor
  • l 0 is the first time domain symbol that does not carry DMRS after the first DMRS symbol on the PUSCH.
  • Q′ CSI-1 is the number of physical resources occupied by UCI
  • O CSI-1 is the number of bits of CSI part 1 (that is, the payload size of CSI part 1)
  • L CSI-1 is the number of CRC bits of CSI part 1
  • Q'ACK is the number of physical resources used for transmission or potentially used for transmission of HARQ-ACK.
  • the physical resource potentially used for HARQ-ACK transmission refers to the reserved resource reserved for HARQ-ACK transmission under certain circumstances (for example, the number of HARQ-ACK bits does not exceed 2 bits), and the terminal device can actually occupy the reserved resource
  • it is also possible to transmit HARQ-ACK without occupying the reserved resource for example, map the UL-SCH on the reserved resource).
  • Q′ CSI-2 is the number of physical resources occupied by UCI
  • O CSI-2 is the number of bits of CSI part 2 (that is, the payload size of CSI part 2)
  • L CSI-2 is the number of CRC bits of CSI part 2
  • Q'ACK is the number of physical resources used for transmission or potentially used for transmission of HARQ-ACK
  • Q'CSI-1 is the number of physical resources occupied by CSI part 1.
  • the terminal device can calculate the number of physical resources occupied by UCI according to at least one of formulas (1), (2) or (3), and then, according to the pre-coding information of UCI (such as UCI information sequence a 0 , a 1 , a 2 , a 3 ,..., a A-1 ) and the number of physical resources occupied by the UCI (that is, the number of physical resources carrying the UCI), and encode the pre-encoding information of the UCI.
  • the pre-coding information of UCI such as UCI information sequence a 0 , a 1 , a 2 , a 3 ,..., a A-1
  • the corresponding UCI encoding information when the amount of physical resources occupied by UCI is large, the corresponding UCI encoding information has a lower code rate and higher UCI reliability; the amount of physical resources occupied by UCI In the smaller case, the corresponding UCI coded information has a higher code rate and lower UCI reliability.
  • the terminal device can calculate the number of physical resources occupied by UCI according to the number of physical resources used to carry UCI on the current PUSCH and the TBS corresponding to the UL-SCH data packet on the current PUSCH. For multiple repeated transmissions of the PUSCH, when the number of physical resources used for data transmission corresponding to the PUSCH for each repeated transmission is the same, the existing method for calculating the TBS of UL-SCH data packets can be used, that is, based on K The number of physical resources included in the first PUSCH in the PUSCH is calculated by calculating TBS, and the number of physical resources occupied by a suitable UCI can be obtained.
  • one of the PUSCHs that are repeatedly transmitted multiple times will be overloaded (overbook), that is, the calculated TBS of the data packet actually transmitted on the PUSCH is greater than the PUSCH suitable for transmission
  • the TBS (for example, the TBS supported by the channel conditions) affects the determination of the amount of physical resources occupied by UCI on the PUSCH.
  • K PUSCHs include one or more larger PUSCHs and one or more smaller PUSCHs.
  • the larger PUSCH contains more physical resources for data transmission than the smaller PUSCH contains for data transmission The number of physical resources.
  • Scenario 1-1 K repeated transmissions will try to use the same length PUSCH, which is also called normal length PUSCH or nominal PUSCH (nominal PUSCH).
  • PUSCH normal length PUSCH
  • nominal PUSCH nominal PUSCH
  • the length of the PUSCH forms a gap that is smaller than the length of the normal PUSCH in the time domain.
  • the slot can be used to transmit a short PUSCH whose time domain length is smaller than other normal length PUSCHs.
  • FIG. 5a is a schematic diagram of K PUSCHs disclosed in an embodiment of the present invention.
  • K 6
  • the start symbols of these 6 PUSCHs are the symbol #1 of time slot #1
  • the time domain length of each nominal PUSCH notified by the network equipment is 4 symbols
  • a 2-symbol gap will be left at the boundary of slot #1.
  • the original 4th nominal PUSCH resource can be divided into 2 short PUSCHs crossing the slot boundary, that is, the 4th PUSCH and the 5th PUSCH, each occupying 2 symbols.
  • the number of physical resources used for data transmission included in the fourth PUSCH and the fifth PUSCH is less than the number of physical resources used for data transmission included in other normal PUSCHs.
  • the terminal device can determine two or more segments of PUSCH with unequal length according to the time slot boundary or the symbol format, and each segment of the PUSCH carries one transmission of a data packet.
  • the symbol format can be uplink symbols, downlink symbols or flexible symbols notified by the network device.
  • the network device can notify a long period of total time domain resources, and when the total time domain resources cross the boundary of K-1 time slots, a PUSCH with K repeated transmissions is formed, and the boundary of any two adjacent PUSCHs is time Slot boundary; when the total time domain resources span K segments of the uplink area, a PUSCH with K repeated transmissions is formed, and each PUSCH occupies a segment of the uplink area.
  • the uplink area refers to one or more continuous and notified by network equipment It is a time domain resource composed of time domain symbols of uplink symbols or non-downlink symbols.
  • FIG. 5b is a schematic diagram of another K PUSCH disclosed in an embodiment of the present invention. As shown in Figure 5b, the total length of the time domain resources notified by the network device is 14 symbols, and the starting symbol is symbol #5 of slot #1.
  • the length of the PUSCH before the time slot boundary is 10 symbols
  • the length of the PUSCH after the time slot boundary is 4 symbols
  • the following PUSCH the smaller The number of physical resources used for data transmission included in the PUSCH is smaller than the number of physical resources used for data transmission included in the previous PUSCH (larger PUSCH).
  • the network device notifies the time domain resources occupied by each of the K PUSCHs, where the K PUSCHs include at least two PUSCHs of unequal length. For example, due to factors such as the start time, end time, and length of the uplink area of the PUSCH, some of the K PUSCHs start at a later time, or end at an earlier time, or the uplink area includes the time. If the domain length is shorter, the time domain length of the PUSCH notified by the network device is shorter (smaller PUSCH); some PUSCH start time is earlier, or end time is later, or the time domain included in the uplink area If the length is longer, the time domain length of the PUSCH notified by the network device is longer (larger PUSCH). The larger PUSCH contains more physical resources used for data transmission than the smaller PUSCH contains physical resources used for data transmission.
  • the terminal device calculates the TBS based on the larger PUSCH
  • the data packet corresponding to the TBS is carried on the smaller PUSCH, which will result in the smaller PUSCH corresponding to the
  • the code rate is too large (greater than the corresponding code rate that the data packet is carried on the larger PUSCH), that is, the calculated TBS is larger than the TBS suitable for the smaller PUSCH, that is, the calculated TBS is larger than the smaller one.
  • the TBS of the PUSCH resource at this time, the smaller PUSCH is called the overloaded PUSCH, such as the fourth PUSCH and the fifth PUSCH in Fig. 5a, and the second PUSCH in Fig. 5b.
  • the PUSCH for K repeated transmissions may be based on multiple PUSCHs in K PUSCHs (for example, M, M is greater than 1 and less than or equal to K) including Calculate the TBS of the data packet with the total physical resource quantity of, and carry the data packet corresponding to the TBS to each of the K PUSCHs to achieve repeated transmission.
  • the TBS calculated based on the total number of physical resources included in the K PUSCHs is K times the TBS calculated based on the number of physical resources included in one PUSCH. Please refer to FIG. 5c.
  • FIG. 5c FIG.
  • 5c is a schematic diagram of another K PUSCH disclosed in an embodiment of the present invention.
  • K 4
  • the terminal device can calculate the TBS of the data packet based on the total number of physical resources included in the 4 PUSCHs, and repeatedly carry the data packet corresponding to the TBS to each of the 4 PUSCHs PUSCH is transmitted.
  • the calculated TBS may be so large that the code rate corresponding to the data packet mapped to a single PUSCH is too high.
  • the number of encoded information that can be carried by the physical resource resources included in a single PUSCH is 1000 bits
  • the TBS calculated based on a single PUSCH is 200 bits
  • the corresponding code rate is 0.2
  • the TBS calculated based on 4 PUSCHs is 800 bits
  • the corresponding code rate is 0.8.
  • the calculated TBS is larger than the TBS suitable for a single PUSCH, that is, the calculated TBS is larger than the TBS that adapts to the number of physical resources included in the single PUSCH.
  • the single PUSCH is called the overloaded PUSCH.
  • the UL-SCH used to calculate the number of physical resources occupied by UCI corresponds to And the amount of physical resources of this overloaded PUSCH Mismatch:
  • the TBS corresponding to the UL-SCH is too large, which will cause the calculated number of physical resources used to transmit UCI to be too small, resulting in a high UCI coding rate and reduced transmission reliability.
  • the UL-SCH or UCI mapped on this overloaded PUSCH will be due to the high bit rate (for example, exceeding the maximum bit rate supported by the 5G NR system, such as 772/1024, 948/1024, 1, etc. ) And lose system bits.
  • FIG. 5d is a schematic diagram of another K PUSCH disclosed in an embodiment of the present invention.
  • K 2
  • the two PUSCHs include different numbers of physical resources.
  • the number of physical resources for the long PUSCH is twice that of the short PUSCH, and the two PUSCHs are repeatedly transmitted
  • the TBS of the data packet is calculated according to the number of physical resources of the long PUSCH.
  • the number of physical resources occupied by the UCI is N REs, and the coding rate (CR) is 0.4.
  • the number of physical resources occupied by the UCI is N/2 REs, and the CR is 0.8. Therefore, the performance of UCI carried on the short PUSCH will suffer.
  • the performance impairment caused by UL-SCH transmission on this overloaded PUSCH can be compensated by repeated transmission of data packets on other PUSCHs among the K PUSCHs.
  • other PUSCHs in the K PUSCHs can use different redundancy versions (RVs), even if system bits are lost on the overloaded PUSCH, the missing system bits can be reissued through different RV versions on other PUSCHs. .
  • RVs redundancy versions
  • UCI when UCI is carried on the overloaded PUSCH, UCI may only be transmitted once on the overloaded PUSCH, or even though UCI can be repeatedly transmitted multiple times, the existing 5G NR system does not support UCI in multiple repeated transmissions. Many different RV versions are used in. Therefore, the reliability loss of UCI caused by PUSCH overload is difficult to compensate. Therefore, in the case of PUSCH overload, how to improve the reliability of UCI transmission has become a technical problem to be solved urgently.
  • Uplink data channel (such as any one of the K uplink data channels, the first uplink data channel, any one of the uplink data channel sets, the second uplink data channel, the third uplink data channel, the fourth Uplink data channel, first equivalent uplink data channel, second equivalent uplink data channel, etc.): an uplink channel used to carry uplink data information.
  • the uplink data channel can also be used to carry UCI (such as the first UCI, the second UCI, etc.).
  • the uplink data channel may be PUSCH.
  • Uplink control channel an uplink channel used to carry uplink control information.
  • the uplink control channel may be PUCCH.
  • TBS of the first data packet: #T1 that is, the first TBS, which corresponds to the uplink data channel set, or is determined according to the uplink data channel set.
  • Equivalent TBS #T2, corresponding to the first uplink data channel, or determined according to the first uplink data channel.
  • the total number of physical resources included in the first uplink data channel #Z1, including all REs of the first uplink data channel.
  • #Z1 The total number of physical resources included in the first uplink data channel: #Z1, including all REs of the first uplink data channel.
  • E.g Represents the number of PRBs included in the first uplink data channel, Indicates the number of subcarriers included in a PRB in the frequency domain Indicates the number of time domain symbols included in the first uplink data channel.
  • the total number of physical resources included in the uplink data channel set #Z2, including all REs of all uplink data channels in the uplink data channel set.
  • E.g, ⁇ is the uplink data channel set
  • n PRB (j) represents the number of PRBs included in the jth uplink data channel in the uplink data channel set, Indicates the number of time domain symbols included in the jth uplink data channel in the uplink data channel set.
  • #P1 is the number of physical resources used to determine the first TBS#T1 in the uplink data channel set. #P1 may be smaller than #Z2 or equal to #Z2.
  • #P2 is the number of physical resources used to determine the equivalent TBS#T2 in the first uplink data channel. #P2 may be less than #Z1 or equal to #Z1.
  • the physical resource actually used to send the first UCI #q, that is, the physical resource actually occupied by the first UCI.
  • #Q The actual number of physical resources used to send the first UCI: #Q, that is, the number of physical resources occupied by the first UCI, corresponding to #q.
  • the number of physical resources used to calculate the number of physical resources occupied by the first UCI in the first uplink data channel #Q The number of physical resources: #M1, also known as the number of physical resources that can be used to carry UCI in the first uplink data channel, #M1 It can be less than #Z1 or equal to #Z1.
  • #M2 is the number of physical resources used to calculate the number of equivalent physical resources in the uplink data channel set, which is also referred to as the number of physical resources that can be used to carry UCI in the uplink data channel set. #M2 can be smaller than #Z2 or equal to #Z2.
  • the second uplink data channel is used to calculate the number of physical resources occupied by the first UCI #Q of physical resources: #M3, also known as the number of physical resources that can be used to carry UCI in the second uplink data channel.
  • Data packet refers to the payload (payload) before modulation and encoding, which can be called transport block (TB), medium access control protocol data unit (MAC PDU) , UL-SCH or UL-SCH load.
  • TB transport block
  • MAC PDU medium access control protocol data unit
  • UL-SCH UL-SCH load
  • a data packet may include one or more code blocks (CB).
  • K is a positive integer.
  • K is 1.
  • K is an integer greater than or equal to 2.
  • each of the K uplink data channels is used to perform K data transmissions on the same data packet (for example, the first data packet), that is, the K uplink data channels are used by the terminal device to perform K data transmission on the data packet. Repeated transmission times, that is, each uplink data channel in the K uplink data channels is used to carry one transmission of the data packet.
  • the loads carried on the different uplink data channels in the K uplink data channels are the same, that is, the data transmitted on the different uplink data channels in the K uplink data channels are all data after the same data packet (the load) is encoded , That is, the pre-coding information corresponding to the information carried by different uplink data channels in the K uplink data channels is the same (for example, they are all the first data packet).
  • the terminal device encodes a data packet to generate a mother code, and the information carried by different uplink data channels in the K uplink data channels may include all or part of the information in the mother code.
  • the network device can notify the terminal device to use the same or different data packets when sending data packets on different uplink data channels among the K uplink data channels.
  • Redundant version number, or use the same or different DMRS, or use the same or different scrambling code for scrambling that is, although the network device is configured or instructed to send data on different uplink data channels among the K uplink data channels
  • the packets are scrambled with different redundancy version numbers, different DMRS sequences, or different scrambling codes, but the data packets carried on different uplink data channels among the K uplink data channels all correspond to the same load.
  • repetition transmission of data packets may also be referred to as aggregation of data packets or time slot aggregation.
  • the K uplink data channels do not overlap each other in the time domain.
  • K uplink data channels may be continuous or discontinuous in the time domain.
  • K uplink data channels continuous in the time domain means that there is no gap between any two adjacent uplink data channels in the K uplink data channels
  • K uplink data channels discontinuous in the time domain means that there are K uplink data channels There are at least two adjacent uplink data channels that are discontinuous in the time domain (that is, there are gaps).
  • K uplink data channels are located on the same carrier or the same bandwidth part (BWP).
  • the time domain lengths of the K uplink data channels are all equal.
  • the K uplink data channels include at least two uplink data channels with different time domain lengths.
  • the overlap of the time domain resource A (such as the first time domain resource) and the time domain resource B (such as the first uplink data channel) in the time domain may be a complete overlap or a partial overlap.
  • Complete overlap means that the time domain resource A completely includes the time domain resource B, or the time domain resource B completely includes the time domain resource A.
  • Partial overlap means that time domain resource A includes part of time domain resources in time domain resource B but does not include another part of time domain resources, or time domain resource B includes part of time domain resources in time domain resource A but does not include another part of time domain resources. Domain resources.
  • the overlapping of the first time domain resource with the first uplink data channel in the time domain includes: the first time domain resource overlaps with the first uplink data channel of the K uplink data channels in the time domain, and overlaps with Other uplink data channels in the K uplink data channels do not overlap.
  • the overlapping of the first time domain resource with the first uplink data channel in the time domain includes: the first time domain resource overlaps with the first uplink data channel of the K uplink data channels in the time domain. In addition, it also overlaps with at least one other uplink data channel among the K uplink data channels except the first uplink data channel in the time domain.
  • the first time domain resource overlaps multiple uplink data channels in the K uplink data channels simultaneously in the time domain
  • the first uplink data channel may be the same time as the first time domain resource among the K uplink data channels.
  • the first uplink data channel (that is, the earliest uplink data channel) among the multiple uplink data channels that overlap in the domain.
  • the terminal device can determine the number of physical resources #Q corresponding to the physical resource on the first uplink data channel according to the TBS of the first data packet (ie, the first TBS), that is, the terminal device can determine the first data packet according to the effective information size of the first data packet.
  • the effective information size of the first data packet corresponds to the TBS of the first data packet, that is, the effective information size of the first data packet is determined by the TBS of the first data packet.
  • the effective information size of the first data packet refers to the information size or the number of bits before the first data packet is encoded.
  • the effective information size of the first data packet may be the sum of the code block sizes (CBS) of all CBs included in the first data packet, that is, in formula (1), formula (2) and formula (3)
  • CBS code block sizes
  • the effective information size of the first data packet may also be the payload size of the first data packet.
  • the effective information size of the first data packet may also be the TBS of the first data packet.
  • the effective information of the first data packet may be referred to as the payload of the first data packet.
  • the load of the UL-SCH (for example, the UL-SCH corresponding to the first data packet) or the load of the UCI (for example, the first UCI or the second UCI) is information before modulation and coding.
  • the payload can be information bits (information bits), system information bits (systematic bits), or system information bits and CRC bits.
  • the payload of the UL-SCH may be information before code block segmentation (TB information), or information after code block segmentation (CB information).
  • the system information bits of UCI can be called UCI bit sequence, and the system information bits of UL-SCH can be called transport block bits.
  • the load sequence can be expressed as a 0 , a 1 , a 2 , a 3 ,..., a A-1 , b 0 , b 1 , b 2 , b 3 ,..., b B-1 , Or c 0 ,c 1 ,c 2 ,c 3 ,...,c K-1 .
  • the number of bits in the payload is the payload size.
  • the first TBS may correspond to the sum of the CBSs of all CBs included in the first data packet. Or that the first data packet corresponds to According to the first TBS. Therefore, the number of physical resources occupied by the first UCI may be obtained according to the first TBS.
  • the number of physical resources #Q corresponding to the physical resources on the first uplink data channel is determined according to the equivalent TBS, that is, the number of physical resources #Q on the first uplink data channel is determined according to the effective information size corresponding to the equivalent TBS.
  • the effective information size corresponding to the equivalent TBS corresponds to the equivalent TBS, that is, the effective information size corresponding to the equivalent TBS is determined by the equivalent TBS.
  • Effective information size corresponding to equivalent TBS Refers to the payload size of the virtual data packet corresponding to the equivalent TBS or the information size or the number of bits before encoding the virtual data packet.
  • the effective information size corresponding to the equivalent TBS may also be the equivalent TBS.
  • Physical resources are also called time-frequency resources.
  • the number of physical resources may be referred to as the number of REs, or the number of coded modulation symbols (the number of coded modulation symbols).
  • Uplink data channel (such as any one of the K uplink data channels, the first uplink data channel, any one of the uplink data channel sets, the second uplink data channel, the third uplink data channel, the fourth
  • the physical resources included in the uplink data channel, the first equivalent uplink data channel, the second equivalent uplink data channel, etc.) are the time-frequency resources mapped to the uplink information (such as UCI or UL-SCH) on the uplink data channel.
  • the number of physical resources is The number of corresponding modulation symbols after modulating the uplink information.
  • the number of physical resources included in the uplink data channel or uplink data channel set used to determine the TBS may include the following situations:
  • Case 1-1 The TBS of the first data packet is determined according to the number of physical resources included in the uplink data channel set.
  • the set of uplink data channels is different from the first uplink data channel.
  • the set of uplink data channels is an uplink data channel (referred to as a reference uplink data channel). That is, the TBS of the first data packet is determined according to the number of physical resources included in the reference uplink data channel in the K uplink data channels, and the reference uplink data channel is different from the first uplink data channel.
  • #P1 can also be referred to as the number of physical resources used to determine the TBS of the data packet included in the uplink data channel set.
  • #P1 is the number of physical resources used to determine the TBS of the data packet on the reference uplink data channel; in the case where the uplink data channel set includes J uplink data channels, #P1 P1 is the sum of the number of physical resources used to determine the TBS of the data packet on all the uplink data channels in the uplink data channel set.
  • J is an integer greater than 1 and less than or equal to K.
  • Case 1-2 The equivalent TBS is determined according to the number of physical resources included in the first uplink data channel, or is determined according to the number of physical resources included in the first equivalent uplink data channel.
  • the physical resources included in the uplink data channel are called the uplink data channel used to determine the data packet Physical resources of TBS.
  • the physical resources included in the uplink data channel for determining the TBS of the data packet may be all physical resources included in the uplink data channel, or may be part of the physical resources included in the uplink data channel.
  • the part of the physical resources is the number of physical resources used to carry modulation symbols on the uplink data channel.
  • the modulation symbol may be a modulation symbol used to carry data information (such as UL-SCH), or may be a modulation symbol used to carry data information and control information.
  • the number of physical resources of the first TBS#T1 is #P1, which matches the set of uplink data channels.
  • #P1 ⁇ #Z2 it indicates that the physical resources used to determine the first TBS#T1 in the uplink data channel set are part of the physical resources in the uplink data channel set.
  • the number of physical resources of the equivalent TBS#T2 is #P2, which matches the first uplink data channel.
  • #P2 can also be referred to as the number of physical resources used to determine the TBS of the data packet on the first uplink data channel.
  • Overhead REs may include REs used to carry DMRS, and may also include other overheads, such as overhead REs notified by high-layer signaling xOverhead.
  • Overhead REs may also include REs used to carry SRS. That is, it is used to determine that part of the physical resources included in the uplink data channel of the TBS is the physical resource after all the physical resources in the uplink data channel are removed from the overhead RE.
  • the number of physical resources N RE used to determine the TBS of the data packet included in the uplink data channel can be min(156, N'RE ) ⁇ n PRB , or N'RE ⁇ n PRB , or min(156, N'RE ) ⁇ n PRB and N'RE ⁇ n PRB represent part of the physical resources of the uplink data channel, Represents all physical resources of the uplink data channel.
  • N'RE represents the number of effective REs included in a PRB in the uplink data channel
  • n PRB represents the number of PRBs included in the uplink data channel.
  • N'RE can be among them, Indicates the number of subcarriers of a PRB in the frequency domain, which can be 12 specifically; Indicates the number of symbols included in the uplink data channel, Represents the number of REs occupied by DMRS in a PRB of the uplink data channel (also can be called DMRS overhead), It indicates the number of REs occupied by other overheads in a PRB of the uplink data channel, which may be the number of REs occupied by the overhead of each PRB configured by the xOverhead parameter in the high-level parameter PUSCH-ServingCellConfig.
  • N RE can also be referred to as the number of physical resources used to determine the TBS of the data packet on the uplink data channel.
  • the above N RE can be replaced with the value used to determine the TBS of the data packet on all the uplink data channels in the uplink data channel set.
  • the sum of the number of physical resources, or the calculation based on the sum of the number of physical resources used to determine the TBS of the data packet on all uplink data channels in the uplink data channel set (for example, the sum of the number of physical resources is After averaging the number of uplink data channels), replace the above N RE .
  • Case 2-1 Used to determine the number of physical resources occupied by the first UCI on the first uplink data channel #Q ⁇ physics resource number #M1, also known as physical resources that can be used to carry UCI on the first uplink data channel Quantity (the number of resource elements that can be used for transmission of UCI), namely here Is the number of time domain symbols in the first uplink data channel, l is the sequence number of the time domain symbols in the first uplink data channel, It is the number of physical resources that can be used to carry UCI on the first time domain symbol in the first uplink data channel.
  • Quantity the number of resource elements that can be used for transmission of UCI
  • l is the sequence number of the time domain symbols in the first uplink data channel
  • It is the number of physical resources that can be used to carry UCI on the first time domain symbol in the first uplink data channel.
  • Case 2-2 Used to determine the number of physical resources occupied by the first UCI in the uplink data channel set #Q ⁇ physics resource number #M2, also referred to as the number of physical resources that can be used to carry UCI in the uplink data channel set, That is, the sum of the number of physical resources that can be used to carry UCI on each uplink data channel in the uplink data channel set.
  • #M2 can be ⁇ is the uplink data channel set, j is the jth uplink data channel in the uplink data channel set, Is the number of time domain symbols in the jth uplink data channel, l is the sequence number of the time domain symbols in the jth uplink data channel, It is the number of physical resources that can be used to carry UCI on the l th time domain symbol in the j th uplink data channel.
  • #M2 can also be written as among them, Is the number of time domain symbols in the uplink data channel corresponding to the uplink data channel set, It is the number of physical resources that can be used to carry UCI on the first symbol in the uplink data channel corresponding to the uplink data channel set. #M1 and #M2 can be equal or different.
  • Case 2-3 Used to determine the number of physical resources occupied by the first UCI on the second uplink data channel #Q ⁇ physics resource number #M3, also known as physical resources that can be used to carry UCI in the second uplink data channel Quantity.
  • Case 2-4 The number of physical resources used to determine the number of physical resources occupied by the second UCI on the third uplink data channel #Q", also known as the number of physical resources that can be used to carry UCI in the third uplink data channel .
  • the number of physical resources (such as #M1 or #M2 or #M3, etc.) that can be used to carry UCI on the uplink data channel can be equal to the uplink data
  • the number of physical resources #Q that actually carry UCI on the channel may not be equal to the number of physical resources #Q that actually carry UCI on the uplink data channel.
  • #M1 or #M2 or #M3 may be greater than or equal to #Q.
  • the terminal equipment determines the number of physical resources occupied by the UCI (such as the first UCI, the second UCI, etc.) according to the number of physical resources included in any one of the uplink data channels or the set of uplink data channels, which can be said to be based on any one of the uplink data channels. Or the physical resources included in the uplink data channel set determine the number of physical resources occupied by UCI.
  • the physical resource may include at least one of a time domain resource location, a frequency domain resource location, a code domain resource, or the number of physical resources corresponding to the physical resource.
  • the physical resources included in the uplink data channel are also referred to as physical resources that can be used to carry UCI on the uplink data channel.
  • the physical resources included in any one uplink data channel that can be used to carry UCI may be all physical resources included in the uplink data channel, or may be part of the physical resources included in the uplink data channel.
  • the part of the physical resources may be the number of physical resources used to carry modulation symbols on the uplink data channel.
  • the modulation symbol may include a modulation symbol for carrying data information and control information.
  • the number of physical resources that can be used to carry UCI on the first uplink data channel is #M1, and the total number of physical resources of the first uplink data channel is #Z1.
  • #M1 ⁇ #Z1 it indicates that the first uplink data channel
  • the physical resources that can be used to carry UCI on the uplink data channel are part of the physical resources included in the first uplink data channel.
  • the total number of physical resources that can be used to carry UCI on the uplink data channel set is #M2, and the total physical resource number of the uplink data channel set is #Z2.
  • the total physical resources that can be used to carry UCI above are all physical resources included in the uplink data channel set.
  • #M2 ⁇ #Z2 it indicates that the total physical resources that can be used to carry UCI on the uplink data channel set are uplink data channels. Part of the physical resources included in the collection.
  • the number of physical resources #M1 that can be used to carry UCI on the first uplink data channel may be equal to the number of physical resources #P2 used to determine the TBS of the data packet on the first uplink data channel, or may not be equal to #P2.
  • the number of physical resources #M2 that can be used to carry UCI on the uplink data channel set may be equal to the number of physical resources #P1 used to determine the TBS of the data packet on the uplink data channel set, or may not be equal to #P1.
  • all or part of the physical resources included in the uplink data channel include from the first time domain symbol (inclusive) that does not carry DMRS after the first DMRS symbol on the uplink data channel to the The physical resources between the last time domain symbol (including) on the uplink data channel, that is, all or part of the physical resources do not include the physical resources included in the time domain symbols before the first DMRS symbol on the uplink data channel, that is, The all or part of the physical resources include physical resources from the first time domain symbol (inclusive) on the uplink data channel to the last time domain symbol (inclusive) on the uplink data channel.
  • part of the physical resources included in the uplink data channel can be in the following two situations:
  • part of the physical resources included in the uplink data channel does not include the physical resources occupied by the reference signal on the uplink data channel.
  • the reference signal may be at least one of DMRS, SRS, or PTRS.
  • this part of the physical resources does not include the physical resources included in the time domain symbols occupied by the DMRS; in the case where the reference signal on the uplink data channel includes PTRS, This part of the physical resources does not include the physical resources occupied by the PTRS.
  • part of the physical resources included in the uplink data channel does not include physical resources used for transmission or potentially used for transmission of HARQ-ACK on the uplink data channel.
  • the UCI carried by the uplink data channel is CSI, or CSI and SR
  • this part of the physical resources does not include the uplink data channel used for transmission or potential use
  • the number of physical resources that can be used to carry UCI on the uplink data channel is or or or For the time domain symbol 1 carrying DMRS on the uplink data channel, or or Is 0.
  • FIG. 6 is a schematic flowchart of the communication method. The steps of the communication method are described in detail below. It can be understood that the functions performed by the network device in this application can also be performed by the module (for example, chip) in the network device, and the function performed by the terminal device can also be performed by the module (for example, chip) in the terminal device. .
  • a network device sends first control information to a terminal device.
  • the network device may send first control information to the terminal device.
  • the first control information may include information about the first physical resource used to transmit the first data packet.
  • the first physical resource corresponds to K uplink data channels.
  • Each uplink data channel is used to transmit the first data packet once.
  • the K uplink data channels may be K PUSCHs.
  • the terminal device receives the first control information from the network device.
  • the first control information is used to notify the information of the first physical resource for transmitting the first data packet, which may be the first control information to dynamically schedule the terminal device to perform the first data packet on the K uplink data channels. Repeat transmission K times.
  • the network device may send the first control information through the dynamic uplink authorization, or the first control information includes the dynamic uplink authorization.
  • Dynamic uplink authorization can be a specific radio network temporary identifier (RNTI) scrambled uplink authorization, such as cell radio network temporary identifier (C-RNTI) or modulation and coding mode cell radio network temporary Identification (modulation and coding scheme cell radio network temporary identifier, MCS-C-RNTI) scrambled uplink authorization.
  • RNTI radio network temporary identifier
  • C-RNTI cell radio network temporary identifier
  • MCS-C-RNTI modulation and coding scheme cell radio network temporary identifier
  • the first control information is used to notify the information of the first physical resource for transmitting the first data packet.
  • the first control information may be used to configure the terminal device to perform the first data on the K uplink data channels.
  • the packet is transmitted K times, that is, the first control information is used to configure the terminal device to transmit the first data packet K times in the GF mode on the K uplink data channels.
  • the network device may send the first control information through high-level signaling and/or semi-static uplink authorization, that is, the first control information may include high-level signaling and/or semi-static uplink authorization.
  • the high-level signaling may be radio resource control (Radio Resource Control, RRC) signaling
  • the semi-static uplink authorization may be an uplink authorization scrambled by CS-RNTI.
  • the first control information is used to notify the information of the first physical resource for transmitting the first data packet, which may be part of the data transmission in the K uplink data channels, and may be used by the network device to dynamically schedule the terminal device to send the first data packet.
  • the uplink data channel of one data packet, and the other part of the data transmission can configure the network device to configure the terminal device to send the uplink data channel of the first data packet in GF mode.
  • the first control information may include configuration information for configuring the terminal device to send the first data packet in the GF mode, and may also include scheduling information for scheduling the terminal device to send the first data packet.
  • scheduling dynamic scheduling or configuration
  • the K uplink data channels may be all uplink data channels or part of uplink data channels through which the network device schedules the terminal device to repeatedly transmit the first data packet through the first control information (for example, UL grant).
  • first control information for example, UL grant
  • the K uplink data channels may be all the uplink data channels or part of the uplink data channels through which the network device configures the terminal device to perform repeated data transmission of the first data packet through the first control information.
  • the K uplink data channels are configured or instructed by the network device through one piece of control information, that is, the first control information, instead of being configured or instructed by the network device through multiple pieces of control information.
  • the first control information is an uplink grant (such as a dynamic uplink grant, a semi-static uplink grant)
  • the uplink grant is an uplink grant.
  • the K uplink data channels are scheduled or configured by the same uplink authorization, instead of being separately scheduled or configured by multiple different uplink authorizations.
  • the first control information is high-level signaling
  • the K uplink data channels are configured for the same high-level signaling, instead of being configured for multiple different high-level signalings or the same high-level signaling is divided multiple times Configured.
  • step 601 can also be replaced with:
  • the network device may send first control information to the terminal device.
  • the first control information may include information about the first physical resource used to transmit the first data packet, and the first physical resource corresponds to K uplink data channels.
  • the K uplink data channels are used to transmit the first data packet.
  • the K uplink data channels may be jointly used to transmit the first data packet once, or may respectively transmit the first data packet K times.
  • the network device sends second control information to the terminal device.
  • the network device may send second control information to the terminal device.
  • the second control information may include information about the first time domain resource used to transmit the first UCI, the first time domain resource and the first uplink data in the K uplink data channels
  • the channels overlap in the time domain, that is, the first time domain resource overlaps with the time domain resource of the first uplink data channel among the K uplink data channels.
  • the first control information and the second control information may be the same control information or different control information.
  • the terminal device receives the second control information from the network device.
  • the first time domain resource overlaps the first uplink data channel in the K uplink data channels in the time domain, and it can also be expressed as: the first time domain resource corresponds to the first uplink data in the K uplink data channels channel.
  • the second control information may include information about the first time domain resource used to transmit the first UCI.
  • the first time domain resource overlaps with the first uplink data channel of the K uplink data channels in the time domain, or
  • the expression is: the second control information is used to notify the terminal device to send the first UCI on the first uplink data channel.
  • the second control information does not explicitly indicate the first time domain resource, but informs the first uplink data channel among the K uplink data channels to send the first UCI.
  • the second control information is equal to the first control information
  • the first control information is an uplink grant
  • the field in the uplink grant triggers the terminal device to send the first UCI on the uplink data channel scheduled by the uplink grant
  • the terminal device receives the After the uplink authorization, it can be determined that the network device is notified to send the first UCI on the first uplink data channel.
  • the second control information can notify the terminal device to send the first UCI on the first time domain resource (ie, the first time unit), that is, the second control information is used to configure or trigger the terminal device to send the first UCI on the first time domain resource .
  • the second control information is also used to notify information of the first frequency domain resource of the first UCI, and the first frequency domain resource corresponding to the first UCI notified by the second control information may be the same as the first uplink data channel or K uplink data channels.
  • the data channel is located on the same carrier, or it can be located on a different carrier with the K uplink data channels.
  • the first UCI may be located in the same BWP with the first uplink data channel or the K uplink data channels, or may be located in a different BWP with the K uplink data channels.
  • the second control information may include high-level signaling for configuring the first UCI, and may also include semi-static downlink control information (downlink control information, DCI) that configures or triggers the terminal device to send the first UCI, for example, CS-RNTI scrambled downlink grant (DL grant) or CS-RNTI scrambled uplink grant.
  • DCI downlink control information
  • the first UCI includes periodic CSI or SR
  • the periodic CSI or SR is information sent by the high-level signaling configuration terminal device, and the time unit (for example, time slot) used to send the CSI or SR is periodic.
  • the network device can also configure the downlink data information (ie SPS PDSCH) based on semi-persistant scheduling (SPS) to the terminal device through the second control information.
  • SPS PDSCH is periodic.
  • the terminal device targets the The HARQ-ACK fed back by the periodic SPS PDSCH is also periodic. Therefore, when the first UCI includes the HARQ-ACK, it can be considered that the HARQ-ACK is sent by the second control information configuration terminal device.
  • the second control information may include control signaling that triggers or instructs the terminal device to send the first UCI.
  • the second control information may include physical layer DCI, for example, uplink grant or downlink grant. More specifically, the uplink grant or downlink grant may be scrambled by other RNTIs except CS-RNTI, for example, C-RNTI or MCS-C-RNTI scrambled.
  • the first UCI includes aperiodic CSI
  • the aperiodic CSI is sent by the terminal device triggered by a downlink grant or an uplink grant.
  • the network device can also schedule the PDSCH to the terminal device through the second control information, and the terminal device feeds back the corresponding HARQ-ACK after detecting the second control information. Therefore, in the case that the first UCI includes HARQ-ACK, it can be regarded as HARQ-ACK.
  • the ACK is sent by the terminal device triggered by the second control information.
  • UCI (such as the first UCI or the second UCI) includes the uplink control information sent by the terminal device to the network device, which can be HARQ-ACK, HARQ-ACK and SR, SR, or CSI , Can also be CSI and SR, and can also be HARQ-ACK, CSI and SR.
  • the above CSI can be CSI part 1, or CSI part 2, or CSI part 1 and CSI part 2.
  • the CSI part 1 here can be all CSI part 1, or part of CSI part 1.
  • CSI part 2 here can be all CSI part 2, or part of CSI part 2.
  • the condition that the first uplink data channel is overloaded may include at least one of the following conditions.
  • the first uplink data channel may be different from the set of uplink data channels used to determine the first TBS#T1 (or not equal). It can also be said that the first uplink data channel is different from the set of uplink data channels used to determine the first TBS#T1, or the number of physical resources #Z1 or #M1 included in the first uplink data channel is different from that used to determine the first TBS# The number of physical resources #P1 of T1 does not match (or is not equal), or the number of physical resources #P2 included in the first uplink data channel is not equal to the number of physical resources #P1 used to determine the first TBS#T1.
  • the set of uplink data channels may be one of the K uplink data channels (that is, the reference uplink data channel), or may be J uplink data channels among the K uplink data channels, where J is greater than 1. Integer.
  • the reference uplink data channel used to determine the first TBS is different from the first uplink data channel.
  • the set of uplink data channels is J uplink data channels among the K uplink data channels
  • the set of uplink data channels used to determine the first TBS is naturally not equal to the first uplink data channel.
  • the number of physical resources used to determine the first TBS #P1 is not equal to the number of physical resources used to determine the TBS of the data packet on the first uplink data channel (N RE of the first uplink data channel), for example, in # When P1 is less than #Z2, #P1 is not equal to #P2. Or, #P1 is not equal to the total physical resource #Z1 included in the first uplink data channel, for example, in the case that #P1 is equal to #Z2, #P1 is not equal to #Z1.
  • the number of physical resources #P1 used to determine the first TBS may be greater than the number of physical resources included in the first uplink data channel, that is, the number of physical resources included in the uplink data channel set is greater than the number of physical resources included in the first uplink data channel, It can also be said that the number of time domain symbols included in the uplink data channel set is greater than the number of time domain symbols included in the first uplink data channel.
  • the number of physical resources included in the first uplink data channel refers to the number of physical resources included in the first uplink data channel for determining TBS.
  • #P1 is the sum of the number of physical resources used to determine the TBS in each uplink data channel in the uplink data channel set; among them, when the uplink data channel set is a reference uplink data channel, #P1 is the reference uplink data channel Used to determine the number of physical resources of the TBS. For the description of the number of physical resources used to determine the TBS in any uplink data channel in the uplink data channel set, reference may be made to the above description.
  • the first TBS#1 is determined according to a reference uplink data channel or J uplink data channels in the uplink data channel set, refer to the physical resources of the uplink data channel or J uplink data channels used to determine the TBS of the data packet
  • the number (for example #P1) is greater than the number of physical resources (for example #P2) used to determine the TBS of the data packet in the first uplink data channel.
  • the method in step 603 can be used to determine the physical resources occupied by the first UCI.
  • the uplink data channel set is the first uplink data channel among the 6 uplink data channels, and the first uplink data channel is 6
  • the number of physical resources included in the fourth uplink data channel is less than the number of physical resources included in the first uplink data channel.
  • the uplink data channel set is the first uplink data channel among the 2 uplink data channels
  • the first uplink data channel is the second uplink data channel among the 2 uplink data channels
  • the second uplink data channel contains The number of physical resources is less than the number of physical resources contained in the first uplink data channel.
  • the total number of physical resources included in the multiple uplink data channels is greater than the number of physical resources included in the first uplink data channel, that is, the multiple uplink data channels
  • the total number of symbols included in the data channel is greater than the number of time domain symbols included in the first uplink data channel.
  • the multiple uplink data channels may include the first uplink data channel, or may not include the first uplink data channel.
  • the first uplink data channel is the first uplink data channel among the 4 uplink data channels, and the uplink data channel set is 4 uplink data channels.
  • the total number of physical resources it contains is greater than that of the first uplink data channel. The number of physical resources.
  • Condition 2 The number of time-domain symbols included in the first uplink data channel is less than (or not greater than) the first threshold.
  • the first uplink data channel includes a small number of time domain symbols, it may cause the first TBS to be too large compared to the first uplink data channel.
  • the first threshold may be predefined, may also be configured by the network device, or may be instructed by the network device.
  • Condition 2 may also be that: the number of time domain symbols included in the first uplink data channel is less than (or not greater than) the number of time domain symbols included in the target uplink data channel in the K uplink data channels.
  • the target uplink data channel is not equal to the first uplink data channel. In addition to comparing the number of time domain symbols included in the first uplink data channel with the first threshold, it can also be compared with the number of time domain symbols included in a target uplink data channel to determine the number of time domain symbols included in the first uplink data channel. Is it less.
  • the target uplink data channel may be the uplink data channel with the largest number of time domain symbols among the K uplink data channels.
  • the first uplink data channel may be the uplink data channel with the least number of time domain symbols among the K uplink data channels.
  • Condition 3 The number of physical resources included in the first uplink data channel is less than (or not greater than) the second threshold.
  • the first TBS may be too large compared to the first uplink data channel.
  • the second threshold may be predefined, configured by the network device, or indicated by the network device.
  • condition 3 may also be: the number of physical resources included in the first uplink data channel may be less than the number of physical resources included in the target uplink data channel in the K uplink data channels.
  • the target uplink data channel is not equal to the first uplink data channel.
  • the target uplink data channel may be the uplink data channel with the largest number of time domain symbols among the K uplink data channels.
  • the first uplink data channel may be the uplink data channel with the least number of time domain symbols among the K uplink data channels.
  • Condition 4 The code rate of carrying the first UCI on the first uplink data channel is greater than (or not less than) the third threshold.
  • the TBS is too large and the number of physical resources of the first uplink data channel is too small, it may happen that the system information bits of the UCI are lost when the first UCI is carried on the first uplink data channel. In this case, only part of the system information bits of the first UCI can be sent on the first uplink data channel. Even if this part of UCI can be successfully received by the network equipment, there is still another part of UCI information that has not been sent. Therefore, The network device cannot obtain the complete payload of the first UCI, which causes UCI transmission to fail.
  • the physical resource that actually sends the first UCI determined according to the first TBS is #q, and the code rate here refers to the code rate corresponding to the mapping of the first UCI to the physical resource #q.
  • this code rate may be a code rate corresponding to the load of the first UCI under the modulation order corresponding to the first uplink data channel and mapped to the physical resource after encoding.
  • the modulation order corresponding to the first uplink data channel may be referred to as the modulation order corresponding to the first data packet, which is the modulation order for the first uplink data channel or K uplink data channels notified by the network device.
  • the payload size of the first UCI is #A
  • the number of physical resources is #Q
  • the modulation order corresponding to the first uplink data channel is #B
  • the first UCI bears the corresponding code on the first uplink data channel
  • the rate is #A/(#Q*#B).
  • the payload size of the first UCI is 120 bits
  • the number of physical resources is 48 REs
  • the modulation mode is QPSK (modulation order is 2)
  • the third threshold is 1, the corresponding code rate of the first UCI carried on the first uplink data channel may be greater than (or not less than) the third threshold.
  • the third threshold may be predefined, configured by the network device, or indicated by the network device.
  • condition 4 may also be: the code rate corresponding to the first UCI being carried on the first uplink data channel is greater than (or not less than) the code corresponding to the target uplink data channel in the K uplink data channels. rate.
  • the target uplink data channel may be K uplink data channels, and the UCI of the same load size is carried to the uplink data channel with the smallest code rate corresponding to the uplink data channel.
  • the first uplink data channel may also be an uplink data channel with the largest corresponding code rate on the uplink data channel that carries UCI of the same load size among the K uplink data channels.
  • target uplink data channel may be predefined, or may be an uplink data channel configured by the network device, or may be an uplink data channel indicated by the network device.
  • the target uplink data channel may be one or more uplink data channels among the K uplink data channels.
  • condition that the first uplink data channel is overloaded can be removed, that is, when the first uplink data channel is not overloaded, the method 1 to method 3 in step 603 can also be used to determine the amount of the first UCI. Physical resources to improve the transmission reliability of the first UCI.
  • the first uplink data channel is not overloaded may specifically include at least one of the following conditions: the number of physical resources used to determine the TBS of the first data packet is less than (or not greater than) the physical resources included in the first uplink data channel Number; or, the set of uplink data channels is equal to the first uplink data channel; or, the number of time domain symbols included in the first uplink data channel is greater than (or not less than) the first threshold; or, the physical resources included in the first uplink data channel The number is greater than (or not less than) the second threshold; or, the code rate corresponding to the first UCI being carried on the first uplink data channel is less than (or not greater than) the third threshold.
  • the above situation does not necessarily affect the number of physical resources and transmission reliability of the first UCI, because #T1 (or #P1 used to calculate #T1) and #M1 (or #Z1) do not match, according to formula (1), ( 2) or (3), the #Q of the first UCI calculated using #T1 and #M1 is too large.
  • the method 1 to method 3 in step 603 can also be used to determine the physical resources occupied by the first UCI. Resources.
  • step 602 can be replaced with:
  • the network device sends second control information to the terminal device.
  • the second control information includes information about the first time domain resource used to transmit the first UCI, the first time domain resource and the first uplink among the K uplink data channels.
  • the data channels overlap in the time domain.
  • the TBS of the first data packet is determined according to the uplink data channel set. Furthermore, the set of uplink data channels may be the same as the first uplink data channel or different from the first uplink data channel.
  • the terminal device determines the physical resource occupied by the first UCI.
  • the terminal device After the terminal device receives the first control information and the second control information from the network device, it can determine the physical resource occupied by the first UCI.
  • the physical resource #q occupied by the first UCI can be determined by the following three methods.
  • Method 1 Modify the number #Q used to calculate the physical resources occupied by the first UCI.
  • the terminal device can use #T1, #M1 and the second equalization parameter to determine the number #Q of physical resources occupied by the first UCI on the first uplink data channel.
  • the first uplink data channel is the uplink data channel (PUSCH) in formula (1), (2) or (3)
  • the first data packet is the uplink data in formula (1), (2) or (3) UL-SCH on the channel
  • #T1 is the formula (1), (2) or (3) or Corresponding TBS
  • #M1 of the first uplink data channel or #Z1 of the first uplink data channel is the formula (1), (2) or (3)
  • the second equalization parameter is the formula (1), (2) or (3)
  • the first UCI is carried on the first uplink data channel, that is, the physical resource #q is located on the first uplink data channel.
  • Method 1 can specifically include the following methods 1-1, 1-2, 1-3, 1-4.
  • Method 1-1 Determine the number #Q of physical resources occupied by the first UCI according to the equivalent TBS#T2.
  • the number of physical resources occupied by the first UCI #Q can be determined according to the equivalent TBS#T2, that is, the number of physical resources occupied by the first UCI can be determined according to the effective information size corresponding to the equivalent TBS#T2# Q, the equivalent TBS#T2 is different from the first TBS#T1.
  • the terminal device may use the equivalent TBS#T2 to determine the number #Q of physical resources occupied by the first UCI, the equivalent TBS# T2 is different from the TBS of the first data packet, that is, the first TBS, so that the effect of adjusting #Q can be achieved and the problem of the reliability of the first UCI transmission being damaged.
  • the equivalent TBS#T2 may be smaller than the first TBS#T1.
  • the equivalent TBS#T2 may be notified by the network device, may be directly configured or instructed by the network device, or determined according to other information configured or instructed by the network device.
  • the network device can configure or indicate the information used to determine the uplink data channel of the equivalent TBS.
  • the network device configures or indicates the first equivalent uplink data channel used to calculate the equivalent TBS#T2, and the terminal device can be based on the first equivalent.
  • the effective uplink data channel determines the equivalent TBS, or the equivalent TBS is determined according to the number of physical resources included in the first equivalent uplink data channel.
  • the first equivalent uplink data channel may be one uplink data channel or multiple uplink data channels; when the first equivalent uplink data channel is multiple uplink data channels, the first equivalent uplink data channel includes The number of physical resources is the sum of the number of physical resources used to determine the TBS included in each uplink data channel in the first equivalent uplink data channel.
  • the first equivalent uplink data channel may be the uplink data channel among the K uplink data channels, or may not be the uplink data channel among the K uplink data channels, and part of it may be the uplink data channel among the K uplink data channels. A part is not the uplink data channel among the K uplink data channels.
  • the first equivalent uplink data channel may also be determined according to a preset rule.
  • the preset rules include: the first equivalent uplink data channel can be the kth uplink data channel among the K uplink data channels, or it can be the uplink with the largest number of physical resources or time domain symbols included in the K uplink data channels.
  • the data channel may also be an uplink data channel with the least number of physical resources or time domain symbols included in the K uplink data channels.
  • k is an integer greater than or equal to 1 and less than or equal to K.
  • the first equivalent uplink data channel is different from the set of uplink data channels. That is, the terminal device uses the first equivalent uplink data channel different from the set of uplink data channels to calculate the equivalent TBS, so that the equivalent TBS is not equal to the first TBS of the first data packet. Furthermore, the terminal device uses the number of physical resources occupied by the first UCI determined by the equivalent TBS different from the first TBS, thereby achieving the effect of adjusting #Q and ensuring the reliability of the first UCI transmission.
  • the equivalent TBS#T2 is determined based on the number of physical resources included in the first equivalent uplink data channel. Specifically, the equivalent TBS#T2 is determined based on the number of physical resources included in the first equivalent uplink data channel. The number of physical resources of the TBS is determined.
  • the number of physical resources included in the first equivalent uplink data channel is less than the number of physical resources included in the uplink data channel set.
  • the equivalent TBS#T2 is smaller than the TBS#T1 corresponding to the first data packet.
  • the number #Q of physical resources occupied by the first UCI can be determined according to the equivalent TBS#T2, and the equivalent TBS#T2 is the TBS determined according to the first uplink data channel, that is, the equivalent TBS#T2 is determined
  • the number of physical resources #P2 corresponds to the first uplink data channel.
  • the equivalent TBS#T2 is determined according to the number of physical resources #P2 included in the first uplink data channel, or equivalent TBS#T2 is determined according to the number of physical resources included in the first uplink data channel for determining TBS# P2 is determined.
  • the equivalent TBS matches #M1 used to determine the number of physical resources #Q occupied by the first UCI. Therefore, the #Q of the channel determined by using the equivalent TBS and the number of physical resources #M1 included in the first uplink data channel is moderate, avoiding that the #Q calculated based on the mismatched #T1 and #M1 is too large or too small problem.
  • TBS#T2 is determined based on the number of physical resources #P2 included in the first uplink data channel, and not based on the number of physical resources #P1 included in the uplink data channel set, or in other words, not based on the number of physical resources #P1 included in the uplink data channel set. Physical resources other than the physical resources included in the first uplink data channel among the physical resources included in the data channel set are determined.
  • #T2 may be equal to #T1 or not equal to #T1.
  • the terminal device uses the equivalent TBS#T2 and the number of physical resources #M1 included in the first uplink data channel to determine the number #Q of physical resources occupied by the first UCI.
  • the number of physical resources #M1 included in the first uplink data channel refers to the number of physical resources that can be used to carry UCI in the first uplink data channel.
  • the equivalent TBS#T2 here can be understood as the TBS size corresponding to a virtual data packet. This virtual data packet is used to calculate the equivalent TBS#T2, and is not used for the terminal device to generate the actual data packet and the actual data transmission.
  • the number of physical resources included in the first uplink data channel is less than the number of physical resources included in the uplink data channel set, for example, #P2 is less than #P1.
  • the equivalent TBS#T2 is less than the TBS corresponding to the first data packet. #T1.
  • FIG. 7 is a schematic diagram of UL-SCH and UCI transmission disclosed in an embodiment of the present invention.
  • the first uplink data channel is the later uplink data channel among the K uplink data channels
  • the uplink data channel set is the earlier uplink data channel among the K uplink data channels.
  • TBS#T1 is calculated according to the number of physical resources included in the earlier uplink data channel. The first time domain resource overlaps the later uplink data channel. Therefore, the first UCI is carried on the later first uplink data channel. However, the first TBS#T1 is not calculated based on the first uplink data channel, and does not match the number of physical resources of the first uplink data channel.
  • the terminal device calculates the equivalent TBS#T2 (#T2 ⁇ #T1) of the virtual data packet according to the physical resources included in the first uplink data channel. , And use #T2 and the number of physical resources #M1 included in the first uplink data channel that can be used to carry UCI to determine #Q.
  • the #Q of the first UCI can be based on It is calculated as shown in the following formula.
  • the #Q of the first UCI can be based on It is calculated as shown in the following formula.
  • the definition of other parameters please refer to the corresponding description of formulas (1), (2) and (3).
  • the calculation formula for determining the number of physical resources occupied by the first UCI #Q according to the equivalent TBS#T2 and the number of physical resources included in the first uplink data channel #M1 can be expressed as follows , #Q represents Q′ ACK , or #Q is obtained from Q′ ACK :
  • the calculation formula for determining the number of physical resources occupied by the first UCI #Q according to the equivalent TBS#T2 and the number of physical resources included in the first uplink data channel #M1 can be expressed as follows , #Q represents Q′ CSI-1 , or #Q is obtained from Q′ CSI-1 :
  • the calculation formula for determining the number of physical resources occupied by the first UCI #Q according to the equivalent TBS#T2 and the number of physical resources included in the first uplink data channel #M1 can be expressed as follows , #Q represents Q′ CSI-2 , or #Q is obtained from Q′ CSI-2 :
  • Method 1-2 Determine the number #Q of physical resources occupied by the first UCI according to the number of equivalent physical resources #M2.
  • the number of equivalent physical resources #M2 is different from the number of physical resources included in the first uplink data channel, that is, the number of equivalent physical resources #M2 is not equal to the number of physical resources included in the first uplink data channel.
  • #Q instead of calculating #Q based on the number of physical resources #M1 included in the first uplink data channel, it uses an equivalent physical resource number #M2 that is different from #M1 to calculate #Q. Since #M2 is different from #M1, replace #M2 with #M1 and bring it into the calculation formula of #Q to achieve the effect of adjusting #Q and avoid the calculated #Q being too large or too small.
  • the number of equivalent physical resources #M2 may be greater than #M1.
  • the number of equivalent physical resources #M2 may be the number of physical resources notified by the network device, and may be directly configured or instructed by the network device. For example, it may be a numerical value of the number of physical resources directly configured or indicated by the network device. It may also be determined based on the configuration of the network device or other information indicated. For example, the network device configures or instructs the second equivalent uplink data channel used to calculate the number of equivalent physical resources #M2, and the terminal device may determine the number of equivalent physical resources #M2 according to the number of physical resources included in the second equivalent uplink data channel. .
  • the second equivalent uplink data channel can be one uplink data channel or multiple uplink data channels; when the second equivalent uplink data channel is multiple uplink data channels, #M2 is the second equivalent uplink data The sum of the number of physical resources used to carry UCI information included in each uplink data channel in the channel.
  • the second equivalent uplink data channel may be the uplink data channel among the K uplink data channels, or may not be the uplink data channel among the K uplink data channels, and part of it may be the uplink data channel among the K uplink data channels. A part is not the uplink data channel among the K uplink data channels.
  • the second equivalent uplink data channel may also be determined according to a preset rule.
  • the preset rules include: the second equivalent uplink data channel can be the kth uplink data channel among the K uplink data channels, or it can be the uplink with the largest number of physical resources or time domain symbols included in the K uplink data channels.
  • the data channel may also be an uplink data channel with the least number of physical resources or time domain symbols included in the K uplink data channels.
  • k is an integer greater than or equal to 1 and less than or equal to K.
  • the number of physical resources included in the second equivalent uplink data channel refers to the number of physical resources that can be used to carry UCI in the second equivalent uplink data channel.
  • the second equivalent uplink data channel is different from the first uplink data channel.
  • the terminal device uses the second equivalent uplink data channel different from the first uplink data channel to determine #Q, thereby achieving the effect of adjusting #Q, avoiding the calculated #Q being too large or too small, and ensuring the first 1. The reliability and validity of UCI transmission.
  • the number of equivalent physical resources #M2 is the number of physical resources included in the uplink data channel set.
  • the set of uplink data channels is different from the first uplink data channel.
  • #M2 may be equal to #M1 or not equal to #M1.
  • the number of equivalent physical resources #M2 is the number of physical resources included in the uplink data channel set. Specifically, the number of equivalent physical resources #M2 is the number of physical resources that can be used to carry UCI in the uplink data channel set, or the sum of the number of physical resources that can be used to carry UCI on each uplink data channel in the uplink data channel set. .
  • the terminal device determines the number #Q of physical resources occupied by the first UCI according to the number of equivalent physical resources #M2 and the first TBS#T1.
  • the TBS of the first data packet is determined according to the number of physical resources #P1 included in the uplink data channel set for determining the TBS.
  • the terminal device may use the physical resource #M2 included in the uplink data channel set to determine the number of physical resources occupied by the first UCI #Q, therefore, the first TBS#T1 matches the #M2 used to determine the number of physical resources #Q occupied by the first UCI, so that the #Q determined using #T1 and #M2 is moderate. It avoids the problem that the #Q calculated from the mismatched #T1 and #M1 is too large or too small.
  • the number of physical resources included in the uplink data channel set is greater than the number of physical resources included in the first uplink data channel, for example, #M2 is greater than #M1.
  • FIG. 8 is another schematic diagram of UL-SCH and UCI transmission disclosed in an embodiment of the present invention.
  • the uplink data channel set is the earlier uplink data channel among the K uplink data channels.
  • a TBS#T1 is calculated based on the physical resources included in the earlier uplink data channel. The first time domain resource overlaps the second uplink data channel. Therefore, the first UCI is carried on the later uplink data channel.
  • the first TBS#T1 is not calculated based on the first uplink data channel, and does not match the number of physical resources of the first uplink data channel. Therefore, in order to obtain the moderate number #Q of physical resources occupied by the first UCI, the terminal device determines #Q according to #T1 and the number of physical resources #M2 included in the uplink data channel set that can be used to carry UCI.
  • the #Q of the first UCI can be based on It is calculated as the following formula, where ⁇ represents the uplink data channel set or the second equivalent uplink data channel, Can also be replaced with For the definition of other parameters, refer to the corresponding descriptions of formulas (1), (2) and (3).
  • the number of physical resources occupied by the first UCI #Q is determined according to the number of equivalent physical resources #M2 and the first TBS#T1.
  • the calculation formula for #Q can be expressed as follows, #Q represents Q ′ ACK , or #Q is obtained by Q′ ACK :
  • the number of physical resources occupied by the first UCI #Q is determined according to the number of equivalent physical resources #M2 and the first TBS#T1.
  • the calculation formula for #Q can be expressed as follows, #Q represents Q ′ CSI-1 , or #Q is obtained by Q′ CSI-1 :
  • the number of physical resources occupied by the first UCI #Q is determined according to the number of equivalent physical resources #M2 and the first TBS#T1.
  • the calculation formula for #Q can be expressed as follows, #Q represents Q ′ CSI-2 , or #Q is obtained by Q′ CSI-2 :
  • Method 1-3 Determine the number #Q of physical resources occupied by the first UCI according to the number #M3 of physical resources included in the second uplink data channel, and the second uplink data channel is different from the first uplink data channel.
  • how to determine the reference may be made according to # M3 #Q formula (1), (2) or (3), wherein the representative #Q Q 'ACK or Q' CSI-1 or Q 'CSI-2, or by a #Q Q′ ACK or Q′ CSI-1 or Q′ CSI-2 is obtained, the difference is that the parameters in formula (1), (2) or (3) Replace with #M3.
  • #M3 may be configured by the network device or indicated to the terminal device.
  • #M3 may be the number of physical resources directly configured or indicated by the network device, or may be the number of physical resources determined according to other information configured or indicated by the network device (such as configured or indicated uplink data channel information, etc.).
  • #M3 is the number of physical resources included in the second uplink data channel among the K uplink data channels.
  • the terminal device determines the number of physical resources #Q corresponding to the physical resource #q according to the number of physical resources #M3 and the first TBS #T1 included in the second uplink data channel of the K uplink data channels. It can also be said that #Q is determined according to the number of physical resources #M3 and #T1 included in the second uplink data channel that can be used to carry UCI.
  • the set of uplink data channels is not equal to the second uplink data channel.
  • the first uplink data channel is not equal to the second uplink data channel.
  • the first TBS is determined according to the number of physical resources #P1 included in the uplink data channel set for determining the TBS.
  • the second uplink data channel may be an uplink data channel configured by the network device or instructed to the terminal device.
  • the second uplink data channel may be one uplink data channel, or may include multiple uplink data channels. Further, the second uplink data channel may be one or more uplink data channels among the K uplink data channels.
  • the second uplink data channel may also be an uplink data channel determined according to a preset rule.
  • the preset rules include: the second uplink data channel can be the kth uplink data channel among the K uplink data channels, or it can be the uplink data channel with the largest number of physical resources or time domain symbols included in the K uplink data channels , It may also be an uplink data channel with the least number of physical resources or time domain symbols included in the K uplink data channels.
  • k is an integer greater than or equal to 1 and less than or equal to K.
  • the second uplink data channel may be the previous second equivalent uplink data channel.
  • the second uplink data channel is the aforementioned target uplink data channel.
  • the number of physical resources included in the second uplink data channel #M3 is used to determine the number of physical resources occupied by UCI on any one of the K uplink data channels, that is, the physical resources included in the second uplink data channel
  • the number #M3 is used to determine the number of physical resources occupied by UCI on any one of the K uplink data channels, that is, the same #M3 is applicable to any one of the K uplink data channels. Regardless of whether the any uplink data channel is the second uplink data channel.
  • the aforementioned UCI may be the first UCI or another UCI other than the first UCI.
  • the above-mentioned another UCI overlaps with another uplink data channel different from the first uplink data channel among the K uplink data channels, so that the above-mentioned another UCI is to be carried on the other uplink data channel for transmission, then the #M3 is used To determine the number of physical resources #Q' occupied by the another UCI on the other uplink data channel.
  • the number of physical resources #M3 included in the second uplink data channel refers to the number of physical resources that can be used to carry UCI in the second uplink data channel.
  • the number of physical resources included in the second uplink data channel #M3 is the number of physical resources included in each uplink data channel among the multiple uplink data channels for carrying The sum of the physical resources of UCI.
  • the number of physical resources included in the second uplink data channel is greater than the number of physical resources included in the first uplink data channel, for example, #M3 is greater than #M1.
  • Method 1-4 Determine the number #Q of physical resources occupied by the first UCI according to the first equalization parameter, where the first equalization parameter is different from the second equalization parameter.
  • the first equalization parameter may be greater than the second equalization parameter.
  • a larger first equalization is used
  • the parameter can increase the number of physical resources occupied by the first UCI and guarantee the performance of the first UCI.
  • a larger first equalization parameter can be used Increase the number of physical resources occupied by the first UCI to ensure the performance of the first UCI.
  • the TBS such as using equivalent TBS
  • the number of physical resources can be modified (Such as using an uplink data channel or an uplink data channel set different from the first uplink data channel, or using a physical resource number #M2 or #M3 different from the physical resource number #M1)
  • the equalization parameters can also be modified, that is, using the same Second, the first equalization parameter with different equalization parameters is calculated #Q.
  • the scaling factor scaling factor is also called the scaling factor.
  • the terminal device uses different equalization parameters in different situations to calculate the number #Q of physical resources occupied by the first UCI on the first uplink data channel.
  • the different situation here refers to whether the first uplink data channel is overloaded, or whether the number of physical resources used to determine #T1 matches the first uplink data channel, or whether the set of uplink data channels is equal to the first uplink data channel.
  • the terminal device may determine the amount of physical resources occupied by the first UCI according to the second equalization parameter #Q, or in other words, the second equalization parameter may be used to determine the amount of physical resources occupied by the first UCI in the first case
  • the equalization parameter of the number of physical resources may be used to determine the amount of physical resources occupied by the first UCI in the first case.
  • the terminal device determines #Q according to #T1, #M1 and the second equalization parameter in the first case.
  • the first situation is: the uplink data channel set is the same as the first uplink data channel, or the number of physical resources included in the uplink data channel set is equal to the number of physical resources included in the first uplink data channel, or the time domain symbols included in the first uplink data channel
  • the number is not less than (or greater than) the first threshold, or the number of time domain symbols included in the first uplink data channel is not less than (or greater than) the number of time domain symbols included in the target uplink data channel, or the first uplink data channel includes
  • the number of physical resources is not less than (or greater than) the second threshold, or the number of physical resources included in the first uplink data channel is not less than (or greater than) the number of physical resources included in the target uplink data channel, or the first UCI is carried to the first uplink
  • the code rate on the data channel is not greater than (or less than) the third threshold, or the code rate corresponding to the first UCI being carried on the first uplink data channel is no greater than (or less than) the code rate
  • the terminal device may determine the number of physical resources #Q occupied by the first UCI according to the first equalization parameter, or in other words, the first equalization parameter is used to determine the physical resources occupied by the first UCI in the second case The number of resources#Q's equalization parameter.
  • the terminal device determines #Q according to #T1, #M1 and the first equalization parameter in the second case.
  • the second situation is: the uplink data channel set is not equal to the first uplink data channel, or the number of time domain symbols included in the first uplink data channel is less than (or not greater than) the first threshold, or the time domain included in the first uplink data channel
  • the number of symbols is less than (or not more than) the number of time domain symbols included in the target uplink data channel, or the number of time domain symbols included in the first uplink data channel is less than (or not more than) the target uplink data channel among the K uplink data channels
  • the number of time-domain symbols included, or the number of physical resources included in the first uplink data channel is less than (or not greater than) the second threshold, or the number of physical resources included in the first uplink data channel is less than (or not greater than) the target uplink data channel
  • the number of physical resources included, or the code rate for carrying the first UCI on the first uplink data channel is greater than (or not less than) the third threshold, or the code rate for carrying the first UCI on the first uplink data channel is greater
  • the number of time domain symbols is the number of time domain symbols.
  • the first equalization parameter is an equalization parameter when the first uplink data channel is overloaded
  • the second equalization parameter is an equalization parameter when the first uplink data channel is not overloaded
  • the terminal equipment uses different equalization parameters for different uplink data channels to calculate the number of physical resources occupied by the corresponding UCI on different uplink data channels. .
  • the first equalization parameter is an equalization parameter used to determine the number of physical resources occupied by the first UCI on the first uplink data channel
  • the second equalization parameter is used to determine the second UCI on the third uplink data channel.
  • the terminal device determines the number #Q of physical resources occupied by the first UCI according to the first equalization parameter. Further, the terminal device may determine the number #Q of physical resources occupied by the first UCI according to #T1, #M1 and the first equalization parameter.
  • the terminal device determines the number of physical resources occupied by the second UCI according to the second equalization parameter #Q". Further, the terminal device may determine the number of physical resources included in the third uplink data channel according to #T1, and The second equalization parameter determines the number of physical resources occupied by the second UCI #Q".
  • the number of physical resources included in the third uplink data channel is the number of physical resources that can be used to carry UCI in the third uplink data channel.
  • the first UCI is different from the second UCI
  • the second UCI may be UCI sent by the terminal device notified by the second control information, or UCI sent by the terminal device notified by other downlink control information different from the second control information.
  • the method for the second control information or the other downlink control information to notify the terminal device to send the second UCI is similar to the method for the second control information to notify the terminal device to send the first UCI.
  • the network device may send second control information or the other downlink control information to the terminal device.
  • the second control information or the other downlink control information includes information for transmitting the second time domain resource of the second UCI, and the second time domain
  • the resource overlaps with the third uplink data channel among the K uplink data channels in the time domain.
  • the second time domain resource overlaps with the third uplink data channel among the K uplink data channels in the time domain, which can also be expressed as: the second time domain resource corresponds to the third uplink data channel among the K uplink data channels .
  • the third uplink data channel is an uplink data channel among the K uplink data channels.
  • the third uplink data channel is not equal to the first uplink data channel. That is, the terminal equipment uses different equalization parameters on different uplink data channels to determine the physical resources occupied by the corresponding UCI respectively.
  • the third uplink data channel may be equal to the set of uplink data channels (for example, when the set of uplink data channels is one uplink data channel), or the number of physical resources included in the third uplink data channel is equal to the set of uplink data channels.
  • the number of physical resources, or the number of physical resources included in the third uplink data channel is greater than (or not less than) the number of physical resources included in the first uplink data channel, or the number of time-domain symbols included in the third uplink data channel is greater than (or not less than) Less than) the first threshold, or the number of time-domain symbols included in the third uplink data channel is not less than (or greater than) the number of time-domain symbols included in the target uplink data channel, or the number of physical resources included in the third uplink data channel Greater than (or not less than) the second threshold, or the number of physical resources included in the third uplink data channel is not less than (or greater than) the number of physical resources included in the target uplink data channel, or the first UCI is carried to the third up
  • #Q of the first UCI or #Q of the second UCI can be calculated according to the following formula, where: Represents the first equalization parameter, Indicates the second equalization parameter.
  • Represents the first equalization parameter Indicates the second equalization parameter.
  • the uplink data channel (ie PUSCH) in (3) is the first uplink data channel
  • O ACK , O CSI-1 or O CSI-2 is the load of the first UCI
  • L ACK , L CSI-1 or L CSI-2 is the first UCI CRC
  • the uplink data channel (PUSCH) in formulas (1), (2) and (3) is the third uplink data channel
  • Is the number of physical resources included in the third uplink data channel, O ACK , O CSI-1 or O CSI-2 is the payload of the second UCI
  • L ACK , L CSI-1 or L CSI-2 is the CRC of the second UCI .
  • #Q calculated in the first case can be represented as follows, on behalf # Q Q 'ACK, or a #Q Q' obtained (Method 1-4A) ACK.
  • formula # Q may be expressed as follows, on behalf # Q Q 'ACK, or a #Q Q' obtained (Method 1-4B) ACK.
  • #Q calculated in the second case can be expressed as follows, on behalf # Q Q 'ACK, or a #Q Q' obtained (Method 1-4A) ACK.
  • # Q can be calculated as follows, # Q" representative of Q 'ACK, or #Q "from the Q' obtained (Method 1-4B) ACK.
  • the calculation formula of #Q in the first case can be expressed as follows, #Q represents Q'CSI -1 , or #Q is obtained from Q'CSI -1 (Method 1-4A).
  • the calculation formula of #Q can be expressed as follows, #Q represents Q'CSI -1 , or #Q is obtained from Q'CSI -1 (Method 1-4B).
  • the calculation formula of #Q in the second case can be expressed as follows, #Q represents Q'CSI -1 , or #Q is obtained from Q'CSI -1 (Method 1-4A). Or, the calculation formula of #Q" can be expressed as follows, #Q" represents Q'CSI -1 , or #Q" is obtained from Q'CSI -1 (Method 1-4B).
  • the calculation formula of #Q in the first case can be expressed as follows, #Q represents Q'CSI -2 , or #Q is obtained from Q'CSI -2 (Method 1-4A).
  • the calculation formula of #Q can be expressed as follows, #Q represents Q'CSI -2 , or #Q is obtained from Q'CSI -2 (Method 1-4B).
  • the calculation formula of #Q in the second case can be expressed as follows, #Q represents Q'CSI -2 , or #Q is obtained from Q'CSI -2 (Method 1-4A). Or, the calculation formula of #Q" can be expressed as follows, #Q" represents Q'CSI -2 , or #Q" is obtained from Q'CSI -2 (Method 1-4B).
  • the first equalization parameter and the second equalization parameter are equalization parameters notified by the network device.
  • it can be an equalization parameter configured or instructed by a network device.
  • the terminal device may also receive third control information from the network device.
  • the third control information may include a first field. Both the first equalization parameter and the second equalization parameter correspond to the first field or the first field notified by the first field.
  • the index value, that is, the first equalization parameter and the second equalization parameter are indicated or indexed by the network device through the same field of the same control information.
  • the network device may send the third control information to the terminal device.
  • the third control information or the first field notifies two equalization parameters, which are used to calculate #Q in the first case and the second case, respectively, or used to calculate the first uplink data channel.
  • the number of physical resources occupied by the first UCI #Q and the number of physical resources occupied by the second UCI on the third uplink data channel #Q are used to calculate #Q in the first case and the second case, respectively, or used to calculate the first uplink data channel.
  • the third control information may be high-layer signaling, or physical layer downlink control information, such as DCI information.
  • the first field may be the betaOffsetACK field or the betaOffsetCSI field in the high-level signaling, or the beta_offset indicator field in the physical layer downlink control information.
  • the first equalization parameter and the second equalization parameter both correspond to the first field or the first index value notified by the first field
  • the first index value corresponds to the values of two equalization parameters: the first equalization parameter And the second equalization parameter.
  • the third control information may be the second control information, or may be another control information different from the second control information.
  • the third control information may be the first control information, or may be another control information different from the first control information.
  • the equalization parameters can be adjusted to compensate for the amount of physical resources occupied by the first UCI #Q: Use #T1, #M1 and the adjusted first equalization parameter to determine an appropriate #Q, avoiding the determined #Q being too large or too small, and ensuring the reliability and effectiveness of the first UCI transmission.
  • FIG. 9 is another schematic diagram of UL-SCH and UCI transmission disclosed in an embodiment of the present invention.
  • the first uplink data channel is the later one of the K uplink data channels
  • the set of uplink data channels that is, the third uplink data channel is one of the K uplink data channels.
  • the first TBS#T1 is calculated based on the physical resources included in the earlier uplink data channel.
  • the first time domain resource overlaps the second uplink data channel. Therefore, the first UCI bears the load to the later On the uplink data channel.
  • the first TBS#T1 is not calculated based on the first uplink data channel, and does not match the number of physical resources of the first uplink data channel.
  • the terminal device determines #Q according to #T1, physical resources #M1 included in the first uplink data channel that can be used to carry UCI, and a larger first equalization parameter; In comparison, for the second UCI carried on the third uplink data channel, #T1 matches the number of physical resources #M2 included in the third uplink data channel, using #T1, #M2 and the smaller second equalization parameter Calculate the number of physical resources occupied by UCI on the third uplink data channel #Q".
  • Method 2 Discard part of the UCI in the first UCI.
  • the physical resources occupied by the first UCI can be calculated by the first TBS#T1 and the number of physical resources included in the first uplink data channel #M1
  • the number of resources #Q, thus calculated #Q is small, therefore, the problem of the overload of the first uplink data channel can be solved by discarding part of the information in the first UCI.
  • the first UCI includes multiple types of information in HARQ-ACK, CSI part 1, CSI part 2, and SR
  • part of the information may be discarded, and the remaining part of the information may be sent on the first uplink data channel. It can be seen that although the number #Q of physical resources carrying the first UCI has not increased, by reducing the load size of the UCI, the effect of reducing the code rate is also achieved, ensuring the reliability of the UCI actually sent on the first uplink data channel.
  • high priority information may include SR, HARQ-ACK, HARQ-ACK and SR
  • low priority information may include CSI.
  • the CSI here may include CSI part 1, or CSI part 2, and may also include CSI part 1 and CSI part 2.
  • high priority information may include HARQ-ACK and part of CSI, SR and part of CSI, and may also include HARQ-ACK, SR, and part of CSI, and low priority information may include another part of CSI.
  • the information belonging to the same UCI may also be prioritized, for example, some CSI has a high priority, and another CSI has a low priority. Therefore, when discarding part of CSI, CSI with a lower priority can be discarded, and CSI with a higher priority can be sent.
  • the priority of CSI part 1 is higher than the priority of CSI part 2.
  • the CSI information with a higher priority value in the CSI information has a higher priority value than CSI information with a lower priority value .
  • Method 3 Adjust the sending timing or sending resource of the first UCI.
  • Method 3-1 Change the first UCI to another uplink data channel among the K uplink data channels for transmission. That is, the physical resource #q occupied by the first UCI determined by the terminal device includes the physical resource #q determined by the terminal device that the first UCI occupied is located on the fourth uplink data channel, or the physical resource #q determined by the terminal device is located on the first UCI The occupied physical resource #q is the physical resource in the fourth uplink data channel.
  • the fourth uplink data channel is an uplink data channel different from the first uplink data channel among the K uplink data channels.
  • the number #Q of physical resources occupied by the first UCI may continue to be determined according to the number of physical resources #M1 and the first TBS#T1 included in the first uplink data channel.
  • the number #Q of physical resources occupied by the first UCI may be determined according to the number of physical resources included in the fourth uplink data channel and the first TBS#T1.
  • the number of physical resources included in the fourth uplink data channel is the number of physical resources that can be used to carry UCI in the fourth uplink data channel.
  • the physical resource occupied by the first UCI is the physical resource in the fourth uplink data channel.
  • the fourth uplink data channel may be equal to the uplink data channel set (for example, when the uplink data channel set is an uplink data channel), or the number of physical resources included in the fourth uplink data channel may be equal to the number of physical resources included in the uplink data channel set, or ,
  • the number of physical resources included in the fourth uplink data channel is greater than (or not less than) the number of physical resources included in the first uplink data channel, or the number of time-domain symbols included in the fourth uplink data channel is greater than (or not less than) the first threshold or
  • the number of time-domain symbols included in the target uplink data channel, or the number of physical resources included in the fourth uplink data channel is greater than (or not less than) the second threshold or the number of physical resources included in the target uplink data channel, or the first UCI is carried to the first Fourth
  • the code rate on the uplink data channel is less than (or not greater than) the third threshold or
  • the first UCI is adjusted to another fourth uplink data channel with a larger number of physical resources for transmission, because the corresponding formula (1) or (2) or (3) It is larger, so the calculated #Q is also greater than the number of physical resources occupied by UCI calculated according to the number of physical resources #M1 included in the first uplink data channel, thereby improving the transmission reliability of UCI.
  • the number of physical resources included in the fourth uplink data channel is the number of physical resources that can be used to carry UCI in the fourth uplink data channel.
  • the fourth uplink data channel may be later than the first uplink data channel in the time domain, or may be earlier than the first uplink data channel.
  • the fourth uplink data channel and the first uplink data channel do not overlap in the time domain.
  • the fourth uplink data channel may be later than the first uplink data channel That is, the terminal device defers the first UCI to be sent on a later uplink data channel of the at least one uplink data channel instead of sending on the earliest first uplink data channel of the at least one uplink data channel.
  • the fourth uplink data channel and the first time domain resource do not overlap in the time domain. Even if the first time domain resource and the fourth uplink data channel do not overlap in the time domain, the first UCI may be carried on the fourth uplink data channel for transmission.
  • FIG. 10 is another schematic diagram of UL-SCH and UCI transmission disclosed in an embodiment of the present invention.
  • K 2
  • the first uplink data channel is the earlier uplink data channel among the K uplink data channels
  • the fourth uplink data channel is the later uplink data channel among the K uplink data channels.
  • the first TBS#T1 is calculated based on the physical resources included in the later uplink data channel, and the first time domain resource overlaps the first uplink data channel.
  • the first TBS#T1 is not calculated based on the first uplink data channel, and does not match the number of physical resources of the first uplink data channel, in order to ensure the transmission performance of the first UCI, the first UCI is postponed to the fourth uplink It is sent on a data channel, where the number of physical resources included in the first TBS#T1 and the fourth uplink data channel match.
  • Method 3-2 Change the first UCI information to the uplink control channel and send it. That is, the physical resource #q occupied by the first UCI determined by the terminal device includes: the physical resource #q occupied by the first UCI determined by the terminal device is located on the first uplink control channel of the first time domain resource, or the terminal device The determined physical resource #q occupied by the first UCI is the physical resource in the uplink control channel corresponding to the first time domain resource.
  • the terminal device will carry UCI on the uplink data channel for transmission instead of sending the uplink Control channel.
  • the uplink data channel used to transmit UCI is overloaded, directly putting UCI on the uplink data channel for transmission will affect the reliability of UCI. Therefore, UCI transmission resources can be adjusted so that it is no longer sent on the uplink data channel, but on the uplink control channel.
  • the terminal device will not carry the first UCI on the first uplink data channel for transmission, but will still remain on the uplink control channel Send, thereby ensuring the transmission reliability of the first UCI.
  • the uplink control channel may be PUCCH.
  • the physical resource where the uplink control channel is located is the physical resource of the uplink control channel corresponding to the first UCI notified by the second control information, that is, the uplink control channel corresponding to the first time domain resource, that is, the physical resource corresponding to the first time domain resource. Domain resources overlap in the time domain. More specifically, the time-frequency resource where the uplink control channel is located corresponds to the time-domain resource notified by at least one field of the second control information.
  • the at least one field may be a'PUCCH resource indicator' field, a'PDSCH-to-HARQ_feedback timing indicator' field, a'PUCCH resource indicator' field and a'PDSCH-to-HARQ_feedback timing indicator'.
  • the terminal device may discard the first uplink data channel or stop sending information on the first uplink data channel. Since the terminal device does not support simultaneous transmission of the uplink control channel and the uplink data channel at the same time, the terminal device will discard the first uplink data channel or stop sending information on the first uplink data channel when sending the uplink control channel.
  • dropping may specifically refer to not sending the first data packet on the first uplink data channel, or not sending information on the first uplink data channel, for example, not sending any information on the time-frequency resource corresponding to the first uplink data channel.
  • drop may also be referred to as omit or cancel.
  • stopping sending information on the first uplink data channel refers to not sending information on the first uplink data channel on the time domain resources where the uplink control channel and the first uplink data channel overlap. For example, you can start sending information from the beginning of the first uplink data channel, but stop sending information on the first uplink data channel before sending information on the uplink control channel; in addition, after sending information on the uplink control channel, , You can continue to send information on the first uplink data channel, or you can no longer continue to send information on the first uplink data channel.
  • the uplink control channel and the first uplink data channel are located on the same carrier or BWP.
  • FIG. 11 is another schematic diagram of UL-SCH and UCI transmission disclosed in an embodiment of the present invention.
  • the uplink data channel set is the later uplink data channel among the 2 uplink data channels.
  • a TBS#T1 is calculated based on the physical resources included in the later uplink data channel, and the first time domain resource overlaps the first uplink data channel. Since the first TBS#T1 is not calculated based on the first uplink data channel, and does not match the number of physical resources of the first uplink data channel, in order to ensure the transmission performance of the first UCI, the terminal device is in the uplink control channel notified by the network device.
  • the first UCI is sent on the physical resource, and in addition, the first uplink data channel is also discarded.
  • the network device determines the physical resource occupied by the first UCI.
  • the network device can determine the physical resources occupied by the first UCI, so that the network device can determine where to receive the first UCI sent by the terminal device.
  • the network device may determine the physical resources occupied by the first UCI after the network device sends the first control information and or the second control information to the terminal device, or the network device may send the first control information and or the second control information to the terminal device. Before the information is sent to the terminal device, it may also be when the network device sends the first control information and or the second control information to the terminal device, without limitation.
  • the network device may use a method corresponding to the terminal device to determine the physical resource occupied by the first UCI.
  • the number of physical resources occupied by the first UCI determined by the network device corresponds to the equivalent TBS#T2, and the equivalent TBS is different from the first TBS.
  • the network device may determine the number #Q of physical resources occupied by the first UCI according to the equivalent TBS#T2.
  • the number of physical resources occupied by the first UCI determined by the network device corresponds to the equivalent TBS#T2
  • the equivalent TBS#T2 is the TBS corresponding to the first uplink data channel.
  • the network device can determine the number #Q of physical resources occupied by the first UCI according to the equivalent TBS#T2.
  • the number of physical resources occupied by the first UCI determined by the network device corresponds to the number of physical resources included in the equivalent TBS#T2 and the first uplink data channel (for example, #M1).
  • the number of physical resources occupied by the first UCI determined by the network device may correspond to a combination of the equivalent TBS#T2 and the number of physical resources included in the first uplink data channel (for example, #M1), or the network device may Determine the number #Q of physical resources occupied by the first UCI according to the equivalent TBS#T2 and the number of physical resources included in the first uplink data channel (for example, #M1).
  • the number of physical resources occupied by the first UCI determined by the network device corresponds to the number of equivalent physical resources #M2, and the number of equivalent physical resources #M2 and the first uplink data channel include The number of physical resources is different. Specifically, the network device may determine the number #Q of physical resources occupied by the first UCI according to the number of equivalent physical resources #M2.
  • the number of physical resources occupied by the first UCI determined by the network device corresponds to the number of equivalent physical resources #M2
  • the number of equivalent physical resources #M2 is the number of physical resources included in the uplink data channel set.
  • the network device can determine the number #Q of physical resources occupied by the first UCI according to the number of equivalent physical resources #M2.
  • the number of physical resources occupied by the first UCI determined by the network device corresponds to the number of equivalent physical resources #M2 and the first TBS#T1.
  • the number of physical resources occupied by the first UCI determined by the network device may correspond to a combination of the number of equivalent physical resources #M2 and the first TBS#T1, or the network device may be based on the number of equivalent physical resources #M2 Determine the number #Q of physical resources occupied by the first UCI with the first TBS#T1.
  • the number of physical resources occupied by the first UCI determined by the network device corresponds to the number #M3 of physical resources included in the second uplink data channel, and the second uplink data channel is different from the first uplink data channel.
  • the network device may determine the number #Q of physical resources occupied by the first UCI according to the number #M3 of physical resources included in the second uplink data channel.
  • the number of physical resources occupied by the first UCI determined by the network device corresponds to the number of physical resources #M3 and the first TBS#T1 included in the second uplink data channel.
  • the number of physical resources occupied by the first UCI determined by the network device may correspond to the combination of the number of physical resources #M3 and the first TBS#T1 included in the second uplink data channel, or the network device may be based on the second The number of physical resources #M3 and the first TBS#T1 included in the uplink data channel determine the number #Q of physical resources occupied by the first UCI.
  • the number of physical resources included in the second uplink data channel is used to determine the number of physical resources occupied by UCI on any one of the K uplink data channels.
  • the number of physical resources occupied by the first UCI determined by the network device corresponds to the first equalization parameter.
  • the network device may determine the number #Q of physical resources occupied by the first UCI according to the first equalization parameter.
  • the first equalization parameter is different from the second equalization parameter.
  • the number of physical resources occupied by the first UCI determined by the network device corresponds to the second equalization parameter.
  • the number of physical resources occupied by the first UCI determined by the network device corresponds to the first equalization parameter.
  • the number of physical resources occupied by the first UCI determined by the network device corresponds to the first equalization parameter; for the third uplink data channel, the physical resource occupied by the second UCI determined by the network device The number of resources corresponds to the second equalization parameter.
  • the number of physical resources occupied by the first UCI determined by the network device corresponds to the first equalization parameter, including: the number of physical resources occupied by the first UCI determined by the network device corresponds to #T1, #M1 and the first Equalization parameters.
  • the number of physical resources occupied by the first UCI determined by the network device corresponds to the combination of #T1, #M1 and the first equalization parameter, or the network device can be based on #T1, #M1 and the first equalization parameter Determine the number #Q of physical resources occupied by the first UCI.
  • the number of physical resources occupied by the first UCI determined by the network device corresponds to the second equalization parameter, including: the number of physical resources occupied by the first UCI determined by the network device corresponds to #T1, #M1 and the second equalization parameter.
  • Equalization parameters Specifically, the number of physical resources occupied by the first UCI determined by the network device corresponds to a combination of #T1, #M1 and the second equalization parameter, or the network device can be based on #T1, #M1 and the second equalization parameter Determine the number #Q of physical resources occupied by the first UCI.
  • the number of physical resources occupied by the second UCI determined by the network device corresponds to the second equalization parameter, including: the number of physical resources occupied by the second UCI determined by the network device corresponds to #T1, #M1 and the second Equalization parameters.
  • the number of physical resources occupied by the second UCI determined by the network device corresponds to a combination of #T1, #M1 and the second equalization parameter, or the network device can be based on #T1, #M1 and the second equalization parameter Determine the number #Q of physical resources occupied by the second UCI.
  • the UCI sent by the terminal device received by the network device does not include part of the UCI in the first UCI. That is, the UCI sent by the network device received by the terminal device includes a part of the UCI in the first UCI, but does not include another part of the UCI in the first UCI.
  • the physical resources occupied by the first UCI determined by the network device are resources in the first uplink data channel.
  • the physical resource occupied by the first UCI is determined according to the first TBS#T1 and the number of physical resources included in the first uplink data channel.
  • the physical resource occupied by the first UCI determined by the network device is the physical resource in the fourth uplink data channel
  • the fourth uplink data channel is the uplink data channel among the K uplink data channels
  • the fourth uplink The data channel is not equal to the first uplink data channel.
  • the physical resource occupied by the first UCI determined by the network device is the physical resource in the uplink control channel corresponding to the first time domain resource.
  • the uplink data channel through which the network device receives the uplink information does not include the first uplink data channel, or the part of the physical resources included in the first uplink data channel that overlaps the first time domain resource in the time domain is not used to transmit uplink information .
  • step 603 For the detailed description of the above corresponding method, refer to step 603, which is not repeated here.
  • the terminal device sends the first UCI to the network device through the physical resource occupied by the first UCI.
  • the terminal device may send the first UCI to the network device through the physical resource occupied by the first UCI.
  • the network device may receive the first UCI from the terminal device through the physical resources occupied by the first UCI.
  • FIG. 12 is a schematic flowchart of the communication method. The steps of the communication method are described in detail below. It can be understood that the functions performed by the network device in this application can also be performed by the module (for example, chip) in the network device, and the function performed by the terminal device can also be performed by the module (for example, chip) in the terminal device. .
  • a network device sends first control information to a terminal device.
  • step 1201 is the same as step 601.
  • step 601 which will not be repeated here.
  • the network device sends second control information to the terminal device.
  • step 1202 is the same as step 602.
  • step 602 please refer to step 602, which will not be repeated here.
  • the terminal device determines the physical resource occupied by the first UCI according to the first equalization parameter when the first uplink data channel is overloaded, and determines the physical resource occupied by the first UCI according to the second equalization parameter when the first uplink data channel is not overloaded. Physical resources accounted for.
  • the condition that the first uplink data channel is overloaded the method for determining the physical resource occupied by the first UCI according to the first equalization parameter, the condition that the first uplink data channel is not overloaded, and the condition that the first UCI is occupied according to the second equalization parameter
  • the physical resource method please refer to step 602 to step 603, which will not be repeated here.
  • the network device determines the physical resources occupied by the first UCI. In the case that the first uplink data channel is overloaded, the physical resources occupied by the first UCI corresponds to the first equalization parameter, and the first uplink data channel is not overloaded. The physical resource occupied by the first UCI corresponds to the second equalization parameter.
  • step 1204 is the same as step 604.
  • step 604 please refer to step 604, which will not be repeated here.
  • the terminal device sends the first UCI to the network device through the physical resource occupied by the first UCI.
  • step 1205 is the same as step 605.
  • step 605 For detailed description, please refer to step 605, which will not be repeated here.
  • FIG. 13 is a schematic structural diagram of the communication device.
  • the communication device can be applied to the communication method shown in FIG. 6 or FIG. 12 above.
  • the communication device may be a terminal device or a module (such as a chip) in the terminal device.
  • the communication device may include a transceiving unit 1301 and a processing unit 1302, where:
  • the transceiver unit 1301 is configured to receive first control information from a network device.
  • the first control information includes information about a first physical resource used to transmit a first data packet.
  • the first physical resource corresponds to K uplink data channels and K uplink data channels. Each uplink data channel in the data channel is used to transmit the first data packet once, and K is a positive integer;
  • the transceiving unit 1301 is further configured to receive second control information from a network device.
  • the second control information includes information about the first time domain resource used to transmit the first UCI, the first time domain resource and the K uplink data channels
  • the first uplink data channel overlaps in the time domain, where the first uplink data channel is different from the set of uplink data channels used to determine the first TBS, and the first TBS is the TBS of the first data packet, or the first uplink data channel
  • the number of time-domain symbols included is less than (or not greater than) the first threshold, or the number of physical resources included in the first uplink data channel is less than (or not greater than) the second threshold, or the first UCI is carried on the first uplink data channel
  • the code rate of is greater than (or not less than) the third threshold;
  • the processing unit 1302 is configured to determine the physical resource occupied by the first UCI
  • the transceiver unit 1301 is further configured to send the first UCI to the network device through the physical resources occupied by the first UCI.
  • the number of physical resources included in the uplink data channel set is greater than the number of physical resources included in the first uplink data channel.
  • the processing unit 1302 is specifically configured to determine the amount of physical resources occupied by the first UCI according to the equivalent TBS, and the equivalent TBS is different from the first TBS.
  • the processing unit 1302 is specifically configured to determine the number of physical resources occupied by the first UCI according to the equivalent TBS and the number of physical resources included in the first uplink data channel.
  • the equivalent TBS is based on the first uplink data channel. Determined TBS.
  • the processing unit 1302 is specifically configured to determine the number of physical resources occupied by the first UCI according to the number of equivalent physical resources.
  • the number of equivalent physical resources is different from the number of physical resources included in the first uplink data channel.
  • the processing unit 1302 is specifically configured to determine the number of physical resources occupied by the first UCI according to the number of equivalent physical resources and the first TBS, where the number of equivalent physical resources is the number of physical resources included in the uplink data channel set .
  • the processing unit 1302 is specifically configured to determine the number of physical resources occupied by the first UCI according to the number of physical resources included in the second uplink data channel, and the second uplink data channel is different from the first uplink data channel.
  • the processing unit 1302 is specifically configured to determine the number of physical resources occupied by the first UCI according to the number of physical resources included in the second uplink data channel and the first TBS, and the number of physical resources included in the second uplink data channel It is used to determine the number of physical resources occupied by UCI on any one of the K uplink data channels.
  • the processing unit 1302 is specifically configured to determine the amount of physical resources occupied by the first UCI according to the first equalization parameter, where the first equalization parameter is different from the second equalization parameter;
  • the second equalization parameter is an equalization parameter used to determine the number of physical resources occupied by the first UCI in the first case.
  • the first case is: the uplink data channel set is the same as the first uplink data channel, or the first uplink data channel includes The number of time-domain symbols is not less than the first threshold, or the number of physical resources included in the first uplink data channel is not less than the second threshold, or the code rate for carrying the first UCI on the first uplink data channel is not greater than (or less than) The third threshold situation;
  • the second equalization parameter is an equalization parameter used to determine the number of physical resources occupied by the second UCI on the third uplink data channel
  • the third uplink data channel is the uplink data channel among the K uplink data channels
  • the third The uplink data channel is not equal to the first uplink data channel.
  • the transceiver unit 1301 is further configured to receive third control information from the network device, the third control information includes a first field, and both the first equalization parameter and the second equalization parameter correspond to the first field, or the first field Both an equalization parameter and a second equalization parameter correspond to the first index value notified by the first field.
  • the processing unit 1302 is specifically configured to determine the number of physical resources occupied by the first UCI according to the number of physical resources included in the first uplink data channel, the first TBS, and the first equalization parameter.
  • the first equalization parameter is greater than the second equalization parameter.
  • the physical resources occupied by the first UCI are physical resources in the first uplink data channel.
  • the physical resource occupied by the first UCI is the physical resource in the fourth uplink data channel
  • the fourth uplink data channel is the uplink data channel among the K uplink data channels
  • the fourth uplink data channel is not equal to the fourth uplink data channel.
  • the fourth uplink data channel and the first time domain resource do not overlap in the time domain.
  • the number of physical resources included in the fourth uplink data channel is greater than the number of physical resources included in the first uplink data channel, or the number of time-domain symbols included in the fourth uplink data channel is greater than or equal to (or greater than) the first threshold , Or the number of physical resources included in the fourth uplink data channel is greater than or equal to (or greater than) the second threshold, or the code rate of carrying the first UCI on the fourth uplink data channel is less than or equal to (or less than) the third threshold.
  • the physical resource occupied by the first UCI is the physical resource in the uplink control channel corresponding to the first time domain resource.
  • the processing unit 1302 is further configured to discard the first uplink data channel or stop sending information on the first uplink data channel.
  • transceiver unit 1301 and processing unit 1302 can be obtained directly by referring to the relevant description of the terminal device in the method embodiment shown in FIG. 6, and will not be repeated here.
  • FIG. 14 is a schematic structural diagram of the communication device.
  • the communication device can be applied to the communication method shown in FIG. 6 or FIG. 12 above.
  • the communication device may be a network device or a module (such as a chip) in the network device.
  • the communication device may include a transceiver unit 1401 and a processing unit 1402, wherein:
  • the transceiver unit 1401 is configured to send first control information to a terminal device.
  • the first control information includes information about a first physical resource used to transmit a first data packet.
  • the first physical resource corresponds to K uplink data channels and K uplink data. Each uplink data channel in the channel is used to transmit the first data packet once, and K is a positive integer;
  • the transceiver unit 1401 is further configured to send second control information to the terminal device.
  • the second control information includes information about the first time domain resource used to transmit the first UCI, the first time domain resource and the first of the K uplink data channels.
  • An uplink data channel overlaps in the time domain, where the first uplink data channel is different from the set of uplink data channels used to determine the first TBS, the first TBS is the TBS of the first data packet, or the first uplink data channel includes The number of time domain symbols is less than (or not greater than) the first threshold, or the number of physical resources included in the first uplink data channel is less than (or not greater than) the second threshold, or the first UCI is carried on the first uplink data channel The code rate is greater than (or not less than) the third threshold;
  • the processing unit 1402 is configured to determine the physical resource occupied by the first UCI
  • the transceiver unit 1401 is further configured to receive the first UCI from the terminal device through the physical resources occupied by the first UCI.
  • the number of physical resources included in the uplink data channel set is greater than the number of physical resources included in the first uplink data channel.
  • the number of physical resources occupied by the first UCI corresponds to an equivalent TBS, and the equivalent TBS is different from the first TBS.
  • the number of physical resources occupied by the first UCI corresponds to the equivalent TBS and the number of physical resources included in the first uplink data channel
  • the equivalent TBS is the TBS corresponding to the first uplink data channel.
  • the number of physical resources occupied by the first UCI corresponds to the number of equivalent physical resources, and the number of equivalent physical resources is different from the number of physical resources included in the first uplink data channel.
  • the number of physical resources occupied by the first UCI corresponds to the number of equivalent physical resources and the first TBS, and the number of equivalent physical resources is the number of physical resources included in the uplink data channel set.
  • the number of physical resources occupied by the first UCI corresponds to the number of physical resources included in the second uplink data channel, and the second uplink data channel is different from the first uplink data channel.
  • the number of physical resources occupied by the first UCI corresponds to the number of physical resources included in the second uplink data channel and the first TBS, and the number of physical resources included in the second uplink data channel is used to determine K uplink data The number of physical resources occupied by UCI on any uplink data channel in the channel.
  • the number of physical resources occupied by the first UCI corresponds to the first equalization parameter, and the first equalization parameter is different from the second equalization parameter;
  • the second equalization parameter is an equalization parameter used to determine the number of physical resources occupied by the first UCI in the first case.
  • the first case is: the uplink data channel set is the same as the first uplink data channel, or the first uplink data channel includes The number of time-domain symbols is not less than the first threshold, or the number of physical resources included in the first uplink data channel is not less than the second threshold, or the code rate for carrying the first UCI on the first uplink data channel is not greater than (or less than) The third threshold situation;
  • the second equalization parameter is an equalization parameter used to determine the number of physical resources occupied by the second UCI on the third uplink data channel
  • the third uplink data channel is the uplink data channel among the K uplink data channels
  • the third The uplink data channel is not equal to the first uplink data channel.
  • the transceiver unit 1401 is further configured to send third control information to the terminal device.
  • the third control information includes a first field, and both the first equalization parameter and the second equalization parameter correspond to the first field, or the first Both the equalization parameter and the second equalization parameter correspond to the first index value notified by the first field.
  • the number of physical resources occupied by the first UCI corresponds to the number of physical resources included in the first uplink data channel, the first TBS, and the first equalization parameter.
  • the first equalization parameter is greater than the second equalization parameter.
  • the physical resources occupied by the first UCI are physical resources in the first uplink data channel.
  • the physical resource occupied by the first UCI is the physical resource in the fourth uplink data channel
  • the fourth uplink data channel is the uplink data channel among the K uplink data channels
  • the fourth uplink data channel is not equal to the fourth uplink data channel.
  • the fourth uplink data channel and the first time domain resource do not overlap in the time domain.
  • the number of physical resources included in the fourth uplink data channel is greater than the number of physical resources included in the first uplink data channel, or the number of time-domain symbols included in the fourth uplink data channel is greater than or equal to (or greater than) the first threshold , Or the number of physical resources included in the fourth uplink data channel is greater than or equal to (or greater than) the second threshold, or the code rate of carrying the first UCI on the fourth uplink data channel is less than or equal to (or less than) the third threshold.
  • the physical resource occupied by the first UCI is the physical resource in the uplink control channel corresponding to the first time domain resource.
  • the uplink data channel that receives the uplink information does not include the first uplink data channel, or the part of the physical resources included in the first uplink data channel that overlaps the first time domain resource in the time domain is not used for uplink transmission. information.
  • transceiving unit 1401 and processing unit 1402 can be obtained directly by referring to the relevant description of the network device in the method embodiment shown in FIG. 6, and will not be repeated here.
  • FIG. 15 is a schematic structural diagram of the communication device.
  • the communication device can be applied to the communication method shown in FIG. 6 or FIG. 12 above.
  • the communication device may include a processor 1501, a memory 1502, a transceiver 1503, and a connection line 1504.
  • the memory 1502 may exist independently, and the connection line 1504 is connected to the processor 1501.
  • the memory 1502 may also be integrated with the processor 1501.
  • the transceiver 1503 is used to communicate with other devices, network elements or communication networks, such as Ethernet, radio access network (RAN), and no WLAN.
  • the connection line 1504 may include a path to transmit information between the above-mentioned components.
  • the memory 1502 stores program instructions, and the processor 1501 is configured to execute the program instructions stored in the memory 1502. among them:
  • the communication device may be a terminal device or a module (such as a chip) in the terminal device.
  • the processor 1501 is used to call the program instructions stored in the memory 1502 to execute the above
  • the operations performed by the processing unit 1302 in the embodiment, and the transceiver 1503 are used to perform the operations performed by the transceiver unit 1301 in the foregoing embodiment.
  • the communication device may be a network device or a module (such as a chip) in the network device.
  • the processor 1501 is used to call the program instructions stored in the memory 1502 to execute
  • the transceiver 1503 is configured to perform the operations performed by the transceiver unit 1401 in the foregoing embodiment.
  • the embodiment of the present invention also discloses a communication device.
  • the communication device may be a terminal device or a chip in a terminal device, or a network device or a chip in a network device.
  • the communication device may be used to perform operations performed by terminal equipment or network equipment in the foregoing method embodiments.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment may include a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 16. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present invention.
  • the antenna and radio frequency circuit with the transceiver function may be regarded as the transceiver unit of the terminal device, and the processor with the processing function may be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1610 and a processing unit 1620.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1610 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1610 as the sending unit, that is, the transceiver unit 1610 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1610 is used to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 1620 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the transceiving unit 1610 is used to perform the receiving operation on the terminal device side and step 605 in step 601 and step 602 in FIG. 6, and/or the transceiving unit 1610 is also used to perform the steps in the embodiment of the present invention Other receiving and sending steps on the terminal device side.
  • the processing unit 1620 is configured to execute step 603 in FIG. 6, and/or the processing unit 1620 is further configured to execute other processing steps on the terminal device side in the embodiment of the present invention.
  • the transceiving unit 1610 is used to perform the receiving operation on the terminal device side and step 1205 in step 1201 and step 1202 in FIG. 12, and/or the transceiving unit 1610 is also used to perform steps in the embodiment of the present invention Other receiving and sending steps on the terminal device side.
  • the processing unit 1620 is configured to execute step 1203 in FIG. 12, and/or the processing unit 1620 is further configured to execute other processing steps on the terminal device side in the embodiment of the present invention.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • FIG. 17 is a schematic structural diagram of another terminal device disclosed in an embodiment of the present invention.
  • the terminal device can perform functions similar to the processor in FIG. 15.
  • the terminal device includes a processor 1710, a data sending processor 1720, and a data receiving processor 1730.
  • the processing unit 1302 in the foregoing embodiment may be the processor 1710 in FIG. 17, and completes corresponding functions.
  • the transceiving unit 1301 in the foregoing embodiment may be the sending data processor 1720 and/or the receiving data processor 1730 in FIG. 17.
  • the channel encoder and the channel decoder are shown in FIG. 17, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are merely illustrative.
  • FIG. 18 is a schematic structural diagram of another terminal device disclosed in an embodiment of the present invention.
  • the processing device 1800 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as a modulation subsystem therein.
  • the modulation subsystem may include a processor 1803 and an interface 1804.
  • the processor 1803 completes the functions of the aforementioned processing unit 1302, and the interface 1804 completes the aforementioned functions of the transceiver unit 1301.
  • the modulation subsystem includes a memory 1806, a processor 1803, and a program stored in the memory 1806 and running on the processor. When the processor 1803 executes the program, the terminal device side in the above method embodiment is implemented. Methods.
  • the memory 1806 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1800, as long as the memory 1806 can be connected to the processor 1803. can.
  • a computer-readable storage medium is provided, and an instruction is stored thereon.
  • the instruction is executed, the method on the terminal device side in the foregoing method embodiment is executed.
  • a computer program product containing instructions is provided, and when the instructions are executed, the method on the terminal device side in the foregoing method embodiment is executed.
  • the embodiment of the present invention also discloses a storage medium with a program stored on the storage medium, and when the program runs, the communication method shown in FIG. 6 and FIG. 12 is implemented.
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application specific integrated circuits. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the methods in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; or an optical medium, such as a compact disc read-only memory (CD-ROM), a digital versatile disc (CD-ROM), DVD); it can also be a semiconductor medium, for example, solid state disk (SSD), random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), registers, etc.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device.
  • the processor and the storage medium may also exist as discrete components in the sending device or the receiving device.
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are an “or” relationship; in the formula of this application, the character “/” indicates that the associated objects before and after are a kind of "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明实施例公开一种通信方法及设备,包括:终端设备接收到来自网络设备的用于对数据包进行K次重复传输的K个上行数据信道的信息以及用于传输第一上行控制信息UCI的第一时域资源的信息之后,在第一时域资源与K个上行数据信道中的第一上行数据信道在时域上重叠,且第一上行数据信道超载的情况下,确定用于传输第一UCI的物理资源,之后通过确定的物理资源向网络设备发送第一UCI。本发明实施例,在传输UCI和数据包的资源在时域上重叠且超载的情况下,可以确定UCI所占的物理资源,以便保障UCI的传输可靠性,从而可以提高信息传输的可靠性。

Description

一种通信方法及设备 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种通信方法及设备。
背景技术
为了增强数据传输的可靠性,在5G新空口(new radio,NR)中引入了多次重复传输机制,即将一个数据包在K个物理上行共享信道(physical uplink shared channel,PUSCH)上重复传输K次。由于K个PUSCH用于对同一数据包进行重复传输,因此,传输块大小(transport block size,TBS)需要保持相同。在K个PUSCH包括的物理资源数量相同的情况下,可以基于K个PUSCH中第一个PUSCH的物理资源数量计算TBS。在K个PUSCH中某一个PUSCH上要传输上行控制信息(uplink control information,UCI),且这个PUSCH的物理资源数量较小情况下,使用上述TBS计算得到的UCI所占的物理资源偏大,导致这个PUSCH超载,以致降低了信息传输的可靠性。
发明内容
本发明实施例公开了一种通信方法及设备,用于提高信息传输的可靠性。
第一方面公开一种通信方法,该方法的执行主体可以是终端设备也可以是终端设备中的模块(例如,芯片),下面以终端设备为执行主体来进行描述。终端设备接收来自网络设备的第一控制信息,接收来自网络设备的第二控制信息,确定第一UCI所占的物理资源,通过第一UCI所占的物理资源向网络设备发送第一UCI。第一控制信息包括用于传输第一数据包的第一物理资源的信息,第一物理资源对应K个上行数据信道,K个上行数据信道中每个上行数据信道分别用于传输一次第一数据包,K为正整数。第二控制信息包括用于传输第一UCI的第一时域资源的信息,第一时域资源与K个上行数据信道中的第一上行数据信道在时域上重叠。由于第一上行数据信道与用于确定第一TBS的上行数据信道集合不相同,第一TBS为第一数据包的TBS,或者第一上行数据信道包括的时域符号数小于(或者不大于)第一阈值,或者第一上行数据信道包括的物理资源数量小于(或者不大于)第二阈值,或者将第一UCI承载到第一上行数据信道上的码率大于(或者不小于)第三阈值,因此,第一上行数据信道超载,可以确定合适的第一UCI所占的物理资源,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,上行数据信道集合包括的物理资源数量大于第一上行数据信道包括的物理资源数量。
作为一种可能的实施方式,可以根据等效TBS确定第一UCI所占的物理资源的数量,等效TBS与第一TBS不同。可见,不是根据第一TBS确定第一UCI所占的物理资源的数量,而是根据等效TBS确定第一UCI所占的物理资源的数量,等效TBS与第一TBS不同,因此,可以解决得到的UCI所占的物理资源偏大的问题,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,可以根据等效TBS和第一上行数据信道包括的物理资源数量确定第一UCI所占的物理资源的数量,等效TBS为根据第一上行数据信道确定的TBS。由 于等效TBS和第一上行数据信道包括的物理资源数量都是与第一上行数据信道包括的物理资源匹配的,因此,确定得到的第一UCI所占的物理资源的数量适中,从而避免了TBS偏大或物理资源数量偏小的问题,保障了第一UCI的传输可靠性,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,可以根据等效物理资源数量确定第一UCI所占的物理资源的数量,等效物理资源数量与第一上行数据信道包括的物理资源数量不同。可见,不是根据第一上行数据信道包括的物理资源数量确定第一UCI所占的物理资源的数量,而是根据等效物理资源数量确定第一UCI所占的物理资源的数量,等效物理资源数量与第一上行数据信道包括的物理资源数量不同,因此,可以解决得到的UCI所占的物理资源偏大的问题,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,可以根据等效物理资源数量和第一TBS确定第一UCI所占的物理资源的数量,等效物理资源数量为上行数据信道集合包括的物理资源数量。由于第一TBS和等效物理资源数量都是与上行数据信道集合包括的物理资源数量匹配的,因此,确定得到的第一UCI所占的物理资源的数量适中,从而避免了TBS偏大或物理资源数量偏小的问题,保障了第一UCI的传输可靠性,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,根据第二上行数据信道包括的物理资源数量确定第一UCI所占的物理资源的数量,第二上行数据信道与第一上行数据信道不同。可见,不是根据第一上行数据信道包括的物理资源数量确定第一UCI所占的物理资源的数量,而是根据第二上行数据信道包括的物理资源数量确定第一UCI所占的物理资源的数量,第二上行数据信道包括的物理资源数量与第一上行数据信道包括的物理资源数量不同,因此,可以解决得到的UCI所占的物理资源偏大的问题,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,可以根据第二上行数据信道包括的物理资源数量和第一TBS确定第一UCI所占的物理资源的数量,第二上行数据信道包括的物理资源数量用于确定K个上行数据信道中任意一个上行数据信道上的UCI所占的物理资源的数量。对于一个UCI而言,尽管第二上行数据信道包括的物理资源数量与第一上行数据信道包括的物理资源未必匹配,但是,不论该UCI承载到K个上行数据信道中的哪个上行数据信道上,都可以保证其所占用的物理资源数量是相等的,因此,仍然可以达到保障UCI传输可靠性的效果,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,可以根据第一均衡参数确定第一UCI所占的物理资源的数量,第一均衡参数与第二均衡参数不同。第二均衡参数为第一情况下用于确定第一UCI所占的物理资源的数量的均衡参数,第一情况为:上行数据信道集合与第一上行数据信道相同,或者第一上行数据信道包括的时域符号数不小于(或者大于)第一阈值,或者第一上行数据信道包括的物理资源数量不小于(或者大于)第二阈值,或者将第一UCI承载到第一上行数据信道上的码率不大于(或者小于)第三阈值的情况。或者,第二均衡参数为用于确定第三上行数据信道上的第二UCI所占的物理资源的数量的均衡参数,第三上行数据信道为K个上行数据信道中的上行数据信道,第三上行数据信道不等于第一上行数据信道。可见,不是根据第二均衡参数确定第一UCI所占的物理资源的数量,而是根据第一均衡参数确定第一UCI所占的物理资源的数量,第一均衡参数与第二均衡参数不同,因此,可以 解决得到的UCI所占的物理资源偏大的问题,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,接收来自网络设备的第三控制信息,第三控制信息包括第一字段,第一均衡参数和第二均衡参数均对应于第一字段,或者第一均衡参数和第二均衡参数均对应于第一字段通知的第一索引值。可见,第一均衡参数和第二均衡参数是网络设备通过同一控制信息中的同一字段或同一字段对应的索引值通知的。
作为一种可能的实施方式,可以根据第一上行数据信道包括的物理资源数量、第一TBS和第一均衡参数确定第一UCI所占的物理资源的数量。在第一TBS和第一上行数据信道不匹配的情况下,可以通过调整均衡参数,弥补第一UCI所占的物理资源的数量,使用调整之后的第一均衡参数确定一个合适的第一UCI所占的物理资源的数量,保障第一UCI传输的可靠性,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,第一均衡参数大于第二均衡参数。在第一TBS和第一上行数据信道不匹配的情况下,使用更大的第一均衡参数可以提高第一UCI所占的物理资源的数量,保障第一UCI性能,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,第一UCI所占的物理资源为第一上行数据信道中的物理资源。
作为一种可能的实施方式,第一UCI所占的物理资源为第四上行数据信道中的物理资源,第四上行数据信道为K个上行数据信道中的上行数据信道,第四上行数据信道不等于第一上行数据信道。将第一UCI调整到另一个上行数据信道上发送,可以提高UCI的传输可靠性,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,第四上行数据信道与第一时域资源在时域上不重叠,可以保证将第一UCI承载到不是网络设备通知的用于传输第一UCI的第四上行数据信道上,保证使用合适的上行数据信道发送第一UCI,以确保信息传输的可靠性。
作为一种可能的实施方式,第四上行数据信道包括的物理资源数量大于第一上行数据信道包括的物理资源数量,或者第四上行数据信道包括的时域符号数大于或等于(或者大于)第一阈值,或者第四上行数据信道包括的物理资源数量大于或等于(或者大于)第二阈值,或者将第一UCI承载到第四上行数据信道上的码率小于或等于(或者小于)第三阈值。可以将第一UCI调整到另一个物理资源数量更多的上行数据信道上发送,可以提高UCI的传输可靠性,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,第一UCI所占的物理资源为第一时域资源对应的上行控制信道中的物理资源。可见,可以将第一UCI调整到上行控制信道上进行传输,可以提高UCI的传输可靠性,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,可以丢弃第一上行数据信道或停止在第一上行数据信道上发送信息,可以避免上行数据信道与上行控制信道同一时间同时发送信息。
第二方面公开一种通信方法,该方法的执行主体可以是网络设备也可以是网络设备中的模块(例如,芯片),下面以网络设备为执行主体来进行描述。网络设备向终端设备发送第一控制信息,向终端设备发送第二控制信息,确定第一UCI所占的物理资源,通过第一UCI所占的物理资源接收来自终端设备的第一UCI。第一控制信息包括用于传输第一数据 包的第一物理资源的信息,第一物理资源对应K个上行数据信道,K个上行数据信道中每个上行数据信道分别用于传输一次第一数据包,K为正整数。第二控制信息包括用于传输第一上行控制信息UCI的第一时域资源的信息,第一时域资源与K个上行数据信道中的第一上行数据信道在时域上重叠。由于第一上行数据信道与用于确定第一TBS的上行数据信道集合不相同,第一TBS为第一数据包的TBS,或者第一上行数据信道包括的时域符号数小于(或者不大于)第一阈值,或者第一上行数据信道包括的物理资源数量小于(或者不大于)第二阈值,或者将第一UCI承载到第一上行数据信道上的码率大于(或者不小于)第三阈值,因此,确定第一上行数据信道超载,以便确定合适的第一UCI所占的物理资源,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,上行数据信道集合包括的物理资源数量大于第一上行数据信道包括的物理资源数量。
作为一种可能的实施方式,第一UCI所占的物理资源的数量对应于等效TBS,等效TBS与第一TBS不同。可见,第一UCI所占的物理资源的数量对应于等效TBS,而不是第一TBS,等效TBS与第一TBS不同,因此,可以解决得到的UCI所占的物理资源偏大的问题,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,第一UCI所占的物理资源的数量对应于等效TBS和第一上行数据信道包括的物理资源数量,等效TBS为对应于第一上行数据信道的TBS。由于等效TBS和第一上行数据信道包括的物理资源数量都是与第一上行数据信道包括的物理资源匹配的,因此,确定得到的第一UCI所占的物理资源的数量适中,从而避免了TBS偏大或物理资源数量偏小的问题,保障了第一UCI的传输可靠性,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,第一UCI所占的物理资源的数量对应于等效物理资源数量,等效物理资源数量与第一上行数据信道包括的物理资源数量不同。可见,第一UCI所占的物理资源的数量对应于等效物理资源数量,而不是第一上行数据信道包括的物理资源数量,等效物理资源数量与第一上行数据信道包括的物理资源数量不同,因此,可以解决得到的UCI所占的物理资源偏大的问题,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,第一UCI所占的物理资源的数量对应于等效物理资源数量和第一TBS,等效物理资源数量为上行数据信道集合包括的物理资源数量。由于第一TBS和等效物理资源数量都是与上行数据信道集合包括的物理资源数量匹配的,因此,确定得到的第一UCI所占的物理资源的数量适中,从而避免了TBS偏大或物理资源数量偏小的问题,保障了第一UCI的传输可靠性,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,第一UCI所占的物理资源的数量对应于第二上行数据信道包括的物理资源数量,第二上行数据信道与第一上行数据信道不同。可见,第一UCI所占的物理资源的数量对应于第二上行数据信道包括的物理资源数量,而不是第一上行数据信道包括的物理资源数量,第二上行数据信道包括的物理资源数量与第一上行数据信道包括的物理资源数量不同,因此,可以解决得到的UCI所占的物理资源偏大的问题,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,第一UCI所占的物理资源的数量对应于第二上行数据信道包括的物理资源数量和第一TBS,第二上行数据信道包括的物理资源数量用于确定K个上行 数据信道中任意一个上行数据信道上的UCI所占的物理资源的数量。对于一个UCI而言,尽管第二上行数据信道包括的物理资源数量与第一上行数据信道包括的物理资源未必匹配,但是,不论该UCI承载到K个上行数据信道中的哪个上行数据信道上,都可以保证其所占用的物理资源数量是相等的,因此,仍然可以达到保障UCI传输可靠性的效果,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,第一UCI所占的物理资源的数量对应于第一均衡参数,第一均衡参数与第二均衡参数不同。第二均衡参数为第一情况下用于确定第一UCI所占的物理资源的数量的均衡参数,第一情况为:上行数据信道集合与第一上行数据信道相同,或者第一上行数据信道包括的时域符号数不小于(或者大于)第一阈值,或者第一上行数据信道包括的物理资源数量不小于(或者大于)第二阈值,或者将第一UCI承载到第一上行数据信道上的码率不大于(或者小于)第三阈值的情况。或者,第二均衡参数为用于确定第三上行数据信道上的第二UCI所占的物理资源的数量的均衡参数,第三上行数据信道为K个上行数据信道中的上行数据信道,第三上行数据信道不等于第一上行数据信道。可见,第一UCI所占的物理资源的数量对应于第一均衡参数,而不是第二均衡参数,第一均衡参数与第二均衡参数不同,因此,可以解决得到的UCI所占的物理资源偏大的问题,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,可以向终端设备发送第三控制信息,第三控制信息包括第一字段,第一均衡参数和第二均衡参数均对应于第一字段,或者第一均衡参数和第二均衡参数均对应于第一字段通知的第一索引值。可见,第一均衡参数和第二均衡参数是网络设备通过同一控制信息中的同一字段或同一字段对应的索引值通知的。
作为一种可能的实施方式,第一UCI所占的物理资源的数量对应于第一上行数据信道包括的物理资源数量、第一TBS和第一均衡参数。在第一TBS和第一上行数据信道不匹配的情况下,可以通过调整均衡参数,弥补第一UCI所占的物理资源的数量,使用调整之后的第一均衡参数确定一个合适的第一UCI所占的物理资源的数量,保障第一UCI传输的可靠性,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,第一均衡参数大于第二均衡参数。在第一TBS和第一上行数据信道不匹配的情况下,使用更大的第一均衡参数可以提高第一UCI所占的物理资源的数量,保障第一UCI性能,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,第一UCI所占的物理资源为第一上行数据信道中的物理资源。
作为一种可能的实施方式,第一UCI所占的物理资源为第四上行数据信道中的物理资源,第四上行数据信道为K个上行数据信道中的上行数据信道,第四上行数据信道不等于第一上行数据信道。将第一UCI调整到另一个上行数据信道上发送,可以提高UCI的传输可靠性,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,第四上行数据信道与第一时域资源在时域上不重叠,可以保证将第一UCI承载到不是网络设备通知的用于传输第一UCI的第四上行数据信道上,保证使用合适的数据信道发送第一UCI,以确保信息传输的可靠性。
作为一种可能的实施方式,第四上行数据信道包括的物理资源数量大于第一上行数据 信道包括的物理资源数量,或者第四上行数据信道包括的时域符号数大于或等于(或者大于)第一阈值,或者第四上行数据信道包括的物理资源数量大于或等于(或者大于)第二阈值,或者将第一UCI承载到第四上行数据信道上的码率小于或等于(或者小于)第三阈值。可以将第一UCI调整到另一个物理资源数量更多的上行数据信道上发送,可以提高UCI的传输可靠性,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,第一UCI所占的物理资源为第一时域资源对应的上行控制信道中的物理资源。可见,可以将第一UCI调整到上行控制信道上进行传输,可以提高UCI的传输可靠性,从而可以提高信息传输的可靠性。
作为一种可能的实施方式,接收上行信息的上行数据信道不包括第一上行数据信道,或者,第一上行数据信道包括的物理资源中与第一时域资源在时域上重叠的部分不用于传输上行信息,可以避免上行数据信道与上行控制信道同一时间同时发送信息。
第三方面公开一种通信装置,该通信装置包括用于执行第一方面或第一方面的任一种实施例所公开的通信方法的单元,或者包括用于执行第二方面或第二方面的任一种实施例所公开的通信方法的单元。
第四方面公开一种通信装置,该通信装置可以是终端设备或者终端设备内的模块(例如,芯片)。该通信装置可以包括处理器,处理器和存储器相互耦合,存储器用于存储计算机程序或指令,处理器用于执行存储器中存储的计算机程序或指令,使得通信装置执行第一方面或第一方面的任一种实施例所公开的通信方法。
第五方面公开一种通信装置,该通信装置可以是网络设备或者网络设备内的模块(例如,芯片)。该通信装置可以包括处理器,处理器和存储器相互耦合,存储器用于存储计算机程序或指令,处理器用于执行存储器中存储的计算机程序或指令,使得通信装置执行第二方面或第二方面的任一种实施例所公开的通信方法。
第六方面公开一种可读存储介质,该可读存储介质上存储有程序,当该程序运行时,实现如第一方面或第一方面的任一种实施例所公开的通信方法,或者实现如第二方面或第二方面的任一种实施例所公开的通信方法。
第七方面公开一种通信***,该通信***包括上述第四方面的通信装置和上述第五方面的通信装置。
附图说明
图1是本发明实施例公开的一种网络架构示意图;
图2是本发明实施例公开的一种空口资源的示意图;
图3是本发明实施例公开的一种PUSCH上承载上行信息的示意图;
图4是本发明实施例公开的一种多次重复传输的时域资源图样示意图;
图5a是本发明实施例公开的一种K个PUSCH的示意图;
图5b是本发明实施例公开的另一种K个PUSCH的示意图;
图5c是本发明实施例公开的又一种K个PUSCH的示意图;
图5d是本发明实施例公开的又一种K个PUSCH的示意图;
图6是本发明实施例公开的一种通信方法的流程示意图;
图7是本发明实施例公开的一种UL-SCH和UCI传输示意图;
图8是本发明实施例公开的另一种UL-SCH和UCI传输示意图;
图9是本发明实施例公开的又一种UL-SCH和UCI传输示意图;
图10是本发明实施例公开的又一种UL-SCH和UCI传输示意图;
图11是本发明实施例公开的又一种UL-SCH和UCI传输示意图;
图12是本发明实施例公开的另一种通信方法的流程示意图;
图13是本发明实施例公开的一种通信装置的结构示意图;
图14是本发明实施例公开的另一种通信装置的结构示意图;
图15是本发明实施例公开的又一种通信装置的结构示意图;
图16是本发明实施例公开的一种终端设备的结构示意图;
图17是本发明实施例公开的另一种终端设备的结构示意图;
图18是本发明实施例公开的又一种终端设备的结构示意图。
具体实施方式
本发明实施例公开了一种通信方法及设备,用于提高信息传输的可靠性。以下分别进行详细说明。
为了更好地理解本发明实施例公开的一种通信方法及设备,下面先对本发明实施例使用的网络架构进行描述。请参阅图1,图1是本发明实施例公开的一种网络架构示意图。如图1所示,该网络架构可以包括一个或多个终端设备101(图1中示意出了6个)和网络设备102。图1中的网络设备102与6个终端设备101(即终端设备1-6)可以组成一个通信***,终端设备4-6也可以组成一个通信***。
终端设备101与网络设备102之间的通信包括上行(即终端设备101到网络设备102)通信和下行(即网络设备102到终端设备101)通信。在上行通信中,终端设备101,用于向网络设备102发送上行物理信道和上行信号。网络设备102,用于接收来自终端设备101的上行物理信道和上行信号。
上行物理信道可以包括随机接入信道(random access channel,RACH)、物理上行控制信道(physical uplink control channel,PUCCH)、PUSCH等。PUSCH可以承载数据,即上行共享数据(uplink shared channel,UL-SCH),也可以承载UCI,还可以承载UL-SCH和UCI。PUCCH可以承载UCI。上行物理信道也可以包括上行数据信道和上行控制信道。上行数据信道用于承载数据,可以为PUSCH。上行控制信道用于承载控制信息,可以为PUCCH。
上行信号可以包括探测参考信号(sounding reference signal,SRS)、PUCCH解调参考信号(de-modulation reference signal,DMRS)、PUSCH DMRS、上行相位噪声跟踪信号(phase noise tracking reference signal,PTRS)等。
在下行通信中,网络设备102,用于向终端设备101发送下行物理信道和下行信号。终端设备101,用于接收来自网络设备102的下行物理信道和下行信号。
下行物理信道可以包括物理广播信道(physical broadcast channel,PBCH)、物理下行 控制信道(physical downlink control channel,PDCCH)、物理下行共享信道(physical downlink shared channel,PDSCH)等。
下行信号可以包括主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、PDCCH DMRS、PDSCH DMRS、下行PTRS、信道状态信息参考信号(channel status information reference signal,CSI-RS)、小区信号(cell reference signal,CRS)、时域或频域跟踪参考信号(tracking reference signal,TRS)、定位参考信号(positioning reference signal,PRS)等。
终端设备101可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备102是终端设备通过无线方式接入到该移动通信***中的接入设备,可以是基站NodeB、演进型基站(evolved NodeB,eNB)、发送接收点(transmission reception point,TRP)、5G移动通信***中的下一代基站(next generation NodeB,gNB)、未来移动通信***中的基站或WiFi***中的接入节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
为了更好地理解本发明实施例公开的一种通信方法及设备,下面先对本发明实施例的应用场景进行描述。
1、5G NR空口资源
空口资源包括时域资源和频域资源,时域资源按照符号(symbol)进行划分,频域资源按照子载波(subcarrier)进行划分。资源单元(resource element,RE)是用于数据传输的最小资源单位,1个RE对应1个时域符号和1个频域子载波。传输时间间隔(transmission time interval,TTI)是用于承载数据信息或业务信息的时域颗粒度。1个TTI的长度可以为S个时域符号,也可以小于S个时域符号。S可以为12,也可以为14。1个TTI可以对应一个时隙,包括S个时域符号的TTI可以称为时隙(slot)或完整时隙(full slot),小于S个时域符号的TTI可以称为迷你时隙(mini-slot)或非时隙(non-slot)。对于普通(normal)循环前缀(cyclic prefix,CP),S=14,对于扩展(extended)CP,S=12。
一个TTI也称为一个传输机会(transmission occasion,TO),例如,一个数据包可以承载在由时域上的一个TTI以及频域上的至少一个物理资源块(physical resource block,PRB)组成的时频资源上。资源块(resource block,RB)是用于资源调度的基本单位,1个RB对应1个TTI中的多个子载波,即1个RB对应于多个频域上连续的子载波。请参阅图2,图2是本发明实施例公开的一种空口资源的示意图。如图2所示,横轴为时间(time),纵轴为频率(Freq),1个格子代表1个RE,1个TTI由n个时域符号组成,1个RB由1个TTI中的P个子 载波组成,n和P为正整数。时域符号可以为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以为单载波频分多址接入(single carrier frequency division multiplexing access,SC-FDMA)符号。例如,P=12。
2、免调度许可上行传输
5G NR***的上行数据传输包括基于调度(grant based,GB)的数据传输和免调度许可(grantfree,GF)的数据传输。
GB的上行数据传输中,在终端设备有业务到达并需要发送上行数据的情况下,需要先在PUCCH上向网络设备发送调度请求(scheduling request,SR),网络设备接收到SR后向终端设备发送调度PUSCH的上行(uplink,UL)授权(grant),终端设备接收到上行授权之后,在上行授权调度的上行资源上发送上行数据。GB虽然具有可靠性高、信道使用效率高等优点,但发送SR、等待上行授权调度、在上行授权调度的PUSCH上发送上行数据这一过程具有一定的时延。因此,为了降低时延,5G NR***引入了GF上行传输,网络设备可以预先配置和/或激活用于GF上行传输的GF资源,在终端设备有业务到达的情况下,可以不向网络设备发送SR,而直接在GF资源上发送上行数据信息。GF也可以称为无调度许可(grant-less)、配置调度(configured grant,CG)或无调度许可传输(transmission without grant,TWG)。
在GF传输方式下,网络设备可以将用于GF传输的资源通过半静态方式分配给终端设备,终端设备不需要向网络设备发送SR,也不需要在发送上行数据信息之前接收网络设备发送的上行授权,而是直接在网络设备配置和/或激活的PUSCH资源上发送上行数据即可。用于GF传输的时频资源、调制编码方式、导频信息等信息可以称之为GF参数,可以由网络设备通过高层信令配置,也可以由网络设备通过用于激活GF传输的上行授权,即半静态上行授权指示,例如:可以由配置调度无线网络临时标识(configured scheduling radio network temporary identifier,CS-RNTI)加扰的上行授权指示,还可以通过高层信令配置与半静态上行授权指示相结合的方法通知给终端设备。
网络设备通过上述方式将用于GF传输的时频资源或者说时间单元通知给终端设备可以称为网络设备将用于GF传输的时频资源配置给终端设备。终端设备在未被上行授权调度的情况下,在网络设备配置的用于GF传输的时频资源上使用网络设备配置的GF参数发送上行信息,称之为以GF方式发送上行信息。
3、PUSCH上的UCI映射
PUSCH上可以承载UL-SCH而不承载UCI,也可以承载UCI而不承载UL-SCH,还可以既承载UL-SCH又承载UCI。UCI是终端设备反馈的上行控制信息,可以包括混合自动重传请求(hybrid automatic repeat request,HARQ)-确认应答(acknowledgement,ACK)、SR或信道状态信息(channel state information,CSI)中的至少一种。
在PUSCH上承载UCI和UL-SCH的情况下,终端设备可以将编码后的UCI以速率匹配的方式与UL-SCH复用后映射到PUSCH上,也可以将编码后的UCI通过打孔(puncture)已经映射到PUSCH上的UL-SCH的方式映射到PUSCH上,从而实现与UL-SCH的复用。在PUSCH上承载UCI而不承载UL-SCH的情况下,终端设备将编码后的UCI映射到PUSCH上。请参阅图3,图3是本发明实施例公开的一种PUSCH上承载上行信息的示意图。如图3所示,上行 信息包括UCI和UL-SCH,UCI包括DMRS和HARQ-ACK。PUSCH的第一个时域符号(符号#0)承载的是DMRS,HARQ-ACK(即A/N)映射在DMRS符号之后的第一个时域符号(符号#1)上,UL-SCH映射在PUSCH中的剩余时域符号上。
4、PUSCH的多次重复机制
为了增强传输可靠性,5G NR的PUSCH还引入了多次重复机制,也就是说将同一数据包在K个时域资源(或对应于K个时域资源的K个PUSCH)上重复发送K次,即将同一数据包进行K次重复传输,也即在K个PUSCH中每个PUSCH用于承载同一数据包的一次传输,也即K个时域资源中每个时域资源用于承载对同一数据包的一次传输。上述K个时域资源中任意一个时域资源或者说用于承载K次重复传输中的任意一次传输的资源称之为一个TO。
对于GB的传输,用于K次重复传输的K个时域资源是网络设备通过上行授权调度的。对于GF的传输,用于K次重复传输的K个时域资源是网络设备配置的。
在5G NR的进一步演进中,一种新引入的重复图样是:K次重复传输中的任意一次传输承载在迷你时隙上,K次重复传输中有至少两个传输在一个完整时隙内。请参阅图4,图4是本发明实施例公开的一种多次重复传输的时域资源图样示意图。如图4所示,K=8,终端设备占用时隙n~n+3对同一数据重复传输8次,每次重复传输承载在n~n+3中对应时隙中的迷你时隙(对应符号0~6或符号7~13)上。
5、PUSCH上的UL-SCH的TBS计算
在5G NR***中,UL-SCH对应的TBS是根据PUSCH上的物理资源数量(如PUSCH上的总RE数目)、PUSCH上的开销、调制与编码方式(modulation and coding scheme,MCS)计算得到的。PUSCH上的开销可以包括DMRS所占RE的数目和其它开销所占RE的数目。在PUSCH的多次重复机制中,由于K个PUSCH用于对同一数据包进行重复传输,因此,TBS需要保持相同。在K个PUSCH中的每个PUSCH包括的物理资源数量相同的情况下,基于任意一个PUSCH计算的TBS都相同,因此,可以基于K个PUSCH中的第一个PUSCH的物理资源数量计算TBS。
举例说明,以K个PUSCH中任一个PUSCH(称为PUSCH#1)为例进行说明,终端设备可以先确定PUSCH#1中每个PRB包含的有效RE数目,之后可以根据PUSCH#1包括的PRB个数确定PUSCH#1包括的有效RE数目(N RE),之后可以根据网络设备配置或指示的MCS对应的调制方式(Q m)和码率(R)确定PUSCH#1可以承载数据包的***信息比特数目,即数据包对应的TBS。例如,TBS可以根据N RE·R·Q m得到。每个PRB包含的有效RE数目是每个PRB中包括的RE总数目减去开销(例如上述DMRS和其他开销)所占RE的数目。
在UCI与多次重复传输UL-SCH的PUSCH中的一个或多个PUSCH发生碰撞时,终端设备将UCI承载到这一个或多个PUSCH中的一个PUSCH上发送。PUSCH上用于传输UCI的物理资源数量(即RE个数),即UCI所占的物理资源的数量,可以根据UCI的大小,即UCI载荷大小(payload size)、PUSCH上可以用于承载UCI的物理资源数量、PUSCH上UL-SCH对应的TBS和均衡参数确定的。
在UCI为HARQ-ACK的情况下,UCI所占的物理资源的数量的计算公式可以表示如公式(1):
Figure PCTCN2020081451-appb-000001
其中,Q′ ACK为UCI所占的物理资源的数量,O ACK为HARQ-ACK的比特数(即HARQ-ACK的载荷大小),L ACK为HARQ-ACK的循环冗余校验(cyclic redundancy check,CRC)比特数。
Figure PCTCN2020081451-appb-000002
为均衡参数,可以看作PUSCH上其它信息(如UL-SCH)的码率与UCI的码率的比值,由网络设备通知,为大于0的数。
Figure PCTCN2020081451-appb-000003
为PUSCH上的UL-SCH对应的TBS,C UL-SCH为PUSCH上的UL-SCH包括的码块个数,K r为PUSCH上的UL-SCH中第r个码块的比特数。
Figure PCTCN2020081451-appb-000004
为PUSCH上可以用于承载UCI的物理资源数量,
Figure PCTCN2020081451-appb-000005
为PUSCH上的第l个时域符号上可以用于承载UCI的物理资源数量,
Figure PCTCN2020081451-appb-000006
为PUSCH上总的时域符号个数(包括承载DMRS的符号个数)。在l为承载DMRS的时域符号的情况下,
Figure PCTCN2020081451-appb-000007
在l为不承载DMRS的时域符号的情况下,
Figure PCTCN2020081451-appb-000008
Figure PCTCN2020081451-appb-000009
为PUSCH在符号l上包括的总物理资源数目(即子载波数目),
Figure PCTCN2020081451-appb-000010
为PUSCH在符号l上的PTRS所占的物理资源数目。α为资源缩放因子,l 0为PUSCH上第一个DMRS符号之后第一个不承载DMRS的时域符号。
在UCI为CSI部分(part)1的情况下,UCI所占的物理资源的数量的计算公式可以表示如公式(2):
Figure PCTCN2020081451-appb-000011
其中,Q′ CSI-1为UCI所占的物理资源的数量,O CSI-1为CSI part 1的比特数(即CSI part 1的载荷大小),L CSI-1是CSI part 1的CRC比特数,Q' ACK是用于传输或潜在用于传输HARQ-ACK的物理资源数量。潜在用于传输HARQ-ACK的物理资源是指在某些情况下(如HARQ-ACK比特数目不超过2比特)预留给HARQ-ACK传输的预留资源,终端设备实际可以占用该预留资源传输HARQ-ACK,也可以不占用该预留资源传输HARQ-ACK(例如,在该预留资源上映射UL-SCH)。
在UCI为CSI part 2的情况下,UCI所占的物理资源的数量的计算公式可以表示如公式(3):
Figure PCTCN2020081451-appb-000012
其中,Q′ CSI-2为UCI所占的物理资源的数量,O CSI-2为CSI part 2的比特数(即CSI part 2的载荷大小),L CSI-2是CSI part 2的CRC比特数,Q' ACK是用于传输或潜在用于传输HARQ-ACK的物理资源数量,Q' CSI-1是CSI part 1所占的物理资源数量。
终端设备可以根据公式(1)、(2)或(3)中的至少一个计算得到UCI所占的物理资源的数量,然后,根据UCI的编码前信息(例如UCI信息序列a 0,a 1,a 2,a 3,...,a A-1)以及UCI所占的物理资源的数量(即承载UCI的物理资源数量),对UCI的编码前信息进行编码。对于相同的UCI的编码前信息,在UCI所占的物理资源的数量较大的情况下,对应的UCI编码信息的码率较低,UCI可靠性较高;在UCI所占的物理资源的数量较小的情况下,对应的UCI编码信息的码率较高,UCI可靠性较低。
终端设备可以根据当前PUSCH上用于承载UCI的物理资源数量和当前PUSCH上的UL-SCH数据包对应的TBS计算UCI所占的物理资源的数量。对于PUSCH多次重复传输,在每次重复传输的PUSCH所对应的用于数据传输的物理资源数量相同的情况下,可以按照现有的计算UL-SCH数据包的TBS的方法,即基于K个PUSCH中的第一个PUSCH包括的物理资源数量计算TBS,可以得到合适的UCI所占的物理资源的数量。
但是,在5G NR进一步演进中,有些场景下会出现多次重复传输的PUSCH中的其中一个PUSCH超载(overbook),即计算得到的实际在该PUSCH上传输的数据包的TBS大于该PUSCH适合传输的TBS(例如,信道条件所支持的TBS),从而对该PUSCH上UCI所占的物理资源的数量的确定带来影响。
场景1:K个PUSCH包括一个或多个较大的PUSCH和一个或多个较小的PUSCH,较大的PUSCH包含的用于数据传输的物理资源数量大于较小的PUSCH包含的用于数据传输的物理资源数量。
场景1-1:通常而言,K次重复传输会尽量使用等长的PUSCH,也称为正常长度的PUSCH或者说名义上的PUSCH(nominal PUSCH)。但是考虑到K次重复传输的起始时刻和PUSCH长度都是灵活的,一个时隙内的最后一个正常长度的PUSCH结束时刻与这个时隙结束边界之间可能存在一些落单符号,无法组成正常长度的PUSCH,而是形成一个小于正常PUSCH时域长度的缝隙(gap)。为了尽可能地利用这些落单符号,可以将该缝隙用于传输一个短PUSCH,其时域长度小于其他正常长度的PUSCH。此时,该短PUSCH(即较小的PUSCH)的有效RE数目小于正常长度的PUSCH(即较大的PUSCH)的有效RE数目。请参阅图5a,图5a是本发明实施例公开的一种K个PUSCH的示意图。如图5a所示,K=6,这6个PUSCH的起始符号为时隙#1的符号#1,网络设备通知的每个nominal PUSCH的时域长度为4个符号,在第3个nominal PUSCH结束之后,会在时隙#1的边界留一个2个符号的缝隙。为了合理地利用资源,可以将原本的第4个nominal PUSCH的资源划分为2个跨时隙边界的短PUSCH,即第4个PUSCH和第5个PUSCH,各自占用2个符号。第4个PUSCH和第5个PUSCH包含的用于数据传输的物理资源数目少于其他正常PUSCH包含的用于数据传输的物理资源数目。
场景1-2:终端设备可以根据时隙边界或符号格式确定两段或两段以上不等长的PUSCH,每一段PUSCH承载数据包的一次传输。符号格式可以为网络设备通知的上行符号、下行符号或灵活符号。例如,网络设备可以通知一段长的总时域资源,在该总时域资源跨K-1个时隙边界的情况下,形成K次重复传输的PUSCH,任意相邻两个PUSCH的边界为时隙边界;在该总时域资源跨K段上行区域的情况下,形成K次重复传输的PUSCH,每个PUSCH占用一段上行区域,上行区域是指由一个或多个连续的且被网络设备通知为上行符号或非下行符号的时域符号组成的时域资源。请参阅图5b,图5b是本发明实施例公开的另一种K个PUSCH的示意图。如图5b所示,网络设备通知的时域资源总长度为14个符号,起始符号为时隙#1的符号#5,由于总长度跨时隙#1和时隙#2的边界,因此,被时隙边界划分为K=2个不等长的PUSCH,时隙边界前面的PUSCH的长度为10个符号,时隙边界后面的PUSCH的长度为4个符号,后面的PUSCH(较小的PUSCH)包含的用于数据传输的物理资源数量小于前面的PUSCH(较大的PUSCH)包含的用于数据传输的物理资源数量。
场景1-3:网络设备通知K个PUSCH中每个PUSCH所占的时域资源,其中,该K个PUSCH中包括至少两个不等长的PUSCH。例如,受限于PUSCH的起始时刻、结束时刻、上行区域的长度等因素,该K个PUSCH中有的PUSCH的起始时刻较晚,或者结束时刻较早,或者所在的上行区域包括的时域长度较短,则网络设备通知的该PUSCH的时域长度较短(较小的PUSCH);有的PUSCH的起始时刻较早,或者结束时刻较晚,或者所在的上行区域包括的时域长度较长,则网络设备通知的该PUSCH的时域长度较长(较大的PUSCH)。较大的PUSCH包含的用于数据传输的物理资源数量大于较小的PUSCH包含的用于数据传输的物理资源数量。
对于场景1-1、1-2或1-3,在终端设备基于较大的PUSCH计算TBS的情况下,该TBS对应的数据包承载到较小的PUSCH上,会导致较小的PUSCH对应的码率偏大(大于该数据包承载到较大的PUSCH上对应的码率),即计算得到的TBS大于适合于较小的PUSCH承载的TBS,也即计算得到的TBS大于适配较小的PUSCH资源的TBS,此时称较小的PUSCH为超载的PUSCH,如图5a中的第4个PUSCH和第5个PUSCH,以及图5b中的第2个PUSCH。
场景2:为了取得更好的传输可靠性以及调度灵活性,对于K次重复传输的PUSCH,可以基于K个PUSCH中的多个PUSCH(例如,M个,M大于1且小于或等于K)包括的总物理资源数量计算数据包的TBS,并将对应该TBS的数据包承载到K个PUSCH中每个PUSCH上以实现重复传输。在K个PUSCH中每个PUSCH包括的物理资源数量相同的情况下,基于K个PUSCH包括的总物理资源数量计算得到的TBS是基于1个PUSCH包括的物理资源数量计算得到的TBS的K倍。请参阅图5c,图5c是本发明实施例公开的又一种K个PUSCH的示意图。如图5c所示,K=4,终端设备可以基于这4个PUSCH包括的总物理资源数量计算数据包的TBS,并将对应该TBS的数据包重复地承载到这4个PUSCH中的每个PUSCH进行传输。
在终端设备基于多个PUSCH计算UL-SCH的TBS的情况下,计算得到的TBS可能过大以至于将该数据包映射到单个PUSCH所对应的码率偏高。例如,单个PUSCH包括的物理资源资源可以承载的编码后信息数量为1000比特,基于单个PUSCH计算得到的TBS为200比特,对应的码率为0.2,而基于4个PUSCH计算得到的TBS为800比特,对应的码率为0.8。即计算得到的TBS大于适合于单个PUSCH承载的TBS,也即计算得到的TBS大于适配单个PUSCH 包括的物理资源数量的TBS,此时称单个PUSCH为超载的PUSCH。
对于场景1和场景2,在K个PUSCH中某个PUSCH为超载的PUSCH的情况下,一方面,这个超载的PUSCH上传输UL-SCH的实际码率偏高,可靠性会受损;另一方面,在这个超载的PUSCH上需要承载UCI的情况下,根据公式(1)、(2)和(3)可知,用于计算UL-SCH的TBS的物理资源数量大于这个超载PUSCH所包括的物理资源数量,因此,用于计算UCI所占的物理资源的数量的UL-SCH对应的
Figure PCTCN2020081451-appb-000013
与这个超载PUSCH的物理资源数量
Figure PCTCN2020081451-appb-000014
不匹配:UL-SCH对应的TBS偏大,会导致计算得到的用于传输UCI的物理资源数量偏小,从而导致UCI编码码率偏高,传输可靠性降低。在一种极端的情况下,这个超载的PUSCH上映射的UL-SCH或UCI会由于码率过高(例如,超过5G NR***支持的最大码率,如772/1024、948/1024、1等)而丢失***比特。
请参阅图5d,图5d是本发明实施例公开的又一种K个PUSCH的示意图。如图5d所示,K=2,这两个PUSCH包括的物理资源数量不等长,长PUSCH的物理资源数量是短PUSCH的物理资源数量的2倍,且在这两个PUSCH上重复传输的数据包的TBS根据长PUSCH的物理资源数量计算得到。在有一个UCI(UCI#1)需要承载到长PUSCH上的情况下,UCI所占的物理资源的数量为N个RE,码率(coding rate,CR)为0.4。同样地,在有一个同等载荷大小的UCI(UCI#2)需要承载到短PUSCH上的情况下,UCI所占的物理资源的数量为N/2个RE,CR为0.8。因此,承载到短PUSCH上的UCI性能会受损。
这个超载的PUSCH上传输UL-SCH导致性能受到的损伤可以通过K个PUSCH中其他PUSCH对数据包进行重复传输进行弥补。另外,由于K个PUSCH中的其他PUSCH可以使用不同的冗余版本(redundancy version,RV),即使超载的PUSCH上丢失***比特,也可以通过其他PUSCH上的不同RV版本补发该丢失的***比特。
然而,在超载的PUSCH上承载UCI的情况下,由于UCI可能只在超载的PUSCH上传输一次,或者即使UCI可以进行多次重复传输,但现有5G NR***并不支持UCI在多次重复传输中使用多个不同RV版本。因此,PUSCH超载导致的UCI的可靠性损失很难弥补。因此,在PUSCH超载的情况下,如何提高UCI传输的可靠性已成为一个亟待解决的技术问题。
为了更好地理解本发明实施例公开的一种通信方法及设备,下面先对本发明实施例中的一些描述进行解释。
1、名词缩写和解释
上行数据信道(如K个上行数据信道中的任意一个上行数据信道、第一上行数据信道、上行数据信道集合中的任意一个上行数据信道、第二上行数据信道、第三上行数据信道、第四上行数据信道、第一等效上行数据信道、第二等效上行数据信道等):用于承载上行数据信息的上行信道。上行数据信道也可以用于承载UCI(如第一UCI、第二UCI等)。具体的,上行数据信道可以为PUSCH。
上行控制信道:用于承载上行控制信息的上行信道。具体地,上行控制信道可以为PUCCH。
第一数据包的TBS:#T1,即第一TBS,对应于上行数据信道集合,或者说根据上行数据信道集合确定。
等效TBS:#T2,对应于第一上行数据信道,或者说根据第一上行数据信道确定。
第一上行数据信道包括的总物理资源数量:#Z1,包括第一上行数据信道的所有RE。例如,
Figure PCTCN2020081451-appb-000015
表示第一上行数据信道包括的PRB数目,
Figure PCTCN2020081451-appb-000016
表示一个PRB在频域上包括的子载波数目,
Figure PCTCN2020081451-appb-000017
表示第一上行数据信道包括的时域符号个数。
上行数据信道集合包括的总物理资源数量:#Z2,包括上行数据信道集合中所有上行数据信道的所有RE。例如,
Figure PCTCN2020081451-appb-000018
Ω为上行数据信道集合,n PRB(j)表示上行数据信道集合中的第j个上行数据信道包括的PRB数目,
Figure PCTCN2020081451-appb-000019
表示上行数据信道集合中的第j个上行数据信道被包括的时域符号个数。
确定第一TBS#T1的物理资源数量:#P1,为上行数据信道集合中用于确定第一TBS#T1的物理资源数量,#P1可以小于#Z2,也可以等于#Z2。
确定等效TBS#T2的物理资源数量:#P2,为第一上行数据信道中用于确定等效TBS#T2的物理资源数量,#P2可以小于#Z1,也可以等于#Z1。
实际用于发送第一UCI的物理资源:#q,即第一UCI实际所占的物理资源。
实际用于发送第一UCI的物理资源数量:#Q,即第一UCI所占的物理资源的数量,对应于#q。
第一上行数据信道中用于计算第一UCI所占的物理资源的数量#Q的物理资源数量:#M1,也称为第一上行数据信道中可以用于承载UCI的物理资源数量,#M1可以小于#Z1,也可以等于#Z1。
用于计算第一UCI所占的物理资源的数量#Q的等效物理资源数量:#M2。例如,#M2为上行数据信道集合中用于计算等效物理资源数量的物理资源数量,也称为上行数据信道集合中可以用于承载UCI的物理资源数量。#M2可以小于#Z2,也可以等于#Z2。
第二上行数据信道用于计算第一UCI所占的物理资源的数量#Q的物理资源数量:#M3,也称为第二上行数据信道中可以用于承载UCI的物理资源数量。
2、数据包
数据包(如第一数据包)是指调制编码之前的载荷(payload),可以称为传输块(transport block,TB)、媒体接入控制协议数据单元(medium access control protocol data unit,MAC PDU)、UL-SCH或UL-SCH载荷。一个数据包可以包括一个或多个码块(code block,CB)。
3、K次重复传输
K为正整数。
例如,K为1。
再例如,K为大于或等于2的整数。
应理解,K个上行数据信道中每个上行数据信道用于对同一数据包(例如,第一数据 包)进行K次数据传输,即K个上行数据信道用于终端设备对该数据包进行K次重复传输,也即K个上行数据信道中每个上行数据信道用于承载该数据包的一次传输。具体地,K个上行数据信道中不同上行数据信道上所承载的载荷相同,即K个上行数据信道中不同上行数据信道上传输的数据都是对同一数据包(的载荷)进行编码后的数据,也即K个上行数据信道中不同上行数据信道承载的信息所对应的编码前信息相同(例如,都是第一数据包)。例如,终端设备对数据包进行编码生成母码,K个上行数据信道中不同上行数据信道承载的信息可以包括母码中的全部信息或部分信息。不限定K个上行数据信道中不同上行数据信道上发送的编码后信息是否相同,即网络设备可以通知终端设备在K个上行数据信道中不同的上行数据信道上发送数据包时使用相同或不同的冗余版本号,或者使用相同或不同的DMRS,或者使用相同或不同的扰码进行加扰,也即虽然网络设备配置或指示终端设备在K个上行数据信道中不同的上行数据信道上发送数据包时使用不同的冗余版本号、使用不同的DMRS序列或使用不同的扰码进行加扰,但K个上行数据信道中不同的上行数据信道上所承载的数据包都对应相同的载荷。
应理解,数据包的重复(repetition)传输也可以称为对数据包的聚合(aggregation)或时隙聚合。
应理解,K个上行数据信道在时域上互不重叠。
进一步地,K个上行数据信道在时域上可以连续,也可以不连续。K个上行数据信道在时域上连续是指K个上行数据信道中任意两个相邻上行数据信道之间没有空隙,K个上行数据信道在时域上不连续是指K个上行数据信道中存在至少两个相邻的上行数据信道在时域上不连续(即存在空隙)。
应理解,K个上行数据信道位于同一载波或同一带宽部分(bandwidth part,BWP)。
一种情况下,K个上行数据信道的时域长度都相等。
另一种情况下,在K大于或等于2的情况下,K个上行数据信道中包括至少两个时域长度不等的上行数据信道。
时域资源A(如第一时域资源)与时域资源B(如第一上行数据信道)在时域上重叠(overlap)可以是完全重叠,也可以是部分重叠。完全重叠是指时域资源A完全包括时域资源B,或者时域资源B完全包括时域资源A。部分重叠是指时域资源A包括时域资源B中的一部分时域资源而不包括另一部分时域资源,或者时域资源B包括时域资源A中的一部分时域资源而不包括另一部分时域资源。
在一种情况下,第一时域资源与第一上行数据信道在时域上重叠包括:第一时域资源与K个上行数据信道中的第一上行数据信道在时域上重叠,而与K个上行数据信道中的其它上行数据信道不重叠。
在另一种情况下,第一时域资源与第一上行数据信道在时域上重叠包括:第一时域资源除了与K个上行数据信道中的第一上行数据信道在时域上重叠之外,还与K个上行数据信道中除第一上行数据信道之外的其它至少一个上行数据信道在时域上重叠。在第一时域资源与K个上行数据信道中的多个上行数据信道在时域上同时重叠的情况下,第一上行数据信道可以为K个上行数据信道中与第一时域资源在时域上重叠的多个上行数据信道中的第一个上行数据信道(即最早的上行数据信道)。
4、有效信息大小/TBS
终端设备可以根据第一数据包的TBS(即第一TBS)确定第一上行数据信道上的物理资源对应的物理资源数量#Q,即终端设备可以根据第一数据包的有效信息大小确定第一上行数据信道上的物理资源数量#Q。第一数据包的有效信息大小对应于第一数据包的TBS,即第一数据包的有效信息大小由第一数据包的TBS确定。
应理解,第一数据包的有效信息大小是指第一数据包编码前的信息大小或比特数。第一数据包的有效信息大小可以为第一数据包包括的所有CB的码块大小(code block size,CBS)之和,即公式(1)、公式(2)和公式(3)中的
Figure PCTCN2020081451-appb-000020
第一数据包的有效信息大小也可以为第一数据包的载荷大小。第一数据包的有效信息大小还可以为第一数据包的TBS。
应理解,第一数据包的有效信息可以称为第一数据包的载荷。
应理解,UL-SCH(例如第一数据包对应的UL-SCH)的载荷或UCI(例如第一UCI或第二UCI)的载荷为调制编码前的信息。载荷可以为信息比特(information bits),也可以为***信息比特(systematic bits),还可以为***信息比特和CRC比特。UL-SCH的载荷可以是码块切分之前的信息(TB信息),也可以是码块切分之后的信息(CB信息)。UCI的***信息比特可以称为UCI比特序列(bit sequence),UL-SCH的***信息比特可以称为传输块比特(transport block bits)。载荷序列可以表示为a 0,a 1,a 2,a 3,...,a A-1、b 0,b 1,b 2,b 3,...,b B-1
Figure PCTCN2020081451-appb-000021
或c 0,c 1,c 2,c 3,...,c K-1。载荷的比特数目即载荷大小。
例如,第一数据包的信息比特进行码块切分之后形成多个码块,因此,第一TBS可以对应于第一数据包包括的所有CB的CBS之和
Figure PCTCN2020081451-appb-000022
或者说第一数据包对应的
Figure PCTCN2020081451-appb-000023
是根据第一TBS得到的。因此,第一UCI占用的物理资源数量可以是根据第一TBS得到的。
类似地,根据等效TBS确定第一上行数据信道上的物理资源对应的物理资源数量#Q,即根据等效TBS对应的有效信息大小确定第一上行数据信道上的物理资源数量#Q。等效TBS对应的有效信息大小对应于等效TBS,即该等效TBS对应的有效信息大小由等效TBS确定。等效TBS对应的有效信息大小
Figure PCTCN2020081451-appb-000024
是指对等效TBS对应的虚拟数据包的载荷大小或者说虚拟数据包编码前的信息大小或比特数,可以为等效TBS对应的至少一个等效CB的CBS之和(例如,对该等效TBS对应的虚拟数据包进行码块切分后形成的所有等效CB的CBS之和)。等效TBS对应的有效信息大小也可以为该等效TBS。
5、物理资源
物理资源也称为时频资源。
物理资源数量可以称为RE个数,也可以称为调制符号个数(the number of coded modulation symbols)。上行数据信道(如K个上行数据信道中的任意一个上行数据信道、第一上行数据信道、上行数据信道集合中的任意一个上行数据信道、第二上行数据信道、第三上行数据信道、第四上行数据信道、第一等效上行数据信道、第二等效上行数据信道等) 包括的物理资源是上行数据信道上映射上行信息(如UCI或UL-SCH)的时频资源,物理资源数量为对该上行信息进行调制之后所对应的调制符号的数目。
用于确定TBS的上行数据信道或上行数据信道集合包括的物理资源数量可以包括以下情况:
情况1-1:第一数据包的TBS根据上行数据信道集合包括的物理资源数量确定。
进一步地,上行数据信道集合不同于第一上行数据信道。
可选地,上行数据信道集合为一个上行数据信道(称为参考上行数据信道)。即,第一数据包的TBS根据K个上行数据信道中的参考上行数据信道包括的物理资源数量确定,参考上行数据信道不同于第一上行数据信道。
可选地,上行数据信道集合为J个上行数据信道,J为大于1且小于或等于K的整数。即,第一数据包的TBS根据K个上行数据信道中的J个上行数据信道确定,即第一数据包的TBS根据K个上行数据信道中的J个上行数据信道包括的物理资源数量之和确定。应理解,当J<K的情况下,该J个上行数据信道可以包括第一上行数据信道也可以不包括第一上行数据信道。当J=K的情况下,该上行数据信道集合为该K个上行数据信道。
例如,确定第一数据包TBS的物理资源数量为#P1。#P1也可以称为上行数据信道集合包括的用于确定数据包的TBS的物理资源数量。在上行数据信道集合为参考上行数据信道的情况下,#P1为参考上行数据信道上用于确定数据包的TBS的物理资源数量;在上行数据信道集合包括J个上行数据信道的情况下,#P1为上行数据信道集合中所有上行数据信道上用于确定数据包的TBS的物理资源数量之和。其中,J为大于1且小于或等于K的整数。
情况1-2:等效TBS根据第一上行数据信道包括的物理资源数量确定,或者根据第一等效上行数据信道包括的物理资源数量确定。
结合上述情况1-1和情况1-2,对于任意一个上行数据信道(如K个上行数据信道中的任意一个上行数据信道、第一上行数据信道、上行数据信道集合中的任意一个上行数据信道、第二上行数据信道、第三上行数据信道、第四上行数据信道、第一等效上行数据信道等),该上行数据信道包括的物理资源称为该上行数据信道上用于确定数据包的TBS的物理资源。该上行数据信道包括的用于确定数据包的TBS的物理资源可以是该上行数据信道包括的全部物理资源,也可以是该上行数据信道包括的部分物理资源。具体地,该部分物理资源为该上行数据信道上用于承载调制符号的物理资源的数目。更具体地,该调制符号可以为用于承载数据信息(如UL-SCH)的调制符号,也可以为用于承载数据信息和控制信息的调制符号。
举例说明,确定第一TBS#T1的物理资源数量为#P1,匹配上行数据信道集合。在#P1=#Z2的情况下,表明确定第一TBS#T1的上行数据信道集合包括的物理资源是上行数据信道集合包括的全部物理资源。在#P1<#Z2的情况下,表明上行数据信道集合中用于确定第一TBS#T1的物理资源是上行数据信道集合中的部分物理资源。
类似地,确定等效TBS#T2的物理资源数量为#P2,匹配第一上行数据信道。在#P2=#Z1的情况下,表明确定等效TBS#T2的第一上行数据信道包括的物理资源是第一上行数据信道包括的全部物理资源;在#P2<#Z1的情况下,表明第一上行数据信道中确定等效TBS#T2的物理资源是第一上行数据信道中的部分物理资源。#P2也可以称为第一上行数据信道上用于 确定数据包的TBS的物理资源数量。
具体地,对于上述任意一个上行数据信道,该上行数据信道包括的用于确定数据包的TBS的物理资源为该上行数据信道包括的部分物理资源的情况下,该部分物理资源不包括该上行数据信道中被网络设备通知为开销RE的物理资源。开销RE可以包括用于承载DMRS的RE,也可以包括其他开销,例如由高层信令xOverhead通知的开销RE。开销RE还可以包括用于承载SRS的RE。即用于确定TBS的上行数据信道包括的部分物理资源为上行数据信道中的全部物理资源去除开销RE之后的物理资源。
更具体地,该上行数据信道包括的用于确定数据包的TBS的物理资源数目N RE可以为min(156,N' RE)·n PRB,也可以为N' RE·n PRB,还可以为
Figure PCTCN2020081451-appb-000025
min(156,N' RE)·n PRB和N' RE·n PRB代表该上行数据信道的部分物理资源,
Figure PCTCN2020081451-appb-000026
代表该上行数据信道的全部物理资源。N' RE表示该上行数据信道中的一个PRB包含的有效RE数目,n PRB表示该上行数据信道包括的PRB数目。N' RE可以为
Figure PCTCN2020081451-appb-000027
其中,
Figure PCTCN2020081451-appb-000028
表示一个PRB在频域上的子载波数目,具体可以为12;
Figure PCTCN2020081451-appb-000029
表示该上行数据信道包括的符号个数,
Figure PCTCN2020081451-appb-000030
表示该上行数据信道的一个PRB中DMRS所占RE的数目(也可以称为DMRS开销),
Figure PCTCN2020081451-appb-000031
表示该上行数据信道的一个PRB中上其它开销所占RE的数目,可以为高层参数PUSCH-ServingCellConfig中的xOverhead参数配置的每个PRB的开销所占RE的数目。N RE也可以称为该上行数据信道上用于确定数据包的TBS的物理资源数量。
应理解,在J>1的情况下,上行数据信道集合用于确定第一TBS#T1时,可以将上述N RE替换为上行数据信道集合中所有上行数据信道上用于确定数据包的TBS的物理资源数量之和,或者,基于上行数据信道集合中所有上行数据信道上用于确定数据包的TBS的物理资源数量之和进行计算(例如,该物理资源数量之和对上行数据信道集合中的上行数据信道个数做平均)后,替换上述N RE
用于确定UCI所占的物理资源的数量,可以包括以下几种情况:
情况2-1:第一上行数据信道上用于确定第一UCI所占的物理资源的数量#Q的物理资源数量#M1,也称为第一上行数据信道上可以用于承载UCI的物理资源数量(the number of resource elements that can be used for transmission of UCI),即
Figure PCTCN2020081451-appb-000032
这里的
Figure PCTCN2020081451-appb-000033
为第一上行数据信道中的时域符号个数,l为第一上行数据信道中的时域符号序号,
Figure PCTCN2020081451-appb-000034
为第一上行数据信道中的第l个时域符号上可以用于承载UCI的物理资源数量。
情况2-2:上行数据信道集合中用于确定第一UCI所占的物理资源的数量#Q的物理资源 数量#M2,也称为上行数据信道集合中可以用于承载UCI的物理资源数量,即上行数据信道集合中每个上行数据信道上可以用于承载UCI的物理资源数量之和。#M2可以为
Figure PCTCN2020081451-appb-000035
Ω为上行数据信道集合,j为上行数据信道集合中的第j个上行数据信道,
Figure PCTCN2020081451-appb-000036
为该第j个上行数据信道中的时域符号个数,l为该第j个上行数据信道中的时域符号序号,
Figure PCTCN2020081451-appb-000037
为该第j个上行数据信道中的第l个时域符号上可以用于承载UCI的物理资源数量。在上行数据信道集合为一个上行数据信道(即参考上行数据信道,此时|Ω|=1)的情况下,#M2也可以写成
Figure PCTCN2020081451-appb-000038
其中,
Figure PCTCN2020081451-appb-000039
为上行数据信道集合对应的该上行数据信道中的时域符号个数,
Figure PCTCN2020081451-appb-000040
为上行数据信道集合对应的该上行数据信道中的第l个符号上可以用于承载UCI的物理资源数量。#M1与#M2可以相等,也可以不等。
情况2-3:第二上行数据信道上用于确定第一UCI所占的物理资源的数量#Q的物理资源数量#M3,也称为第二上行数据信道中可以用于承载UCI的物理资源数量。
情况2-4:第三上行数据信道上用于确定第二UCI所占的物理资源的数量#Q”的物理资源数量,也称为第三上行数据信道中可以用于承载UCI的物理资源数量。
应理解,对于任意一个上行数据信道(如K个上行数据信道中的任意一个上行数据信道、第一上行数据信道、上行数据信道集合中的任意一个上行数据信道、第二上行数据信道、第三上行数据信道、第四上行数据信道、第二等效上行数据信道等),上行数据信道上可以用于承载UCI的物理资源数量(如#M1或#M2或#M3等)可以等于该上行数据信道上实际承载UCI的物理资源数量#Q,也可以不等于该上行数据信道实际承载UCI的物理资源数量#Q。例如,#M1或#M2或#M3可以大于或等于#Q。
终端设备根据上述任意一个上行数据信道或上行数据信道集合包括的物理资源数量确定UCI(如第一UCI、第二UCI等)所占的物理资源的数量,可以称为根据该任意一个上行数据信道或上行数据信道集合包括的物理资源确定UCI所占的物理资源的数量。物理资源可以包括物理资源对应的时域资源位置、频域资源位置、码域资源或物理资源数量中的至少一种。
结合上述情况2-1~情况2-4,对于上述任意一个上行数据信道,该上行数据信道包括的物理资源也称为该上行数据信道上可以用于承载UCI的物理资源。具体地,该任意一个上行数据信道上包括的可以用于承载UCI的物理资源可以是该上行数据信道包括的全部物理资源,也可以是该上行数据信道包括的部分物理资源。具体地,该部分物理资源可以为该上行数据信道上用于承载调制符号的物理资源的数目。更具体地,该调制符号可以为包括用于承载数据信息和控制信息的调制符号。
举例说明,第一上行数据信道上可以用于承载UCI的物理资源数量为#M1,第一上行数据信道的总物理资源数量为#Z1。在#M1=#Z1的情况下,表明第一上行数据信道上可以用于承载UCI的物理资源是第一上行数据信道包括的全部物理资源,在#M1<#Z1的情况下,表明第一上行数据信道上可以用于承载UCI的物理资源是第一上行数据信道包括的部分物理资源。再例如,上行数据信道集合上可以用于承载UCI的总物理资源数量为#M2,上行数据 信道集合的总物理资源数量为#Z2,在#M2=#Z2的情况下,表明上行数据信道集合上可以用于承载UCI的总物理资源是上行数据信道集合包括的全部物理资源,在#M2<#Z2的情况下,表明上行数据信道集合上可以用于承载UCI的总物理资源是上行数据信道集合包括的部分物理资源。
应理解,第一上行数据信道上可以用于承载UCI的物理资源数量#M1可以等于第一上行数据信道上用于确定数据包的TBS的物理资源数量#P2,也可以不等于#P2。
类似地,上行数据信道集合上可以用于承载UCI的物理资源数量#M2可以等于上行数据信道集合上用于确定数据包的TBS的物理资源数量#P1,也可以不等于#P1。
具体地,对于上述任意一个上行数据信道,该上行数据信道包括的全部或部分物理资源包括从该上行数据信道上第一个DMRS符号之后第一个不承载DMRS的时域符号(含)至该上行数据信道上最后一个时域符号(含)之间的物理资源,即该全部或部分物理资源不包括该上行数据信道上第一个DMRS符号之前的时域符号所包括的物理资源,也即该全部或部分物理资源包括从该上行数据信道上第一个时域符号(含)至该上行数据信道上最后一个时域符号(含)之间的物理资源。
进一步地,该上行数据信道包括的部分物理资源可以以下两种情况:
一种情况下,该上行数据信道包括的部分物理资源不包括该上行数据信道上的参考信号所占的物理资源。例如,不包括参考信号所占的时域符号或RE,参考信号可以是DMRS、SRS或PTRS中的至少一种。具体地,在上行数据信道上的参考信号包括DMRS的情况下,该部分物理资源不包括DMRS所占的时域符号包括的物理资源;在该上行数据信道上的参考信号包括PTRS的情况下,该部分物理资源不包括该PTRS所占的物理资源。
另一种情况下,该上行数据信道包括的部分物理资源不包括该上行数据信道上用于传输或潜在用于传输HARQ-ACK的物理资源。例如,在该上行数据信道所承载的UCI为CSI,或者为CSI和SR的情况下,如果该CSI为CSI part 1,则该部分物理资源不包括该上行数据信道上用于传输或潜在用于传输HARQ-ACK的物理资源;如果该CSI为CSI part 2,则该部分物理资源不包括该上行数据信道上用于传输或潜在用于传输HARQ-ACK的物理资源,且不包括该上行数据信道上用于传输CSI part 1的物理资源。
进一步地,该上行数据信道上可以用于承载UCI的物理资源数量为
Figure PCTCN2020081451-appb-000041
Figure PCTCN2020081451-appb-000042
Figure PCTCN2020081451-appb-000043
对于该上行数据信道上承载DMRS的时域符号l,
Figure PCTCN2020081451-appb-000044
Figure PCTCN2020081451-appb-000045
Figure PCTCN2020081451-appb-000046
为0。对于该上行数据信道上不承载DMRS的时域符号l,
Figure PCTCN2020081451-appb-000047
Figure PCTCN2020081451-appb-000048
Figure PCTCN2020081451-appb-000049
Figure PCTCN2020081451-appb-000050
Figure PCTCN2020081451-appb-000051
Figure PCTCN2020081451-appb-000052
为该上行数据信道在符号l上包括的总物理资源数目,
Figure PCTCN2020081451-appb-000053
Figure PCTCN2020081451-appb-000054
Figure PCTCN2020081451-appb-000055
为该上行数据信道在符号l上的PTRS所占的物理资源数目。
基于图1所示的网络架构,本发明实施例公开了一种通信方法,图6为该通信方法的流程示意图。下面对该通信方法的步骤进行详细描述。可以理解的是,本申请中由网络设备执行的功能也可以由网络设备中的模块(例如,芯片)来执行,终端设备执行的功能也可以由终端设备中的模块(例如,芯片)来执行。
601、网络设备向终端设备发送第一控制信息。
网络设备可以向终端设备发送第一控制信息,第一控制信息可以包括用于传输第一数据包的第一物理资源的信息,第一物理资源对应K个上行数据信道,K个上行数据信道中每个上行数据信道分别用于传输一次第一数据包。例如,K个上行数据信道可以为K个PUSCH。
对应地,终端设备接收来自网络设备的第一控制信息。
在一种实现方式中,第一控制信息用于通知传输第一数据包的第一物理资源的信息,可以是第一控制信息动态调度终端设备在K个上行数据信道上对第一数据包进行K次重复传输。对应地,网络设备可以通过动态上行授权发送第一控制信息,或者,第一控制信息包括动态上行授权。动态上行授权可以为特定的无线网络临时标识(radio network temporary identifier,RNTI)加扰的上行授权,如小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)或调制编码方式小区无线网络临时标识(modulation and coding schemecell radio network temporary identifier,MCS-C-RNTI)加扰的上行授权。
在另一种实现方式中,第一控制信息用于通知传输第一数据包的第一物理资源的信息,可以是第一控制信息用于配置终端设备在K个上行数据信道上对第一数据包进行K次传输,即第一控制信息用于配置终端设备在K个上行数据信道上以GF方式对第一数据包进行K次传输。对应地,网络设备可以通过高层信令和/或半静态上行授权发送第一控制信息,即第一控制信息可以包括高层信令和/或半静态上行授权。高层信令可以为无线资源控制(radio resource control,RRC)信令,半静态上行授权可以为CS-RNTI加扰的上行授权。
在又一种实现方式中,第一控制信息用于通知传输第一数据包的第一物理资源的信息,可以是K个上行数据信道中的一部分数据传输可以为网络设备动态调度终端设备发送第一数据包的上行数据信道,另一部分数据传输可以为网络设备配置终端设备以GF方式发送第一数据包的上行数据信道。对应地,第一控制信息可以包括配置终端设备以GF方式发送第一数据包的配置信息,也可以包括调度终端设备发送第一数据包的调度信息。
应理解,上述动态调度或者配置都可以称为调度。
可选地,该K个上行数据信道可以为网络设备通过第一控制信息(例如,UL grant)调度终端设备对第一数据包进行多次重复传输的所有上行数据信道或部分上行数据信道。
可选地,该K个上行数据信道可以为网络设备通过第一控制信息配置终端设备对该第一数据包进行多次重复数据传输的所有上行数据信道或部分上行数据信道。
需要说明的是,该K个上行数据信道是由网络设备通过一条控制信息,即第一控制信息配置或指示的,而不是由网络设备通过多条控制信息分多次配置或指示的。例如,在第一控制信息为上行授权(如动态上行授权、半静态上行授权)的情况下,上行授权为一个上行授权。即K个上行数据信道是由同一个上行授权调度或配置的,而不是由多个不同的上行授权分别调度或配置的。再例如,在第一控制信息为高层信令的情况下,K个上行数 据信道为同一个高层信令配置的,而不是多个不同的高层信令分别配置的或同一高层信令分多次配置的。
应理解,上述步骤601也可以替换为:
601’、网络设备可以向终端设备发送第一控制信息,第一控制信息可以包括用于传输第一数据包的第一物理资源的信息,第一物理资源对应K个上行数据信道。
进一步地,K个上行数据信道用于对第一数据包进行传输。其中,K个上行数据信道可以共同用于对第一数据包进行一次传输,也可以分别对第一数据包进行K次传输。
602、网络设备向终端设备发送第二控制信息。
网络设备可以向终端设备发送第二控制信息,第二控制信息可以包括用于传输第一UCI的第一时域资源的信息,第一时域资源与K个上行数据信道中的第一上行数据信道在时域上重叠,即第一时域资源与K个上行数据信道中的第一上行数据信道的时域资源重叠。其中,第一控制信息与第二控制信息可以是同一控制信息,也可以是不同的控制信息。
对应地,终端设备接收来自网络设备的第二控制信息。
应理解,第一时域资源与K个上行数据信道中的第一上行数据信道在时域上重叠,也可以表述为:第一时域资源对应于K个上行数据信道中的第一上行数据信道。
应理解,第二控制信息可以包括用于传输第一UCI的第一时域资源的信息,第一时域资源与K个上行数据信道中的第一上行数据信道在时域上重叠,也可以表述为:第二控制信息用于通知终端设备在第一上行数据信道上发送第一UCI。也就是说,第二控制信息不是显式地指示第一时域资源,而是通知在K个上行数据信道中的第一上行数据信道发送第一UCI。例如,第二控制信息等于第一控制信息,第一控制信息为上行授权,该上行授权中的字段触发终端设备在被该上行授权调度的上行数据信道上发送第一UCI,终端设备接收到该上行授权后,可以确定网络设备通知在第一上行数据信道上发送第一UCI。
第二控制信息可以通知终端设备在第一时域资源(即第一时间单元)上发送第一UCI,即第二控制信息用于配置或触发终端设备在第一时域资源上发送第一UCI。
进一步地,第二控制信息还用于通知第一UCI的第一频域资源的信息,第二控制信息通知的第一UCI对应的第一频域资源可以与第一上行数据信道或K个上行数据信道位于同一载波,也可以与K个上行数据信道位于不同载波。第一UCI可以与第一上行数据信道或K个上行数据信道位于同一BWP,也可以与K个上行数据信道位于不同BWP。
在一种实现方式中,第二控制信息可以包括配置第一UCI的高层信令,也可以包括配置或触发终端设备发送第一UCI的半静态下行控制信息(downlink control information,DCI),例如,CS-RNTI加扰的下行授权(downlink grant,DL grant)或CS-RNTI加扰的上行授权。在第一UCI包括周期CSI或SR的情况下,该周期CSI或SR为高层信令配置终端设备发送的信息,用于发送该CSI或SR的时间单元(例如时隙)为周期性的。网络设备也可以通过第二控制信息配置基于半持续调度(semi persistant scheduling,SPS)的下行数据信息(即SPS PDSCH)给该终端设备,该SPS PDSCH是周期性的,此时,终端设备针对该周期性的SPS PDSCH反馈的HARQ-ACK也是周期性的,因此,在第一UCI包括HARQ-ACK的情况下,可以认为HARQ-ACK是第二控制信息配置终端设备发送的。
在另一种实现方式中,第二控制信息可以包括触发或者说指示终端设备发送第一UCI 的控制信令。具体地,第二控制信息可以包括物理层的DCI,例如,上行授权或下行授权。更具体地,该上行授权或下行授权可以为由除CS-RNTI以外的其他RNTI加扰的,例如,C-RNTI或MCS-C-RNTI加扰。在第一UCI包括非周期CSI的情况下,非周期CSI为下行授权或上行授权触发终端设备发送的。网络设备也可以通过第二控制信息调度PDSCH给该终端设备,终端设备检测到第二控制信息后反馈对应的HARQ-ACK,因此,在第一UCI包括HARQ-ACK的情况下,可以认为HARQ-ACK是第二控制信息触发终端设备发送的。
应理解,UCI(如第一UCI或第二UCI)包括终端设备向网络设备发送的上行控制信息,可以为HARQ-ACK,也可以为HARQ-ACK和SR,还可以为SR,还可以为CSI,还可以为CSI和SR,还可以为HARQ-ACK、CSI和SR。上述CSI可以是CSI part 1,也可以是CSI part 2,还可以是CSI part 1和CSI part 2。
这里的CSI part 1可以是全部的CSI part 1,也可以是部分的CSI part 1。相应地,这里的CSI part 2可以是全部的CSI part 2,也可以是部分的CSI part 2。
第一上行数据信道超载的条件可以包括以下条件中的至少一种条件。
条件1:第一上行数据信道可以与用于确定第一TBS#T1的上行数据信道集合不相同(或者说不相等)。也可以说,第一上行数据信道不同于用于确定第一TBS#T1的上行数据信道集合,或者,第一上行数据信道包括的物理资源数量#Z1或#M1与用于确定第一TBS#T1的物理资源数量#P1不匹配(或者说不相等),或者,第一上行数据信道包括的物理资源数量#P2与用于确定第一TBS#T1的物理资源数量#P1不相等。
应理解,该上行数据信道集合可以为K个上行数据信道中的一个上行数据信道(即参考上行数据信道),也可以为K个上行数据信道中的J个上行数据信道,J为大于1的整数。
例如,在上行数据信道集合为K个上行数据信道中的一个参考上行数据信道的情况下,用于确定第一TBS的参考上行数据信道不同于第一上行数据信道。在上行数据信道集合为K个上行数据信道中的J个上行数据信道的情况下,用于确定第一TBS的上行数据信道集合自然不等于第一上行数据信道。
具体地,用于确定第一TBS的物理资源数量#P1不等于第一上行数据信道上可以用于确定数据包的TBS的物理资源数量(第一上行数据信道的N RE),例如,在#P1小于#Z2的情况下,#P1不等于#P2。或者,#P1不等于第一上行数据信道包括的总物理资源#Z1,例如,在#P1等于#Z2的情况下,#P1不等于#Z1。
进一步地,用于确定第一TBS的物理资源数量#P1可以大于第一上行数据信道包括的物理资源数量,即上行数据信道集合包括的物理资源数量大于第一上行数据信道包括的物理资源数量,也可以说上行数据信道集合包括的时域符号个数大于第一上行数据信道包括的时域符号个数。第一上行数据信道包括的物理资源数量是指第一上行数据信道包括的用于确定TBS的物理资源数量。#P1是上行数据信道集合中每个上行数据信道中用于确定TBS的物理资源数量之和;其中,在上行数据信道集合为一个参考上行数据信道的情况下,#P1为参考上行数据信道中用于确定TBS的物理资源数量。其中,上行数据信道集合中任意一个上行数据信道中用于确定TBS的物理资源数量的描述可以参考上面的描述。
在第一TBS#1根据上行数据信道集合中的一个参考上行数据信道或J个上行数据信道确定的情况下,参考上行数据信道或J个上行数据信道中用于确定数据包的TBS的物理资源 数量(例如#P1)大于第一上行数据信道中用于确定数据包的TBS的物理资源数量(例如#P2)。此时,由于TBS偏大,或者说上行数据信道集合中用于确定第一数据包的TBS的物理资源数量#P1大于第一上行数据信道上用于确定#Q的物理资源数量#M1(或者大于#P2或#Z1),两者不匹配,根据公式(1)、(2)或(3)计算的#Q偏小。因此,为了避免第一UCI的性能损失,在这种情况下可以使用步骤603中的方法确定第一UCI所占的物理资源。
用于确定第一TBS的上行数据信道集合不等于第一上行数据信道,如图5a所示,上行数据信道集合为6个上行数据信道中第一个上行数据信道,第一上行数据信道为6个上行数据信道中第4个上行数据信道,第4个上行数据信道包含的物理资源数目小于第一个上行数据信道包含的物理资源数目。如图5b所示,上行数据信道集合为2个上行数据信道中第一个上行数据信道,第一上行数据信道为2个上行数据信道中第二个上行数据信道,第二个上行数据信道包含的物理资源数目小于第一个上行数据信道包含的物理资源数目。在上行数据信道集合为K个上行数据信道中多个上行数据信道的情况下,这多个上行数据信道包括的总物理资源数量大于第一上行数据信道包括的物理资源数量,即这多个上行数据信道包括的符号总数大于第一上行数据信道包括的时域符号个数。这多个上行数据信道可以包括第一上行数据信道,也可以不包括第一上行数据信道。如图5c所示,第一上行数据信道为4个上行数据信道中第一个上行数据信道,上行数据信道集合为4个上行数据信道,其包含的总物理资源数量大于第一上行数据信道包含的物理资源数量。
条件2:第一上行数据信道包括的时域符号数小于(或者不大于)第一阈值。
在第一上行数据信道包括的时域符号个数较少的情况下,可能导致第一TBS相比于第一上行数据信道过大。如5a所示,K=6,第一上行数据信道为6个上行数据信道中的第4个上行数据信道,包含的时域符号个数较小,因此,用来承载根据其他上行数据信道(例如,K个上行数据信道中的第一个上行数据信道)计算的TBS相比于第一上行数据信道过大。
应理解,第一阈值可以是预定义的,也可以是网络设备配置的,还可以是网络设备指示的。
条件2还可以为:第一上行数据信道包括的时域符号个数小于(或者不大于)K个上行数据信道中目标上行数据信道包括的时域符号个数。目标上行数据信道不等于第一上行数据信道。除了将第一上行数据信道包括的时域符号数与第一阈值相比,还可以与一个目标上行数据信道包括的时域符号数相比,从而判断第一上行数据信道包括的时域符号数是否较少。
例如,目标上行数据信道可以是K个上行数据信道中时域符号个数最多的上行数据信道。
再例如,第一上行数据信道可以为K个上行数据信道中时域符号个数最少的上行数据信道。
条件3:第一上行数据信道包括的物理资源数量小于(或者不大于)第二阈值。
类似地,在第一上行数据信道包括的物理资源数量较少的情况下,可能导致第一TBS相比于第一上行数据信道过大。
应理解,第二阈值可以是预定义的,也可以是网络设备配置的,还可以是网络设备指示的。
类似地,条件3还可以为:第一上行数据信道包括的物理资源数量可以小于K个上行数据信道中目标上行数据信道包括的物理资源数量。该目标上行数据信道不等于第一上行数据信道。
例如,目标上行数据信道可以是K个上行数据信道中时域符号个数最多的上行数据信道。
再例如,第一上行数据信道可以为K个上行数据信道中时域符号个数最少的上行数据信道。
条件4:将第一UCI承载到第一上行数据信道上的码率大于(或者不小于)第三阈值。
在TBS过大而第一上行数据信道的物理资源数量过小的情况下,有可能会出现第一UCI承载到第一上行数据信道上时会丢失UCI的***信息比特的情况下。这种情况下,只能在第一上行数据信道上发送第一UCI的部分***信息比特,即使这部分UCI能够被网络设备全部成功接收,由于仍然还有另一部分UCI信息未被发送,因此,网络设备无法获取到完整的第一UCI的载荷,导致UCI传输失败。
根据第一TBS确定的实际发送第一UCI的物理资源为#q,这里的码率是指将第一UCI映射到物理资源#q上所对应的码率。具体地,这个码率可以是第一UCI的载荷在第一上行数据信道对应的调制阶数下,编码之后映射到物理资源上对应的码率。第一上行数据信道对应的调制阶数可以称为第一数据包对应的调制阶数,是网络设备通知的针对第一上行数据信道或K个上行数据信道的调制阶数。在第一UCI的载荷大小为#A、物理资源的数量为#Q和第一上行数据信道对应的调制阶数为#B的情况下,第一UCI承载到第一上行数据信道上对应的码率为#A/(#Q*#B)。
举例说明,第一UCI的载荷大小为120比特,物理资源数量为48个RE,调制方式为QPSK(调制阶数为2),第一UCI承载到第一上行数据信道上对应的码率为120/48/2=1.25。在第三阈值为1的情况下,第一UCI承载到第一上行数据信道上对应的码率可以大于(或者不小于)第三阈值。
应理解,第三阈值可以是预定义的,也可以是网络设备配置的,还可以是网络设备指示的。
类似地,条件4还可以为:将第一UCI承载到第一上行数据信道上对应的码率大于(或者不小于)将第一UCI承载到K个上行数据信道中目标上行数据信道对应的码率。
例如,目标上行数据信道可以为K个上行数据信道中,将同等载荷大小的UCI承载到上行数据信道上对应的码率最小的上行数据信道。
再例如,第一上行数据信道也可以为K个上行数据信道中将同等载荷大小的UCI承载到上行数据信道上对应的码率最大的上行数据信道。
应理解,该目标上行数据信道可以是预定义的,也可以是网络设备配置的上行数据信道,还可以是网络设备指示的上行数据信道。
应理解,该目标上行数据信道可以为K个上行数据信道中的一个或多个上行数据信道。
在另一个实施例中,可以去掉第一上行数据信道超载的条件,即在第一上行数据信道未超载的情况下,也可以使用步骤603中的方法1-方法3确定第一UCI所占的物理资源,以提高第一UCI的传输可靠性。
具体地,第一上行数据信道不超载具体可以包括以下条件中的至少一种条件:用于确定第一数据包的TBS的物理资源数量小于(或者不大于)第一上行数据信道包括的物理资源数量;或者,上行数据信道集合等于第一上行数据信道;或者,第一上行数据信道包括的时域符号个数大于(或者不小于)第一阈值;或者,第一上行数据信道包括的物理资源数量大于(或者不小于)第二阈值;或者,将第一UCI承载到第一上行数据信道上对应的码率小于(或者不大于)第三阈值。虽然上述情况未必影响第一UCI的物理资源数量以及传输可靠性,但是由于#T1(或用于计算#T1的#P1)和#M1(或#Z1)不匹配,根据公式(1)、(2)或(3),使用#T1和#M1计算的第一UCI的#Q偏大。为了避免计算得到的第一UCI所占的物理资源的数量过大而导致第一上行数据信道上资源浪费的问题,也可以使用步骤603中的方法1-方法3确定第一UCI所占的物理资源。
应理解,在去掉第一上行数据信道超载的条件的情况下,上述步骤602可以替换为:
602’、网络设备向终端设备发送第二控制信息,第二控制信息包括用于传输第一UCI的第一时域资源的信息,第一时域资源与K个上行数据信道中的第一上行数据信道在时域上重叠。
进一步地,第一数据包的TBS根据上行数据信道集合确定。更进一步地,上行数据信道集合可以与第一上行数据信道相同,也可以与第一上行数据信道不相同。
603、终端设备确定第一UCI所占的物理资源。
终端设备接收到来自网络设备的第一控制信息和第二控制信息之后,可以确定第一UCI所占的物理资源。在步骤602中描述的第一上行数据信道超载或未超载的情况下,均可以通过以下三种方法确定第一UCI所占的物理资源#q。
方法1:修正用于计算第一UCI所占的物理资源的数量#Q。
通过应用场景可知,终端设备可以使用#T1、#M1和第二均衡参数确定第一UCI在第一上行数据信道上所占的物理资源的数量#Q。例如,第一上行数据信道为公式(1)、(2)或(3)中的上行数据信道(PUSCH),第一数据包为公式(1)、(2)或(3)中的上行数据信道上的UL-SCH,#T1为公式(1)、(2)或(3)中的
Figure PCTCN2020081451-appb-000056
Figure PCTCN2020081451-appb-000057
对应的TBS,第一上行数据信道的#M1或第一上行数据信道的#Z1为公式(1)、(2)或(3)中的
Figure PCTCN2020081451-appb-000058
第二均衡参数为公式(1)、(2)或(3)中的
Figure PCTCN2020081451-appb-000059
在方法1中,可以通过修正这三个参数中的任一参数避免计算得到的#Q偏小。
在方法1中,进一步地,第一UCI承载在第一上行数据信道上,即物理资源#q位于第一上行数据信道上中。
方法1具体可以包括以下方法1-1、1-2、1-3、1-4。
方法1-1:根据等效TBS#T2确定第一UCI所占的物理资源的数量#Q。
一种情况下,可以根据等效TBS#T2确定第一UCI所占的物理资源的数量#Q,即根据等效TBS#T2对应的有效信息大小确定第一UCI所占的物理资源的数量#Q,等效TBS#T2与第一TBS#T1不同。
应理解,为了避免确定的第一UCI所占的物理资源的数量#Q偏小,终端设备可以使用等效TBS#T2确定第一UCI所占的物理资源的数量#Q,该等效TBS#T2不同于第一数据包的TBS,即第一TBS,从而可以达到调整#Q的效果,避免第一UCI传输可靠性受损的问题。
进一步地,等效TBS#T2可以小于第一TBS#T1。
具体地,等效TBS#T2可以为网络设备通知的,可以是网络设备直接配置或指示的,也可以是根据网络设备配置或指示的其他信息确定的。网络设备可以配置或指示用于确定等效TBS的上行数据信道的信息,例如,网络设备配置或指示用于计算等效TBS#T2的第一等效上行数据信道,终端设备可以根据第一等效上行数据信道确定等效TBS,或者说根据第一等效上行数据信道包括的物理资源数量确定等效TBS。第一等效上行数据信道可以为一个上行数据信道,也可以为多个上行数据信道;在第一等效上行数据信道为多个上行数据信道的情况下,第一等效上行数据信道包括的物理资源数量为第一等效上行数据信道中每个上行数据信道所包括的用于确定TBS的物理资源数量之和。第一等效上行数据信道可以是K个上行数据信道中的上行数据信道,也可以不是K个上行数据信道中的上行数据信道,还可以一部分为K个上行数据信道中的上行数据信道,另一部分不是K个上行数据信道中的上行数据信道。第一等效上行数据信道也可以是根据预设规则确定的。预设规则包括:第一等效上行数据信道可以为K个上行数据信道中第k个上行数据信道,也可以为K个上行数据信道中包括的物理资源数量或时域符号个数最多的上行数据信道,还可以为K个上行数据信道中包括的物理资源数量或时域符号个数最少的上行数据信道。k为大于或等于1且小于或等于K的整数。
进一步的,第一等效上行数据信道不同于上行数据信道集合。也就是说,终端设备使用不同于上行数据信道集合的第一等效上行数据信道计算等效TBS,从而等效TBS不等于第一数据包的第一TBS。进而,终端设备使用不同于第一TBS的等效TBS确定的第一UCI所占的物理资源的数量,从而达到了调整#Q的效果,确保了第一UCI传输的可靠性。
应理解,等效TBS#T2是根据第一等效上行数据信道上包括的物理资源数量确定的,具体是指,等效TBS#T2是根据第一等效上行数据信道上包括的用于确定TBS的物理资源数量确定的。
进一步地,第一等效上行数据信道包括的物理资源数量小于上行数据信道集合包括的物理资源数量。在这种情况下,等效TBS#T2小于第一数据包对应的TBS#T1。
另一种情况下,可以根据等效TBS#T2确定第一UCI所占的物理资源的数量#Q,等效TBS#T2为根据第一上行数据信道确定的TBS,即确定等效TBS#T2的物理资源数量#P2对应于第一上行数据信道。具体地,等效TBS#T2是根据第一上行数据信道包括的物理资源数量#P2确定的,或者说等效TBS#T2是根据第一上行数据信道包括的用于确定TBS的物理资源数量#P2确定的。
应理解,由于用于确定等效TBS#T2的上行数据信道为第一上行数据信道,因此等效TBS与用于确定第一UCI所占的物理资源的数量#Q的#M1是匹配的,从而使用等效TBS和第一上行数据信道包括的物理资源数量#M1确定的道的#Q是适中的,避免了根据不匹配的#T1和#M1计算得到的#Q偏大或偏小的问题。
应理解,等效TBS#T2为根据第一上行数据信道上包括的物理资源数量#P2确定的,而 不根据上行数据信道集合中包括的物理资源数量#P1确定的,或者说,不根据上行数据信道集合中包括的物理资源中除第一上行数据信道包括的物理资源以外的物理资源确定的。
应理解,此时,#T2可以等于#T1,也可以不等于#T1。
进一步地,终端设备使用等效TBS#T2和第一上行数据信道包括的物理资源数量#M1确定第一UCI所占的物理资源的数量#Q。
具体地,第一上行数据信道包括的物理资源数量#M1是指第一上行数据信道中可以用于承载UCI的物理资源数量。应理解,这里的等效TBS#T2可以理解为一个虚拟的数据包对应的TBS大小,这个虚拟数据包用于计算等效TBS#T2,而并不用于终端设备生成实际的数据包以及实际的数据传输。
进一步地,第一上行数据信道包括的物理资源数量小于上行数据信道集合包括的物理资源数量,例如#P2小于#P1,在这种情况下,等效TBS#T2小于第一数据包对应的TBS#T1。
请参阅图7,图7是本发明实施例公开的一种UL-SCH和UCI传输示意图。如图7所示,K=2,第一上行数据信道为K个上行数据信道中的较晚的上行数据信道,上行数据信道集合为K个上行数据信道中较早的上行数据信道,第一TBS#T1根据较早上行数据信道包括的物理资源数量计算得到,第一时域资源与较晚的上行数据信道重叠,因此,第一UCI承载到较晚的第一上行数据信道上。但是,第一TBS#T1不是根据第一上行数据信道计算得到的,和第一上行数据信道的物理资源数量不匹配。因此,为了计算得到适中的第一UCI所占的物理资源的数量#Q,终端设备根据第一上行数据信道包括的物理资源计算得到虚拟数据包的等效TBS#T2(#T2<#T1),并使用#T2以及第一上行数据信道包括的可以用于承载UCI的物理资源数量#M1确定#Q。
具体地,
Figure PCTCN2020081451-appb-000060
对应于等效TBS或者说是根据等效TBS确定的,例如
Figure PCTCN2020081451-appb-000061
为等效TBS对应的有效信息大小或者说该等效TBS对应的至少一个等效CB的CBS之和,则第一UCI的#Q可以根据
Figure PCTCN2020081451-appb-000062
计算得到,如下面公式表示,其中,其他参数的定义参见公式(1)、(2)和(3)对应的描述。
在第一UCI为HARQ-ACK的情况下,根据等效TBS#T2和第一上行数据信道包括的物理资源数量#M1确定第一UCI所占的物理资源的数量#Q的计算公式可以表示如下,#Q代表Q′ ACK,或者说#Q由Q′ ACK得到:
Figure PCTCN2020081451-appb-000063
或者
Figure PCTCN2020081451-appb-000064
在第一UCI为CSI part 1的情况下,根据等效TBS#T2和第一上行数据信道包括的物理资源数 量#M1确定第一UCI所占的物理资源的数量#Q的计算公式可以表示如下,#Q代表Q′ CSI-1,或者说#Q由Q′ CSI-1得到:
Figure PCTCN2020081451-appb-000065
或者
Figure PCTCN2020081451-appb-000066
在第一UCI为CSI part 2的情况下,根据等效TBS#T2和第一上行数据信道包括的物理资源数量#M1确定第一UCI所占的物理资源的数量#Q的计算公式可以表示如下,#Q代表Q′ CSI-2,或者说#Q由Q′ CSI-2得到:
Figure PCTCN2020081451-appb-000067
或者
Figure PCTCN2020081451-appb-000068
方法1-2:根据等效物理资源数量#M2确定第一UCI所占的物理资源的数量#Q。
一种情况下,等效物理资源数量#M2与第一上行数据信道包括的物理资源数量不同,即等效物理资源数量#M2与第一上行数据信道包括的物理资源数量不相等。
也就是说,并不是根据第一上行数据信道所包括的物理资源数量#M1计算#Q,而是使用一个不同于#M1的等效物理资源数量#M2计算#Q。由于#M2不同于#M1,将#M2替换#M1带入#Q的计算公式,可以达到调整#Q的效果,避免计算得到的#Q偏大或偏小。
进一步地,等效物理资源数量#M2可以大于#M1。
具体地,该等效物理资源数量#M2可以为网络设备通知的物理资源数量,可以是网络设备直接配置或指示的。例如,可以是网络设备直接配置或指示的物理资源数量的数值。也可以是根据网络设备配置或指示的其他信息确定的。例如,网络设备配置或指示用于计算等效物理资源数量#M2的第二等效上行数据信道,终端设备可以根据第二等效上行数据信道包括的物理资源数量确定等效物理资源数量#M2。第二等效上行数据信道可以为一个上行数据信道,也可以为多个上行数据信道;在第二等效上行数据信道为多个上行数据信道的情况下,#M2为第二等效上行数据信道中每个上行数据信道所包括的用于承载UCI信息的物理资源数量之和。第二等效上行数据信道可以为K个上行数据信道中的上行数据信道,也可以不是K个上行数据信道中的上行数据信道,还可以一部分为K个上行数据信道中的上行数据信道,另一部分不是K个上行数据信道中的上行数据信道。第二等效上行数据信道也可以根据预设规则确定。预设规则包括:第二等效上行数据信道可以为K个上行数据信道中第k个上行数据信道,也可以为K个上行数据信道中包括的物理资源数量或时域符号个数最多的上行数据信道,还可以为K个上行数据信道中包括的物理资源数量或时域符号个数最少的上行数据信道。k为大于或等于1且小于或等于K的整数。
应理解,第二等效上行数据信道包括的物理资源数量是指第二等效上行数据信道中可以用于承载UCI的物理资源数量。
进一步地,第二等效上行数据信道不同于第一上行数据信道。也就是说,终端设备使用不同于第一上行数据信道的第二等效上行数据信道确定#Q,从而达到了调整#Q的效果,避免计算得到的#Q偏大或偏小,确保了第一UCI传输的可靠性和有效性。
另一种情况下,等效物理资源数量#M2为上行数据信道集合包括的物理资源数量。
应理解,上行数据信道集合不同于第一上行数据信道。
应理解,此时,#M2可以等于#M1,也可以不等于#M1。
应理解,等效物理资源数量#M2为上行数据信道集合包括的物理资源数量。具体地,等效物理资源数量#M2为上行数据信道集合中可以用于承载UCI的物理资源数量,或者说上行数据信道集合中每个上行数据信道上可以用于承载UCI的物理资源数量之和。
进一步地,终端设备根据等效物理资源数量#M2和第一TBS#T1确定第一UCI所占的物理资源的数量#Q。
具体地,第一数据包的TBS是根据上行数据信道集合包括的的用于确定TBS的物理资源数量#P1确定的。
应理解,为了避免确定的第一UCI所占的物理资源的数量#Q偏大或偏小,终端设备可以使用上行数据信道集合包括的物理资源#M2确定第一UCI所占的物理资源的数量#Q,因此,第一TBS#T1与用于确定第一UCI所占的物理资源的数量#Q的#M2是匹配的,从而使用#T1和#M2确定的道的#Q是适中的,避免了根据不匹配的#T1和#M1计算得到的#Q偏大或偏小的问题。
进一步地,上行数据信道集合包括的物理资源数量大于第一上行数据信道包括的物理资源数量,例如#M2大于#M1。
请参阅图8,图8是本发明实施例公开的另一种UL-SCH和UCI传输示意图。如图8所示,K=2,第一上行数据信道为K个上行数据信道中的较晚的上行数据信道,上行数据信道集合为K个上行数据信道中的较早的上行数据信道,第一TBS#T1根据较早的上行数据信道包括的物理资源计算得到,第一时域资源与第二个上行数据信道重叠,因此,第一UCI承载到较晚的上行数据信道上。但是,第一TBS#T1不是根据第一上行数据信道计算得到的,和第一上行数据信道的物理资源数量不匹配。因此,为了计算得到适中的第一UCI所占的物理资源的数量#Q,终端设备根据#T1以及上行数据信道集合包括的可以用于承载UCI的物理资源数量#M2确定#Q。
具体地,
Figure PCTCN2020081451-appb-000069
对应于等效物理资源数量#M2,则第一UCI的#Q可以根据
Figure PCTCN2020081451-appb-000070
计算得到,如下面公式表示,其中,Ω表示上行数据信道集合或第二等效上行数据信道,
Figure PCTCN2020081451-appb-000071
也可以替换为
Figure PCTCN2020081451-appb-000072
其他参数的定义参见公式(1)、(2)和(3)对应的描述。
在第一UCI为HARQ-ACK的情况下,根据等效物理资源数量#M2和第一TBS#T1确定第 一UCI所占的物理资源的数量#Q的计算公式可以表示如下,#Q代表Q′ ACK,或者说#Q由Q′ ACK得到:
Figure PCTCN2020081451-appb-000073
或者
Figure PCTCN2020081451-appb-000074
在第一UCI为CSI part 1的情况下,根据等效物理资源数量#M2和第一TBS#T1确定第一UCI所占的物理资源的数量#Q的计算公式可以表示如下,#Q代表Q′ CSI-1,或者说#Q由Q′ CSI-1得到:
Figure PCTCN2020081451-appb-000075
或者
Figure PCTCN2020081451-appb-000076
在第一UCI为CSI part 2的情况下,根据等效物理资源数量#M2和第一TBS#T1确定第一UCI所占的物理资源的数量#Q的计算公式可以表示如下,#Q代表Q′ CSI-2,或者说#Q由Q′ CSI-2得到:
Figure PCTCN2020081451-appb-000077
或者
Figure PCTCN2020081451-appb-000078
方法1-3:根据第二上行数据信道包括的物理资源数量#M3确定第一UCI所占的物理资源的数量#Q,第二上行数据信道与第一上行数据信道不同。
具体地,如何根据#M3确定#Q可以参照公式(1)、(2)或(3),其中#Q代表Q′ ACK或Q′ CSI-1或Q′ CSI-2,或者说#Q由Q′ ACK或Q′ CSI-1或Q′ CSI-2得到,区别在于将公式(1)、(2)或(3)中的参数
Figure PCTCN2020081451-appb-000079
替换为#M3。
在一种情况下,#M3可以是网络设备配置或指示给终端设备的。这里,#M3可以是网络设备直接配置或指示的物理资源数量,也可以是根据网络设备配置或指示的其他信息(例如配置或指示的上行数据信道信息等)确定的物理资源数量。
在另一种情况下,#M3为K个上行数据信道中的第二上行数据信道包括的物理资源数量。
进一步地,终端设备根据K个上行数据信道中的第二上行数据信道包括的物理资源数 量#M3和第一TBS#T1确定物理资源#q对应的物理资源数量#Q。也可以说,#Q是根据第二上行数据信道包括的可以用于承载UCI的物理资源数量#M3和#T1确定的。
应理解,上行数据信道集合不等于第二上行数据信道。
应理解,第一上行数据信道不等于第二上行数据信道。
具体地,第一TBS是根据上行数据信道集合包括的的用于确定TBS的物理资源数量#P1确定的。
应理解,第二上行数据信道可以是网络设备配置或指示给终端设备的上行数据信道。
具体地,该第二上行数据信道可以为一个上行数据信道,也可以包括多个上行数据信道。进一步地,该第二上行数据信道可以为K个上行数据信道中的一个或多个上行数据信道。该第二上行数据信道也可以是根据预设规则确定的上行数据信道。预设规则包括:第二上行数据信道可以为K个上行数据信道中第k个上行数据信道,也可以为K个上行数据信道中包括的物理资源数量或时域符号个数最多的上行数据信道,还可以为K个上行数据信道中包括的物理资源数量或时域符号个数最少的上行数据信道。k为大于或等于1且小于或等于K的整数。
例如,该第二上行数据信道可以为前面的第二等效上行数据信道。
再例如,第二上行数据信道为前面所述的目标上行数据信道。
进一步地,第二上行数据信道包括的物理资源数量#M3用于确定K个上行数据信道中任意一个上行数据信道上的UCI所占的物理资源的数量,即第二上行数据信道包括的物理资源数量#M3用于确定UCI在K个上行数据信道中的任意一个上行数据信道上所占的物理资源数量,即同一#M3对于K个上行数据信道中的任意一上行数据信道都是适用的,而不论该任意一个上行数据信道是否为该第二上行数据信道。
其中,上述UCI可以是第一UCI,也可以是第一UCI以外的另一个UCI。例如,上述另一个UCI与K个上行数据信道中与第一上行数据信道不同的另一个上行数据信道重叠,从而上述另一个UCI要承载到该另一个上行数据信道上发送,则该#M3用于确定上述另一个UCI在该另一个上行数据信道上所占的物理资源的数量#Q’。这样可以保证对于K个上行数据信道中的任意两个上行数据信道,若这两个上行数据信道上分别承载相同载荷大小的UCI,则这两个UCI所占的物理资源的数量都是相同的(都是根据#M3和#T1确定的),例如都等于#Q,从而达到保障UCI传输可靠性和有效性的效果。
具体地,第二上行数据信道包括的物理资源数量#M3是指第二上行数据信道中可以用于承载UCI的物理资源数量。
应理解,在第二上行数据信道包括多个上行数据信道的情况下,第二上行数据信道包括的物理资源数量#M3为该多个上行数据信道中每个上行数据信道所包括的用于承载UCI的物理资源数量之和。
进一步地,第二上行数据信道包括的物理资源数量大于第一上行数据信道包括的物理资源数量,例如#M3大于#M1。
方法1-4:根据第一均衡参数确定第一UCI所占的物理资源的数量#Q,第一均衡参数与第二均衡参数不同。
更进一步地,第一均衡参数可以大于第二均衡参数。
也就是说,相比于第一数据包的TBS和第一上行数据信道所包括的物理资源匹配的情况,在#T1和第一上行数据信道不匹配的情况下,使用更大的第一均衡参数可以提高第一UCI所占用的物理资源数量,保障第一UCI的性能。或者,相比于第一数据包的TBS和第三上行数据信道所包括的物理资源匹配的情况,在#T1和第一上行数据信道不匹配的情况下,使用更大的第一均衡参数可以提高第一UCI所占的物理资源的数量,保障第一UCI的性能。
除了方法1-1、方法1-2和方法1-3那样,在针对第一上行数据信道上的第一UCI的物理资源数量时,可以修正TBS(如使用等效TBS)或修正物理资源数量(如使用与第一上行数据信道不同的上行数据信道或上行数据信道集合,或者使用与物理资源数量#M1不同的物理资源数量#M2或#M3),还可以修正均衡参数,即使用与第二均衡参数不同的第一均衡参数计算#Q。其中,均衡参数(scaling factor)也称为缩放因子。
在一种实施例中(称为方法1-4A),终端设备在不同情况下使用不同的均衡参数,用于计算第一上行数据信道上的第一UCI所占的物理资源的数量#Q。这里的不同情况是指,第一上行数据信道是否超载,或者说,用于确定#T1的物理资源数量是否匹配第一上行数据信道,或者说,上行数据信道集合是否等于第一上行数据信道。
在第一情况下,终端设备可以根据第二均衡参数确定第一UCI所占的物理资源的数量#Q,或者说,第二均衡参数可以为第一情况下用于确定第一UCI所占的物理资源的数量的均衡参数。
进一步地,终端设备在第一情况下根据#T1、#M1和第二均衡参数确定#Q。
第一情况为:上行数据信道集合与第一上行数据信道相同,或者上行数据信道集合包括的物理资源数量等于第一上行数据信道包括的物理资源数量,或者第一上行数据信道包括的时域符号数不小于(或者大于)第一阈值,或者第一上行数据信道包括的时域符号个数不小于(或者大于)目标上行数据信道包括的时域符号个数,或者第一上行数据信道包括的物理资源数量不小于(或者大于)第二阈值,或者第一上行数据信道包括的物理资源数量不小于(或者大于)目标上行数据信道包括的物理资源数量,或者将第一UCI承载到第一上行数据信道上的码率不大于(或者小于)第三阈值,或者将第一UCI承载到第一上行数据信道上对应的码率不大于(或者小于)将第一UCI承载到目标上行数据信道对应的码率的情况。第一情况也可以称为第一上行数据信道未超载的情况。
在第二情况下,终端设备可以根据第一均衡参数确定第一UCI所占的物理资源的数量#Q,或者说,第一均衡参数为第二情况下用于确定第一UCI所占的物理资源的数量#Q的均衡参数。
进一步地,终端设备在第二情况下根据#T1、#M1和第一均衡参数确定#Q。
第二情况为:上行数据信道集合与第一上行数据信道不相等,或者第一上行数据信道包括的时域符号数小于(或者不大于)第一阈值,或者第一上行数据信道包括的时域符号个数小于(或者不大于)目标上行数据信道包括的时域符号个数,或者第一上行数据信道包括的时域符号个数小于(或者不大于)K个上行数据信道中目标上行数据信道包括的时域符号个数,或者第一上行数据信道包括的物理资源数量小于(或者不大于)第二阈值,或者第一上行数据信道包括的物理资源数量小于(或者不大于)目标上行数据信道包括的物理资源数量,或者将第一UCI承载到第一上行数据信道上的码率大于(或者不小于)第 三阈值,或者将第一UCI承载到第一上行数据信道上对应的码率大于(或者不小于)将第一UCI承载到目标上行数据信道对应的码率的情况。第二情况也可以称为第一上行数据信道超载的情况。
其中,时域符号数即时域符号个数。
也就是说,第一均衡参数为第一上行数据信道超载的情况下的均衡参数,第二均衡参数为第一上行数据信道未超载的情况下的均衡参数。
在另一个实施例中(称为方法1-4B),终端设备针对不同的上行数据信道使用不同的均衡参数,分别用于计算不同的上行数据信道上各自对应的UCI所占的物理资源的数量。
具体地,第一均衡参数为用于确定第一上行数据信道上的第一UCI所占的物理资源的数量的均衡参数,第二均衡参数为用于确定第三上行数据信道上的第二UCI所占的物理资源的数量的均衡参数。
对于第一上行数据信道,终端设备根据第一均衡参数确定第一UCI所占的物理资源的数量#Q。进一步地,终端设备可以根据#T1、#M1和第一均衡参数确定第一UCI所占的物理资源的数量#Q。
对于第三上行数据信道,终端设备根据第二均衡参数确定第二UCI所占的物理资源的数量#Q”。进一步地,终端设备可以根据#T1、第三上行数据信道包括的物理资源数量和第二均衡参数确定第二UCI所占的物理资源的数量#Q”。
应理解,第三上行数据信道包括的物理资源数量是第三上行数据信道中可以用于承载UCI的物理资源数量。
其中,第一UCI与第二UCI不同,第二UCI可以是第二控制信息通知终端设备发送的UCI,也可以是与第二控制信息不同的其他下行控制信息通知终端设备发送的UCI。
第二控制信息或该其他下行控制信息通知终端设备发送第二UCI的方法类似于第二控制信息通知终端设备发送第一UCI的方法。例如,网络设备可以向终端设备发送第二控制信息或该其他下行控制信息,第二控制信息或该其他下行控制信息包括用于传输第二UCI的第二时域资源的信息,第二时域资源与K个上行数据信道中的第三上行数据信道在时域上重叠。其中,第二时域资源与K个上行数据信道中的第三上行数据信道在时域上重叠,也可以表述为:第二时域资源对应于K个上行数据信道中的第三上行数据信道。
进一步地,第三上行数据信道为K个上行数据信道中的上行数据信道。
应理解,第三上行数据信道不等于第一上行数据信道。即,终端设备在不同的上行数据信道使用不同的均衡参数用于分别确定对应的UCI所占的物理资源。
进一步地,第三上行数据信道可以等于上行数据信道集合(例如当上行数据信道集合为一个上行数据信道的情况下),或者,第三上行数据信道包括的物理资源数量等于上行数据信道集合包括的物理资源数量,或者,第三上行数据信道包括的物理资源数量大于(或者不小于)第一上行数据信道包括的物理资源数量,或者,第三上行数据信道包括的时域符号数大于(或者不小于)第一阈值,或者,第三上行数据信道包括的时域符号个数不小于(或者大于)目标上行数据信道包括的时域符号个数,或者,第三上行数据信道包括的物理资源数量大于(或者不小于)第二阈值,或者,第三上行数据信道包括的物理资源数量不小于(或者大于)目标上行数据信道包括的物理资源数量,或者,将第一UCI承载到 第三上行数据信道上的码率小于(或者不大于)第三阈值,或者,将第一UCI承载到第三上行数据信道上对应的码率不大于(或者小于)将第一UCI承载到目标上行数据信道对应的码率的情况。
具体地,第一UCI的#Q或第二UCI的#Q”可以根据下面公式计算得到,其中,
Figure PCTCN2020081451-appb-000080
表示第一均衡参数,
Figure PCTCN2020081451-appb-000081
表示第二均衡参数,其他参数的定义参见公式(1)、(2)和(3)对应的描述,其中,在下面的公式用于计算#Q的情况下,公式(1)、(2)和(3)中的上行数据信道(即PUSCH)为第一上行数据信道,
Figure PCTCN2020081451-appb-000082
为第一上行数据信道所包括的物理资源数量#M1,O ACK、O CSI-1或O CSI-2为第一UCI的载荷,L ACK、L CSI-1或L CSI-2为第一UCI的CRC;在下面的公式用于计算#Q”的情况下,公式(1)、(2)和(3)中的上行数据信道(PUSCH)为第三上行数据信道,
Figure PCTCN2020081451-appb-000083
为第三上行数据信道所包括的物理资源数量,O ACK、O CSI-1或O CSI-2为第二UCI的载荷,L ACK、L CSI-1或L CSI-2为第二UCI的CRC。
在第一UCI或第二UCI为HARQ-ACK的情况下:
#Q在第一情况下的计算公式可以表示如下,#Q代表Q′ ACK,或者说#Q由Q′ ACK得到(方法1-4A)。或者,#Q的计算公式可以表示如下,#Q代表Q′ ACK,或者说#Q由Q′ ACK得到(方法1-4B)。
Figure PCTCN2020081451-appb-000084
或者
Figure PCTCN2020081451-appb-000085
其中,
Figure PCTCN2020081451-appb-000086
表示第二均衡参数。
#Q在第二情况下的计算公式可以表示如下,#Q代表Q′ ACK,或者说#Q由Q′ ACK得到(方法1-4A)。或者,#Q”的计算公式可以表示如下,#Q”代表Q′ ACK,或者说#Q”由Q′ ACK得到(方法1-4B)。
Figure PCTCN2020081451-appb-000087
或者
Figure PCTCN2020081451-appb-000088
其中,
Figure PCTCN2020081451-appb-000089
表示第一均衡参数。
在第一UCI或第二UCI为CSI part 1的情况下:
#Q在第一情况下的计算公式可以表示如下,#Q代表Q′ CSI-1,或者说#Q由Q′ CSI-1得到(方法1-4A)。或者,#Q的计算公式可以表示如下,#Q代表Q′ CSI-1,或者说#Q由Q′ CSI-1得到(方法1-4B)。
Figure PCTCN2020081451-appb-000090
或者
Figure PCTCN2020081451-appb-000091
#Q在第二情况下的计算公式可以表示如下,#Q代表Q′ CSI-1,或者说#Q由Q′ CSI-1得到(方法1-4A)。或者,#Q”的计算公式可以表示如下,#Q”代表Q′ CSI-1,或者说#Q”由Q′ CSI-1得到(方法1-4B)。
Figure PCTCN2020081451-appb-000092
或者
Figure PCTCN2020081451-appb-000093
在第一UCI或第二UCI为CSI part 2的情况下:
#Q在第一情况下的计算公式可以表示如下,#Q代表Q′ CSI-2,或者说#Q由Q′ CSI-2得到(方法1-4A)。或者,#Q的计算公式可以表示如下,#Q代表Q′ CSI-2,或者说#Q由Q′ CSI-2得到(方法1-4B)。
Figure PCTCN2020081451-appb-000094
或者
Figure PCTCN2020081451-appb-000095
#Q在第二情况下的计算公式可以表示如下,#Q代表Q′ CSI-2,或者说#Q由Q′ CSI-2得到(方法 1-4A)。或者,#Q”的计算公式可以表示如下,#Q”代表Q′ CSI-2,或者说#Q”由Q′ CSI-2得到(方法1-4B)。
Figure PCTCN2020081451-appb-000096
或者
Figure PCTCN2020081451-appb-000097
应理解,第一均衡参数和第二均衡参数是网络设备通知的均衡参数。例如,可以是网络设备配置或指示的均衡参数。
具体地,终端设备还可以接收来自网络设备的第三控制信息,第三控制信息可以包括第一字段,第一均衡参数和第二均衡参数均对应于第一字段或第一字段通知的第一索引值,即第一均衡参数和第二均衡参数是网络设备通过同一控制信息的同一字段进行指示或索引的。
对应地,网络设备可以向终端设备发送第三控制信息。
也就是说,该第三控制信息或该第一字段通知两个均衡参数,分别用于在上述第一情况下和第二情况下计算#Q,或者,分别用于计算第一上行数据信道上的第一UCI所占的物理资源的数量#Q和第三上行数据信道上的第二UCI所占的物理资源的数量#Q”。
更具体地,第三控制信息可以为高层信令,也可以为物理层下行控制信息,例如DCI信息。例如,第一字段可以为高层信令中的betaOffsetACK字段或betaOffsetCSI字段,也可以为物理层下行控制信息中的beta_offset indicator字段。
在第一均衡参数和第二均衡参数均对应于第一字段或第一字段通知的第一索引值的情况下,例如,该第一索引值对应两个均衡参数的取值:第一均衡参数和第二均衡参数。这两个均衡参数分别在上面所述的不同情况下或针对不同的上行数据信道生效。
应理解,第三控制信息可以为第二控制信息,也可以为不同于第二控制信息的另一控制信息。
应理解,第三控制信息可以为第一控制信息,也可以为不同于第一控制信息的另一控制信息。
这样,在#T1(或者说#T1对应的#P1)和第一上行数据信道(或者说#M1)不匹配的情况下,可以通过调整均衡参数,弥补第一UCI所占的物理资源的数量#Q,使用#T1、#M1和调整之后的第一均衡参数确定一个合适的#Q,避免确定的#Q偏大或偏小,保障第一UCI传输的可靠性和有效性。
请参阅图9,图9是本发明实施例公开的又一种UL-SCH和UCI传输示意图。如图9所示,K=2,第一上行数据信道为K个上行数据信道中的较晚的上行数据信道,上行数据信道集合,也即第三上行数据信道为K个上行数据信道中的较早的上行数据信道,第一TBS#T1根据较早的上行数据信道包括的物理资源计算得到,第一时域资源与第二个上行数据信道重叠,因此,第一UCI承载到较晚的上行数据信道上。但是,第一TBS#T1不是根据第一上行数据 信道计算得到的,和第一上行数据信道的物理资源数量不匹配。为了计算得到适中的第一UCI的物理资源数量#Q,终端设备根据#T1、第一上行数据信道包括的可以用于承载UCI的物理资源#M1以及较大的第一均衡参数确定#Q;相比而言,对于承载在第三上行数据信道上的第二UCI,#T1和第三上行数据信道包括的物理资源数量#M2匹配,使用#T1、#M2以及较小的第二均衡参数计算第三上行数据信道上的UCI所占的物理资源的数量#Q”。
方法2:丢弃第一UCI中的部分UCI。
在第一上行数据信道超载的情况下,确定第一UCI所占的物理资源时,可以通过第一TBS#T1和第一上行数据信道包括的物理资源数量#M1计算第一UCI所占的物理资源的数量#Q,这样计算出来的#Q较小,因此,可以通过丢弃第一UCI中的部分信息来解决第一上行数据信道超载的问题。
具体地,在第一UCI包括HARQ-ACK、CSI part 1、CSI part 2、SR中的多种信息的情况下,可以丢弃其中的一部分信息,在第一上行数据信道上发送剩余部分信息。可见,虽然承载第一UCI的物理资源数量#Q没有增加,但是通过减少UCI的载荷大小,同样达到了降低码率的效果,确保了实际在第一上行数据信道上发送的UCI的可靠性。
更具体地,丢弃第一UCI中的信息时,可以根据优先级进行丢弃,由于优先级越高信息越重要,因此,可以丢弃优先级低的信息而发送优先级高的信息。
例如,高优先级的信息可以包括SR,也可以包括HARQ-ACK,还可以包括HARQ-ACK和SR,低优先级的信息可以包括CSI。这里的CSI可以包括CSI part 1,也可以包括CSI part 2,还可以包括CSI part 1和CSI part 2。
再例如,高优先级的信息可以包括HARQ-ACK和一部分CSI,还可以包括SR和一部分CSI,还可以包括HARQ-ACK、SR和一部分CSI,低优先级的信息可以包括另一部分CSI。
应理解,属于同一种UCI的信息也可以进行优先级划分,例如,一部分CSI的优先级高,另一部分CSI的优先级低。因此,在丢弃部分CSI时,可以丢弃优先级较低的CSI,而发送优先级较高的CSI。例如,CSI part 1的优先级比CSI part 2的优先级高。再例如,对于上述任意一种CSI信息(如CSI信息或CSI part 1或CSI part 2),该CSI信息中优先级数值较高的CSI信息的优先级数值高于优先级数值较低的CSI信息。
方法3:调整第一UCI的发送时机或发送资源。
方法3-1:将第一UCI换到K个上行数据信道中的另一个上行数据信道上发送。也就是说,终端设备确定第一UCI所占的物理资源#q包括:终端设备确定的第一UCI所占的物理资源#q位于第四上行数据信道上,或者终端设备确定的第一UCI所占的物理资源#q为第四上行数据信道中的物理资源。
应理解,第四上行数据信道为K个上行数据信道中不同于第一上行数据信道的上行数据信道。
在一种情况下,可以继续根据第一上行数据信道包括的物理资源数量#M1和第一TBS#T1确定第一UCI所占的物理资源的数量#Q。
在另一种情况下,可以根据第四上行数据信道包括的物理资源数量和第一TBS#T1确定第一UCI所占的物理资源的数量#Q。
应理解,第四上行数据信道包括的物理资源数量是第四上行数据信道中可以用于承载 UCI的物理资源数量。
但第一UCI所占的物理资源为第四上行数据信道中的物理资源。第四上行数据信道可以等于上行数据信道集合(例如当上行数据信道集合为一个上行数据信道),或者第四上行数据信道包括的物理资源数量可以等于上行数据信道集合所包括的物理资源数量,或者,第四上行数据信道包括的物理资源数量大于(或者不小于)第一上行数据信道包括的物理资源数量,或者第四上行数据信道包括的时域符号数大于(或者不小于)第一阈值或目标上行数据信道包括的时域符号数,或者第四上行数据信道包括的物理资源数量大于(或者不小于)第二阈值或目标上行数据信道包括的物理资源数量,或者将第一UCI承载到第四上行数据信道上的码率小于(或者不大于)第三阈值或将第一UCI承载到目标上行数据信道上的码率。
这样,将第一UCI调整到另一个物理资源数量更多的第四上行数据信道上发送,由于公式(1)或(2)或(3)中对应的
Figure PCTCN2020081451-appb-000098
更大了,所以计算得到的#Q也大于根据第一上行数据信道所包括的物理资源数量#M1计算得到的UCI所占的物理资源的数量,从而提高UCI的传输可靠性。
具体地,第四上行数据信道包括的物理资源数量为第四上行数据信道中可以用于承载UCI的物理资源数量。
一般来说,第四上行数据信道在时域上可以晚于第一上行数据信道,也可以早于第一上行数据信道。
进一步地,第四上行数据信道与第一上行数据信道在时域上不重叠。
例如,在第一时域资源与包括第一上行数据信道和第四上行数据信道在内的至少一个上行数据信道时域重叠的情况下,第四上行数据信道可以为晚于第一上行数据信道的上行数据信道,即终端设备把第一UCI推迟到该至少一个上行数据信道中一个较晚的上行数据信道上发送而不是在该至少一个上行数据信道中最早的第一上行数据信道上发送。
进一步地,第四上行数据信道和第一时域资源在时域上不重叠。即使在第一时域资源和第四上行数据信道在时域不重叠的情况下,也可以将第一UCI承载到第四上行数据信道上发送。
请参阅图10,图10是本发明实施例公开的又一种UL-SCH和UCI传输示意图。如图10所示,K=2,第一上行数据信道为K个上行数据信道中的较早的上行数据信道,第四上行数据信道为K个上行数据信道中的较晚的上行数据信道,第一TBS#T1根据较晚的上行数据信道包括的物理资源计算得到,第一时域资源与第一个上行数据信道重叠。但是,由于第一TBS#T1不是根据第一上行数据信道计算得到的,和第一上行数据信道的物理资源数量不匹配,为了保障第一UCI的传输性能,将第一UCI推迟到第四上行数据信道上发送,其中,第一TBS#T1和第四上行数据信道包括的物理资源数量时匹配的。
方法3-2:将第一UCI信息换到上行控制信道上发送。也就是说,终端设备确定第一UCI所占的物理资源#q包括:终端设备确定的第一UCI所占的物理资源#q位于第一时域资源的第一上行控制信道上,或者终端设备确定的第一UCI所占的物理资源#q为第一时域资源对应的上行控制信道中的物理资源。
一般情况下,在UCI对应的时域资源和上行数据信道在时域上重叠的情况下,为了同时发送UCI和数据信息,终端设备会将UCI承载到上行数据信道上发送,而不会发送上行控制信道。然而,在用于发送UCI的上行数据信道超载的情况下,直接将UCI放到上行数据信道上发送会影响UCI的可靠性。因此,可以调整UCI的发送资源,使之不再上行数据信道上发送,而是在上行控制信道上发送。也就是说,尽管第一时域资源和第一上行数据信道在时域上重叠,但是终端设备不会将第一UCI承载到第一上行数据信道上发送,而是仍然保留在上行控制信道上发送,从而确保第一UCI的传输可靠性。其中,上行控制信道可以为PUCCH。
具体地,该上行控制信道所在的物理资源为第二控制信息通知的对应于该第一UCI的上行控制信道的物理资源,即第一时域资源对应的上行控制信道,也即与第一时域资源在时域上重叠。更具体地,该上行控制信道所在的时频资源对应第二控制信息的至少一个字段通知的时域资源。该至少一个字段可以为’PUCCH resource indicator’字段,也可以为’PDSCH-to-HARQ_feedback timing indicator’字段,还可以为’PUCCH resource indicator’字段和’PDSCH-to-HARQ_feedback timing indicator’。
进一步地,终端设备可以丢弃第一上行数据信道或停止在第一上行数据信道上发送信息。由于终端设备不支持上行控制信道和上行数据信道在同一时间同时发送,因此,终端设备在发送上行控制信道的时候会丢弃第一上行数据信道或停止在第一上行数据信道上发送信息。
应理解,丢弃具体可以指不在第一上行数据信道上发送第一数据包,或者不在第一上行数据信道上发送信息,例如,不在第一上行数据信道对应的时频资源上发送任何信息。
应理解,丢弃(drop)也可以称为忽略(omit)或取消(cancel)。
应理解,停止在第一上行数据信道上发送信息是指,在该上行控制信道和第一上行数据信道重叠的时域资源上,不在第一上行数据信道上发送信息。例如,可以从第一上行数据信道的起始时刻开始发送信息,但是在该上行控制信道上发送信息之前,停止在第一上行数据信道上发送信息;另外,在上行控制信道上发送信息结束后,可以继续在第一上行数据信道上发送信息,也可以不再继续在第一上行数据信道上发送信息。
更进一步地,该上行控制信道和第一上行数据信道位于同一载波或BWP。
请参阅图11,图11是本发明实施例公开的又一种UL-SCH和UCI传输示意图。如图11所示,K=2,第一上行数据信道为K个上行数据信道中的较早的上行数据信道,上行数据信道集合为2个上行数据信道中的较晚的上行数据信道,第一TBS#T1根据较晚的上行数据信道包括的物理资源计算得到,第一时域资源与第一个上行数据信道重叠。由于第一TBS#T1不是根据第一上行数据信道计算得到的,和第一上行数据信道的物理资源数量不匹配,为了保障第一UCI的传输性能,终端设备在网络设备通知的上行控制信道的物理资源上发送第一UCI,此外,还丢弃了第一上行数据信道。
604、网络设备确定第一UCI所占的物理资源。
网络设备可以确定第一UCI所占的物理资源,以便网络设备可以确定从哪儿接收终端设备发送的第一UCI。
应理解,网络设备确定第一UCI所占的物理资源可以在网络设备将第一控制信息和或 第二控制信息发送给终端设备之后,也可以在网络设备将第一控制信息和或第二控制信息发送给终端设备之前,还可以是在网络设备将第一控制信息和或第二控制信息发送给终端设备时,不做限制。
网络设备可以使用与终端设备对应的方法确定第一UCI所占的物理资源。
对应于方法1-1:一种情况下,网络设备确定的第一UCI所占的物理资源的数量对应于等效TBS#T2,等效TBS与第一TBS不同。具体地,网络设备可以根据等效TBS#T2确定第一UCI所占的物理资源的数量#Q。
另一种情况下,网络设备确定的第一UCI所占的物理资源的数量对应于等效TBS#T2,等效TBS#T2为对应于第一上行数据信道的TBS。
也可以说,网络设备可以根据等效TBS#T2确定第一UCI所占的物理资源的数量#Q。
进一步地,网络设备确定的第一UCI所占的物理资源的数量对应于等效TBS#T2和第一上行数据信道包括的物理资源数量(例如#M1)。具体地,网络设备确定的第一UCI所占的物理资源的数量可以对应于等效TBS#T2和第一上行数据信道包括的物理资源数量(例如#M1)两者的组合,或者网络设备可以根据等效TBS#T2和第一上行数据信道包括的物理资源数量(例如#M1)确定第一UCI所占的物理资源的数量#Q。
对应于方法1-2:一种情况下,网络设备确定的第一UCI所占的物理资源的数量对应于等效物理资源数量#M2,等效物理资源数量#M2与第一上行数据信道包括的物理资源数量不同。具体地,网络设备可以根据等效物理资源数量#M2确定第一UCI所占的物理资源的数量#Q。
另一种情况下,网络设备确定的第一UCI所占的物理资源的数量对应于等效物理资源数量#M2,等效物理资源数量#M2为上行数据信道集合包括的物理资源数量。
也可以说,网络设备可以根据等效物理资源数量#M2确定第一UCI所占的物理资源的数量#Q。
进一步地,网络设备确定的第一UCI所占的物理资源的数量对应于等效物理资源数量#M2和第一TBS#T1。具体地,网络设备确定的第一UCI所占的物理资源的数量可以对应于等效物理资源数量#M2和第一TBS#T1两者的组合,或者网络设备可以根据等效物理资源数量#M2和第一TBS#T1确定第一UCI所占的物理资源的数量#Q。
对应于方法1-3:网络设备确定的第一UCI所占的物理资源的数量对应于第二上行数据信道包括的物理资源数量#M3,第二上行数据信道与第一上行数据信道不同。具体地,网络设备可以根据第二上行数据信道包括的物理资源数量#M3确定第一UCI所占的物理资源的数量#Q。
进一步地,网络设备确定的第一UCI所占的物理资源的数量对应于第二上行数据信道包括的物理资源数量#M3和第一TBS#T1。具体地,网络设备确定的第一UCI所占的物理资源的数量可以对应于第二上行数据信道包括的物理资源数量#M3和第一TBS#T1两者的组合,或者网络设备可以根据第二上行数据信道包括的物理资源数量#M3和第一TBS#T1确定第一UCI所占的物理资源的数量#Q。
更进一步地,第二上行数据信道包括的物理资源数量用于确定K个上行数据信道中任意一个上行数据信道上的UCI所占的物理资源的数量。
对应于方法1-4:网络设备确定的第一UCI所占的物理资源的数量对应于第一均衡参数。具体地,网络设备可以根据第一均衡参数确定第一UCI所占的物理资源的数量#Q。第一均衡参数与第二均衡参数不同。
可选地,在第一情况下,网络设备确定的第一UCI所占的物理资源的数量对应于第二均衡参数。在第二情况下,网络设备确定的第一UCI所占的物理资源的数量对应于第一均衡参数。
可选地,对于第一上行数据信道,网络设备确定的第一UCI所占的物理资源的数量对应于第一均衡参数;对于第三上行数据信道,网络设备确定的第二UCI所占的物理资源的数量对应于第二均衡参数。
进一步地,网络设备确定的第一UCI所占的物理资源的数量对应于第一均衡参数,包括:网络设备确定的第一UCI所占的物理资源的数量对应于#T1、#M1和第一均衡参数。具体地,网络设备确定的第一UCI所占的物理资源的数量对应于#T1、#M1和第一均衡参数三者的组合,或者网络设备可以根据#T1、#M1和第一均衡参数确定确定第一UCI所占的物理资源的数量#Q。
类似地,网络设备确定的第一UCI所占的物理资源的数量对应于第二均衡参数,包括:网络设备确定的第一UCI所占的物理资源的数量对应于#T1、#M1和第二均衡参数。具体地,网络设备确定的第一UCI所占的物理资源的数量对应于#T1、#M1和第二均衡参数三者的组合,或者网络设备可以根据#T1、#M1和第二均衡参数确定确定第一UCI所占的物理资源的数量#Q。
类似地,网络设备确定的第二UCI所占的物理资源的数量对应于第二均衡参数,包括:网络设备确定的第二UCI所占的物理资源的数量对应于#T1、#M1和第二均衡参数。具体地,网络设备确定的第二UCI所占的物理资源的数量对应于#T1、#M1和第二均衡参数三者的组合,或者网络设备可以根据#T1、#M1和第二均衡参数确定确定第二UCI所占的物理资源的数量#Q。
对应于方法2:网络设备接收终端设备发送的UCI不包括第一UCI中的部分UCI。即,网络设备接收终端设备发送的UCI包括第一UCI中的一部分UCI,而不包括第一UCI中的另一部分UCI。
其中,网络设备确定的第一UCI所占的物理资源为第一上行数据信道中的资源。
进一步地,第一UCI所占的物理资源根据第一TBS#T1和第一上行数据信道包括的物理资源数量确定。
对应于方法3-1:网络设备确定的第一UCI所占的物理资源为第四上行数据信道中的物理资源,第四上行数据信道为K个上行数据信道中的上行数据信道,第四上行数据信道不等于第一上行数据信道。
对应于方法3-2:网络设备确定的第一UCI所占的物理资源为第一时域资源对应的上行控制信道中的物理资源。
进一步地,网络设备接收上行信息的上行数据信道不包括第一上行数据信道,或者,第一上行数据信道包括的物理资源中与第一时域资源在时域上重叠的部分不用于传输上行信息。
上述对应方法的详细描述可以参考步骤603,在此不加赘述。
605、终端设备通过第一UCI所占的物理资源向网络设备发送第一UCI。
终端设备确定第一UCI所占的物理资源之后,可以通过第一UCI所占的物理资源向网络设备发送第一UCI。
对应地,网络设备可以通过第一UCI所占的物理资源接收到来自终端设备的第一UCI。
基于图1所示的网络架构,本发明实施例公开了另一种通信方法,图12为该通信方法的流程示意图。下面对该通信方法的步骤进行详细描述。可以理解的是,本申请中由网络设备执行的功能也可以由网络设备中的模块(例如,芯片)来执行,终端设备执行的功能也可以由终端设备中的模块(例如,芯片)来执行。
1201、网络设备向终端设备发送第一控制信息。
其中,步骤1201与步骤601相同,详细描述请参考步骤601,在此不加赘述。
1202、网络设备向终端设备发送第二控制信息。
其中,步骤1202与步骤602相同,详细描述请参考步骤602,在此不加赘述。
1203、终端设备在第一上行数据信道超载的情况下根据第一均衡参数确定第一UCI所占的物理资源,在第一上行数据信道未超载的情况下根据第二均衡参数确定第一UCI所占的物理资源。
其中,第一上行数据信道超载的条件,根据第一均衡参数确定第一UCI所占的物理资源的方法,第一上行数据信道未超载的条件,以及根据第二均衡参数确定第一UCI所占的物理资源的方法的详细描述请参考步骤602-步骤603,在此不加赘述。
1204、网络设备确定第一UCI所占的物理资源,在第一上行数据信道超载的情况下,第一UCI所占的物理资源对应于第一均衡参数,在第一上行数据信道未超载的情况下第一UCI所占的物理资源对应于第二均衡参数。
其中,步骤1204与步骤604相同,详细描述请参考步骤604,在此不加赘述。
1205、终端设备通过第一UCI所占的物理资源向网络设备发送第一UCI。
其中,步骤1205与步骤605相同,详细描述请参考步骤605,在此不加赘述。
基于图1所示的网络架构,以及上述实施例中的通信方法的同一构思,本发明实施例公开了一种通信装置,图13是该通信装置的结构示意图。其中,该通信装置可以应用于上述图6或图12所示的通信方法中。该通信装置可以为终端设备或终端设备中的模块(如芯片)。如图13所示,该通信装置可以包括收发单元1301和处理单元1302,其中:
收发单元1301,用于接收来自网络设备的第一控制信息,第一控制信息包括用于传输第一数据包的第一物理资源的信息,第一物理资源对应K个上行数据信道,K个上行数据信道中每个上行数据信道分别用于传输一次第一数据包,K为正整数;
收发单元1301,还用于接收来自网络设备的第二控制信息,第二控制信息包括用于传输第一UCI的第一时域资源的信息,第一时域资源与K个上行数据信道中的第一上行数据信道在时域上重叠,其中,第一上行数据信道与用于确定第一TBS的上行数据信道集合不相同,第一TBS为第一数据包的TBS,或者第一上行数据信道包括的时域符号数小于(或者不 大于)第一阈值,或者第一上行数据信道包括的物理资源数量小于(或者不大于)第二阈值,或者将第一UCI承载到第一上行数据信道上的码率大于(或者不小于)第三阈值;
处理单元1302,用于确定第一UCI所占的物理资源;
收发单元1301,还用于通过第一UCI所占的物理资源向网络设备发送第一UCI。
在一个实施例中,上行数据信道集合包括的物理资源数量大于第一上行数据信道包括的物理资源数量。
在一个实施例中,处理单元1302,具体用于根据等效TBS确定第一UCI所占的物理资源的数量,等效TBS与第一TBS不同。
在一个实施例中,处理单元1302,具体用于根据等效TBS和第一上行数据信道包括的物理资源数量确定第一UCI所占的物理资源的数量,等效TBS为根据第一上行数据信道确定的TBS。
在一个实施例中,处理单元1302,具体用于根据等效物理资源数量确定第一UCI所占的物理资源的数量,等效物理资源数量与第一上行数据信道包括的物理资源数量不同。
在一个实施例中,处理单元1302,具体用于根据等效物理资源数量和第一TBS确定第一UCI所占的物理资源的数量,等效物理资源数量为上行数据信道集合包括的物理资源数量。
在一个实施例中,处理单元1302,具体用于根据第二上行数据信道包括的物理资源数量确定第一UCI所占的物理资源的数量,第二上行数据信道与第一上行数据信道不同。
在一个实施例中,处理单元1302,具体用于根据第二上行数据信道包括的物理资源数量和第一TBS确定第一UCI所占的物理资源的数量,第二上行数据信道包括的物理资源数量用于确定K个上行数据信道中任意一个上行数据信道上的UCI所占的物理资源的数量。
在一个实施例中,处理单元1302,具体用于根据第一均衡参数确定第一UCI所占的物理资源的数量,第一均衡参数与第二均衡参数不同;
第二均衡参数为第一情况下用于确定第一UCI所占的物理资源的数量的均衡参数,第一情况为:上行数据信道集合与第一上行数据信道相同,或者第一上行数据信道包括的时域符号数不小于第一阈值,或者第一上行数据信道包括的物理资源数量不小于第二阈值,或者将第一UCI承载到第一上行数据信道上的码率不大于(或者小于)第三阈值的情况;
或者,第二均衡参数为用于确定第三上行数据信道上的第二UCI所占的物理资源的数量的均衡参数,第三上行数据信道为K个上行数据信道中的上行数据信道,第三上行数据信道不等于第一上行数据信道。
在一个实施例中,收发单元1301,还用于接收来自网络设备的第三控制信息,第三控制信息包括第一字段,第一均衡参数和第二均衡参数均对应于第一字段,或者第一均衡参数和第二均衡参数均对应于第一字段通知的第一索引值。
在一个实施例中,处理单元1302,具体用于根据第一上行数据信道包括的物理资源数量、第一TBS和第一均衡参数确定第一UCI所占的物理资源的数量。
在一个实施例中,第一均衡参数大于第二均衡参数。
在一个实施例中,第一UCI所占的物理资源为第一上行数据信道中的物理资源。
在一个实施例中,第一UCI所占的物理资源为第四上行数据信道中的物理资源,第四 上行数据信道为K个上行数据信道中的上行数据信道,第四上行数据信道不等于第一上行数据信道。
在一个实施例中,第四上行数据信道与第一时域资源在时域上不重叠。
在一个实施例中,第四上行数据信道包括的物理资源数量大于第一上行数据信道包括的物理资源数量,或者第四上行数据信道包括的时域符号数大于或等于(或者大于)第一阈值,或者第四上行数据信道包括的物理资源数量大于或等于(或者大于)第二阈值,或者将第一UCI承载到第四上行数据信道上的码率小于或等于(或者小于)第三阈值。
在一个实施例中,第一UCI所占的物理资源为第一时域资源对应的上行控制信道中的物理资源。
在一个实施例中,处理单元1302,还用于丢弃第一上行数据信道或停止在第一上行数据信道上发送信息。
有关上述收发单元1301和处理单元1302更详细的描述可以直接参考上述图6所示的方法实施例中终端设备的相关描述直接得到,这里不加赘述。
基于图1所示的网络架构,以及上述实施例中的通信方法的同一构思,本发明实施例公开了另一种通信装置,图14为该通信装置的结构示意图。其中,该通信装置可以应用于上述图6或图12所示的通信方法中。该通信装置可以为网络设备或网络设备中的模块(如芯片)。如图14所示,该通信装置可以包括收发单元1401和处理单元1402,其中:
收发单元1401,用于向终端设备发送第一控制信息,第一控制信息包括用于传输第一数据包的第一物理资源的信息,第一物理资源对应K个上行数据信道,K个上行数据信道中每个上行数据信道分别用于传输一次第一数据包,K为正整数;
收发单元1401,还用于向终端设备发送第二控制信息,第二控制信息包括用于传输第一UCI的第一时域资源的信息,第一时域资源与K个上行数据信道中的第一上行数据信道在时域上重叠,其中,第一上行数据信道与用于确定第一TBS的上行数据信道集合不相同,第一TBS为第一数据包的TBS,或者第一上行数据信道包括的时域符号数小于(或者不大于)第一阈值,或者第一上行数据信道包括的物理资源数量小于(或者不大于)第二阈值,或者将第一UCI承载到第一上行数据信道上的码率大于(或者不小于)第三阈值;
处理单元1402,用于确定第一UCI所占的物理资源;
收发单元1401,还用于通过第一UCI所占的物理资源接收来自终端设备的第一UCI。
在一个实施例中,上行数据信道集合包括的物理资源数量大于第一上行数据信道包括的物理资源数量。
在一个实施例中,第一UCI所占的物理资源的数量对应于等效TBS,等效TBS与第一TBS不同。
在一个实施例中,第一UCI所占的物理资源的数量对应于等效TBS和第一上行数据信道包括的物理资源数量,等效TBS为对应于第一上行数据信道的TBS。
在一个实施例中,第一UCI所占的物理资源的数量对应于等效物理资源数量,等效物理资源数量与第一上行数据信道包括的物理资源数量不同。
在一个实施例中,第一UCI所占的物理资源的数量对应于等效物理资源数量和第一TBS, 等效物理资源数量为上行数据信道集合包括的物理资源数量。
在一个实施例中,第一UCI所占的物理资源的数量对应于第二上行数据信道包括的物理资源数量,第二上行数据信道与第一上行数据信道不同。
在一个实施例中,第一UCI所占的物理资源的数量对应于第二上行数据信道包括的物理资源数量和第一TBS,第二上行数据信道包括的物理资源数量用于确定K个上行数据信道中任意一个上行数据信道上的UCI所占的物理资源的数量。
在一个实施例中,第一UCI所占的物理资源的数量对应于第一均衡参数,第一均衡参数与第二均衡参数不同;
第二均衡参数为第一情况下用于确定第一UCI所占的物理资源的数量的均衡参数,第一情况为:上行数据信道集合与第一上行数据信道相同,或者第一上行数据信道包括的时域符号数不小于第一阈值,或者第一上行数据信道包括的物理资源数量不小于第二阈值,或者将第一UCI承载到第一上行数据信道上的码率不大于(或者小于)第三阈值的情况;
或者,第二均衡参数为用于确定第三上行数据信道上的第二UCI所占的物理资源的数量的均衡参数,第三上行数据信道为K个上行数据信道中的上行数据信道,第三上行数据信道不等于第一上行数据信道。
在一个实施例中,收发单元1401,还用于向终端设备发送第三控制信息,第三控制信息包括第一字段,第一均衡参数和第二均衡参数均对应于第一字段,或者第一均衡参数和第二均衡参数均对应于第一字段通知的第一索引值。
在一个实施例中,第一UCI所占的物理资源的数量对应于第一上行数据信道包括的物理资源数量、第一TBS和第一均衡参数。
在一个实施例中,第一均衡参数大于第二均衡参数。
在一个实施例中,第一UCI所占的物理资源为第一上行数据信道中的物理资源。
在一个实施例中,第一UCI所占的物理资源为第四上行数据信道中的物理资源,第四上行数据信道为K个上行数据信道中的上行数据信道,第四上行数据信道不等于第一上行数据信道。
在一个实施例中,第四上行数据信道与第一时域资源在时域上不重叠。
在一个实施例中,第四上行数据信道包括的物理资源数量大于第一上行数据信道包括的物理资源数量,或者第四上行数据信道包括的时域符号数大于或等于(或者大于)第一阈值,或者第四上行数据信道包括的物理资源数量大于或等于(或者大于)第二阈值,或者将第一UCI承载到第四上行数据信道上的码率小于或等于(或者小于)第三阈值。
在一个实施例中,第一UCI所占的物理资源为第一时域资源对应的上行控制信道中的物理资源。
在一个实施例中,接收上行信息的上行数据信道不包括第一上行数据信道,或者,第一上行数据信道包括的物理资源中与第一时域资源在时域上重叠的部分不用于传输上行信息。
有关上述收发单元1401和处理单元1402更详细的描述可以直接参考上述图6所示的方法实施例中网络设备的相关描述直接得到,这里不加赘述。
基于图1所示的网络架构,本发明实施例公开了又一种通信装置,图15是该通信装置的 结构示意图。其中,该通信装置可以应用于上述图6或图12所示的通信方法中。如图15所示,该通信装置可以包括处理器1501、存储器1502、收发器1503和连接线1504。存储器1502可以是独立存在,连接线1504与处理器1501相连接。存储器1502也可以和处理器1501集成在一起。收发器1503,用于与其他设备、网元或通信网络通信,如以太网,无线接入网(RAN),无WLAN等。连接线1504可包括一通路,在上述组件之间传送信息。其中,存储器1502中存储程序指令,处理器1501用于执行存储器1502中存储的程序指令。其中:
在一个实施例中,该通信装置可以为终端设备或终端设备内的模块(如芯片),存储器1502中存储的程序指令被执行时,该处理器1501用于调用存储器1502存储的程序指令执行上述实施例中处理单元1302执行的操作,收发器1503用于执行上述实施例中收发单元1301执行的操作。
在另一个实施例中,该通信装置可以为网络设备或网络设备内的模块(如芯片),存储器1502中存储的程序指令被执行时,该处理器1501用于调用存储器1502存储的程序指令执行上述实施例中处理单元1402执行的操作,收发器1503用于执行上述实施例中收发单元1401执行的操作。
本发明实施例还公开一种通信装置,该通信装置可以是终端设备或终端设备内的芯片,也可以是网络设备或网络设备内的芯片。该通信装置可以用于执行上述方法实施例中由终端设备或网络设备所执行的操作。
当该通信装置为终端设备时,请参阅图16,图16是本发明实施例公开的一种终端设备的结构示意图。便于理解和图示方便,图16中,终端设备以手机作为例子。如图16所示,终端设备可以包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图16中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本发明实施例对此不做限制。
在本发明实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图16所示,终端设备包括收发单元1610和处理单元1620。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1610中用于 实现接收功能的器件视为接收单元,将收发单元1610中用于实现发送功能的器件视为发送单元,即收发单元1610包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1610用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1620用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1610用于执行图6中的步骤601和步骤602中终端设备侧的接收操作和步骤605,和/或收发单元1610还用于执行本发明实施例中终端设备侧的其他收发步骤。处理单元1620用于执行图6中的步骤603,和/或处理单元1620还用于执行本发明实施例中终端设备侧的其他处理步骤。
例如,在一种实现方式中,收发单元1610用于执行图12中的步骤1201和步骤1202中终端设备侧的接收操作和步骤1205,和/或收发单元1610还用于执行本发明实施例中终端设备侧的其他收发步骤。处理单元1620用于执行图12中的步骤1203,和/或处理单元1620还用于执行本发明实施例中终端设备侧的其他处理步骤。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端设备时,请参阅图17,图17是本发明实施例公开的另一种终端设备的结构示意图。作为一个例子,该终端设备可以完成类似于图15中处理器的功能。在图17中,该终端设备包括处理器1710,发送数据处理器1720,接收数据处理器1730。上述实施例中的处理单元1302可以是图17中的该处理器1710,并完成相应的功能。上述实施例中的收发单元1301可以是图17中的发送数据处理器1720,和/或接收数据处理器1730。虽然图17中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
请参阅图18,图18是本发明实施例公开的又一种终端设备的结构示意图。处理装置1800中包括调制子***、中央处理子***、周边子***等模块。本实施例中的通信装置可以作为其中的调制子***。具体地,该调制子***可以包括处理器1803,接口1804。其中处理器1803完成上述处理单元1302的功能,接口1804完成上述收发单元1301的功能。作为另一种变形,该调制子***包括存储器1806、处理器1803及存储在存储器1806上并可在处理器上运行的程序,该处理器1803执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,存储器1806可以是非易失性的,也可以是易失性的,其位置可以位于调制子***内部,也可以位于处理装置1800中,只要该存储器1806可以连接到处理器1803即可。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中终端设备侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中终端设备侧的方法。
本发明实施例还公开了一种存储介质,该存储介质上存储有程序,该程序运行时,实现如图6和图12所示的通信方法。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,光盘只读存储器(compact disc read-only memory,CD-ROM),数字通用光盘(digital versatile disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state disk,SSD),随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)和寄存器等。
一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于发送设备或接收设备中。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (34)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的第一控制信息,所述第一控制信息包括用于传输第一数据包的第一物理资源的信息,所述第一物理资源对应K个上行数据信道,所述K个上行数据信道中每个上行数据信道分别用于传输一次所述第一数据包,所述K为正整数;
    接收来自所述网络设备的第二控制信息,所述第二控制信息包括用于传输第一上行控制信息UCI的第一时域资源的信息,所述第一时域资源与所述K个上行数据信道中的第一上行数据信道在时域上重叠,其中,所述第一上行数据信道与用于确定第一传输块大小TBS的上行数据信道集合不相同,所述第一TBS为所述第一数据包的TBS,或者所述第一上行数据信道包括的时域符号数小于第一阈值,或者所述第一上行数据信道包括的物理资源数量小于第二阈值,或者将所述第一UCI承载到所述第一上行数据信道上的码率大于第三阈值;
    确定所述第一UCI所占的物理资源;
    通过所述第一UCI所占的物理资源向所述网络设备发送所述第一UCI。
  2. 根据权利要求1所述的方法,其特征在于,所述确定所述第一UCI所占的物理资源包括:
    根据等效TBS确定所述第一UCI所占的物理资源的数量,所述等效TBS与所述第一TBS不同。
  3. 根据权利要求1所述的方法,其特征在于,所述确定所述第一UCI所占的物理资源包括:
    根据等效TBS和所述第一上行数据信道包括的物理资源数量确定所述第一UCI所占的物理资源的数量,所述等效TBS为根据所述第一上行数据信道确定的TBS。
  4. 根据权利要求1所述的方法,其特征在于,所述确定所述第一UCI所占的物理资源包括:
    根据等效物理资源数量确定所述第一UCI所占的物理资源的数量,所述等效物理资源数量与所述第一上行数据信道包括的物理资源数量不同。
  5. 根据权利要求1所述的方法,其特征在于,所述确定所述第一UCI所占的物理资源包括:
    根据等效物理资源数量和所述第一TBS确定所述第一UCI所占的物理资源的数量,所述等效物理资源数量为所述上行数据信道集合包括的物理资源数量。
  6. 根据权利要求1所述的方法,其特征在于,所述确定所述第一UCI所占的物理资源包括:
    根据第二上行数据信道包括的物理资源数量和所述第一TBS确定所述第一UCI所占的物理资源的数量,所述第二上行数据信道包括的物理资源数量用于确定所述K个上行数据信道中任意一个上行数据信道上的UCI所占的物理资源的数量。
  7. 根据权利要求1所述的方法,其特征在于,所述确定所述第一UCI所占的物理资源包括:
    根据第一均衡参数确定所述第一UCI所占的物理资源的数量,所述第一均衡参数与第二均衡参数不同;
    所述第二均衡参数为第一情况下用于确定所述第一UCI所占的物理资源的数量的均衡参数,所述第一情况为:所述上行数据信道集合与所述第一上行数据信道相同,或者所述第一上行数据信道包括的时域符号数不小于所述第一阈值,或者所述第一上行数据信道包括的物理资源数量不小于所述第二阈值,或者将所述第一UCI承载到所述第一上行数据信道上的码率不大于所述第三阈值的情况;
    或者,所述第二均衡参数为用于确定第三上行数据信道上的第二UCI所占的物理资源的数量的均衡参数,所述第三上行数据信道为所述K个上行数据信道中的上行数据信道,所述第三上行数据信道不等于所述第一上行数据信道。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第三控制信息,所述第三控制信息包括第一字段,所述第一均衡参数和所述第二均衡参数均对应于所述第一字段,或者所述第一均衡参数和所述第二均衡参数均对应于所述第一字段通知的第一索引值。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一均衡参数大于所述第二均衡参数。
  10. 根据权利要求2-9任一项所述的方法,其特征在于,所述第一UCI所占的物理资源为所述第一上行数据信道中的物理资源。
  11. 根据权利要求1所述的方法,其特征在于,所述第一UCI所占的物理资源为第四上行数据信道中的物理资源,所述第四上行数据信道为所述K个上行数据信道中的上行数据信道,所述第四上行数据信道不等于所述第一上行数据信道。
  12. 根据权利要求1所述的方法,其特征在于,所述第一UCI所占的物理资源为所述第一时域资源对应的上行控制信道中的物理资源。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    丢弃所述第一上行数据信道或停止在所述第一上行数据信道上发送信息。
  14. 一种通信方法,其特征在于,包括:
    向终端设备发送第一控制信息,所述第一控制信息包括用于传输第一数据包的第一物理资源的信息,所述第一物理资源对应K个上行数据信道,所述K个上行数据信道中每个上行数据信道分别用于传输一次所述第一数据包,所述K为正整数;
    向所述终端设备发送第二控制信息,所述第二控制信息包括用于传输第一上行控制信息UCI的第一时域资源的信息,所述第一时域资源与所述K个上行数据信道中的第一上行数据信道在时域上重叠,其中,所述第一上行数据信道与用于确定第一传输块大小TBS的上行数据信道集合不相同,所述第一TBS为所述第一数据包的TBS,或者所述第一上行数据信道包括的时域符号数小于第一阈值,或者所述第一上行数据信道包括的物理资源数量小于第二阈值,或者将所述第一UCI承载到所述第一上行数据信道上的码率大于第三阈值;
    确定所述第一UCI所占的物理资源;
    通过所述第一UCI所占的物理资源接收来自所述终端设备的所述第一UCI。
  15. 根据权利要求14所述的方法,其特征在于,所述第一UCI所占的物理资源的数量对应于等效TBS,所述等效TBS与所述第一TBS不同。
  16. 根据权利要求14所述的方法,其特征在于,所述第一UCI所占的物理资源的数量 对应于等效TBS和所述第一上行数据信道包括的物理资源数量,所述等效TBS为对应于所述第一上行数据信道的TBS。
  17. 根据权利要求14所述的方法,其特征在于,所述第一UCI所占的物理资源的数量对应于等效物理资源数量,所述等效物理资源数量与所述第一上行数据信道包括的物理资源数量不同。
  18. 根据权利要求14所述的方法,其特征在于,所述第一UCI所占的物理资源的数量对应于等效物理资源数量和所述第一TBS,所述等效物理资源数量为所述上行数据信道集合包括的物理资源数量。
  19. 根据权利要求14所述的方法,其特征在于,所述第一UCI所占的物理资源的数量对应于第二上行数据信道包括的物理资源数量和所述第一TBS,所述第二上行数据信道包括的物理资源数量用于确定所述K个上行数据信道中任意一个上行数据信道上的UCI所占的物理资源的数量。
  20. 根据权利要求14所述的方法,其特征在于,所述第一UCI所占的物理资源的数量对应于第一均衡参数,所述第一均衡参数与第二均衡参数不同;
    所述第二均衡参数为第一情况下用于确定所述第一UCI所占的物理资源的数量的均衡参数,所述第一情况为:所述上行数据信道集合与所述第一上行数据信道相同,或者所述第一上行数据信道包括的时域符号数不小于所述第一阈值,或者所述第一上行数据信道包括的物理资源数量不小于所述第二阈值,或者将所述第一UCI承载到所述第一上行数据信道上的码率不大于所述第三阈值的情况;
    或者,所述第二均衡参数为用于确定第三上行数据信道上的第二UCI所占的物理资源的数量的均衡参数,所述第三上行数据信道为所述K个上行数据信道中的上行数据信道,所述第三上行数据信道不等于所述第一上行数据信道。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第三控制信息,所述第三控制信息包括第一字段,所述第一均衡参数和所述第二均衡参数均对应于所述第一字段,或者所述第一均衡参数和所述第二均衡参数均对应于所述第一字段通知的第一索引值。
  22. 根据权利要求19或20所述的方法,其特征在于,所述第一均衡参数大于所述第二均衡参数。
  23. 根据权利要求15-22任一项所述的方法,其特征在于,所述第一UCI所占的物理资源为所述第一上行数据信道中的物理资源。
  24. 根据权利要求14所述的方法,其特征在于,所述第一UCI所占的物理资源为第四上行数据信道中的物理资源,所述第四上行数据信道为所述K个上行数据信道中的上行数据信道,所述第四上行数据信道不等于所述第一上行数据信道。
  25. 根据权利要求14所述的方法,其特征在于,所述第一UCI所占的物理资源为所述第一时域资源对应的上行控制信道中的物理资源。
  26. 根据权利要求25所述的方法,其特征在于,接收上行信息的上行数据信道不包括所述第一上行数据信道,或者,所述第一上行数据信道与所述第一时域资源在时域上重叠的部分不用于传输上行信息。
  27. 一种通信装置,其特征在于,包括用于执行如权利要求1至13中任一项所述的方法的单元。
  28. 一种通信装置,其特征在于,包括用于执行如权利要求14至26中任一项所述的方法的单元。
  29. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至13中任一项所述的方法。
  30. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求14至26中任一项所述的方法。
  31. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有程序或指令,当所述程序或指令被通信装置执行时,实现如权利要求1至13或14至26中任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,所述计算机程序产品包括程序或指令,当所述程序或指令被通信装置执行时,实现如权利要求1至13或14至26中任一项所述的方法。
  33. 一种计算机程序,其特征在于,当所述程序被通信装置执行时,实现如权利要求1至13或14至26中任一项所述的方法。
  34. 一种通信***,其特征在于,包括如权利要求27或29所述的通信装置,和如权利要求28或30所述的通信装置。
PCT/CN2020/081451 2019-03-29 2020-03-26 一种通信方法及设备 WO2020200044A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021557716A JP7262611B2 (ja) 2019-03-29 2020-03-26 通信方法および装置
BR112021019592A BR112021019592A2 (pt) 2019-03-29 2020-03-26 Método de comunicação e aparelho de comunicação, meio de armazenamento legível por computador e sistema de comunicação
EP20784330.1A EP3952534A4 (en) 2019-03-29 2020-03-26 COMMUNICATION METHOD AND DEVICE
AU2020251616A AU2020251616B2 (en) 2019-03-29 2020-03-26 Communication method and apparatus
US17/487,908 US11974287B2 (en) 2019-03-29 2021-09-28 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910252614.1 2019-03-29
CN201910252614.1A CN111757487B (zh) 2019-03-29 2019-03-29 一种通信方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/487,908 Continuation US11974287B2 (en) 2019-03-29 2021-09-28 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020200044A1 true WO2020200044A1 (zh) 2020-10-08

Family

ID=72664995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081451 WO2020200044A1 (zh) 2019-03-29 2020-03-26 一种通信方法及设备

Country Status (7)

Country Link
US (1) US11974287B2 (zh)
EP (1) EP3952534A4 (zh)
JP (1) JP7262611B2 (zh)
CN (1) CN111757487B (zh)
AU (1) AU2020251616B2 (zh)
BR (1) BR112021019592A2 (zh)
WO (1) WO2020200044A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3952177B1 (en) * 2019-04-30 2023-12-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Dmrs configuration method, user equipment and network device
CN116508379A (zh) * 2020-12-14 2023-07-28 Oppo广东移动通信有限公司 确定传输块大小的方法和装置
WO2022126342A1 (zh) * 2020-12-14 2022-06-23 北京小米移动软件有限公司 传输块大小的确定方法、装置及通信设备
CN115334652A (zh) * 2021-05-10 2022-11-11 维沃移动通信有限公司 上行控制信息uci传输方法、装置、用户设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872896A (zh) * 2016-09-23 2018-04-03 中兴通讯股份有限公司 一种控制信息的传输方法及装置
CN108400834A (zh) * 2017-02-06 2018-08-14 中兴通讯股份有限公司 信息的传输方法、装置及设备
WO2019005920A1 (en) * 2017-06-27 2019-01-03 Gang Xiong TRANSMISSION OF UPLINK CONTROL INFORMATION (UCI) AND IDENTIFICATION OF HYBRID AUTOMATIC REPEAT REQUEST (HARQ) PROCESS FOR SHARED PHYSICAL UPLINK CHANNEL WITHOUT AUTHORIZATION (PUSCH)
CN109152007A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 一种控制信息发送、接收方法及装置
WO2019031850A1 (ko) * 2017-08-11 2019-02-14 한국전자통신연구원 하향링크 제어 채널의 송수신 방법 및 이를 이용하는 장치
CN109511169A (zh) * 2017-09-15 2019-03-22 华为技术有限公司 一种控制资源集合的获取方法、装置以及***

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170647B (zh) * 2010-02-26 2013-11-20 电信科学技术研究院 上行数据信道资源复用类型的判断装置和方法
CN105450366B (zh) 2010-10-28 2018-12-28 Lg电子株式会社 用于发送控制信息的方法和装置
KR20220165792A (ko) * 2014-12-08 2022-12-15 엘지전자 주식회사 상향링크 제어 정보를 전송하기 위한 방법 및 이를 위한 장치
US10581579B2 (en) * 2015-12-27 2020-03-03 Lg Electronics Inc. Method and apparatus for transmitting ACK/NACK for NB-IoT in wireless communication system
CN108886441B (zh) 2016-03-30 2020-10-23 华为技术有限公司 信息的处理方法、终端设备、网络设备和通信***
US10531479B2 (en) * 2016-11-04 2020-01-07 Motorola Mobility Llc Identifying a resource for transmitting a first uplink channel
US10484976B2 (en) * 2017-01-06 2019-11-19 Sharp Kabushiki Kaisha Signaling, procedures, user equipment and base stations for uplink ultra reliable low latency communications
CN109392168B (zh) 2017-08-04 2021-04-02 维沃移动通信有限公司 一种数据传输方法及终端
CN109392101B (zh) 2017-08-04 2020-08-25 维沃移动通信有限公司 一种数据传输方法、终端及基站
CN109391388B (zh) * 2017-08-04 2021-01-08 维沃移动通信有限公司 一种数据传输方法、终端及基站
WO2019033071A1 (en) * 2017-08-10 2019-02-14 Babaei Alireza MULTIPLEXING UPLINK CONTROL INFORMATION
BR112020002699A8 (pt) * 2017-08-10 2023-04-25 Sharp Kk Procedimentos, estações-base e equipamentos de usuário para transmissão de uplink sem concessão
CN107801250A (zh) 2017-09-26 2018-03-13 深圳市金立通信设备有限公司 资源分配方法、基站及计算机可读介质
US10779317B2 (en) * 2017-09-28 2020-09-15 Lenovo (Singapore) Pte. Ltd. Autonomous uplink confirmation triggering

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872896A (zh) * 2016-09-23 2018-04-03 中兴通讯股份有限公司 一种控制信息的传输方法及装置
CN108400834A (zh) * 2017-02-06 2018-08-14 中兴通讯股份有限公司 信息的传输方法、装置及设备
CN109152007A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 一种控制信息发送、接收方法及装置
WO2019005920A1 (en) * 2017-06-27 2019-01-03 Gang Xiong TRANSMISSION OF UPLINK CONTROL INFORMATION (UCI) AND IDENTIFICATION OF HYBRID AUTOMATIC REPEAT REQUEST (HARQ) PROCESS FOR SHARED PHYSICAL UPLINK CHANNEL WITHOUT AUTHORIZATION (PUSCH)
WO2019031850A1 (ko) * 2017-08-11 2019-02-14 한국전자통신연구원 하향링크 제어 채널의 송수신 방법 및 이를 이용하는 장치
CN109511169A (zh) * 2017-09-15 2019-03-22 华为技术有限公司 一种控制资源集合的获取方法、装置以及***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3952534A4 *

Also Published As

Publication number Publication date
CN111757487A (zh) 2020-10-09
US11974287B2 (en) 2024-04-30
BR112021019592A2 (pt) 2021-12-14
JP7262611B2 (ja) 2023-04-21
US20220015092A1 (en) 2022-01-13
AU2020251616A1 (en) 2021-11-04
CN111757487B (zh) 2022-04-12
EP3952534A1 (en) 2022-02-09
JP2022528386A (ja) 2022-06-10
EP3952534A4 (en) 2022-05-18
AU2020251616B2 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
WO2020143839A1 (zh) 上行控制信息复用的方法和装置
EP3735071B1 (en) Uplink control information transmission method and device
US11641249B2 (en) Method and apparatus for determining a duration of a repetition of a transport block
WO2020200044A1 (zh) 一种通信方法及设备
WO2019137213A1 (zh) 上行控制信息传输方法和通信装置
WO2020143428A1 (zh) 传输上行信息的方法和通信装置
WO2019154185A1 (zh) 下行控制信息dci的传输方法、装置及网络设备
WO2018228570A1 (zh) 一种无线通信方法和设备
US11871267B2 (en) Transport block size determining method and apparatus
AU2019273246B2 (en) Method and device for transmitting uplink control information
CN111727649A (zh) 用于无线通信***中传输或接收数据和控制信息的方法和装置
WO2019137467A1 (zh) 上行信息传输方法及装置
TWI768429B (zh) 處理接收的裝置及方法
JP2020523841A (ja) フィードバック情報の送受信方法、装置及び通信システム
WO2020191740A1 (zh) 信号接收或发送方法、装置和***
WO2018171649A1 (zh) 反馈方法和通信设备
US11140684B2 (en) Data transmission method and apparatus
WO2019098937A1 (en) Harq requests and responses
CN115918011A (zh) 生成混合自动重复请求harq码本的方法和装置
WO2019192515A1 (zh) 一种反馈信息的传输方法和装置
WO2020143840A1 (zh) 一种确定传输块大小的方法及装置
WO2021134226A1 (zh) 一种数据传输方法及装置
RU2789381C1 (ru) Способ и устройство связи
WO2022151435A1 (zh) 一种通信方法及装置
WO2022151434A1 (zh) 一种通信方法、装置及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784330

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021557716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021019592

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020251616

Country of ref document: AU

Date of ref document: 20200326

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020784330

Country of ref document: EP

Effective date: 20211026

ENP Entry into the national phase

Ref document number: 112021019592

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210929