WO2020143840A1 - 一种确定传输块大小的方法及装置 - Google Patents

一种确定传输块大小的方法及装置 Download PDF

Info

Publication number
WO2020143840A1
WO2020143840A1 PCT/CN2020/071862 CN2020071862W WO2020143840A1 WO 2020143840 A1 WO2020143840 A1 WO 2020143840A1 CN 2020071862 W CN2020071862 W CN 2020071862W WO 2020143840 A1 WO2020143840 A1 WO 2020143840A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission opportunity
transmission
time
opportunities
opportunity
Prior art date
Application number
PCT/CN2020/071862
Other languages
English (en)
French (fr)
Inventor
李�远
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910364011.0A external-priority patent/CN111436144B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20738869.5A priority Critical patent/EP3905819A4/en
Publication of WO2020143840A1 publication Critical patent/WO2020143840A1/zh
Priority to US17/371,985 priority patent/US11871267B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present application relates to the field of communication technology, and in particular, to a method and device for determining the size of a transmission block.
  • the 5th generation (the 5 th generation, 5G) a new air interface (new radio, NR) system into critical reliability short-latency communication (ultra-reliable and low-latency communications, URLLC) scene.
  • 5G the 5 th generation
  • NR new air interface
  • the physical layer uplink shared channel (PUSCH) of the 5G NR system also introduces multiple repetition mechanisms to enhance transmission reliability.
  • the multiple repetition mechanism of the PUSCH may refer to repeating the same data packet on K PUSCHs K times, K is a positive integer, and each PUSCH of the K PUSCHs is used to perform a data transmission on the data packet.
  • TBS transport block size
  • the present application provides a method and apparatus for determining the size of a transmission block, which is used to determine a data packet when there are at least one transmission opportunity among multiple transmission opportunities where the number of effective REs included is different from other transmission opportunities Corresponding TBS.
  • an embodiment of the present application provides a method for determining TBS, including:
  • the time-frequency resource includes K transmission opportunities, and each of the K transmission opportunities is transmitted The opportunity is used to perform a data transmission on the first data packet.
  • the first transmission opportunity in the K transmission opportunities includes a number of effective resource particles RE greater than that included in the second transmission opportunity in the K transmission opportunities. Number of REs, K is an integer greater than 1;
  • the target effective RE number is the average number of effective REs included in each of the K transmission opportunities, or the target The number of effective REs is the number of effective REs included in the target transmission opportunity among the K transmission opportunities.
  • the terminal device can determine the TBS corresponding to the first data packet according to the number of target effective REs, for example, the terminal device can determine the TBS by the average number of effective REs, thereby avoiding The TBS determined by a large number of effective REs is too large, or the TBS determined by a small number of effective REs is too small.
  • the target transmission opportunity is the second transmission opportunity.
  • the second transmission opportunity is the transmission opportunity with the smallest number of effective REs included in the K transmission opportunities; or, the second transmission opportunity is included in the K transmission opportunities The transmission opportunity with the smallest number of time-domain symbols.
  • the target transmission opportunity is the first transmission opportunity.
  • the first transmission opportunity is the transmission opportunity with the largest number of effective REs included in the K transmission opportunities; or, the first transmission opportunity is included in the K transmission opportunities The transmission opportunity with the largest number of time-domain symbols.
  • control information is also used to notify the time-domain resource length of one of the K transmission opportunities, and the time-domain resource length corresponding to the target transmission opportunity is the control information notification The length of the time domain resource.
  • the terminal device can calculate the TBS according to the number of effective REs included in the transmission opportunities corresponding to the time-domain resource length notified by the control information among the K transmission opportunities, regardless of whether the K transmission opportunities include other time domains Transmission opportunities with longer or shorter resources.
  • the network device can adjust the length of the time domain resource of a notified transmission opportunity to adjust the TBS to prevent the calculated TBS from being too large or too small.
  • the time domain resource length corresponding to the second transmission opportunity corresponds to the time domain resource length notified by the control information.
  • the time domain resource length corresponding to the first transmission opportunity corresponds to the time domain resource length notified by the control information.
  • the target transmission opportunity is the second transmission opportunity
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • the target transmission opportunity may be determined as the second transmission opportunity, that is, the second transmission opportunity is used to calculate the TBS, thereby ensuring that the reliability is not impaired.
  • the target transmission opportunity Is the second transmission opportunity
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity
  • the correction code rate is carried by the first reference TBS on the second transmission opportunity and is modulating The corresponding code rate under the order
  • the control information is also used to notify the modulation order of transmitting the first data packet, and the modified modulation order is higher than the modulation order notified by the control information.
  • the modified code rate is still greater than the code rate threshold, indicating that the TBS calculated based on the first transmission opportunity cannot be carried on the second transmission opportunity.
  • the target transmission opportunity is the second transmission opportunity, that is, the second transmission opportunity is used to calculate the TBS, thereby ensuring that the reliability is not compromised.
  • the target transmission opportunity is the first transmission opportunity
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • the first code rate corresponding to the second transmission opportunity carried by the first reference TBS is not greater than the code rate threshold, it means that the TBS calculated according to the first transmission opportunity is moderate, which can make the calculation based on the first transmission opportunity
  • the code rate obtained by the TBS carrying the second transmission opportunity is greater than the code rate carried by the TBS to the first transmission opportunity, it is still not too large and has a higher probability of being correctly decoded by the network device.
  • use The first transmission opportunity to calculate TBS can improve the transmission efficiency without excessive loss of reliability.
  • the target transmission The opportunity is the first transmission opportunity
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity
  • the correction code rate is carried by the first reference TBS on the second transmission opportunity and is modulating The code rate corresponding to the order
  • the control information is also used to notify the modulation order of transmitting the first data packet, and the modified modulation order is higher than the modulation order notified by the control information;
  • the method also includes sending the first data packet using the modified modulation order and the modified code rate on the second transmission opportunity.
  • the terminal device adaptively adjusts the modulation order higher for the second transmission opportunity to reduce the code rate of the second transmission opportunity, so that a larger TBS can also be carried on the second transmission opportunity.
  • the method further includes: if the first code rate corresponding to the first reference TBS carried on the second transmission opportunity is greater than a code rate threshold, using the second transmission opportunity on the second transmission opportunity Sending the first data packet by the modified modulation order and the modified code rate, wherein the modified code rate is carried on the second transmission opportunity and the modified modulation order is carried on the TBS corresponding to the first data packet.
  • the code rate corresponding to the following, the control information is also used to notify the modulation order of transmitting the first data packet, and the modified modulation order is higher than the modulation order notified by the control information.
  • the method further includes:
  • the second transmission opportunity is discarded when the first data packet is sent; wherein, the first reference TBS Is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • the terminal device sends the first data packet on the second transmission opportunity, the performance is relatively poor, so the second transmission opportunity can be discarded to save time-frequency resources of the second transmission opportunity, which is used by the network device to schedule or instruct other terminal devices to send Information to improve resource utilization.
  • the method further includes:
  • the first data packet is discarded when the first data packet is sent Two transmission opportunities; wherein, the first reference TBS is a TBS calculated according to the number of valid REs included in the first transmission opportunity, and the modified code rate is carried on the second transmission opportunity by the first reference TBS And the corresponding code rate under the modified modulation order; the control information is also used to notify the modulation order of transmitting the first data packet, the modified modulation order is higher than the modulation notified by the control information Order.
  • the method further includes:
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • the terminal device when the first code rate exceeds the code rate threshold, the terminal device can still carry the first data packet to the second transmission opportunity to ensure the transmission performance. However, since the number of effective REs of the second transmission opportunity cannot carry all the encoded information of the first data packet, the terminal device may discard a part of the information when mapping the information of the first data packet to the second transmission opportunity.
  • the method further includes:
  • the modified modulation order is used on the second transmission opportunity Sending a part of the system information of the first data packet with the modified code rate; wherein, the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity, and the modified The code rate is the code rate corresponding to the first reference TBS carried on the second transmission opportunity and under the modified modulation order; the control information is also used to notify the modulation order of transmitting the first data packet Number, the modified modulation order is higher than the modulation order notified by the control information.
  • the number of effective REs included in the first transmission opportunity is greater than the number of effective REs included in the second transmission opportunity, including:
  • the first transmission opportunity is a transmission opportunity that does not include a demodulation reference signal DMRS
  • the second transmission opportunity is a transmission opportunity that includes DMRS
  • the first transmission opportunity is a transmission opportunity that includes DMRS
  • the second transmission opportunity is a transmission opportunity that does not include DMRS.
  • the time domain symbol carrying the DMRS in the first transmission opportunity is also used to carry data information.
  • the length of the time domain resource not used for carrying DMRS in one transmission opportunity is equal to the length of the time domain resource not used for carrying DMRS in the second transmission opportunity.
  • the number of effective REs included in the first transmission opportunity is greater than the number of effective REs included in the second transmission opportunity, including:
  • the length of the time domain resource corresponding to the first transmission opportunity is greater than the length of the time domain resource corresponding to the second transmission opportunity.
  • control information is also used to notify the time-domain resource length of one of the K transmission opportunities
  • the time domain resource length corresponding to the second transmission opportunity is the time domain resource length notified by the control information
  • the first transmission opportunity is the last transmission opportunity of the K transmission opportunities in the first time slot
  • the time interval between the start time of the first transmission opportunity and the end boundary of the first time slot is longer than the length of the time domain resource notified by the control information; or,
  • the time domain resource length corresponding to the first transmission opportunity is the time domain resource length notified by the control information
  • the second transmission opportunity is the last transmission opportunity of the K transmission opportunities in the first time slot
  • the time interval between the start time of the second transmission opportunity and the end boundary of the first time slot is shorter than the length of the time domain resource notified by the control information.
  • the time-frequency resource for transmitting the first data packet notified by the control information includes a time-frequency resource that crosses a slot boundary in the time domain;
  • the first transmission opportunity and the second transmission opportunity are two adjacent transmission opportunities in the K transmission opportunities;
  • the first transmission opportunity corresponds to the time-frequency resource located before the time slot boundary among the time-frequency resources across the slot boundary
  • the second transmission opportunity corresponds to the time-frequency resource across the slot boundary.
  • a time-frequency resource located behind the time slot boundary; or, the first transmission opportunity corresponds to a time-frequency resource located behind the time slot boundary among the time-frequency resources across the time slot boundary
  • the second transmission The opportunity corresponds to the time-frequency resource located before the time-slot boundary among the time-frequency resources across the time-slot boundary.
  • control information is also used to notify the time domain resource length of one of the K transmission opportunities, the total time domain of the first transmission opportunity and the second transmission opportunity
  • the resource length corresponds to the time domain resource length of the one transmission opportunity notified by the control information; or, the control information is also used to notify the total time domain resource length of the K transmission opportunities, the first transmission opportunity
  • the sum of the time-domain resource lengths of the second transmission opportunities corresponds to the total time-domain resource lengths of the K transmission opportunities notified by the control information.
  • the end time of the first transmission opportunity is equal to the time slot boundary is equal to the start time of the second transmission opportunity, or the end time of the second transmission opportunity is equal to the time The slot boundary is equal to the starting moment of the first transmission opportunity.
  • the second transmission opportunity is the first candidate transmission opportunity; wherein, the The time domain resource length corresponding to the first transmission opportunity is the time domain resource length notified by the control information, and the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • the time interval between the start time of the first candidate transmission opportunity and the end boundary of the first time slot is shorter than the length of the time domain resource notified by the control information, and the first time slot is the first The time slot where a candidate transmission opportunity is located; or,
  • the first transmission opportunity is the second candidate transmission opportunity
  • the time domain resource length corresponding to the second transmission opportunity is The length of the time domain resource notified by the control information; wherein, the second reference TBS is a TBS calculated according to the number of valid REs included in the second transmission opportunity, and the start time of the first candidate transmission opportunity is The time interval between the end boundaries of the first time slot is shorter than the length of the time domain resource notified by the control information, the first time slot is the time slot where the first candidate transmission opportunity is located, the The time-frequency resource corresponding to the second candidate transmission opportunity includes the time-frequency resource corresponding to the first candidate transmission opportunity, and the time interval between the start time of the second candidate transmission opportunity and the end boundary of the first time slot It is longer than the length of the time domain resource notified by the control information.
  • an embodiment of the present application provides a method for determining a transmission block size TBS.
  • the method includes:
  • the control information is used to inform the information of the time-frequency resource for transmitting the first data packet;
  • the time-frequency resource includes K transmission opportunities, and each of the K transmission opportunities For performing a data transmission on the first data packet, the first transmission opportunity in the K transmission opportunities includes a number of effective resource particles RE greater than the effective RE included in the second transmission opportunity in the K transmission opportunities Number, K is an integer greater than 1;
  • the TBS corresponding to the first data packet is determined according to the number of target effective resource particles RE, the target The effective RE number is the average effective RE number included in each of the K transmission opportunities, or the target effective RE number is the effective RE number included in the target transmission opportunity in the K transmission opportunities.
  • the target transmission opportunity is the second transmission opportunity.
  • the second transmission opportunity is the transmission opportunity with the smallest number of effective REs included in the K transmission opportunities; or, the second transmission opportunity is included in the K transmission opportunities The transmission opportunity with the smallest number of time-domain symbols.
  • the target transmission opportunity is the first transmission opportunity.
  • the first transmission opportunity is the transmission opportunity with the largest number of effective REs included in the K transmission opportunities; or, the first transmission opportunity is included in the K transmission opportunities The transmission opportunity with the largest number of time-domain symbols.
  • control information is also used to notify the time-domain resource length of one of the K transmission opportunities, and the time-domain resource length corresponding to the target transmission opportunity is the control information notification The length of the time domain resource.
  • the length of the time domain resource corresponding to the second transmission opportunity is the length of the time domain resource notified by the control information.
  • the length of the time domain resource corresponding to the first transmission opportunity is the length of the time domain resource notified by the control information.
  • the target transmission opportunity is the second transmission opportunity
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • the target transmission opportunity Is the second transmission opportunity
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity
  • the correction code rate is carried by the first reference TBS on the second transmission opportunity and is modulating The corresponding code rate under the order
  • the control information is also used to notify the modulation order of transmitting the first data packet, and the modified modulation order is higher than the modulation order notified by the control information.
  • the target transmission opportunity is the first transmission opportunity
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • the target transmission The opportunity is the first transmission opportunity; wherein, the first reference TBS is a TBS calculated according to the number of valid REs included in the first transmission opportunity, and the modified code rate is carried on the first reference TBS by all The second transmission opportunity and the corresponding code rate under the modified modulation order, the control information is also used to notify the modulation order of transmitting the first data packet, the modified modulation order is higher than the control information The notified modulation order;
  • the method further includes receiving, on the second transmission opportunity, the first data packet sent by the terminal device using the modified modulation order and the modified code rate.
  • the method further includes: if the first code rate corresponding to the first reference TBS carried on the second transmission opportunity is greater than a code rate threshold, receiving the received data on the second transmission opportunity
  • the terminal device sends the first data packet using a modified modulation order and a modified code rate, wherein the modified code rate is carried on the second transmission opportunity and the modified modulation is carried on the TBS corresponding to the first data packet
  • the control information is also used to notify the modulation order of transmitting the first data packet, and the modified modulation order is higher than the modulation order notified by the control information.
  • At least one of the K transmission opportunities to receive the first data packet sent by the terminal device includes:
  • the at least One transmission opportunity is a transmission opportunity used by the terminal device to send the first data packet among the K transmission opportunities, and the at least one transmission opportunity does not include the second transmission opportunity; wherein, the first reference TBS Is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • the description is: if the first code rate corresponding to the second transmission opportunity carried by the first reference TBS is greater than the code rate threshold, then in the K transmission opportunities, the terminal device sends the first data The second transmission opportunity is not included in the packet transmission opportunity; wherein, the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • At least one of the K transmission opportunities to receive the first data packet sent by the terminal device includes:
  • the terminal device receives the transmission at the at least one transmission opportunity
  • the first data packet, the at least one transmission opportunity is a transmission opportunity in which the terminal device sends the first data packet among the K transmission opportunities, and the at least one transmission opportunity does not include the second transmission opportunity ;
  • the first reference TBS is a TBS calculated according to the number of valid REs included in the first transmission opportunity, and the correction code rate is carried by the first reference TBS on the second transmission opportunity and is being revised
  • the corresponding code rate under the modulation order; the control information is also used to notify the modulation order of transmitting the first data packet, and the modified modulation order is higher than the modulation order notified by the control information.
  • At least one of the K transmission opportunities to receive the first data packet sent by the terminal device includes:
  • the first reference rate carried by the first reference TBS on the second transmission opportunity is greater than the code rate threshold, then receive the system information of the first data packet sent by the terminal device on the second transmission opportunity Part of the information in; the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • At least one of the K transmission opportunities to receive the first data packet sent by the terminal device includes:
  • the terminal device is received on the second transmission opportunity A part of the system information of the first data packet sent using the modified modulation order and the modified code rate; wherein, the first reference TBS is calculated according to the number of effective REs included in the first transmission opportunity TBS, the modified code rate is the code rate corresponding to the first reference TBS carried on the second transmission opportunity and under the modified modulation order; the control information is also used to notify the transmission of the The modulation order of a data packet, the modified modulation order is higher than the modulation order notified by the control information.
  • the number of effective REs included in the first transmission opportunity is greater than the number of effective REs included in the second transmission opportunity, including:
  • the first transmission opportunity is a transmission opportunity that does not include a demodulation reference signal DMRS
  • the second transmission opportunity is a transmission opportunity that includes DMRS
  • the first transmission opportunity is a transmission opportunity that includes DMRS
  • the second transmission opportunity is a transmission opportunity that does not include DMRS.
  • the time domain symbol carrying the DMRS in the first transmission opportunity is also used to carry data information.
  • the length of the time domain resource not used for carrying DMRS in one transmission opportunity is equal to the length of the time domain resource not used for carrying DMRS in the second transmission opportunity.
  • the number of effective REs included in the first transmission opportunity is greater than the number of effective REs included in the second transmission opportunity, including:
  • the length of the time domain resource corresponding to the first transmission opportunity is greater than the length of the time domain resource corresponding to the second transmission opportunity.
  • control information is also used to notify the time-domain resource length of one of the K transmission opportunities
  • the time domain resource length corresponding to the second transmission opportunity is the time domain resource length notified by the control information
  • the first transmission opportunity is the last transmission opportunity of the K transmission opportunities in the first time slot
  • the time interval between the start time of the first transmission opportunity and the end boundary of the first time slot is longer than the length of the time domain resource notified by the control information; or,
  • the time domain resource length corresponding to the first transmission opportunity is the time domain resource length notified by the control information
  • the second transmission opportunity is the last transmission opportunity of the K transmission opportunities in the first time slot
  • the time interval between the start time of the second transmission opportunity and the end boundary of the first time slot is shorter than the length of the time domain resource notified by the control information.
  • the time-frequency resource for transmitting the first data packet notified by the control information includes a time-frequency resource that crosses a slot boundary in the time domain;
  • the first transmission opportunity and the second transmission opportunity are two adjacent transmission opportunities in the K transmission opportunities;
  • the first transmission opportunity corresponds to the time-frequency resource located before the time slot boundary among the time-frequency resources across the slot boundary
  • the second transmission opportunity corresponds to the time-frequency resource across the slot boundary.
  • a time-frequency resource located behind the time slot boundary; or, the first transmission opportunity corresponds to a time-frequency resource located behind the time slot boundary among the time-frequency resources across the time slot boundary
  • the second transmission The opportunity corresponds to the time-frequency resource that is located before the slot boundary among the time-frequency resources that cross the slot boundary.
  • control information is also used to notify the time domain resource length of one of the K transmission opportunities, the total time domain of the first transmission opportunity and the second transmission opportunity
  • the resource length corresponds to the time domain resource length of the one transmission opportunity notified by the control information; or, the control information is also used to notify the total time domain resource length of the K transmission opportunities, the first transmission opportunity
  • the sum of the time-domain resource lengths of the second transmission opportunities corresponds to the total time-domain resource lengths of the K transmission opportunities notified by the control information.
  • the end time of the first transmission opportunity is equal to the time slot boundary is equal to the start time of the second transmission opportunity, or the end time of the second transmission opportunity is equal to the time The slot boundary is equal to the starting moment of the first transmission opportunity.
  • the second transmission opportunity is the first candidate transmission opportunity; wherein, the The time domain resource length corresponding to the first transmission opportunity is the time domain resource length notified by the control information, and the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • the time interval between the start time of the first candidate transmission opportunity and the end boundary of the first time slot is shorter than the length of the time domain resource notified by the control information, and the first time slot is the first The time slot where a candidate transmission opportunity is located; or,
  • the first transmission opportunity is the second candidate transmission opportunity
  • the time domain resource length corresponding to the second transmission opportunity is The length of the time domain resource notified by the control information; wherein, the second reference TBS is a TBS calculated according to the number of valid REs included in the second transmission opportunity, and the start time of the first candidate transmission opportunity is The time interval between the end boundaries of the first time slot is shorter than the length of the time domain resource notified by the control information, the first time slot is the time slot where the first candidate transmission opportunity is located, the The time-frequency resource corresponding to the second candidate transmission opportunity includes the time-frequency resource corresponding to the first candidate transmission opportunity, and the time interval between the start time of the second candidate transmission opportunity and the end boundary of the first time slot It is longer than the length of the time domain resource notified by the control information.
  • an embodiment of the present application provides an apparatus.
  • the apparatus may be a network device or a terminal device, or may be a semiconductor chip provided in the network device or the terminal device.
  • the device has functions to realize various possible implementation manners of the above-mentioned first aspect or second aspect. This function can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • an apparatus in a fourth aspect, includes: a processor and a memory; the processor is used to execute an instruction stored on the memory, and when the instruction is executed, the apparatus is caused to execute the first Aspect or any possible design method of the first aspect.
  • an embodiment of the present application provides a terminal device, including the apparatus according to the fourth aspect.
  • an apparatus in a sixth aspect, includes: a processor and a memory; the processor is used to execute an instruction stored on the memory, and when the instruction is executed, the apparatus is caused to execute the second Aspect or any possible design method of the second aspect.
  • an embodiment of the present application provides a network device, including the apparatus according to the sixth aspect.
  • an embodiment of the present application further provides a computer-readable storage medium, including instructions, which, when executed, implement the above aspects or any possible design method in each aspect.
  • an embodiment of the present application further provides a computer program product, including a computer program or instruction, when the computer program or instruction is executed, a method in any of the above aspects or any possible design of the aspects is implemented .
  • FIG. 1 is a schematic structural diagram of a possible communication system to which an embodiment of this application is applicable;
  • FIG. 2 is a schematic diagram of a possible implementation manner of a multiple repetition mechanism of a PUSCH provided by an embodiment of this application;
  • FIG. 3 is a schematic diagram of scenario 1 provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of scenario 2 provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of Scene 3 provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method corresponding to a method for determining TBS provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of determining the average number of effective REs provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of determining whether to discard the second transmission opportunity provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of determining whether to send a part of information of a first data packet on a second transmission opportunity provided by an embodiment of this application;
  • FIG. 10 is a schematic diagram of determining that a first transmission opportunity or a second transmission opportunity is used as a target transmission opportunity provided by an embodiment of this application;
  • FIG. 11 is a schematic diagram of a single symbol provided by an embodiment of the present application forming a short transmission opportunity alone or a long transmission opportunity with a previous time domain resource;
  • FIG. 13 is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a terminal device according to an embodiment of this application.
  • 15 is a schematic structural diagram of a network device according to an embodiment of this application.
  • 16 is a schematic diagram of collision of transmission opportunities provided by embodiments of the present application.
  • 17 is a schematic diagram of a transmission opportunity provided by an embodiment of the present application divided by non-uplink symbols.
  • Terminal device It is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships); it can also be deployed in the air (E.g. airplanes, balloons and satellites etc.).
  • the terminal device may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality terminal device, an augmented reality terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, Wireless terminals in smart grids, wireless terminals in transportation security, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit application scenarios.
  • the terminal device may sometimes be called a user equipment (UE), a mobile station, a remote station, etc.
  • the embodiments of the present application do not limit the specific technology, device form, and name adopted by the terminal device.
  • the network device is an access device that the terminal device accesses to the mobile communication system in a wireless manner, and may be a base station NodeB, an evolved base station (evolved NodeB, eNodeB), a transmission and reception point (transmission reception point, TRP), 5G mobile communication system next-generation base station (next generation NodeB, gNB), future mobile communication system base station or wireless fidelity (wireless-fidelity, Wi-Fi) system access node, etc.; can also be completed base station
  • the modules or units with partial functions may be, for example, a centralized unit (CU) or a distributed unit (DU).
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • At least one (a, b) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be a single or can be Multiple.
  • FIG. 1 is a schematic structural diagram of a possible communication system to which an embodiment of this application is applicable.
  • the communication system shown in FIG. 1 includes network equipment and terminal equipment.
  • FIG. 1 is only a schematic diagram of the architecture of the communication system, and the number of network devices and the number of terminal devices in the communication system are not limited in the embodiments of the present application, and the communication system to which the embodiments of the present application applies includes network devices.
  • other devices may also be included, such as a core network device, a wireless relay device, and a wireless backhaul device, etc., which is not limited in this embodiment of the present application.
  • the network device in the embodiment of the present application may integrate all functions into an independent physical device, or may distribute the functions on multiple independent physical devices, which is not limited in this embodiment of the present application.
  • the terminal device in the embodiment of the present application may be connected to the network device in a wireless manner.
  • the communication system to which the above architecture is applicable can adopt various wireless access technologies (RAT), such as code division multiple access (code division multiple access (CDMA), time division multiple access (time division multiple access, TDMA), frequency division Multiple access (frequency division multiple access, FDMA), orthogonal frequency division multiple access (orthogonal frequency-division multiple access, OFDMA), single carrier frequency division multiple access (single carrier FDMA, SC-FDMA), etc.
  • RAT wireless access technologies
  • CDMA code division multiple access
  • time division multiple access time division multiple access
  • FDMA frequency division Multiple access
  • OFDMA orthogonal frequency division multiple access
  • single carrier frequency division multiple access single carrier frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the RAT used is not limited.
  • the term “system” may be interchanged with "network”.
  • the network can be divided into 2G (generation) network, 3G network, 4G network or future evolution network, such as 5G network, according to factors such as capacity, rate, delay, and RAT adopted
  • resource particles are the smallest resource unit for data transmission, corresponding to one time domain symbol in the time domain and one subcarrier in the frequency domain;
  • a physical resource block is a basic unit used for resource scheduling. It corresponds to multiple consecutive time-domain symbols in the time domain and multiple consecutive subcarriers in the frequency domain, or multiple consecutive sub-carriers in the frequency domain. Of subcarriers.
  • the time-domain symbol may refer to an orthogonal frequency division multiplexing (OFDM) symbol or an SC-FDMA symbol.
  • Transmission time interval is the time domain granularity used to carry data information or service information; for example, a data packet is carried by a TTI in the time domain and at least one physical resource block in the frequency domain On time-frequency resources.
  • the length of a TTI can be S time domain symbols or less than S time domain symbols; further, a TTI with a length of S time domain symbols can be called a slot or a full slot ), a TTI with a length less than S time-domain symbols may be called a mini-slot or a non-slot.
  • the uplink channels used for uplink transmission include PUSCH and physical uplink control channel (PUCCH).
  • PUSCH can carry data information and/or uplink control information (uplink control information, UCI), and PUCCH can carry UCI.
  • uplink control information uplink control information
  • PUCCH uplink control information
  • the data information may also be referred to as uplink shared channel (uplink shared channel, UL-SCH) information.
  • scheduling-based data transmission may include scheduling-based data transmission and grant-free (GF) data transmission.
  • the scheduling-free permission may also be called grant-less or configured scheduling (CG) or transmission without permission (transmission without grant) (TWG).
  • CG grant-less or configured scheduling
  • TWG transmission without permission
  • a terminal device In scheduling-based data transmission, if a terminal device arrives and needs to send upstream data, it needs to first send a scheduling request (SR) to the network device on the PUCCH. Correspondingly, the network device receives the SR and sends it to the terminal. The device sends an uplink (UL) grant that schedules the PUSCH. In this way, after receiving the UL grant, the terminal device can send uplink data on the time-frequency resource scheduled by the UL grant. It can be seen that the scheduling method has the advantages of high reliability and high channel usage efficiency. However, the terminal equipment needs to send SR and send uplink data after receiving UL grant. This process has a certain delay. In order to reduce the delay, the 5G NR system introduced GF data transmission.
  • the network device may pre-configure and/or activate the time-frequency resource (which may be called GF resource) for GF data transmission.
  • the terminal device may not directly send an SR to the network device, but Sending uplink data on GF resources is called data transmission in GF mode. That is to say, in GF data transmission, the network device can allocate the time-frequency resources used for GF transmission to the terminal device in a semi-static manner.
  • the terminal device does not need to send SR to the network device, nor does it need to receive before sending uplink data
  • the UL sent by the network device directly sends the uplink data on the time-frequency resource configured and/or activated by the network device.
  • GF parameters can be configured by the network device through high-level signaling, or by the network device through UL for GF transmission activation. That is, the semi-static UL grant indication can also be notified to the terminal device through the high-level signaling configuration and the semi-static UL grant indication method.
  • the PUSCH of the 5G NR system introduces multiple repetition mechanisms, that is, the same data packet is repeatedly transmitted on multiple PUSCHs, for example, the same data packet is repeated K times on K PUSCH Transmission, where K repeated transmissions correspond to the same hybrid automatic repeat request (HARQ) process identifier (ID), where HARQ process ID can be HARQ process number; K repeated transmissions can be scheduling-based Data transmission can also be GF data transmission.
  • HARQ hybrid automatic repeat request
  • ID hybrid automatic repeat request
  • K repeated transmissions can be scheduling-based
  • Data transmission can also be GF data transmission.
  • K repeated transmissions are carried on K full slots, but any one of the K repeated transmissions is carried on the mini slot, that is, any Two adjacent transmissions are carried on mini-slots in different full slots, and the two adjacent mini-slots are not continuous in time.
  • the terminal device continuously occupies the time slot n ⁇ n+3 and sends 4 repeated transmissions of the same data packet, each repeated transmission is carried in n ⁇ n+3 Corresponding to the mini slot in the time slot (corresponding symbols 0 to 6).
  • implementation 3 any one of the K repeated transmissions is carried on the mini slot, and at least two of the K repeated transmissions are in a full slot, and the phase Adjacent two mini-slots are continuous or back-to-back in time.
  • the TBS corresponding to the data packet is calculated based on time-frequency resources (such as the total number of REs on the scheduled PUSCH), the overhead on the PUSCH, and modulation and coding strategy (MCS).
  • the overhead on the PUSCH here may include the number of REs occupied by demodulation reference signals (DMRS) and the number of REs occupied by other overheads.
  • DMRS demodulation reference signals
  • the TBS needs to remain the same.
  • the time-frequency resources corresponding to the K PUSCHs are the same, so the TBS corresponding to the data packet can be calculated based on the time-frequency resources corresponding to any one of the K PUSCHs.
  • the terminal device first determines the number of effective REs included in each PRB in PUSCH#1, where the number of effective REs is the number of effective REs in each PRB.
  • the modulation mode and code rate corresponding to the configured or indicated MCS determine the number of system information bits included in the data packet carried by PUSCH#1, that is, the TBS corresponding to the data packet.
  • the following describes a possible method for calculating the TBS corresponding to the data packet.
  • the method may include steps a to c.
  • Step a Determine the number of valid REs included in one PRB of PUSCH#1.
  • the number of effective REs included in a PRB is determined by the following formula:
  • N'RE represents the number of valid REs included in a PRB; Represents the number of subcarriers of a PRB in the frequency domain, which can be specifically 12; Represents the number of PUSCH#1 scheduled symbols; Represents the number of REs occupied by DMRS in a PRB (also called DMRS overhead); Represents the number of REs occupied by other overheads, which can be specifically the number of REs occupied by the overhead of each PRB configured by the xOverhead parameter in the higher layer parameter PUSCH-ServingCellConfig.
  • Step b Calculate the number of valid REs included in PUSCH#1.
  • the number of effective REs included in PUSCH#1 is calculated by the following formula:
  • N RE min(156,N' RE ) ⁇ n PRB
  • N RE represents the number of valid REs included in PUSCH#
  • n PRB represents the number of PRBs included in PUSCH#1.
  • Step c Determine the TBS corresponding to the data packet carried by PUSCH#1.
  • the parameter N info is determined by the following formula:
  • N info N RE ⁇ R ⁇ Q m ⁇
  • Q m is the modulation order
  • R is the code rate
  • is the number of layers.
  • Q m and R can be obtained through a table lookup of the index number of the MCS configured or indicated by the network device.
  • N info ⁇ 3824
  • the time domain resources of K PUSCHs used to repeatedly transmit data packets have the same position and duration in the corresponding time slots, and the K PUSCH
  • the frequency domain resources and MCS are the same. Therefore, the parameters used to calculate TBS (including the number of effective REs and MCS) of each PUSCH are the same.
  • the terminal device can configure the time-frequency resources, overhead, and MCS of a single PUSCH according to the network device. The TBS corresponding to the data packet is calculated.
  • Scenario 1 DMRS sharing scenario
  • PUSCHs have different DMRS overheads.
  • some PUSCHs in the K PUSCHs include DMRSs, and some PUSCHs do not include DMRSs.
  • PUSCHs that do not include DMRSs can be estimated from the DMRSs in PUSCHs that include DMRSs in front of them. Perform demodulation.
  • time domain symbols carrying DMRS may not carry data information, or data information and DMRS may be multiplexed in a frequency division multiplexing (FDM) manner.
  • FDM frequency division multiplexing
  • the number of effective REs in the PUSCH that includes DMRS may be greater than the number of effective REs in the PUSCH that does not include DMRS, or the number of effective REs in the PUSCH that includes DMRS may also be less than that in the PUSCH that does not include DMRS. Number of valid REs.
  • the number of effective REs in the PUSCH including the DMRS is less than the number of effective REs in the PUSCH not including the DMRS ; If the length of the time domain resource in the PUSCH that includes DMRS is not used to carry DMRS is equal to the length of the time domain resource of the PUSCH that does not include DMRS, and the DMRS and data information on the time domain symbol carrying DMRS in the PUSCH that includes DMRS are multiplexed in FDM , The number of effective REs in the PUSCH including DMRS is greater than the number of effective REs in the PUSCH not including DMRS.
  • a time slot includes multiple PUSCHs, part of which includes DMRS, and the other part of PUSCH does not include DMRS.
  • each PUSCH includes two time-domain symbols, the first, third, and fifth PUSCH include DMRS, and the second, fourth, and sixth PUSCH do not include DMRS Therefore, since the first, third, and fifth PUSCHs bear the DMRS overhead, the number of effective REs is less than the second, fourth, and sixth PUSCHs.
  • FIG. 3 each PUSCH includes two time-domain symbols, the first, third, and fifth PUSCH include DMRS, and the second, fourth, and sixth PUSCH do not include DMRS Therefore, since the first, third, and fifth PUSCHs bear the DMRS overhead, the number of effective REs is less than the second, fourth, and sixth PUSCHs.
  • each PUSCH includes two non-DMRS time-domain symbols, the first, third, and fifth PUSCH include DMRS, and the second and fourth PUSCH do not include DMRS. Therefore, since The symbols carrying DMRS in the first, third, and fifth PUSCHs also carry a part of data information, and the number of effective REs is greater than that of the second and fourth PUSCHs.
  • the time domain resource starting point of the first PUSCH (or the earliest PUSCH) among K PUSCHs can be flexible, for example, the start symbol of the earliest PUSCH can be in a time slot Any symbol of, so that once the uplink service arrives, the terminal device can send the uplink service information on the PUSCH in time.
  • the time slot end boundary is aligned and the time domain length of the last PUSCH is equal to other normal length PUSCH, that is, there may be some orders between the end time of the last PUSCH in the time slot and the end boundary of the time slot
  • the symbol cannot form a normal length PUSCH, but forms a gap smaller than the normal PUSCH length.
  • the slot can be used to transmit a short PUSCH whose time domain resource length is less than other normal length PUSCHs, where the other normal length PUSCHs are of equal length .
  • the number of effective REs of the short PUSCH is less than the normal length PUSCH.
  • the starting symbol of K PUSCHs is symbol #1 of slot #1
  • the time domain resource length of one PUSCH notified by the network device is 3 symbols, if the fourth PUSCH There are also 3 symbols, which will leave a gap of 2 symbols before the slot boundary.
  • these two symbols can be combined into a short PUSCH, that is, the fifth PUSCH, and the number of effective REs of the fifth PUSCH is less than other normal PUSCH.
  • the "#1" in the "slot #1" involved in the embodiment of the present application is used to identify the index number or serial number of the time slot as 1, or to identify the time slot as the first time slot;
  • "#1" in "Symbol #1” is used to identify the index number or serial number of the symbol as 1, or in other words, is used to identify the symbol as the first symbol.
  • the above description is based on “#1" as an example, and other numbers can be understood by reference and will not be repeated here. It can be understood that the index or serial number of the time slot may be numbered from 0 or 1; the index or serial number of the symbol may be numbered from 0 or 1 and is not limited in this application.
  • the previous PUSCH of the gap may be elongated to fill the gap to form a long PUSCH whose time domain resource length is greater than other normal length PUSCHs, where the other normal length PUSCHs are of equal length .
  • the number of effective REs of the long PUSCH is greater than the normal length PUSCH.
  • the starting symbol of K PUSCHs is symbol #1 of time slot #1
  • the time domain resource length of one PUSCH notified by the network device is 3 symbols, if the fourth PUSCH There are also 3 symbols, which will leave a gap of 2 symbols before the slot boundary.
  • the fourth PUSCH may be stretched to 5 symbol lengths, so the number of effective REs of the fourth PUSCH is more than other normal length PUSCH.
  • Scenario 3 The time slot boundary divides a long time domain resource into two sections of unequal length PUSCH.
  • the network device notifies a time domain resource length, which may be the time domain resource length of a single PUSCH in K PUSCHs or the total time domain resource length of K PUSCHs. If the time domain resource corresponding to the time domain resource length notified by the network device does not cross the slot boundary, the terminal device may only send a long PUSCH; if the time domain resource corresponding to the time domain resource length notified by the network device crosses the time slot Boundary, the time domain resource can be divided into two PUSCHs by the slot boundary. In order to ensure the starting point of the length of the time domain resource across the slot boundary and the flexibility of the length, it may happen that the two PUSCHs on both sides of the slot boundary are not equal in length. As shown in (a) of FIG.
  • an embodiment of the present application provides a method for determining a TBS, which is used to determine the TBS corresponding to a data packet when there are different effective REs included in at least one PUSCH among multiple PUSCHs.
  • FIG. 6 is a schematic flowchart of a method corresponding to a method for determining a TBS provided by an embodiment of the present application. As shown in FIG. 6, it includes:
  • the network device sends control information to the terminal device; accordingly, in step 602, the terminal device receives control information from the network device.
  • the control information is used to inform the information of the time-frequency resource for transmitting the first data packet, where the time-frequency resource includes K transmission opportunities, and the first transmission opportunity among the K transmission opportunities includes a number of effective REs greater than K transmissions The number of effective REs included in the second transmission opportunity among the opportunities.
  • transmission opportunity can be understood as a time-frequency resource for transmitting information.
  • the transmission opportunity can also be Refers to PUSCH.
  • the transmission opportunities and PUSCH involved in the following are equivalent concepts, and the two can be replaced with each other.
  • any data transmission in the K transmission opportunities is one PUSCH or corresponds to one PUSCH.
  • each of the K transmission opportunities may be used to perform one data transmission on the first data packet, that is, the K transmission opportunities are used to perform K data transmission on the first data packet.
  • one transmission opportunity is used to perform a data transmission on the first data packet, which can be understood as: from the perspective of the terminal device, one transmission opportunity is used to send the first data packet; from the perspective of the network device, one The transmission opportunity is used to receive the first data packet once.
  • K is not specifically limited.
  • K may be an integer greater than 1.
  • K may also be equal to one.
  • the two transmission opportunities do not include two transmission opportunities corresponding to different effective RE numbers (ie, the first transmission opportunity and the second transmission opportunity).
  • the control information is used to notify the information of the time-frequency resource for transmitting the first data packet, which means that the control information is used to schedule the terminal device to perform K data transmissions on K transmission opportunities.
  • the network device can send the control information through the dynamic UL grant, or the control information includes the dynamic UL grant, where the dynamic UL grant can be a user-specific wireless network temporary identity (radio network temporary identity, RNTI), for example Cell radio network temporary identifier (cell radio network identifier, C-RNTI), scrambled UL grant.
  • RNTI radio network temporary identity
  • C-RNTI Cell radio network temporary identifier
  • the control information is used to notify the time-frequency resource information for transmitting the first data packet, which means that the control information is used to configure the terminal device to perform K data transmissions on K transmission opportunities, or The control information is used to configure the terminal device to perform data transmission in GF mode on K transmission opportunities.
  • the network device may send control information through high-level signaling and/or semi-static UL grant, or the control information includes high-level signaling and/or semi-static UL grant, where high-level signaling may be radio resource control (radio resource control, RRC) signaling; semi-static UL grant can be a scrambled UL grant that is configured for scheduled wireless network temporary identifier (CS-RNTI).
  • RRC radio resource control
  • part of the K-time data transmission is data transmission that the network device schedules the terminal device to perform
  • the other part of the data transmission is data transmission that the network device configures the terminal device to perform in a GF manner.
  • the control information includes configuration information that configures the terminal device to perform data transmission in the GF manner, and also includes scheduling information that schedules the terminal device to perform data transmission.
  • the K transmission opportunities are configured or indicated by the network device through one piece of control information, rather than being configured or indicated by the network device multiple times through multiple pieces of control information.
  • the control information is UL grant (such as dynamic UL grant or semi-static UL grant)
  • the UL grant is a UL grant; that is, K transmission opportunities are scheduled or configured by the same UL grant instead of Multiple different UL grants are scheduled or configured separately.
  • the control information is high-level signaling
  • the K transmission opportunities are configured by the same high-level signaling, instead of being configured by multiple different high-level signaling separately or multiple times by the same high-level signaling field.
  • K transmission opportunities may be carried on K time units that are consecutive in time, and correspond to K time units in one-to-one correspondence.
  • K time units that are continuous in time may mean that the K time units are continuous in the time domain, that is, there are no gaps between any two adjacent time units in the K time units, or the K time units The units are consecutive in sequence number.
  • the time unit is a time unit used to carry a transmission opportunity (for example, one transmission opportunity among K transmission opportunities). In this case, it can be said that the time unit corresponds to the transmission opportunity.
  • the K transmission opportunities are in one-to-one correspondence with the K time units, and may also be described as: each time unit of the K time units is used to carry one of the K transmission opportunities, and different time units carry Different transmission opportunities.
  • the time unit corresponds to the transmission opportunity, or the time unit is a time unit for carrying the transmission opportunity, which can be understood as: the time domain resource occupied by the transmission opportunity is the time unit, or the transmission The opportunity corresponds to this time unit in the time domain.
  • all time domain resources in the time unit are used for the data transmission. Exemplarily, as shown in (a) of FIG.
  • each time slot in time slot n to time slot n+3 includes 14 time domain symbols, the symbol numbers are 0 to 13, and the first among K transmission opportunities
  • the time unit corresponds to the transmission opportunity, or the time unit is a time unit for carrying the transmission opportunity, and it can also be understood that the time unit includes the time domain resource corresponding to the transmission opportunity. That is to say, the time unit may also include other time domain resources than the time domain resources corresponding to the transmission opportunity.
  • the time unit includes a time domain resource corresponding to the transmission opportunity, and a gap between the transmission opportunity and the next adjacent transmission opportunity that is not used for data transmission by the terminal device.
  • the gap may be an idle time domain resource or a time domain resource used for communication between other terminal devices and network devices, which is not limited in the embodiments of the present application. Exemplarily, as shown in (b) in FIG.
  • each time slot in time slot n to time slot n+3 includes 14 time domain symbols, the symbol numbers are 0 to 13, and the first among K transmission opportunities
  • the time units corresponding to k transmission opportunities are time domain symbol 0 to time domain symbol 6 in time slot n+k-1, which is the time domain resource corresponding to the kth transmission opportunity, and the kth in K time units
  • a time unit is all time domain symbols in time slot n+k-1, including but greater than the time domain resource corresponding to the k-th transmission opportunity.
  • time-domain symbols in the embodiments of the present application may also be called symbols.
  • K transmission opportunities are used for performing K data transmissions on the first data packet, which means that there are one-to-one correspondence between K transmission opportunities and K transmissions, and each of the K transmission opportunities is used for the first data packet.
  • Perform one data transmission ie, one data transmission for carrying the first data packet.
  • the transmission opportunity used for data transmission of the first data packet means that the transmission opportunity is a potential transmission opportunity for sending the first data packet; that is, That is to say, the terminal device may actually send the first data packet on the transmission opportunity, or may not send the first data packet on the transmission opportunity.
  • the terminal device discards the transmission opportunity due to the collision of the transmission opportunity, where the collision includes collision between the transmission opportunity and a time-domain symbol notified by the network device that is not used to send uplink data information, or notifies the terminal device of the transmission Other channels collide, as described later; for another example, when the corresponding bit rate of the first data packet carried on the transmission opportunity exceeds the code rate threshold, the terminal device discards the transmission opportunity, as described later.
  • the first data packet in the embodiment of the present application refers to the original cell data packet before modulation and coding, which is also called a transport block (transport block, TB) or a media access control protocol data unit (medium access control control protocol) data unit, MAC PDU) or UL-SCH.
  • transport block transport block
  • media access control protocol data unit medium access control control protocol data unit
  • the K transmission opportunities used for performing K data transmissions on the first data packet may also be referred to as the K transmission opportunities being used for the terminal device to perform repeated transmission of the first data packet K times.
  • the original cell information of the data packets (or different data transmissions in K data transmissions) carried on different transmission opportunities among the K transmission opportunities is the same or the effective data information before modulation and coding is the same.
  • the network device may notify the terminal device to use the same or different redundancy version number when sending the first data packet on different transmission opportunities of the K transmission opportunities, or use the same or different DMRS, or use the same or Different scrambling codes are used for scrambling.
  • the network device configures or instructs the terminal device to use the different redundancy version number when sending the first data packet on different transmission opportunities of the K transmission opportunities, or use different DMRS sequences, or use different The scrambling code scrambles, but the first data packet (or different data transmissions in the K data transmissions) carried on different transmission opportunities among the K transmission opportunities corresponds to the same original cell information, that is, corresponds to The same MAC PDU or the same TB or the same UL-SCH.
  • repetition (repetition) transmission of the first data packet may also be referred to as aggregation or slot aggregation of the first data packet.
  • the K transmission opportunities are all transmission opportunities where the network device schedules the terminal device to perform multiple repeated data transmissions on the first data packet through a piece of control information (for example, UL grant).
  • a piece of control information for example, UL grant
  • the K transmission opportunities are all transmission opportunities where the network device configures the terminal device to perform multiple repeated data transmissions on the first data packet through control information.
  • the K transmission opportunities are a part of all transmission opportunities where the network device schedules the terminal device to perform multiple repeated data transmissions on the first data packet through a piece of control information (for example, dynamic UL grant).
  • a piece of control information for example, dynamic UL grant
  • the K data transmissions are a part of all transmission opportunities for the network device to configure the terminal device to perform multiple repeated data transmissions on the first data packet through the control information.
  • the information of the time-frequency resource for transmitting the first data packet may include: the value of K and/or the time-domain resource corresponding to K transmission opportunities.
  • the value of K and the time-domain resources corresponding to K transmission opportunities are introduced respectively.
  • the value of K may be explicitly notified by the network device, for example, the control information includes the value of K.
  • the value of K may be implicitly notified by the network device.
  • the control information sent by the network device includes the time domain resource information for transmitting the first data packet and/or the value of H (H is a positive integer); where the time domain resource information for transmitting the first data packet may include the transmission of the first data packet
  • the time domain resource starting point of a data packet that is, the time domain resource starting point of K transmission opportunities
  • the time domain resource length for example, the total time domain resource length of transmitting the first data packet or one of the K transmission opportunities Or the length of the time domain resource for each transmission opportunity or individual
  • H is the number of transmission opportunities notified by the control information.
  • the terminal device can determine the value of K according to the time-domain resource information for transmitting the first data packet. Specifically, the terminal device can determine the value of the time-domain resource information and/or H for transmitting the first data packet, And the time slot boundary information and/or predefined criteria to determine the value of K.
  • the control information sent by the network device includes notification of the start of the time-domain resource for transmitting the first data packet and the total time-domain resource length for transmitting the first data packet (that is, the total time-domain resource length for K transmission opportunities), corresponding
  • the control information sent by the network device includes the start of the time domain resource for transmitting the first data packet, the value of H, and the length of the time domain resource for one of the K transmission opportunities.
  • the K Transmission opportunities span h time slot boundaries, and the time interval between the start time of the last transmission opportunity before the time slot boundary and the time slot boundary of the K transmission opportunities is less than one transmission notified by the control information
  • the time-domain resource length of the opportunity the terminal device may additionally send the last transmission opportunity (short transmission opportunity), so that the number K of transmission opportunities actually determined by the terminal device for repeated transmission is H+h, see FIG. 4 Shown in (a) in FIG. 5 or (c) in FIG. 5.
  • the value of the above K or H may be configured by a high-level parameter aggregationFactorUL or repK.
  • the time domain resources corresponding to the K transmission opportunities notified by the control information may include: the control information notifies the time domain resources corresponding to one of the K transmission opportunities (for example, the start of the time domain resource and the length of the time domain resource) .
  • the control information sent by the network device may notify the time domain resources corresponding to a specific transmission opportunity (for example, the first transmission opportunity among the K transmission opportunities) out of the K transmission opportunities, and accordingly, the terminal device may according to the specific transmission opportunity
  • the corresponding time domain resource determines the time domain resource corresponding to the remaining transmission opportunities among the K transmission opportunities.
  • K transmission opportunities are carried on K time units that are consecutive in time.
  • the time domain resource starting point of the remaining transmission opportunities Or the end of the time domain resource can be obtained from the start of the time domain resource or the end of the time domain resource of the specific transmission opportunity; further, the length of the time domain resource of the remaining transmission opportunities can be obtained from the time domain resource length of the specific transmission opportunity notified by the control information ,
  • the length of the time domain resource included in the remaining transmission opportunity is the same as the length of the time domain resource of the specific transmission opportunity, or the number of non-DMRS symbols included in the remaining transmission opportunity is the same as the specific transmission opportunity; further, the remaining transmission
  • the time-domain resource length of the opportunity can also be determined by the slot boundary information and or a predefined transmission opportunity division criterion, for example, due to the sign of the order placed before the slot boundary, the time-domain resource length of the remaining transmission opportunities is greater or less than
  • the time-domain resource length of a specific transmission opportunity is shown in scenario 2 or scenario 3 above.
  • the time domain resources corresponding to the K transmission opportunities notified by the control information include: the total time domain resources corresponding to the K transmission opportunities notified by the control information (for example, the time domain resource start point and the time domain resource length).
  • the control information sent by the network device may notify the total time-domain resources corresponding to the K transmission opportunities, and accordingly, the terminal device may determine the K number according to other information, such as time slot boundary information and or a predefined transmission opportunity division criterion
  • the time domain resources corresponding to each transmission opportunity in the transmission opportunities are as shown in scenario 3 above.
  • the K transmission opportunities include at least two transmission opportunities, and the number of effective REs included in the at least two transmission opportunities is different.
  • the K transmission opportunities include the first transmission opportunity and the second transmission opportunity.
  • the number of effective REs included in the first transmission opportunity is greater than the number of effective REs included in the second transmission opportunity, or the time domain included in the first transmission opportunity
  • the number of symbols is greater than the number of time-domain symbols included in the second transmission opportunity.
  • K transmission opportunities correspond to two types of effective RE numbers, such as a first effective RE number and a second effective RE number, where at least one transmission opportunity including the first transmission opportunity corresponds to the first effective RE
  • the number, at least one transmission opportunity including the second transmission opportunity corresponds to the second effective RE number, and the first effective RE number is greater than the second effective RE number.
  • the number of effective REs corresponding to any one of K transmission opportunities is the number of first effective REs or the number of second effective REs, or the number of effective REs included in any one of K transmission opportunities is the first effective The number of REs or the number of second valid REs.
  • the K transmission opportunities correspond to more than two effective RE numbers.
  • the K transmission opportunities in addition to the first transmission opportunity corresponding to the number of first effective REs and the second transmission opportunity corresponding to the number of second effective REs, other transmission opportunities are also included, and the number of corresponding effective REs is neither It is equal to the number of the first effective RE and is not equal to the number of the second effective RE.
  • the transmission opportunity includes
  • the number of valid REs is the number of REs on the transmission opportunity used to carry valid information.
  • the effective information is information carried on the modulation symbol on the transmission opportunity.
  • the valid information may be data information, or may be data information and control information UCI.
  • the valid RE in the transmission opportunity does not include the RE notified by the network device as the overhead RE.
  • the overhead RE includes the RE used to carry the DMRS.
  • the overhead RE includes the overhead RE notified by high-layer signaling xOverhead.
  • the overhead RE includes an RE used to carry a sounding reference signal (SRS).
  • SRS sounding reference signal
  • the valid RE in the transmission opportunity includes the RE used to carry UCI information in the transmission opportunity, that is, the effective information carried in the transmission opportunity includes uplink control information (UCI).
  • the number of effective REs included in the transmission opportunity is the number of all REs included in the transmission opportunity minus the number of overhead REs included in the transmission opportunity.
  • the valid RE in the transmission opportunity does not include the RE used to carry UCI in the transmission opportunity, that is, the valid information carried on the transmission opportunity includes UL-SCH information, but does not include UCI.
  • the number of effective REs included in the transmission opportunity is the number of all REs included in the transmission opportunity minus the number of overhead REs included in the transmission opportunity and the number of REs used to carry UCI information in the transmission opportunity.
  • the RE occupied by UCI is determined according to the number of UCI bits that need to be carried on the current transmission opportunity, and the RE used to map UCI is not used to map UL-SCH Information, if the TBS is calculated based on the total RE used to map UCI and UL-SCH information, it will cause the calculated TBS to be too large, and the amount of information in UCI is large (corresponding to mapping UL-SCH information When the number of REs is small), the TBS cannot be carried on the RE used for mapping UL-SCH information.
  • the effective RE for calculating the TBS can exclude the RE for mapping UCI information (ie, the effective RE does not include the RE for carrying UCI information), so that the calculated TBS of the first data packet and the first data for carrying the first data can be made
  • the resources of the UL-SCH information of the packet are matched, and the result is more accurate.
  • the above UCI information may include any one of the following: (1) HARQ-acknowledgement (ACKnowledgement, ACK); (2) SR information; (3) channel state information (channel state information (CSI); (4) HARQ- ACK and SR information; (5) HARQ-ACK and CSI; (6) SR information and CSI; (7) HARQ-ACK, SR information and CSI.
  • the K transmission opportunities do not include transmission opportunities that are discarded due to collision.
  • the discarded transmission opportunity may be a transmission opportunity that is discarded due to a collision with a time-domain symbol that is not used to send uplink data information notified by the network device.
  • the discarded transmission opportunity is also a transmission opportunity notified by the control information to the terminal device for sending the first data packet, but due to collision with a time-domain symbol that is not used for uplink data transmission notified by the network device through other control information, the priority is lower It is discarded by the terminal device.
  • the time domain symbol notified by the network device that is not used for sending uplink data information includes: the network device notifies the time domain symbol as a downlink symbol, or the network device notifies the time domain symbol as a flexible symbol, or, the network The device informs that the time domain symbol is a symbol carrying SRS.
  • the discarded transmission opportunity may also be a transmission opportunity that is discarded due to a collision with another channel (such as a PUCCH, or other higher priority transmission opportunity) sent by the network device to the terminal device.
  • the control information schedules or configures the terminal device to repeatedly transmit the first data packet on M transmission opportunities, M>K, but the MK transmission opportunities among them collide with the symbol that the network device notifies as "downlink" and is Discarding, when the terminal device calculates the TBS of the first data packet, the determination of the number of target effective REs described later is based on the number of effective REs included in the K transmission opportunities that have not been discarded or the K number that has not been discarded The number of effective REs included in one of the target transmission opportunities in the transmission opportunities is obtained, but the number of effective REs of any one of the MK transmission opportunities that need to be discarded does not participate in the determination of the number of target effective REs.
  • the M transmission opportunities are all transmission opportunities where the network device schedules the terminal device to perform multiple repeated data transmissions on the first data packet through a piece of control information (for example, UL grant).
  • a piece of control information for example, UL grant
  • the M transmission opportunities are all transmission opportunities where the network device configures the terminal device to perform multiple repeated data transmissions on the first data packet through control information.
  • the control information is a semi-static UL grant, or the M transmission opportunities are all transmission opportunities within the same GF cycle.
  • the GF cycle is a time domain resource used for data transmission by the terminal device in the GF manner.
  • the network device configures the time domain resource used by the terminal device for GF data transmission periodically through the control information, and two adjacent cycles The time interval between them is the GF cycle. In any two GF cycles, the time domain resource used for GF data transmission is repeated.
  • the collision between any one of the transmission opportunities and the time domain symbol notified by the network device that is not used to send uplink data information specifically refers to the time domain corresponding to the any one of the transmission opportunities
  • the time domain symbols that are not used for sending uplink data information notified by the resource and the network device overlap in the time domain.
  • at least one time domain symbol included in any transmission opportunity is the time domain that is notified by the network device and is not used for sending uplink data information. symbol.
  • the discarded transmission opportunity may be a transmission opportunity that is dropped due to a collision with a time-domain symbol that is not used for sending uplink data information notified by the network device, and means that the discarded transmission opportunity is not notified for transmission by the network device.
  • at least one time domain symbol in the discarded transmission opportunity is a time domain symbol that is not used for sending uplink data information notified by the network device, and thus is discarded by the terminal device.
  • the determination of the number of target effective REs is based on the number of effective REs included in the K transmission opportunities that have not been discarded, and means that the number of target effective REs is all of the K transmission opportunities that have not been discarded.
  • the sum of the number of effective REs included in the transmission opportunity, or the target number of effective REs is the average number of effective REs among the K transmission opportunities that have not been discarded.
  • the definition of the number of effective REs included in any one of the K transmission opportunities is as described above, and will not be repeated here.
  • the determination of the number of target effective REs is obtained based on the number of effective REs included in the K transmission opportunities that have not been discarded, and means that the number of target effective REs is P of the K transmission opportunities that have not been discarded.
  • the sum of the number of effective REs included in the transmission opportunities, or the target number of effective REs is the average number of effective REs of P transmission opportunities out of the K transmission opportunities that are not discarded, where P is less than K (or M) Positive integer.
  • the discarded transmission opportunity collides with a time-domain symbol that is not used for uplink data transmission notified by the network device through other control information and is discarded by the terminal device, where the time-domain symbol that is not used for uplink data transmission is semi-static for the network device It is configured as a time-domain symbol that is not used for uplink data transmission.
  • the other control information is high-layer signaling.
  • the other control information is TDD-UL-DL-ConfigurationCommon or TDD-UL-DL-ConfigDedicated.
  • the network device notifies that certain time-domain symbols are'downlink' symbols or'flexible' symbols through this high-level signaling, and these time-domain symbols overlap with MK transmission opportunities out of M transmission opportunities in the time domain. Therefore, The terminal device discards the MK transmission opportunities, and the terminal device determines the TBS corresponding to the first data packet according to the number of valid REs included in the K transmission opportunities that have not been discarded.
  • K may be equal to 1, or may be an integer greater than 1.
  • the K transmission opportunities do not include the transmission opportunities that are discarded due to the collision, and may also be called: the K transmission opportunities do not include the transmission opportunities that are discarded by the terminal device, or the K transmission opportunities are the control
  • the transmission opportunities not notified of the transmission opportunities for transmitting the first data packet (that is, the above M transmission opportunities) notified by the information.
  • the discarded transmission opportunity may be a transmission opportunity that is discarded due to collision with a time-domain symbol that is not used for sending uplink data information notified by the network device, or a transmission opportunity that is discarded due to power limitation.
  • the transmission opportunities that are not discarded are transmission opportunities other than the discarded transmission opportunities among the transmission opportunities for transmitting the first data packet notified by the control information.
  • a larger transmission opportunity may be discarded by the terminal device due to a collision with a time-domain symbol that is not used to send uplink data information notified by the network device. If the larger transmission opportunity is still used to calculate the first data packet The TBS may cause the calculated TBS to be too large and do not match the resources included in the smaller transmission opportunities, resulting in impaired transmission reliability, or even the loss of system information bits due to the high equivalent code rate. Therefore, the advantage of using the TBS corresponding to the first data packet that has not been discarded is that it can ensure that the calculated TBS matches the transmission opportunities that the terminal device actually occupies and sends information, and guarantees the reliability of data transmission.
  • the length of the time domain resource is 4 symbols
  • the length of the time domain resource of the third transmission opportunity is 9 symbols
  • some of the time domain symbols included in the third transmission opportunity are time domain symbols that are semi-statically configured by the network device to be'downlink' , Therefore, collide with the third transmission opportunity, the terminal device discards the third transmission opportunity, and determines a target transmission opportunity among the first transmission opportunity and the second transmission opportunity that have not been discarded, and according to the target transmission opportunity
  • the included number of target valid REs determines the TBS corresponding to the first data packet.
  • the K transmission opportunities include transmission opportunities that are discarded due to collision.
  • the definition of collision is as described above and will not be repeated here.
  • K transmission opportunities include transmission opportunities that are discarded due to collision, and may also be referred to as: K transmission opportunities include transmission opportunities that are discarded by the terminal device.
  • the discarded transmission opportunity may be a transmission opportunity that is discarded due to collision with a time-domain symbol that is not used for sending uplink data information notified by the network device, or a transmission opportunity that is discarded due to power limitation.
  • the discarded transmission opportunity collides with a time-domain symbol not used for uplink data transmission notified by the network device through other control information and is discarded, where the time-domain symbol not used for uplink data transmission is the time dynamically indicated by the network device Domain symbol.
  • the other control information is physical layer signaling.
  • the other control information is downlink control information (downlink control information, DCI); more specifically, the DCI is DCI corresponding to format 2_0.
  • the K transmission opportunities include a first transmission opportunity and a second transmission opportunity. If the first code rate corresponding to the first reference TBS carried on the second transmission opportunity is greater than the code rate threshold, when the first data packet is sent The second transmission opportunity is discarded; wherein, the first reference TBS is a TBS calculated according to the number of valid REs included in the first transmission opportunity, where the first transmission opportunity is the above-mentioned discarded transmission opportunity.
  • the description about the first code rate corresponding to the first reference TBS carried on the second transmission opportunity is greater than the code rate threshold will be described later.
  • Step 603 The terminal device determines the TBS corresponding to the first data packet according to the number of target effective resource particles RE.
  • step 603 it may further include: step 604, the terminal device performs data transmission on the first data packet on at least one of the K transmission opportunities according to the TBS corresponding to the first data packet; this application is implemented
  • the terminal device performs data transmission on the first data packet on the at least one transmission opportunity, which can be understood as: the terminal device sends the first data packet on the at least one transmission opportunity.
  • the network device receives the first data packet sent by the terminal device in at least one of the K transmission opportunities.
  • at least one transmission opportunity may be K transmission opportunities or a part of the K transmission opportunities.
  • the terminal device discards another part of the K transmission opportunities without being discarded.
  • Data transmission on the transmission opportunity the actual transmission opportunity for data transmission is a part of the K transmission opportunities. For example, if the K transmission opportunities include transmission opportunities that are discarded due to collision, the number of transmission opportunities actually sent is less than K.
  • the embodiment of the present application introduces the target effective RE number, so that the terminal device can determine the transport block size TBS corresponding to the first data packet according to the target effective RE number.
  • the control information sent by the network device may also be used to notify the MCS.
  • the terminal device may determine the TBS of the first data packet according to the MCS notified by the control information and the number of target effective REs.
  • the number of target effective REs in the embodiments of the present application can replace N RE in the foregoing.
  • the target effective RE number is the average effective RE number included in each of the K transmission opportunities.
  • the kth (k is greater than or equal to 1, and k is less than or equal to K) transmission opportunity includes the number of effective REs is N k
  • each of the K transmission opportunities includes the average
  • the number of effective REs consists of Get, for example or among them Means round down Means round up.
  • the starting symbol of K transmission opportunities is symbol #1 of slot #1
  • the time domain resource length of a transmission opportunity notified by the network device is 3 symbols, which will be in the first 4
  • the terminal device can combine these two symbols into a short transmission opportunity, that is, the second transmission opportunity, and the number of effective REs is less than other transmission opportunities, that is, the first One transmission opportunity.
  • the number of effective REs for the first transmission opportunity is N 1
  • the number of effective REs for the second transmission opportunity is N 2
  • the average number of effective REs (5*N 1 + N 1 )/6, where N 1 and N 2 It is a positive integer.
  • the number of target effective REs is the average number of effective REs included in the K transmission opportunities. Assuming that the total number of effective REs included in the K transmission opportunities is N, the target effective RE number can be obtained by N/K. For example, the N/K is rounded up or down to obtain the target effective RE number.
  • the target effective RE number is derived from the average number of symbols included in each of K transmission opportunities. For example, among the K transmission opportunities, the kth (k is greater than or equal to 1, and k is less than or equal to K) transmission opportunity includes the number of effective REs is S k , then each of the K transmission opportunities includes The average number of valid REs can be determined by the average number of symbols get.
  • the TBS calculated by the average number of effective REs can be used as a compromise, thereby effectively avoiding that the TBS calculated based on the transmission opportunity including the larger number of effective REs is too large, or based on the transmission opportunity including the smaller number of effective REs
  • the calculated TBS is too small.
  • the target effective RE number is the total number of effective REs included in the K transmission opportunities (that is, the sum of the number of effective REs).
  • the number of target effective REs is obtained from the number of all effective REs included in the K transmission opportunities. For example, among the K transmission opportunities, the kth (k is greater than or equal to 1, and k is less than or equal to K) transmission opportunity includes the number of effective REs is N k , then the number of all effective REs included in the K transmission opportunities for
  • the number of target effective REs is the number of all effective REs (that is, the sum of the number of effective REs) included in the P transmission opportunities of the K transmission opportunities, where P is a positive integer and P is less than K .
  • the number of target effective REs is obtained from the number of all effective REs included in the P transmission opportunities.
  • the pth (p is greater than or equal to 1 and p is less than or equal to P) transmission opportunity includes the number of effective REs is N p
  • the number of all effective REs included in the K transmission opportunities for Among them, the P transmission opportunities may be notified to the terminal device by the network device, or may be determined based on a predefined criterion.
  • the number of target effective REs is the number of effective REs included in the target transmission opportunity among the K transmission opportunities, and the target transmission opportunity is the second transmission opportunity.
  • some transmission opportunities include a large number of effective REs, and some transmission opportunities include a small number of effective REs. If the TBS is calculated according to the transmission opportunities with a large number of effective REs, a larger TBS, the larger TBS is carried on a transmission opportunity with a smaller number of effective REs, which may cause the transmission reliability of the transmission opportunity with a smaller number of effective REs to be impaired, for example, due to too few resources for mapping data information resulting in a code The rate is too high, and even system bits are lost. Therefore, in order to ensure the transmission reliability, a second transmission opportunity with a small number of effective REs can be used as the target transmission opportunity, to avoid the problem that the bit rate of some transmission opportunities is too high and the performance is impaired.
  • most of the transmission opportunities include a small number of effective REs. If the transmission opportunities are based on the number of effective REs, that is, the corresponding TTI#4 Calculating TBS for transmission opportunities will cause the bit rate of other transmission opportunities to be too high, which will impair the transmission reliability of the entire K repeated transmissions.
  • the second transmission opportunity may be the transmission opportunity with the smallest number of effective REs included in the K transmission opportunities, or the second transmission opportunity may be the transmission opportunity with the smallest number of time-domain symbols included in the K transmission opportunities.
  • the second transmission opportunity is the transmission opportunity corresponding to TTI#1; as shown in (c) in FIG. 3, the second transmission opportunity is the transmission opportunity corresponding to TTI#2.
  • the second transmission opportunity is a transmission opportunity corresponding to TTI#5.
  • the second transmission opportunity is a transmission opportunity corresponding to TTI#1.
  • the K transmission opportunities correspond to more than two effective RE numbers.
  • the K transmission opportunities also include a third transmission opportunity, and the third transmission opportunity includes a smaller number of effective REs than the second transmission.
  • the number of effective REs included in the opportunity that is, the number of effective REs included in the second transmission opportunity is less than the number of effective REs included in the first transmission opportunity but greater than the number of effective REs included in the third transmission opportunity.
  • the time-domain resource length of the second transmission opportunity is (or corresponds to) the time-domain resource length of one transmission opportunity notified by the control information, or, it can also be understood as: if the time domain of the second transmission opportunity If the resource length is equal to or corresponds to the time domain resource length of one transmission opportunity notified by the control information, the target transmission opportunity is the second transmission opportunity.
  • the K transmission opportunities also include the first transmission opportunity, and the number of effective REs included is greater than the number of effective REs corresponding to the time domain resource length of one transmission opportunity notified by the control information.
  • the time-domain resource length of one transmission opportunity (or a single transmission opportunity, or each transmission opportunity) notified by the control information is the time-domain resource length corresponding to one of the K transmission opportunities.
  • a transmission opportunity here may be the first transmission opportunity or the second transmission opportunity among the K transmission opportunities, or may be any transmission opportunity among the K transmission opportunities.
  • the network device notifies a transmission opportunity that the time-domain resource length is 2 time-domain symbols, and the number of effective REs is a transmission opportunity of 2 symbol lengths (for example, the transmission opportunity of TTI#2) Number of valid REs included.
  • the network device notifies a transmission opportunity that the time-domain resource length is 2 time-domain symbols, and the number of effective REs is a transmission opportunity of 2 symbol lengths (for example, the transmission opportunity of TTI#2) Number of valid REs included.
  • the number of effective REs is a transmission opportunity with a 3-symbol length (for example, TTI# 1 transmission opportunity) includes the number of valid REs.
  • the number of effective REs is the number of effective REs included in the target transmission opportunity
  • the time domain resource length of the target transmission opportunity is equal to or corresponds to the time domain resource length of one transmission opportunity notified by the control information.
  • the terminal device calculates the TBS according to the number of effective REs included in the K transmission opportunities corresponding to the length of the time domain resource notified by the control information, regardless of whether the K transmission opportunities include other time domain resources Longer or shorter transmission opportunities.
  • the network device can adjust the length of the time domain resource of a notified transmission opportunity to adjust the TBS to prevent the calculated TBS from being too large or too small.
  • the control information notification time domain resource length (for example, the time domain resource length is the time domain resource length of one transmission opportunity or the total time domain resource length of K transmission opportunities) includes: the control information notification time domain resource information index number, The index number is used for indexing a plurality of time domain resource information that is predefined or pre-configured to obtain one time domain resource information, wherein each time domain resource information in the plurality of time domain resource information corresponds to a specific time domain
  • the resource location includes the start time (such as the start symbol) and length of the time domain resource.
  • the length included in this specific time domain resource location is the length of the time domain resource corresponding to one of the K transmission opportunities, or the total time domain resource length corresponding to the K transmission opportunities.
  • the length of the time domain resource is notified by the start and length indicator (SLIV) field in the control information, where the field is used to notify the start symbol sequence number S of the time domain resource and the continuous Number of time domain symbols L.
  • SLIV start and length indicator
  • the time-domain resource table includes multiple time-domain resource information, and each time-domain resource information corresponds to a time-domain resource start symbol and a time-domain resource.
  • a combination of resource lengths; the SLIV field is used to notify the SLIV index number (instant domain resource information index number), and the SLIV index number is used to indicate one of the multiple time domain resource information.
  • the terminal device can index the specific location (start time and length) of the time domain resource from the multiple time domain resource information. For example, if the control information includes UL grant, the above SLIV field corresponds to the Time domain assignment resource field in UL grant. For another example, if the control information includes high-level signaling, the above SLIV field corresponds to the time Domain Allocation field in the high-level signaling.
  • the time domain resource length in the embodiment of the present application (for example, the time domain resource length corresponding to the first transmission opportunity, or the time domain resource length corresponding to the second transmission opportunity, or the time corresponding to the fourth transmission opportunity hereinafter
  • the length of the domain resource, or the length of the time domain resource of one transmission opportunity notified by the control information, or the total time domain resource length of the K transmission opportunities notified by the control information can also be referred to as the number of time domain symbols.
  • the number of target effective REs is the number of effective REs included in the target transmission opportunity among the K transmission opportunities, and the target transmission opportunity is the first transmission opportunity.
  • some transmission opportunities include a large number of effective REs, and some transmission opportunities include a small number of effective REs. If the TBS is calculated according to the transmission opportunities with a small number of effective REs, a smaller TBS, the smaller TBS is carried on a transmission opportunity with a large number of effective REs, which may make the code rate lower than the code rate corresponding to the MCS notified by the control information. Although the reliability is higher, because the number of transmitted information bits is less, This results in lower transmission efficiency.
  • the first transmission opportunity with a large number of effective REs can be used as the target transmission opportunity to achieve the purpose of improving transmission efficiency; at this time, although the second transmission opportunity with a small number of effective REs may carry an excessively large TBS The performance is impaired, but this loss can be compensated by K repeated transmissions.
  • most transmission opportunities include a large number of effective REs. If the transmission opportunities with a small number of effective REs are included, that is, TTI#5 The corresponding transmission opportunity calculates TBS. If the calculated TBS is too small, the transmission efficiency of other transmission opportunities will be low, thereby lowering the transmission efficiency of K repeated transmissions.
  • the first transmission opportunity may be the transmission opportunity with the largest number of valid REs included in the K transmission opportunities, or the first transmission opportunity may be the transmission opportunity with the largest number of time-domain symbols included in the K transmission opportunities.
  • the first transmission opportunity is the transmission opportunity corresponding to TTI#2; as shown in (c) in FIG. 3, the first transmission opportunity is the transmission opportunity corresponding to TTI#1.
  • the first transmission opportunity is a transmission opportunity corresponding to TTI#1.
  • the first transmission opportunity is a transmission opportunity corresponding to TTI#2.
  • the first transmission opportunity is a transmission opportunity corresponding to TTI#2.
  • the time-domain resource length of the first transmission opportunity is (or corresponds to) the time-domain resource length of a transmission opportunity notified by the control information, or, it can also be understood as: if the time domain of the first transmission opportunity The resource length is equal to the time domain resource length of one transmission opportunity notified by the control information, and the target transmission opportunity is the first transmission opportunity.
  • the K transmission opportunities also include a second transmission opportunity, the number of valid REs included is smaller than the number of valid REs corresponding to the time domain resource length of one transmission opportunity notified by the control information.
  • the description of the time-domain resource length of the second transmission opportunity similar to that in method 2 is the time-domain resource length of one transmission opportunity notified by the control information, and details are not repeated here.
  • the embodiments of the present application propose three possible solutions, which are specifically described below.
  • Solution 1 Discard the second transmission opportunity.
  • the terminal device performs data transmission on the first data packet in at least one of the K transmission opportunities, including: the terminal device discards the second transmission opportunity when performing data transmission on the first data packet.
  • the terminal device may discard the second when sending the first data packet Transmission opportunities.
  • the performance is relatively poor. If the second transmission opportunity is discarded, the time-frequency resources of the second transmission opportunity can be saved for network device scheduling or instructing other The terminal device sends information.
  • the network device receives the first data packet sent by the terminal device on at least one of the K transmission opportunities.
  • the at least one transmission opportunity is the transmission opportunity of the first data packet sent by the terminal device among the K transmission opportunities. At least one transmission opportunity does not include the second transmission opportunity; or in other words, the transmission opportunity that the network device receives the first data packet sent by the terminal device does not include the second transmission opportunity.
  • the starting symbol of K transmission opportunities is symbol #1 of time slot #1
  • the time domain resource length of one transmission opportunity notified by the network device is 3 symbols, which will be after the first 4 transmission opportunities. Leave a gap of 2 symbols in front of the slot boundary.
  • the terminal device can combine these two symbols into a short transmission opportunity, that is, the second transmission opportunity, and the number of effective REs is less than other transmission opportunities.
  • the first corresponding to TTI#1 One transmission opportunity.
  • the first reference TBS (that is, the TBS of the first data packet) is calculated according to the number of valid REs included in the first transmission opportunity.
  • the terminal device discarding the second transmission opportunity when sending the first data packet can also be described as: Of the K transmission opportunities, the transmission opportunity for the terminal device to send the first data packet does not include the second transmission opportunity; or, the terminal device
  • the first data packet is sent in at least one of the K transmission opportunities, and the at least one transmission opportunity is a transmission opportunity in which the terminal device sends the first data packet among the K transmission opportunities, and at least one transmission opportunity does not include the second transmission opportunity Or, of the K transmission opportunities, the second transmission opportunity is not included in the transmission opportunity of the first data packet sent by the terminal device.
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity, and may also be described as: the first reference TBS is a TBS corresponding to the number of effective REs included in the first transmission opportunity, or described as :
  • the first reference TBS is a TBS corresponding to the number of valid REs included in the first transmission opportunity and the MCS notified by the control information.
  • the MCS notified by the control information is also called the modulation order and the code rate notified by the control information.
  • the modulation order and the code rate notified by the control information can also be described as the modulation order notified by the control information and the code rate notified by the control information.
  • the UL grant that schedules K data transmissions contains a bit field that indicates the MCS used by the terminal device to send information on the PUSCH.
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity, which may refer to: the first reference TBS is a modulation order notified according to the number of effective REs included in the first transmission opportunity and the control information notification And the TBS calculated from the bit rate. Specifically, the first reference TBS may be obtained by multiplying the number of effective REs included in the first transmission opportunity by the number of system information bits on each effective RE; where the number of system information bits on each effective RE is notified by the control information The modulation order is multiplied by the code rate notified by the control information.
  • the first reference TBS can be obtained according to N_1*Q*R.
  • the modulation order notified by the control information is the modulation order corresponding to the MCS notified by the control information
  • the code rate notified by the control information is the code rate corresponding to the MCS notified by the control information
  • the MCS notified by the control information is for K transmission opportunities
  • the MCS of one of the transmission opportunities for example, the MCS for the first transmission opportunity in the K transmission opportunities or the MCS of any transmission opportunity.
  • the modulation order in the embodiments of the present application refers to the number of bits (before modulation) included in each modulation symbol.
  • the modulation order 2
  • the modulation order 4
  • the modulation method 64QAM
  • the modulation order 6
  • the modulation order 8
  • the bit rate threshold is predefined, for example, stipulated by a protocol or regulation; or, the bit rate threshold is determined by the network device and notified to the terminal device, for example, the network device is configured for the terminal device through high-level signaling.
  • the code rate threshold is a code rate corresponding to a predefined highest-level MCS that can be used for transmission opportunity transmission.
  • the code rate threshold is 948/1024, or 772/1024.
  • the bit rate threshold is the highest bit rate that can be used without losing system information bits during transmission of the transmission opportunity, for example, the bit rate threshold is 1 or 4/3 (that is, 1.33 ), or 22/17 (ie 1.29).
  • the first code rate corresponding to the second reference opportunity carried by the first reference TBS specifically refers to the code rate corresponding to the modulation order notified by the control information and carried by the first reference TBS. That is, although the first code rate is different from the code rate notified by the control information, the modulation order used when calculating the first code rate is still the modulation order notified by the control information. For example, if the number of effective REs on the second transmission opportunity is N_2, the first reference TBS is T bits, and the modulation order notified by the control information is Q, the first code rate is T/(Q*N_2).
  • the first reference TBS is determined by the modulation order Q notified by the control information, the code rate notified by the control information, and the number of effective REs of the first transmission opportunity N_1, and N_2 is less than N_1, the first code rate is higher than the control The bit rate of information notification.
  • the “TBS (such as the first reference TBS or the second reference TBS) involved in the embodiments of the present application is carried on the transmission opportunity (such as the second transmission opportunity, or the first transmission opportunity, or the first candidate transmission opportunity, or the second candidate transmission opportunity )
  • the corresponding code rate (such as the first code rate or the second code rate)" can also be described as: the data packet corresponding to the TBS is carried at the code rate corresponding to the transmission opportunity, for example: corresponds to the first
  • the data packet of the reference TBS is carried at the first bit rate corresponding to the second transmission opportunity, wherein the data packet corresponding to the first reference TBS may be the first data packet, or may not be the actually generated data packet, but acts on Calculate the first bit rate.
  • TBS (such as the first reference TBS or the second reference TBS) is carried on the transmission opportunity (such as the second transmission opportunity, or the first transmission opportunity, or the first candidate transmission opportunity, or the second candidate transmission opportunity) corresponding to
  • the code rate (such as the first code rate or the second code rate)" can also be described as: the TBS acts on the code rate corresponding to the transmission opportunity.
  • the first code rate is greater than the code rate threshold, which can also be described as: the first code rate is not less than the code rate threshold.
  • the first code rate is not greater than the code rate threshold, and may also be described as: the first code rate is less than the code rate threshold.
  • Solution two send only part of the information of the first data packet on the second transmission opportunity
  • the terminal device performs data transmission on the first data packet in at least one of the K transmission opportunities, including: the terminal device Use the modulation order notified by the control information to perform data transmission on a part of the information in the first data packet on the second transmission opportunity. Further, the terminal device uses the first code rate to perform data transmission on a part of the information in the first data packet on the second transmission opportunity. That is, in order to ensure transmission performance, even if the first code rate exceeds the code rate threshold, the terminal device still carries the first data packet to the second transmission opportunity.
  • the terminal device discards a part of the information when mapping the information of the first data packet to the second transmission opportunity.
  • the first data packet is repeatedly transmitted multiple times, even if the performance of the second transmission opportunity's own independent decoding is not good, it can be decoded by combining with the information transmitted by other transmission opportunities to help improve the decoding performance.
  • the network device receives on the second transmission opportunity a part of the information of the first data packet sent by the terminal device using the modulation order notified by the control information.
  • a part of the information in the first data packet may be a part of the information in the encoded information of the first data packet, and another part of the information in the encoded information of the first data packet is not carried (or mapped) To the second transmission opportunity.
  • the encoded information of the first data packet refers to the encoded information obtained by encoding the first data packet according to the code rate notified by the control information.
  • the number of coded bits corresponding to the code rate threshold plus the number of information bits of the TBS exceeds the resources that the second transmission opportunity can carry (coding After) the number of bits, therefore, in the process of rate matching of the code block (CB), it can be based on the mother code sequence (d 0 , d 1 , d 2 ,..., d N-1 ) Intercepting the encoded sequence for actual transmission, the actual code rate corresponding to the actually transmitted encoded sequence is greater than the code rate threshold.
  • the actual code rate here is the ratio of the number of information bits of the first data packet to the number of encoded sequences actually sent above.
  • the information bits of the first data packet are also referred to as system information bits, and the information bits of the first data packet may include corresponding cyclic redundancy check (CRC) bits or may not include corresponding CRC bits .
  • CRC cyclic redundancy check
  • the complete information after encoding the first data packet (which may be referred to as the reference encoded sequence) is the mother code sequence (d 0 , d 1 , d 2 , ...,d N-1 )
  • part of the information in the first data packet refers to: the length of the encoded sequence used for actual transmission on the second transmission opportunity is shorter than the reference encoded sequence
  • the length of the encoded sequence used for actual transmission is a part of the reference encoded sequence
  • another part of the reference encoded sequence is discarded, for example, at least one bit in the last (that is, the tail) of the reference encoded sequence is discarded .
  • the complete information after the encoding of the first data packet corresponds to the sequence intercepted on the mother code sequence according to the code rate notified by the control information (that is, the encoded information of the first data packet mapped or carried on the first transmission opportunity ), or, corresponds to the sequence intercepted on the mother code sequence according to the code rate threshold.
  • part of the information in the first data packet refers to the mother code sequence (d 0 , d 1 , d 2 ,..., d N-1 ) of the first data packet, corresponding to the second transmission opportunity Redundancy version (redundancy version, RV) corresponding to the starting sequence number, according to the sequence from the front to the part of the sequence cut out.
  • the length of this part of the sequence is smaller than the length of the sequence intercepted by the redundancy version corresponding to the first transmission opportunity carried by the first data packet.
  • the redundancy sequence corresponding to the first transmission opportunity and the redundancy version corresponding to the second transmission opportunity both have a starting sequence number of n, n is greater than or equal to 0, and n is less than or equal to N-1, the first transmission opportunity
  • the length of the encoded complete information of the intercepted first data packet is E_1
  • the length of a part of the information of the first data packet corresponding to the second transmission opportunity is E_2
  • the complete information of the first data packet after encoding is d n , d n +1 ,d n+2 ,...,d E_1 mod(N-1)
  • part of the information of the first data packet corresponding to the second transmission opportunity is d n ,d n+1 ,d n+2 ,.. .,d E_2 mod(N-1) .
  • part of the information in the first data packet may be part of the system information bits (also called system information or system information bit sequence) of the first data packet. Another part of the information bits is not carried on the second transmission opportunity. Further, the second transmission opportunity carries part of the information of the system information bits of the first data packet and does not carry the encoded information bits (parity bits) of the first data packet. For example, the length of the encoded sequence that is actually sent on the second transmission opportunity is shorter than the length of the system information bit sequence of the first data packet, or the encoded sequence that is actually sent on the second transmission opportunity is Part of the system information bit sequence of the first data packet, and another part of the system information bit sequence of the first data packet are discarded.
  • the length of the encoded sequence that is actually sent on the second transmission opportunity is shorter than the length of the system information bit sequence of the first data packet, or the encoded sequence that is actually sent on the second transmission opportunity is Part of the system information bit sequence of the first data packet, and another part of the system information bit sequence of the first data packet are discarded.
  • At least one last bit (that is, the tail) of the system information bit sequence of the first data packet is discarded, or part of the information of the system information bit sequence of the first data packet carried on the second transmission opportunity is
  • the system information bit sequence of the first data packet is c 0 , c 1 , c 2 , c 3 ,...,c K'-1 (K' represents the length of the system information sequence or TBS size)
  • the sequence carried on the second transmission opportunity is c 0 ,c 1 ,c 2 ,c 3 ,.
  • X is a positive integer less than K.
  • at least one bit at the beginning (ie, the header) in the system information bit sequence of the first data packet is discarded, or part of the system information bit sequence of the first data packet carried on the second transmission opportunity
  • the information starts from the Xth serial number of the system information bit sequence and is intercepted in the order from the beginning to the last of the system information bit sequence; for example, the system information bit sequence of the first data packet is c 0 , c 1 , c 2 ,c 3 ,...,c K'-1 , then the sequence carried on the second transmission opportunity is c X-1 ,c 1 ,c 2 ,c 3 ,...,c K'-1 .
  • the starting symbol of K transmission opportunities is symbol #1 of time slot #1
  • the time domain resource length of a transmission opportunity notified by the network device is 3 symbols, which will be in the first 4
  • the terminal device can combine these 2 symbols into a short transmission opportunity, that is, the second transmission opportunity, and the number of effective REs is less than other transmission opportunities, such as TTI. #1 corresponds to the first transmission opportunity.
  • the first reference TBS (that is, the TBS of the first data packet) is calculated according to the number of valid REs included in the first transmission opportunity, and the corresponding system information bit sequence is c 0 , c 1 , c 2 , c 3 , ...,c K'-1 , including K'bits . If the corresponding first bit rate does not exceed the bit rate threshold when the first reference TBS is carried to the second transmission opportunity corresponding to TTI#5, as shown in (a) in FIG.
  • the complete first data packet The system information bit sequence is carried on the second transmission opportunity corresponding to TTI#5 and sent; if the first reference TBS is carried on the second transmission opportunity corresponding to TTI#5, the corresponding first code rate exceeds the code rate threshold, as shown in FIG. 9
  • the K'-X bits in the system information bit sequence of the first data packet ie the sequence c 0 , c 1 , c 2 , c 3 ,..., c K'-X -1
  • the information of X bits is discarded, that is, it is not mapped to the second transmission opportunity.
  • Solution 3 Increase the modulation order of the second transmission opportunity
  • the terminal device if the first code rate corresponding to the second reference opportunity carried on the second transmission opportunity is greater than the code rate threshold, and the modified code rate is not greater than the code rate threshold, the terminal device is on the second transmission opportunity Use the modified modulation order and the modified code rate to perform data transmission on the first data packet. In addition, the terminal device performs data transmission on the first data packet using the modulation order and the code rate notified by the control information on the first transmission opportunity.
  • the modified code rate is the code rate corresponding to the first reference TBS carried on the second transmission opportunity and under the modified modulation order, and the modified modulation order is higher than the modulation order notified by the control information.
  • the network device receives the first data packet sent by the terminal device using the modified modulation order and the modified code rate on the second transmission opportunity. And/or, the network device receives the first data packet sent by the terminal device using the modulation order and code rate notified by the control information on the first transmission opportunity.
  • the terminal device uses the modified modulation order and the modified code rate on the second transmission opportunity for the first Data packets for data transmission.
  • the terminal device performs data transmission on the first data packet using the modulation order and the code rate notified by the control information on the first transmission opportunity. That is to say, if the first code rate corresponding to the second transmission opportunity carried by the first reference TBS is greater than the code rate threshold, the terminal device may directly use the modified modulation order and the modified code rate to send the first code rate on the second transmission opportunity data pack.
  • the network device receives the first data packet sent by the terminal device using the modified modulation order and the modified code rate on the second transmission opportunity. And/or, the network device receives the first data packet sent by the terminal device using the modulation order and code rate notified by the control information on the first transmission opportunity.
  • the terminal device uses the modulation order and the first information notified by the control information on the second transmission opportunity The first data packet sent at the code rate. In addition, the terminal device sends the first data packet using the modulation order and the code rate notified by the control information on the first transmission opportunity.
  • the network device receives the first data packet sent by the terminal device using the modulation order and the first code rate notified by the control information on the second transmission opportunity. And/or, the network device receives the first data packet sent by the terminal device using the modulation order and code rate notified by the control information on the first transmission opportunity.
  • the terminal device may increase the modulation order of the second transmission opportunity when the first data packet is carried on the second transmission opportunity (called Modified modulation order, which is higher than the modulation order notified by the control information), the corresponding code rate will be reduced, and the reduced code rate (referred to as the modified code rate) may no longer exceed the code rate threshold, resulting in a larger
  • Modified modulation order which is higher than the modulation order notified by the control information
  • the modified code rate the reduced code rate
  • a reference TBS can also be carried on the second transmission opportunity to achieve a balance between transmission efficiency and reliability.
  • the terminal device may change the modulation order The number is adjusted up by one level and adjusted to the modified modulation order of 4. At this time, due to the increase in the modulation order, the corresponding bit rate will decrease.
  • the first reference TBS is carried to the second transmission opportunity and the modulation order is 4.
  • the corresponding bit rate is reduced to 0.6 and no longer exceeds the bit rate threshold, so that the first reference TBS can be carried on the second transmission opportunity with acceptable performance.
  • the terminal device sends the first data packet using the modified modulation order and the modified code rate on the second transmission opportunity, where the modified code rate is carried on the second transmission opportunity and the TBS corresponding to the first data packet is Correct the corresponding code rate under the modulation order, and the modified modulation order is higher than the modulation order notified by the control information.
  • the modified modulation order higher than the modulation order notified by the control information can also be described as: the terminal device determines the modified modulation order used to send the first data packet on the second transmission opportunity, and the modified modulation order is higher than the control information notification The modulation order of.
  • the terminal device has at least one of the K transmission opportunities
  • Data transmission on the first data packet includes: the terminal device discards the second transmission opportunity when performing data transmission on the first data packet, or the terminal device uses the modified modulation order and the modified code rate on the second transmission opportunity Partial information of a data packet is used for data transmission; the modified code rate is the code rate corresponding to the first reference TBS carried on the second transmission opportunity and under the modified modulation order, the modified modulation order is higher than the modulation order notified by the control information .
  • part of the information of the first data packet is part of the encoded information of the first data packet, or part of the information of the first data packet is part of the system information bits of the first data packet.
  • the terminal device performs data transmission on the first data packet using the modulation order and the code rate notified by the control information on the first transmission opportunity.
  • the transmission opportunity that the network device receives the first data packet sent by the terminal device does not include the second transmission opportunity, or the network device receives on the second transmission opportunity the terminal device sends the modified modulation order and the modified code rate. Part of the information in the first data packet. And/or, the network device receives the first data packet sent by the terminal device using the modulation order and code rate notified by the control information on the first transmission opportunity.
  • the modified code rate is not greater than the code rate threshold can also be described as: the modified code rate is less than the code rate threshold.
  • the modified code rate greater than the code rate threshold can also be described as: the modified code rate is not less than the code rate threshold.
  • the modified modulation order involved in the embodiments of the present application may be a modulation order determined according to the modulation order notified by the control information. Further, the modified modulation order determined by the terminal device is one level or two levels higher than the modulation order notified by the control information. For example, if the modulation order notified by the control information is 2, the modified modulation order is 4 or 6, or if the modulation order notified by the control information is 4, the modified modulation order is 6. Optionally, the modified modulation order is the lowest modulation order that enables the modified code rate to be no greater than the code rate threshold.
  • the modified modulation order is not higher than the modulation order corresponding to the predefined highest-level MCS available for data information transmission, for example, the modulation order is 6 or 8, that is, if the modified modulation order has been When the highest available modulation order is reached, the corresponding modified code rate still exceeds the code rate threshold, then the second transmission opportunity is discarded, or only part of the information of the first data packet is transmitted on the second transmission opportunity, or the target transmission opportunity is determined to be the first Two transmission opportunities (see description below).
  • the modified modulation order may be determined by adjusting the modulation order step by step based on the modulation order notified by the control information until the first reference TBS is carried on the second transmission opportunity and the modulation after the adjustment The corresponding code rate under the order is not greater than the code rate threshold.
  • the adjusted modulation order is the modified modulation order; that is, if the first reference TBS is carried on the second transmission opportunity and the adjusted modulation order The corresponding code rate under the count is still greater than the code rate threshold, and then continue to increase step by step.
  • step-by-step upward adjustment means that the modulation order after the upward adjustment is one level higher than the modulation order before the upward adjustment.
  • the upward adjustment level means that the available MCS table defined in the standard protocol (36.214) is adjusted up to the next level.
  • a higher modulation order for example, 2 is increased to 4, or 4 is increased to 6, or 6 is increased to 8.
  • the terminal device determines the time-domain resources (such as the start of the time-domain resource and the length of the time-domain resource) or the number of effective REs corresponding to each of the K transmission opportunities, which can be based on the time-domain resources of each of the K transmission opportunities
  • the length or number of effective REs determines the target number of effective REs.
  • the K transmission opportunities correspond to at least two time domain resource lengths
  • the target transmission opportunity determined by the terminal device corresponds to the target time domain resource length, where the target time domain resource length is one of the K transmission opportunities, corresponding to The length of the time-domain resource corresponding to the transmission opportunity with the largest number of transmission opportunities with the same time-domain resource length; or, the K transmission opportunities correspond to at least two effective RE numbers, and the target transmission opportunity determined by the terminal device corresponds to The number of target effective REs, where the target effective RE number is the number of effective REs corresponding to the transmission opportunities with the largest number of transmission opportunities corresponding to the same effective RE number among the K transmission opportunities.
  • the target effective RE number is the number of effective REs corresponding to the transmission opportunities with the largest number of transmission opportunities corresponding to the same effective RE number among the K transmission opportunities.
  • the time domain resource length of the transmission opportunity corresponding to TTI#5 is 2 symbols, and TTI#1 (or TTI#2 or TTI#3 or TTI#4 or TTI#6)
  • the time-domain resource length of the corresponding transmission opportunity is 3 symbols. Since there are many transmission opportunities with a time-domain resource length of 3 symbols, it can be determined that the transmission of the time-domain resource length is any of 3 symbols
  • the opportunity (the transmission opportunity corresponding to TTI#1 or TTI#2 or TTI#3 or TTI#4 or TTI#6) is the target transmission opportunity, and then the target effective RE number is determined.
  • the calculated TBS may be too large to be carried on the second transmission opportunity, or may cause the transmission performance of the second transmission opportunity to deteriorate, which is specifically reflected in: the TBS calculated according to the first transmission opportunity is carried on the second transmission opportunity.
  • a bit rate is too large, for example, the bit rate exceeds the bit rate threshold, so that the system information bits are lost, in this case, using the second transmission opportunity to calculate TBS can ensure that the reliability is not compromised.
  • the target transmission opportunity can be determined according to the relationship between the first code rate and the code rate threshold, or it can be adaptively determined according to the first code rate to use the number of effective REs included in the first transmission opportunity to calculate TBS (method 3) or use The TBS is calculated by the number of effective REs included in the second transmission opportunity (Method 2).
  • the target transmission opportunity is the second transmission opportunity, which can be understood as adaptively Judgment method 2.
  • the terminal device performs data transmission on the first data packet in at least one of the K transmission opportunities, including: the terminal device uses control on the first transmission opportunity
  • the modulation order and the second code rate of the information notification perform data transmission on the first data packet.
  • the terminal device performs data transmission on the first data packet using the modulation order and the code rate notified by the control information on the second transmission opportunity.
  • the second code rate is the TBS of the first data packet (that is, the TBS calculated according to the number of effective REs of the second transmission opportunity) is carried on the first transmission opportunity and corresponds to the code rate under the modulation order notified by the control information. Further, the second code rate is lower than the code rate notified by the control information.
  • the network device receives the first data packet sent by the terminal device using the modulation order and the second code rate notified by the control information on the first transmission opportunity. And/or, the network device receives the first data packet sent by the terminal device using the modulation order and code rate notified by the control information on the second transmission opportunity.
  • the target transmission opportunity is the first transmission opportunity, which can be understood as adaptively determining the usage method 3.
  • the target transmission opportunity is the first transmission opportunity
  • the first reference TBS is equal to the TBS corresponding to the first data packet that the terminal device actually sends on the K transmission opportunities.
  • the terminal device performs data transmission on the first data packet in at least one of the K transmission opportunities, including: the terminal device uses control on the second transmission opportunity The modulation order and the first code rate of the information notification perform data transmission on the first data packet. In addition, the terminal device performs data transmission on the first data packet using the modulation order and the code rate notified by the control information on the first transmission opportunity.
  • the network device receives the first data packet sent by the terminal device using the modulation order and the first code rate notified by the control information on the second transmission opportunity, and/or the network device receives the terminal device use on the first transmission opportunity The first data packet sent by the modulation order and code rate notified by the control information.
  • the starting symbol of K transmission opportunities is symbol #1 of slot #1
  • the time domain resource length of a transmission opportunity notified by the network device is 3 symbols, which will be in the first 4
  • the terminal device can combine these two symbols into a short transmission opportunity, that is, the second transmission opportunity, which includes fewer effective REs than other transmission opportunities.
  • the first transmission opportunity corresponding to TTI#1. If the first reference TBS calculated according to the number of effective REs included in the first transmission opportunity is carried to the second transmission opportunity corresponding to TTI#5, the corresponding code rate does not exceed the code rate threshold, as shown in (a) in FIG.
  • the first transmission opportunity can be used as the target transmission opportunity, and the first data packet is carried on the second transmission opportunity corresponding to TTI#5 and sent; at this time, the TBS corresponding to the first data packet is the first reference TBS. If the corresponding code rate exceeds the code rate threshold when the first reference TBS is carried to the second transmission opportunity corresponding to TTI#5, as shown in (b) in FIG. 10, the second transmission opportunity can be used as the target transmission opportunity and calculated The TBS corresponding to the first data packet, at this time, the code rate corresponding to the first data packet carried on the first transmission opportunity is lower than the code rate notified by the control information.
  • the terminal device in addition to adaptively determining the target transmission opportunity based on the relationship between the first code rate and the code rate threshold, can also adaptively increase the modulation order for the second transmission opportunity (making it Higher than the modulation order notified by the control information) to reduce the code rate of the second transmission opportunity, so that a larger TBS can also be carried on the second transmission opportunity (in this case, the target transmission opportunity is the first transmission opportunity). If the bit rate corresponding to carrying the first reference TBS to the second transmission opportunity still exceeds the code rate threshold after increasing the code rate, the target transmission opportunity is the second transmission opportunity.
  • the target transmission opportunity is the second transmission opportunity, which can be Understand to use method 2 adaptively.
  • the modified code rate is the code rate corresponding to the first reference TBS carried on the second transmission opportunity and under the modified modulation order, and the modified modulation order is higher than the modulation order notified by the control information.
  • the terminal device performs data transmission on the first data packet in at least one of the K transmission opportunities, including: the terminal device uses control on the first transmission opportunity The modulation order and the second code rate of the information notification perform data transmission on the first data packet.
  • the terminal device performs data transmission on the first data packet using the modulation order and the code rate notified by the control information on the second transmission opportunity.
  • the network device receives the first data packet sent by the terminal device using the modulation order and the second code rate notified by the control information on the first transmission opportunity, and/or the network device receives the terminal device use on the second transmission opportunity The first data packet sent by the modulation order and code rate notified by the control information.
  • the target transmission opportunity is the The first transmission opportunity.
  • the modified code rate is the code rate corresponding to the first reference TBS carried on the second transmission opportunity and under the modified modulation order, and the modified modulation order is higher than the modulation order notified by the control information.
  • the terminal device when the target transmission opportunity is the first transmission opportunity, the terminal device performs data transmission on the first data packet in at least one of the K transmission opportunities, including: the terminal device uses the correction on the second transmission opportunity
  • the modulation order and the modified code rate perform data transmission on the first data packet.
  • the terminal device performs data transmission on the first data packet using the modulation order and the code rate notified by the control information on the first transmission opportunity.
  • the modified modulation order is higher than the modulation order notified by the control information, and can also be described as: the modified modulation order is higher than the modulation order corresponding to the first transmission opportunity.
  • the terminal device uses the modified modulation order for sending the first data packet on the second transmission opportunity to be higher than the modulation order used by the terminal device for sending the first data packet on the first transmission opportunity. Accordingly, the network device receives the first data packet sent by the terminal device using the modified modulation order and the modified code rate on the second transmission opportunity, and/or the network device receives the notification notified by the terminal device using the control information on the first transmission opportunity The first data packet sent by modulation order and code rate.
  • At least two of the K transmission opportunities may have different effective RE numbers.
  • the following includes scenarios 1 to 3 for the first transmission opportunity.
  • the number of effective REs is greater than the number of effective REs included in the second transmission opportunity for specific description.
  • one of the first transmission opportunity and the second transmission opportunity includes DMRS, and the other transmission opportunity does not include DMRS. That is, in scenario 1, the K transmission opportunities include at least one transmission opportunity including DMRS and at least one transmission opportunity not including DMRS.
  • the second transmission opportunity is a transmission opportunity that includes DMRS
  • the first transmission opportunity is a transmission opportunity that does not include DMRS
  • the target transmission opportunity is a transmission opportunity including DMRS among K transmission opportunities. For example, as shown in (a) and (b) in FIG. 3, the number of effective REs excluding transmission opportunities of DMRS is greater than that of transmission opportunities including DMRS.
  • the number of time-domain symbols of the first transmission opportunity and the second transmission opportunity are the same.
  • the number of time-domain symbols of the first transmission opportunity and the second transmission opportunity is equal to the number of time-domain symbols corresponding to one transmission opportunity notified by the control information.
  • the second transmission opportunity is a transmission opportunity that does not include DMRS
  • the first transmission opportunity is a transmission opportunity that includes DMRS. That is to say, the target transmission opportunity is a transmission opportunity excluding DMRS among K transmission opportunities.
  • the number of effective REs including transmission opportunities of DMRS is greater than the number of effective REs not including transmission opportunities of DMRS.
  • the length of the time domain resource that is not used to carry DMRS in the first transmission opportunity is equal to the length of the time domain resource that is not used to carry DMRS in the second transmission opportunity, where the length of the time domain resource that is not used to carry DMRS specifically refers to the bearer
  • the number of DMRS time domain symbols (that is, symbols used to carry other uplink information but not used to carry DMRS) is also referred to as the number of non-DMRS time domain symbols. In other words, the number of non-DMRS symbols in the first transmission opportunity and the second transmission opportunity are the same.
  • the number of non-DMRS symbols in the first transmission opportunity and the second transmission opportunity is equal to the number of time domain symbols of one transmission opportunity notified by the control information.
  • the time domain symbol carrying the DMRS in the first transmission opportunity is also used to carry data information, or in other words, a part of the data information carried in the first transmission opportunity is multiplexed with the DMRS in the first transmission opportunity in the time domain symbol
  • the time-domain symbol carrying the DMRS in the first transmission opportunity also includes a valid RE.
  • the data information carried on the time domain symbol is a part of information in the first data packet. For example, on symbol #1 of (c) in FIG. 3, DMRS and data information are multiplexed in FDM, so TTI#1 (first transmission opportunity) is more than TTI#2 (second transmission opportunity).
  • Effective RE that is, the RE used to carry data information on symbol #1.
  • the number of non-DMRS symbols in the first transmission opportunity is greater than the number of non-DMRS symbols in the second transmission opportunity.
  • the time-domain resource length of the first transmission opportunity is greater than the time-domain resource length of the second transmission opportunity.
  • the symbols that have been placed alone may constitute a short transmission opportunity or a long transmission opportunity with the previous period of time domain resources.
  • the following two examples are described in detail below.
  • the control information is also used to notify the time-domain resource length of one of the K transmission opportunities, and the time-domain resource length of the second transmission opportunity is a transmission opportunity notified by the control information
  • the length of the time domain resource, the first transmission opportunity is the last transmission opportunity of K transmission opportunities in the first time slot, and the time interval between the start time of the first transmission opportunity and the end boundary of the first time slot is longer than the control
  • the length of the time domain resource of a transmission opportunity notified by the information can be understood as that the symbol of the order and the previous time domain resource constitute a long transmission opportunity.
  • the first time slot is a time slot where the first transmission opportunity is located.
  • the time domain resource length of a transmission opportunity notified by the control information is 3 symbols, and the start time is the first symbol of slot#1 (that is, the first slot).
  • the transmission opportunities corresponding to TTI#1 to TTI#3 and TTI#5 of slot#2 are 3 symbols in length, which can be understood as normal transmission opportunities; at this time, Symbol #13 and symbol #14 are placed.
  • TTI#4 composed of the two placed symbols and the previous three symbols carries a long transmission opportunity of 5 symbols, which is the first transmission opportunity.
  • the end time of the first transmission opportunity is equal to the end boundary of the first time slot.
  • the time interval between the start time of the first transmission opportunity and the end boundary of the first time slot is less than twice the length of the time domain resource of one transmission opportunity notified by the control information. That is to say, if the time-domain resource between the start time of the first transmission opportunity and the end boundary of the first time slot can accommodate the transmission opportunity corresponding to the time-domain resource length of one transmission opportunity notified by the control information, it is not enough To accommodate two transmission opportunities corresponding to the time domain resource length of one transmission opportunity notified by the control information, the time domain resource between the start time of the first transmission opportunity and the end boundary of the first time slot constitutes a long transmission opportunity.
  • the start time of the first transmission opportunity is the start time of the K transmission opportunities notified by the control information, for example, it is notified according to the control information The starting time determined by the starting symbol corresponding to the SLIV field.
  • the start time of the first transmission opportunity is determined by the end time of the previous transmission opportunity of the K transmission opportunities; for example, the The start time of a transmission opportunity is the end time of the previous transmission opportunity of the first transmission opportunity in the K transmission opportunities, or the start time of the first transmission opportunity is later than the end time of the previous transmission opportunity of the first transmission opportunity , And a time offset from the end time of the previous transmission opportunity, the time offset is predefined or configured or indicated by the network device, or is not used to send uplink data according to the slot boundary information or the network device notifies The information is determined by the time-domain symbol information.
  • the starting symbol of the first transmission opportunity located in the first time slot is the symbol i
  • the length of the time domain resource of the transmission opportunity is L_j
  • the starting symbol of the first transmission opportunity (that is, the Jth transmission opportunity) is The symbol i may be the start symbol of the K data transmissions indicated by the SLIV field, or the start symbol of the first transmission opportunity of the J transmission opportunities on the first time slot, for example, the first of the first time slot Symbols.
  • the J-1 transmission opportunities except the first transmission opportunity have the same time domain resource length L_j, or each of the J-1 transmission opportunities includes the same number of non-DMRS time domain symbols.
  • the transmission opportunities except the transmission opportunities whose time domain resource length is greater than the time domain resource length of one transmission opportunity notified by the control information (called Is a long transmission opportunity).
  • the length of the time domain resource corresponding to a transmission opportunity other than the transmission opportunity is the time domain resource length of a transmission opportunity notified by the control information.
  • the time interval between the start time of the long transmission opportunity and the end boundary of the time slot where the long transmission opportunity is located is longer than the time domain resource length of one transmission opportunity notified by the control information, and the long transmission opportunity includes the first transmission opportunity.
  • the transmission opportunity For a transmission opportunity, if the time interval between the start time of the transmission opportunity and the end boundary of the first time slot is not less than twice the length of the time domain resource of a transmission opportunity notified by the control information, the transmission opportunity The length of is equal to the time domain resource length of a transmission opportunity notified by the control information, and the transmission opportunity is the second transmission opportunity; if the time interval between the start time of the transmission opportunity and the end boundary of the first time slot is less than the control information notification The length of the time domain resource corresponding to a transmission opportunity is twice, and is greater than the length of the time domain resource corresponding to a transmission opportunity notified by the control information, then the length of the transmission opportunity is equal to the starting time of the transmission opportunity and the first time In the time interval between the end boundaries of the slot, the transmission opportunity is the first transmission opportunity.
  • the control information is also used to notify the time-domain resource length of one of the K transmission opportunities, and the time-domain resource length corresponding to the first transmission opportunity is the one notified by the control information.
  • the time-domain resource length of the transmission opportunity, the second transmission opportunity is the last transmission opportunity of the K transmission opportunities in the first time slot, and the time interval between the start time of the second transmission opportunity and the end boundary of the first time slot.
  • the length of the time domain resource shorter than a transmission opportunity notified by the control information can be understood as that the symbol that has been placed alone constitutes a short transmission opportunity.
  • the first time slot is a time slot where the second transmission opportunity is located.
  • the time domain resource length of a transmission opportunity notified by the control information is 3 symbols, and the starting time is the first symbol of slot#1 (that is, the first slot).
  • the transmission opportunities corresponding to TTI#1 to TTI#4 and TTI#6 of slot#2 are 3 symbols in length, which can be understood as normal transmission opportunities; at this time, Symbol #13 and symbol #14 are placed.
  • TTI#5 composed of these two placed symbols carries a short transmission opportunity of 2 symbols, that is, the second transmission opportunity.
  • the end time of the second transmission opportunity is equal to the end boundary of the first time slot. That is to say, if the time domain resource between the start time of the second transmission opportunity and the end boundary of the first time slot is insufficient to accommodate the transmission opportunity corresponding to the length of the time domain resource of one transmission opportunity notified by the control information, the first The time domain resource between the start time of the second transmission opportunity and the end boundary of the first time slot constitutes a short transmission opportunity.
  • the start time of the second transmission opportunity is the start time of the K transmission opportunities notified by the control information, for example, it is notified according to the control information The starting time determined by the starting symbol corresponding to the SLIV field.
  • the start time of the second transmission opportunity is determined by the end time of the previous transmission opportunity of the second transmission opportunity among the K transmission opportunities; for example, The start time of the second transmission opportunity is the end time of the previous transmission opportunity of the second transmission opportunity in the K transmission opportunities, or the start time of the second transmission opportunity is later than the end time of the previous transmission opportunity of the second transmission opportunity , And a time offset from the end time of the previous transmission opportunity, the time offset is predefined or configured or indicated by the network device, or is not used to send uplink according to the slot boundary information or the network device notifies The information of the time domain symbol of the data information is determined.
  • the starting symbol of the first transmission opportunity in the first time slot is the symbol i'
  • the starting symbol of the second transmission opportunity is The symbol i'may be the start symbol of the K data transmissions indicated by the SLIV field, or the start symbol of the first transmission opportunity of the J'transmission opportunities on the first time slot, for example, the The first symbol.
  • the J′-1 transmission opportunities except the second transmission opportunity have the same time-domain resource length L_j′, or each of the J′-1 transmission opportunities includes non-DMRS time-domain symbols The number is the same.
  • the transmission opportunities except the transmission opportunities whose time domain resource length is less than the time domain resource length of one transmission opportunity notified by the control information (called It is a short transmission opportunity).
  • the length of the time domain resource corresponding to a transmission opportunity other than the transmission opportunity is the time domain resource length of a transmission opportunity notified by the control information.
  • the time interval between the start time of the short transmission opportunity and the end boundary of the time slot where the short transmission opportunity is located is shorter than the time domain resource length of one transmission opportunity notified by the control information, and the short transmission opportunity includes the second transmission opportunity.
  • the transmission opportunity For a transmission opportunity, if the time interval between the start time of the transmission opportunity and the end boundary of the first time slot is not less than the length of the time domain resource corresponding to a transmission opportunity notified by the control information, then the The length is equal to the length of the time domain resource corresponding to a transmission opportunity notified by the control information, and the transmission opportunity is the first transmission opportunity; if the time interval between the start time of the transmission opportunity and the end boundary of the first time slot is less than the control information
  • the notified time-domain resource length corresponding to a transmission opportunity then the length of the transmission opportunity is equal to the time interval between the start time of the transmission opportunity and the end boundary of the first time slot, and the transmission opportunity is the second transmission opportunity.
  • the terminal device may adaptively determine the symbol of the order to apply the above example 1 or example 2, that is, adaptively determine that the symbol of the order constitutes a short transmission opportunity alone or a long time domain resource Transmission opportunities.
  • the second transmission opportunity is the first candidate transmission opportunity
  • the target transmission opportunity is the first transmission Opportunity
  • the length of the time domain resource corresponding to the first transmission opportunity is the length of the time domain resource notified by the control information
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity
  • the first candidate transmission opportunity The time interval between the start time and the end boundary of the first time slot is shorter than the length of the time domain resource notified by the control information, and the first time slot is the time slot where the first candidate transmission opportunity is located.
  • the first reference TBS is calculated according to the number of effective REs included in the transmission opportunity corresponding to the time domain resource length of one transmission opportunity notified by the control information. If the first reference TBS is carried to the ordering time domain symbol (i.e. A first transmission rate obtained by a short transmission opportunity composed of a symbol included in a candidate transmission opportunity is not greater than a code rate threshold, and then the time-domain symbol of the order can be composed into a short transmission opportunity to carry the first data packet.
  • the second transmission opportunity is the first A candidate transmission opportunity
  • the target transmission opportunity is the first transmission opportunity
  • the modified code rate is the code rate corresponding to the first reference TBS carried on the first candidate transmission opportunity and under the modified modulation order
  • the modified modulation order is high Modulation order for control information notification.
  • the first candidate transmission opportunity may also be referred to as a first candidate time-frequency resource, or that the time-frequency resource corresponding to the first candidate transmission opportunity is the first candidate time-frequency resource.
  • the end time of the first candidate transmission opportunity is equal to the end boundary of the first time slot.
  • the method for determining the start time, time domain resource length, and end time of the first candidate transmission opportunity is similar to the method for determining the start time, time domain resource length, and end time of the second transmission opportunity in Example 2, for example
  • the start time of the first candidate transmission opportunity is the start time of the K transmission opportunities notified by the control information, or it is determined by the end time of the previous transmission opportunity of the first candidate transmission opportunity among the K transmission opportunities, which is no longer specific Repeat.
  • the code rate corresponding to the first reference TBS carried on the first candidate transmission opportunity is not greater than the code rate threshold, and may also be described as that the code rate corresponding to the first reference TBS carried on the first candidate transmission opportunity is less than the code rate threshold .
  • the code rate corresponding to the first reference TBS carried by the first candidate transmission opportunity specifically refers to the first code rate corresponding to the first reference TBS carried by the first candidate transmission opportunity under the modulation order notified by the control information .
  • the first transmission opportunity is the second candidate transmission opportunity
  • the target transmission opportunity is A second transmission opportunity
  • the length of the time-domain resource corresponding to the second transmission opportunity is the length of the time-domain resource notified by the control information
  • the second reference TBS is an effective value included according to the second transmission opportunity
  • the time interval between the start time of the first candidate transmission opportunity and the end boundary of the first time slot is shorter than the length of the time domain resource notified by the control information
  • the The first time slot is a time slot in which the first candidate transmission opportunity and the second candidate transmission opportunity are located.
  • the time-frequency resources corresponding to the second candidate transmission opportunity include the time-frequency resources corresponding to the first candidate transmission opportunity.
  • the time interval between the start time of the second candidate transmission opportunity and the end boundary of the first time slot is longer than the length of the time domain resource notified by the control information. That is, assume that the first reference TBS is calculated according to the number of valid REs included in the transmission opportunity corresponding to the length of the time domain resource corresponding to one transmission opportunity notified by the control information.
  • the order of the time domain symbol and the previous segment can be corresponded to the normal transmission opportunity duration ( That is, the time domain resources of a transmission opportunity notified by the control information) time domain resources constitute a long transmission opportunity to carry the first data packet.
  • the first transmission opportunity is the first Two candidate transmission opportunities
  • the target transmission opportunity is the second transmission opportunity
  • the modified code rate is the second reference TBS carried on the first candidate transmission opportunity and the corresponding code rate under the modified modulation order
  • the modified modulation order is high Modulation order for control information notification.
  • the second candidate transmission opportunity is also referred to as a second candidate time-frequency resource, or that the time-frequency resource corresponding to the second candidate transmission opportunity is the second candidate time-frequency resource.
  • the end time of the second candidate time-frequency resource is equal to the end boundary of the first time slot.
  • the time interval between the start time of the second candidate time-frequency resource and the end boundary of the first time slot is less than twice the length of the time-domain resource corresponding to one transmission opportunity notified by the control information.
  • the method for determining the start time, time domain resource length, and end time of the second candidate transmission opportunity is similar to the method for determining the start time, time domain resource length, and end time of the first transmission opportunity in Example 1,
  • the start time of the second candidate transmission opportunity is the start time of the K transmission opportunities notified by the control information, or it is determined by the end time of the previous transmission opportunity of the second candidate transmission opportunity among the K transmission opportunities. Repeat again.
  • the time-frequency resource corresponding to the second candidate transmission opportunity includes the time-frequency resource corresponding to the first candidate transmission opportunity and the time-frequency resource corresponding to the third candidate transmission opportunity, where the end time of the third candidate transmission opportunity is equal to the first candidate
  • the start time of the transmission opportunity, or the start time of the first candidate transmission opportunity is later than the end time of the third candidate transmission opportunity, and is pre-defined or offset from the end time of the third candidate transmission opportunity by a predefined or network device configuration or indication shift.
  • the time-domain resource length of the third candidate transmission opportunity corresponds to the time-domain resource length of one transmission opportunity notified by the control information.
  • the end time of the second candidate transmission opportunity is equal to the end time of the first candidate transmission opportunity
  • the start time of the second candidate transmission opportunity is equal to the start time of the third candidate transmission opportunity
  • the time-frequency resource corresponding to any one of the candidate transmission opportunities is a time-frequency resource that is continuous in time, That is, any candidate transmission opportunity corresponds to one or more time-domain symbols with continuous time in the time domain.
  • the frequency domain resource corresponding to any one of the candidate transmission opportunities is the K transmission opportunity notified by the control information or the frequency domain resource corresponding to any one of the K transmission opportunities.
  • the starting symbol of K transmission opportunities is symbol #1 of time slot #1
  • the time domain resource length of a transmission opportunity notified by the network device is 3 symbols, which will be after the first 4 transmission opportunities.
  • the target transmission opportunity is a normal transmission opportunity (for example, the transmission opportunity corresponding to TTI#1)
  • the first reference TBS that is, the TBS of the first data packet
  • the two symbols form a short transmission opportunity, and the first reference TBS is carried on the short transmission opportunity, the corresponding code rate does not exceed the code rate threshold, then the two symbols can be combined into the short transmission opportunity, and
  • the first data packet is carried on the short transmission opportunity and sent, as shown in (a) in FIG. 11, in this case, the short transmission opportunity is the second transmission opportunity, and the normal transmission opportunity is the first transmission opportunity.
  • the first reference TBS is carried on the short transmission opportunity and the corresponding code rate exceeds the code rate threshold
  • the two symbols and the three preceding symbols form a long transmission opportunity
  • the first data packet is carried on the long transmission opportunity Send on the transmission opportunity, so that the bit rate on the long transmission opportunity will be reduced, as shown in (b) in FIG. 11, at this time, the long transmission opportunity is the first transmission opportunity, and the normal transmission opportunity is the second transmission opportunity.
  • the length of the time domain resource corresponding to the first transmission opportunity is greater than the length of the time domain resource corresponding to the second transmission opportunity, and the first transmission opportunity and the second transmission opportunity are two adjacent ones of the K transmission opportunities Transmission opportunities.
  • the time-frequency resource for transmitting the first data packet includes a time-frequency resource that crosses a slot boundary in the time domain, and the first transmission opportunity corresponds to the time-frequency resource that is located before the slot boundary among the time-frequency resources that cross the slot boundary ,
  • the second transmission opportunity corresponds to the time-frequency resource located behind the time slot boundary in the time-frequency resource across the slot boundary; or, the first transmission opportunity corresponds to the time-frequency resource located across the slot boundary in the time-frequency resource.
  • the second transmission opportunity corresponds to the time-frequency resource located before the slot boundary among the time-frequency resources across the slot boundary.
  • the network device notifies the time-frequency resource for transmitting the first data packet through the control information.
  • the time-frequency resource for transmitting the first data packet includes the time-frequency resource across the time slot boundary, which The slot boundary is divided into two sections of sub-time domain resources, and the two sections of sub-time domain resources respectively carry two different transmission opportunities, namely a first transmission opportunity and a second transmission opportunity.
  • the starting point of the time domain resource of the segment may be the starting point corresponding to the SLIV field of the control information
  • the length of the time domain resource of the time domain resource of the segment may be the length of the time domain resource corresponding to the SLIV field of the control information.
  • the time-frequency resource for transmitting the first data packet notified by the control information may include the time-frequency resource across the slot boundary, or may also include other time-frequency resources in addition to the time-frequency resource across the slot boundary.
  • the resources, for example, the other time-frequency resources are used as transmission opportunities other than the first transmission opportunity and the second transmission opportunity, and are used by the terminal device to perform data transmission on the first data packet. That is to say, the time-domain resource length of the time-frequency resource for transmitting the first data packet notified by the control information may be equal to the time-domain resource length of the time-frequency resource across the slot boundary, or may be greater than the time-frequency resource across the slot boundary The time-domain resource length of the resource.
  • the sum of the time-domain resource lengths of the first transmission opportunity and the second transmission opportunity corresponds to the time-domain resource length of the time-frequency resource across the slot boundary, or that the time-frequency resource across the slot boundary is determined by the One transmission opportunity and the second transmission opportunity are composed of time-frequency resources.
  • the time-frequency resource across the time slot boundary corresponds in time domain to the total time-domain resource of K transmission opportunities (that is, the time-domain resource length of the time-frequency resource for transmitting the first data packet notified by the control information is equal to the The time-domain resource length of the time-frequency resource at the slot boundary).
  • the starting time of the time-domain resource located before the slot boundary in the time-frequency resource across the slot boundary is the starting time of the total time-domain resources of the K transmission opportunities notified by the control information. For example, as shown in (a) of FIG.
  • the first transmission opportunity corresponds to symbols #5 ⁇ #14 of slot#1
  • the second transmission opportunity corresponds to symbols #1 ⁇ #4 of slot#2.
  • the time-frequency resource across the time slot boundary corresponds in time domain to the time-domain resource of one of the K transmission opportunities (that is, the time-domain resource of the time-frequency resource that transmits the first data packet notified by the control information)
  • the resource length is greater than the time-domain resource length of the time-frequency resource across the slot boundary, and the time-domain resource length of the time-frequency resource across the slot boundary is the time-domain resource length of one of the K transmission opportunities).
  • the time domain resource length of a transmission opportunity notified by the control information is 3 symbols, and there are two symbols that are placed before the end boundary of slot#1, namely symbol #13 and symbol # 14.
  • K transmission opportunities may correspond to more than two types of effective RE numbers, such as TTI#1, TTI#2, TTI#3, TTI#4, and TTI#7.
  • the number of effective REs is the number of second effective REs
  • the number of effective REs included in the transmission opportunity corresponding to TTI#6 is the number of third effective REs
  • the number of first effective REs is greater than the number of Two effective RE numbers
  • the second effective RE number is greater than the third effective RE number.
  • the start time of the time domain resource before the time slot boundary is the start time of K transmission opportunities notified by the control information, or the start time of the time domain resource before the time slot boundary is determined by K transmission opportunities , The end time of the previous transmission opportunity corresponding to the transmission opportunity corresponding to the time domain resource before the time slot boundary is determined.
  • the first transmission opportunity may be a transmission opportunity corresponding to TTI#1 (or TTI#2 or TTI#3 or TTI#4 or TTI#7)
  • the second transmission opportunity may be the transmission opportunity corresponding to TTI#6. That is, if the K transmission opportunities correspond to more than two types of effective REs, the first transmission opportunity may be the transmission opportunity with the largest number of effective REs included, and the second transmission opportunity may be the transmission opportunity with the smallest number of effective REs included . Further, the target transmission opportunity may be determined as the first transmission opportunity or the second transmission opportunity according to the method described above.
  • the first transmission opportunity may be a transmission opportunity corresponding to TTI#1 (or TTI#2 or TTI#3 or TTI#4 or TTI#7).
  • the second transmission opportunity may be the transmission opportunity corresponding to TTI#5.
  • the target transmission opportunity may be determined as the first transmission opportunity or the second transmission opportunity according to the method described above.
  • the first transmission opportunity and the second transmission opportunity are two adjacent transmission opportunities in the K transmission opportunities, and the first transmission opportunity and the second transmission opportunity are not continuous in the time domain.
  • a time domain symbol also called a non-uplink symbol
  • the first transmission opportunity and the second transmission opportunity do not include the symbol for uplink transmission notified by the network device, such as the'uplink' symbol notified by the network device.
  • the time-frequency resource for transmitting the first data packet includes a time-frequency resource that crosses the uplink and downlink symbol boundaries in the time domain, and the time-frequency resource that crosses the uplink and downlink symbol boundaries is the time domain resource corresponding to the first transmission opportunity and the second transmission opportunity.
  • the first transmission opportunity corresponds to the time-frequency resource that is located before the at least one non-uplink symbol in the time-frequency resource that crosses the uplink and downlink symbol boundary
  • the second transmission opportunity corresponds to the location that is located in the time-frequency resource that crosses the uplink and downlink symbol boundary.
  • the time-frequency resource after the at least one non-uplink symbol; or, the first transmission opportunity corresponds to the time-frequency resource after the at least one non-uplink symbol in the time-frequency resource across the boundary of the uplink and downlink symbols
  • the second transmission The opportunity corresponds to the time-frequency resource that is located before the at least one non-uplink symbol among the time-frequency resources across the uplink and downlink symbol boundaries.
  • the time domain length of the first transmission opportunity (or the number of effective REs included in the first transmission opportunity) may be greater than or less than or equal to the time domain length of the second transmission opportunity (or the number of effective REs included in the second transmission opportunity).
  • the non-uplink symbol includes a'downlink' symbol or a'flexible' symbol notified by the network device. Further, the non-uplink symbol includes the time interval for uplink-downlink conversion.
  • the K (or M) transmission opportunities include at least one split transmission opportunity. Further, the time domain length of any one of the at least one split transmission opportunity is shorter than the length of the time domain resource corresponding to one of the K (or M) transmission opportunities notified by the control information.
  • any one of the at least one split transmission opportunity (referred to as the first split transmission opportunity) and the second split transmission opportunity are not continuous in the time domain, and the second split transmission opportunity is K (or M ) Transmission opportunities, the first (adjacent) transmission opportunity or the next (adjacent) transmission opportunity of the first divided transmission opportunity; or, the first divided transmission opportunity is K (or M) transmission opportunities The first transmission opportunity or the last transmission opportunity in.
  • At least one non-uplink symbol is spaced between the first split transmission opportunity and the second split transmission opportunity; or, the first split transmission opportunity is the first transmission opportunity among K (or M) transmission opportunities, And the starting moment of the first split transmission opportunity is adjacent to at least one non-uplink symbol; or, the first split transmission opportunity is the last transmission opportunity among K (or M) transmission opportunities, and the first split transmission The end time of the opportunity is adjacent to at least one non-uplink symbol.
  • the first split transmission opportunity is adjacent to at least one non-uplink symbol in the time domain, for example, the start time of the first split transmission opportunity is equal to the end time of the at least one non-uplink symbol, or the first split transmission The end time of an opportunity is equal to the start time of at least one non-uplink symbol.
  • the first segmented transmission opportunity and the second segmented transmission opportunity do not include a symbol notified by the network device for uplink transmission, such as an'uplink' symbol notified by the network device.
  • the symbol notified by the network device for uplink transmission may be notified by higher layer signaling or physical layer signaling.
  • the high-level signaling includes fields TDD-UL-DL-ConfigurationCommon or TDD-UL-DL-ConfigDedicated, and the physical layer signaling is DCI corresponding to format 2_0.
  • the first transmission opportunity in at least one split transmission opportunity is the first transmission opportunity in K (or M) transmission opportunities, or, the first transmission opportunity in at least one split transmission opportunity and K (Or M) transmission opportunities, the non-uplink symbol notified by the network device is not included between the previous transmission opportunity of the first transmission opportunity, or the first transmission opportunity and K( Or M) transmission opportunities, the previous transmission opportunity of the first transmission opportunity is continuous in time; similarly, the last transmission opportunity in at least one split transmission opportunity is the K (or M) transmission opportunities The last transmission opportunity, or, among the last transmission opportunity of at least one split transmission opportunity and K (or M) transmission opportunities, the non-uplink not notified by the network device is not included between the last transmission opportunity of the last transmission opportunity The symbol, or, the last transmission opportunity in at least one of the divided transmission opportunities and the K (or M) transmission opportunities, the transmission opportunity following the last transmission opportunity is continuous in time.
  • any two adjacent transmission opportunities in the at least one split transmission opportunity are the two adjacent transmission opportunities in the K (or M) transmission opportunities, that is, in the at least one split transmission opportunity Any two adjacent transmission opportunities do not include other transmission opportunities among the K (or M) transmission opportunities.
  • the time domain length is equal to the corresponding K (or M) transmission opportunities notified by the control information.
  • a transmission opportunity is a transmission opportunity of the time domain resource length.
  • the time-frequency resource for transmitting the first data packet includes a time-frequency resource that crosses an uplink and downlink symbol boundary in the time domain, and the time-frequency resource that crosses the uplink and downlink symbol boundary is a time-domain resource corresponding to all transmission opportunities included in at least one split transmission opportunity Union.
  • the time domain resource used to transmit the first data packet is divided by the non-uplink symbol to form one of the at least one divided transmission opportunity, which is called a third divided transmission opportunity.
  • a fourth split transmission opportunity is formed after the at least one non-uplink symbol, which is called a fourth split transmission opportunity.
  • the at least one split transmission opportunity includes a third split transmission opportunity.
  • the at least one split transmission opportunity includes a fourth split transmission opportunity.
  • the at least one non-uplink symbol is a symbol that is consecutive in time.
  • the end time of the third split transmission opportunity is the start time of the at least one non-uplink symbol. That is, the third split transmission opportunity is a transmission opportunity located before at least one non-uplink symbol.
  • the start time of the fourth split transmission opportunity is the end time of the at least one non-uplink symbol; or, the start time of the fourth split transmission opportunity is the time slot boundary or the uplink and downlink symbol boundary, and K(or M) In the transmission opportunities, the start time of the immediately adjacent transmission opportunity of the fourth split transmission opportunity is the end time of the at least one non-uplink symbol. That is, the fourth split transmission opportunity is a transmission opportunity located after at least one non-uplink symbol.
  • the at least one split transmission opportunity includes the first transmission opportunity and the second transmission opportunity in the previous example.
  • the sum of the time-domain resource lengths of all transmission opportunities included in the at least one split transmission opportunity corresponds to the notification of the control information
  • the time domain resource length corresponding to one of the K transmission opportunities corresponds to the length of the time-domain resource corresponding to one of the K transmission opportunities notified by the control information. For example, as shown in FIG.
  • the time domain resource notified by the control information corresponds to three nominal transmission opportunities, and the time domain length of each nominal transmission opportunity is 7 symbols; at least one non-uplink symbol is a downlink Symbols, including symbols 1 to 3 of time slot 2; the first nominal transmission opportunity is not divided, thus forming the actual transmission opportunity #1; the second nominal transmission opportunity is cut by at least one non-upstream symbol Points, so the second nominal transmission opportunity spans the at least one non-uplink symbol, symbol 13 to symbol 14 in slot 1 form the actual transmission opportunity #2, and symbol 4 to symbol 8 in slot 2 form the actual
  • the sum of the time-domain resources of transmission opportunity #3, actual transmission opportunity #2 and actual transmission opportunity #3 is equal to the time-domain length of the nominal transmission opportunity, that is, 7 symbols; symbols 9 to 12 of slot 2 are formed Actual transmission opportunity #4; K transmission opportunities include actual transmission opportunity #1 to actual transmission opportunity #4.
  • the time overlapped in the time domain does not The time domain resources corresponding to the first nominal transmission opportunity are counted.
  • the description of the nominal transmission opportunity is described later.
  • the division of the at least one non-uplink symbol to K (or M) transmission opportunities affects the determination of the end time of the transmission opportunity after the division (fourth division transmission opportunity), or the fourth division transmission
  • the end time of the opportunity is determined according to the time domain resource information of the nominal transmission opportunity notified by the control information and the time domain resource (including time domain length and time domain start point) of at least one non-uplink symbol.
  • the start time of the third split transmission opportunity in the at least one split transmission opportunity is the start of the time domain notified by the control information, or the start time of the third split transmission opportunity and the control
  • the time interval between the time domain start points of the information notification corresponds to the total time domain length of g nominal transmission opportunities, g is an integer greater than or equal to 1 and less than G.
  • the end time of the third split transmission opportunity is determined by the at least one non-uplink symbol. Specifically, the end time of the third split transmission opportunity is adjacent to the at least one non-uplink symbol, that is, the end time of the third split transmission opportunity is the start time of the at least one non-uplink symbol.
  • the time interval between the end time of the third split transmission opportunity and the start of the time domain notified by the control information is g+1 the total time domain length of the nominal transmission opportunity.
  • the end time of the fourth divided transmission opportunity in the at least one divided transmission opportunity is the total time of g'nominal transmission opportunities corresponding to the time interval between the start of the time domain notified by the control information Field length, g'is an integer greater than or equal to 1 and less than or equal to G.
  • the starting moment of the fourth split transmission opportunity is determined by the at least one non-uplink symbol.
  • the start time of the fourth split transmission opportunity is adjacent to the at least one non-uplink symbol, that is, the start time of the fourth split transmission opportunity is the end time of the at least one non-uplink symbol.
  • the starting moment of the fourth split transmission opportunity is the time slot boundary or the uplink and downlink symbol boundary, and of the K (or M) transmission opportunities, the start of the immediately adjacent transmission opportunity of the fourth split transmission opportunity
  • the time is the end time of the at least one non-uplink symbol. That is to say, the end time of the fourth split transmission opportunity is determined by the start of the time domain notified by the control information and the time domain length of the nominal transmission opportunity notified by the control information, without depending on the at least one non-uplink symbol The time domain length or time domain position is determined.
  • the time domain starting point of the control information notification is also referred to as the time domain starting point of the K (or M) transmission opportunities notified by the control information, or the time of the nominal transmission opportunity notified by the control information
  • the starting point of the domain More specifically, the time domain starting point notified by the control information is the time domain starting point notified by the Time domain resource field in the control information.
  • the time overlapped in the time domain is counted Time domain resource corresponding to the first nominal transmission opportunity.
  • the segmentation of the K (or M) transmission opportunities by the at least one non-uplink symbol does not affect the determination of the end moment of the transmission opportunity (the fourth segmentation transmission opportunity) after the segmentation, the fourth segmentation transmission opportunity
  • the end time of is still determined according to the time domain resource information of the nominal transmission opportunity notified by the control information.
  • the time domain resource notified by the control information corresponds to 3 nominal transmission opportunities, and the time domain length of each nominal transmission opportunity is 7 symbols; at least one non-uplink symbol is downlink Symbols, including symbols 1 to 3 of time slot 2; the first nominal transmission opportunity is not divided, thus forming the actual transmission opportunity #1; the second nominal transmission opportunity is cut by at least one non-upstream symbol Points, symbols 13 to 14 in slot 1 form the actual transmission opportunity #2, and symbols 4 to 5 in slot 2 form the actual transmission opportunity #3, the end time of the actual transmission opportunity #3 and all
  • the time interval between the starting points of the time-domain resources notified by the control information is the total time-domain length of 2 nominal transmission opportunities, and is not affected by the segmentation (the end time is equivalent to the situation without segmentation (Nominal end of transmission opportunity #2); symbols 6 to 12 of slot 2 form actual transmission opportunity #4; K transmission opportunities include actual transmission opportunity #1 to actual transmission opportunity #4.
  • the time domain resource notified by the control information corresponds to 4 nominal transmission opportunities, and the time domain length of each nominal transmission opportunity is 4 symbols; at least one non-uplink symbol is Downlink symbols, including symbols 1 to 3 of timeslot 2; the first nominal transmission opportunity is not divided, thus forming the actual transmission opportunity #1; the second nominal transmission opportunity is at least one non-uplink symbol Split, symbol 13 to symbol 14 in slot 1 form the actual transmission opportunity #2; the third nominal transmission opportunity is split by at least one non-uplink symbol, and symbol 4 to symbol 6 in slot 2 form the actual
  • the transmission opportunity #3, the actual transmission opportunity #3 end time and the starting point of the time domain resource notified by the control information is the total time domain length of the 3 nominal transmission opportunities without being cut
  • the influence of the points (the end time is equivalent to the end time of the nominal transmission opportunity #3 without being divided); symbols 7 to 10 of slot 2 form the actual transmission opportunity #4; K transmission opportunities That is, it includes actual transmission opportunity #1 to actual transmission opportunity #4.
  • the advantage of this method is that the segmentation of K (or M) transmission opportunities by the at least one non-uplink symbol does not affect the timing of other transmission opportunities that do not overlap the time domain of the at least one non-uplink symbol after the fourth segmented transmission opportunity
  • the domain start point and the time domain length for example, the time domain length of the actual transmission opportunity #4 in FIG. 17(b) is still equal to the time domain length of the nominal transmission opportunity notified by the control information, that is, 7 symbols. This can better ensure that the time domain length of other transmission opportunities is not affected by the segmentation and become shorter, thereby better guaranteeing the transmission reliability.
  • the control information notifies the time domain resource information of the nominal transmission opportunity (nominal TO or nominal PUSCH) (for example, the time domain resource information includes a time domain start point and a time domain length).
  • the network device notifies the repetition number G of the nominal transmission opportunity, or the time domain resource information of the nominal transmission opportunity includes information of G, where G is a positive integer greater than or equal to 1.
  • G nominal transmission opportunities are consecutive in time domain, and the length of each nominal transmission opportunity in the G nominal transmission opportunities is the time domain resource length of one transmission opportunity notified by the control information , The length of the time domain resource called the nominal transmission opportunity, and the description of the nominal transmission opportunity is described later.
  • the time domain starting point of the first nominal transmission opportunity among the G nominal transmission opportunities is the time domain resource of the nominal transmission opportunity notified by the control information (for example, the Time domain resource field in the control information) The corresponding time domain starting point.
  • G nominal transmission opportunities overlap with at least one non-uplink symbol notified by the network device in the time domain
  • G nominal transmission opportunities are divided by the at least one non-uplink symbol, and G nominal transmissions A symbol whose chance overlaps with the time domain of at least one non-uplink symbol is not used for the transmission of the first data packet, and the remaining time domain resources in the G nominal transmission opportunities (such as any of the G nominal transmission opportunities that are notified by the network device Time domain resources where non-uplink symbols do not overlap) form K transmission opportunities.
  • the first nominal transmission opportunity if the first nominal transmission opportunity and at least one non-uplink symbol are in the time domain Overlap, and the first nominal transmission opportunity includes time-domain resources that do not overlap with at least one non-uplink symbol, then the non-overlapping time-domain resources form one of the at least one split transmission opportunity, such as the first The transmission opportunity is divided, wherein the first transmission opportunity is used to perform a data transmission on the first data packet. If the first nominal transmission opportunity overlaps with at least one non-uplink symbol in the time domain, and the first nominal transmission opportunity does not include time domain resources that do not overlap with at least one non-uplink symbol, then the first nominal transmission The opportunities are not counted as K transmission opportunities.
  • the first nominal transmission opportunity is one of the K transmission opportunities (or K transmission opportunities are counted), For example, the fourth transmission opportunity described later; further, the first nominal transmission opportunity is one transmission opportunity included in the K transmission opportunities and not included in the at least one split transmission opportunity.
  • the number of target effective REs is the average number of effective REs included in each of the K transmission opportunities, or the effective number of target REs included in the K transmission opportunities.
  • the target effective RE number can also include the following two cases:
  • the target effective RE number is the total effective RE number included in the K transmission opportunities.
  • the average effective RE number obtained by G averaging, where G is a positive integer and G is not equal to K.
  • the target number of effective REs is obtained by N/G, for example, rounding up or down for N/G.
  • the control information notifies the total time domain resource length of the K transmission opportunities, and the total time domain resource is divided into multiple transmission opportunities by the slot boundary, if the first transmission opportunity divided on both sides of the slot boundary is The time domain resource is very different from the second transmission opportunity.
  • the number of effective REs in the first transmission opportunity is much greater than that in the second transmission opportunity. It may cause the TBS to be too large, and determining the TBS using the number of effective REs of the second transmission opportunity may cause the TBS to be small. Therefore, in order to balance the size of TBS to achieve a compromise between transmission efficiency and reliability, it can be determined according to the average number of effective REs included in the K transmission opportunities averaged to the average number of effective REs on G virtual transmission opportunities
  • the network device may adjust or instruct the value of G to adjust to obtain a suitable TBS.
  • G is a value configured or indicated by other control information than the control information (that is, control information notifying the time-frequency resource for transmitting the first data packet).
  • G corresponds to the value of the high-level parameter aggregationFactorUL or repK configuration.
  • the number of effective REs included in the transmission opportunity is N 1 and N 2 , respectively, and the number of target effective REs is obtained from (N 1 +N 2 )/G.
  • the time-frequency resource across the slot boundary corresponds to the total time-domain resource of the K transmission opportunities, or the length of the time-frequency resource across the slot boundary corresponds to the notification of the control information
  • the target effective RE number is the number of effective REs included in the first transmission opportunity and the number of effective REs included in the second transmission opportunity And (ie, the number of target effective REs is not equal to the number of effective REs included in the first transmission opportunity, nor is it equal to the number of effective REs included in the second transmission opportunity).
  • the number of target effective REs is the number of effective REs included in the target transmission opportunity
  • the length of the time domain resource corresponding to the target transmission opportunity is the time domain resource corresponding to one of the K transmission opportunities notified by the control information Length (ie, the target transmission opportunity is neither the first transmission opportunity nor the second transmission opportunity).
  • the K transmission opportunities also include a fourth transmission opportunity.
  • the length of the time domain resource corresponding to the fourth transmission opportunity is equal to that corresponding to one transmission opportunity notified by the control information.
  • the length of the time domain resource, in other words, the fourth transmission opportunity is the target transmission opportunity. For example, in FIG.
  • the fourth transmission opportunity is the transmission opportunity corresponding to TTI#1/2/3/4/7
  • the first transmission opportunity is the transmission opportunity corresponding to TTI#5
  • the second transmission opportunity is TTI#6.
  • the number of effective REs included in the first transmission opportunity may be greater than the number of effective REs included in the second transmission opportunity, or may be equal to the number of effective REs included in the second transmission opportunity.
  • the number of effective REs included in the fourth transmission opportunity is greater than the number of effective REs included in the first transmission opportunity and the number of effective REs included in the second transmission opportunity.
  • the end time of the first transmission opportunity is equal to the slot boundary equal to the second transmission opportunity The start time; in other words, the end time of the first transmission opportunity is earlier than or equal to the time slot boundary, and the time slot boundary is earlier than or equal to the start time of the second transmission opportunity. If the end time of the first transmission opportunity is earlier than the time slot boundary, the time interval between the two is predefined or configured or indicated by the network device; if the time slot boundary is earlier than the start of the second transmission opportunity Time, the time interval between the two is predefined or configured or indicated by the network device.
  • the time slot boundary is the end boundary of the time slot where the first transmission opportunity is located, the starting moment of the first transmission opportunity is equal to the starting boundary of the time slot, or the starting moment of the first transmission opportunity is equal to The start time of the total time domain resources of the K transmission opportunities notified by the control information; the end time of the second transmission opportunity is equal to the end boundary of the next time slot adjacent to the time slot, or the end of the second transmission opportunity The time is equal to the end time of the total time domain resources of the K transmission opportunities notified by the control information.
  • the end time of the second transmission opportunity is equal to the time slot boundary is equal to the start of the first transmission opportunity time.
  • the end time of the second transmission opportunity is earlier than or equal to the time slot boundary, and the time slot boundary is earlier than or equal to the start time of the first transmission opportunity.
  • the time interval between the two is predefined or configured or indicated by the network device; if the time slot boundary is earlier than the first transmission The starting moment of an opportunity, the time interval between the two is predefined or configured or indicated by the network device.
  • the time slot boundary is the end boundary of the time slot where the second transmission opportunity is located, the starting moment of the second transmission opportunity is equal to the starting boundary of the time slot, or, the second transmission
  • the start time of the opportunity is equal to the start time of the total time domain resources of the K transmission opportunities notified by the control information;
  • the end time of the first transmission opportunity is equal to the end boundary of the next time slot of the time slot, or, the The end time of the first transmission opportunity is equal to the end time of the total time domain resources of the K transmission opportunities notified by the control information.
  • the time-domain resource length is the time-domain resource length corresponding to one of the K transmission opportunities notified by the control information, or the target transmission opportunity is equal to the fourth transmission
  • the number of effective REs included in the target transmission opportunity is greater than the sum of the number of effective REs included in the first transmission opportunity and the number of effective REs included in the second transmission opportunity.
  • the time domain resource across the time slot boundary or the uplink and downlink symbol boundary includes the first transmission opportunity and the second transmission opportunity, because the sum of the time domain resources of the first transmission opportunity and the second transmission opportunity is equal to the control information notification
  • the first transmission opportunity and the second transmission opportunity each include D DMRS symbols
  • the target transmission opportunity may include only D DMRS symbols, where D is A positive integer, for example equal to 1, so the DMRS overhead of the target transmission opportunity is less than the sum of the DMRS overhead of the first transmission opportunity and the second transmission opportunity, so that the number of effective REs of the target transmission opportunity is greater than that of the first transmission opportunity and the second transmission opportunity The sum of the number of effective REs.
  • the number of effective REs of the target transmission opportunity is more than that included in all transmission opportunities in the at least one split transmission opportunity The sum of the number of effective REs.
  • the number of repetitions (repetition number) corresponding to the time-frequency resource (ie, the time-frequency resource for transmitting the first data packet) notified by the network device through the control information or second control information different from the control information Or number of repetitions) information.
  • the second control information is physical layer control information or higher layer signaling.
  • the time domain, resource assignment, number, repetitions, or nominal number of repetitions fields in the control information or the second control information are used to notify the repeated transmission times information.
  • the second control information is high-layer signaling, and the aggregationFactorUL or repK field included in the second control information is used to notify the repeated transmission times information.
  • the number of repeated transmissions corresponds to the aforementioned G.
  • the number of repeated transmissions is the number of repeated transmissions notified by the control information or the second control information, and is also referred to as the nominal number of repeated transmissions (nominal number of repetitions).
  • the number of repeated transmissions may be equal to the actual number used for transmission.
  • the number of transmission opportunities of a data packet may not be equal to the number of transmission opportunities actually used to transmit the first data packet, for example, when K (or M) transmission opportunities cross a slot boundary or cross an uplink and downlink symbol boundary , A nominal transmission opportunity may form multiple actual transmission opportunities.
  • the number of repeated transmissions may be equal to K (or M) or not equal to K (or M).
  • time domain resource length corresponding to one of the K transmission opportunities notified by the control information may also be referred to as the time domain resource length of one transmission opportunity notified by the control information, or referred to as the control
  • the time domain resource length of a transmission opportunity used for data transmission of the first data packet notified by the information, or the time domain resource length of a nominal transmission opportunity called the control information notification.
  • the nominal time-domain resource length of the transmission opportunity is the time-domain resource length corresponding to one transmission opportunity notified by the Time domain resource assignment field in the control information.
  • time domain resource corresponding to one of the K transmission opportunities notified by the control information may also be referred to as the time domain resource of one transmission opportunity notified by the control information, or referred to as the control information notification Time domain resource of one transmission opportunity used for data transmission of the first data packet, or time domain resource of the nominal transmission opportunity notified by the control information, or of G nominal transmission opportunities Time domain resource of the first nominal transmission opportunity.
  • the time domain resources (including the time domain start point and the time domain length) of the nominal transmission opportunity are also determined according to the control information.
  • the time domain starting point of the nominal transmission opportunity is also determined according to the Time domain resource field in the control information.
  • the time domain resources of the G nominal transmission opportunities are determined by the time domain resources of the nominal transmission opportunities notified by the control information and the information about the number of repeated transmission times.
  • the time domain starting point of the first nominal transmission opportunity in the G nominal transmission opportunities is the time domain starting point notified by the control information
  • the time domain starting point of the g+1 nominal transmission opportunity is The time domain end point of the g-th nominal transmission opportunity or determined by the time domain end point of the g-th nominal transmission opportunity, g is an integer greater than or equal to 1 and less than G. More specifically, the time domain resource length of each nominal transmission opportunity in the G nominal transmission opportunities corresponds to the time domain resource length of the nominal transmission opportunity notified by the control information.
  • the time domain starting point notified by the control information is the symbol i
  • the time domain resource length of the nominal transmission opportunity notified by the control information is L symbols
  • the time domain starting point of the g-th nominal transmission opportunity is The symbol i+g*L
  • the length of the time domain is L symbols.
  • the time domain resource length corresponding to one of the K transmission opportunities notified by the control information is used to determine the time domain resource pattern of the K transmission opportunities.
  • the control information notifies the time corresponding to one of the K transmission opportunities
  • the domain resource length may be equal to the time domain resource length of at least one of the K transmission opportunities, or may not be equal to the time domain resource length of any one of the K transmission opportunities.
  • the number of target effective REs is the number of effective REs included in the virtual target transmission opportunity
  • the length of the time domain resource corresponding to the virtual target transmission opportunity is the one corresponding to one of the K transmission opportunities notified by the control information Time domain resource length.
  • the virtual target transmission opportunity is not actually a transmission opportunity for the terminal device to transmit the first data packet, or the virtual target transmission opportunity does not correspond to any one of the K transmission opportunities or is actually used to send data Packet transmission opportunity, but used to determine the number of target effective REs.
  • the terminal device still informs the corresponding according to the control information
  • the virtual target transmission opportunity of the time domain resource length of one transmission opportunity determines the TBS of the first data packet instead of determining the TBS of the first data packet according to the number of effective REs included in the transmission opportunities actually included in the K transmission opportunities.
  • how to determine the number of effective REs included in the virtual target transmission opportunity is similar to the method of determining the number of effective REs in the first transmission opportunity or the second transmission opportunity or the third transmission opportunity or the fourth transmission opportunity, and will not be described in detail.
  • the virtual target transmission opportunity is also referred to as a nominal transmission opportunity.
  • the number of repeated transmissions is less than or equal to the threshold of the first number of repeated transmissions (for example, the threshold of the first number of repeated transmissions is 1), or the K transmission opportunities do not include other than the first transmission opportunity and the second transmission opportunity Transmission opportunities, or, the K transmission opportunities include the first transmission opportunity and the second transmission opportunity but do not include any one of the fourth transmission opportunities, or the length of time domain resources of the transmission opportunities included in the K transmission opportunities are less than all The time domain resource length corresponding to one transmission opportunity notified by the control information; wherein, the fourth transmission opportunity is a transmission opportunity whose time domain resource length is equal to the time domain resource length corresponding to one transmission opportunity notified by the control information. That is to say, in any of the above cases, the number of target effective REs is the number of effective REs included in the virtual target transmission opportunity.
  • the number of PRBs in the virtual target transmission opportunity is equal to the number of PRBs corresponding to the K transmission opportunities. It should be understood that the valid RE in the virtual target transmission opportunity does not include the RE notified by the network device as the overhead RE.
  • the number of REs corresponding to the DMRSs in the virtual target transmission opportunity may be determined based on information such as the number of DMRSs and DMRS pattern information notified by the network device.
  • the number of other overhead REs in the virtual target transmission opportunity may be determined based on overhead RE information notified by the network device through high-layer signaling xOverhead.
  • the number of target effective REs is the number of effective REs included in the reference target transmission opportunity
  • the reference target transmission opportunity is a transmission opportunity for transmitting another data packet different from the first data packet
  • the reference target transmission opportunity is The transmission opportunity corresponding to another HARQ process number different from the HARQ process number of the first data packet, or, the reference target transmission opportunity is a transmission opportunity in another GF cycle different from the GF cycle in which the K transmission opportunities are located Where the GF cycle where the K transmission opportunities are located and the other GF cycle are both GF cycles notified by the control information.
  • the reference target transmission opportunity is determined according to a predefined or pre-configured criterion, for example, the reference target transmission opportunity is the transmission opportunity with the smallest number of effective REs included in all transmission opportunities notified by the control information or the included effective Transmission opportunity with the largest number of REs.
  • the terminal device determines the number of target effective REs according to the information about the number of repeated transmissions notified by the network device or according to the time domain resource information of the transmission opportunities included in the K transmission opportunities, or The information about the number of repeated transmissions or the time domain resource information of the transmission opportunities included in the K transmission opportunities.
  • the time domain resource information of the transmission opportunities included in the K transmission opportunities includes information on the number of transmission opportunities included in the K transmission opportunities, and or, the time domain of the transmission opportunities included in the K transmission opportunities Resource length information.
  • the information of the time domain resource length of the transmission opportunities included in the K transmission opportunities includes: information of the time domain resource length of a transmission opportunity included in the K transmission opportunities, or the time domain of each transmission opportunity Resource length information.
  • Information about the time-domain resource length of a transmission opportunity included in the K transmission opportunities For example, whether the K transmission opportunities include any fourth transmission opportunity, and the fourth transmission opportunity is the time-domain resource length corresponding to the control information
  • the notified transmission opportunity corresponding to the time domain resource length of one transmission opportunity; or for example, a transmission opportunity included in the K transmission opportunities is the transmission opportunity with the longest time domain length among the K transmission opportunities.
  • the K transmission opportunities do not include the first transmission opportunity and the second In the case of transmission opportunities other than the transmission opportunity, or, in the case where the K transmission opportunities include the first transmission opportunity and the second transmission opportunity but not including any one of the fourth transmission opportunities, or, in the K transmission opportunities
  • the length of the time domain resource of the included transmission opportunity is less than (or the time domain resource length of the transmission opportunity with the longest time domain included in the K transmission opportunities is less than) the time domain corresponding to one transmission opportunity notified by the control information
  • the target effective RE number is the sum of the effective RE number included in the first transmission opportunity and the effective RE number included in the second transmission opportunity, or the target effective RE number is the K number The sum of the number of valid REs included in the transmission opportunity.
  • the time domain length of any one of the K transmission opportunities is less than that notified by the control information
  • the sum of the number of effective REs included is also smaller than the transmission opportunity (such as a virtual target) of the time domain resource length corresponding to one transmission opportunity notified by the control information (Transmission opportunity)
  • the sum of the number of effective REs included can prevent the TBS from being too large and ensure reliability.
  • the K transmission opportunities do not include the first transmission opportunity and the second transmission
  • the K transmission opportunities do not include the first transmission opportunity and the second transmission
  • the K transmission opportunities do not include the first transmission opportunity and the second transmission
  • the K transmission opportunities do not include the first transmission opportunity and the second transmission
  • the K transmission opportunities do not include the first transmission opportunity and the second transmission
  • the length of the time domain resource of the transmission opportunities of all is less than (or the length of the time domain resource of the transmission opportunity with the longest time domain included in the K transmission opportunities is less than) the time domain resource corresponding to one transmission opportunity notified by the control information
  • the target effective RE number is the number of effective REs included in the target transmission opportunity
  • the target transmission opportunity is the first transmission opportunity or the second transmission opportunity.
  • the target transmission opportunity is the first transmission opportunity.
  • all of the K transmission opportunities are transmission opportunities that are divided due to crossing the slot boundary or crossing the uplink and downlink symbol boundaries, use the number of effective REs included in one of the target transmission opportunities included in the K transmission opportunities Determining TBS can prevent TBS from being too large and ensure reliability.
  • the fourth transmission opportunity is a transmission opportunity whose time domain resource length is equal to the time domain resource length corresponding to one transmission opportunity notified by the control information.
  • the time domain length of the fourth transmission opportunity is equal to the time domain length of the nominal transmission opportunity.
  • the fourth transmission opportunity may also be referred to as a nominal transmission opportunity.
  • the K transmission opportunities include other transmission opportunities (such as the fourth transmission opportunity) in addition to the first transmission opportunity and the second transmission opportunity ), or, if the K transmission opportunities include at least one time domain resource length greater than or equal to (or that the K transmission opportunities include the longest time domain length transmission opportunity with a time domain resource length greater than or equal to)
  • the number of target effective REs is the number of effective REs included in the target transmission opportunity
  • the length of the time domain resource corresponding to the target transmission opportunity is corresponding to the K transmission opportunities notified by the control information
  • the time-domain resource length of a transmission opportunity, or the target transmission opportunity is the fourth transmission opportunity.
  • the K transmission opportunities further include at least one transmission opportunity whose time domain resource length is shorter than the fourth transmission opportunity (for example, the first transmission opportunity and or the second transmission opportunity). For example, if at least one fourth transmission opportunity is included in the K transmission opportunities, and the time-domain resource length is equal to the time-domain resource length corresponding to one transmission opportunity notified by the control information, the fourth time-domain resource length is used.
  • the number of effective REs included in the transmission opportunity determines the TBS, which can ensure self-decoding, and thus can maximize the transmission efficiency while ensuring reliability.
  • the method for determining the number of target effective REs may also include the following methods:
  • Method 4 Determine the number of target effective REs according to the RV information in the K transmission opportunities.
  • the number of target effective REs is associated with RV information in K transmission opportunities.
  • the number of target effective REs is the number of effective REs included in the target transmission opportunities in the K transmission opportunities or the sum of the number of effective REs included in the V transmission opportunities in the K transmission opportunities, where the target transmission opportunities or V transmission opportunities It is determined by the RV information in the K transmission opportunities, or the target transmission opportunity or the V transmission opportunities are associated with the RV information in the K transmission opportunities.
  • the number of target effective REs is the number of effective REs included in the target transmission opportunity among the K transmission opportunities
  • the target transmission opportunity is the transmission opportunity corresponding to the target RV version among the K transmission opportunities.
  • the target RV version is a pre-defined or pre-configured RV version of the network device.
  • the target RV version is RV 0.
  • the RV information in the K transmission opportunities is reflected as: the correspondence between the target RV version and the target transmission opportunity.
  • the target transmission opportunity is notified to the terminal device by the network device corresponding to the target RV version.
  • the pre-configured RV version of the network device is also referred to as the signaling configured RV version.
  • RV0 is generally the RV version with the largest number of system information bits among all RV versions, therefore, determining the target transmission opportunity as the transmission opportunity corresponding to RV0 can ensure that the target transmission opportunity corresponding to RV0 can be Self-decoding, and therefore K transmission opportunities can also be combined together to ensure reliability.
  • the transmission opportunity corresponding to other RV versions is used as the target transmission opportunity, it may cause the TBS of the determined first data packet to be too large, resulting in the transmission opportunity corresponding to RV 0 being lost due to the loss of some system information bits.
  • Self-decoding affects the reliability of K transmission opportunities.
  • the terminal device determines one of the transmission opportunities as the target transmission opportunity according to a predefined or pre-configuration of the network device. For example, among the plurality of transmission opportunities corresponding to the target RV version, among the plurality of transmission opportunities corresponding to the target RV version, the transmission opportunity including the smallest number of effective REs or the transmission opportunity including the largest number of effective REs is included.
  • the number of target effective REs is the sum of the number of effective REs included in V transmission opportunities of K transmission opportunities, V is a positive integer greater than or equal to 1 and less than or equal to K (or M), the V The transmission opportunities are determined by the RV patterns (also called RV sequences) corresponding to the K transmission opportunities or are associated with the RV patterns corresponding to the K transmission opportunities.
  • RV patterns also called RV sequences
  • the RV pattern corresponding to the K transmission opportunities may be a set of RV versions corresponding to each transmission opportunity in the K transmission opportunities, that is, K (or M) transmission opportunities correspond to K (or M) RV versions, and the RV
  • the pattern is a set of the K (or M) RV versions, and may also be an RV sequence notified by a network device (for example, through high-level signaling repK-RV), where the number of RV versions included in the RV sequence may or may not be equal K (or M).
  • the RV information in the K transmission opportunities is reflected as the RV pattern corresponding to the K transmission opportunities.
  • the RV pattern corresponding to the K transmission opportunities is notified to the terminal device by the network device.
  • the target effective RE number is the number of effective REs included in one of the K transmission opportunities, or the target effective RE number is The sum of the number of effective REs included in the V1 transmission opportunities of the K transmission opportunities, V1 is a positive integer greater than or equal to 1 and less than K (or M).
  • the value of V1 or the determination criterion of V1 transmission opportunities may be pre-defined or pre-configured by the network device.
  • the method for determining the target transmission opportunity among the K transmission opportunities is as described above, and will not be described in detail.
  • the first RV pattern does not include the non-self-decoding RV version. Specifically, the first RV pattern includes RV 0 but not other RV versions, or the first RV pattern includes RV 0 and RV 3 but not other RV versions. For example, the first RV pattern is RV0000 or RV0303.
  • the target effective RE number is the sum of the effective RE numbers included in the K transmission opportunities, or the target effective RE number is the K transmission opportunities
  • the sum of the number of effective REs included in the V2 transmission opportunities in V2 is a positive integer greater than V1 and less than or equal to K (or M).
  • the value of V2 or the determination criterion of V2 transmission opportunities may be pre-defined or pre-configured by the network device.
  • the second RV pattern includes a non-self-decoding RV version.
  • the second RV pattern includes other RV versions other than RV 0, or the first RV pattern includes other RV versions other than RV 0 and RV 3 (for example, including RV 2 and RV 1).
  • the second RV pattern is RV 0303 or RV 0231.
  • the transmission opportunities for example, the transmission opportunity corresponding to RV 0
  • other transmissions corresponding to other RV versions can be used.
  • the opportunity to recover the system information bits, so that the network device correctly receives all the system information bits, so the TBS of the first data packet can be determined based on the sum of the number of effective REs included in the K transmission opportunities or more V2 transmission opportunities to improve Transmission efficiency and reliability.
  • the TBS of the first data packet is determined based on the sum of the number of effective REs included in the K transmission opportunities or more transmission opportunities, the TBS may be over Large, so that one of the transmission opportunities (for example, the transmission opportunity corresponding to RV0) cannot carry all the system information bits, that is, some system information bits are lost, and the other transmission opportunities do not contain these lost system information bits or contain The encoded bits of the lost system information bit information (for example, other transmission opportunities are also RV 0, so the same system information bit is also lost), resulting in the inability to recover all system information bits; therefore, for the first RV pattern, it can be based on a target Transmission opportunities or fewer V1 transmission opportunities determine the TBS, to avoid the calculation of TBS is too large and cause reliability damage. For example, using a target transmission opportunity to determine TBS can ensure that the target transmission opportunity can self-decode, and then K transmission opportunities It can also be self-decoded together to ensure reliability
  • the method in the embodiment of the present application in addition to determining the TBS of the first data packet, can also be used to determine other transmission format information, such as frequency hopping information or RV pattern information of K transmission opportunities, as described in method 5 .
  • Method 5 The network device configures an association relationship between the time domain resource pattern and the transmission format information, and the association relationship is used to determine the transmission format of the first data packet for data transmission.
  • the transmission format information includes a set of transmission opportunities for determining the TBS corresponding to the first data packet, and or a set of transmission opportunities for frequency hopping among K transmission opportunities, and or RV patterns corresponding to the K transmission opportunities.
  • association relationship is also called a mapping relationship.
  • the terminal device receives first configuration information sent by the network device, where the first configuration information is used to configure a first association relationship, and the first association relationship includes a time domain resource pattern of a transmission opportunity used for data transmission of a data packet
  • the association relationship between the transmission opportunity sets used to determine the TBS the target number of effective REs is the sum of the number of effective REs included in P transmission opportunities out of K transmission opportunities, P is greater than or equal to 1 and less than or equal to K (Or M) a positive integer
  • the P transmission opportunities are determined according to the time domain resource information of the transmission opportunity for data transmission of the first data packet notified by the network device and the first association relationship.
  • the number of target effective REs is the sum of the number of effective REs included in P transmission opportunities out of K transmission opportunities, and P is a positive integer greater than or equal to 1 and less than or equal to K (or M), which may also be called :
  • the number of target effective REs is the number of effective REs included in the target transmission opportunity, the target transmission opportunity is P transmission opportunities among the K transmission opportunities, and the number of effective REs included in the target transmission opportunity is the target transmission opportunity
  • the sum of the number of valid REs included, P is a positive integer less than or equal to K (or M).
  • receiving the first configuration information sent by the network device by the terminal device is also referred to as receiving the first configuration information from the network device.
  • time domain resource information of the transmission opportunity for data transmission of the first data packet notified by the network device is also referred to as the time domain of the transmission opportunity for signaling data transmission of the first data packet. Resource information.
  • the P transmission opportunities are determined according to the time domain resource information of the transmission opportunity for data transmission of the first data packet notified by the network device and the first association relationship, and are also referred to as ,
  • the P transmission opportunities correspond to time-domain resource information of the signaling transmission opportunity for data transmission to the first data packet and the first association relationship.
  • the network device sends the first configuration information to the terminal device.
  • the first association relationship includes multiple time domain resource patterns for transmission opportunities for data transmission of data packets and multiple association relationships for determining a set of transmission opportunities for TBS.
  • Any one of the time-domain resource patterns of the transmission opportunity for data transmission of the data packet corresponds to one of the plurality of transmission opportunity sets for determining the TBS;
  • the P transmissions The opportunity is determined according to the time domain resource information of the transmission opportunity for data transmission of the first data packet notified by the network device and the first association relationship, including:
  • the time domain resource information of the transmission opportunity of the data packet for data transmission corresponds to the first time domain resource pattern among the plurality of time domain resource patterns of the transmission opportunity for data transmission of the data packet, the P transmission opportunities Among the plurality of transmission opportunity sets used for determining the TBS, the transmission opportunity set corresponding to the first time domain resource pattern.
  • the P transmission opportunities are also referred to as a set of transmission opportunities for determining the TBS corresponding to the first data packet.
  • the network device sends the first configuration information to the terminal device.
  • the first configuration information is high-level signaling.
  • the terminal device receives second configuration information sent by the network device, where the second configuration information is used to configure a second association relationship, and the second association relationship includes a time-domain resource pattern of a transmission opportunity for data transmission to a data packet And the association between the set of transmission opportunities for frequency hopping, the terminal device according to the time domain resource information of the transmission opportunities for data transmission of the first data packet notified by the network device and the first The two association relationships determine the set of transmission opportunities for frequency hopping among the K transmission opportunities.
  • the terminal device receiving the second configuration information sent by the network device is also referred to as receiving the second configuration information from the network device.
  • the terminal device determines the transmission opportunity for frequency hopping among the K transmission opportunities according to the time domain resource information of the transmission opportunity for data transmission of the first data packet notified by the network device and the second association relationship
  • the set, also called, the set of transmission opportunities for frequency hopping among the K transmission opportunities corresponds to the time domain resource information of the transmission opportunities for data transmission of the first data packet notified by the network device and the
  • the second association relationship, or called, the set of transmission opportunities for frequency hopping among the K transmission opportunities is notified by the network device of the time domain resource information of the transmission opportunities for data transmission of the first data packet and The second association relationship is obtained.
  • the second association relationship includes an association relationship between a time domain resource pattern of transmission opportunities for data transmission of data packets and a set of transmission opportunities for frequency hopping, and may also be replaced by: a second association relationship It includes an association relationship between a time domain resource pattern of transmission opportunities for information transmission of uplink information and a set of transmission opportunities for frequency hopping.
  • time domain resource information of the transmission opportunity for data transmission of the first data packet notified by the network device may also be replaced by: the time of the transmission opportunity for information transmission of the first uplink information notified by the network device Domain resource information.
  • the network device sends the second configuration information to the terminal device.
  • the second association relationship includes an association relationship between a plurality of time domain resource patterns of transmission opportunities for data transmission of data packets and a plurality of sets of transmission opportunities for frequency hopping. Any one of the time-domain resource patterns of transmission opportunities for data transmission of data packets corresponds to one set of transmission opportunities in the plurality of sets of transmission opportunities for frequency hopping, the terminal The device determines the set of transmission opportunities for frequency hopping among the K transmission opportunities according to the time domain resource information of the transmission opportunities for data transmission of the first data packet notified by the network device and the second association relationship, including: The time domain resource information of the transmission opportunity for data transmission of the first data packet corresponds to the second time domain in the time domain resource pattern of the plurality of transmission opportunities for data transmission of the data packet Resource pattern, the set of transmission opportunities for frequency hopping among the K transmission opportunities is the set of transmission opportunities for frequency hopping corresponding to the second time-domain resource pattern transmission opportunities set.
  • the set of transmission opportunities for frequency hopping among the K transmission opportunities is also called a set of frequency hopping transmission opportunities.
  • the terminal device performs frequency hopping processing when performing data transmission on the first data packet on any transmission opportunity in the set of frequency hopping transmission opportunities.
  • the network device receives the data transmission performed by the terminal device on the first data packet on any transmission opportunity in the set of frequency hopping transmission opportunities as frequency hopping data transmission.
  • the network device sends the second configuration information to the terminal device.
  • the second configuration information is high-level signaling.
  • frequency hopping or frequency hopping processing herein refers to frequency hopping within a transmission opportunity, and is also referred to as intra-PUSCH frequency hopping (Intra-PUSCH frequency hopping) or intra-slot frequency hopping (Intra-slot frequency hopping). That is to say, for any transmission opportunity in the set of frequency hopping transmission opportunities, the information on the first part of the time domain resource included in the transmission opportunity is sent on the first frequency domain resource, and the second part of the transmission opportunity included in the transmission opportunity The information on the domain resource is sent on the second frequency domain resource.
  • the physical resource corresponding to the first part of the time domain resource and the first frequency domain resource is called a first hop, and the second part of the physical resource corresponding to the second frequency domain resource is called a second hop.
  • first part of the time domain resource is a temporally continuous time domain resource
  • second part of the time domain resource is a temporally continuous time domain resource.
  • first frequency domain resource and the second frequency domain resource are different; for example, the first frequency domain resource and the second frequency domain resource do not overlap or do not completely overlap in the frequency domain; for another example, the first frequency domain resource
  • the starting point of the frequency domain ie, starting PRB
  • starting PRB is different from the starting point of the second frequency domain resource (ie, starting PRB).
  • the transmission opportunity does not perform frequency hopping means that all time domain resources included in the transmission opportunity correspond to the same frequency domain resource.
  • the terminal device receives third configuration information sent by the network device, where the third configuration information is used to configure a third association relationship, and the third association relationship includes a time domain resource pattern of a transmission opportunity used for data transmission of a data packet And the association relationship between the RV patterns corresponding to the transmission opportunities, the terminal device determines K transmission opportunities according to the time domain resource information of the transmission opportunity for data transmission of the first data packet notified by the network device and the third association relationship The corresponding RV pattern (called the target RV pattern).
  • the terminal device receiving the third configuration information sent by the network device is also referred to as receiving the third configuration information from the network device.
  • the terminal device determines the RV pattern corresponding to the K transmission opportunities according to the time domain resource information of the transmission opportunity for data transmission of the first data packet notified by the network device and the third association relationship.
  • the RV pattern corresponding to the K transmission opportunities corresponds to the time domain resource information of the transmission opportunity for data transmission of the first data packet notified by the network device and the third association relationship, or, the K transmissions
  • the RV pattern corresponding to the opportunity is obtained by the time domain resource information of the transmission opportunity for data transmission of the first data packet notified by the network device and the third association relationship.
  • the network device sends the third configuration information to the terminal device.
  • the third association relationship includes a plurality of association relationships between time-domain resource patterns of transmission opportunities for data transmission of data packets and a plurality of RV patterns, and the plurality of association relationships are used for data of data packets Any one of the time-domain resource patterns of the transmitted transmission opportunity corresponds to one RV pattern among the plurality of RV patterns, and the terminal device is used for data transmission of the first data packet as notified by the network device
  • the time domain resource information of the transmission opportunity and the third association relationship determine the RV pattern corresponding to the K transmission opportunities, including: the time domain resource information of the transmission opportunity for data transmission of the first data packet corresponds to The third time-domain resource pattern among the multiple time-domain resource patterns of transmission opportunities for data transmission of data packets, and the RV patterns corresponding to the K transmission opportunities are among the multiple RV patterns, corresponding to The RV pattern of the third time domain resource pattern.
  • the network device receives the RV version of the data transmission performed by the terminal device on the first data packet on any one of the K transmission opportunities as the RV version corresponding to any one of the transmission opportunities in the RV pattern, or That is, the network device receives the first data packet sent by the terminal device in at least one of the K transmission opportunities, and at least one of the K transmission opportunities corresponds to the target RV pattern.
  • the RV pattern corresponding to the K transmission opportunities is also referred to as the RV version corresponding to each transmission opportunity in the K transmission opportunities.
  • the network device sends the third configuration information to the terminal device.
  • the third configuration information is high-level signaling.
  • any two of the first configuration information, the second configuration information, and the third configuration information may be the same configuration information, or may be different configuration information.
  • time domain resource pattern of the transmission opportunity for data transmission to the data packet corresponds to one of the following kinds of information or a combination of at least two kinds of information:
  • the time domain resource information of the transmission opportunity includes: the time domain resource of one transmission opportunity (including the time domain start point and time domain length of the one transmission opportunity), or multiple transmissions for data transmission of one data packet Opportunity time domain resources (including the time domain start point and time domain length of each transmission opportunity in the multiple transmission opportunities).
  • the terminal device can determine the time domain resource pattern of one or more transmission opportunities for repeated transmission of a data packet according to the time domain resource information of the transmission opportunity, including the time of each transmission opportunity in the one or more transmission opportunities Domain start and time domain length.
  • the time domain resource of one transmission opportunity is also referred to as the time domain resource of the nominal transmission opportunity.
  • the time domain resource information of the transmission opportunity includes the time domain resource of one transmission opportunity
  • the time domain resource information of the transmission opportunity also includes the number of repeated transmissions.
  • the terminal device can determine the time-domain resource pattern of one or more transmission opportunities for repeated transmission of a data packet according to the time-domain resources of one transmission opportunity and the number of repeated transmissions.
  • the definition of the number of repeated transmissions is as described above.
  • the time domain resource information of the above transmission opportunity is configured by high-level signaling (such as the pusch-TimeDomainAllocationList field).
  • the high-level signaling configures a table, and the table includes at least one row, and each row in the at least one row represents a transmission Opportunity time domain resources (including the time domain starting point and time domain length of the one transmission opportunity time domain resource) or time domain resources of multiple transmission opportunities (including the multiple transmission opportunities) used for data transmission of a data packet The time domain starting point and time domain length of the time domain resource for each transmission opportunity).
  • the GF cycle information includes the size of the GF cycle and the start time information of the GF cycle.
  • the start time of the GF cycle includes the start boundary of the GF cycle and or the relative start time of the GF resource in the GF cycle in the GF cycle.
  • the terminal device will determine the available time-domain resources according to the GF cycle information notified by the network device, for example, it can be used for data transmission in each cycle The time-domain resource appears repeatedly, starting from the beginning of the GF cycle.
  • the uplink and downlink symbol direction information specifically refers to notification of time domain symbols.
  • the uplink and downlink symbol direction may be'downlink' or'uplink' or'flexible'.
  • the network device may notify the uplink and downlink symbol direction information through higher layer signaling or physical layer signaling.
  • the high-level signaling includes fields TDD-UL-DL-ConfigurationCommon or TDD-UL-DL-ConfigDedicated, and the physical layer signaling is DCI corresponding to format 2_0.
  • the terminal device determines the time domain resource pattern of K transmission opportunities, in addition to the above
  • the direction of the uplink and downlink symbols notified by the network device will also be considered, for example, when the transmission opportunities determined according to (1) and or (2) and the'downlink' or'flexible' notified by the network device
  • the collision transmission opportunities are discarded, or, when determining the time domain resources corresponding to the K transmission opportunities, skip the'downlink' or'flexible' symbols notified by the network device.
  • the time domain resource pattern of the transmission opportunity for data transmission to the data packet corresponds to (1) or (2) or (3) above.
  • the combination of at least two types of information in the time domain resource pattern for the transmission opportunity of data transmission to the data packet includes: the combination of (1) and (2) above, or corresponding to (1) and (3) above , Or the combination of (2) and (3) above, or the combination of (1) and (2) and (3) above.
  • the combination of at least two types of information in (3) may correspond to multiple time-domain resource patterns (ie, multiple time-domain resource patterns for transmission opportunities for data transmission of data packets).
  • the network device can configure, for each time domain resource pattern of the plurality of time domain resource patterns, a transmission opportunity set for determining the TBS (for example, which transmission opportunity to use includes the number of effective REs or which transmission opportunities include The sum of the number of effective REs determines TBS), that is, the first association relationship; or, the set of transmission opportunities configured for frequency hopping (for example, for which transmission opportunity or opportunities to perform frequency hopping processing), that is, the second association relationship; or , Configure the RV pattern corresponding to the transmission opportunity, that is, the third association relationship.
  • a transmission opportunity set for determining the TBS for example, which transmission opportunity to use includes the number of effective REs or which transmission opportunities include The sum of the number of effective REs determines TBS
  • the set of transmission opportunities configured for frequency hopping for example, for which transmission opportunity or opportunities to perform frequency hopping processing
  • Configure the RV pattern corresponding to the transmission opportunity that is, the third association relationship.
  • the set of transmission opportunities configured by the network device for determining the TBS is a subset of the set of transmission opportunities determined according to the time domain resource pattern.
  • the set of transmission opportunities configured by the network device for frequency hopping is a child of the set of transmission opportunities determined according to the time domain resource pattern set.
  • the terminal device may correspond to a specific time-domain resource among the above-mentioned multiple time-domain resource patterns pattern.
  • a specific time domain resource pattern among the above multiple time domain resource patterns is associated (through a first association relationship) to a specific set of transmission opportunity sets for determining the TBS of the data packet, so that the terminal The device may index to obtain a set of transmission opportunities for determining the TBS corresponding to the first data packet.
  • a specific time domain resource pattern among the above multiple time domain resource patterns is associated (through a second association relationship) to a specific set of transmission opportunities for frequency hopping, so that the terminal device The set of transmission opportunities for frequency hopping among K transmission opportunities can be indexed.
  • a specific time-domain resource pattern among the above-mentioned multiple time-domain resource patterns is associated (through a third association relationship) to a specific RV pattern, so that the terminal device can index to obtain K transmission opportunity correspondences RV pattern.
  • the time domain resource information of the transmission opportunity for data transmission of the first data packet notified by the network device includes one of the following types of information or a combination of at least two types of information, for example, (i) or (ii) or (iii), or a combination of (i) and (ii), or a combination of (i) and (iii), or a combination of (ii) and (iii), or corresponding to (i) and (ii) above ) And (iii) combination:
  • the time domain resource information of the transmission opportunity for transmitting the first data packet notified by the control information includes: time domain resource information of one transmission opportunity notified by the control information (including the time domain starting point of the one transmission opportunity And the length of the time domain), or the time domain resource information of multiple transmission opportunities for data transmission to the first data packet notified by the control information (including the time domain starting point of each transmission opportunity in the multiple transmission opportunities And the length of the time domain).
  • the time domain resource of one transmission opportunity or the time domain resources of multiple transmission opportunities used for data transmission of the first data packet is notified by a field in the control information, for example, in physical layer signaling Time domain resource assignment field, or the time Domain Allocation field in higher layer signaling.
  • the time domain resources corresponding to the K transmission opportunities are time domain resource information of one transmission opportunity notified by the control information or multiple transmission opportunities for data transmission of the first data packet notified by the control information
  • Time domain resource information is obtained.
  • the time domain resource corresponding to the K transmission opportunities corresponds to the time domain resource of one transmission opportunity notified by the control information or corresponds to the multiple transmission opportunities notified by the control information for data transmission of the first data packet Time domain resource; or, the time domain resource corresponding to the K transmission opportunities is a time domain resource of one transmission opportunity notified by the control information or a plurality of data used for data transmission of the first data packet notified by the control information
  • the time domain resource of the transmission opportunity is obtained, for example, the time domain resource corresponding to the K transmission opportunities is also obtained according to (ii) and (iii).
  • first association relationship, second association relationship, or third association relationship may be embodied as a table of network device configuration.
  • the network device is configured with a table, and the table includes at least one row, and any one of the at least one row represents a time-domain resource pattern of a transmission opportunity for data transmission of the data packet, for example, the above (1 ), (2), (3) one kind of information or a combination of at least two kinds of information, the arbitrary row index is used to determine the transmission opportunity set of TBS, and or, the arbitrary row index is used for frequency hopping The set of transmission opportunities, and or, the arbitrary row indexes an RV pattern.
  • the table is a table configured by the network device through the high-level signaling pusch-TimeDomainAllocationList field.
  • any one of the at least one row included in the table includes the information of (1) above, and the network device notifies the time domain resource information of the transmission opportunity for data transmission of the first data packet through (i) above, specifically by The control information notifies an index number for indexing a row in the table; the terminal device determines the TBS transmission opportunity set corresponding to the row in the table according to the index number, and or the row corresponding to the row The set of frequency hopping transmission opportunities, and or the RV pattern corresponding to the row.
  • any one of the at least one row included in the table includes the information of (1) and (2) and (3) above.
  • the network device uses the notifications of (i) and (ii) and (iii) above to Time domain resource information of the transmission opportunity of a data packet for data transmission. Therefore, after receiving the notification information of (i), (ii), and (iii), the terminal device can correspondingly determine a row in the table, so as to obtain the transmission opportunity set of the TBS corresponding to the row by index, and or The corresponding set of transmission opportunities for frequency hopping, and or the RV pattern corresponding to the row.
  • any time-domain resource pattern of transmission opportunities used for data transmission of data packets includes time-domain resource information of one or more transmission opportunities.
  • the reference transmission opportunity in the one or more transmission opportunities corresponds to a first flag, which is used to mark whether the reference transmission opportunity is included in the set of transmission opportunities for determining the TBS. Specifically, when the first mark is the first target mark value, the reference transmitter is included in the set of transmission opportunities for determining the TBS.
  • the value of the first target tag is '1', when the first tag is '1', it means that the reference transmitter corresponding to the tag is included in the set of transmission opportunities for determining TBS, and when the first tag is '0' 'Indicates that the reference transmission opportunity corresponding to the mark is not included in the transmission opportunity set used to determine the TBS.
  • the reference transmission opportunity corresponds to a second mark, which is used to mark whether the reference transmission opportunity is included in the set of transmission opportunities for frequency hopping. Specifically, when the second mark is the second target mark value Next, the reference transmitter is included in the set of transmission opportunities for frequency hopping. For example, the value of the second target tag is '1'.
  • the second tag When the second tag is '1', it means that the reference transmitter corresponding to the tag is included in the set of transmission opportunities for frequency hopping.
  • the second tag When '0', it means that the reference transmission opportunity corresponding to the mark is not counted in the set of transmission opportunities for frequency hopping. Further, the reference transmission opportunity is any one of the one or more transmission opportunities.
  • the terminal device After the terminal device determines the time-domain resource pattern of the transmission opportunity for data transmission to the first data packet through one piece of information in (i)(ii)(iii) or a combination of at least two pieces of information, it may
  • the first mark corresponding to each of the multiple transmission opportunities determines the set of transmission opportunities for determining the TBS of the first data packet (including all the first marks in the one or more transmission opportunities as the first target mark value Transmission opportunity), or a set of transmission opportunities for frequency hopping is determined according to the second mark corresponding to each of the one or more transmission opportunities (including all second marks in the one or more transmission opportunities) Mark the transmission opportunity for the second target).
  • the table is also used to notify the time domain resource information of K transmission opportunities.
  • the table includes at least one row, and any one of the at least one row represents a time-domain resource pattern of a transmission opportunity for data transmission of a data packet, which may be used to determine a data transmission of a data packet Or time domain resources of multiple transmission opportunities.
  • the table is a table configured by the network device through high-level signaling pusch-TimeDomainAllocationList.
  • the network device notifies a row in the table through the fields in the control information (such as Time domain resource assignment field or time Domain Allocation field), so that the terminal device can determine the corresponding K transmission opportunities according to the time domain resource pattern corresponding to the row Time domain resources, and the set of K transmission opportunities for determining the TBS corresponding to the first data packet and or the set of K transmission opportunities for frequency hopping and the corresponding K transmission opportunities are acquired RV pattern.
  • the control information such as Time domain resource assignment field or time Domain Allocation field
  • the time domain resource information corresponding to the K transmission opportunities and the transmission opportunity set information used to determine the TBS corresponding to the first data packet are jointly encoded into the same control information field, and or, the K transmission opportunities correspond to
  • the time domain resource information and the set information of the transmission opportunities for frequency hopping among the K transmission opportunities are jointly encoded into the same control information field, and or, the time domain resource information and the K transmission opportunities corresponding to the K transmission opportunities
  • the corresponding RV pattern information is jointly encoded into the same control information field.
  • the same control information field is the Time domain resource assignment field or time Domain Allocation field of the control information.
  • Table 1 is a table configured by a network device through high-level signaling, including 4 rows, and each row in the table includes time domain resources (also known as SLIV) corresponding to one or more transmission opportunities, including time domain start and time domain length ) Information, and each of the one or more transmission opportunities represented by any row in the table corresponds to a first mark, used to inform whether the transmission opportunity is included in the set of transmission opportunities used to determine the TBS, for example, Index number 1, including a transmission opportunity TO#1, the first mark '1' represents TO#1 is included in the set of transmission opportunities used to determine TBS, for index number 2, including 2 transmission opportunities TO#1 and TO#2 , The first mark '1' of TO#1 represents TO#1 is included in the set of transmission opportunities used to determine TBS, and the first mark '0' of TO#2 represents that TO#2 is not included in the transmission opportunities used to determine TBS set.
  • time domain resources also known as SLIV
  • SLIV time domain resources
  • the control information notification index number is 3, then the terminal device can index and obtain time domain resource patterns of K transmission opportunities for data transmission of the first data packet, that is, time domain resources of TO#1 to TO#4, The terminal device may repeatedly transmit the first data packet 4 times on the 4 TOs.
  • the index number also indexes the set of transmission opportunities for determining the TBS corresponding to the first data packet, including ⁇ TO#1, TO#4 ⁇ , so the terminal device is based on the valid REs of TO#1 and TO#4
  • the sum of the numbers determines the TBS corresponding to the first data packet, and then the first data packet is generated and the first data packet is repeatedly transmitted 4 times on the 4 TOs.
  • steps 601 to 603 can also be replaced by:
  • step 601a the network device sends control information to the terminal device; accordingly, in step 602a (replacement step 602), the terminal device receives control information from the network device.
  • the control information is used to inform the information of the time-frequency resource for transmitting the first data packet; the time-frequency resource includes K transmission opportunities, and each of the K transmission opportunities is used for the The first data packet performs a data transmission.
  • Step 603a the terminal device determines the TBS corresponding to the first data packet.
  • the terminal device determines the TBS corresponding to the first data packet according to the number of target effective resource particle REs, and the target effective RE number is the number of effective REs included in at least one of the K transmission opportunities.
  • the number of target effective REs is the number of all effective REs included in the K transmission opportunities, or the number of target effective REs is included in the P transmission opportunities of the K transmission opportunities.
  • the number of effective REs included in the target transmission opportunity of the K transmission opportunities, or the number of target effective REs is the number of effective REs included in the virtual target transmission opportunity, or the number of target effective REs is included in the reference target transmission opportunity Number of valid REs.
  • steps 601-605 can also be replaced by:
  • step 601b the network device sends control information to the terminal device; accordingly, in step 602b (replacement step 602), the terminal device receives control information from the network device.
  • the control information is used to inform the information of the time-frequency resource for transmitting the first uplink information; the time-frequency resource includes K transmission opportunities, and each of the K transmission opportunities is used for the The first uplink information performs an information transmission.
  • Step 603b (Replace step 603): Terminal equipment The terminal equipment determines the first uplink information used for information transmission on at least one of the K transmission opportunities.
  • Step 604b (replacement step 604): Terminal equipment The terminal equipment performs information transmission on the first uplink information on at least one transmission opportunity among the K transmission opportunities.
  • Step 605b replacement step 605: the network device receives the first uplink information sent by the terminal device in at least one of the K transmission opportunities.
  • the first uplink information may include the first data packet, or may include UCI information but not UL-SCH information.
  • the network device or the terminal device may include a hardware structure and/or a software module corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • FIG. 12 shows a possible exemplary block diagram of the device involved in the embodiment of the present application, and the device 1200 may exist in the form of software.
  • the device 1200 may include a processing unit 1202 and a communication unit 1203.
  • the processing unit 1202 is used to control and manage the operation of the device 1200.
  • the communication unit 1203 is used to support the communication between the device 1200 and other network entities.
  • the communication unit 1203 is also referred to as a transceiver unit, and may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 1200 may further include a storage unit 1201 for storing the program code and/or data of the device 1200.
  • the processing unit 1202 may be a processor or a controller, which may implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of the embodiments of the present application.
  • the communication unit 1203 may be a communication interface, a transceiver, or a transceiver circuit, etc., where the communication interface is collectively referred to, and in a specific implementation, the communication interface may include multiple interfaces.
  • the storage unit 1201 may be a memory.
  • the apparatus 1200 may be the terminal device in any of the foregoing embodiments, or may also be a semiconductor chip provided in the terminal device.
  • the processing unit 1202 may support the apparatus 1200 to perform the actions of the terminal device in the foregoing method examples.
  • the processing unit 1202 mainly performs internal actions of the terminal in the method example, and the communication unit 1203 may support communication between the apparatus 1200 and the network device.
  • the processing unit 1202 is used to perform step 603 or step 603a or step 603b in FIG. 6; the communication unit 1202 is used to perform step 602 (or step 602a or step 602b) and step 604 (or step 604b) in FIG.
  • the communication unit (which may be a receiving unit) is configured to receive control information from a network device, and the control information is used to notify the information of the time-frequency resource for transmitting the first data packet;
  • the time-frequency resource includes K transmission opportunities, each of the K transmission opportunities is used to perform a data transmission on the first data packet, and the first transmission opportunity of the K transmission opportunities.
  • the number of effective resource particle REs included is greater than the number of effective REs included in the second transmission opportunity of the K transmission opportunities, and K is an integer greater than 1;
  • the processing unit is configured to determine the TBS corresponding to the first data packet according to the number of target effective resource particles RE; the number of target effective REs is an average effective RE included in each of the K transmission opportunities The number, or the target effective RE number is the number of effective REs included in the target transmission opportunity among the K transmission opportunities.
  • the target transmission opportunity is the second transmission opportunity.
  • the second transmission opportunity is the transmission opportunity with the smallest number of effective REs included in the K transmission opportunities; or, the second transmission opportunity is included in the K transmission opportunities The transmission opportunity with the smallest number of time-domain symbols.
  • the target transmission opportunity is the first transmission opportunity.
  • the first transmission opportunity is the transmission opportunity with the largest number of effective REs included in the K transmission opportunities; or, the first transmission opportunity is included in the K transmission opportunities The transmission opportunity with the largest number of time-domain symbols.
  • the target transmission opportunity is the second transmission opportunity
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • the target transmission opportunity Is the second transmission opportunity
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity
  • the correction code rate is carried by the first reference TBS on the second transmission opportunity and is modulating The corresponding code rate under the order
  • the control information is also used to notify the modulation order of transmitting the first data packet, and the modified modulation order is higher than the modulation order notified by the control information.
  • the target transmission opportunity is the first transmission opportunity
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • the target transmission The opportunity is the first transmission opportunity; wherein, the first reference TBS is a TBS calculated according to the number of valid REs included in the first transmission opportunity, and the modified code rate is carried on the first reference TBS by all The second transmission opportunity and the corresponding code rate under the modified modulation order, the control information is also used to notify the modulation order of transmitting the first data packet, the modified modulation order is higher than the control information The notified modulation order;
  • the communication unit (specifically, may be a sending unit) is further configured to: send the first data packet on the second transmission opportunity using the modified modulation order and the modified code rate.
  • the communication unit (which may be specifically a sending unit) is also used to:
  • the second transmission opportunity is discarded when the first data packet is sent; wherein, the first reference The TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • the communication unit (which may be specifically a sending unit) is also used to:
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • the number of effective REs included in the first transmission opportunity is greater than the number of effective REs included in the second transmission opportunity, including:
  • the first transmission opportunity is a transmission opportunity that does not include a demodulation reference signal DMRS
  • the second transmission opportunity is a transmission opportunity that includes DMRS
  • the first transmission opportunity is a transmission opportunity that includes DMRS
  • the second transmission opportunity is a transmission opportunity that does not include DMRS.
  • the time domain symbol carrying the DMRS in the first transmission opportunity is also used to carry data information.
  • the length of the time domain resource not used for carrying DMRS in one transmission opportunity is equal to the length of the time domain resource not used for carrying DMRS in the second transmission opportunity.
  • the number of effective REs included in the first transmission opportunity is greater than the number of effective REs included in the second transmission opportunity, including:
  • the length of the time domain resource corresponding to the first transmission opportunity is greater than the length of the time domain resource corresponding to the second transmission opportunity.
  • the time-frequency resource for transmitting the first data packet notified by the control information includes a time-frequency resource that crosses a slot boundary in the time domain;
  • the first transmission opportunity and the second transmission opportunity are two adjacent transmission opportunities in the K transmission opportunities;
  • the first transmission opportunity corresponds to the time-frequency resource located before the time slot boundary among the time-frequency resources across the slot boundary
  • the second transmission opportunity corresponds to the time-frequency resource across the slot boundary.
  • a time-frequency resource located behind the time slot boundary; or, the first transmission opportunity corresponds to a time-frequency resource located behind the time slot boundary among the time-frequency resources across the time slot boundary
  • the second transmission The opportunity corresponds to the time-frequency resource located before the time-slot boundary among the time-frequency resources across the time-slot boundary.
  • the apparatus 1200 may also be the network device in any of the foregoing embodiments, or may also be a semiconductor chip provided in the network device.
  • the processing unit 1202 may support the apparatus 1200 to perform the actions of the network device in the above method examples.
  • the processing unit 1202 mainly performs the internal actions of the network device in the method example, and the communication unit 1203 may support communication between the apparatus 1200 and the terminal device.
  • the communication unit 1202 is used to perform step 601 (or step 601a or step 601b) and step 605 (or step 605b) in FIG. 6.
  • the communication unit (which may be a sending unit) is used to send control information to the terminal device, and the control information is used to notify the information of the time-frequency resource for transmitting the first data packet;
  • the time-frequency resource includes K transmission opportunities, each of the K transmission opportunities is used to perform a data transmission on the first data packet, and the first transmission opportunity of the K transmission opportunities includes
  • the number of effective resource particle REs is greater than the number of effective REs included in the second transmission opportunity of the K transmission opportunities, K is an integer greater than 1;
  • the communication unit (specifically a receiving unit) is used to At least one of the K transmission opportunities receives the first data packet sent by the terminal device;
  • the TBS corresponding to the first data packet is determined according to the number of target effective resource particle REs, and the target effective RE
  • the number is the average number of effective REs included in each of the K transmission opportunities, or the target effective RE number is the number of effective REs included in the target transmission opportunity of the K transmission opportunities.
  • the target transmission opportunity is the second transmission opportunity.
  • the second transmission opportunity is the transmission opportunity with the smallest number of effective REs included in the K transmission opportunities; or, the second transmission opportunity is included in the K transmission opportunities The transmission opportunity with the smallest number of time-domain symbols.
  • the target transmission opportunity is the first transmission opportunity.
  • the first transmission opportunity is the transmission opportunity with the largest number of effective REs included in the K transmission opportunities; or, the first transmission opportunity is included in the K transmission opportunities The transmission opportunity with the largest number of time-domain symbols.
  • the target transmission opportunity is the second transmission opportunity
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • the target transmission opportunity Is the second transmission opportunity
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity
  • the correction code rate is carried by the first reference TBS on the second transmission opportunity and is modulating The corresponding code rate under the order
  • the control information is also used to notify the modulation order of transmitting the first data packet, and the modified modulation order is higher than the modulation order notified by the control information.
  • the target transmission opportunity is the first transmission opportunity
  • the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • the target transmission The opportunity is the first transmission opportunity; wherein, the first reference TBS is a TBS calculated according to the number of valid REs included in the first transmission opportunity, and the modified code rate is carried on the first reference TBS by all The second transmission opportunity and the corresponding code rate under the modified modulation order, the control information is also used to notify the modulation order of transmitting the first data packet, the modified modulation order is higher than the control information The notified modulation order;
  • the communication unit (specifically, a receiving unit) is specifically configured to: receive, on the second transmission opportunity, the first data packet sent by the terminal device using the modified modulation order and the modified code rate.
  • the terminal device sends the The transmission opportunity of the first data packet does not include the second transmission opportunity; wherein, the first reference TBS is a TBS calculated according to the number of valid REs included in the first transmission opportunity.
  • the communication unit (specifically, a receiving unit) is specifically used to:
  • the first reference rate carried by the first reference TBS on the second transmission opportunity is greater than the code rate threshold, then receive the system information of the first data packet sent by the terminal device on the second transmission opportunity Part of the information in; the first reference TBS is a TBS calculated according to the number of effective REs included in the first transmission opportunity.
  • the number of effective REs included in the first transmission opportunity is greater than the number of effective REs included in the second transmission opportunity, including:
  • the first transmission opportunity is a transmission opportunity that does not include a demodulation reference signal DMRS
  • the second transmission opportunity is a transmission opportunity that includes DMRS
  • the first transmission opportunity is a transmission opportunity that includes DMRS
  • the second transmission opportunity is a transmission opportunity that does not include DMRS.
  • the time domain symbol carrying the DMRS in the first transmission opportunity is also used to carry data information.
  • the length of the time domain resource not used for carrying DMRS in one transmission opportunity is equal to the length of the time domain resource not used for carrying DMRS in the second transmission opportunity.
  • the number of effective REs included in the first transmission opportunity is greater than the number of effective REs included in the second transmission opportunity, including:
  • the length of the time domain resource corresponding to the first transmission opportunity is greater than the length of the time domain resource corresponding to the second transmission opportunity.
  • the time-frequency resource for transmitting the first data packet notified by the control information includes a time-frequency resource that crosses a slot boundary in the time domain;
  • the first transmission opportunity and the second transmission opportunity are two adjacent transmission opportunities in the K transmission opportunities;
  • the first transmission opportunity corresponds to the time-frequency resource located before the time slot boundary among the time-frequency resources across the slot boundary
  • the second transmission opportunity corresponds to the time-frequency resource across the slot boundary.
  • a time-frequency resource located behind the time slot boundary; or, the first transmission opportunity corresponds to a time-frequency resource located behind the time slot boundary among the time-frequency resources across the time slot boundary
  • the second transmission The opportunity corresponds to the time-frequency resource located before the time-slot boundary among the time-frequency resources across the time-slot boundary.
  • modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • the functional modules in the embodiments of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • the integrated module is implemented in the form of a software function module and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present application may essentially be a part that contributes to the existing technology or all or part of the technical solutions may be embodied in the form of software products, and the computer software products are stored in a storage
  • the medium includes several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage medium may be various media that can store program codes, such as a memory.
  • the apparatus 1300 includes a processor 1310, a memory 1320, and a transceiver 1330.
  • the device 1300 can implement the functions of the device 1200 illustrated in FIG. 12, specifically, the functions of the communication unit 1203 illustrated in FIG. 12 can be implemented by the transceiver, and the function of the processing unit 1202 can be implemented by the processor
  • the function of the storage unit 1201 may be implemented by a memory.
  • the apparatus 1300 may be the network device in the method embodiment, or may be the terminal device in the above method embodiment, and the apparatus 1300 may be used to implement the network device described in the above method embodiment. Or the method of the terminal device, for details, please refer to the description in the above method embodiments.
  • FIG. 14 is a schematic structural diagram of a terminal device 1400 provided by an embodiment of the present application.
  • the terminal device 1400 includes a processor, a memory, a control circuit, an antenna, and input/output devices.
  • the terminal device 1400 can be applied to the system architecture shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiments.
  • the processor is mainly used to process the communication protocol and communication data, and control the entire terminal device, execute a software program, and process the data of the software program, for example, to control the terminal device to perform the actions described in the foregoing method embodiments.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal after radio frequency processing, and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 14 shows only one memory and processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc. This embodiment of the present application does not limit this.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 14 integrates the functions of the baseband processor and the central processor.
  • the baseband processor and the central processor can also be independent processors, which are interconnected through technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processor can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiver function can be regarded as the communication unit of the device 1200, and the processor with the processing function It is regarded as the processing unit of the device 1200.
  • the terminal device 1400 includes a communication unit 1401 and a processing unit 1402.
  • the communication unit 1401 may also be called a transceiver, a transceiver, a transceiver device, or the like.
  • the device used to implement the receiving function in the communication unit 1401 may be regarded as the receiving unit, and the device used to implement the sending function in the communication unit 1401 may be regarded as the sending unit, that is, the communication unit 1401 includes the receiving unit and the sending unit.
  • the receiving unit may also be referred to as a receiver, receiver, receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, transmitter, or transmitting circuit, etc.
  • the terminal device 1400 shown in FIG. 14 can implement various processes related to the terminal device in the method embodiment of FIG. 6.
  • the operations and/or functions of each module in the terminal device 1400 are respectively to implement the corresponding processes in the above method embodiments.
  • FIG. 15 is a schematic structural diagram of a network device according to an embodiment of the present application, for example, it may be a schematic structural diagram of a base station. As shown in FIG. 15, the network device 1500 can be applied to the system architecture shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiments.
  • the network device 1500 may include one or more radio frequency units, such as a remote radio unit (RRU) 1501 and one or more baseband units (BBU) (also called a digital unit (DU) )) 1502.
  • RRU remote radio unit
  • BBU baseband units
  • DU digital unit
  • the RRU 1501 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 1511 and a radio frequency unit 1512.
  • the RRU 1501 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals, for example, for sending control information in the above method embodiments.
  • the RRU 1501 and the BBU 1502 may be physically set together, or may be physically separated, that is, distributed base stations.
  • the BBU 1502 is the control center of the base station, and can also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU (processing unit) 1502 may be used to control the base station to perform the operation flow on the network device in the above method embodiments.
  • the BBU 1502 may be composed of one or more boards, and the multiple boards may jointly support a wireless access network (such as an LTE network) with a single access indication, or may support different access standards respectively. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1502 also includes a memory 1521 and a processor 1522.
  • the memory 1521 is used to store necessary instructions and data.
  • the processor 1522 is used to control the base station to perform necessary actions, for example, to control the base station to perform the operation flow on the network device in the foregoing method embodiment.
  • the memory 1521 and the processor 1522 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, each board can also be provided with necessary circuits.
  • the network device 1500 shown in FIG. 15 can implement various processes related to the network device in FIG. 6.
  • the operations and/or functions of each module in the network device 1500 are respectively set to implement the corresponding processes in the above method embodiments.
  • each step in the method provided in this embodiment may be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments may be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the aforementioned processor may be a general-purpose central processing unit (central processing unit, CPU), a general-purpose processor, digital signal processing (DSP), application specific integrated circuits (application specific integrated circuits, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof; it can also be a combination of computing functions, for example, including one or more microprocessor combinations, DSP and micro processing The combination of devices and so on.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory or storage unit in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (random access memory, RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct RAMbus RAM direct RAMbus RAM
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a DVD; or a semiconductor medium, such as a solid state disk (SSD).
  • the various illustrative logic units and circuits described in the embodiments of the present application may be implemented by a general-purpose processor, a digital signal processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic devices. Discrete gate or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration achieve.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of both.
  • the software unit may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium may be provided in the ASIC, and the ASIC may be provided in the terminal device.
  • the processor and the storage medium may also be provided in different components in the terminal device.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to generate computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种确定传输块大小的方法及装置。其中方法包括:终端设备根据网络设备发送的控制信息,确定用于传输第一数据包的K个传输机会,K个传输机会中的至少两个传输机会包括的有效RE数目不同;进而可以根据目标有效RE数目,确定第一数据包对应的TBS;目标有效RE数目可以为K个传输机会的平均有效RE数目,或者也可以为K个传输机会中的目标传输机会包括的有效RE数目。如此通过引入目标有效RE数目,使得终端设备可以根据目标有效RE数目确定TBS,比如终端设备可以通过平均有效RE数目确定TBS,从而避免根据较大的有效RE数目确定的TBS过大或根据较小的有效RE数目确定的TBS过小。

Description

一种确定传输块大小的方法及装置
本申请要求于2019年4月30日提交中国国家知识产权局、申请号为201910364011.0、发明名称为“一种确定传输块大小的方法及装置”和2019年1月11日提交中国国家知识产权局、申请号为201910028383.6、发明名称为“一种确定传输块大小的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种确定传输块大小的方法及装置。
背景技术
未来依托于无线通信的新业务需求中,增强现实/虚拟现实、车联网、远程医疗、工业控制、电力传输通信等,相比于传统的视频传输等移动宽带(mobile broadband,MBB)业务来说,对于传输时延和传输可靠性提出了更高的需求。为了更好地支持这些低时延、高可靠的业务类型,第5代(the 5 th generation,5G)新空口(new radio,NR)***引入超高可靠性超短时延通信(ultra-reliable and low-latency communications,URLLC)场景。
进一步地,5G NR***的物理层上行共享信道(physical uplink shared channel,PUSCH)还引入了多次重复机制,以增强传输可靠性。比如,PUSCH的多次重复机制可以是指将同一个数据包在K个PUSCH上重复K次发送,K为正整数,K个PUSCH中的每个PUSCH用于对该数据包进行一次数据传输。此种情况下,如何确定数据包对应的传输块大小(transport block size,TBS)需要进一步研究。
发明内容
有鉴于此,本申请提供了一种确定传输块大小的方法及装置,用于实现在多个传输机会中存在至少一个传输机会包括的有效RE数目与其它传输机会不同的情况下,确定数据包对应的TBS。
第一方面,本申请实施例提供了一种确定TBS的方法,包括:
接收来自网络设备的控制信息,所述控制信息用于通知传输第一数据包的时频资源的信息;所述时频资源中包括K个传输机会,所述K个传输机会中的每个传输机会用于对所述第一数据包进行一次数据传输,所述K个传输机会中的第一传输机会包括的有效资源粒子RE数目大于所述K个传输机会中的第二传输机会包括的有效RE数目,K为大于1的整数;
根据目标有效资源粒子RE数目,确定所述第一数据包对应的TBS;所述目标有效RE数目为所述K个传输机会中每个传输机会所包括的平均有效RE数目,或者,所述目标有效RE数目为所述K个传输机会中的目标传输机会包括的有效RE数目。
如此,本申请的实施例中,通过引入目标有效RE数目,使得终端设备可以根据目标有效RE数目确定第一数据包对应的TBS,比如终端设备可以通过平均有效RE数目确定TBS,从而避免根据较大的有效RE数目确定的TBS过大,或者根据较小的有效RE数目确定的TBS过小。
在一种可能的设计中,所述目标传输机会为所述第二传输机会。
如此,使用有效RE数目较少的第二传输机会作为目标传输机会,能够避免存在有些传输机会的码率过高导致性能受损的问题。
在一种可能的设计中,所述第二传输机会为所述K个传输机会中包括的有效RE数目最小的传输机会;或者,所述第二传输机会为所述K个传输机会中包括的时域符号数目最小的传输机会。
在一种可能的设计中,所述目标传输机会为所述第一传输机会。
如此,使用有效RE数目多的第一传输机会作为目标传输机会,能够达到提升传输效率的目的。
在一种可能的设计中,所述第一传输机会为所述K个传输机会中包括的有效RE数目最大的传输机会;或者,所述第一传输机会为所述K个传输机会中包括的时域符号数目最大的传输机会。
在一种可能的设计中,所述控制信息还用于通知所述K个传输机会中的一个传输机会的时域资源长度,所述目标传输机会对应的时域资源长度为所述控制信息通知的所述时域资源长度。
也就是说,终端设备可以根据K个传输机会中,对应于控制信息所通知的时域资源长度的传输机会中包括的有效RE数目计算TBS,而不论该K个传输机会中是否包括其它时域资源更长或更短的传输机会。采用这种方法,网络设备可以通过调整通知的一个传输机会的时域资源长度来达到调整TBS的目的,防止计算得到的TBS过大或过小。
在一种可能的设计中,所述第二传输机会对应的时域资源长度对应于所述控制信息通知的所述时域资源长度。
在一种可能的设计中,所述第一传输机会对应的时域资源长度对应于所述控制信息通知的所述时域资源长度。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则所述目标传输机会为所述第二传输机会;
其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
如此,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,说明根据第一传输机会计算得到的TBS过大以至于无法承载到第二传输机会上,或者会导致第二传输机会的传输性能恶化,此种情形下,可以确定目标传输机会为所述第二传输机会,即使用第二传输机会来计算TBS,从而确保可靠性不受损。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率大于所述码率门限,则所述目标传输机会为所述第二传输机会;
其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述修正码率为所述第一参考TBS承载于所述第二传输机会且在修正调制阶数下所对应的码率;所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数。
如此,终端设备自适应地对第二传输机会调高调制阶数后,修正码率仍大于码率门限,说明根据第一传输机会计算得到的TBS仍无法承载到第二传输机会上,此种情形下, 可以确定目标传输机会为所述第二传输机会,即使用第二传输机会来计算TBS,从而确保可靠性不受损。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率不大于码率门限,则所述目标传输机会为所述第一传输机会;
其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
如此,若第一参考TBS承载于所述第二传输机会所对应的第一码率不大于码率门限,说明根据第一传输机会计算得到的TBS适中,可以使得根据第一传输机会计算出来的TBS承载到第二传输机会上所得到的码率虽然大于该TBS承载到第一传输机会的码率,但仍然不至于过大且有较大概率被网络设备正确解码,这种情况下,使用第一传输机会来计算TBS可以在可靠性不受过大损失的情况下提高传输效率。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率不大于所述码率门限,则所述目标传输机会为所述第一传输机会;
其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述修正码率为所述第一参考TBS承载于所述第二传输机会且在修正调制阶数下所对应的码率,所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数;
所述方法还包括:在所述第二传输机会上使用所述修正调制阶数和所述修正码率发送所述第一数据包。
如此,终端设备自适应地对第二传输机会调高调制阶数以降低第二传输机会的码率,从而使得较大的TBS也可以承载在第二传输机会上。
在一种可能的设计中,所述方法还包括:若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则在所述第二传输机会上使用所述修正调制阶数和所述修正码率发送所述第一数据包,其中,所述修正码率为所述第一数据包对应的TBS承载于所述第二传输机会且在修正调制阶数下所对应的码率,所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数。
在一种可能的设计中,所述方法还包括:
若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则发送所述第一数据包时丢弃所述第二传输机会;其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
由于终端设备在第二传输机会上发送第一数据包,性能比较差,因此可以将第二传输机会丢弃,节省出来第二传输机会的时频资源,用于网络设备调度或指示其它终端设备发送信息,从而提高资源利用率。
在一种可能的设计中,所述方法还包括:
若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率大于所述码率门限,则在发送所述第一数据包时丢弃所述第二传输机会;其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述修正 码率为所述第一参考TBS承载于所述第二传输机会且在修正调制阶数下所对应的码率;所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数。
在一种可能的设计中,所述方法还包括:
若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则所述第二传输机会上发送所述第一数据包的***信息中的一部分信息;所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
如此,在第一码率超过码率门限的情况下,终端设备仍然可以将第一数据包承载到第二传输机会上,以确保传输性能。但由于第二传输机会的有效RE数目无法承载全部的第一数据包的编码后信息,因此终端设备可以在将第一数据包的信息映射到第二传输机会时丢弃一部分信息。
在一种可能的设计中,所述方法还包括:
若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率大于所述码率门限,则在所述第二传输机会上使用修正调制阶数和所述修正码率发送所述第一数据包的***信息中的一部分信息;其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述修正码率为所述第一参考TBS承载于所述第二传输机会且在所述修正调制阶数下所对应的码率;所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数。
在一种可能的设计中,所述第一传输机会包括的有效RE数目大于所述第二传输机会包括的有效RE数目,包括:
所述第一传输机会为不包括解调参考信号DMRS的传输机会,所述第二传输机会为包括DMRS的传输机会;或者,
所述第一传输机会为包括DMRS的传输机会,所述第二传输机会为不包括DMRS的传输机会,所述第一传输机会中承载DMRS的时域符号还用于承载数据信息,所述第一传输机会中不用于承载DMRS的时域资源长度等于所述第二传输机会中不用于承载DMRS的时域资源长度。
在一种可能的设计中,所述第一传输机会包括的有效RE数目大于所述第二传输机会包括的有效RE数目,包括:
所述第一传输机会所对应的时域资源长度大于所述第二传输机会所对应的时域资源长度。
在一种可能的设计中,所述控制信息还用于通知所述K个传输机会中的一个传输机会的时域资源长度;
所述第二传输机会对应的时域资源长度为所述控制信息通知的所述时域资源长度,所述第一传输机会为所述K个传输机会在第一时隙中的最后一个传输机会,所述第一传输机会的起始时刻与所述第一时隙的结束边界之间的时间间隔长于所述控制信息通知的所述时域资源长度;或者,
所述第一传输机会对应的时域资源长度为所述控制信息通知的所述时域资源长度,所述第二传输机会为所述K个传输机会在第一时隙中的最后一个传输机会,所述第二传 输机会的起始时刻与所述第一时隙的结束边界之间的时间间隔短于所述控制信息通知的所述时域资源长度。
在一种可能的设计中,所述控制信息通知的传输所述第一数据包的时频资源包括在时域上跨时隙边界的时频资源;
所述第一传输机会和所述第二传输机会为所述K个传输机会中前后相邻的两个传输机会;
所述第一传输机会对应于所述跨时隙边界的时频资源中位于所述时隙边界前的时频资源,所述第二传输机会对应于所述跨时隙边界的时频资源中位于所述时隙边界后的时频资源;或者,所述第一传输机会对应于所述跨时隙边界的时频资源中位于所述时隙边界后的时频资源,所述第二传输机会对应于所述跨时隙边界的时频资源中位于所述时隙边界前的时频资源。
在一种可能的设计中,所述控制信息还用于通知所述K个传输机会中的一个传输机会的时域资源长度,所述第一传输机会和所述第二传输机会的总时域资源长度对应于所述控制信息通知的所述一个传输机会的时域资源长度;或者,所述控制信息还用于通知所述K个传输机会的总时域资源长度,所述第一传输机会和所述第二传输机会的时域资源长度之和对应于所述控制信息通知的所述K个传输机会的总时域资源长度。
在一种可能的设计中,所述第一传输机会的结束时刻等于所述时隙边界等于所述第二传输机会的起始时刻,或者,所述第二传输机会的结束时刻等于所述时隙边界等于所述第一传输机会的起始时刻。
在一种可能的设计中,若第一参考TBS承载于第一候选传输机会所对应的码率不大于码率门限,则所述第二传输机会为所述第一候选传输机会;其中,所述第一传输机会对应的时域资源长度为所述控制信息通知的所述时域资源长度,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述第一候选传输机会的起始时刻与所述第一时隙的结束边界之间的时间间隔短于所述控制信息通知的所述时域资源长度,所述第一时隙为所述第一候选传输机会所在的时隙;或者,
若第二参考TBS承载于第一候选传输机会所对应的码率大于码率门限,则所述第一传输机会为第二候选传输机会,所述第二传输机会对应的时域资源长度为所述控制信息通知的所述时域资源长度;其中,所述第二参考TBS为根据所述第二传输机会包括的有效RE数目计算得到的TBS,所述第一候选传输机会的起始时刻与所述第一时隙的结束边界之间的时间间隔短于所述控制信息通知的所述时域资源长度,所述第一时隙为所述第一候选传输机会所在的时隙,所述第二候选传输机会对应的时频资源包括所述第一候选传输机会对应的时频资源,所述第二候选传输机会的起始时刻与所述第一时隙的结束边界之间的时间间隔长于所述控制信息通知的所述时域资源长度。
第二方面,本申请实施例提供一种确定传输块大小TBS的方法,所述方法包括:
向终端设备发送控制信息,所述控制信息用于通知传输第一数据包的时频资源的信息;所述时频资源中包括K个传输机会,所述K个传输机会中的每个传输机会用于对所述第一数据包进行一次数据传输,所述K个传输机会中的第一传输机会包括的有效资源粒子RE数目大于所述K个传输机会中的第二传输机会包括的有效RE数目,K为大于1的整数;
在所述K个传输机会中的至少一个传输机会接收所述终端设备发送的所述第一数据包;所述第一数据包对应的TBS是根据目标有效资源粒子RE数目确定的,所述目标有效RE数目为所述K个传输机会中每个传输机会所包括的平均有效RE数目,或者,所述目标有效RE数目为所述K个传输机会中的目标传输机会包括的有效RE数目。
在一种可能的设计中,所述目标传输机会为所述第二传输机会。
在一种可能的设计中,所述第二传输机会为所述K个传输机会中包括的有效RE数目最小的传输机会;或者,所述第二传输机会为所述K个传输机会中包括的时域符号数目最小的传输机会。
在一种可能的设计中,所述目标传输机会为所述第一传输机会。
在一种可能的设计中,所述第一传输机会为所述K个传输机会中包括的有效RE数目最大的传输机会;或者,所述第一传输机会为所述K个传输机会中包括的时域符号数目最大的传输机会。
在一种可能的设计中,所述控制信息还用于通知所述K个传输机会中的一个传输机会的时域资源长度,所述目标传输机会对应的时域资源长度为所述控制信息通知的所述时域资源长度。
在一种可能的设计中,所述第二传输机会对应的时域资源长度为所述控制信息通知的所述时域资源长度。
在一种可能的设计中,所述第一传输机会对应的时域资源长度为所述控制信息通知的所述时域资源长度。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则所述目标传输机会为所述第二传输机会;
其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率大于所述码率门限,则所述目标传输机会为所述第二传输机会;
其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述修正码率为所述第一参考TBS承载于所述第二传输机会且在修正调制阶数下所对应的码率;所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率不大于码率门限,则所述目标传输机会为所述第一传输机会;
其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率不大于所述码率门限,则所述目标传输机会为所述第一传输机会;其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述修正码率为所述第一参考TBS承载于所述第二传输机会且在修正调制阶数下所对应的码率,所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调 制阶数高于所述控制信息通知的所述调制阶数;
所述方法还包括:在所述第二传输机会上接收所述终端设备使用所述修正调制阶数和所述修正码率发送的所述第一数据包。
在一种可能的设计中,所述方法还包括:若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则在所述第二传输机会上接收所述终端设备使用修正调制阶数和修正码率发送的所述第一数据包,其中,所述修正码率为所述第一数据包对应的TBS承载于所述第二传输机会且在修正调制阶数下所对应的码率,所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数。
在一种可能的设计中,在所述K个传输机会中的至少一个传输机会接收所述终端设备发送的所述第一数据包,包括:
若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则在所述至少一个传输机会接收所述终端设备发送的所述第一数据包,所述至少一个传输机会为所K个传输机会中所述终端设备用于发送所述第一数据包的传输机会,所述至少一个传输机会不包括所述第二传输机会;其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。或者,描述为:若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则在所述K个传输机会中,所述终端设备发送所述第一数据包的传输机会中不包括所述第二传输机会;其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
在一种可能的设计中,在所述K个传输机会中的至少一个传输机会接收所述终端设备发送的所述第一数据包,包括:
若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率大于所述码率门限,则在所述至少一个传输机会接收所述终端设备发送的所述第一数据包,所述至少一个传输机会为所K个传输机会中所述终端设备发送所述第一数据包的传输机会,所述至少一个传输机会不包括所述第二传输机会;其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述修正码率为所述第一参考TBS承载于所述第二传输机会且在修正调制阶数下所对应的码率;所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数。
在一种可能的设计中,在所述K个传输机会中的至少一个传输机会接收所述终端设备发送的所述第一数据包,包括:
若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则在所述第二传输机会上接收所述终端设备发送的所述第一数据包的***信息中的一部分信息;所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
在一种可能的设计中,在所述K个传输机会中的至少一个传输机会接收所述终端设备发送的所述第一数据包,包括:
若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率大于所述码率门限,则在所述第二传输机会上接收所述终端设备使用修正调制阶数和所述修正码率发送的所述第一数据包的***信息中的一部分信息;其中,所述第一参 考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述修正码率为所述第一参考TBS承载于所述第二传输机会且在所述修正调制阶数下所对应的码率;所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数。
在一种可能的设计中,所述第一传输机会包括的有效RE数目大于所述第二传输机会包括的有效RE数目,包括:
所述第一传输机会为不包括解调参考信号DMRS的传输机会,所述第二传输机会为包括DMRS的传输机会;或者,
所述第一传输机会为包括DMRS的传输机会,所述第二传输机会为不包括DMRS的传输机会,所述第一传输机会中承载DMRS的时域符号还用于承载数据信息,所述第一传输机会中不用于承载DMRS的时域资源长度等于所述第二传输机会中不用于承载DMRS的时域资源长度。
在一种可能的设计中,所述第一传输机会包括的有效RE数目大于所述第二传输机会包括的有效RE数目,包括:
所述第一传输机会所对应的时域资源长度大于所述第二传输机会所对应的时域资源长度。
在一种可能的设计中,所述控制信息还用于通知所述K个传输机会中的一个传输机会的时域资源长度;
所述第二传输机会对应的时域资源长度为所述控制信息通知的所述时域资源长度,所述第一传输机会为所述K个传输机会在第一时隙中的最后一个传输机会,所述第一传输机会的起始时刻与所述第一时隙的结束边界之间的时间间隔长于所述控制信息通知的所述时域资源长度;或者,
所述第一传输机会对应的时域资源长度为所述控制信息通知的所述时域资源长度,所述第二传输机会为所述K个传输机会在第一时隙中的最后一个传输机会,所述第二传输机会的起始时刻与所述第一时隙的结束边界之间的时间间隔短于所述控制信息通知的所述时域资源长度。
在一种可能的设计中,所述控制信息通知的传输所述第一数据包的时频资源包括在时域上跨时隙边界的时频资源;
所述第一传输机会和所述第二传输机会为所述K个传输机会中前后相邻的两个传输机会;
所述第一传输机会对应于所述跨时隙边界的时频资源中位于所述时隙边界前的时频资源,所述第二传输机会对应于所述跨时隙边界的时频资源中位于所述时隙边界后的时频资源;或者,所述第一传输机会对应于所述跨时隙边界的时频资源中位于所述时隙边界后的时频资源,所述第二传输机会对应于所述跨时隙边界的时频资源中位于所述时隙边界前的时频资源。
在一种可能的设计中,所述控制信息还用于通知所述K个传输机会中的一个传输机会的时域资源长度,所述第一传输机会和所述第二传输机会的总时域资源长度对应于所述控制信息通知的所述一个传输机会的时域资源长度;或者,所述控制信息还用于通知所述K个传输机会的总时域资源长度,所述第一传输机会和所述第二传输机会的时域资 源长度之和对应于所述控制信息通知的所述K个传输机会的总时域资源长度。
在一种可能的设计中,所述第一传输机会的结束时刻等于所述时隙边界等于所述第二传输机会的起始时刻,或者,所述第二传输机会的结束时刻等于所述时隙边界等于所述第一传输机会的起始时刻。
在一种可能的设计中,若第一参考TBS承载于第一候选传输机会所对应的码率不大于码率门限,则所述第二传输机会为所述第一候选传输机会;其中,所述第一传输机会对应的时域资源长度为所述控制信息通知的所述时域资源长度,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述第一候选传输机会的起始时刻与所述第一时隙的结束边界之间的时间间隔短于所述控制信息通知的所述时域资源长度,所述第一时隙为所述第一候选传输机会所在的时隙;或者,
若第二参考TBS承载于第一候选传输机会所对应的码率大于码率门限,则所述第一传输机会为第二候选传输机会,所述第二传输机会对应的时域资源长度为所述控制信息通知的所述时域资源长度;其中,所述第二参考TBS为根据所述第二传输机会包括的有效RE数目计算得到的TBS,所述第一候选传输机会的起始时刻与所述第一时隙的结束边界之间的时间间隔短于所述控制信息通知的所述时域资源长度,所述第一时隙为所述第一候选传输机会所在的时隙,所述第二候选传输机会对应的时频资源包括所述第一候选传输机会对应的时频资源,所述第二候选传输机会的起始时刻与所述第一时隙的结束边界之间的时间间隔长于所述控制信息通知的所述时域资源长度。
第三方面,本申请实施例提供一种装置,该装置可以是网络设备或终端设备,或者也可以是设置在网络设备或终端设备中的半导体芯片。该装置具有实现上述第一方面或第二方面的各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第四方面,本申请实施例一种装置,包括:处理器和存储器;所述处理器用于执行存储在所述存储器上的指令,当所述指令被执行时,使得该装置执行如上述第一方面或第一方面的任一种可能的设计中的方法。
第五方面,本申请实施例提供一种终端设备,包括第四方面所述的装置。
第六方面,本申请实施例一种装置,包括:处理器和存储器;所述处理器用于执行存储在所述存储器上的指令,当所述指令被执行时,使得该装置执行如上述第二方面或第二方面的任一种可能的设计中的方法。
第七方面,本申请实施例提供一种网络设备,包括第六方面所述的装置。
第八方面,本申请实施例还提供一种计算机可读存储介质,包括指令,当所述指令被执行时,实现上述各方面或各方面的任一种可能的设计中的方法。
第九方面,本申请实施例还提供一种计算机程序产品,包括计算机程序或指令,当所述计算机程序或指令被执行时,实现上述各方面或各方面的任一种可能的设计中的方法。
附图说明
图1为本申请实施例适用的一种可能的通信***的架构示意图;
图2为本申请实施例提供的PUSCH的多次重复机制可能的实现方式示意图;
图3为本申请实施例提供的场景1示意图;
图4为本申请实施例提供的场景2示意图;
图5为本申请实施例提供的场景3示意图;
图6为本申请实施例提供的一种确定TBS的方法所对应的流程示意图;
图7为本申请实施例提供的确定平均有效RE数目的示意图;
图8为本申请实施例提供的确定是否丢弃第二传输机会的示意图;
图9为本申请实施例提供的确定是否在第二传输机会上发送第一数据包的一部分信息的示意图;
图10为本申请实施例提供的确定将第一传输机会或第二传输机会作为目标传输机会的示意图;
图11为本申请实施例提供的落单的符号单独组成短传输机会或与前一段时域资源组成一个长传输机会的示意图;
图12为本申请实施例中所涉及的装置的可能的示例性框图;
图13为本申请实施例提供的一种通信装置示意图;
图14为本申请实施例提供的一种终端设备的结构示意图;
图15为本申请实施例提供的一种网络设备的结构示意图;
图16为本申请实施例提供的传输机会发生碰撞的示意图;
图17为本申请实施例提供的传输机会被非上行符号切分的示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
首先,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)终端设备:是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、移动台和远方站等,本申请的实施例对终端设备所采用的具体技术、设备形态以及名称不做限定。
(2)网络设备是终端设备通过无线方式接入到该移动通信***中的接入设备,可以是基站NodeB、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信***中的下一代基站(next generation NodeB,gNB)、未来移动通信***中的基站或无线保真(wireless-fidelity,Wi-Fi)***中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
(3)本申请实施例中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也不表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A 和B,单独存在B这三种情况。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
图1为本申请实施例适用的一种可能的通信***的架构示意图。如图1所示的通信***包括网络设备和终端设备。应理解,图1仅为通信***的一个架构示意图,本申请实施例中对通信***中网络设备的数量、终端设备的数量不作限定,而且本申请实施例所适用的通信***中除了包括网络设备和终端设备以外,还可以包括其它设备,如核心网设备、无线中继设备和无线回传设备等,对此本申请实施例也不作限定。以及,本申请实施例中的网络设备可以将所有的功能集成在一个独立的物理设备,也可以将功能分布在多个独立的物理设备上,对此本申请实施例也不作限定。此外,本申请实施例中的终端设备可以通过无线方式与网络设备连接。
上述架构适用的通信***可以采用各种无线接入技术(radio access technology,RAT),例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)等,本申请对通信***所采用的RAT不做限定。在本申请中,术语“***”可以和“网络”相互替换。根据不同网络的容量、速率、时延、所采用的RAT等因素可以将网络分为2G(generation)网络、3G网络、4G网络或者未来演进网络,如5G网络。典型的4G网络包括长期演进(long term evolution,LTE)网络,典型的5G网络包括NR网络。其中,LTE网络有时也可以称为演进型通用陆地无线接入网(evolved universal terrestrial radio access network,E-UTRAN)。
本申请实施例描述的***架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信***架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以5G NR***为例,在5G NR***中,资源粒子(resource element,RE)为用于数据传输的最小资源单位,对应时域上的1个时域符号和频域上的1个子载波;物理资源块(physical resource block,PRB)为用于资源调度的基本单位,对应时域上多个连续的时域符号和频域上多个连续的子载波,或者,对应频域上多个连续的子载波。其中,时域符号可以是指正交频分复用(orthogonal frequency division multiplexing,OFDM)符号或SC-FDMA符号。传输时间间隔(transmission time interval,TTI)为用于承载数据信息或业务信息的时域颗粒度;例如,一个数据包承载在由时域上的一个TTI以及频域上的至少一个物理资源块组成的时频资源上。其中,一个TTI的长度可以是S个时域符号,也可以小于S个时域符号;进一步地,长度为S个时域符号的TTI可以称为时隙(slot)或完整时隙(full slot),长度小于S个时域符号的TTI可以称为迷你时隙(mini-slot)或非时隙(non-slot)。其中,S=12或14,例如对于普通循环前缀(normal cyclic prefix,normal CP),S=14;对于扩展循环前缀(extended cyclic prefix,extended CP),S=12。
以5G NR***的上行传输为例,用于上行传输的上行信道包括PUSCH以及物理上行 控制信道(physical uplink control channel,PUCCH)。其中,PUSCH可以承载数据信息和/或上行控制信息(uplink control information,UCI),PUCCH可以承载UCI。其中,数据信息也可以称为上行共享信道(uplink shared channel,UL-SCH)信息。
进一步地,针对于上行数据传输,其可以包括基于调度的数据传输和免调度许可(grant free,GF)数据传输。其中,免调度许可也可以称为无调度许可(grant-less)或配置调度(configured grant,CG)或无调度许可传输(transmission without grant,TWG)。
在基于调度的数据传输中,终端设备若有业务到达并需要发送上行数据,则需要先在PUCCH上向网络设备发送调度请求(scheduling request,SR),相应地,网络设备接收到SR后向终端设备发送调度PUSCH的上行(uplink,UL)授权(grant),如此,终端设备接收到UL grant后,可在UL grant调度的时频资源上发送上行数据。可以看出,采用调度的方式具有可靠性高、信道使用效率高的优点。然而,终端设备需要发送SR并在接收到UL grant后方可发送上行数据,这一过程具有一定的时延,为了降低时延,5G NR***引入了GF数据传输。具体来说,网络设备可以预先配置和/或激活用于GF数据传输的时频资源(可以称为GF资源),如此,终端设备如果有业务到达,则可以不向网络设备发送SR,而直接在GF资源上发送上行数据,称之为以GF的方式进行数据传输。也就是说,在GF数据传输中,网络设备可以将用于GF传输的时频资源通过半静态方式分配给终端设备,终端设备不需要向网络设备发送SR,也不需要在发送上行数据之前接收网络设备发送的UL grant,而是直接在网络设备配置和/或激活的时频资源上发送上行数据。
用于GF传输的时频资源、调制编码方式、导频信息等信息,称之为GF参数,可以由网络设备通过高层信令配置,也可以由网络设备通过用于激活GF传输的UL grant,即半静态UL grant指示,也可以通过高层信令配置以及半静态UL grant指示的方法通知给终端设备。
为了增强传输可靠性,5G NR***的PUSCH引入多次重复机制,也就是说,将同一个数据包在多个PUSCH上进行重复传输,比如将同一个数据包在K个PUSCH上进行K次重复传输,其中,K次重复传输对应同一混合自动重传请求(hybrid automatic repeat request,HARQ)进程标识(identifier,ID),其中HARQ进程ID可以为HARQ进程号;K次重复传输可以为基于调度的数据传输,也可以为GF数据传输。
在一种可能的实现方式(简称为实现方式1)中,K次重复传输承载在K个full slot上,且K次重复传输中的每一次传输均承载在一个full slot上;其中,K个full slot在时域上连续或者说在时隙序号上连续。例如,图2中的(a)所示,K=4,终端设备连续的占用时隙n~n+3发送同一数据包的4次重复传输。在又一种可能的实现方式(简称为实现方式2)中,K次重复传输承载在K个full slot上,但K次重复传输中的任意一次传输均承载在mini slot上,也就是说任意相邻两次传输承载在不同full slot中的mini-slot上,相邻两个mini-slot时间上不连续。例如,图2中的(b)所示,K=4,终端设备连续的占用时隙n~n+3发送同一数据包的4次重复传输,每次重复传输承载在n~n+3中对应时隙中的mini slot(对应符号0~6)上。在又一种可能的实现方式(简称为实现方式3)中,K次重复传输中的任意一次传输承载在mini slot上,K次重复传输中有至少两个传输在一个full slot内,且相邻两个mini-slot时间上连续或者说背靠背(back-to-back)。例如,图2中的(c)所示, K=8,终端设备连续的占用时隙n~n+3发送同一数据包的8次重复传输,每次重复传输承载在n~n+3中对应时隙中的mini slot(对应符号0~6或符号7~13)上。
在5G NR***中,数据包对应的TBS是根据时频资源(例如被调度的PUSCH上总RE数目)、PUSCH上的开销、调制与编码策略(modulation and coding scheme,MCS)计算得到的。这里的PUSCH上的开销可以包括解调参考信号(demodulation reference signal,DMRS)所占RE的数目和其它开销所占RE的数目。在PUSCH的多次重复机制中,由于K个PUSCH用于对同一数据包进行重复传输,因此TBS需要保持相同。针对于实现方式1和实现方式2来说,K个PUSCH对应的时频资源是相同的,因此可以基于K个PUSCH中的任一个PUSCH对应的时频资源来计算数据包对应的TBS。具体来说,以K个PUSCH中的任一个PUSCH(比如PUSCH#1)为例,终端设备先确定PUSCH#1中每个PRB包含的有效RE数目,其中,有效RE数目是每个PRB中所包括的RE总数目减去DMRS所占RE的数目和其它开销所占RE的数目;然后,根据PUSCH#1所包括的PRB个数,确定PUSCH#1包括的有效RE数目;最后,根据网络设备配置或指示的MCS对应的调制方式、码率,确定PUSCH#1所承载的数据包所包括的***信息比特数目,即该数据包对应的TBS。
下面描述一种可能的计算数据包对应的TBS的方法,该方法可以包括步骤a至步骤c。
步骤a,确定PUSCH#1的一个PRB包含的有效RE数目。
具体来说,通过如下公式确定一个PRB包含的有效RE数目:
Figure PCTCN2020071862-appb-000001
其中,N' RE表示一个PRB包含的有效RE数目;
Figure PCTCN2020071862-appb-000002
表示一个PRB在频域上的子载波数目,具体可以为12;
Figure PCTCN2020071862-appb-000003
表示PUSCH#1被调度的符号个数;
Figure PCTCN2020071862-appb-000004
表示一个PRB中DMRS所占RE的数目(也可以称为DMRS开销);
Figure PCTCN2020071862-appb-000005
表示其它开销所占RE的数目,具体可以为高层参数PUSCH-ServingCellConfig中的xOverhead参数配置的每个PRB的开销所占RE的数目。
步骤b,计算PUSCH#1包括的有效RE数目。
具体来说,通过如下公式计算PUSCH#1包括的有效RE数目:
N RE=min(156,N' RE)·n PRB
其中,N RE表示PUSCH#1包括的有效RE数目,n PRB表示PUSCH#1包括的PRB数目。
步骤c,确定PUSCH#1所承载的数据包对应的TBS。
具体来说,通过如下公式确定参数N info
N info=N RE·R·Q m·υ
其中,Q m为调制阶数,R为码率,υ为层(layer)数,其中,Q m和R可以通过网络设备配置或指示的MCS的索引号查表得到。
具体来说,如果N info≤3824,则可以通过公式
Figure PCTCN2020071862-appb-000006
计算***信息比特的量化中间值,其中
Figure PCTCN2020071862-appb-000007
并通过查表得到不小于N' info最近的一个值作为数据包对应的TBS。
如果N info>3824,则可以通过公式
Figure PCTCN2020071862-appb-000008
计算***信息比特的量化中间值,其中
Figure PCTCN2020071862-appb-000009
如果码率R≤1/4,
Figure PCTCN2020071862-appb-000010
其中
Figure PCTCN2020071862-appb-000011
否则的话
Figure PCTCN2020071862-appb-000012
Figure PCTCN2020071862-appb-000013
由于在实现方式1和实现方式2中,每个时隙中只有一个PUSCH,用于重复传输数据包的K个PUSCH的时域资源在对应时隙中的位置、时长相同,且K个PUSCH的频域资源以及MCS都相同,因此,每个PUSCH的用于计算TBS的参数(包括有效RE数目、MCS)都相同,终端设备可以根据网络设备配置给单个PUSCH的时频资源、开销、MCS来计算得到数据包对应的TBS。
然而对于实现方式3来说,K个PUSCH存在至少两个PUSCH对应的时频资源不相同,例如不同PUSCH在对应时隙中的位置不同或者开销不同。下面具体描述实现方式3的三种可能的场景。
(1)场景1:DMRS共享场景
不同PUSCH具有不同的DMRS开销,具体来说,K个PUSCH中有些PUSCH包括DMRS,而有些PUSCH不包括DMRS,其中,不包括DMRS的PUSCH可以通过其前面包括DMRS的PUSCH中的DMRS估计的信道来进行解调。对于包括DMRS的PUSCH,承载DMRS的时域符号可能不承载数据信息,也可能是数据信息和DMRS以频分复用(frequency division multiplexing,FDM)的方式复用的。在这种场景下,包括DMRS的PUSCH中的有效RE数目可能多于不包括DMRS的PUSCH中的有效RE数目,或者包括DMRS的PUSCH中的有效RE数目也可能少于不包括DMRS的PUSCH中的有效RE数目。比如,若包括DMRS的PUSCH与不包括DMRS的PUSCH的时域资源长度相同(比如时域符号数目相同),则包括DMRS的PUSCH中的有效RE数目少于不包括DMRS的PUSCH中的有效RE数目;若包括DMRS的PUSCH中不用于承载DMRS的时域资源长度等于不包括DMRS的PUSCH的时域资源长度,且包括DMRS的PUSCH中承载DMRS的时域符号上DMRS与数据信息以FDM方式复用,则包括DMRS的PUSCH中的有效RE数目多于不包括DMRS的PUSCH中的有效RE数目。
举个例子,参见图3所示,一个时隙中包括多个PUSCH,其中一部分PUSCH包括DMRS,另一部分PUSCH不包括DMRS。对于图3中的(a)、(b),每个PUSCH都包 括两个时域符号,第1、第3、第5个PUSCH包括DMRS,第2、第4、第6个PUSCH不包括DMRS,因此,由于第1、3、5个PUSCH承担了DMRS开销,其有效RE数目少于第2、4、6个PUSCH。对于图3中的(c),每个PUSCH都包括两个非DMRS的时域符号,第1、第3、第5个PUSCH包括DMRS,第2、第4个PUSCH不包括DMRS,因此,由于第1、3、5个PUSCH中承载DMRS的符号上还承载了一部分数据信息,其有效RE数目多于第2、4个PUSCH。
(2)场景2:时隙边界前落单(orphan)的符号的利用
为了尽可能降低PUSCH的传输时延,K个PUSCH中第一个PUSCH(或者称为最早的PUSCH)的时域资源起点可以是灵活的,例如,最早的PUSCH的起始符号可以是时隙中的任意一个符号,如此一旦上行业务到达,终端设备可及时在PUSCH上发送上行业务信息。然而,考虑到多次重复传输的过程中,若K个PUSCH的总时域资源长度较长,或者最早的PUSCH的时域资源起点较晚,则可能出现K个PUSCH的总时域资源跨时隙边界的情况,在这种情况下,由于受限于最早的PUSCH的时域资源起点以及每个PUSCH的时域资源长度等长,很难将该时隙内的最后一个PUSCH的结束时刻与时隙结束边界对齐并保证该最后一个PUSCH的时域长度等于其他正常长度的PUSCH,也就是说,该时隙内的最后一个PUSCH结束时刻与该时隙结束边界之间可能存在一些落单的符号,无法组成正常长度的PUSCH,而形成一个小于正常PUSCH长度的缝隙(gap)。
为了尽可能地利用这些落单的符号,在一个示例中,可以将该缝隙用于传输一个短PUSCH,其时域资源长度小于其它正常长度的PUSCH,其中,其它正常长度的PUSCH是等长的。此时,该短PUSCH的有效RE数目少于正常长度的PUSCH。参见图4中的(a)所示,K个PUSCH的起始符号为时隙#1的符号#1,网络设备通知的一个PUSCH的时域资源长度为3个符号,则若第4个PUSCH也是3个符号,会在时隙边界前留一个2个符号的gap。为了利用资源,可以将这2个符号组成一个短PUSCH,即第5个PUSCH,第5个PUSCH的有效RE数目少于其它正常PUSCH。
本申请实施例中所涉及的“时隙#1”中的“#1”用于标识该时隙的索引号或序号为1,或者说,用于标识该时隙为第1个时隙;同样地,“符号#1”中的“#1”用于标识该符号的索引号或序号为1,或者说,用于标识该符号为第1个符号。上述仅是以“#1”为例进行描述,其它数字可以参照理解,不再赘述。可以理解的是,时隙的索引或序号可以从0开始编号也可以从1开始编号;符号的索引或序号可以从0开始编号也可以从1开始编号,本申请对此不作限定。
在又一个示例中,可以将该缝隙的前一个PUSCH拉长以填满该缝隙,组成一个长PUSCH,其时域资源长度大于其它正常长度的PUSCH,其中,其它正常长度的PUSCH是等长的。此时,该长PUSCH的有效RE数目大于正常长度的PUSCH。参见图4中的(b)所示,K个PUSCH的起始符号为时隙#1的符号#1,网络设备通知的一个PUSCH的时域资源长度为3个符号,则若第4个PUSCH也是3个符号,会在时隙边界前留一个2个符号的gap。为了利用资源,可以将第4个PUSCH拉长至5个符号长度,因此第4个PUSCH的有效RE数目多于其它正常长度的PUSCH。
(3)场景3:时隙边界将一段长的时域资源划分成两段不等长的PUSCH。
网络设备通知一个时域资源长度,该时域资源长度可以为K个PUSCH中单个PUSCH 的时域资源长度或者K个PUSCH的总时域资源长度。若网络设备通知的这个时域资源长度对应的时域资源未跨时隙边界,则终端设备可以只发送一个长的PUSCH;若网络设备通知的这个时域资源长度对应的时域资源跨时隙边界,则该时域资源可以被时隙边界划分成两个PUSCH。为了保证这个跨时隙边界的时域资源长度的起点以及长度的灵活性,可能会出现时隙边界两边的两个PUSCH不等长的情况。参见图5中的(a)所示,网络设备通知的总时域资源长度为13个符号,起始符号为时隙#1的符号#12,由于总长度跨时隙#1和时隙#2的时隙边界,因此被时隙边界划分为两个不等长的PUSCH,即K=2,时隙边界前面的第一个PUSCH长度为3个符号,时隙边界后面的第二个PUSCH长度为10个符号,第二个PUSCH包括的有效RE数目多于第一个PUSCH包括的有效RE数目。参见图5中的(b)所示,网络设备通知的总时域资源长度为14个符号,起始符号为时隙#1的符号#5,由于总长度跨时隙#1和时隙#2的时隙边界,因此被时隙边界划分为两个不等长的PUSCH,即K=2,时隙边界前面的第一个PUSCH长度为10个符号,时隙边界后面的第二个PUSCH长度为4个符号,第二个PUSCH包括的有效RE数目少于第一个PUSCH包括的有效RE数目。参见图5中的(c)所示,网络设备通知K=7个PUSCH中单个PUSCH的时域资源长度为3个符号,时隙#1的TTI#1~TTI#4都对应3个符号,但是在时隙#1的结束边界剩余2个落单的符号,不足以承载3个符号的PUSCH,因此3个符号的时域资源被时隙边界划分为两个PUSCH,即TTI#5和TTI#6,其中TTI#5为2符号,TTI#6为1符号。
考虑到上述场景1至场景3中,K个PUSCH中存在至少一个PUSCH包括的有效RE数目与其它PUSCH不同,故无法采用前文中所描述的使用K个PUSCH中任一个PUSCH包括的有效RE数目计算数据包对应的TBS的方法。基于此,本申请实施例提供一种确定TBS的方法,用于实现在多个PUSCH中存在至少一个PUSCH包括的有效RE数目与其它PUSCH不同的情况下,确定数据包对应的TBS。
图6为本申请实施例提供的一种确定TBS的方法所对应的流程示意图,如图6所示,包括:
步骤601,网络设备向终端设备发送控制信息;相应地,在步骤602中,终端设备接收来自网络设备的控制信息。其中,控制信息用于通知传输第一数据包的时频资源的信息,所述时频资源中包括K个传输机会,K个传输机会中的第一传输机会包括的有效RE数目大于K个传输机会中的第二传输机会包括的有效RE数目。
本申请实施例中,传输机会(transmission occasion,TO)可以理解为用于传输信息的时频资源,当传输机会用于传输上行信息(包括数据信息和/或控制信息)时,传输机会也可以是指PUSCH。进一步地,下文中所涉及的传输机会与PUSCH为等价概念,二者可以相互替换。例如,该K个传输机会中的任意一个数据传输为一个PUSCH或者说对应于一个PUSCH。
此处,K个传输机会中的每个传输机会可以用于对第一数据包进行一次数据传输,也就是说,K个传输机会用于对第一数据包进行K次数据传输。其中,一个传输机会用于对第一数据包进行一次数据传输,可以理解为:从终端设备的角度来说,一个传输机会用于发送一次第一数据包;从网络设备的角度来说,一个传输机会用于接收一次第一数据包。
本申请实施例中对K的取值不做具体限定,比如,K可以为大于1的整数。在其它可 能的实施例中,K也可以等于1。此时,所述K=1个传输机会(称为所述传输机会)即为后文提到的目标传输机会,目标有效RE数目为所述传输机会中包括的有效RE数目,也就是说K个传输机会中并不包括两个对应于不同有效RE数目的传输机会(即第一传输机会和第二传输机会)。
在一种可能的实现方式中,控制信息用于通知传输第一数据包的时频资源的信息是指,控制信息用于调度终端设备在K个传输机会上进行K次数据传输。此种情形下,网络设备可以通过动态UL grant发送控制信息,或者说,控制信息包括动态UL grant,其中,动态UL grant可以为用户特定的无线网络临时标识(radio network tempory identity,RNTI),例如小区无线网络临时标识(cell radio network temporary identifier,C-RNTI),加扰的UL grant。
在又一种可能的实现方式中,控制信息用于通知传输第一数据包的时频资源的信息是指,控制信息用于配置终端设备在K个传输机会上进行K次数据传输,或者说,控制信息用于配置终端设备在K个传输机会上以GF的方式进行数据传输。此种情形下,网络设备可以通过高层信令和/或半静态UL grant发送控制信息,或者说,控制信息包括高层信令和/或半静态UL grant,其中,高层信令可以为无线资源控制(radio resource control,RRC)信令;半静态UL grant可以为配置调度的无线网络临时标识(configured scheduling radio network temporary identifier,CS-RNTI)加扰的UL grant。
在又一种可能的实现方式中,K次数据传输中的一部分数据传输为网络设备调度终端设备进行的数据传输,另一部分数据传输为网络设备配置终端设备以GF的方式进行的数据传输。在这种情况下,控制信息包括配置终端设备以GF方式进行数据传输的配置信息,也包括调度终端设备进行数据传输的调度信息。
需要说明的是,K个传输机会是由网络设备通过一条控制信息配置或指示的,而不是由网络设备通过多条控制信息分多次配置或指示的。例如,若控制信息为UL grant(例如动态UL grant或半静态UL grant),则该UL grant为一个UL grant;也就是说,K个传输机会是由同一个UL grant调度或配置的,而不是多个不同的UL grant分别调度或配置的。再例如,若控制信息为高层信令,则K个传输机会为同一个高层信令配置的,而不是多个不同的高层信令分别配置的或同一高层信令字段多次配置的。
本申请实施例中,K个传输机会可以承载在时间连续的K个时间单元上,并与K个时间单元一一对应。其中,时间上连续的K个时间单元可以是指,该K个时间单元在时域上连续,即该K个时间单元中任意两个相邻的时间单元之间没有空隙,或者该K个时间单元在序号上连续。
具体来说,该时间单元为用于承载一个传输机会(例如K个传输机会中的一个传输机会)的时间单元,此时可以称,该时间单元对应于该传输机会。该K个传输机会与该K个时间单元一一对应,也可以描述为,该K个时间单元中的每个时间单元用于承载该K个传输机会中的其中一个传输机会,不同时间单元承载不同的传输机会。
一方面,该时间单元对应于该传输机会,或者说该时间单元为用于承载该传输机会的时间单元,可以理解为:该传输机会所占用的时域资源为该时间单元,或者说该传输机会在时域上对应于该时间单元。换句话说,该时间单元中的所有时域资源均用于该次数据传输。示例性地,如图2中的(a)所示,时隙n~时隙n+3中每个时隙包括14个时域 符号,符号编号为0~13,K个传输机会中的第k(k=1,……,K)个传输机会所对应的时域资源为时隙n+k-1中的时域符号0至时域符号13,也就是第k个时间单元包括的全部时域资源均用于第k次数据传输。
另一方面,该时间单元对应于该传输机会,或者说该时间单元为用于承载该传输机会的时间单元,还可以理解为:该时间单元包括该传输机会对应的时域资源。也就是说,该时间单元还可以包括该传输机会对应的时域资源以外的其它时域资源。例如,该时间单元包括该传输机会对应的时域资源,以及该传输机会和下一个相邻的传输机会之间不用于该终端设备进行数据传输的空隙(gap)。其中,空隙可以是空闲的时域资源,也可以是用于其它终端设备与网络设备通信的时域资源,本申请实施例不做限定。示例性地,如图2中的(b)所示,时隙n~时隙n+3中每个时隙包括14个时域符号,符号编号为0~13,K个传输机会中的第k个传输机会对应的时间单元为时隙n+k-1中的时域符号0到时域符号6,也就是第k个传输机会对应的时域资源,而K个时间单元中的第k个时间单元为时隙n+k-1中的全部时域符号,包括但大于第k个传输机会对应的时域资源。
应理解,本申请的实施例中的时域符号也可以称为符号。
应理解,K个传输机会用于对第一数据包进行K次数据传输是指K个传输机会与K次传输一一对应,K个传输机会中的每个传输机会用于对第一数据包进行一次数据传输(即用于承载第一数据包的一次数据传输)。这里,对于K个传输机会中的任意一个传输机会,该传输机会用于对第一数据包进行数据传输是指,该传输机会是潜在的用于发送该第一数据包的传输机会;也就是说,终端设备实际上可以在该传输机会上发送第一数据包,也可以不在该传输机会上发送第一数据包。例如终端设备由于该传输机会发生碰撞而丢弃该传输机会,这里的碰撞包括该传输机会和网络设备通知的不用于发送上行数据信息的时域符号发生碰撞,或者与网络设备通知该终端设备发送的其它信道发生碰撞,如后文所述;再例如,在第一数据包承载在该传输机会上对应的码率超过码率门限的情况下,终端设备丢弃该传输机会,如后文所述。
具体地,本申请的实施例中的第一数据包是指调制编码之前的原始信元数据包,也称为传输块(transport block,TB)或媒体接入控制协议数据单元(medium access control protocol data unit,MAC PDU)或UL-SCH。
需要说明的是,K个传输机会用于对第一数据包进行K次数据传输也可以称为,所述K个传输机会用于终端设备对该第一数据包进行K次重复传输。具体包括,K个传输机会中不同传输机会上所承载的数据包(或者说K次数据传输中的不同数据传输)的原始信元信息相同或者说调制编码前的有效数据信息相同。但是,不限定K个传输机会中不同传输机会上调制编码后发送的信息是否相同。也就是说,网络设备可以通知终端设备在该K个传输机会中不同的传输机会上发送第一数据包时使用相同或不同的冗余版本号,或者使用相同或不同的DMRS,或者使用相同或不同的扰码进行加扰。也就是说,即使网络设备配置或指示终端设备在该K个传输机会中不同的传输机会上发送该第一数据包时使用不同的冗余版本号,或者使用不同的DMRS序列,或者使用不同的扰码进行加扰,但K个传输机会中不同的传输机会上所承载的该第一数据包(或者说该K次数据传输中的不同数据传输)都对应相同的原始信元信息,即对应同一MAC PDU或者说同一TB或者说同一UL-SCH。
应理解,对该第一数据包的重复(repetition)传输也可以称为对该第一数据包的聚合(aggregation)或者说时隙聚合。
可选地,该K个传输机会为网络设备通过一条控制信息(例如UL grant)调度终端设备对第一数据包进行多次重复数据传输的所有传输机会。
可选地,该K个传输机会为网络设备通过控制信息配置终端设备对该第一数据包进行多次重复数据传输的所有传输机会。
可选地,该K个传输机会为网络设备通过一条控制信息(例如动态UL grant)调度终端设备对第一数据包进行多次重复数据传输的所有传输机会的一部分传输机会。
可选地,该K个数据传输为网络设备通过控制信息配置终端设备对第一数据包进行多次重复数据传输的所有传输机会的一部分传输机会。
本申请实施例中,传输第一数据包的时频资源的信息可以包括:K的取值和/或K个传输机会对应的时域资源。下面分别对K的取值以及K个传输机会对应的时域资源进行介绍。
(1)K的取值
在一个示例中,K的取值可以是网络设备显式通知的,例如控制信息中包括K的取值。
在又一个示例中,K的取值可以是网络设备隐式通知的。比如,网络设备发送的控制信息中包括传输第一数据包的时域资源信息和/或H的取值(H为正整数);其中,传输第一数据包的时域资源信息可以包括传输第一数据包的时域资源起点(即为K个传输机会的时域资源起点)和/或时域资源长度(例如,传输第一数据包的总时域资源长度或者K个传输机会中的一个或者说单个或者说每个传输机会的时域资源长度);H为控制信息通知的传输机会的个数。相应地,终端设备可以根据传输第一数据包的时域资源信息,来确定K的取值,具体地,终端设备可以根据传输第一数据包的时域资源信息和/或H的取值,以及时隙边界信息和/或预定义的准则,来确定K的取值。举个例子,网络设备发送的控制信息中包括通知传输第一数据包的时域资源起点和传输第一数据包的总时域资源长度(即为K传输机会的总时域资源长度),相应地,终端设备若根据传输第一数据包的时域资源起点、传输第一数据包的总时域资源长度以及时隙边界信息,确定传输第一数据包的总时域资源跨Q个时隙边界,则可确定K=Q+1,即传输第一数据包的总时域资源被时隙边界划分为Q+1个传输机会,Q为大于零的整数,参见图5中的(b)所示。再举个例子,网络设备发送的控制信息中包括传输第一数据包的时域资源起点、H的取值和K个传输机会中的一个传输机会的时域资源长度,相应地,若该K个传输机会跨h个时隙边界,且该K个传输机会中位于某个时隙边界前的最后一个传输机会的起始时刻与该时隙边界之间的时间间隔小于控制信息通知的一个传输机会的时域资源长度,则终端设备可以额外发送该最后一个传输机会(短传输机会),如此,终端设备确定的实际用于重复传输的传输机会的个数K为H+h,参见图4中的(a)所示或图5中的(c)所示。
具体的,上述K或H的取值可以由高层参数aggregationFactorUL或repK配置得到。
(2)K个传输机会对应的时域资源
在一个示例中,控制信息通知的K个传输机会对应的时域资源可以包括:控制信息通知K个传输机会中的一个传输机会对应的时域资源(例如时域资源起点和时域资源长 度)。比如,网络设备发送的控制信息中可以通知K个传输机会中一个特定传输机会(例如K个传输机会中的第一个传输机会)对应的时域资源,相应地,终端设备可以根据特定传输机会所对应的时域资源,确定K个传输机会中其余传输机会所对应的时域资源。本申请实施例中,K个传输机会承载在时间连续的K个时间单元上,因此,对于K个传输机会中除特定传输机会以外的任意一个其余传输机会,该其余传输机会的时域资源起点或时域资源终点可以由特定传输机会的时域资源起点或时域资源终点得到;进一步地,该其余传输机会的时域资源长度可以由控制信息通知的该特定传输机会的时域资源长度得到,例如该其余传输机会所包括的时域资源长度与特定传输机会的时域资源长度相同,或该其余传输机会所包括的非DMRS符号个数与特定传输机会相同;更进一步地,该其余传输机会的时域资源长度还可以由时隙边界信息和或预定义的传输机会划分准则来确定,例如由于时隙边界前的落单的符号,使得该其余传输机会的时域资源长度大于或小于特定传输机会的时域资源长度,如上述场景2或场景3所示。
在又一个示例中,控制信息通知的K个传输机会对应的时域资源包括:控制信息通知K个传输机会对应的总时域资源(例如时域资源起点和时域资源长度)。比如,网络设备发送的控制信息中可以通知K个传输机会对应的总时域资源,相应地,终端设备可以根据其它信息,例如时隙边界信息和或预定义的传输机会划分准则确定该K个传输机会中每个传输机会对应的时域资源,如上述场景3所示。
本申请实施例中,K个传输机会中包括至少两个传输机会,该至少两个传输机会包括的有效RE数目不相同。换句话说,K个传输机会中包括第一传输机会和第二传输机会,第一传输机会包括的有效RE数目大于第二传输机会包括的有效RE数目,或者,第一传输机会包括的时域符号数目大于第二传输机会包括的时域符号数目。
在一个示例中,K个传输机会对应于两种有效RE数目,例如第一有效RE数目和第二有效RE数目,其中,包括第一传输机会在内的至少一个传输机会对应于第一有效RE数目,包括第二传输机会在内的至少一个传输机会对应于第二有效RE数目,第一有效RE数目大于第二有效RE数目。K个传输机会中的任意一个传输机会所对应的有效RE数目为第一有效RE数目或第二有效RE数目,或者说K个传输机会中的任意一个传输机会包括的有效RE数目为第一有效RE数目或第二有效RE数目。
在又一个示例中,该K个传输机会对应大于两种的有效RE数目。例如该K个传输机会中,除了对应于第一有效RE数目的第一传输机会和对应于第二有效RE数目的第二传输机会以外,还包括其它传输机会,其对应的有效RE数目既不等于第一有效RE数目,也不等于第二有效RE数目。
需要说明的是:(1)对于该K个传输机会中的任意一个传输机会(例如第一传输机会或第二传输机会或后文的第三传输机会或第四传输机会),该传输机会包括的有效RE数目是该传输机会上用于承载有效信息的RE的数目。具体地,该有效信息为该传输机会上承载在调制符号上的信息。例如,该有效信息可以为数据信息,或者,也可以为数据信息和控制信息UCI。
(2)该传输机会中的有效RE不包括被网络设备通知为开销RE的RE,可选的,开销RE包括用于承载DMRS的RE。可选的,开销RE包括由高层信令xOverhead通知的开销RE。可选的,开销RE包括用于承载探测参考信号(sounding reference signal,SRS)的RE。
在一个示例中,该传输机会中的有效RE包括该传输机会中用于承载UCI信息的RE,即该传输机会上承载的有效信息中包括上行控制信息(uplink control information,UCI)。此种情形下,该传输机会包括的有效RE数目为该传输机会包括的所有RE数目减去该传输机会包括的开销RE数目。例如,该传输机会包括的有效RE数目为N RE=min(156,N' RE)·n PRB,其中
Figure PCTCN2020071862-appb-000014
为每个PRB中包括的高层信令通知的开销RE数目,
Figure PCTCN2020071862-appb-000015
为每个PRB中用于承载DMRS的RE数目,
Figure PCTCN2020071862-appb-000016
为该传输机会包括的符号个数,n PRB为该传输机会包括的PRB个数,
Figure PCTCN2020071862-appb-000017
为该传输机会中任意一个PRB包括的子载波数目。
在又一个示例中,该传输机会中的有效RE不包括该传输机会中用于承载UCI的RE,即该传输机会上承载的有效信息中包括UL-SCH信息,而不包括UCI。此种情形下,该传输机会包括的有效RE数目为该传输机会包括的所有RE数目减去该传输机会包括的开销RE数目和该传输机会中用于承载UCI信息的RE数目。由于传输机会上的UCI与UL-SCH信息独立编码、独立映射,UCI所占的RE是根据当前传输机会上需要承载的UCI比特数确定的,且用于映射UCI的RE不用于映射UL-SCH信息,如果在计算TBS时,根据用于映射UCI和UL-SCH信息的总RE来计算,会导致计算出来的TBS过大,在UCI的信息量较大(对应的用于映射UL-SCH信息的RE数较少)时,无法将该TBS承载到用于映射UL-SCH信息的RE上。因此,计算TBS的有效RE可以排除用于映射UCI信息的RE(即有效RE不包括用于承载UCI信息的RE),从而可以使得计算出来的第一数据包的TBS与用于承载第一数据包的UL-SCH信息的资源是匹配的,结果更为更准确。
其中,上述UCI信息可以包括以下任一项:(1)HARQ-确认字符(acknowledgement,ACK);(2)SR信息;(3)信道状态信息(channel state information,CSI);(4)HARQ-ACK和SR信息;(5)HARQ-ACK和CSI;(6)SR信息和CSI;(7)HARQ-ACK、SR信息和CSI。
本申请实施例中,可选地,K个传输机会不包括由于发生碰撞而被丢弃的传输机会。其中,被丢弃的传输机会可以为与网络设备通知的不用于发送上行数据信息的时域符号发生碰撞而丢弃的传输机会。被丢弃的传输机会也是由控制信息通知终端设备用于发送第一数据包的传输机会,但是由于跟网络设备通过其它控制信息通知的不用于上行数据传输的时域符号发生碰撞,优先级较低而被终端设备丢弃。更具体地,网络设备通知的不用于发送上行数据信息的时域符号包括:网络设备通知该时域符号为下行符号,或者,网络设备通知该时域符号为灵活(flexible)符号,或者,网络设备通知该时域符号为承载SRS的符号。或者,被丢弃的传输机会也可以为由于和网络设备通知该终端设备发送的其它信道(例如PUCCH,或者其它更高优先级的传输机会)发生碰撞而被丢弃的传输机会。
举个例子,控制信息调度或配置终端设备在M个传输机会上对第一数据包进行重复传输,M>K,但是其中的M-K个传输机会与网络设备通知为‘下行’的符号碰撞而被丢弃,则终端设备在计算第一数据包的TBS时,后文所述的目标有效RE数目的确定是根据该未被丢弃的K个传输机会包括的有效RE数目或该未被丢弃的K个传输机会中的其中一个目标传输机会包括的有效RE数目得到的,而需要被丢弃的该M-K个传输机会中的任 意一个传输机会的有效RE数目未参与到该目标有效RE数目的确定。
可选地,该M个传输机会为网络设备通过一条控制信息(例如UL grant)调度终端设备对第一数据包进行多次重复数据传输的所有传输机会。
可选地,该M个传输机会为网络设备通过控制信息配置终端设备对该第一数据包进行多次重复数据传输的所有传输机会。例如,该控制信息为半静态UL grant,或者,该M个传输机会为同一个GF周期内的所有传输机会。
其中,GF周期为用于终端设备以GF的方式进行数据传输的时域资源,网络设备通过所述控制信息配置给终端设备用于GF数据传输的时域资源周期性出现,相邻两个周期之间的时间间隔即GF周期,任意两个GF周期中,用于GF数据传输的时域资源是重复的。
应理解,对于M个传输机会中的任意一个传输机会,该任意一个传输机会与网络设备通知的不用于发送上行数据信息的时域符号发生碰撞具体是指,该任意一个传输机会对应的时域资源和网络设备通知的不用于发送上行数据信息的时域符号在时域上重叠,例如,任意一个传输机会所包括的至少一个时域符号为网络设备通知的不用于发送上行数据信息的时域符号。
对应的,被丢弃的传输机会可以为与网络设备通知的不用于发送上行数据信息的时域符号发生碰撞而丢弃的传输机会是指,该被丢弃的传输机会是与网络设备通知的不用于发送上行数据信息的时域符号在时域上重叠而被丢弃的传输机会。例如,该被丢弃的传输机会中的至少一个时域符号为网络设备通知的不用于发送上行数据信息的时域符号,从而被终端设备丢弃。
可选的,上述目标有效RE数目的确定是根据该未被丢弃的K个传输机会包括的有效RE数目得到的,是指:目标有效RE数目为该未被丢弃的K个传输机会中的全部传输机会所包括的有效RE数目之和,或者,目标有效RE数目为该未被丢弃的K个传输机会中平均有效RE数目。其中,K个传输机会中的任意一个传输机会所包括的有效RE数目的定义如前所述,不再赘述。
可选的,上述目标有效RE数目的确定是根据该未被丢弃的K个传输机会包括的有效RE数目得到的,是指:目标有效RE数目为该未被丢弃的K个传输机会中的P个传输机会中所包括的有效RE数目之和,或者,目标有效RE数目为该未被丢弃的K个传输机会中的P个传输机会的平均有效RE数目,其中P为小于K(或M)的正整数。
进一步的,被丢弃的传输机会与网络设备通过其它控制信息通知的不用于上行数据传输的时域符号发生碰撞而被终端设备丢弃,其中该不用于上行数据传输的时域符号为网络设备半静态配置为不用于上行数据传输的时域符号。此时,该其他控制信息为高层信令,具体的,该其他控制信息为TDD-UL-DL-ConfigurationCommon或TDD-UL-DL-ConfigDedicated。例如,网络设备通过该高层信令通知某些时域符号为‘下行’符号或‘灵活’符号,且这些时域符号与M个传输机会中的M-K个传输机会在时域上重叠,因此,终端设备丢弃该M-K个传输机会,并且,终端设备根据未被丢弃的K个传输机会包括的有效RE数目确定第一数据包对应的TBS。
此时,K可以等于1,也可以为大于1的整数。
应理解,K个传输机会不包括由于发生碰撞而被丢弃的传输机会,也可以称为:K个传输机会不包括被终端设备丢弃的传输机会,或者称为:K个传输机会为所述控制信 息通知的用于传输第一数据包的传输机会(即上述M个传输机会)中未被丢弃的传输机会。其中,被丢弃的传输机会可以为与网络设备通知的不用于发送上行数据信息的时域符号发生碰撞而丢弃的传输机会,或者为由于功率受限而丢弃的传输机会。未被丢弃的传输机会为所述控制信息通知的用于传输第一数据包的传输机会中除被丢弃的传输机会外的传输机会。
考虑到当控制信息通知的M个传输机会中既有包含有效RE数目较多的传输机会(称为较大的传输机会)又有包含有效RE数目较少的传输机会(称为较小的传输机会)的情况下,较大的传输机会有可能由于和网络设备通知的不用于发送上行数据信息的时域符号发生碰撞而被终端设备丢弃,若仍然使用较大的传输机会计算第一数据包的TBS,有可能会导致计算得到的TBS过大而与较小的传输机会所包括的资源不匹配,导致传输可靠性受损,甚至由于等效码率过高而丢失***信息比特。因此,使用未被丢弃的确定第一数据包对应的TBS的好处在于,可以确保计算得到的TBS与终端设备实际占用并发送信息的传输机会是匹配的,保障数据传输的可靠性。
例如图16所示,控制信息通知K个传输机会用于对第一数据包进行数据传输,M=3,其中第一个传输机会的时域资源长度为5个符号,第二个传输机会的时域资源长度为4个符号,第三个传输机会的时域资源长度为9个符号,第三个传输机会中包括的一部分时域符号为网络设备半静态配置为‘下行’的时域符号,因此与第三个传输机会发生碰撞,终端设备丢弃第三个传输机会,而在未被丢弃的第一个传输机会和第二个传输机会中确定一个目标传输机会,并根据目标传输机会中所包括的目标有效RE数目确定第一数据包对应的TBS。
本申请实施例中,可选地,K个传输机会包括由于发生碰撞而被丢弃的传输机会。其中碰撞的定义如上所述,不再赘述。
应理解,K个传输机会包括由于发生碰撞而被丢弃的传输机会,也可以称为:K个传输机会包括被终端设备丢弃的传输机会。其中,被丢弃的传输机会可以为与网络设备通知的不用于发送上行数据信息的时域符号发生碰撞而丢弃的传输机会,或者为由于功率受限而丢弃的传输机会。
进一步的,被丢弃的传输机会与网络设备通过其它控制信息通知的不用于上行数据传输的时域符号发生碰撞而被丢弃,其中该不用于上行数据传输的时域符号为网络设备动态指示的时域符号。此时,该其他控制信息为物理层信令,具体的,该其他控制信息为下行控制信息(downlink control information,DCI);更具体的,该DCI为对应于格式2_0的DCI。
进一步的,K个传输机会中包括第一传输机会和第二传输机会,若第一参考TBS承载于第二传输机会所对应的第一码率大于码率门限,则在发送第一数据包时丢弃第二传输机会;其中,第一参考TBS为根据第一传输机会包括的有效RE数目计算得到的TBS,其中,第一传输机会为上述被丢弃的传输机会。有关第一参考TBS承载于第二传输机会所对应的第一码率大于码率门限的说明见后文阐述。
步骤603,终端设备根据目标有效资源粒子RE数目,确定所述第一数据包对应的TBS。
可选地,步骤603之后,还可以包括:步骤604,终端设备根据第一数据包对应的 TBS,在K个传输机会中的至少一个传输机会上对第一数据包进行数据传输;本申请实施例中,终端设备在该至少一个传输机会上对第一数据包进行数据传输,可以理解为:终端设备在该至少一个传输机会上发送第一数据包。相应地,在步骤605中,网络设备在K个传输机会中的至少一个传输机会接收终端设备发送的第一数据包。其中,至少一个传输机会可以是K个传输机会,也可以是K个传输机会中的一部分传输机会,例如在某些情况下,终端设备丢弃K个传输机会中的另一部分传输机会而不在被丢弃的传输机会上进行数据传输,实际进行数据传输的传输机会为K个传输机会中的一部分传输机会。例如,若K个传输机会包括由于发生碰撞而被丢弃的传输机会,则实际发送的传输机会的个数小于K。
为了更准确地计算TBS,本申请实施例引入目标有效RE数目,使得终端设备可以根据目标有效RE数目确定第一数据包对应的传输块大小TBS。具体来说,网络设备发送的控制信息还可以用于通知MCS,如此,终端设备可以根据控制信息通知的MCS以及目标有效RE数目,确定第一数据包的TBS。具体过程可以参见前文关于计算TBS的阐述,本申请实施例中的目标有效RE数目可以替代前文中的N RE
本申请实施例中,确定目标有效RE数目的方法可以有多种。在一个实施例中,可以包括三种可能的方法。下面对三种可能的方法进行具体描述。
(1)方法1
在一个示例中,目标有效RE数目为所述K个传输机会中每个传输机会所包括的平均有效RE数目。例如K个传输机会中,第k(k大于或等于1,且k小于或等于K)个传输机会包括的有效RE数目为N k,则该K个传输机会中每个传输机会所包括的平均有效RE数目由
Figure PCTCN2020071862-appb-000018
得到,例如为
Figure PCTCN2020071862-appb-000019
Figure PCTCN2020071862-appb-000020
其中
Figure PCTCN2020071862-appb-000021
表示向下取整,
Figure PCTCN2020071862-appb-000022
表示向上取整。
举个例子,如图7所示,K个传输机会的起始符号为时隙#1的符号#1,网络设备通知的一个传输机会的时域资源长度为3个符号,则会在前4个传输机会之后,在时隙边界前留一个2个符号的gap,终端设备可将这两个符号组成一个短传输机会,即第二传输机会,其有效RE数目少于其它传输机会,即第一传输机会。假设第一传输机会的有效RE数目为N 1,第二传输机会的有效RE数目为N 2,则平均有效RE数目=(5*N 1+N 1)/6,其中,N 1和N 2为正整数。
或者说,目标有效RE数目为K个传输机会所包括的平均有效RE数目。假设K个传输机会所包括的总的有效RE数目为N,则目标有效RE数目可以由N/K得到,例如对N/K向上取整或向下取整得到目标有效RE数目。
在又一个示例中,目标有效RE数目由K个传输机会中每个传输机会所包括的平均符号数目得到。例如,K个传输机会中,第k(k大于或等于1,且k小于或等于K)个传输机会包括的有效RE数目为S k,则该K个传输机会中每个传输机会所包括的平均有效RE数目可以由平均符号数目
Figure PCTCN2020071862-appb-000023
得到。
采用上述方式,通过平均有效RE数目计算得到TBS,可以作为一个折中,从而有效避免根据包括较大有效RE数目的传输机会计算出来的TBS过大,或者根据包括较小有效RE数目的传输机会计算出来的TBS过小的问题。
在又一个示例中,目标有效RE数目为所述K个传输机会中所包括的全部有效RE数目(即有效RE数目之和)。或者,目标有效RE数目由所述K个传输机会中所包括的全部有效RE数目得到。例如,K个传输机会中,第k(k大于或等于1,且k小于或等于K)个传输机会包括的有效RE数目为N k,则该K个传输机会中所包括的全部有效RE数目为
Figure PCTCN2020071862-appb-000024
在又一个示例中,目标有效RE数目为所述K个传输机会中的P个传输机会所包括的全部有效RE数目(即有效RE数目之和),其中,P为正整数,且P小于K。或者,目标有效RE数目由所述P个传输机会中所包括的全部有效RE数目得到。例如,P个传输机会中,第p(p大于或等于1,且p小于或等于P)个传输机会包括的有效RE数目为N p,则该K个传输机会中所包括的全部有效RE数目为
Figure PCTCN2020071862-appb-000025
其中,该P个传输机会可以是网络设备通知给终端设备的,也可以是基于预定义的准则确定的。
(2)方法2
目标有效RE数目为K个传输机会中的目标传输机会包括的有效RE数目,目标传输机会为第二传输机会。
考虑到多个传输机会中,有的传输机会包括的有效RE数目多,有的传输机会包括的有效RE数目少时,如果按照有效RE数目多的传输机会来计算TBS,会计算得到一个较大的TBS,该较大的TBS承载到有效RE数目较少的传输机会上,可能导致有效RE数目较少的传输机会的传输可靠性受损,例如由于用于映射数据信息的资源太少导致编码码率过高,甚至丢失***比特。因此,为了保障传输可靠性,可以使用有效RE数目较少的第二传输机会作为目标传输机会,避免存在有些传输机会的码率过高导致性能受损的问题。例如图4中的(b)所示,大部分传输机会(TTI#1/2/3/5)包括的有效RE数目较少,如果按照有效RE数目多的传输机会,即TTI#4对应的传输机会计算TBS,会导致其它传输机会的码率过高,使得整个K次重复传输的传输可靠性受损。
在一个示例中,第二传输机会可以为K个传输机会中包括的有效RE数目最小的传输机会,或者,第二传输机会可以为K个传输机会中包括的时域符号数目最小的传输机会。例如图3中的(a)、(b)所示,第二传输机会为TTI#1对应的传输机会;图3中的(c)所示,第二传输机会为TTI#2对应的传输机会。再例如图4中的(a)、(b)所示,第二传输机会为TTI#5对应的传输机会。再例如图5中的(a)所示,第二传输机会为TTI#1对应的传输机会。
在又一个实例中,该K个传输机会对应大于两种的有效RE数目,此时,该K个传输机会中还包括第三传输机会,第三传输机会所包括的有效RE数目小于第二传输机会包括的有效RE数目,也就是说,第二传输机会包括的有效RE数目小于第一传输机会包括的有效RE数目但大于第三传输机会包括的有效RE数目。确定目标传输机会为第二传输机会,可以确定大小适中的TBS,使得其不至于过大从而破坏可靠性或者过小从而损失传输效率,从而在可靠性和传输效率之间取得较好的折中。
在又一个示例中,第二传输机会的时域资源长度为(或者说对应于)控制信息通知的一个传输机会的时域资源长度,或者,也可以理解为:若第二传输机会的时域资源长 度等于或者对应于控制信息通知的一个传输机会的时域资源长度,则目标传输机会为第二传输机会。此时,K个传输机会中还包括第一传输机会,其所包括的有效RE数目大于控制信息通知的一个传输机会的时域资源长度所对应的有效RE数目。
进一步地,控制信息通知的一个传输机会(或者说单个传输机会,或者说每个传输机会)的时域资源长度为对应于K个传输机会中一个传输机会的时域资源长度。其中,这里的一个传输机会可以是该K个传输机会中的第一个传输机会或第二个传输机会,也可以是该K个传输机会中的任意一个传输机会。例如图3中的(c)所示,网络设备通知一个传输机会的时域资源长度为2个时域符号,则有效RE数目为2个符号长度的传输机会(例如TTI#2的传输机会)包括的有效RE数目。再例如图4中的(a)、(b)所示,网络设备通知一个传输机会的时域资源长度为3个时域符号,则有效RE数目为3个符号长度的传输机会(例如TTI#1的传输机会)包括的有效RE数目。
也就是说,有效RE数目为目标传输机会包括的有效RE数目,目标传输机会的时域资源长度等于或者对应于控制信息通知的一个传输机会的时域资源长度。或者说,终端设备根据该K个传输机会中,对应于控制信息所通知的时域资源长度的传输机会中包括的有效RE数目计算TBS,而不论该K个传输机会中是否包括其它时域资源更长或更短的传输机会。采用这种方法,网络设备可以通过调整通知的一个传输机会的时域资源长度来达到调整TBS的目的,防止计算得到的TBS过大或过小。
其中,控制信息通知时域资源长度(例如该时域资源长度为一个传输机会的时域资源长度或K个传输机会的总时域资源长度),包括:控制信息通知时域资源信息索引号,该索引号用于在预定义或预配置的多个时域资源信息中索引得到一个时域资源信息,其中该多个时域资源信息中的每个时域资源信息对应一种具体的时域资源位置,包括时域资源起始时刻(例如起始符号)及长度。该种具体的时域资源位置所包括的长度为对应于K个传输机会中一个传输机会的时域资源长度,或对应于K个传输机会的总时域资源长度。
具体地,上述时域资源长度为控制信息中的起始和长度指示值(start and length indicator value,SLIV)字段通知的,其中该字段用于通知时域资源的起始符号序号S以及持续的时域符号个数L。更具体地,存在一个预定义或网络设备配置的时域资源表格,该时域资源表格中包括多个时域资源信息,每个时域资源信息对应一种时域资源起始符号以及时域资源长度的组合;该SLIV字段用于通知SLIV索引号(即时域资源信息索引号),该SLIV索引号用于指示上述多个时域资源信息中的一个时域资源信息。从而终端设备接收到该SLIV索引号后,可以从该多个时域资源信息中索引得到该时域资源的具***置(起始时刻以及长度)。例如,若控制信息包括UL grant,则上述SLIV字段对应于UL grant中的Time domain resource assignment字段。再例如,若控制信息包括高层信令,则上述SLIV字段对应于高层信令中的time Domain All ocation字段。
需要说明的是,本申请实施例中的时域资源长度(例如第一传输机会对应的时域资源长度,或第二传输机会对应的时域资源长度,或后文第四传输机会对应的时域资源长度,或控制信息通知的一个传输机会的时域资源长度,或控制信息通知的K个传输机会的总时域资源长度)也可以称为时域符号个数。
(3)方法3
目标有效RE数目为K个传输机会中的目标传输机会包括的有效RE数目,目标传输机会为第一传输机会。
考虑到多个传输机会中,有的传输机会包括的有效RE数目多,有的传输机会包括的有效RE数目少时,如果按照有效RE数目少的传输机会来计算TBS,会计算得到一个较小的TBS,该较小的TBS承载到有效RE数目多的传输机会上,可能使得码率低于控制信息通知的MCS对应的码率,虽然可靠性更高,但是由于传输的信息比特数较少,导致传输效率较低。因此,为了保障传输可靠性,可以使用有效RE数目多的第一传输机会作为目标传输机会,达到提升传输效率的目的;此时,虽然有效RE数目少的第二传输机会可能承载过大的TBS而性能受损,但是这一损失可以通过K次重复传输而得以弥补。例如图4中的(a)所示,大部分传输机会(TTI#1/2/3/4/6)包括的有效RE数目较多,如果按照有效RE数目少的传输机会,即TTI#5对应的传输机会计算TBS,计算出来的TBS过小,会导致其它传输机会的传输效率较低,从而拉低K次重复传输的传输效率。
在一个示例中,第一传输机会可以为K个传输机会中包括的有效RE数目最大的传输机会,或者第一传输机会可以为K个传输机会中包括的时域符号数目最大的传输机会。例如图3中的(a)、(b)所示,第一传输机会为TTI#2对应的传输机会;图3中的(c)所示,第一传输机会为TTI#1对应的传输机会。再例如图4中的(a)所示,第一传输机会为TTI#1对应的传输机会。再例如图5中的(a)所示,第一传输机会为TTI#2对应的传输机会。
在又一个示例中,第一传输机会的时域资源长度为(或者说对应于)控制信息通知的一个传输机会的时域资源长度,或者,也可以理解为:若第一传输机会的时域资源长度等于控制信息通知的一个传输机会的时域资源长度,则目标传输机会为第一传输机会。此时,K个传输机会中还包括第二传输机会,其所包括的有效RE数目小于控制信息通知的一个传输机会的时域资源长度所对应的有效RE数目。此处,类似于方法2中第二传输机会的时域资源长度为控制信息通知的一个传输机会的时域资源长度的描述,具体不再赘述。
采用上述方法3得到第一数据包对应的TBS后,由于第二传输机会包括的有效RE数目较少,可能无法承载第一数据包对应的TBS按照控制信息通知的MCS进行调制编码之后的所有信息。为了解决这一问题,本申请实施例提出三种可能的解决方案,下面分别进行具体介绍。
解决方案一:丢弃第二传输机会。
若第一参考TBS承载于所述第二传输机会所对应的第一码率(code rate,CR)大于码率门限(可以表示为CR_th),第一参考TBS为根据第一传输机会包括的有效RE数目计算得到的TBS,则终端设备在K个传输机会中的至少一个传输机会对第一数据包进行数据传输,包括:终端设备在对第一数据包进行数据传输时丢弃第二传输机会。也就是说,如果按照方法3计算第一数据包对应的TBS,若将第一数据包承载到第二传输机会上导致码率过高,则终端设备在发送第一数据包时可以丢弃第二传输机会。考虑到即使终端设备在第二传输机会上发送第一数据包,性能也比较差,如果将第二传输机会丢弃,可以节省出来第二传输机会的时频资源,用于网络设备调度或指示其它终端设备发送信息。
相应地,网络设备在K个传输机会中的至少一个传输机会上接收终端设备发送的第一数据包,该至少一个传输机会为K个传输机会中终端设备发送第一数据包的传输机会,该至少一个传输机会中不包括第二传输机会;或者说,网络设备接收到终端设备发送的第一数据包的传输机会中不包括第二传输机会。
例如参见图8,K个传输机会的起始符号为时隙#1的符号#1,网络设备通知的一个传输机会的时域资源长度为3个符号,则会在前4个传输机会之后,在时隙边界前留一个2个符号的gap,终端设备可以将这两个符号组成一个短传输机会,即第二传输机会,其有效RE数目少于其它传输机会,例如TTI#1对应的第一传输机会。此时,第一参考TBS(即第一数据包的TBS)为根据第一传输机会包括的有效RE数目计算得到的,若第一参考TBS承载到TTI#5对应的第二传输机会时对应的第一码率不超过码率门限(即CR<=CR_th),参见图8中(a)所示,则可以将第一数据包承载到TTI#5上发送;若第一参考TBS承载到TTI#5对应的第二传输机会时对应的第一码率超过码率门限(即CR>CR_th),参见图8中(b)所示,则将TTI#5对应的第二传输机会丢弃,不进行数据发送。
需要说明的是:(1)本申请实施例中的丢弃(drop)也可以称为停止(stop)或取消(cancel)或忽略(omit)或中断。
(2)终端设备在发送第一数据包时丢弃第二传输机会也可以描述为:K个传输机会中,终端设备发送第一数据包的传输机会不包括第二传输机会;或者说,终端设备在K个传输机会中的至少一个传输机会发送第一数据包,所述至少一个传输机会为K个传输机会中终端设备发送第一数据包的传输机会,至少一个传输机会不包括第二传输机会;或者说,所述K个传输机会中,所述终端设备发送第一数据包的传输机会中不包括所述第二传输机会。
(3)第一参考TBS为根据第一传输机会包括的有效RE数目计算得到的TBS,也可以描述为:第一参考TBS为对应于第一传输机会包括的有效RE数目的TBS,或者描述为:第一参考TBS为对应于第一传输机会包括的有效RE数目以及控制信息通知的MCS的TBS。其中,控制信息通知的MCS也称为控制信息通知的调制阶数和码率,控制信息通知的调制阶数和码率也可以描述为控制信息通知的调制阶数和控制信息通知的码率。例如,调度K个数据传输的UL grant中包含指示终端设备在PUSCH上发送信息所使用的MCS的比特域。
(4)第一参考TBS为根据第一传输机会包括的有效RE数目计算得到的TBS,可以是指:第一参考TBS为根据第一传输机会包括的有效RE数目、控制信息通知的调制阶数和码率计算得到的TBS。具体来说,第一参考TBS可以根据第一传输机会包括的有效RE数目乘以每个有效RE上面的***信息比特数得到;其中,每个有效RE上面的***信息比特数为控制信息通知的调制阶数乘以控制信息通知的码率。例如,若第一传输机会上的有效RE数目为N_1,控制信息通知的调制阶数为Q,控制信息通知的码率为R,则第一参考TBS可以根据N_1*Q*R得到。
(5)控制信息通知的调制阶数为控制信息通知的MCS对应的调制阶数,控制信息通知的码率为控制信息通知的MCS对应的码率;控制信息通知的MCS是针对K个传输机会中的其中一个传输机会的MCS,例如针对K个传输机会中的第一个传输机会的MCS或者任意一个传输机会的MCS。本申请的实施例中的调制阶数是指每个调制符号所包括的 (调制前的)比特数,例如调制方式为正交相移键控(quadrature phase shift keying,QPSK)时,调制阶数=2,调制方式为16正交振幅调制(quadrature amplitude modulation,QAM)时,调制阶数为4,调制方式为64QAM时,调制阶数=6,调制方式为256QAM时,调制阶数=8。
(6)码率门限为预定义的,例如,由协议或法规规定;或者,码率门限为网络设备确定并通知给终端设备的,例如网络设备通过高层信令为终端设备配置的。在一种可能的实现方式中,码率门限为可用于传输机会传输的预定义的最高等级的MCS所对应的码率。具体地,这里的预定义是指标准协议或法规预定义,如3GPP协议38.214的MCS表格中,索引号最大的MCS(例如索引号I_MCS=27)所对应的码率。例如,该码率门限为948/1024,或者为772/1024。在又一种可能的实现方式中,码率门限为传输机会传输过程中不丢失***信息比特位的情况下可使用的最高码率,例如码率门限为1,或者为4/3(即1.33),或者为22/17(即1.29)。
(7)第一参考TBS承载于第二传输机会所对应的第一码率具体是指,第一参考TBS承载于第二传输机会且在控制信息通知的调制阶数下所对应的码率。也就是说,虽然第一码率与控制信息通知的码率不同,但是在计算第一码率时所使用的调制阶数仍然为控制信息通知的调制阶数。例如,若第二传输机会上的有效RE数目为N_2,第一参考TBS为T比特,控制信息通知的调制阶数为Q,则第一码率为T/(Q*N_2)。进一步地,由于第一参考TBS由控制信息通知的调制阶数Q、控制信息通知的码率、和第一传输机会的有效RE数目N_1确定,而N_2小于N_1,因此第一码率高于控制信息通知的码率。
本申请实施例涉及的“TBS(比如第一参考TBS或第二参考TBS)承载于传输机会(比如第二传输机会、或第一传输机会、或第一候选传输机会、或第二候选传输机会)所对应的码率(比如第一码率或第二码率)”,也可以描述为:对应于该TBS的数据包承载于该传输机会所对应的该码率,比如:对应于第一参考TBS的数据包承载于第二传输机会所对应的第一码率,其中,对应于第一参考TBS的数据包可以是第一数据包,也可以不是实际生成的数据包,而是作用于计算第一码率的。
或者,“TBS(比如第一参考TBS或第二参考TBS)承载于传输机会(比如第二传输机会、或第一传输机会、或第一候选传输机会、或第二候选传输机会)所对应的码率(比如第一码率或第二码率)”,也可以描述为:该TBS作用于该传输机会所对应的该码率。
(8)第一码率大于码率门限,也可以描述为:第一码率不小于码率门限。第一码率不大于码率门限,也可以描述为:第一码率小于码率门限。
解决方案二:在第二传输机会上只发送第一数据包的一部分信息
若第一参考TBS承载于第二传输机会所对应的第一码率大于码率门限,则终端设备在K个传输机会中的至少一个传输机会对第一数据包进行数据传输,包括:终端设备在第二传输机会上使用控制信息通知的调制阶数对第一数据包的一部分信息进行数据传输。进一步的,终端设备在第二传输机会上使用第一码率对第一数据包的一部分信息进行数据传输。也就是说,为了确保传输性能,即使第一码率超过码率门限,终端设备仍然将第一数据包承载到第二传输机会上。由于第二传输机会的有效RE数目无法承载全部的第一数据包的编码后信息,终端设备在将第一数据包的信息映射到第二传输机会时丢弃一部分信息。考虑到对第一数据包进行多次重复传输的情况下,即使第二传输机会本 身独立解码的性能不好,但是可以通过与其它传输机会传输的信息进行合并之后解码,辅助提高解码性能。
相应地,网络设备在第二传输机会上接收终端设备使用控制信息通知的调制阶数发送的第一数据包的一部分信息。
具体来说,在一个示例中,第一数据包的一部分信息可以为第一数据包编码后信息中的一部分信息,第一数据包编码后信息中的另一部分信息未被承载(或者说映射)到第二传输机会上。更具体的,第一数据包编码后信息是指,第一数据包按照控制信息通知的码率进行编码后得到的编码后信息。例如,由于按照第一传输机会计算得到的第一数据包对应的TBS过大,对应于码率门限的编码比特数加上TBS的信息比特数超过了第二传输机会的资源可以承载的(编码后)比特数,因此,在对码块(code block,CB)进行速率匹配的过程中,可以在母码序列(d 0,d 1,d 2,...,d N-1)基础上截取用于实际发送的编码后序列,该实际发送的编码后序列所对应的实际码率大于码率门限。这里的实际码率为第一数据包的信息比特数目和上述实际发送的编码后序列数目的比例。应理解,第一数据包的信息比特也称为***信息比特,第一数据包的信息比特可以包括对应的循环冗余校验(cyclic redundancy check,CRC)比特,也可以不包括对应的CRC比特。
举个例子,假设进行速率匹配的过程中,第一数据包编码后的完整信息(可以称为参考编码后序列)是在第一数据包的母码序列(d 0,d 1,d 2,...,d N-1)基础上截取出来的一部分序列,则第一数据包的一部分信息是指:用于在第二传输机会上实际发送的编码后序列的长度短于参考编码后序列,或者说,用于实际发送的编码后序列的长度为参考编码后序列的一部分,而参考编码后序列的另一部分被丢弃,例如参考编码后序列中最后(即尾部)的至少一个比特被丢弃。具体地,第一数据包编码后的完整信息对应于按照控制信息通知的码率在母码序列上截取的序列(即,映射或者说承载到第一传输机会上的第一数据包编码后信息),或者,对应于按照码率门限在母码序列上截取的序列。具体地,上述第一数据包的一部分信息是指第一数据包的母码序列(d 0,d 1,d 2,...,d N-1)基础上,从第二传输机会对应的冗余版本(redundancy version,RV)所对应的起始序号开始,按照从前往后的顺序,截取出来的一部分序列。这一部分序列的长度小于第一数据包承载在第一传输机会对应的冗余版本所截取出来的序列长度。例如,第一传输机会对应的冗余版本和第二传输机会对应的冗余版本所对应的起始序号都为n,n大于或等于0,且n小于或等于N-1,第一传输机会截取的第一数据包编码后的完整信息的长度为E_1,第二传输机会对应的第一数据包的一部分信息的长度为E_2,则第一数据包编码后的完整信息为d n,d n+1,d n+2,...,d E_1 mod(N-1),第二传输机会对应的第一数据包的一部分信息为d n,d n+1,d n+2,...,d E_2 mod(N-1)。其中,A mod B表示A对B取余。
在又一个示例中,第一数据包的一部分信息可以为第一数据包的***信息比特(systematic bits)(也可以称为***信息或***信息比特序列)的一部分信息,第一数据包的***信息比特的另一部分信息未被承载到第二传输机会上。进一步地,第二传输机会上承载第一数据包的***信息比特的一部分信息且未承载第一数据包的编码信息比特(parity bits)。例如,用于在第二传输机会上实际发送的编码后序列的长度短于第一数据包的***信息比特序列的长度,或者说,用于在第二传输机会上实际发送的编码 后序列为第一数据包的***信息比特序列的一部分信息,而第一数据包的***信息比特序列的另一部分信息被丢弃。可选地,第一数据包的***信息比特序列中最后(即尾部)的至少一个比特被丢弃,或者说,承载在第二传输机会上的第一数据包的***信息比特序列的一部分信息是从***信息比特序列的第一个序号开始,按照从前往后的顺序截取的出来的***信息比特序列的一部分;例如,第一数据包的***信息比特序列为c 0,c 1,c 2,c 3,...,c K'-1(K’表示***信息序列的长度或者说TBS大小),则第二传输机会上承载的序列为c 0,c 1,c 2,c 3,...,c K'-X-1,X为小于K的正整数。可选地,第一数据包的***信息比特序列中最开始(即头部)的至少一个比特被丢弃,或者说,承载在第二传输机会上的第一数据包的***信息比特序列的一部分信息是从***信息比特序列的第X个序号开始,按照从前往后的顺序截取至***信息比特序列中最后一个;例如,第一数据包的***信息比特序列为c 0,c 1,c 2,c 3,...,c K'-1,则第二传输机会上承载的序列为c X-1,c 1,c 2,c 3,...,c K'-1
举个例子,参见图9所示,K个传输机会的起始符号为时隙#1的符号#1,网络设备通知的一个传输机会的时域资源长度为3个符号,则会在前4个传输机会之后,在时隙边界前留一个2个符号的gap,终端设备可以将这2个符号组成一个短传输机会,即第二传输机会,其有效RE数目少于其它传输机会,例如TTI#1对应的第一传输机会。此时,第一参考TBS(即第一数据包的TBS)为根据第一传输机会包括的有效RE数目计算得到的,对应的***信息比特序列为c 0,c 1,c 2,c 3,...,c K'-1,包括K’个比特。若第一参考TBS承载到TTI#5对应的第二传输机会时对应的第一码率不超过码率门限,如图9中的(a)所示,则可以将完整的第一数据包的***信息比特序列承载到TTI#5对应的第二传输机会上发送;若第一参考TBS承载到TTI#5对应的第二传输机会时对应的第一码率超过码率门限,如图9中的(b)所示,则将第一数据包的***信息比特序列中的K’-X个比特(即序列c 0,c 1,c 2,c 3,...,c K'-X-1)承载到TTI#5对应的第二传输机会上发送,另外X个比特的信息被丢弃,即未被映射到第二传输机会上。
解决方案三:调高第二传输机会的调制阶数
一方面,在一个示例中,若第一参考TBS承载于第二传输机会所对应的第一码率大于码率门限,且修正码率不大于码率门限,则终端设备在第二传输机会上使用修正调制阶数和修正码率对第一数据包进行数据传输。另外,终端设备在第一传输机会上使用控制信息通知的调制阶数和码率对第一数据包进行数据传输。其中,修正码率为第一参考TBS承载于第二传输机会且在修正调制阶数下所对应的码率,修正调制阶数高于控制信息通知的调制阶数。
相应地,网络设备在第二传输机会上接收终端设备使用修正调制阶数和修正码率发送的第一数据包。和/或,网络设备在第一传输机会上接收终端设备使用控制信息所通知的调制阶数和码率发送的第一数据包。
在又一个示例中,若第一参考TBS承载于第二传输机会所对应的第一码率大于码率门限,则终端设备在第二传输机会上使用修正调制阶数和修正码率对第一数据包进行数据传输。另外,终端设备在第一传输机会上使用控制信息所通知的调制阶数和码率对第一数据包进行数据传输。也就是说,若第一参考TBS承载于第二传输机会所对应的第一码率大于码率门限,则终端设备可以直接在第二传输机会上使用修正调制阶数和修正码 率发送第一数据包。
相应地,网络设备在第二传输机会上接收终端设备使用修正调制阶数和修正码率发送的第一数据包。和/或,网络设备在第一传输机会上接收终端设备使用控制信息所通知的调制阶数和码率发送的第一数据包。
在又一个示例中,若第一参考TBS承载于第二传输机会所对应的第一码率不大于码率门限,则终端设备在第二传输机会上使用控制信息通知的调制阶数和第一码率发送的第一数据包。另外,终端设备在第一传输机会上使用控制信息通知的调制阶数和码率发送的第一数据包。
相应地,网络设备在第二传输机会上接收终端设备使用控制信息通知的调制阶数和第一码率发送的第一数据包。和/或,网络设备在第一传输机会上接收终端设备使用控制信息所通知的调制阶数和码率发送的第一数据包。
具体来说,考虑到直接根据控制信息通知的调制阶数以及第一参考TBS确定第二传输机会的第一码率很有可能使得第一码率超过码率门限,导致第一数据包在第二传输机会上传输时的性能恶化;为了避免码率过高的问题,终端设备可以在将第一数据包承载在第二传输机会上时,调高第二传输机会的调制阶数(称为修正调制阶数,其高于控制信息通知的调制阶数),对应的码率会降低,降低之后的码率(称为修正码率)可能不再超过码率门限,从而使得较大的第一参考TBS也可以承载在第二传输机会上,在传输效率和可靠性之间取得均衡。
例如,若控制信息通知的调制阶数为2,码率门限为1,第一参考TBS承载于第二传输机会对应的第一码率为1.2,超过码率门限,则终端设备可以将调制阶数调高一级,调至修正调制阶数为4,此时由于调制阶数升高,对应的码率会下降,第一参考TBS承载到第二传输机会且在调制阶数为4的情况下对应的码率降低为0.6,不再超过码率门限,从而使得第一参考TBS能以可以接受的性能承载到第二传输机会上。也就是说,终端设备在第二传输机会上使用修正调制阶数和修正码率发送所述第一数据包,其中,修正码率为第一数据包对应的TBS承载于第二传输机会且在修正调制阶数下所对应的码率,修正调制阶数高于控制信息通知的调制阶数。这里,修正调制阶数高于控制信息通知的调制阶数也可以描述为:终端设备确定在第二传输机会上发送第一数据包使用的修正调制阶数,修正调制阶数高于控制信息通知的调制阶数。
另一方面,若第一参考TBS承载于第二传输机会所对应的第一码率大于码率门限,且修正码率大于码率门限,则终端设备在K个传输机会中的至少一个传输机会对第一数据包进行数据传输,包括:终端设备在对第一数据包进行数据传输时丢弃第二传输机会,或者,终端设备在第二传输机会上使用修正调制阶数和修正码率对第一数据包的一部分信息进行数据传输;修正码率为第一参考TBS承载于第二传输机会且在修正调制阶数下所对应的码率,修正调制阶数高于控制信息通知的调制阶数。其中,第一数据包的一部分信息为第一数据包的编码后信息中的一部分信息,或者,第一数据包的一部分信息为第一数据包的***信息比特的一部分信息,具体可以参见上文中的描述。也就是说,如果在调高调制阶数之后将第一参考TBS承载到第二传输机会对应的码率仍然超过码率门限,则丢弃第二传输机会,或者,只在第二传输机会上传输第一数据包的一部分信息。另外,终端设备在第一传输机会上使用控制信息所通知的调制阶数和码率对第一数据包 进行数据传输。
相应地,网络设备接收到终端设备发送的第一数据包的传输机会中不包括第二传输机会,或者,网络设备在第二传输机会上接收终端设备使用修正调制阶数和修正码率发送的第一数据包的一部分信息。和/或,网络设备在第一传输机会上接收终端设备使用控制信息通知的调制阶数和码率发送的第一数据包。
需要说明的是,修正码率不大于码率门限也可以描述为:修正码率小于码率门限。修正码率大于码率门限也可以描述为:修正码率不小于码率门限。
此处,对本申请的实施例中所涉及的修正调制阶数进行具体描述。
本申请的实施例中所涉及的修正调制阶数可以是根据控制信息通知的调制阶数确定的调制阶数。进一步地,终端设备确定的修正调制阶数比控制信息通知的调制阶数高一级或高两级。例如,控制信息通知的调制阶数为2,则修正调制阶数为4或6,或者,控制信息通知的调制阶数为4,则修正调制阶数为6。可选地,修正调制阶数是能使修正码率不大于码率门限的最低调制阶数。可选地,修正调制阶数不高于可用于数据信息传输的预定义的最高等级的MCS所对应的调制阶数,例如调制阶数为6或8,也就是说,如果修正调制阶数已经达到最高可用的调制阶数时对应的修正码率仍然超过码率门限,则丢弃第二传输机会,或在第二传输机会上只传输第一数据包的部分信息,或者确定目标传输机会为第二传输机会(可参见后文中的描述)。
示例性地,可以通过如下方式确定修正调制阶数:将调制阶数在控制信息通知的调制阶数的基础上逐级上调,直到第一参考TBS承载于第二传输机会且在调整之后的调制阶数下对应的码率不大于码率门限,此时,调整之后的调制阶数为修正调制阶数;也就是说,若第一参考TBS承载于第二传输机会且在调整之后的调制阶数下对应的码率仍然大于码率门限,则继续逐级上调。另外,若调整之后的调制阶数已到达最高可用调制阶数的情况下,第一参考TBS承载于第二传输机会且在该调整之后的调制阶数下对应的码率仍然大于码率门限,则该最高可用调制阶数为修正调制阶数。这里逐级上调是指:上调之后的调制阶数比上调之前的调制阶数高一级,这里的调高一级是指在标准协议(36.214)定义的可用的MCS表格中,调高到下一个更高的调制阶数,例如2调高到4,或者4调高到6,或者6调高到8。
需要说明的是,上述实施例中仅示例性地描述了3种可能的方法,本申请实施例中还可能存在其它的方法,比如方法4:
终端设备确定出K个传输机会中每个传输机会对应的时域资源(例如时域资源起点和时域资源长度)或有效RE数目,可以根据K个传输机会中每个传输机会的时域资源长度或有效RE数目来确定目标有效RE数目。具体的,该K个传输机会对应于至少两种时域资源长度,终端设备所确定的目标传输机会对应于目标时域资源长度,其中,该目标时域资源长度为K个传输机会中,对应于相同时域资源长度的传输机会的个数最多的传输机会所对应的时域资源长度;或者,该K个传输机会对应于至少两种有效RE数目,终端设备所确定的目标传输机会对应于目标有效RE数目,其中,该目标有效RE数目为K个传输机会中,对应于相同有效RE数目的传输机会的个数最多的传输机会所对应的有效RE数目。举个例子,参见图4中的(a)所示,TTI#5对应的传输机会的时域资源长度为2个符号,而TTI#1(或TTI#2或TTI#3或TTI#4或TTI#6)对应的传输机会的时域资源长度为3 个符号,由于时域资源长度为3个符号的传输机会个数较多,因此可以确定时域资源长度为3个符号的任一个传输机会(TTI#1或TTI#2或TTI#3或TTI#4或TTI#6对应的传输机会)为目标传输机会,进而确定出目标有效RE数目。
在又一个实施例中,考虑到使用有效RE数目多的第一传输机会计算数据包对应的TBS时,若第一传输机会和第二传输机会所包括的资源差别较大,则计算得到的TBS可能过大以至于无法承载到第二传输机会上,或者会导致第二传输机会的传输性能恶化,具体体现为:根据第一传输机会计算出来的TBS承载到第二传输机会上所得到的第一码率过大,例如码率超过了码率门限,以至于***信息比特位丢失,这种情况下,使用第二传输机会来计算TBS可以确保可靠性不受损。反过来,若根据第一传输机会计算得到的TBS适中,使得根据第一传输机会计算出来的TBS承载到第二传输机会上所得到的码率虽然大于该TBS承载到第一传输机会的码率,但仍然不至于过大且有较大概率被网络设备正确解码,这种情况下,使用第一传输机会来计算TBS可以在可靠性不受过大损失的情况下提高传输效率。因此,可以根据第一码率和码率门限之间的关系确定目标传输机会,或者说根据第一码率自适应地判断使用第一传输机会包括的有效RE数目计算TBS(方法3)或使用第二传输机会包括的有效RE数目计算TBS(方法2)。
具体来说,一方面,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则目标传输机会为所述第二传输机会,可以理解为自适应地判断使用方法2。
进一步地,在目标传输机会为第二传输机会的情况下,终端设备在K个传输机会中的至少一个传输机会对第一数据包进行数据传输,包括:终端设备在第一传输机会上使用控制信息通知的调制阶数和第二码率对第一数据包进行数据传输。另外,终端设备在第二传输机会上使用控制信息通知的调制阶数和码率对第一数据包进行数据传输。其中,第二码率为第一数据包的TBS(即根据第二传输机会的有效RE数目计算的TBS)承载在第一传输机会上且在控制信息通知的调制阶数下对应的码率。进一步地,第二码率低于控制信息通知的码率。
相应地,网络设备在第一传输机会上接收终端设备使用控制信息通知的调制阶数和第二码率发送的第一数据包。和/或,网络设备在第二传输机会上接收终端设备使用控制信息通知的调制阶数和码率发送的第一数据包。
另一方面,若第一参考TBS承载于第二传输机会所对应的第一码率不大于码率门限,则目标传输机会为第一传输机会,可以理解为自适应地判断使用方法3。
需要说明的是:若目标传输机会为第一传输机会,则第一参考TBS等于终端设备在K个传输机会上实际发送第一数据包对应的TBS。
进一步地,在目标传输机会为第一传输机会的情况下,终端设备在K个传输机会中的至少一个传输机会对第一数据包进行数据传输,包括:终端设备在第二传输机会上使用控制信息通知的调制阶数和第一码率对第一数据包进行数据传输。另外,终端设备在第一传输机会上使用控制信息通知的调制阶数和码率对第一数据包进行数据传输。
相应地,网络设备在第二传输机会上接收终端设备使用控制信息通知的调制阶数和第一码率发送的第一数据包,和/或,网络设备在第一传输机会上接收终端设备使用控制信息通知的调制阶数和码率发送的第一数据包。
举个例子,参见图10所示,K个传输机会的起始符号为时隙#1的符号#1,网络设备通知的一个传输机会的时域资源长度为3个符号,则会在前4个传输机会之后,在时隙边界前留一个2个符号的gap,终端设备可以将这两个符号组成一个短传输机会,即第二传输机会,其包括的有效RE数目少于其它传输机会,例如TTI#1对应的第一传输机会。若根据第一传输机会包括的有效RE数目计算得到的第一参考TBS承载到TTI#5对应的第二传输机会时对应的码率不超过码率门限,如图10中的(a)所示,则可以将第一传输机会作为目标传输机会,并第一数据包承载到TTI#5对应的第二传输机会上发送;此时第一数据包对应的TBS即为第一参考TBS。若第一参考TBS承载到TTI#5对应的第二传输机会时对应的码率超过码率门限,如图10中的(b)所示,则可以将第二传输机会作为目标传输机会,计算第一数据包对应的TBS,此时第一传输机会上承载第一数据包所对应的码率低于控制信息通知的码率。
在又一个实施例中,终端设备除了根据第一码率和码率门限之间的关系自适应地确定目标传输机会外,还可以自适应地对第二传输机会调高调制阶数(使其高于控制信息通知的调制阶数),以降低第二传输机会的码率,从而使得较大的TBS也可以承载在第二传输机会上(此时目标传输机会为第一传输机会)。若在调高码率之后,将第一参考TBS承载到第二传输机会所对应的码率仍然超过码率门限,则目标传输机会为第二传输机会。
具体来说,一方面,若第一参考TBS承载于第二传输机会所对应的第一码率大于码率门限,且修正码率大于码率门限,则目标传输机会为第二传输机会,可以理解为自适应地判断使用方法2。其中,修正码率为第一参考TBS承载于第二传输机会且在修正调制阶数下所对应的码率,修正调制阶数高于控制信息通知的调制阶数。
进一步地,在目标传输机会为第二传输机会的情况下,终端设备在K个传输机会中的至少一个传输机会对第一数据包进行数据传输,包括:终端设备在第一传输机会上使用控制信息通知的调制阶数和第二码率对第一数据包进行数据传输。另外,终端设备在第二传输机会上使用控制信息通知的调制阶数和码率对第一数据包进行数据传输。相应地,网络设备在第一传输机会上接收终端设备使用控制信息通知的调制阶数和第二码率发送的第一数据包,和/或,网络设备在第二传输机会上接收终端设备使用控制信息通知的调制阶数和码率发送的第一数据包。
另一方面,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率不大于所述码率门限,则所述目标传输机会为所述第一传输机会,可以理解为自适应地判断使用方法3。其中,修正码率为第一参考TBS承载于第二传输机会且在修正调制阶数下所对应的码率,修正调制阶数高于控制信息通知的调制阶数。
进一步地,在目标传输机会为第一传输机会的情况下,终端设备在K个传输机会中的至少一个传输机会对第一数据包进行数据传输,包括:终端设备在第二传输机会上使用修正调制阶数和修正码率对所述第一数据包进行数据传输。另外,终端设备在第一传输机会上使用控制信息通知的调制阶数和码率对第一数据包进行数据传输。应理解,修正调制阶数高于控制信息通知的调制阶数,还可以描述为:修正调制阶数高于第一传输机会对应的调制阶数。也就是说,终端设备在第二传输机会上发送第一数据包所使用的修正调制阶数高于终端设备在第一传输机会上发送第一数据包所使用的调制阶数。相应 地,网络设备在第二传输机会上接收终端设备使用修正调制阶数和修正码率发送的第一数据包,和/或,网络设备在第一传输机会上接收终端设备使用控制信息通知的调制阶数和码率发送的第一数据包。
根据前文的描述可知,在场景1至场景3中,均可能出现K个传输机会中的至少两个传输机会包括的有效RE数目不相同,下面结合场景1至场景3对第一传输机会包括的有效RE数目大于第二传输机会包括的有效RE数目进行具体描述。
(1)对应于场景1,第一传输机会和第二传输机会中有一个传输机会中包括DMRS,另一个传输机会中不包括DMRS。也就是说,在场景1下,K个传输机会中包括至少一个包括DMRS的传输机会和至少一个不包括DMRS的传输机会。
在一个示例中,第二传输机会为包括DMRS的传输机会,且第一传输机会为不包括DMRS的传输机会。目标传输机会为K个传输机会中包括DMRS的传输机会。例如,对于图3中的(a)、(b)所示,不包括DMRS的传输机会的有效RE数目多于包括DMRS的传输机会。
进一步地,第一传输机会与第二传输机会的时域符号个数相同。
更进一步地,第一传输机会与第二传输机会的时域符号个数等于控制信息通知的对应于一个传输机会的时域符号个数。
在又一个示例中,第二传输机会为不包括DMRS的传输机会,第一传输机会为包括DMRS的传输机会。也就是说,目标传输机会为K个传输机会中不包括DMRS的传输机会。例如,对于图3中的(c)所示,包括DMRS的传输机会的有效RE数目多于不包括DMRS的传输机会的有效RE数目。
进一步地,第一传输机会中不用于承载DMRS的时域资源长度等于第二传输机会中不用于承载DMRS的时域资源长度,其中,不用于承载DMRS的时域资源长度具体是指用于承载DMRS的时域符号(即,用于承载其它上行信息而不用于承载DMRS的符号)的个数,也称为非DMRS时域符号个数。换句话说,第一传输机会与第二传输机会中的非DMRS符号个数相同。
进一步地,第一传输机会与第二传输机会中的非DMRS符号个数等于控制信息通知的一个传输机会的时域符号个数。
更进一步地,第一传输机会中承载DMRS的时域符号还用于承载数据信息,或者说,第一传输机会中承载的一部分数据信息与第一传输机会中的DMRS复用在该时域符号上,例如,以FDM的方式复用在该时域符号上,或者说,第一传输机会中承载DMRS的时域符号还包括有效RE。其中,该时域符号上所承载的数据信息为第一数据包中的一部分信息。例如图3中的(c)的符号#1上,DMRS和数据信息以FDM的方式复用,因此TTI#1(第一传输机会)相比于TTI#2(第二传输机会)额外多一部分有效RE,即符号#1上用于承载数据信息的RE。
在又一个示例中,第一传输机会中的非DMRS符号个数大于第二传输机会中的非DMRS符号个数。
(2)对应于场景2,第一传输机会的时域资源长度大于第二传输机会的时域资源长度。
在一个实施例中,落单的符号可以单独组成短传输机会或与前一段时域资源组成一 个长传输机会,下面分别结合下述两个示例进行具体描述。
在一个示例(简称为示例1)中,控制信息还用于通知K个传输机会中的一个传输机会的时域资源长度,且第二传输机会的时域资源长度为控制信息通知的一个传输机会的时域资源长度,第一传输机会为K个传输机会在第一时隙中的最后一个传输机会,第一传输机会的起始时刻与第一时隙的结束边界之间的时间间隔长于控制信息通知的一个传输机会的时域资源长度,可以理解为,落单的符号与前一段时域资源组成一个长传输机会。所述第一时隙为所述第一传输机会所在的时隙。
例如图4中的(b)所示,控制信息通知的一个传输机会的时域资源长度为3个符号,起始时刻为slot#1(即第一时隙)的第一个符号。TTI#1~TTI#3,以及slot#2的TTI#5对应的传输机会(其中任意一个传输机会即为第二传输机会)长度都是3个符号,可以理解为正常传输机会;此时,符号#13和符号#14落单,这两个落单的符号与前面的3个符号组成的TTI#4承载一个5个符号的长传输机会,即第一传输机会。
进一步地,第一传输机会的结束时刻等于第一时隙的结束边界。
进一步地,第一传输机会的起始时刻与第一时隙的结束边界之间的时间间隔小于控制信息通知的一个传输机会的时域资源长度的两倍。也就是说,若第一传输机会的起始时刻到第一时隙的结束边界之间的时域资源可以容纳对应于控制信息通知的一个传输机会的时域资源长度的传输机会,但不足以容纳两个对应于控制信息通知的一个传输机会的时域资源长度的传输机会,则第一传输机会的起始时刻与第一时隙的结束边界之间的时域资源组成一个长传输机会。
进一步地,若第一传输机会是K个传输机会的第一个传输机会,则第一传输机会的起始时刻为控制信息通知的K个传输机会的起始时刻,例如为根据控制信息通知的SLIV字段对应的起始符号确定的起始时刻。若第一传输机会不是K个传输机会的第一个传输机会,则第一传输机会的起始时刻由K个传输机会中,第一传输机会的前一个传输机会的结束时刻确定;例如,第一传输机会的起始时刻为K个传输机会中第一传输机会的前一个传输机会的结束时刻,或者,第一传输机会的起始时刻晚于第一传输机会的前一个传输机会的结束时刻,且与该前一个传输机会的结束时刻之间隔一个时间偏移,该时间偏移为预定义或网络设备配置或指示的,或者是根据时隙边界信息或网络设备通知的不用于发送上行数据信息的时域符号的信息确定的。例如,K个传输机会中,位于第一时隙的第一个传输机会的起始符号为符号i,K个传输机会中共J个传输机会位于第一时隙,其中第j(j=1,…,J-1)个传输机会的时域资源长度为L_j,则第一传输机会(即第J个传输机会)的起始符号为
Figure PCTCN2020071862-appb-000026
其中,符号i可以是SLIV字段指示的K个数据传输的起始符号,或者是J个传输机会在第一时隙上的第1个传输机会的起始符号,例如第一时隙的第一个符号。更进一步地,除第一传输机会以外的J-1个传输机会的时域资源长度L_j相同,或者,该J-1个传输机会中每个传输机会包括的非DMRS时域符号个数相同。
进一步地,K个传输机会中(或者,K个传输机会中位于第一时隙的传输机会中),除时域资源长度大于控制信息通知的一个传输机会的时域资源长度的传输机会(称为长传输机会)以外的传输机会对应的时域资源长度都为控制信息通知的一个传输机会的时域资源长度。其中,长传输机会的起始时刻与长传输机会所在的时隙的结束边界之间的 时间间隔长于控制信息通知的一个传输机会的时域资源长度,长传输机会包括第一传输机会。
例如,对于一个传输机会,若该传输机会的起始时刻与第一时隙的结束边界之间的时间间隔不小于控制信息通知的一个传输机会的时域资源长度的两倍,则该传输机会的长度等于控制信息通知的一个传输机会的时域资源长度,该传输机会为第二传输机会;若该传输机会的起始时刻与第一时隙的结束边界之间的时间间隔小于控制信息通知的对应于一个传输机会的时域资源长度的两倍,且大于控制信息通知的对应于一个传输机会的时域资源长度,则该传输机会的长度等于该传输机会的起始时刻与第一时隙的结束边界之间的时间间隔,该传输机会为第一传输机会。
在又一个示例(简称为示例2)中,控制信息还用于通知K个传输机会中的一个传输机会的时域资源长度,且第一传输机会对应的时域资源长度为控制信息通知的一个传输机会的时域资源长度,第二传输机会为K个传输机会在第一时隙中的最后一个传输机会,第二传输机会的起始时刻与第一时隙的结束边界之间的时间间隔短于控制信息通知的一个传输机会的时域资源长度,可以理解为,落单的符号单独组成短传输机会。所述第一时隙为所述第二传输机会所在的时隙。
例如图4中(a)所示,控制信息通知的一个传输机会的时域资源长度为3个符号,起始时刻为slot#1(即第一时隙)的第一个符号。TTI#1~TTI#4,以及slot#2的TTI#6对应的传输机会(其中任意一个传输机会即为第一传输机会)长度都是3个符号,可以理解为正常传输机会;此时,符号#13和符号#14落单,这两个落单的符号组成的TTI#5承载一个2个符号的短传输机会,即第二传输机会。
进一步地,第二传输机会的结束时刻等于第一时隙的结束边界。也就是说,若第二传输机会的起始时刻到第一时隙的结束边界之间的时域资源不足以容纳对应于控制信息通知的一个传输机会的时域资源长度的传输机会,则第二传输机会的起始时刻与第一时隙的结束边界之间的时域资源组成一个短传输机会。
进一步地,若第二传输机会是K个传输机会的第一个传输机会,则第二传输机会的起始时刻为控制信息通知的K个传输机会的起始时刻,例如为根据控制信息通知的SLIV字段对应的起始符号确定的起始时刻。若第二传输机会不是K个传输机会的第一个传输机会,则第二传输机会的起始时刻由K个传输机会中,第二传输机会的前一个传输机会的结束时刻确定;例如,第二传输机会的起始时刻为K个传输机会中第二传输机会的前一个传输机会的结束时刻,或者,第二传输机会的起始时刻晚于第二传输机会的前一个传输机会的结束时刻,且与该前一个传输机会的结束时刻之间间隔一个时间偏移,该时间偏移为预定义或网络设备配置或指示的,或者是根据时隙边界信息或网络设备通知的不用于发送上行数据信息的时域符号的信息确定的。例如,该K个传输机会中,位于第一时隙的第一个传输机会的起始符号为符号i’,该K个传输机会中共J’个传输机会位于第一时隙,其中第j’(j’=1,…,J’-1)个传输机会的时域资源长度为L_j’,则第二传输机会(即第J’个传输机会)的起始符号为
Figure PCTCN2020071862-appb-000027
其中,符号i’可以是SLIV字段指示的K个数据传输的起始符号,或者是J’个传输机会在第一时隙上的第1个传输机会的起始符号,例如第一时隙的第一个符号。更进一步地,除第二传输机会以外的J’-1个传输机会的时域资源长度L_j’相同,或者,该J’-1个传输机会中每个传输机会包括的非DMRS时域符号个 数相同。
进一步地,K个传输机会中(或者,K个传输机会中位于第一时隙的传输机会中),除时域资源长度小于控制信息通知的一个传输机会的时域资源长度的传输机会(称为短传输机会)以外的传输机会对应的时域资源长度都为控制信息通知的一个传输机会的时域资源长度。其中,短传输机会的起始时刻与短传输机会所在的时隙的结束边界之间的时间间隔短于控制信息通知的一个传输机会的时域资源长度,短传输机会包括第二传输机会。
例如,对于一个传输机会,若该传输机会的起始时刻与第一时隙的结束边界之间的时间间隔不小于控制信息通知的对应于一个传输机会的时域资源长度,则该传输机会的长度等于控制信息通知的对应于一个传输机会的时域资源长度,该传输机会为第一传输机会;若该传输机会的起始时刻与第一时隙的结束边界之间的时间间隔小于控制信息通知的对应于一个传输机会的时域资源长度,则该传输机会的长度等于该传输机会的起始时刻与第一时隙的结束边界之间的时间间隔,该传输机会为第二传输机会。
在又一个实施例中,终端设备可以自适应地确定落单的符号适用上述示例1或示例2,即自适应地确定落单的符号单独组成短传输机会或与前一段时域资源组成一个长传输机会。
一方面,若第一参考TBS承载于第一候选传输机会所对应的码率不大于(或者小于)码率门限,则第二传输机会为第一候选传输机会,且目标传输机会为第一传输机会;其中,第一传输机会对应的时域资源长度为控制信息通知的时域资源长度,第一参考TBS为根据第一传输机会包括的有效RE数目计算得到的TBS,第一候选传输机会的起始时刻与第一时隙的结束边界之间的时间间隔短于控制信息通知的时域资源长度,第一时隙为第一候选传输机会所在的时隙。也就是说,假设按照控制信息通知的一个传输机会的时域资源长度对应的传输机会包括的有效RE数目计算出第一参考TBS,如果将第一参考TBS承载到落单时域符号(即第一候选传输机会包括的符号)组成的短传输机会所得到的第一码率不大于码率门限,则可以将落单时域符号组成短传输机会以承载第一数据包。
或者,若第一参考TBS承载于第一候选传输机会所对应的码率大于(或者不小于)码率门限,且修正码率不大于(或者小于)码率门限,则第二传输机会为第一候选传输机会,且目标传输机会为第一传输机会,其中,修正码率为第一参考TBS承载于第一候选传输机会且在修正调制阶数下所对应的码率,修正调制阶数高于控制信息通知的调制阶数。修正码率和修正调制阶数的确定如前所述,不再赘述。
应理解,第一候选传输机会也可以称为第一候选时频资源,或者说第一候选传输机会对应的时频资源为第一候选时频资源。
进一步地,第一候选传输机会的结束时刻等于第一时隙的结束边界。
应理解,第一候选传输机会的起始时刻、时域资源长度以及结束时刻的确定方法类似于示例2中第二传输机会的起始时刻、时域资源长度、以及结束时刻的确定方法,例如第一候选传输机会的起始时刻为控制信息通知的K个传输机会的起始时刻,或者,由K个传输机会中,第一候选传输机会的前一个传输机会的结束时刻确定,具体不再赘述。
应理解,第一参考TBS承载于第一候选传输机会所对应的码率不大于码率门限,也 可以描述为,第一参考TBS承载于第一候选传输机会所对应的码率小于码率门限。
应理解,第一参考TBS承载于第一候选传输机会所对应的码率具体是指,第一参考TBS承载于第一候选传输机会在控制信息通知的调制阶数下所对应的第一码率。
另一方面,若第二参考TBS承载于第一候选传输机会所对应的码率大于(或者不小于)码率门限,则所述第一传输机会为第二候选传输机会,且目标传输机会为第二传输机会,所述第二传输机会对应的时域资源长度为所述控制信息通知的所述时域资源长度;其中,所述第二参考TBS为根据所述第二传输机会包括的有效RE数目计算得到的TBS,所述第一候选传输机会的起始时刻与所述第一时隙的结束边界之间的时间间隔短于所述控制信息通知的所述时域资源长度,所述第一时隙为所述第一候选传输机会和第二候选传输机会所在的时隙,所述第二候选传输机会对应的时频资源包括所述第一候选传输机会对应的时频资源,所述第二候选传输机会的起始时刻与所述第一时隙的结束边界之间的时间间隔长于所述控制信息通知的所述时域资源长度。也就是说,假设按照控制信息通知的对应于一个传输机会的时域资源长度对应的传输机会包括的有效RE数目计算出第一参考TBS,如果将第一参考TBS承载到落单时域符号(即,第一候选时频资源对应的符号)组成的短传输机会所得到的第一码率大于码率门限的情况下,则可以将落单时域符号与前一段对应于正常传输机会时长(即控制信息通知的一个传输机会的时域资源长度)的时域资源组成一个长传输机会以承载第一数据包。
或者,若第二参考TBS承载于第一候选传输机会所对应的码率大于(或者不小于)码率门限,且修正码率大于(或者不小于)码率门限,则第一传输机会为第二候选传输机会,且目标传输机会为第二传输机会,其中,修正码率为第二参考TBS承载于第一候选传输机会且在修正调制阶数下所对应的码率,修正调制阶数高于控制信息通知的调制阶数。修正码率和修正调制阶数的确定如前所述,不再赘述。
应理解,第二候选传输机会也称为第二候选时频资源,或者说第二候选传输机会对应的时频资源为第二候选时频资源。
进一步地,第二候选时频资源的结束时刻等于第一时隙的结束边界。
进一步地,第二候选时频资源的起始时刻与所述第一时隙的结束边界之间的时间间隔小于所述控制信息通知的对应于一个传输机会的时域资源长度的两倍。
应理解,第二候选传输机会的起始时刻、时域资源长度、以及结束时刻的确定方法类似于示例1中第一传输机会的起始时刻、时域资源长度、以及结束时刻的确定方法,例如第二候选传输机会的起始时刻为控制信息通知的K个传输机会的起始时刻,或者,由K个传输机会中,第二候选传输机会的前一个传输机会的结束时刻确定,具体不再赘述。
应理解,第二候选传输机会对应的时频资源包括第一候选传输机会对应的时频资源和第三候选传输机会对应的时频资源,其中,第三候选传输机会的结束时刻等于第一候选传输机会的起始时刻,或者,第一候选传输机会的起始时刻晚于第三候选传输机会的结束时刻,且与第三候选传输机会的结束时刻间隔预定义或网络设备配置或指示的偏移。进一步地,第三候选传输机会的时域资源长度对应于控制信息通知的一个传输机会的时域资源长度。
进一步地,第二候选传输机会的结束时刻等于第一候选传输机会的结束时刻,第二 候选传输机会的起始时刻等于第三候选传输机会的起始时刻。
应理解,本申请的实施例中的任意一个候选传输机会(例如第一候选传输机会、或第二候选传输机会或第三候选传输机会)对应的时频资源为时间上连续的时频资源,即任意一个候选传输机会在时域上对应时间连续的一个或多个时域符号。
应理解,上述任意一个候选传输机会对应的频域资源为控制信息通知的K个传输机会或K个传输机会中任意一个传输机会对应的频域资源。
例如图11所示,K个传输机会的起始符号为时隙#1的符号#1,网络设备通知的一个传输机会的时域资源长度为3个符号,则会在前4个传输机会之后,在时隙边界前留一个2个符号的gap。目标传输机会为正常传输机会(例如TTI#1对应的传输机会),第一参考TBS(即第一数据包的TBS)是根据3个符号的传输机会包括的有效RE数目计算得到的TBS。若将该2个符号组成一个短传输机会,并将第一参考TBS承载到该短传输机会上对应的码率不超过码率门限,则可以将该2个符号组成该短传输机会,并将第一数据包承载在该短传输机会上发送,如图11中的(a)所示,此时短传输机会为第二传输机会,正常传输机会为第一传输机会。若将第一参考TBS承载到该短传输机会上对应的码率超过码率门限,则将该2个符号与其前面的3个符号组成一个长传输机会,并将第一数据包承载在该长传输机会上发送,这样长传输机会上的码率就会降低下来,如图11中的(b)所示,此时长传输机会为第一传输机会,正常传输机会为第二传输机会。
(3)对应于场景3,第一传输机会对应的时域资源长度大于第二传输机会对应的时域资源长度,第一传输机会和第二传输机会为K个传输机会中前后相邻的两个传输机会。传输第一数据包的时频资源包括在时域上跨时隙边界的时频资源,第一传输机会对应于该跨时隙边界的时频资源中位于所述时隙边界前的时频资源,第二传输机会对应于该跨时隙边界的时频资源中位于所述时隙边界后的时频资源;或者,第一传输机会对应于该跨时隙边界的时频资源中位于所述时隙边界后的时频资源,所述第二传输机会对应于该跨时隙边界的时频资源中位于所述时隙边界前的时频资源。
从时域上来说,可以理解为,网络设备通过控制信息通知传输第一数据包的时频资源,该传输第一数据包的时频资源包括了跨时隙边界的时频资源,其被时隙边界划分为两段子时域资源,这两段子时域资源分别承载两个不同的传输机会,即第一传输机会和第二传输机会。该段时域资源的起点可以为控制信息的SLIV字段对应的起点,该段时域资源的时域资源长度可以为控制信息的SLIV字段对应的时域资源长度。
应理解,控制信息通知的传输第一数据包的时频资源可以包括该跨时隙边界的时频资源,或者,也可以除该跨时隙边界的时频资源之外还包括其他的时频资源,例如,该其他的时频资源作为第一传输机会和第二传输机会以外的传输机会,用于终端设备对该第一数据包进行数据传输。也就是说,控制信息通知的传输第一数据包的时频资源的时域资源长度可以等于跨时隙边界的时频资源的时域资源长度,或者,也可以大于跨时隙边界的时频资源的时域资源长度。
应理解,第一传输机会和第二传输机会的时域资源长度之和对应于该跨时隙边界的时频资源的时域资源长度,或者说,该跨时隙边界的时频资源由第一传输机会和第二传输机会的时频资源组成。
可选地,该跨时隙边界的时频资源在时域上对应于K个传输机会的总时域资源(即控制信息通知的传输第一数据包的时频资源的时域资源长度等于跨时隙边界的时频资源的时域资源长度)。此时,该跨时隙边界的时频资源中位于时隙边界前的时域资源的起始时刻为控制信息通知的该K个传输机会的总时域资源的起始时刻。例如图5中的(a)所示,控制信息通知的传输第一数据包的时频资源对应于K个传输机会的总时域资源,其长度为14个符号,起始时刻位于slot#1的符号#5,由于该段时域资源跨slot#1的结束边界,剩余的4个符号延伸到slot#2的起始部分;因此,控制信息通知的14个符号被slot#1的结束边界划分为K=2个传输机会,第一传输机会对应slot#1的符号#5~#14,第二传输机会对应slot#2的符号#1~#4。
可选地,该跨时隙边界的时频资源在时域上对应于K个传输机会中的一个传输机会的时域资源(即控制信息通知的传输第一数据包的时频资源的时域资源长度大于跨时隙边界的时频资源的时域资源长度,跨时隙边界的时频资源的时域资源长度为K个传输机会中的一个传输机会的时域资源长度)。例如图5中的(c)所示,控制信息通知的一个传输机会的时域资源长度为3符号,在slot#1的结束边界前有两个落单的符号,即符号#13和符号#14,这两个落单的符号组成一个传输机会,对应TTI#5;slot#2的符号#1组成一个传输机会,对应TTI#6;TTI#5对应的传输机会和TTI#6对应的传输机会的时域资源长度加起来等于3个符号。此时,K个传输机会可能对应大于两种的有效RE数目,比如TTI#1、TTI#2、TTI#3、TTI#4和TTI#7对应的传输机会包括的有效RE数目均为第一有效RE数目,TTI#5对应的传输机会包括的有效RE数目为第二有效RE数目,TTI#6对应的传输机会包括的有效RE数目为第三有效RE数目,且第一有效RE数目大于第二有效RE数目,第二有效RE数目大于第三有效RE数目。此时,该跨时隙边界的时频资源中位于时隙边界前的时域资源的起始时刻类似于上述示例2中第二传输机会的起始时刻的确定方法。例如,该时隙边界前的时域资源的起始时刻为控制信息通知的K个传输机会的起始时刻,或者,该时隙边界前的时域资源的起始时刻由K个传输机会中,该时隙边界前的时域资源对应的传输机会的前一个传输机会的结束时刻确定。
进一步地,在一个示例中,例如图5中的(c)所示,第一传输机会可以为TTI#1(或TTI#2或TTI#3或TTI#4或TTI#7)对应的传输机会,第二传输机会可以为TTI#6对应的传输机会。也就是说,若K个传输机会对应大于两种的有效RE数目,则第一传输机会可以为包括的有效RE数目最大的传输机会,第二传输机会可以为包括的有效RE数目最小的传输机会。进一步地,可以根据上文所描述的方法来确定目标传输机会为第一传输机会或第二传输机会。
在又一个示例中,例如图5中的(c)所示,第一传输机会可以为TTI#1(或TTI#2或TTI#3或TTI#4或TTI#7)对应的传输机会,第二传输机会可以为TTI#5对应的传输机会。进一步地,可以根据上文所描述的方法来确定目标传输机会为第一传输机会或第二传输机会。
在又一个示例中,第一传输机会和第二传输机会为K个传输机会中前后相邻的两个传输机会,第一传输机会与第二传输机会在时域上不连续。进一步的,第一传输机会与第二传输机会之间间隔至少一个网络设备通知的不用于发送上行数据信息的时域符号(也称为非上行符号)。更进一步的,第一传输机会与第二传输机会之间不包括网络设 备通知的用于上行传输的符号,例如网络设备通知的’上行’符号。传输第一数据包的时频资源包括在时域上跨上下行符号边界的时频资源,跨上下行符号边界的时频资源为第一传输机会对应的时域资源和第二传输机会对应的时域资源的并集。第一传输机会对应于该跨上下行符号边界的时频资源中位于所述至少一个非上行符号前的时频资源,第二传输机会对应于该跨上下行符号边界的时频资源中位于所述至少一个非上行符号后的时频资源;或者,第一传输机会对应于该跨上下行符号边界的时频资源中位于所述至少一个非上行符号后的时频资源,所述第二传输机会对应于该跨上下行符号边界的时频资源中位于所述至少一个非上行符号前的时频资源。
此时,第一传输机会的时域长度(或第一传输机会包括的有效RE数目)可以大于或小于或等于第二传输机会的时域长度(或第二传输机会包括的有效RE数目)。
可选的,非上行符号包括网络设备通知的’下行’符号或’灵活’符号。进一步的,非上行符号包括上下行转换的时间间隔。
在又一个示例中,K(或M)个传输机会中包括至少一个切分传输机会。进一步的,该至少一个切分传输机会中任意一个传输机会的时域长度小于所述控制信息通知的对应于该K(或M)个传输机会中一个传输机会的时域资源长度。
进一步的,该至少一个切分传输机会中任意一个传输机会(称为第一切分传输机会)与第二切分传输机会在时域上不连续,第二切分传输机会为K(或M)个传输机会中,第一切分传输机会的前一个(相邻的)传输机会或后一个(相邻的)传输机会;或者,第一切分传输机会为K(或M)个传输机会中的第一个传输机会或最后一个传输机会。进一步的,第一切分传输机会与第二切分传输机会之间间隔至少一个非上行符号;或者,第一切分传输机会为K(或M)个传输机会中的第一个传输机会,且第一切分传输机会的起始时刻相邻于至少一个非上行符号;或者,第一切分传输机会为K(或M)个传输机会中的最后一个传输机会,且第一切分传输机会的结束时刻相邻于至少一个非上行符号。也就是说,第一切分传输机会时域上与至少一个非上行符号相邻,例如第一切分传输机会的起始时刻等于至少一个非上行符号的结束时刻,或者,第一切分传输机会的结束时刻等于至少一个非上行符号的起始时刻。
更进一步的,第一切分传输机会与第二切分传输机会之间不包括网络设备通知的用于上行传输的符号,例如网络设备通知的’上行’符号。应理解,网络设备通知的用于上行传输的符号可以是通过高层信令和或物理层信令通知的。例如,该高层信令包括字段TDD-UL-DL-ConfigurationCommon或TDD-UL-DL-ConfigDedicated,物理层信令为对应于格式2_0的DCI。
进一步的,至少一个切分传输机会中的第一个传输机会为K(或M)个传输机会中的第一个传输机会,或者,至少一个切分传输机会中的第一个传输机会与K(或M)个传输机会中,该第一个传输机会的前一个传输机会之间不包括网络设备通知的非上行符号,或者,至少一个切分传输机会中的第一个传输机会与K(或M)个传输机会中,该第一个传输机会的前一个传输机会在时间上连续;类似的,至少一个切分传输机会中的最后一个传输机会为K(或M)个传输机会中的最后一个传输机会,或者,至少一个切分传输机会中的最后一个传输机会与K(或M)个传输机会中,该最后一个传输机会的后一个传输机会之间不包括网络设备通知的非上行符号,或者,至少一个切分传输机会 中的最后一个传输机会与K(或M)个传输机会中,该最后一个传输机会的后一个传输机会在时间上连续。
应理解,该至少一个切分传输机会中任意两个相邻的传输机会为K(或M)个传输机会中前后相邻的两个传输机会,也就是说,该至少一个切分传输机会中任意两个相邻的传输机会之间不包括K(或M)个传输机会中的其他传输机会,例如,时域长度等于所述控制信息通知的对应于该K(或M)个传输机会中一个传输机会的时域资源长度的传输机会。传输第一数据包的时频资源包括在时域上跨上下行符号边界的时频资源,跨上下行符号边界的时频资源为至少一个切分传输机会包括的所有传输机会对应的时域资源的并集。例如,若该至少一个非上行符号前剩余的可以用于上行传输的时域资源长度小于所述控制信息通知的对应于该K(或M)个传输机会中一个传输机会的时域资源长度,则用于传输第一数据包的时域资源被非上行符号切分,形成该至少一个切分传输机会中的一个传输机会,称为第三切分传输机会。再例如,在该至少一个非上行符号后,形成该至少一个切分传输机会中的一个传输机会,称为第四切分传输机会。
应理解,该至少一个切分传输机会中包括第三切分传输机会。
应理解,该至少一个切分传输机会中包括第四切分传输机会。
进一步的,该至少一个非上行符号为时间上前后连续的符号。
例如,第三切分传输机会的结束时刻为该至少一个非上行符号的起始时刻。即,第三切分传输机会为位于至少一个非上行符号之前的传输机会。
再例如,第四切分传输机会的起始时刻为该至少一个非上行符号的结束时刻;或者,第四切分传输机会的起始时刻为时隙边界或上下行符号边界,且K(或M)个传输机会中,第四切分传输机会的前一个相邻的传输机会的起始时刻为该至少一个非上行符号的结束时刻。即,第四切分传输机会为位于至少一个非上行符号之后的传输机会。
再例如,该至少一个切分传输机会包括上一个示例中的第一传输机会和第二传输机会。
可选的,该至少一个切分传输机会包括的所有传输机会的时域资源长度之和(或者第一传输机会与第二传输机会的时域资源长度之和)对应于所述控制信息通知的对应于该K个传输机会中一个传输机会的时域资源长度。此时,跨上下行符号边界的时频资源的长度等于所述控制信息通知的对应于该K个传输机会中一个传输机会的时域资源长度。例如图17(a)所示,所述控制信息通知的时域资源对应3个名义上的传输机会,每个名义上的传输机会的时域长度为7个符号;至少一个非上行符号为下行符号,包括时隙2的符号1~符号3;第一个名义上的传输机会未被切分,因此形成实际的传输机会#1;第二个名义上的传输机会被至少一个非上行符号切分,因此第二个名义上的传输机会跨该至少一个非上行符号,在时隙1的符号13~符号14形成实际的传输机会#2,在时隙2的符号4~符号8形成实际的传输机会#3,实际的传输机会#2和实际的传输机会#3的时域资源之和等于名义上的传输机会的时域长度,即7个符号;时隙2的符号9~符号12形成实际的传输机会#4;K个传输机会即包括实际的传输机会#1~实际的传输机会#4。
也就是说,若该至少一个非上行符号与所述控制信息通知的任意一个名义上的传输机会(称为第一名义上的传输机会)在时域上重叠,则时域上重叠的时间不计入第一名义上的传输机会对应的时域资源,名义上的传输机会的描述见后文。或者说,该至少一 个非上行符号对K(或M)个传输机会的切分影响切分之后的传输机会(第四切分传输机会)的结束时刻的确定,或者说,第四切分传输机会的结束时刻根据所述控制信息通知的名义上的传输机会的时域资源信息以及至少一个非上行符号的时域资源(包括时域长度和时域起点)确定。
可选的,该至少一个切分传输机会中的第三切分传输机会的起始时刻为所述控制信息通知的时域起点,或者,第三切分传输机会的起始时刻与所述控制信息通知的时域起点之间的时间间隔对应g个名义上的传输机会的总时域长度,g为大于或等于1且小于G的整数。第三切分传输机会的结束时刻由该至少一个非上行符号确定。具体的,第三切分传输机会的结束时刻相邻于该至少一个非上行符号,即,第三切分传输机会的结束时刻为该至少一个非上行符号的起始时刻。或者,第三切分传输机会的结束时刻与所述控制信息通知的时域起点之间的时间间隔g+1个名义上的传输机会的总时域长度。
可选的,该至少一个切分传输机会中的第四切分传输机会的结束时刻为与所述控制信息通知的时域起点之间的时间间隔对应g’个名义上的传输机会的总时域长度,g’为大于或等于1且小于或等于G的整数。第四切分传输机会的起始时刻由该至少一个非上行符号确定。具体的,第四切分传输机会的起始时刻相邻于该至少一个非上行符号,即,第四切分传输机会的起始时刻为该至少一个非上行符号的结束时刻。或者,第四切分传输机会的起始时刻为时隙边界或上下行符号边界,且K(或M)个传输机会中,第四切分传输机会的前一个相邻的传输机会的起始时刻为该至少一个非上行符号的结束时刻。也就是说,第四切分传输机会的结束时刻由所述控制信息通知的时域起点以及所述控制信息通知的名义上的传输机会的时域长度确定,而不根据该至少一个非上行符号的时域长度或时域位置确定。
具体的,所述控制信息通知的时域起点也称为所述控制信息通知的K(或M)个传输机会的时域起点,或者称为所述控制信息通知的名义上的传输机会的时域起点。更具体的,所述控制信息通知的时域起点为所述控制信息中的Time domain resource assignment字段通知的时域起点。
也就是说,若该至少一个非上行符号与所述控制信息通知的任意一个名义上的传输机会(第一名义上的传输机会)在时域上重叠,则该时域上重叠的时间计入第一名义上的传输机会对应的时域资源。或者说,该至少一个非上行符号对K(或M)个传输机会的切分并不影响切分之后的传输机会(第四切分传输机会)的结束时刻的确定,第四切分传输机会的结束时刻仍然根据所述控制信息通知的名义上的传输机会的时域资源信息确定。
例如图17(b)所示,所述控制信息通知的时域资源对应3个名义上的传输机会,每个名义上的传输机会的时域长度为7个符号;至少一个非上行符号为下行符号,包括时隙2的符号1~符号3;第一个名义上的传输机会未被切分,因此形成实际的传输机会#1;第二个名义上的传输机会被至少一个非上行符号切分,在时隙1的符号13~符号14形成实际的传输机会#2,并在时隙2的符号4~符号5形成实际的传输机会#3,实际的传输机会#3的结束时刻与所述控制信息通知的时域资源的起点之间的时间间隔为2个名义上的传输机会的总时域长度,而不受切分的影响(该结束时刻等效于未被切分情况下的名义上的传输机会#2的结束时刻);时隙2的符号6~符号12形成实际的传输机会#4;K个传输机会 即包括实际的传输机会#1~实际的传输机会#4。
再例如图17(c)所示,所述控制信息通知的时域资源对应4个名义上的传输机会,每个名义上的传输机会的时域长度为4个符号;至少一个非上行符号为下行符号,包括时隙2的符号1~符号3;第一个名义上的传输机会未被切分,因此形成实际的传输机会#1;第二个名义上的传输机会被至少一个非上行符号切分,在时隙1的符号13~符号14形成实际的传输机会#2;第三个名义上的传输机会被至少一个非上行符号切分,在时隙2的符号4~符号6形成实际的传输机会#3,实际的传输机会#3的结束时刻与所述控制信息通知的时域资源的起点之间的时间间隔为3个名义上的传输机会的总时域长度,而不受切分的影响(该结束时刻等效于未被切分情况下的名义上的传输机会#3的结束时刻);时隙2的符号7~符号10形成实际的传输机会#4;K个传输机会即包括实际的传输机会#1~实际的传输机会#4。
该方法的好处在于,该至少一个非上行符号对K(或M)个传输机会的切分不影响第四切分传输机会之后其他不与该至少一个非上行符号时域重叠的传输机会的时域起点和时域长度,例如,图17(b)中实际的传输机会#4的时域长度仍然等于所述控制信息通知的名义上的传输机会的时域长度,即7个符号。这样可以更好地保障其他传输机会的时域长度不受切分的影响而变短,从而更好的保障传输可靠性。
具体的,所述控制信息通知名义上的传输机会(nominal TO或nominal PUSCH)的时域资源信息(例如,时域资源信息包括时域起点和时域长度)。进一步的,网络设备通知名义上的传输机会的重复次数G,或者说名义上的传输机会的时域资源信息包括G的信息,G为大于或等于1的正整数。进一步的,G个名义上的传输机会时域上前后连续,且G个名义上的传输机会中的每个名义上的传输机会的长度为所述控制信息通知的一个传输机会的时域资源长度,称为名义上的传输机会的时域资源长度,名义上的传输机会的描述见后文。G个名义上的传输机会中第一个名义上的传输机会的时域起点为所述控制信息(例如所述控制信息中的Time domain resource assignment字段)通知的名义上的传输机会的时域资源对应的时域起点。在G个名义上的传输机会与网络设备通知的至少一个非上行符号在时域上重叠的情况下,G个名义上的传输机会被该至少一个非上行符号切分,G个名义上的传输机会与至少一个非上行符号时域重叠的符号不用于第一数据包的传输,G个名义上的传输机会中剩余的时域资源(例如G个名义上的传输机会中与网络设备通知的任意非上行符号不重叠的时域资源)形成K个传输机会。更具体的,对于G个名义上的传输机会中任意一个名义上的传输机会(称为第一名义上的传输机会),若第一名义上的传输机会与至少一个非上行符号在时域上重叠,且第一名义上的传输机会包括与至少一个非上行符号不重叠的时域资源,则所述不重叠的时域资源形成该至少一个切分传输机会中的一个传输机会,例如第一切分传输机会,其中第一切分传输机会用于对第一数据包进行一次数据传输。若第一名义上的传输机会与至少一个非上行符号在时域上重叠,且第一名义上的传输机会不包括与至少一个非上行符号不重叠的时域资源,则第一名义上的传输机会不计入K个传输机会。若第一名义上的传输机会与至少一个非上行符号在时域上不重叠,则第一名义上的传输机会为K个传输机会中的一个传输机会(或者说计入K个传输机会),例如后文的第四传输机会;进一步的,第一名义上的传输机会为包括在K个传输机会且不包括在至少一个切分传输机会中的一个传输机会。
应理解,除了如前所述“目标有效RE数目为所述K个传输机会中每个传输机会所包括的平均有效RE数目,或者为所述K个传输机会中的目标传输机会所包括的有效RE数目”以外,目标有效RE数目还可以包括以下两种情况:
情况1:对于该跨时隙边界的时频资源在时域上对应于该K个传输机会的总时域资源的场景,目标有效RE数目为该K个传输机会包括的总的有效RE数目被G平均得到的平均有效RE数目,其中G为正整数,且G不等于K。假设K个传输机会所包括的总的有效RE数目为N,则目标有效RE数目由N/G得到,例如对N/G向上取整或向下取整。考虑到控制信息通知该K个传输机会的总时域资源长度,且该总时域资源被时隙边界划分为多个传输机会的情况下,若时隙边界两侧被划分的第一传输机会和第二传输机会时域资源差别很大,例如第一传输机会的有效RE数目远大于第二传输机会,则使用K个平均有效RE数目确定TBS或者使用第一传输机会的有效RE数目确定TBS可能会导致TBS偏大,而使用第二传输机会的有效RE数目确定TBS可能会导致TBS偏小。因此,为了均衡TBS的大小,以取得传输效率和可靠性之间的折中,可以根据该K个传输机会中包括的总的有效RE数目平均到G个虚拟传输机会上的平均有效RE数目确定第一数据包的TBS,网络设备可以通过配置或指示G的取值,以调整得到合适的TBS。具体的,G为所述控制信息(即通知传输第一数据包的时频资源的控制信息)以外的其他控制信息配置或指示的数值。更具体的,G对应于高层参数aggregationFactorUL或repK配置的取值。例如,对于图5中的(a)或图5中的(b)所示,K=2,网络设备通过所述控制信息以外的其他控制信息配置的G=4,第一传输机会和第二传输机会所包括的有效RE数目分别为N 1和N 2,则目标有效RE数目由(N 1+N 2)/G得到。
情况2:对于该跨时隙边界的时频资源对应于该K个传输机会的总时域资源的场景,或者,对于该跨时隙边界的时频资源的长度对应于所述控制信息通知的对应于该K个传输机会中一个传输机会的时域资源长度的场景,目标有效RE数目为所述第一传输机会所包括的有效RE数目与所述第二传输机会所包括的有效RE数目之和(即,目标有效RE数目不等于第一传输机会所包括的有效RE数目,也不等于第二传输机会所包括的有效RE数目)。换句话说,目标有效RE数目为目标传输机会所包括的有效RE数目,目标传输机会对应的时域资源长度为所述控制信息通知的对应于该K个传输机会中一个传输机会的时域资源长度(即,目标传输机会不是第一传输机会也不是第二传输机会)。具体的,该K个传输机会除了包括第一传输机会和第二传输机会,还包括第四传输机会,第四传输机会所对应的时域资源长度等于所述控制信息通知的对应于一个传输机会的时域资源长度,换句话说,第四传输机会为目标传输机会。例如图5(c)中,第四传输机会为TTI#1/2/3/4/7对应的传输机会,第一传输机会为TTI#5对应的传输机会,第二传输机会TTI#6对应的传输机会。此时,第一传输机会所包括的有效RE数目可以大于第二传输机会所包括的有效RE数目,也可以等于第二传输机会所包括的有效RE数目。进一步的,第四传输机会所包括的有效RE数目大于第一传输机会所包括的有效RE数目以及第二传输机会所包括的有效RE数目。
需要说明的是:可选地,若第一传输机会早于第二传输机会,如图5中的(b)所示,则第一传输机会的结束时刻等于时隙边界等于第二传输机会的起始时刻;或者说,第一传输机会的结束时刻早于或等于时隙边界,时隙边界早于或等于第二传输机会的起 始时刻。若第一传输机会的结束时刻早于时隙边界,则两者之间的时间间隔为预定义或网络设备配置或指示的;若所述时隙边界早于所述第二传输机会的起始时刻,则两者之间的时间间隔为预定义或网络设备配置或指示的。可选地,所述时隙边界为第一传输机会所在的时隙的结束边界,第一传输机会的起始时刻等于该时隙的起始边界,或者,第一传输机会的起始时刻等于控制信息通知的K个传输机会的总时域资源的起始时刻;第二传输机会的结束时刻等于该时隙相邻的下一个时隙的结束边界,或者,所述第二传输机会的结束时刻等于控制信息通知的K个传输机会的总时域资源的结束时刻。
可选地,若第二传输机会早于第一传输机会,如图5中的(a)所示,第二传输机会的结束时刻等于所述时隙边界等于所述第一传输机会的起始时刻。或者说,所述第二传输机会的结束时刻早于或等于时隙边界,所述时隙边界早于或等于所述第一传输机会的起始时刻。若所述第二传输机会的结束时刻早于所述时隙边界,则两者之间的时间间隔为预定义或网络设备配置或指示的;若所述时隙边界早于所述第一传输机会的起始时刻,则两者之间的时间间隔为预定义或网络设备配置或指示的。可选地,所述时隙边界为第二传输机会所在的时隙的结束边界,所述第二传输机会的起始时刻等于所述该时隙的起始边界,或者,所述第二传输机会的起始时刻等于控制信息通知的K个传输机会的总时域资源的起始时刻;所述第一传输机会的结束时刻等于该时隙的下一个时隙的结束边界,或者,所述第一传输机会的结束时刻等于控制信息通知的K个传输机会的总时域资源的结束时刻。
需要说明的是,对于上述目标传输机会对应的时域资源长度为所述控制信息通知的对应于该K个传输机会中一个传输机会的时域资源长度的场景,或者目标传输机会等于第四传输机会的场景,目标传输机会所包括的有效RE数目大于第一传输机会所包括的有效RE数目与第二传输机会所包括的有效RE数目之和。例如,该跨时隙边界或跨上下行符号边界的时域资源包括第一传输机会和第二传输机会,由于第一传输机会和第二传输机会的时域资源之和等于所述控制信息通知的对应于该K个传输机会中一个传输机会的时域资源长度,且第一传输机会和第二传输机会各自包括D个DMRS符号,而目标传输机会可能仅包括D个DMRS符号,其中D为正整数,例如等于1,因此目标传输机会的DMRS开销小于第一传输机会和第二传输机会的DMRS开销之和,从而目标传输机会的有效RE数目多于第一传输机会和第二传输机会的有效RE数目之和。类似的,对于跨上下行符号边界的场景,由于至少一个切分传输机会使用了更多的DMRS,因此目标传输机会的有效RE数目多于至少一个切分传输机会中的所有传输机会所包括的有效RE数目之和。
进一步的,网络设备通过所述控制信息或与所述控制信息不同的第二控制信息通知的对应于所述时频资源(即传输第一数据包的时频资源)的重复传输次数(repetition number或number of repetitions)信息。具体的,第二控制信息为物理层控制信息或者高层信令。例如,所述控制信息或第二控制信息中的Time domain resource assignment字段或number of repetitions字段或nominal number of repetitions字段用于通知该重复传输次数信息。再例如,第二控制信息为高层信令,第二控制信息包括的aggregationFactorUL或repK字段用于通知该重复传输次数信息。具体的,重复传输次数对应前面所述的G。应理解,该重复传输次数为所述控制信息或第二控制信息通知的重复传输次数,也称为名 义上的重复传输次数(nominal number of repetitions),该重复传输次数可以等于实际用于传输第一数据包的传输机会个数,也可以不等于实际用于传输第一数据包的传输机会个数,例如当K(或M)个传输机会跨时隙边界或跨上下行符号边界的情况下,一个名义上的传输机会可能形成多个实际的传输机会。或者说,该重复传输次数可以等于K(或M),也可以不等于K(或M)。
应理解,所述控制信息通知的对应于该K个传输机会中一个传输机会的时域资源长度也可以称为所述控制信息通知的一个传输机会的时域资源长度,或者称为所述控制信息通知的用于对第一数据包进行数据传输的一个传输机会的时域资源长度,或者称为所述控制信息通知的名义上的传输机会的时域资源长度。
例如,名义上的传输机会的时域资源长度为所述控制信息中的Time domain resource assignment字段通知的对应于一个传输机会的时域资源长度。
应理解,所述控制信息通知的对应于该K个传输机会中一个传输机会的时域资源也可以称为所述控制信息通知的一个传输机会的时域资源,或者称为所述控制信息通知的用于对第一数据包进行数据传输的一个传输机会的时域资源,或者称为所述控制信息通知的名义上的传输机会的时域资源,或者称为G个名义上的传输机会中的第一个名义上的传输机会的时域资源。
也就是说,名义上的传输机会的时域资源(包括时域起点和时域长度)也根据所述控制信息确定。例如,名义上的传输机会的时域起点也是由根据所述控制信息中的Time domain resource assignment字段确定的。
更进一步的,G个名义上的传输机会的时域资源由所述控制信息通知的名义上的传输机会的时域资源以及上述重复传输次数信息确定。具体的,G个名义上的传输机会中的第1个名义上的传输机会的时域起点为所述控制信息通知的时域起点,第g+1个名义上的传输机会的时域起点为第g个名义上的传输机会的时域终点或者由第g个名义上的传输机会的时域终点确定,g为大于或等于1且小于G的整数。更具体的,G个名义上的传输机会中每个名义上的传输机会的时域资源长度都对应于所述控制信息通知的名义上的传输机会的时域资源长度。例如,所述控制信息通知的时域起点为符号i,所述控制信息通知的名义上的传输机会的时域资源长度为L个符号,则第g个名义上的传输机会的时域起点为符号i+g*L,时域长度为L个符号。
应理解,所述控制信息通知的对应于该K个传输机会中一个传输机会的时域资源长度用于确定该K个传输机会的时域资源图样。但是考虑到该K个传输机会的时域资源图样还根据其他因素确定,例如时隙边界、上下行符号边界等,因此所述控制信息通知的对应于该K个传输机会中一个传输机会的时域资源长度可以等于该K个传输机会中至少一个传输机会的时域资源长度,也可以不等于该K个传输机会中任意一个传输机会的时域资源长度。
在一个示例中,目标有效RE数目为虚拟目标传输机会所包括的有效RE数目,虚拟目标传输机会对应的时域资源长度为所述控制信息通知的对应于该K个传输机会中一个传输机会的时域资源长度。此时,虚拟目标传输机会并不是实际用于终端设备传输第一数据包的传输机会,或者说,虚拟目标传输机会并不对应K个传输机会中的任意一个传输机会或者说实际用于发送数据包的传输机会,而是用于确定目标有效RE数目的。也就 是说,即使K个传输机会不包括时域长度等于所述控制信息通知的对应于该K个传输机会中一个传输机会的时域资源长度的传输机会(例如,K个传输机会中都是由于跨时隙边界或跨上下行符号边界而被切分的短传输机会,任意一个短传输机会时域长度小于虚拟目标传输机会的时域长度),终端设备仍然根据所述控制信息通知的对应于一个传输机会的时域资源长度的虚拟目标传输机会确定第一数据包的TBS,而不是根据K个传输机会中实际包括的传输机会所包括的有效RE数目确定第一数据包的TBS。其中,如何确定虚拟目标传输机会中包括的有效RE数目类似于确定第一传输机会或第二传输机会或第三传输机会或第四传输机会中的有效RE数目的方法,不再赘述。
应理解,虚拟目标传输机会也称为名义上的传输机会。
进一步的,该重复传输次数小于或等于第一重复传输次数门限(例如第一重复传输次数门限为1),或者,该K个传输机会不包括除第一传输机会和第二传输机会以外的其他传输机会,或者,该K个传输机会包括第一传输机会和第二传输机会但不包括任意一个第四传输机会,或者,在该K个传输机会包括的传输机会的时域资源长度都小于所述控制信息通知的对应于一个传输机会的时域资源长度;其中,第四传输机会为时域资源长度等于所述控制信息通知的对应于一个传输机会的时域资源长度的传输机会。也就是说,在上述任一情况下,目标有效RE数目为虚拟目标传输机会所包括的有效RE数目。
应理解,虚拟目标传输机会中的PRB个数等于该K个传输机会对应的PRB个数。应理解,虚拟目标传输机会中的有效RE不包括被网络设备通知为开销RE的RE。在开销RE包括用于承载DMRS的RE的情况下,虚拟目标传输机会中的DMRS对应的RE数目可以基于网络设备通知的DMRS的个数信息、DMRS图样信息等信息确定。在开销RE包括用于其他开销RE的情况下,虚拟目标传输机会中的其他开销RE数目可以基于网络设通过高层信令xOverhead通知的开销RE信息确定。
可选的,目标有效RE数目为参考目标传输机会所包括的有效RE数目,参考目标传输机会为用于传输不同于第一数据包的另一个数据包的传输机会,或者,参考目标传输机会为对应于与第一数据包的HARQ进程号不同的另一个HARQ进程号的传输机会,或者,参考目标传输机会为与该K个传输机会所在的GF周期不同的另一个GF周期中的一个传输机会,其中,该K个传输机会所在的GF周期与该另一个GF周期都是所述控制信息通知的GF周期。更进一步的,参考目标传输机会是根据预定义或者预配置的准则确定的,例如,参考目标传输机会为所述控制信息通知的所有传输机会中包括的有效RE数目最小的传输机会或包括的有效RE数目最大的传输机会。
在另一个示例中,,终端设备根据网络设备通知的该重复传输次数信息或者根据K个传输机会中所包含的传输机会的时域资源信息确定目标有效RE数目,或者说,目标有效RE数目与该重复传输次数信息或者K个传输机会中所包含的传输机会的时域资源信息关联。具体的,K个传输机会中所包含的传输机会的时域资源信息包括K个传输机会中所包含的传输机会的个数信息,和或,K个传输机会中所包含的传输机会的时域资源长度的信息。具体的,K个传输机会中所包含的传输机会的时域资源长度的信息包括:K个传输机会中所包含的某个传输机会的时域资源长度的信息,或者每个传输机会的时域资源长度的信息。K个传输机会中所包含的某个传输机会的时域资源长度的信息例如,K个传输机会中是否包含任意一个第四传输机会,第四传输机会为时域资源长度对应于 所述控制信息通知的对应于一个传输机会的时域资源长度的传输机会;或者例如,K个传输机会所包含的某个传输机会为K个传输机会中时域长度最长的传输机会。
可选的在该重复传输次数小于或等于第一重复传输次数门限(例如第一重复传输次数门限为1)的情况下,或者,在该K个传输机会不包括除第一传输机会和第二传输机会以外的其他传输机会的情况下,或者,在该K个传输机会包括第一传输机会和第二传输机会但不包括任意一个第四传输机会的情况下,或者,在该K个传输机会包括的传输机会的时域资源长度都小于(或者说该K个传输机会包括的时域长度最长的传输机会的时域资源长度小于)所述控制信息通知的对应于一个传输机会的时域资源长度的情况下,目标有效RE数目为所述第一传输机会所包括的有效RE数目与所述第二传输机会所包括的有效RE数目之和,或者,目标有效RE数目为所述K个传输机会所包括的有效RE数目之和。例如,若K个传输机会中都是由于跨时隙边界或者跨上下行符号边界而切分成的传输机会,则K个传输机会中任意一个传输机会的时域长度都小于所述控制信息通知的对应于一个传输机会的时域资源长度,且有可能K个传输机会包括的有效RE数目之和也小于所述控制信息通知的对应于一个传输机会的时域资源长度的传输机会(例如虚拟目标传输机会)包括的有效RE数目之和,因此使用所述K个传输机会所包括的有效RE数目之和确定TBS,可以避免TBS过大,确保可靠性。
或者,在该重复传输次数小于或等于第一重复传输次数门限(例如第一重复传输次数门限为1)的情况下,或者,在该K个传输机会不包括除第一传输机会和第二传输机会以外的其他传输机会的情况下,或者,在该K个传输机会包括第一传输机会和第二传输机会但不包括任意一个第四传输机会的情况下,或者,在该K个传输机会包括的传输机会的时域资源长度都小于(或者说该K个传输机会包括的时域长度最长的传输机会的时域资源长度小于)所述控制信息通知的对应于一个传输机会的时域资源长度的情况下,目标有效RE数目为目标传输机会所包括的有效RE数目,目标传输机会为第一传输机会或第二传输机会。例如,在第一传输机会包括的有效RE数目大于第二传输机会包括的有效RE数目的情况下,目标传输机会为第一传输机会。类似的,若K个传输机会中都是由于跨时隙边界或者跨上下行符号边界而切分成的传输机会,使用所述K个传输机会所包括的其中一个目标传输机会所包括的有效RE数目确定TBS,可以避免TBS过大,确保可靠性。
其中,第四传输机会为时域资源长度等于所述控制信息通知的对应于一个传输机会的时域资源长度的传输机会。
应理解,第四传输机会的时域长度等于名义上的传输机会的时域长度。第四传输机会也可以称为名义上的传输机会。
可选的,在该重复传输次数大于第一重复传输次数门限的情况下,或者,在该K个传输机会包括除第一传输机会和第二传输机会以外的其他传输机会(例如第四传输机会)的情况下,或者,在该K个传输机会包括至少一个时域资源长度大于或等于(或者说该K个传输机会包括的时域长度最长的传输机会的时域资源长度大于或等于)第四传输机会的传输机会的情况下,目标有效RE数目为目标传输机会所包括的有效RE数目,目标传输机会对应的时域资源长度为所述控制信息通知的对应于该K个传输机会中一个传输机会的时域资源长度,或者说,目标传输机会为第四传输机会。进一步的,上述情 况还包括:该K个传输机会还包括至少一个时域资源长度小于第四传输机会的传输机会(例如第一传输机会和或第二传输机会)。例如,若K个传输机会中至少包括一个第四传输机会,其时域资源长度等于所述控制信息通知的对应于一个传输机会的时域资源长度,则使用时域资源长度较大的第四传输机会包括的有效RE数目确定TBS,可以确保自解码,因而能够在确保可靠性的前提下,尽量提高传输效率。
除了上述方法1~方法3,本申请实施例中,确定目标有效RE数目的方法还可以包括以下方法:
方法4:根据K个传输机会中的RV信息确定目标有效RE数目。或者说,目标有效RE数目与K个传输机会中的RV信息关联。具体的,目标有效RE数目为K个传输机会中的目标传输机会包括的有效RE数目或K个传输机会中的V个传输机会包括的有效RE数目之和,其中目标传输机会或V个传输机会由K个传输机会中的RV信息确定,或者说,目标传输机会或V个传输机会与K个传输机会中的RV信息关联。
在一个示例中,目标有效RE数目为K个传输机会中的目标传输机会包括的有效RE数目,目标传输机会为K个传输机会中对应于目标RV版本的传输机会。目标RV版本为预定义或网络设备预配置的RV版本,例如,目标RV版本为RV 0。此时,K个传输机会中的RV信息体现为:目标RV版本与目标传输机会的对应关系。目标传输机会对应于目标RV版本由网络设备通知给终端设备。网络设备预配置的RV版本也称为信令配置的RV版本。
考虑到通常而言RV 0是所有RV版本中,包括***信息比特数目最多的RV版本,因此,确定目标传输机会为对应于RV 0的传输机会,可以确保该对应于RV 0的目标传输机会能够自解码,进而K个传输机会联合起来也可以自解码,确保可靠性。相比而言,若使用对应于其他RV版本的传输机会作为目标传输机会,有可能导致确定的第一数据包的TBS过大,导致对应于RV 0的传输机会由于丢失部分***信息比特而不能自解码,影响K个传输机会的可靠性。
进一步的,在K个传输机会中包括多个传输机会对应目标RV版本的情况下,终端设备根据预定义或网络设备的预配置确定其中的一个传输机会作为目标传输机会。例如,目标传输机会位该多个对应于目标RV版本的传输机会中,包括的有效RE数目最小的传输机会或包括的有效RE数目最大的传输机会。
在另一个示例中,目标有效RE数目为K个传输机会中的V个传输机会包括的有效RE数目之和,V为大于或等于1且小于或等于K(或M)的正整数,该V个传输机会由K个传输机会对应的RV图样(也称为RV序列)确定或者说与K个传输机会对应的RV图样关联。其中,K个传输机会对应的RV图样可以为K个传输机会中各个传输机会所对应的RV版本的集合,即,K(或M)个传输机会对应K(或M)个RV版本,该RV图样为该K(或M)个RV版本组成的集合,也可以为网络设备(例如通过高层信令repK-RV)通知的RV序列,其中该RV序列包括的RV版本个数可能等于或不等于K(或M)。此时,K个传输机会中的RV信息体现为K个传输机会对应的RV图样。K个传输机会对应的RV图样由网络设备通知给终端设备。
可选的,在K个传输机会对应的RV图样为第一RV图样的情况下,目标有效RE数目为K个传输机会中的一个目标传输机会包括的有效RE数目,或者,目标有效RE数目为K 个传输机会中的V1个传输机会包括的有效RE数目之和,V1为大于或等于1且小于K(或M)的正整数。具体的,V1的数值或者V1个传输机会的确定准则可以为预定义或网络设备预配置的。具体的,确定K个传输机会中的目标传输机会的方法如前所述,不再赘述。
进一步的,第一RV图样中不包括非自解码的RV版本。具体的,第一RV图样中包括RV 0而不包括其他RV版本,或者,第一RV图样包括RV 0和RV 3而不包括其他RV版本。例如,第一RV图样为RV 0000或RV 0303。
可选的,在K个传输机会对应的RV图样为第二RV图样的情况下,目标有效RE数目为K个传输机会包括的有效RE数目之和,或者,目标有效RE数目为K个传输机会中的V2个传输机会包括的有效RE数目之和,V2为大于V1且小于或等于K(或M)的正整数。具体的,V2的数值或者V2个传输机会的确定准则可以为预定义或网络设备预配置的。
进一步的,第二RV图样包括非自解码的RV版本。具体的,第二RV图样中包括RV 0以外的其他RV版本,或者,第一RV图样包括RV 0和RV 3以外的其他RV版本(例如包括RV 2和或RV 1)。例如,第二RV图样为RV 0303或RV 0231。
考虑到,对于包括非自解码RV版本的第二RV图样,即使其中一个传输机会(例如RV 0对应的传输机会)中不能承载全部的***信息比特,也可以通过对应于其他RV版本的其他传输机会恢复***信息比特,从而使网络设备正确接收全部的***信息比特,因此可以基于K个传输机会或较多的V2个传输机会所包括的有效RE数目之和确定第一数据包的TBS,提高传输效率以及可靠性。另一方面,对于不包括非自解码RV版本的第一RV图样,若基于K个传输机会或较多的传输机会所包括的有效RE数目之和确定第一数据包的TBS,可能导致TBS过大,从而其中一个传输机会(例如RV 0对应的传输机会)中不能承载全部的***信息比特,即丢失部分***信息比特,而其他传输机会中也不包含这些丢失的***信息比特或不包含针对这些丢失的***信息比特信息的编码比特(例如,其他传输机会也是RV 0,因此也丢失同样的***信息比特),导致无法恢复全部***信息比特;因此,对于第一RV图样,可以基于一个目标传输机会或较少的V1个传输机会确定TBS,避免计算的TBS过大导致可靠性受损,例如,使用一个目标传输机会确定TBS,可以确保该目标传输机会能够自解码,进而K个传输机会联合起来也可以自解码,确保可靠性。
另外,本申请实施例中的方法,除了用于确定第一数据包的TBS,还可以用于确定其他传输格式信息,例如K个传输机会的跳频信息或者RV图样信息,如方法5所述。
方法5:网络设备配置时域资源图样和传输格式信息之间的关联关系,该关联关系用于确定第一数据包进行数据传输的传输格式。其中,传输格式信息包括用于确定第一数据包对应的TBS的传输机会集合,和或K个传输机会中用于进行跳频的传输机会的集合,和或K个传输机会对应的RV图样。
应理解,关联关系也称为映射关系。
可选的,终端设备接收网络设备发送的第一配置信息,该第一配置信息用于配置第一关联关系,第一关联关系包括用于对数据包进行数据传输的传输机会的时域资源图样以及用于确定TBS的传输机会集合之间的关联关系,目标有效RE数目为K个传输机会中的P个传输机会所包括的有效RE数目之和,P为大于或等于1且小于或等于K(或M)的 正整数,该P个传输机会是根据网络设备通知的用于对第一数据包进行数据传输的传输机会的时域资源信息以及所述第一关联关系确定的。
应理解,目标有效RE数目为K个传输机会中的P个传输机会所包括的有效RE数目之和,P为大于或等于1且小于或等于K(或M)的正整数,也可以称为:目标有效RE数目为目标传输机会包括的有效RE数目,所述目标传输机会为所述K个传输机会中的P个传输机会,所述目标传输机会包括的有效RE数目为所述目标传输机会所包括的有效RE数目之和,P为小于或等于K(或M)的正整数。
应理解,终端设备接收网络设备发送的第一配置信息也称为,接收来自网络设备的第一配置信息。
应理解,网络设备通知的用于对第一数据包进行数据传输的传输机会的时域资源信息,也称为,信令通知的用于对第一数据包进行数据传输的传输机会的时域资源信息。
应理解,所述P个传输机会是根据所述网络设备通知的用于对所述第一数据包进行数据传输的传输机会的时域资源信息以及所述第一关联关系确定的,也称为,所述P个传输机会对应于信令通知的用于对所述第一数据包进行数据传输的传输机会的时域资源信息以及所述第一关联关系。
对应的,网络设备向终端设备发送第一配置信息。
进一步的,所述第一关联关系包括多种用于对数据包进行数据传输的传输机会的时域资源图样以及多个用于确定TBS的传输机会集合之间的关联关系,所述多种用于对数据包进行数据传输的传输机会的时域资源图样中的任意一种时域资源图样对应于所述多个用于确定TBS的传输机会集合中的一个传输机会集合;所述P个传输机会是根据所述网络设备通知的用于对所述第一数据包进行数据传输的传输机会的时域资源信息以及所述第一关联关系确定的,包括:所述用于对所述第一数据包进行数据传输的传输机会的时域资源信息对应于所述多种用于对数据包进行数据传输的传输机会的时域资源图样中的第一时域资源图样,所述P个传输机会为所述多个用于确定TBS的传输机会集合中,对应于所述第一时域资源图样的传输机会集合。
应理解,该P个传输机会也称为用于确定第一数据包对应的TBS的传输机会集合。
对应的,网络设备向终端设备发送第一配置信息。
具体的,第一配置信息为高层信令。
可选的,终端设备接收网络设备发送的第二配置信息,该第二配置信息用于配置第二关联关系,第二关联关系包括用于对数据包进行数据传输的传输机会的时域资源图样以及用于进行跳频(frequency hopping)的传输机会的集合之间的关联关系,终端设备根据网络设备通知的用于对第一数据包进行数据传输的传输机会的时域资源信息以及所述第二关联关系确定K个传输机会中用于进行跳频的传输机会的集合。
应理解,终端设备接收网络设备发送的第二配置信息也称为,接收来自网络设备的第二配置信息。
应理解,终端设备根据网络设备通知的用于对第一数据包进行数据传输的传输机会的时域资源信息以及所述第二关联关系确定K个传输机会中用于进行跳频的传输机会的集合,也称为,所述K个传输机会中用于进行跳频的传输机会的集合对应于网络设备通知的用于对第一数据包进行数据传输的传输机会的时域资源信息以及所述第二关联关 系,或者称为,所述K个传输机会中用于进行跳频的传输机会的集合由网络设备通知的用于对第一数据包进行数据传输的传输机会的时域资源信息以及所述第二关联关系得到。
应理解,第二关联关系包括用于对数据包进行数据传输的传输机会的时域资源图样以及用于进行跳频的传输机会的集合之间的关联关系,也可以替换为:第二关联关系包括用于对上行信息进行信息传输的传输机会的时域资源图样以及用于进行跳频的传输机会的集合之间的关联关系。
应理解,网络设备通知的用于对第一数据包进行数据传输的传输机会的时域资源信息,也可以替换为:网络设备通知的用于对第一上行信息进行信息传输的传输机会的时域资源信息。
对应的,网络设备向终端设备发送第二配置信息。
进一步的,所述第二关联关系包括多种用于对数据包进行数据传输的传输机会的时域资源图样以及多个用于进行跳频的传输机会的集合之间的关联关系,所述多种用于对数据包进行数据传输的传输机会的时域资源图样中的任意一种时域资源图样对应于所述多个用于进行跳频的传输机会的集合中的一个传输机会集合,终端设备根据网络设备通知的用于对第一数据包进行数据传输的传输机会的时域资源信息以及所述第二关联关系确定K个传输机会中用于进行跳频的传输机会的集合,包括:所述用于对所述第一数据包进行数据传输的传输机会的时域资源信息对应于所述多种用于对数据包进行数据传输的传输机会的时域资源图样中的第二时域资源图样,所述K个传输机会中用于进行跳频的传输机会的集合为所述多个用于进行跳频的传输机会的集合中,对应于所述第二时域资源图样的传输机会集合。
应理解,K个传输机会中用于进行跳频的传输机会的集合也称为跳频传输机会集合。
进一步的,终端设备在所述跳频传输机会集合中的任意一个传输机会上对第一数据包进行数据传输时,进行跳频处理。对应的,网络设备在所述跳频传输机会集合中的任意一个传输机会上接收终端设备对第一数据包进行的数据传输为跳频的数据传输。
对应的,网络设备向终端设备发送第二配置信息。
具体的,第二配置信息为高层信令。
应理解,这里的跳频或跳频处理是指传输机会内的跳频,也称为PUSCH内跳频(Intra-PUSCH frequency hopping)或时隙内跳频(Intra-slot frequency hopping)。也就是说,对于跳频传输机会集合中的任意一个传输机会,该传输机会所包括的第一部分时域资源上的信息在第一频域资源上发送,该传输机会所包括的第二部分时域资源上的信息在第二频域资源上发送。第一部分时域资源与第一频域资源对应的物理资源称为第一跳,第二部分时域资源与第二频域资源对应的物理资源称为第二跳。进一步的,第一部分时域资源为时间上连续的时域资源,第二部分时域资源为时间上连续的时域资源。应理解,第一频域资源与第二频域资源不同;例如,第一频域资源与第二频域资源在频域上不重叠,或者不完全重叠;再例如,第一频域资源的频域起点(即起始PRB)与第二频域资源起点(即起始PRB)不同。
应理解,对于K个传输机会中除跳频传输机会集合以外的任意一个传输机会,不进行跳频。这里,该传输机会不进行跳频是指,该传输机会所包括的所有时域资源都对应 相同的频域资源。
可选的,终端设备接收网络设备发送的第三配置信息,该第三配置信息用于配置第三关联关系,第三关联关系包括用于对数据包进行数据传输的传输机会的时域资源图样以及传输机会对应的RV图样之间的关联关系,终端设备根据网络设备通知的用于对第一数据包进行数据传输的传输机会的时域资源信息以及所述第三关联关系确定K个传输机会对应的RV图样(称为目标RV图样)。
应理解,终端设备接收网络设备发送的第三配置信息也称为,接收来自网络设备的第三配置信息。
应理解,终端设备根据网络设备通知的用于对第一数据包进行数据传输的传输机会的时域资源信息以及所述第三关联关系确定K个传输机会对应的RV图样,也称为,所述K个传输机会对应的RV图样对应于网络设备通知的用于对第一数据包进行数据传输的传输机会的时域资源信息以及所述第三关联关系,或者称为,所述K个传输机会对应的RV图样由网络设备通知的用于对第一数据包进行数据传输的传输机会的时域资源信息以及所述第三关联关系得到。
对应的,网络设备向终端设备发送第三配置信息。
进一步的,所述第三关联关系包括多种用于对数据包进行数据传输的传输机会的时域资源图样以及多个RV图样之间的关联关系,所述多种用于对数据包进行数据传输的传输机会的时域资源图样中的任意一种时域资源图样对应于所述多个RV图样中的一个RV图样,终端设备根据网络设备通知的用于对第一数据包进行数据传输的传输机会的时域资源信息以及所述第三关联关系确定K个传输机会对应的RV图样,包括:所述用于对所述第一数据包进行数据传输的传输机会的时域资源信息对应于所述多种用于对数据包进行数据传输的传输机会的时域资源图样中的第三时域资源图样,所述K个传输机会对应的RV图样为所述多个RV图样中,对应于所述第三时域资源图样的RV图样。
进一步的,终端设备在所述K个传输机会中的任意一个传输机会上对第一数据包进行数据传输时,使用所述RV图样中对应于该任意一个传输机会的RV版本。对应的,网络设备在K个传输机会中的任意一个传输机会上接收终端设备对第一数据包进行的数据传输的RV版本为所述RV图样中对应于该任意一个传输机会的RV版本,或者说,网络设备在所述K个传输机会中的至少一个传输机会接收所述终端设备发送的所述第一数据包,所述K个传输机会中的至少一个传输机会对应于目标RV图样。
应理解,K个传输机会对应的RV图样也称为K个传输机会中每个传输机会对应的RV版本。
对应的,网络设备向终端设备发送第三配置信息。
具体的,第三配置信息为高层信令。
应理解,第一配置信息、第二配置信息、第三配置信息中的任意两个配置信息可以是相同的配置信息,也可以是不同的配置信息。
进一步的,用于对数据包进行数据传输的传输机会的时域资源图样对应于以下多种信息中的一种信息或至少两种信息的组合:
(1)传输机会的时域资源信息。
具体的,传输机会的时域资源信息包括:一个传输机会的时域资源(包括该一个传 输机会的时域起点和时域长度),或者,用于对一个数据包进行数据传输的多个传输机会的时域资源(包括该多个传输机会中每个传输机会的时域起点和时域长度)。这样,终端设备可以根据传输机会的时域资源信息,确定针对一个数据包进行重复传输的一个或多个传输机会的时域资源图样,包括该一个或多个传输机会中每个传输机会的时域起点和时域长度。应理解,该一个传输机会的时域资源也称为名义上的传输机会的时域资源。
进一步的,传输机会的时域资源信息包括一个传输机会的时域资源的情况下,传输机会的时域资源信息还包括重复传输次数。这样,终端设备可以根据一个传输机会的时域资源以及重复传输次数,确定针对一个数据包进行重复传输的一个或多个传输机会的时域资源图样。重复传输次数的定义如前所述。
具体的,上述传输机会的时域资源信息由高层信令(例如pusch-TimeDomainAllocationList字段)配置,例如,该高层信令配置一个表格,该表格包括至少一行,该至少一行中的每一行代表一个传输机会的时域资源(包括该一个传输机会时域资源的时域起点和时域长度)或用于对一个数据包进行数据传输的多个传输机会的时域资源(包括该多个传输机会中每个传输机会的时域资源的时域起点和时域长度)。
(2)GF周期信息。
具体的,GF周期信息包括GF周期大小和或GF周期的起始时刻信息。例如,GF周期的起始时刻包括GF周期的起始边界和或GF周期内的GF资源在GF周期内的相对起始时刻。考虑到在K个传输机会为网络设备配置的以GF的方式进行数据传输时,终端设备会根据网络设备通知的GF周期信息确定可用的时域资源,例如,每个周期内可以用于数据传输的时域资源重复出现,且从GF周期的起始时刻开始。
(3)上下行符号方向信息。
具体的,上下行符号方向信息具体是指用于通知时域符号,具体的,上下行符号方向可以是‘下行’或者‘上行’或者‘灵活’。应理解,网络设备可以通过高层信令和或物理层信令通知该上下行符号方向信息。例如,该高层信令包括字段TDD-UL-DL-ConfigurationCommon或TDD-UL-DL-ConfigDedicated,物理层信令为对应于格式2_0的DCI。考虑到终端设备发送上行信息的时域符号不能为网络设备通知为‘下行’或者‘灵活’的时域符号,因此,终端设备在确定K个传输机会的时域资源图样时,除了根据上面的(1)和或(2)以外,还会考虑网络设备通知的上下行符号方向,例如,当根据(1)和或(2)确定的传输机会与网络设备通知的‘下行’或者‘灵活’符号发生碰撞则丢弃发生碰撞的传输机会,或者,确定K个传输机会所对应的时域资源时,跳过网络设备通知的‘下行’或者‘灵活’符号。
例如,用于对数据包进行数据传输的传输机会的时域资源图样对应上面(1)或(2)或(3)。
再例如,用于对数据包进行数据传输的传输机会的时域资源图样对应上面至少两种信息的组合包括:上面(1)和(2)的组合,或对应上面(1)和(3)的组合,或对应上面(2)和(3)的组合,或对应上面(1)和(2)和(3)的组合。
应理解,由于上面(1)或(2)或(3)的信息可以通知多种不同状态,因此,通 过(1)、(2)、(3)中的一种信息或(1)、(2)、(3)中的至少两种信息的组合,可以对应多种时域资源图样(即多种用于对数据包进行数据传输的传输机会的时域资源图样)。这样,网络设备可以针对该多种时域资源图样中的每一种时域资源图样:配置用于确定TBS的传输机会集合(例如,使用哪个传输机会包括的有效RE数目或哪些传输机会包括的有效RE数目之和确定TBS),即第一关联关系;或者,配置用于进行跳频的传输机会的集合(例如,针对哪个或哪些传输机会进行跳频处理),即第二关联关系;或者,配置传输机会对应的RV图样,即第三关联关系。
进一步的,对于上述多种时域资源图样中的任一种时域资源图样,网络设备配置的用于确定TBS的传输机会集合为根据该种时域资源图样确定的传输机会集合的子集。类似的,对于上述多种时域资源图样中的任一种时域资源图样,网络设备配置的用于进行跳频的传输机会的集合为根据该种时域资源图样确定的传输机会集合的子集。
对应的,终端设备接收到网络设备通知的用于对第一数据包进行数据传输的传输机会的时域资源信息之后,可以对应到上述多种时域资源图样中的一种具体的时域资源图样。可选的,由上述多种时域资源图样中的一种具体的时域资源图样,(通过第一关联关系)关联到一种具体的用于确定数据包的TBS的传输机会集合,从而终端设备可以索引得到用于确定第一数据包对应的TBS的传输机会集合。可选的,由上述多种时域资源图样中的一种具体的时域资源图样,(通过第二关联关系)关联到一种具体的用于进行跳频的传输机会的集合,从而终端设备可以索引得到K个传输机会中用于进行跳频的传输机会的集合。可选的,由上述多种时域资源图样中的一种具体的时域资源图样,(通过第三关联关系)关联到一种具体的RV图样,从而终端设备可以索引得到K个传输机会对应的RV图样。
类似的,网络设备通知的用于对第一数据包进行数据传输的传输机会的时域资源信息,包括以下多种信息中的一种信息或至少两种信息的组合,例如,(i)或(ii)或(iii),或(i)和(ii)的组合,或(i)和(iii)的组合,或(ii)和(iii)的组合,或对应上面(i)和(ii)和(iii)的组合:
(i)所述控制信息通知的用于传输第一数据包的传输机会的时域资源信息。
应理解,所述控制信息通知的用于传输第一数据包的传输机会的时域资源信息包括:所述控制信息通知的一个传输机会的时域资源信息(包括该一个传输机会的时域起点和时域长度),或者,所述控制信息通知的用于对第一数据包进行数据传输的多个传输机会的时域资源信息(包括该多个传输机会中每个传输机会的时域起点和时域长度)。具体的,上述一个传输机会的时域资源或用于对第一数据包进行数据传输的多个传输机会的时域资源为所述控制信息中的一个字段通知的,例如物理层信令中的Time domain resource assignment字段,或者高层信令中的time Domain Allocation字段。
应理解,K个传输机会对应的时域资源由所述控制信息通知的一个传输机会的时域资源信息或所述控制信息通知的用于对第一数据包进行数据传输的多个传输机会的时域资源信息得到。例如,K个传输机会对应的时域资源对应于所述控制信息通知的一个传输机会的时域资源或对应于所述控制信息通知的用于对第一数据包进行数据传输的多个传输机会的时域资源;或者,K个传输机会对应的时域资源由所述控制信息通知的一个传输机会的时域资源或所述控制信息通知的用于对第一数据包进行数据传输的多 个传输机会的时域资源得到,例如,K个传输机会对应的时域资源还根据(ii)和或(iii)得到。
(ii)网络设备通知的GF周期信息。具体的通知方法见(2)中的阐述。
(iii)网络设备通知的上下行符号方向信息。具体的通知方法见(3)中的阐述。
应理解上述第一关联关系或第二关联关系或第三关联关系可以体现为网络设备配置的表格。具体的,网络设备配置一个表格,该表格中包括至少一行,该至少一行中的的任意一行代表一种用于对数据包进行数据传输的传输机会的时域资源图样,例如可以是上面(1)、(2)、(3)中的一种信息或至少两种信息的组合,该任意一行索引一个用于确定TBS的传输机会集合,和或,该任意一行索引一个用于进行跳频的传输机会的集合,和或,该任意一行索引一个RV图样。
例如,该表格是网络设备通过高层信令pusch-TimeDomainAllocationList字段配置的表格。
例如,该表格中包括的至少一行中的任意一行包括上面(1)的信息,网络设备通过上面(i)通知用于对第一数据包进行数据传输的传输机会的时域资源信息,具体通过所述控制信息通知一个索引号,用于索引该表格中的一行;终端设备根据该索引号确定该表格中的该行所对应的TBS的传输机会集合,和或该行所对应的用于进行跳频的传输机会的集合,和或该行所对应的RV图样。
再例如,该表格中包括的至少一行中的任意一行包括上面(1)和(2)和(3)的信息,网络设备通过上面(i)和(ii)和(iii)通知用于对第一数据包进行数据传输的传输机会的时域资源信息。从而终端设备接收到(i)和(ii)和(iii)的通知信息后,可以对应地确定该表格中的一行,从而索引得到该行所对应的TBS的传输机会集合,和或该行所对应的用于进行跳频的传输机会的集合,和或该行所对应的RV图样。
更具体的,任意一种用于对数据包进行数据传输的传输机会的时域资源图样包括一个或多个传输机会的时域资源信息。可选的,该一个或多个传输机会中的参考传输机会对应一个第一标记,用于标记该参考传输机会是否计入用于确定TBS的传输机会集合。具体的,当第一标记为第一目标标记值的情况下,该参考传输机会计入用于确定TBS的传输机会集合。例如,第一目标标记值为‘1’,当该第一标记为‘1’时表示该标记对应的该参考传输机会计入用于确定TBS的传输机会集合,当该第一标记为‘0’时表示该标记对应的该参考传输机会不计入用于确定TBS的传输机会集合。可选的,该参考传输机会对应一个第二标记,用于标记该参考传输机会是否计入用于进行跳频的传输机会的集合,具体的,当第二标记为第二目标标记值的情况下,该参考传输机会计入用于进行跳频的传输机会的集合。例如,第二目标标记值为‘1’,当该第二标记为‘1’时表示该标记对应的该参考传输机会计入用于进行跳频的传输机会的集合,当该第二标记为‘0’时表示该标记对应的该参考传输机会不计入用于进行跳频的传输机会的集合。进一步的,该参考传输机会为该一个或多个传输机会中的任意一个传输机会。终端设备通过(i)(ii)(iii)中的一种信息或至少两种信息的组合确定用于对第一数据包进行数据传输的传输机会的时域资源图样之后,可以根据该一个或多个传输机会中的每个传输机会对应的第一标记确定用于确定第一数据包的TBS的传输机会集合(包括该一个或多个传输机会中所有第一标记为第一目标标记值的传输机会),或者,根据该一个或多个传输机会中的每个 传输机会对应的第二标记确定用于进行跳频的传输机会的集合(包括该一个或多个传输机会中所有第二标记为第二目标标记值的传输机会)。
进一步的,该表格还用于通知K个传输机会的时域资源信息。具体的,该表格中包括至少一行,该至少一行中的任意一行代表一种用于对数据包进行数据传输的传输机会的时域资源图样,可以用于确定对一个数据包进行数据传输的一个或多个传输机会的时域资源。例如该表格为网络设备通过高层信令pusch-TimeDomainAllocationList配置的表格。网络设备通过所述控制信息中的字段(例如Time domain resource assignment字段或time Domain Allocation字段)通知该表格中的一行,终端设备从而可以根据该行对应的时域资源图样确定K个传输机会对应的时域资源,并且,获取K个传输机会中用于确定第一数据包对应的TBS的传输机会集合和或K个传输机会中用于进行跳频的传输机会的集合和或K个传输机会对应的RV图样。
也就是说,K个传输机会对应的时域资源信息和用于确定第一数据包对应的TBS的传输机会集合信息是联合编码到同一控制信息字段中的,和或,K个传输机会对应的时域资源信息和K个传输机会中用于进行跳频的传输机会的集合信息是联合编码到同一控制信息字段中的,和或,K个传输机会对应的时域资源信息和K个传输机会对应的RV图样信息是联合编码到同一控制信息字段中的。例如,该同一控制信息字段为所述控制信息的Time domain resource assignment字段或time Domain Allocation字段。
例如,表1为网络设备通过高层信令配置的表格,包括4行,表格中的每一行包括一个或多个传输机会对应的时域资源(也称为SLIV,包括时域起点和时域长度)信息,并且,表格中任意一行代表的一个或多个传输机会中的每个传输机会都对应一个第一标记,用于通知该传输机会是否计入用于确定TBS的传输机会集合,例如对于索引号1,包括一个传输机会TO#1,第一标记‘1’代表TO#1计入用于确定TBS的传输机会集合,对于索引号2,包括2个传输机会TO#1和TO#2,TO#1的第一标记‘1’代表TO#1计入用于确定TBS的传输机会集合,TO#2的第一标记‘0’代表TO#2不计入用于确定TBS的传输机会集合。所述控制信息通知索引号为3,则终端设备可以索引得到用于对第一数据包进行数据传输的K个传输机会的时域资源图样,即TO#1~TO#4的时域资源,终端设备可以在该4个TO上对第一数据包进行4次重复传输。另一方面,该索引号还索引得到用于确定第一数据包对应的TBS的传输机会集合,包括{TO#1,TO#4},因此终端设备根据TO#1和TO#4的有效RE数目之和确定第一数据包对应的TBS,进而生成第一数据包并在该4个TO上对第一数据包进行4次重复传输。
表1
Figure PCTCN2020071862-appb-000028
另外,上述步骤601~603也可以替换为:
步骤601a(替换步骤601),网络设备向终端设备发送控制信息;相应地,在步骤602a(替换步骤602)中,终端设备接收来自网络设备的控制信息。其中,所述控制信息用于通知传输第一数据包的时频资源的信息;所述时频资源中包括K个传输机会,所述K个传输机会中的每个传输机会用于对所述第一数据包进行一次数据传输。
步骤603a(替换步骤603),终端设备确定所述第一数据包对应的TBS。
进一步的,终端设备根据目标有效资源粒子RE数目确定所述第一数据包对应的TBS,所述目标有效RE数目为所述K个传输机会中的至少一个传输机会所包括的有效RE数目。
更进一步的,所述目标有效RE数目为所述K个传输机会中所包括的全部有效RE数目,或者,所述目标有效RE数目为所述K个传输机会中的P个传输机会所包括的全部有效RE数目,其中P为小于K的正整数,或者,所述目标有效RE数目为所述K个传输机会中每个传输机会所包括的平均有效RE数目,或者,所述目标有效RE数目为所述K个传输机会中的目标传输机会包括的有效RE数目,或者,目标有效RE数目为虚拟目标传输机会所包括的有效RE数目,或者,目标有效RE数目为参考目标传输机会所包括的有效RE数目。
另外,上述步骤601~605也可以替换为:
步骤601b(替换步骤601),网络设备向终端设备发送控制信息;相应地,在步骤602b(替换步骤602)中,终端设备接收来自网络设备的控制信息。其中,所述控制信息用于通知传输第一上行信息的时频资源的信息;所述时频资源中包括K个传输机会,所述K个传输机会中的每个传输机会用于对所述第一上行信息进行一次信息传输。步骤603b(替换步骤603):终端设备终端设备确定用于在K个传输机会中的至少一个传输机会上进行信息传输的第一上行信息。
步骤604b(替换步骤604):终端设备终端设备在K个传输机会中的至少一个传输机会上对所述第一上行信息进行信息传输。
步骤605b(替换步骤605):网络设备在K个传输机会中的至少一个传输机会接收终端设备发送的第一上行信息。
其中,第一上行信息可以包括第一数据包,也可以包括UCI信息而不包括UL-SCH信息。
上述主要从网络设备和终端设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,网络设备或终端设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在采用集成的单元(模块)的情况下,图12示出了本申请实施例中所涉及的装置的可能的示例性框图,该装置1200可以以软件的形式存在。装置1200可以包括:处理单元1202和通信单元1203。处理单元1202用于对装置1200的动作进行控制管理。通 信单元1203用于支持装置1200与其他网络实体的通信。可选地,通信单元1203也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置1200还可以包括存储单元1201,用于存储装置1200的程序代码和/或数据。
其中,处理单元1202可以是处理器或控制器,其可以实现或执行结合本申请的实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。通信单元1203可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口。存储单元1201可以是存储器。
该装置1200可以为上述任一实施例中的终端设备、或者还可以为设置在终端设备中的半导体芯片。处理单元1202可以支持装置1200执行上文中各方法示例中终端设备的动作。或者,处理单元1202主要执行方法示例中的终端内部动作,通信单元1203可以支持装置1200与网络设备之间的通信。例如,处理单元1202用于执行图6中的步骤603或步骤603a或步骤603b;通信单元1202用于执行图6中的步骤602(或步骤602a或步骤602b)和步骤604(或步骤604b)。
具体地,在一个实施例中,所述通信单元(具体可以为接收单元)用于,接收来自网络设备的控制信息,所述控制信息用于通知传输第一数据包的时频资源的信息;所述时频资源中包括K个传输机会,所述K个传输机会中的每个传输机会用于对所述第一数据包进行一次数据传输,所述K个传输机会中的第一传输机会包括的有效资源粒子RE数目大于所述K个传输机会中的第二传输机会包括的有效RE数目,K为大于1的整数;
所述处理单元用于,根据目标有效资源粒子RE数目,确定所述第一数据包对应的TBS;所述目标有效RE数目为所述K个传输机会中每个传输机会所包括的平均有效RE数目,或者,所述目标有效RE数目为所述K个传输机会中的目标传输机会包括的有效RE数目。
在一种可能的设计中,所述目标传输机会为所述第二传输机会。
在一种可能的设计中,所述第二传输机会为所述K个传输机会中包括的有效RE数目最小的传输机会;或者,所述第二传输机会为所述K个传输机会中包括的时域符号数目最小的传输机会。
在一种可能的设计中,所述目标传输机会为所述第一传输机会。
在一种可能的设计中,所述第一传输机会为所述K个传输机会中包括的有效RE数目最大的传输机会;或者,所述第一传输机会为所述K个传输机会中包括的时域符号数目最大的传输机会。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则所述目标传输机会为所述第二传输机会;
其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率大于所述码率门限,则所述目标传输机会为所述第二传输机会;
其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述修正码率为所述第一参考TBS承载于所述第二传输机会且在修正调制阶数下 所对应的码率;所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率不大于码率门限,则所述目标传输机会为所述第一传输机会;
其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率不大于所述码率门限,则所述目标传输机会为所述第一传输机会;其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述修正码率为所述第一参考TBS承载于所述第二传输机会且在修正调制阶数下所对应的码率,所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数;
所述通信单元(具体可以为发送单元)还用于:在所述第二传输机会上使用所述修正调制阶数和所述修正码率发送所述第一数据包。
在一种可能的设计中,所述通信单元(具体可以为发送单元)还用于:
若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则在发送所述第一数据包时丢弃所述第二传输机会;其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
在一种可能的设计中,所述通信单元(具体可以为发送单元)还用于:
若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则在所述第二传输机会上发送所述第一数据包的***信息中的一部分信息;所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
在一种可能的设计中,所述第一传输机会包括的有效RE数目大于所述第二传输机会包括的有效RE数目,包括:
所述第一传输机会为不包括解调参考信号DMRS的传输机会,所述第二传输机会为包括DMRS的传输机会;或者,
所述第一传输机会为包括DMRS的传输机会,所述第二传输机会为不包括DMRS的传输机会,所述第一传输机会中承载DMRS的时域符号还用于承载数据信息,所述第一传输机会中不用于承载DMRS的时域资源长度等于所述第二传输机会中不用于承载DMRS的时域资源长度。
在一种可能的设计中,所述第一传输机会包括的有效RE数目大于所述第二传输机会包括的有效RE数目,包括:
所述第一传输机会所对应的时域资源长度大于所述第二传输机会所对应的时域资源长度。
在一种可能的设计中,所述控制信息通知的传输所述第一数据包的时频资源包括在时域上跨时隙边界的时频资源;
所述第一传输机会和所述第二传输机会为所述K个传输机会中前后相邻的两个传输机会;
所述第一传输机会对应于所述跨时隙边界的时频资源中位于所述时隙边界前的时 频资源,所述第二传输机会对应于所述跨时隙边界的时频资源中位于所述时隙边界后的时频资源;或者,所述第一传输机会对应于所述跨时隙边界的时频资源中位于所述时隙边界后的时频资源,所述第二传输机会对应于所述跨时隙边界的时频资源中位于所述时隙边界前的时频资源。
该装置1200还可以为上述任一实施例中的网络设备、或者还可以为设置在网络设备中的半导体芯片。处理单元1202可以支持装置1200执行上文中各方法示例中网络设备的动作。或者,处理单元1202主要执行方法示例中的网络设备内部动作,通信单元1203可以支持装置1200与终端设备之间的通信。例如,通信单元1202用于执行图6中的步骤601(或步骤601a或步骤601b)、步骤605(或步骤605b)。
具体地,在一个实施例中,所述通信单元(具体可以为发送单元)用于,向终端设备发送控制信息,所述控制信息用于通知传输第一数据包的时频资源的信息;所述时频资源中包括K个传输机会,所述K个传输机会中的每个传输机会用于对所述第一数据包进行一次数据传输,所述K个传输机会中的第一传输机会包括的有效资源粒子RE数目大于所述K个传输机会中的第二传输机会包括的有效RE数目,K为大于1的整数;以及,所述通信单元(具体可以为接收单元)用于,在所述K个传输机会中的至少一个传输机会接收所述终端设备发送的所述第一数据包;所述第一数据包对应的TBS是根据目标有效资源粒子RE数目确定的,所述目标有效RE数目为所述K个传输机会中每个传输机会所包括的平均有效RE数目,或者,所述目标有效RE数目为所述K个传输机会中的目标传输机会包括的有效RE数目。
在一种可能的设计中,所述目标传输机会为所述第二传输机会。
在一种可能的设计中,所述第二传输机会为所述K个传输机会中包括的有效RE数目最小的传输机会;或者,所述第二传输机会为所述K个传输机会中包括的时域符号数目最小的传输机会。
在一种可能的设计中,所述目标传输机会为所述第一传输机会。
在一种可能的设计中,所述第一传输机会为所述K个传输机会中包括的有效RE数目最大的传输机会;或者,所述第一传输机会为所述K个传输机会中包括的时域符号数目最大的传输机会。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则所述目标传输机会为所述第二传输机会;
其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率大于所述码率门限,则所述目标传输机会为所述第二传输机会;
其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述修正码率为所述第一参考TBS承载于所述第二传输机会且在修正调制阶数下所对应的码率;所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率 不大于码率门限,则所述目标传输机会为所述第一传输机会;
其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率不大于所述码率门限,则所述目标传输机会为所述第一传输机会;其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述修正码率为所述第一参考TBS承载于所述第二传输机会且在修正调制阶数下所对应的码率,所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数;
所述通信单元(具体可以为接收单元)具体用于:在所述第二传输机会上接收所述终端设备使用所述修正调制阶数和所述修正码率发送的所述第一数据包。
在一种可能的设计中,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则在所述K个传输机会中,所述终端设备发送所述第一数据包的传输机会中不包括所述第二传输机会;其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
在一种可能的设计中,所述通信单元(具体可以为接收单元)具体用于:
若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则在所述第二传输机会上接收所述终端设备发送的所述第一数据包的***信息中的一部分信息;所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
在一种可能的设计中,所述第一传输机会包括的有效RE数目大于所述第二传输机会包括的有效RE数目,包括:
所述第一传输机会为不包括解调参考信号DMRS的传输机会,所述第二传输机会为包括DMRS的传输机会;或者,
所述第一传输机会为包括DMRS的传输机会,所述第二传输机会为不包括DMRS的传输机会,所述第一传输机会中承载DMRS的时域符号还用于承载数据信息,所述第一传输机会中不用于承载DMRS的时域资源长度等于所述第二传输机会中不用于承载DMRS的时域资源长度。
在一种可能的设计中,所述第一传输机会包括的有效RE数目大于所述第二传输机会包括的有效RE数目,包括:
所述第一传输机会所对应的时域资源长度大于所述第二传输机会所对应的时域资源长度。
在一种可能的设计中,所述控制信息通知的传输所述第一数据包的时频资源包括在时域上跨时隙边界的时频资源;
所述第一传输机会和所述第二传输机会为所述K个传输机会中前后相邻的两个传输机会;
所述第一传输机会对应于所述跨时隙边界的时频资源中位于所述时隙边界前的时频资源,所述第二传输机会对应于所述跨时隙边界的时频资源中位于所述时隙边界后的时频资源;或者,所述第一传输机会对应于所述跨时隙边界的时频资源中位于所述时隙边界后的时频资源,所述第二传输机会对应于所述跨时隙边界的时频资源中位于所述时 隙边界前的时频资源。
需要说明的是,本申请实施例中对单元(模块)的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质可以为存储器等各种可以存储程序代码的介质。
图13给出了一种装置的结构示意图,该装置1300包括处理器1310、存储器1320和收发器1330。在一个示例中,该装置1300可以实现图12所示意出的装置1200的功能,具体来说,图12中所示意的通信单元1203的功能可以由收发器实现,处理单元1202的功能可由处理器实现,存储单元1201的功能可以由存储器实现。在又一个示例中,该装置1300可以是方法实施例中的网络设备,或者,也可以是上述方法实施例中的终端设备,该装置1300可用于实现上述方法实施例中描述的对应于网络设备或终端设备的方法,具体可以参见上述方法实施例中的说明。
图14为本申请实施例提供的一种终端设备1400的结构示意图。为了便于说明,图14仅示出了终端设备的主要部件。如图14所示,终端设备1400包括处理器、存储器、控制电路、天线以及输入输出装置。该终端设备1400可应用于如图1所示的***架构中,执行上述方法实施例中终端设备的功能。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于控制终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图14仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图14中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,若图12所示意的装置1200为终端设备,则在图14的实施例中,可以将具有收发功能的天线和控制电路视为装置1200的通信单元,将具有处理功能的处理器视为装置1200的处理单元。如图14所示,终端设备1400包括通信单元1401和处理单元1402。通信单元1401也可以称为收发器、收发机、收发装置等。可选的,可以将通信单元1401中用于实现接收功能的器件视为接收单元,将通信单元1401中用于实现发送功能的器件视为发送单元,即通信单元1401包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图14所示的终端设备1400能够实现图6方法实施例中涉及终端设备的各个过程。终端设备1400中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
图15为本申请实施例提供的一种网络设备的结构示意图,例如可以为基站的结构示意图。如图15所示,该网络设备1500可应用于如图1所示的***架构中,执行上述方法实施例中网络设备的功能。
网络设备1500可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1501和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元(digital unit,DU))1502。
该RRU 1501可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线1511和射频单元1512。该RRU 1501部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于发送上述方法实施例中的控制信息。该RRU1501与BBU 1502可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
该BBU 1502为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如该BBU(处理单元)1502可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个实施例中,该BBU 1502可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其它网)。该BBU 1502还包括存储器1521和处理器1522,该存储器1521用于存储必要的指令和数据。该处理器1522用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。该存储器1521 和处理器1522可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图15所示的网络设备1500能够实现图6中涉及网络设备的各个过程。网络设备1500中的各个模块的操作和/或功能,分别设置为实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合;也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可以理解,本申请实施例中的存储器或存储单元可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以 是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。

Claims (44)

  1. 一种确定传输块大小TBS的方法,其特征在于,所述方法包括:
    接收来自网络设备的控制信息,所述控制信息用于通知传输第一数据包的时频资源的信息;所述时频资源中包括K个传输机会,所述K个传输机会中的每个传输机会用于对所述第一数据包进行一次数据传输,所述K个传输机会中的第一传输机会包括的有效资源粒子RE数目大于所述K个传输机会中的第二传输机会包括的有效RE数目,K为大于1的整数;
    根据目标有效资源粒子RE数目,确定所述第一数据包对应的TBS;所述目标有效RE数目为所述K个传输机会中每个传输机会所包括的平均有效RE数目,或者,所述目标有效RE数目为所述K个传输机会中的目标传输机会包括的有效RE数目。
  2. 根据权利要求1所述的方法,其特征在于,所述目标传输机会为所述第二传输机会。
  3. 根据权利要求2所述的方法,其特征在于,所述第二传输机会为所述K个传输机会中包括的有效RE数目最小的传输机会;或者,所述第二传输机会为所述K个传输机会中包括的时域符号数目最小的传输机会。
  4. 根据权利要求1所述的方法,其特征在于,所述目标传输机会为所述第一传输机会。
  5. 根据权利要求4所述的方法,其特征在于,所述第一传输机会为所述K个传输机会中包括的有效RE数目最大的传输机会;或者,所述第一传输机会为所述K个传输机会中包括的时域符号数目最大的传输机会。
  6. 根据权利要求2所述的方法,其特征在于,第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
  7. 根据权利要求2所述的方法,其特征在于,第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率大于所述码率门限,其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述修正码率为所述第一参考TBS承载于所述第二传输机会且在修正调制阶数下所对应的码率;所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数。
  8. 根据权利要求5所述的方法,其特征在于,若第一参考TBS承载于所述第二传输机会所对应的第一码率不大于码率门限,则所述目标传输机会为所述第一传输机会;
    其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
  9. 根据权利要求5所述的方法,其特征在于,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率不大于所述码率门限,则所述目标传输机会为所述第一传输机会;其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述修正码率为所述第一参考TBS承载于所述第二传输机会且在修正调制阶数下所对应的码率,所述控制信息还用于通知传输所述第一数据包的 调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数;
    所述方法还包括:在所述第二传输机会上使用所述修正调制阶数和所述修正码率发送所述第一数据包。
  10. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则在发送所述第一数据包时丢弃所述第二传输机会;其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
  11. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则在所述第二传输机会上发送所述第一数据包的***信息中的一部分信息;所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
  12. 根据权利要求1所述的方法,其特征在于,所述目标传输机会为所述K个传输机会中对应于目标RV版本的传输机会,所述目标RV版本为预定义或信令配置的RV版本。
  13. 根据权利要求1所述的方法,其特征在于,所述方法还包括:接收来自网络设备的第一配置信息,所述第一配置信息用于配置第一关联关系,所述目标传输机会为所述K个传输机会中的P个传输机会,所述目标传输机会包括的有效RE数目为所述目标传输机会所包括的有效RE数目之和,P为小于或等于K的正整数,所述P个传输机会是根据信令通知的用于对所述第一数据包进行数据传输的传输机会的时域资源信息以及所述第一关联关系确定的。
  14. 根据权利要求13所述的方法,其特征在于,所述第一关联关系包括用于对数据包进行数据传输的传输机会的时域资源图样以及用于确定TBS的传输机会集合之间的关联关系,其特征在于,包括:所述第一关联关系包括多种用于对数据包进行数据传输的传输机会的时域资源图样以及多个用于确定TBS的传输机会集合之间的关联关系,所述多种用于对数据包进行数据传输的传输机会的时域资源图样中的任意一种时域资源图样对应于所述多个用于确定TBS的传输机会集合中的一个传输机会集合;
    所述P个传输机会是根据信令通知的用于对所述第一数据包进行数据传输的传输机会的时域资源信息以及所述第一关联关系确定的,包括:所述用于对所述第一数据包进行数据传输的传输机会的时域资源信息对应于所述多种用于对数据包进行数据传输的传输机会的时域资源图样中的第一时域资源图样,所述P个传输机会为所述多个用于确定TBS的传输机会集合中,对应于所述第一时域资源图样的传输机会集合。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述方法还包括:所述时频资源中包括M个传输机会,所述M个传输机会中包括至少一个被丢弃的传输机会,所述K个传输机会为所述M个传输机会中未被丢弃的传输机会,M为大于K的整数。
  16. 根据权利要求15所述的方法,其特征在于,所述至少一个被丢弃的传输机会为由于发生碰撞而被丢弃的传输机会。
  17. 一种确定传输块大小TBS的方法,其特征在于,所述方法包括:
    向终端设备发送控制信息,所述控制信息用于通知传输第一数据包的时频资源的信息;所述时频资源中包括K个传输机会,所述K个传输机会中的每个传输机会用于对所述第一数据包进行一次数据传输,所述K个传输机会中的第一传输机会包括的有效资源 粒子RE数目大于所述K个传输机会中的第二传输机会包括的有效RE数目,K为大于1的整数;
    在所述K个传输机会中的至少一个传输机会接收所述终端设备发送的所述第一数据包;所述第一数据包对应的TBS是根据目标有效资源粒子RE数目确定的,所述目标有效RE数目为所述K个传输机会中每个传输机会所包括的平均有效RE数目,或者,所述目标有效RE数目为所述K个传输机会中的目标传输机会包括的有效RE数目。
  18. 根据权利要求17所述的方法,其特征在于,所述目标传输机会为所述第二传输机会。
  19. 根据权利要求18所述的方法,其特征在于,所述第二传输机会为所述K个传输机会中包括的有效RE数目最小的传输机会;或者,所述第二传输机会为所述K个传输机会中包括的时域符号数目最小的传输机会。
  20. 根据权利要求17所述的方法,其特征在于,所述目标传输机会为所述第一传输机会。
  21. 根据权利要求20所述的方法,其特征在于,所述第一传输机会为所述K个传输机会中包括的有效RE数目最大的传输机会;或者,所述第一传输机会为所述K个传输机会中包括的时域符号数目最大的传输机会。
  22. 根据权利要求18所述的方法,其特征在于,第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
  23. 根据权利要求18所述的方法,其特征在于,第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率大于所述码率门限,其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述修正码率为所述第一参考TBS承载于所述第二传输机会且在修正调制阶数下所对应的码率;所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数。
  24. 根据权利要求21所述的方法,其特征在于,若第一参考TBS承载于所述第二传输机会所对应的第一码率不大于码率门限,则所述目标传输机会为所述第一传输机会;
    其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
  25. 根据权利要求21所述的方法,其特征在于,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,且修正码率不大于所述码率门限,则所述目标传输机会为所述第一传输机会;其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS,所述修正码率为所述第一参考TBS承载于所述第二传输机会且在修正调制阶数下所对应的码率,所述控制信息还用于通知传输所述第一数据包的调制阶数,所述修正调制阶数高于所述控制信息通知的所述调制阶数;
    所述方法还包括:在所述第二传输机会上接收所述终端设备使用所述修正调制阶数和所述修正码率发送的所述第一数据包。
  26. 根据权利要求21所述的方法,其特征在于,若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则在所述K个传输机会中,所述终端设备发送 所述第一数据包的传输机会中不包括所述第二传输机会;其中,所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
  27. 根据权利要求21所述的方法,其特征在于,所述在所述K个传输机会中的至少一个传输机会接收所述终端设备发送的所述第一数据包,包括:
    若第一参考TBS承载于所述第二传输机会所对应的第一码率大于码率门限,则在所述第二传输机会上接收所述终端设备发送的所述第一数据包的***信息中的一部分信息;所述第一参考TBS为根据所述第一传输机会包括的有效RE数目计算得到的TBS。
  28. 根据权利要求17所述的方法,其特征在于,所述目标传输机会为所述K个传输机会中对应于目标RV版本的传输机会,所述目标RV版本为预定义或信令配置的RV版本。
  29. 根据权利要求17所述的方法,其特征在于,所述方法还包括:向终端设备发送第一配置信息,所述第一配置信息用于配置第一关联关系,所述目标传输机会为所述K个传输机会中的P个传输机会,所述目标传输机会包括的有效RE数目为所述目标传输机会所包括的有效RE数目之和,P为小于或等于K的正整数,所述P个传输机会是根据信令通知的用于对所述第一数据包进行数据传输的传输机会的时域资源信息以及所述第一关联关系确定的。
  30. 根据权利要求29所述的方法,其特征在于,所述第一关联关系包括用于对数据包进行数据传输的传输机会的时域资源图样以及用于确定TBS的传输机会集合之间的关联关系,其特征在于,包括:所述第一关联关系包括多种用于对数据包进行数据传输的传输机会的时域资源图样以及多个用于确定TBS的传输机会集合之间的关联关系,所述多种用于对数据包进行数据传输的传输机会的时域资源图样中的任意一种时域资源图样对应于所述多个用于确定TBS的传输机会集合中的一个传输机会集合;
    所述P个传输机会是根据信令通知的用于对所述第一数据包进行数据传输的传输机会的时域资源信息以及所述第一关联关系确定的,包括:所述用于对所述第一数据包进行数据传输的传输机会的时域资源信息对应于所述多种用于对数据包进行数据传输的传输机会的时域资源图样中的第一时域资源图样,所述P个传输机会为所述多个用于确定TBS的传输机会集合中,对应于所述第一时域资源图样的传输机会集合。
  31. 根据权利要求17至30中任一项所述的方法,其特征在于,所述方法还包括:所述时频资源中包括M个传输机会,所述M个传输机会中包括至少一个被丢弃的传输机会,所述K个传输机会为所述M个传输机会中未被丢弃的传输机会,M为大于K的整数。
  32. 根据权利要求31所述的方法,其特征在于,所述至少一个被丢弃的传输机会为由于发生碰撞而被丢弃的传输机会。
  33. 一种确定传输块大小TBS的方法,其特征在于,所述方法包括:
    接收来自网络设备的控制信息,所述控制信息用于通知传输第一数据包的第一时频资源的信息,所述第一时频资源中包括K个传输机会,所述K个传输机会中的每个传输机会用于对所述第一数据包进行一次数据传输,K为大于1的整数,所述第一时频资源包括在时域上跨时隙边界的第二时频资源,所述K个传输机会中包括在时域上相邻的第一传输机会和第二传输机会,所述第一传输机会对应于所述第二时频资源中位于所述时隙边界前的时频资源,所述第二传输机会对应于所述第二时频资源中位于所述时隙边 界后的时频资源;
    根据目标有效资源粒子RE数目,确定所述第一数据包对应的TBS,所述目标有效RE数目为所述第一传输机会所包括的有效RE数目与所述第二传输机会所包括的有效RE数目之和;
    在所述K个传输机会上向所述网络设备发送所述第一数据包。
  34. 根据权利要求33所述的方法,其特征在于,所述K个传输机会中还包括第四传输机会,所述第四传输机会所对应的时域资源长度等于所述控制信息通知的对应于一个传输机会的时域资源长度。
  35. 根据权利要求33或34所述的方法,其特征在于,所述第一传输机会是K个传输机会的第一个传输机会,所述第一传输机会的起始时刻为所述控制信息通知的所述K个传输机会的起始时刻。
  36. 一种确定传输块大小TBS的方法,其特征在于,所述方法包括:
    向终端设备发送控制信息,所述控制信息用于通知传输第一数据包的第一时频资源的信息,所述第一时频资源中包括K个传输机会,所述K个传输机会中的每个传输机会用于对所述第一数据包进行一次数据传输,K为大于1的整数,所述第一时频资源包括在时域上跨时隙边界的第二时频资源,所述K个传输机会中包括在时域上相邻的第一传输机会和第二传输机会,所述第一传输机会对应于所述第二时频资源中位于所述时隙边界前的时频资源,所述第二传输机会对应于所述第二时频资源中位于所述时隙边界后的时频资源;
    根据目标有效资源粒子RE数目,确定所述第一数据包对应的TBS,所述目标有效RE数目为所述第一传输机会所包括的有效RE数目与所述第二传输机会所包括的有效RE数目之和;
    在所述K个传输机会上接收来自所述终端设备的所述第一数据包。
  37. 根据权利要求36所述的方法,其特征在于,所述K个传输机会中还包括第四传输机会,所述第四传输机会所对应的时域资源长度等于所述控制信息通知的对应于一个传输机会的时域资源长度。
  38. 根据权利要求36或37所述的方法,其特征在于,所述第一传输机会是K个传输机会的第一个传输机会,所述第一传输机会的起始时刻为所述控制信息通知的所述K个传输机会的起始时刻。
  39. 一种装置,其特征在于,包括用于执行如权利要求1至16或33至35中任一项所述方法的模块。
  40. 一种装置,其特征在于,包括用于执行如权利要求17至32或36至38中任一项所述方法的模块。
  41. 一种装置,其特征在于,所述装置包括处理器和存储器,所述处理器用于执行存储在所述存储器上的指令,当所述指令被运行时,使得所述装置执行如权利要求1至16或33至35中任一项所述的方法。
  42. 一种装置,其特征在于,所述装置包括处理器和存储器,所述处理器用于执行存储在所述存储器上的指令,当所述指令被运行时,使得所述装置执行如权利要求17至32或36至38中任一项所述的方法。
  43. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令被执行时,实现如权利要求1至16或17至32或33至38中任一项所述的方法。
  44. 一种通信***,包括如权利要求39或41所述的装置和如权利要求40或42所述的装置。
PCT/CN2020/071862 2019-01-11 2020-01-13 一种确定传输块大小的方法及装置 WO2020143840A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20738869.5A EP3905819A4 (en) 2019-01-11 2020-01-13 METHOD FOR DETERMINING A TRANSPORT BLOCK SIZE AND ASSOCIATED DEVICE
US17/371,985 US11871267B2 (en) 2019-01-11 2021-07-09 Transport block size determining method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910028383.6 2019-01-11
CN201910028383 2019-01-11
CN201910364011.0A CN111436144B (zh) 2019-01-11 2019-04-30 一种确定传输块大小的方法及装置
CN201910364011.0 2019-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/371,985 Continuation US11871267B2 (en) 2019-01-11 2021-07-09 Transport block size determining method and apparatus

Publications (1)

Publication Number Publication Date
WO2020143840A1 true WO2020143840A1 (zh) 2020-07-16

Family

ID=71520967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071862 WO2020143840A1 (zh) 2019-01-11 2020-01-13 一种确定传输块大小的方法及装置

Country Status (2)

Country Link
EP (1) EP3905819A4 (zh)
WO (1) WO2020143840A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7423823B2 (ja) 2021-01-14 2024-01-29 エルジー エレクトロニクス インコーポレイティド 伝送ブロック伝送方法及び装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130329661A1 (en) * 2012-06-12 2013-12-12 Qualcomm Incorporated Transport block size determination in new carrier type in lte

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3596987B1 (en) * 2017-03-17 2022-02-16 Intel Corporation Resource allocation and mode configuration for wide coverage enhancement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130329661A1 (en) * 2012-06-12 2013-12-12 Qualcomm Incorporated Transport block size determination in new carrier type in lte

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
3GPP PROTOCOL 38.214
LG ELECTRONICS: "3GPP TSG RAN WG1 Meeting 91 R1-1719929", DISCUSSION ON RESOURCE ALLOCATION AND TBS DETERMINATION, 1 December 2017 (2017-12-01), XP051369642, DOI: 20200324140923X *
LG ELECTRONICS: "3GPP TSG RAN WG1 Meeting 91 R1-1719929", DISCUSSION ON RESOURCE ALLOCATION AND TBS DETERMINATION, 1 December 2017 (2017-12-01), XP051369642, DOI: 20200324141202A *
OPPO: "3GPP TSG RAN WG1 Meeting #92 R1-1802103", REMAINING ISSUES ON DL/UL RESOURCE ALLOCATION, 2 March 2018 (2018-03-02), XP051396835, DOI: 20200324141148A *
See also references of EP3905819A4

Also Published As

Publication number Publication date
EP3905819A4 (en) 2022-03-09
EP3905819A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
US11452130B2 (en) Method and user equipment of transmitting uplink signal in wireless communication system, and method and base station of receiving uplink signal in wireless communication system
JP7073378B2 (ja) 物理アップリンクデータチャンネルで制御情報多重化
KR20240071415A (ko) 초-신뢰 저-레이턴시 통신을 위한 반복
US11765761B2 (en) Transmission method and device
CN111436144B (zh) 一种确定传输块大小的方法及装置
WO2017045496A1 (zh) 一种下行控制方法及装置
CN116961844A (zh) 一种传输信息的方法和装置
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及***
WO2018228570A1 (zh) 一种无线通信方法和设备
ES2885533T3 (es) Correcciones a la restricción de ajuste de tasa de memoria intermedia limitada
WO2019095334A1 (zh) 一种下行控制信息的发送方法、终端设备和网络设备
WO2018126870A1 (en) Resource block waveform transmission structures for uplink communications
CN114731691A (zh) 用于发送下行链路控制信息的方法和基站及用于接收下行链路控制信息的用户设备、设备和存储介质
CN116057880A (zh) 用于在无线协作通信***中发射/接收控制信息的方法和装置
CN113544992A (zh) 在无线通信***中发送/接收上行链路控制信息的方法和设备
US11283560B2 (en) Methods, communications device and infrastructure equipment
US11974287B2 (en) Communication method and apparatus
WO2021031948A1 (zh) 处理数据的方法和通信装置
WO2020143840A1 (zh) 一种确定传输块大小的方法及装置
US10742379B2 (en) Uplink control information handling for new radio
WO2022156567A1 (zh) 信息传输方法、装置、终端设备、网络设备及存储介质
WO2023001284A1 (en) Method and apparatus for tboms transmission
WO2018195753A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738869

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020738869

Country of ref document: EP

Effective date: 20210729