WO2020199630A1 - 尿液中碘含量的检测试剂盒及尿液中碘含量的检测方法 - Google Patents

尿液中碘含量的检测试剂盒及尿液中碘含量的检测方法 Download PDF

Info

Publication number
WO2020199630A1
WO2020199630A1 PCT/CN2019/122548 CN2019122548W WO2020199630A1 WO 2020199630 A1 WO2020199630 A1 WO 2020199630A1 CN 2019122548 W CN2019122548 W CN 2019122548W WO 2020199630 A1 WO2020199630 A1 WO 2020199630A1
Authority
WO
WIPO (PCT)
Prior art keywords
urine
channel
iodine content
diluent
detecting
Prior art date
Application number
PCT/CN2019/122548
Other languages
English (en)
French (fr)
Inventor
齐素文
陈润民
罗睿田
聂涛
张确健
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2020199630A1 publication Critical patent/WO2020199630A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Definitions

  • the invention relates to the field of detection, in particular to a kit for detecting iodine content in urine and a method for detecting iodine content in urine.
  • Iodine is one of the essential trace elements for the human body, and it is called the "intelligent element" and is an important raw material for the synthesis of thyroid hormone.
  • iodine deficiency disease belongs to micronutrient malnutrition. It is the third priority of international organizations such as the World Health Organization and the United Nations Children’s Genetics Association.
  • One of the major malnutrition diseases Women who lack iodine during pregnancy can cause miscarriage, premature birth, stillbirth, and congenital malformations of the fetus. Once children are deficient in iodine during growth, their intellectual development will be seriously affected.
  • Urine iodine has the characteristics of low content, complex basic components, and large individual differences. This requires the determination of urine iodine to have high sensitivity, accuracy, anti-interference ability, and stability.
  • Plasma Chromatography Mass Spectrometry uses a plasma chromatograph to vaporize iodine ions in urine samples at a high temperature of nearly 10,000°C. According to the different charge-to-mass ratio of the ions, the iodine content is detected by the ion chromatography detector. This method has high accuracy, but the instrument is expensive and not suitable for widespread use.
  • the traditional standard method for urinary iodine determination is arsenic-cerium catalytic spectrophotometry.
  • the detection limit of this method is 3 ⁇ g/L. It has the advantages of high sensitivity, strong anti-interference ability, and good repeatability.
  • the detection kit used contains Arsenic trioxide is easy to pollute the environment and harm human health.
  • the traditional urine iodine test kits that do not contain arsenic trioxide have poor reproducibility of the color reaction system.
  • a kit for detecting iodine content in urine comprising a diluent, a developer, an oxidizing agent and a purifying agent, the diluent includes sodium chloride with a mass concentration of 3.5% to 4.5%, and the pH of the diluent is 4.6.
  • the color developer includes 3,3',5,5'-tetramethylbenzidine at a concentration of 50 mg/L, the oxidant includes peracetic acid and the diluent, and the quality of the peroxyacetic acid The concentration is 0.25%.
  • a method for detecting iodine content in urine includes the following steps:
  • the diluent includes sodium chloride with a mass concentration of 3.5% to 4.5%, and the pH of the diluent is 4.6;
  • the diluted urine is purified with a purifying agent, and a color developing agent and an oxidizing agent are sequentially added to the purified diluted urine to obtain a mixed solution, wherein the color developing agent includes 3, with a concentration of 50 mg/L. 3',5,5'-tetramethylbenzidine, the oxidizing agent includes peroxyacetic acid and the diluent, and the mass concentration of the peroxyacetic acid is 0.25%; and
  • the mixed solution is detected to obtain the content of iodine ions in the urine to be tested.
  • FIG. 1 is a schematic diagram of the structure of a hydrogel chip in a kit for detecting iodine content in urine according to an embodiment
  • FIG. 2 is a process flow diagram of a method for detecting iodine content in urine according to an embodiment
  • Fig. 3 is the result curve of the urine iodine content detection kit in Example 1 and Qingdao Sankai kit for 8 times repeated testing of the urine iodine content.
  • kits for detecting iodine content in urine includes a diluent, a color developing agent, an oxidizing agent and a purifying agent.
  • the diluent includes sodium chloride with a mass concentration of 3.5% to 4.5%, and the pH of the diluent is 4.6.
  • the developer includes 3,3',5,5'-tetramethylbenzidine (TMB) at a concentration of 50mg/L.
  • TMB 3,3',5,5'-tetramethylbenzidine
  • the oxidant includes peroxyacetic acid and diluent, the mass concentration of peroxyacetic acid is 0.25%.
  • the diluent, developer, oxidizer and purifying agent are independent of each other.
  • the diluent also includes a pH regulator, and the pH regulator is an acetic acid-sodium acetate buffer solution.
  • the pH adjuster is used to adjust the pH of the diluent.
  • the diluent can be used to dilute the urine to be tested and as a solvent for the oxidant.
  • the addition of sodium chloride in the diluent can enable the urine to be tested to be treated with the purifying agent to selectively adsorb impurity particles while retaining iodine ions to the maximum.
  • Adjusting the pH of the diluent to be acidic can provide an acidic environment for the subsequent color reaction of the oxidant and the developer.
  • the developer also includes citric acid, sodium ethylenediaminetetraacetate (EDTA-Na), glycerin, dimethyl sulfoxide (DMSO) and water.
  • citric acid sodium ethylenediaminetetraacetate
  • EDTA-Na sodium ethylenediaminetetraacetate
  • glycerin dimethyl sulfoxide
  • DMSO dimethyl sulfoxide
  • the concentration of citric acid is 1.9g/L.
  • the concentration of EDTA-Na is 0.4g/L.
  • the volume ratio of glycerin to developer is 0.1.
  • the volume of DMSO and developer is 0.01.
  • EDTA-Na is an important chelating agent that can chelate the metal ions in the solution and prevent the solution from discoloration, deterioration and turbidity caused by the metal ions.
  • citric acid also has a similar effect to EDTA-Na. It can be used as a complexing agent and masking agent to quickly complex metal ions.
  • TMB Since TMB is insoluble in water, it has a greater solubility in DMSO. So add DMSO to the developer to dissolve TMB. However, a high concentration of organic solvents will reduce the color rendering effect, so only DMSO with a volume content of 0.01 is added to the color developer. At the same time, because DMSO has a melting point of 18.5°C, it is a solid during storage at 4°C, which is inconvenient to use. Therefore, glycerin with a volume content of 0.1 is added to make the color developer liquid at 4°C, which is convenient for use. Adding glycerin to the color developer can also reduce the spontaneous color development of TMB and improve the stability of TMB.
  • Peracetic acid is dissolved in the diluent to obtain an oxidant.
  • the peroxyacetic acid in the oxidant can oxidize with the TMB in the color developer under the catalysis of iodide ions to obtain a blue product.
  • the higher the iodide ion concentration the faster the reaction rate, and the more blue products. Therefore, when the developer, oxidant and urine to be tested are in contact, the color of the resulting solution is darker, then The higher the iodide ion concentration. Therefore, the absorbance can be reflected according to the color of the solution, and the concentration of iodide ions can be obtained.
  • using the diluent as the solvent of the oxidant can make the oxidant acidic, thereby providing an acidic environment for the reaction between the oxidant and the color developer, and facilitates the color reaction between the oxidant and the color developer.
  • the purifying agent can purify the urine to be tested.
  • the purifying agent is activated carbon.
  • Activated carbon can purify diluted urine and remove interfering substances in urine, such as bilirubin, vitamin C, sodium chloride, etc., but activated carbon will not adsorb iodide ions and does not affect the test results of iodide ions.
  • the aforementioned kit for detecting iodine content in urine also includes a hydrogel chip.
  • the hydrogel chip 200 is provided with a purification tank 210 and a detection tank 220, the purification tank 210 carries a purification agent, and the detection tank 220 carries a detector capable of detecting iodine content, the purification tank 210 and the detection tank 220 Connected through the first channel 230, the hydrogel chip 200 is also provided with a second channel 240 and a third channel 250, the second channel 240 is in communication with the first channel 230, the third channel 250 is in communication with the first channel 230, and the second channel 240 is closer to the purification tank 210 than the third channel 250.
  • the hydrogel chip 200 is also provided with a fourth channel 260 communicating with the purification tank 210. Diluent and urine to be tested can flow in from the fourth channel 260, and the color developer can flow from the fourth channel 260.
  • the second channel 240 flows in, and the oxidant can flow in from the third channel 250.
  • the hydrogel chip 200 includes a cover plate and a detection plate.
  • the detection plate is provided with a purification tank 210, a detection tank 220, a first channel 230, a second channel 240, a third channel 250, and a fourth channel 260.
  • the cover plate is arranged on the detection plate and shields the purification tank 210 and the detection tank. 220, the first channel 230, the second channel 240, the third channel 250, and the fourth channel 260.
  • the cover plate can protect the detection board so that it will not be interfered by foreign particles during the detection process.
  • the urine to be tested and the diluent are mixed first to obtain the diluted urine, and then the diluted urine flows into the fourth channel, and is purified by the purifying agent in the purification tank, and then smoothed.
  • the developer flowing in the first channel and the second channel and the oxidant flowing in the third channel are mixed to obtain a mixed liquid.
  • the mixed liquid flows into the detection tank.
  • the mixed liquid is detected by a detector to obtain the iodine content in the urine to be measured. .
  • the detector can detect the absorbance of the mixed liquid flowing into the detection cell.
  • the detector is a color recognition sensor.
  • the color recognition sensor can recognize the color and detect the absorbance to obtain the iodine ion concentration in the urine to be tested.
  • the hydrogel chip can integrate the purification and detection of urine to be tested, and the size of the hydrogel chip is small, the length is only 5cm ⁇ 10cm, and the detection is fast, the cost is low, and it can be used to quickly determine the iodine content in urine. Detection. And the introduction of hydrogel has no effect on the test of iodine content in urine.
  • the detection device is not limited to a hydrogel chip. Any device that can purify the urine to be tested and mix the purified urine to be tested with a color developer and an oxidant to obtain a mixed solution and then detect the mixed solution can be used as a detection device.
  • the aforementioned detection kit also includes an iodine standard solution.
  • Iodine standard solution is used to draw the standard curve of iodide ion concentration and absorbance to obtain the function relationship between iodide ion concentration and absorbance.
  • the iodine standard solution includes potassium iodide solutions with iodide ion concentrations of 10 ⁇ g/L, 60 ⁇ g/L, 80 ⁇ g/L, 100 ⁇ g/L, 300 ⁇ g/L, 400 ⁇ g/L, and 500 ⁇ g/L, respectively.
  • the selection of the iodine standard solution with the above concentration gradient can make the correlation coefficient of the relationship curve between the iodide ion concentration and the absorbance larger, and the test result is more accurate.
  • the above detection kit can use TMB in the developer and peracetic acid in the oxidant to produce a blue product under the catalysis of an iodide ion solution, and the color of the blue product is related to the iodide ion concentration, so it can be based on The shade of the color gives the iodide ion concentration.
  • the use of the above-mentioned low-concentration developer and low-concentration oxidizer has better reproducibility of the color reaction than the use of high-concentration developer and oxidant.
  • the above-mentioned detection kit does not contain arsenic, which causes little environmental pollution.
  • the hydrogel chip in the above detection kit can realize the integration of urine purification and reaction color development.
  • Four channels and two reaction cells are depicted inside the hydrogel chip.
  • the first channel communicates with the purification pool containing the purification agent and the detection pool.
  • the urine to be tested flows in from the fourth channel, and the purified urine is mixed with the developer and oxidant flowing in the first channel, the second channel, and the third channel, and flows into the detection pool, which is easy to operate, fast, flexible and automated Advantages of high degree.
  • the range of the iodine concentration that can be detected by the above detection kit is 10 ⁇ g/L to 500 ⁇ g/L, and the detection range meets the requirements for detection of iodine content in human urine.
  • a method for detecting iodine content in urine includes the following steps:
  • Step S110 Take the urine to be tested and mix it with the diluent to obtain the diluted urine, where the diluent includes sodium chloride with a mass concentration of 3.5% to 4.5%, and the pH of the diluent is 4.6.
  • the volume ratio of urine to be tested to diluent is 1:5.
  • the diluent also includes a pH regulator, and the pH regulator is an acetic acid-sodium acetate buffer solution.
  • the pH regulator is an acetic acid-sodium acetate buffer solution.
  • Step S120 Purify the diluted urine with a purifying agent, and sequentially add a color developing agent and an oxidizing agent to the purified diluted urine to obtain a mixed solution, where the color developing agent includes 3,3', with a concentration of 50 mg/L. 5,5'-Tetramethylbenzidine, the oxidant includes peroxyacetic acid and diluent, the mass concentration of peroxyacetic acid is 0.25%.
  • the dosage ratio of the purifying agent to the diluted urine is 0.111 g/mL to 0.222 g/mL.
  • the purifying agent is activated carbon. Activated carbon can purify diluted urine and can remove interfering substances in urine, such as bilirubin, vitamin C, sodium chloride, etc., but activated carbon does not adsorb iodine ions, thereby purifying urine.
  • the volume ratio of diluted urine, oxidant and developer is 3:1:1. Using the above-mentioned ratio to add each substance can make the diluted urine be purified, and the color reaction is fast and within the concentration range.
  • the diluted urine treated with the purifying agent is added to the developer and the oxidizing agent in sequence.
  • the reason is that if the developer and the oxidizing agent are added at the same time, the color reaction will start immediately. It is difficult to accurately determine the time when the reaction starts, which will affect the test results influences. If the oxidant is added first and then the developer is added, the oxidant will react with the diluted urine, which will also affect the test results. Therefore, the method is first mixed with the color developer and then mixed with the oxidant.
  • the color developer also includes citric acid, sodium edetate, glycerin, dimethyl sulfoxide, and water.
  • citric acid is 1.9g/L.
  • concentration of EDTA-Na is 0.4g/L.
  • the volume ratio of glycerin to developer is 0.1.
  • the volume ratio of DMSO to developer is 0.01.
  • EDTA-Na is an important chelating agent that can chelate metal ions in the solution and prevent the solution from discoloration, deterioration and turbidity caused by metals.
  • citric acid also has a similar effect to EDTA-Na, that is, it can be used as a complexing agent and a masking agent to quickly precipitate metal ions.
  • TMB is easily soluble in organic solvents, and has greater solubility in DMSO. Therefore, DMSO is added to the developer. However, a high concentration of organic solvent will reduce the color rendering effect, so only 1% DMSO by volume is added to the color developer. At the same time, the melting point of DMSO is 18.5°C, which is solid during storage at 4°C, which is inconvenient to use. Therefore, 10% glycerin is added to make the color developer liquid at 4°C, which is convenient for storage.
  • the peroxyacetic acid in the oxidant can oxidize with the TMB in the color developer under the catalysis of iodide ions to obtain a blue product.
  • the higher the iodide ion concentration the faster the reaction rate and the more blue products. Therefore, when the developer, oxidant and urine to be tested are in contact, the darker the color of the resulting solution, the higher the iodide ion concentration. Therefore, the concentration of iodide ions can be obtained according to the depth of the color.
  • step S120 includes:
  • the hydrogel chip includes a purification tank and a detection tank.
  • the purification tank is loaded with a purifying agent.
  • the detection tank is loaded with a detector capable of detecting iodine content.
  • the purification tank and the detection tank are connected through the first channel.
  • the chip is also provided with a second channel and a third channel.
  • the second channel is connected to the first channel, and the third channel is connected to the first channel.
  • the second channel is closer to the purification tank than the third channel.
  • the hydrogel chip is also provided with a purification tank.
  • the fourth channel connected to the pool, the diluent and the urine to be tested can flow in from the fourth channel, the color developer can flow in from the second channel, and the oxidant can flow in from the third channel;
  • the structure diagram of the hydrogel chip is shown in Figure 1.
  • the width of the four channels in the hydrogel chip is 3mm, and the length of the hydrogel chip is 5cm-10cm.
  • the ratio of the length of the channel through which the diluted urine flows, the length of the channel through which the color developer flows, and the length of the channel through which the oxidant flows is 3:1:1. It is the same as the volume ratio of diluted urine, oxidant and developer.
  • hydrogel chip as a detection device to detect the urine to be tested can provide a channel for the purification of the urine to be tested and the color development of the color rendering system, and complete the purification and detection of urine in an integrated manner with a high degree of automation.
  • the hydrogel chip has better stretchability and can make product design more flexible and convenient.
  • the hydrogel chip also has the advantages of easy integration and high channel analysis.
  • Step S130 Detect the mixed solution to obtain the iodine content in the urine to be tested.
  • step S130 includes: when all the mixed liquid flows into the detection cell of the hydrogel chip, start timing, and after 300 seconds, use the detector to detect the detection cell.
  • the detector is a color sensor.
  • the color sensor can quickly detect the mixed liquid, and the detector is placed in the detection tank, which can realize the integration of urine purification and detection, without taking the mixed liquid out and then using the spectrophotometer for testing, which simplifies the operation Steps, high degree of automation.
  • the method for detecting the iodine content in the urine further includes: detecting a plurality of iodide ion standard solutions with a concentration gradient to obtain a relationship curve between the concentration of iodine ion and the absorbance.
  • the detection of multiple concentration gradients of iodide ion standard solutions can be performed by spectrophotometer method, or a hydrogel chip can be used to detect iodide ion standard solutions with a detector.
  • the content of iodine ions in the urine to be tested is obtained according to the relationship curve between the concentration of iodine ions and the absorbance.
  • the concentration of the iodide ion standard solution includes: 10 ⁇ g/L, 60 ⁇ g/L, 80 ⁇ g/L, 100 ⁇ g/L, 300 ⁇ g/L, 400 ⁇ g/L, and 500 ⁇ g/L.
  • the iodide ion standard solution is an aqueous solution of potassium iodide.
  • step S130 the method of detecting the mixed solution in step S130 should be the same as the method of detecting the standard solution of iodide ions to obtain the standard curve to ensure the accuracy of the test result.
  • the above-mentioned detection method of iodine content in urine uses a purifying agent to process the diluted urine, which can eliminate the interference in the urine, and the sodium chloride in the diluted urine can retain the iodine ions to the greatest extent, making the purification
  • the treatment of diluted urine has no effect on the content of iodide ions, and the test results have high accuracy and anti-interference.
  • the above-mentioned detection method of iodine content in urine uses a specific oxidizing agent and a color developing agent as the color development system, and the detection result has good repeatability.
  • 1 g of sodium alginate and 8 g of acrylamide were dissolved in 36 g of pure water to obtain a first solution.
  • 0.08 g of ammonium persulfate (initiator) and 0.015 g of N,N'-methylenebisacrylamide (crosslinking agent) were added to 1 mL of water to dissolve to obtain a second solution.
  • the first solution and the second solution were mixed and vacuumed for 5 minutes to obtain the third solution.
  • the calcium sulfate dihydrate was prepared into a calcium sulfate solution at 40°C, and then 5 mL of the supernatant was mixed with 100 ⁇ L of the tetramethylethylenediamine catalyst, and poured into the third solution to obtain a mixed solution.
  • the heating time of the first semi-cured hydrogel is 15 minutes
  • the heating time of the second semi-cured hydrogel is 12 minutes.
  • the heating temperature is 60°C.
  • a laser cutting machine is used to cut the first semi-cured hydrogel to make the inner pipe of the hydrogel to obtain a cutting board.
  • the detection method of iodine content in urine of this comparative example is as follows:
  • the urine to be tested was repeatedly tested 8 times with the detection kits in the above-mentioned Example 1 to Example 3, Comparative Example 1, and the commercially available Qingdao Sankai kit.
  • the experimental results are shown in Table 1 below.
  • the results of 8 repeated tests of urine iodine content in the urine iodine content detection kit and Qingdao Sankai kit in Example 1 are plotted as a curve, as shown in Figure 3. Show.
  • the curve marked with a circle is the test result curve of the detection kit in Example 1
  • the curve marked with a diamond is the test result curve of the Qingdao Sankai kit.
  • the blank sample is the urine to be tested with an interference substance concentration of 0.
  • the above experimental results show that after adding three types of interfering substances to the blank sample, the relative error is less than 15% compared with the blank control group. Therefore, the above color reaction system can exclude ascorbic acid, sodium chloride, and bilirubin after being purified by activated carbon. The interference of iodine on the detection of iodine content in urine.
  • test kit for the iodine content in urine in the embodiment is used to test urine, the test results are reproducible, the influence of interfering substances can be excluded, and the interference resistance is good.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种尿液中碘含量的检测试剂盒及其检测方法,检测试剂盒包括稀释液、显色剂、氧化剂及纯化剂,稀释液包括质量浓度为3.5%~4.5%的氯化钠,稀释液pH为4.6,显色剂包括浓度为50mg/L的3,3',5,5'-四甲基联苯胺,氧化剂包括过氧乙酸及所述稀释液,过氧乙酸的质量浓度为0.25%。

Description

尿液中碘含量的检测试剂盒及尿液中碘含量的检测方法 技术领域
本发明涉及检测领域,特别是涉及一种尿液中碘含量的检测试剂盒及尿液中碘含量的检测方法。
背景技术
碘是人体必需的微量元素之一,有“智力元素”之称,是合成甲状腺激素的重要原料。人体一旦缺少了碘,就会发生一系列的病态,也就是所谓的“碘缺乏病”,它属于微量营养素营养不良,是世界卫生组织、***儿童基因会等国际组织重点防治、限期消除的三大微营养不良疾病之一。妇女在怀孕期间缺碘,会导致流产、早产、死产、胎儿先天畸形。儿童在生长过程中一旦缺碘,智力发育就会受到严重影响,即使轻微缺碘,也会影响大脑的正常发育。碘缺乏病会导致智力损害,同时碘缺乏病直接引发地方性甲状腺肿、克汀病等,严重危害人体身心健康。而另一方面,碘过量也会对机体的健康造成影响,主要表现为甲状腺功能紊乱。通常,人体摄入的碘约90%由尿液排出,因此,尿碘是评价人体碘营养状况的最佳指标。尿液中碘具有含量低、基本成分复杂、个体差异性较大的特点,这就要求尿碘的测定方法要有较高的灵敏度、准确度、抗干扰能力、稳定性等。
等离子色谱质谱法(ICP-MS)使用等离子色谱仪,在近10000℃的高温下将尿样中的碘离子气化。根据离子的荷质比不同,通过离子色谱检测器检测碘的含量。此方法准确度高,但仪器昂贵,不适合广泛采用。
传统的尿碘测定标准方法是砷铈催化分光光度法,此法的检出限为 3μg/L,具有灵敏度高、抗干扰能力强、可重复性好等优点,但是所用的检测试剂盒中含有三氧化二砷,容易对环境造成污染,对人体健康造成危害,而传统的不含有三氧化二砷的尿碘检测试剂盒,显色反应体系的重复性较差。
发明内容
基于此,有必要提供一种重复性好且对环境污染较小的尿液中碘含量的检测试剂盒。
此外,还提供一种尿液中碘含量的检测方法。
一种尿液中碘含量的检测试剂盒,包括稀释液、显色剂、氧化剂及纯化剂,所述稀释液包括质量浓度为3.5%~4.5%的氯化钠,所述稀释液的pH为4.6,所述显色剂包括浓度为50mg/L的3,3',5,5'-四甲基联苯胺,所述氧化剂包括过氧乙酸及所述稀释液,所述过氧乙酸的质量浓度为0.25%。
一种尿液中碘含量的检测方法,包括以下步骤:
取待测尿液,并与稀释液混合,得到稀释尿液,其中,所述稀释液包括质量浓度为3.5%~4.5%的氯化钠,所述稀释液的pH为4.6;
将所述稀释尿液用纯化剂进行纯化处理,向纯化后的所述稀释尿液依次加入显色剂和氧化剂,得到混合液,其中,所述显色剂包括浓度为50mg/L的3,3',5,5'-四甲基联苯胺,所述氧化剂包括过氧乙酸及所述稀释液,所述过氧乙酸的质量浓度为0.25%;及
对所述混合液进行检测,得到所述待测尿液中碘离子的含量。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
图1为一实施方式的尿液中碘含量的检测试剂盒中水凝胶芯片的结构示意图;
图2为一实施方式的尿液中碘含量的检测方法的工艺流程图;
图3为实施例1中的尿液中碘含量的检测试剂盒与青岛三凯试剂盒对尿液中碘含量进行8次重复测试的结果曲线。
具体实施方式
为了便于理解本发明,下面将结合具体实施方式对本发明进行更全面的描述。具体实施方式中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体地实施例的目的,不是旨在于限制本发明。
一实施方式的尿液中碘含量的检测试剂盒,包括稀释液、显色剂、氧化剂及纯化剂。其中,稀释液包括质量浓度为3.5%~4.5%的氯化钠,稀释液的pH为4.6。显色剂包括浓度为50mg/L的3,3',5,5'-四甲基联苯胺(TMB)。氧化剂包括过氧乙酸及稀释液,过氧乙酸的质量浓度为0.25%。
在使用之前,稀释液、显色剂、氧化剂及纯化剂为彼此独立的。
具体地,稀释液还包括pH调节剂,pH调节剂为乙酸-乙酸钠缓冲溶液。pH调节剂用于调节稀释液的pH值。稀释液能够用于稀释待测尿液,并作为氧化剂的溶剂。在稀释液中加入氯化钠能够使待测尿液在后续经纯化剂处理 时,能够选择性地吸附杂质粒子,而最大限度地保留碘离子。将稀释液的pH调节为酸性,能够为后续氧化剂和显色剂的显色反应提供酸性环境。
显色剂还包括柠檬酸、乙二胺四乙酸钠(EDTA-Na)、甘油、二甲基亚砜(DMSO)及水。其中,柠檬酸的浓度为1.9g/L。EDTA-Na的浓度为0.4g/L。甘油与显色剂的体积比为0.1。DMSO与显色剂的体积为0.01。
EDTA-Na是一种重要的螯合剂,能螯合溶液中的金属离子,防止金属离子引起的溶液变色、变质和变浊。柠檬酸的作用除了提供酸性的环境外,它还与EDTA-Na有相似的作用,即用作络合剂,掩蔽剂,可以迅速络合金属离子。
由于TMB不溶于水,但在DMSO中的溶解度较大。因此在显色剂中加入DMSO溶解TMB。但高浓度的有机溶剂会降低显色效果,所以仅在显色剂中加入体积含量为0.01的DMSO。同时由于DMSO的熔点为18.5℃,在4℃保存过程中为固体,使用不方便,因此加入了体积含量为0.1的甘油,使显色剂在4℃时为液态,便于使用。在显色剂中加入甘油还能降低TMB的自发显色,提高TMB的稳定性。
过氧乙酸溶解在稀释液中,得到氧化剂。氧化剂中的过氧乙酸能够在碘离子的催化作用下,与显色剂中的TMB发生氧化反应,得到蓝色产物。在一定的浓度范围内,碘离子浓度越高,反应速度越快,蓝色产物越多,因此,当显色剂、氧化剂及待测尿液接触时,所得到的溶液的颜色越深,则碘离子浓度越高。因此,可以根据溶液颜色的深浅,反映出吸光度的大小,进而得到碘离子的浓度。进一步地,采用稀释液作为氧化剂的溶剂能够使氧化剂呈酸性,从而为氧化剂与显色剂的反应提供酸性环境,利于氧化剂与显色剂的显色反应。
纯化剂能够对待测尿液进行纯化。在本实施方式中,纯化剂为活性炭。活性炭能够对稀释尿液进行纯化,去除尿液中的干扰性物质,如胆红素、维生素C、氯化钠等,但活性炭不会对碘离子进行吸附,不影响碘离子的测试结果。
进一步地,上述尿液中碘含量的检测试剂盒还包括水凝胶芯片。请参阅图1,水凝胶芯片200设有纯化池210和检测池220,纯化池210内承载有纯化剂,检测池220内承载有能够检测碘含量的检测器,纯化池210与检测池220通过第一通道230连通,水凝胶芯片200还设有第二通道240和第三通道250,第二通道240与第一通道230连通,第三通道250与第一通道230连通,第二通道240较第三通道250靠近纯化池210,水凝胶芯片200还设有与纯化池210连通的第四通道260,稀释液和待测尿液能够从第四通道260流入,显色剂能够从第二通道240流入,氧化剂能够从第三通道250流入。
具体地,水凝胶芯片200包括盖板和检测板。检测板上设有纯化池210、检测池220、第一通道230、第二通道240、第三通道250及第四通道260,盖板盖设在检测板上,并遮蔽纯化池210、检测池220、第一通道230、第二通道240、第三通道250及第四通道260。盖板能够保护检测板,使检测过程中不会受到外界杂质粒子的干扰。
第二通道240和第三通道250之间不连通。通过设置第二通道240与第三通道250之间不连通,能够使显色剂与氧化剂先后与待测尿液混合,便于确定显色反应的起点。
上述水凝胶芯片在用于检测时,先将待测尿液和稀释液混合,得到稀释尿液,然后使稀释尿液从第四通道流入,经纯化池内的纯化剂进行纯化处理,然后顺着第一通道与第二通道流入的显色剂、第三通道流入的氧化剂混合, 得到混合液,混合液流入检测池内,用检测器对混合液进行检测,得到待测尿液中的碘含量。
检测器能够对流入检测池内的混合液的吸光度进行检测。具体地,在本实施方式中,检测器为颜色识别传感器。颜色识别传感器能够识别颜色,并检测出吸光度,从而得到待测尿液中的碘离子浓度。
水凝胶芯片能够使待测尿液的纯化及检测一体化,且水凝胶芯片的体积小,长度仅为5cm~10cm,且检测快、成本低,能够用于尿液中碘含量的快速检测。且引入水凝胶对尿液中碘含量的测试没有影响。
可以理解,在其他实施方式中,检测装置不限于水凝胶芯片。任何能够将待测尿液进行纯化,并使纯化后的待测尿液与显色剂、氧化剂混合,得到混合液,然后对混合液进行检测的装置都可以作为检测装置。
进一步地,上述检测试剂盒还包括碘标准溶液。碘标准溶液用于绘制碘离子的浓度与吸光度的标准曲线,得到碘离子浓度与吸光度的函数关系。具体地,在本实施方式中,碘标准溶液包括碘离子浓度分别为10μg/L、60μg/L、80μg/L、100μg/L、300μg/L、400μg/L以及500μg/L的碘化钾溶液。选用上述浓度梯度的碘标准溶液能够使得到的碘离子浓度与吸光度的关系曲线的相关系数大,测试结果更准确。
上述尿液中碘含量的检测试剂盒至少具有以下优点:
(1)上述检测试剂盒能够利用显色剂中TMB与氧化剂中的过氧乙酸在碘离子溶液的催化下,产生蓝色产物,而蓝色产物颜色的深浅与碘离子浓度相关,因此可以根据颜色的深浅得到碘离子浓度。采用上述低浓度的显色剂与低浓度的氧化剂,较采用高浓度的显色剂与氧化剂,显色反应的重复性好。
(2)上述检测试剂盒中不含有砷化物,对环境污染较小。
(3)上述检测试剂盒在用于尿液检测时,无需进行前处理过程,从而简化了操作。
(4)上述检测试剂盒中的水凝胶芯片能够实现尿液纯化及反应显色的一体化。水凝胶芯片内部刻画了四个通道以及两个反应池。第一通道连通装有纯化剂的纯化池及检测池。待测尿液从第四通道流入,纯化后的尿液顺着第一通道与第二通道、第三通道流入的显色剂及氧化剂混合,并流入检测池,具有操作简易、快速灵活及自动化程度高等优点。
(5)上述检测试剂盒能够检测的碘浓度的范围为10μg/L~500μg/L,检测范围满足对人体尿液中碘含量检测的要求。
请参阅图2,一实施方式的尿液中碘含量的检测方法,包括以下步骤:
步骤S110:取待测尿液,并与稀释液混合,得到稀释尿液,其中,稀释液包括质量浓度为3.5%~4.5%的氯化钠,稀释液的pH为4.6。
其中,待测尿液与稀释液的体积比为1:5。采用稀释液对待测尿液进行稀释,使待测尿液的浓度在检测范围内。
具体地,稀释液还包括pH调节剂,pH调节剂为乙酸-乙酸钠缓冲溶液。在稀释液中加入氯化钠能够使待测尿液在后续由纯化剂处理时,能够选择性地吸附杂质粒子,而最大限度地保留碘离子。
步骤S120:将稀释尿液用纯化剂进行纯化处理,向纯化后的稀释尿液依次加入显色剂和氧化剂,得到混合液,其中,显色剂包括浓度为50mg/L的3,3',5,5'-四甲基联苯胺,氧化剂包括过氧乙酸及稀释液,过氧乙酸的质量浓度为0.25%。
具体地,纯化剂与稀释尿液的用量比为0.111g/mL~0.222g/mL。在本实施 方式中,纯化剂为活性炭。活性炭能够对稀释尿液进行纯化,能够去除尿液中的干扰性物质,如胆红素、维生素C、氯化钠等,但活性炭不会对碘离子进行吸附,从而对尿液进行纯化。
稀释尿液、氧化剂及显色剂的体积比为3:1:1。采用上述配比加入各物质,能够使稀释尿液被纯化,且显色反应快速,并在浓度范围内。
采用将经纯化剂处理后的稀释尿液依次加入显色剂及氧化剂,是因为,若同时加入显色剂及氧化剂,则显色反应立即开始,难以准确判断反应开始的时间,对测试结果造成影响。若先加入氧化剂后加入显色剂,则氧化剂会与稀释尿液反应,也会对测试结果造成影响。因此,采用先与显色剂混合,再与氧化剂混合的方式。
具体地,显色剂还包括柠檬酸、乙二胺四乙酸钠、甘油、二甲基亚砜及水。其中,柠檬酸的浓度为1.9g/L。EDTA-Na的浓度为0.4g/L。甘油与显色剂的体积比为0.1。DMSO与显色剂的体积比为0.01。
EDTA-Na是一种重要的螯合剂,能螯合溶液中的金属离子,防止金属引起的溶液变色、变质和变浊。柠檬酸的作用除了提供酸性的环境外,它还与EDTA-Na有相似的作用,即用作络合剂,掩蔽剂,可以迅速沉淀金属离子。
TMB易溶于有机溶剂,在DMSO中的溶解度较大。因此,在显色剂中加入DMSO。但高浓度的有机溶剂会降低显色效果,所以仅在显色剂中加入体积含量为1%的DMSO。同时DMSO的熔点为18.5℃,在4℃保存过程中为固体,使用不方便,因此加入体积含量为10%的甘油,使显色剂在4℃时为液态,便于保存。
氧化剂中的过氧乙酸能够在碘离子的催化作用下,与显色剂中的TMB发生氧化反应,得到蓝色产物。碘离子浓度越高,反应速度越快,蓝色产物 越多,因此,当显色剂、氧化剂及待测尿液接触时,所得到的溶液的颜色越深,则碘离子浓度越高。因此,可以根据颜色的深浅,得到碘离子的浓度。
进一步地,步骤S120包括:
提供水凝胶芯片,水凝胶芯片包括纯化池和检测池,纯化池内承载有纯化剂,检测池内承载有能够检测碘含量的检测器,纯化池与检测池通过第一通道连通,水凝胶芯片还设有第二通道和第三通道,第二通道与第一通道连通,第三通道与第一通道连通,第二通道较第三通道靠近纯化池,水凝胶芯片还设有与纯化池连通的第四通道,稀释液和待测尿液能够从第四通道流入,显色剂能够从第二通道流入,氧化剂能够从第三通道流入;
取稀释尿液、氧化剂及显色剂,并分别注入水凝胶芯片的第四通道、第二通道及第三通道内,以使稀释尿液在纯化池内被纯化,然后与显色剂、氧化剂混合。
其中,水凝胶芯片的结构示意图如图1所示。水凝胶芯片中四个通道的宽度为3mm,水凝胶芯片的长度为5cm~10cm。为了保证测试的准确性,在混合前,稀释尿液所流经的通道的长度、显色剂所流经的通道的长度及氧化剂所流经的通道的长度之比为3:1:1,与稀释尿液、氧化剂及显色剂的体积比相同。
采用水凝胶芯片作为检测装置对待测尿液进行检测,能够为待测尿液的纯化及显色体系的显色提供通道,并使尿液的纯化及检测一体化完成,自动化程度高。采用水凝胶芯片较传统的刚性材料而言,具有更好的拉伸性,可以使产品设计更加灵活方便,同时水凝胶芯片还具有便于集成和高通道分析的优点。
步骤S130:对混合液进行检测,得到待测尿液中的碘含量。
具体地,当步骤S120中采用水凝胶芯片为检测装置时,步骤S130包括:待混合液全部流入水凝胶芯片的检测池时,开始计时,300s后,用检测器对检测池进行检测。
具体地,检测器为颜色传感器。采用颜色传感器能够快速地对混合液进行检测,且将检测器置于检测池内,能够实现尿液的纯化及检测的一体化,而不用将混合液取出再利用分光光度计进行测试,简化了操作步骤,自动化程度高。
具体地,上述尿液中碘含量的检测方法还包括:对多个浓度梯度的碘离子标准溶液进行检测,得到碘离子的浓度与吸光度的关系曲线。
对多个浓度梯度的碘离子标准溶液进行检测可以采用分光光度计法进行测试,也可以采用水凝胶芯片,利用检测器对碘离子标准溶液进行检测。
步骤S130中,根据上述碘离子的浓度与吸光度的关系曲线,得到待测尿液中碘离子的含量。在本实施方式中,碘离子标准溶液的浓度包括:10μg/L、60μg/L、80μg/L、100μg/L、300μg/L、400μg/L以及500μg/L。碘离子标准溶液为碘化钾的水溶液。通过将混合液显色的吸光度代入关系曲线,即可得到待测尿液中碘离子的浓度,进而计算得到待测尿液中的碘离子含量。
需要说明的是,步骤S130中对混合液进行检测的方法应与对碘离子的标准溶液进行检测,得到标准曲线的方法相同,以保证测试结果的准确性。
上述尿液中碘含量的检测方法至少具有以下优点:
(1)上述尿液中碘含量的检测方法利用纯化剂对稀释尿液进行处理,能够排除尿液中的干扰物,且稀释尿液中的氯化钠能够最大限度地保留碘离子,使得纯化剂对稀释尿液进行处理时对碘离子的含量没有影响,测试结果的准确性、抗干扰性高。
(2)上述尿液中碘含量的检测方法操作简单、测试快。
(3)上述尿液中碘含量的检测方法利用特定的氧化剂和显色剂作为显色体系,检测结果的重复性好。
一实施方式的水凝胶芯片的制备方法如下:
将1g海藻酸钠和8g丙烯酰胺用36g纯水来溶解,得到第一溶液。将过硫酸铵(引发剂)0.08g、N,N'-亚甲基双丙烯酰胺(交联剂)0.015g加入到1mL水溶解,得到第二溶液。将第一溶液和第二溶液混合,并抽真空5min,得到第三溶液。将硫酸钙二水合物在40℃下配成硫酸钙溶液,然后取上清液5mL加100μL四甲基乙二胺催化剂混合,并倒入第三溶液中,得到混合液。
将混合液倒入培养皿中,摇匀(倒入时注意不要有气泡),安模板,放到加热板上加热。其中,第一半固化水凝胶的加热时间为15min,第二半固化水凝胶的加热时间为12min。加热温度为60℃。
按照图1所示的水凝胶芯片的结构示意图,使用激光切割机对第一半固化水凝胶进行切割,制作水凝胶内部管道,得到切割板。将纯化剂和检测器分别置于切割板的纯化池和检测池内,然后将第二半固化水凝胶覆盖切割板,并在50℃水浴下加热30min。然后打开紫外灯,在保湿箱里放置1天,得到水凝胶芯片。
以下为具体实施例部分:
实施例1
本实施例的尿液中碘含量的检测方法如下:
(1)取490mL 0.2mol/L乙酸钠溶液与510mL 0.2mol/L乙酸溶液混合, 并加入氯化钠,得到pH值为4.6的乙酸-乙酸钠稀释液,其中,氯化钠的质量浓度为4%。将25mg 3,3',5,5'-四甲基联苯胺溶于5mL DMSO中,然后加入0.95g柠檬酸、EDTA-Na 0.2g、50mL甘油,并加水至500mL,得到显色剂。将过氧乙酸与乙酸-乙酸钠稀释液混合,得到过氧乙酸的质量浓度为0.25%的氧化剂。
(2)收集待测尿液,取1mL尿液(取样前摇匀尿液),加入5mL pH=4.6的乙酸-乙酸钠稀释液,充分混匀,制成稀释尿液。
(3)分别取900μL稀释尿液、300μL氧化剂和300μL显色剂,按图1中水凝胶芯片的示意图所示依次注入稀释尿液、显色剂及氧化剂,其中,水凝胶芯片中纯化剂的用量为0.1g。
(4)待稀释尿液、显色剂及氧化剂全部混合在检测池时,开始计时并摇匀,300s后,使用颜色识别传感器对检测池进行检测,进而得到待测尿液中的碘离子含量。
实施例2
本实施例的尿液中碘含量的检测方法如下:
(1)将乙酸、乙酸钠及水混合,并加入氯化钠,得到pH值为4.6的乙酸-乙酸钠稀释液,其中,氯化钠的质量浓度为3.5%。将3,3',5,5'-四甲基联苯胺溶于DMSO中,然后加入柠檬酸、EDTA-Na、甘油及水,得到显色剂。显色剂中TMB的质量浓度为50mg/L,柠檬酸的质量浓度为1.9g/L,EDTA-Na的质量浓度为0.4g/L,甘油的加入量为显色剂体积的10%,DMSO的加入量为显色剂体积的1%。将过氧乙酸与稀释液混合,得到过氧乙酸的质量浓度为0.25%的氧化剂。
(2)收集待测尿液,取1mL待测尿液(取样前摇匀尿液),加入5mL pH=4.6的稀释液,充分混匀,制成稀释尿液。
(3)分别取900μL稀释尿液、300μL氧化剂和300μL显色剂,按图1中水凝胶芯片的示意图所示依次注入稀释尿液、显色剂及氧化剂,其中,水凝胶芯片中纯化剂的用量为0.15g。
(4)待稀释尿液、显色剂及氧化剂全部混合在检测池时,开始计时并摇匀,300s后,使用颜色识别传感器对检测池进行检测,得到待测尿液中的碘离子含量。
实施例3
本实施例的尿液中碘含量的检测方法如下:
(1)将乙酸、乙酸钠及水混合,并加入氯化钠,得到pH值为4.6的乙酸-乙酸钠稀释液,其中,氯化钠的质量浓度为4.5%。将3,3',5,5'-四甲基联苯胺溶于DMSO中,然后加入柠檬酸、EDTA-Na、甘油,并加水,得到显色剂。显色剂中TMB的质量浓度为50mg/L,柠檬酸的质量浓度为1.9g/L,EDTA-Na的质量浓度为0.4g/L,甘油的加入量为显色剂体积的10%,DMSO的加入量为显色剂体积的1%。将过氧乙酸与稀释液混合,得到过氧乙酸的质量浓度为0.25%的氧化剂。
(2)收集待测尿液,取1mL尿液(取样前摇匀尿液),加入5mL pH=4.6的稀释液,充分混匀,制成稀释尿液。
(3)分别取900μL稀释尿液、300μL氧化剂和300μL显色剂,按图1中水凝胶芯片的示意图所示依次注入稀释尿液、显色剂及氧化剂,其中,水凝胶芯片中纯化剂的用量为0.2g。
(4)待稀释尿液、显色剂及氧化剂全部混合在检测池时,开始计时并摇匀,300s后,使用颜色识别传感器对检测池进行检测,得到待测尿液中的碘离子含量。
对比例1
本对比例的尿液中碘含量的检测方法如下:
(1)将乙酸、乙酸钠及水混合,并加入氯化钠,得到pH值为4.6的乙酸-乙酸钠稀释液,其中,氯化钠的质量浓度为2.5%。将3,3',5,5'-四甲基联苯胺溶于DMSO中,然后加入柠檬酸、EDTA-Na、甘油,并加水,得到显色剂。显色剂中TMB的质量浓度为50mg/L,柠檬酸的质量浓度为1.9g/L,EDTA-Na的质量浓度为0.4g/L,甘油的加入量为显色剂体积的10%,DMSO的加入量为显色剂体积的1%。将过氧乙酸与稀释液混合,得到过氧乙酸的质量浓度为0.25%的氧化剂。
(2)收集待测尿液,取1mL尿液(取样前摇匀尿液),加入5mL pH=4.6的稀释液,充分混匀,制成稀释尿液。
(3)分别取900μL稀释尿液、300μL氧化剂和300μL显色剂,按图1中水凝胶芯片的示意图所示依次注入稀释尿液、显色剂及氧化剂。
(4)待稀释尿液、显色剂及氧化剂全部混合在检测池时,开始计时并摇匀,300s后,使用颜色识别传感器对检测池进行检测,得到待测尿液中的碘离子含量。
将待测尿液分别用上述实施例1~实施例3、对比例1中的检测试剂盒和市售的青岛三凯试剂盒进行8次重复测试。实验结果如下表1所示,将实施 例1中的尿液中碘含量的检测试剂盒与青岛三凯试剂盒对尿液中碘含量进行8次重复测试的结果绘制成曲线,如图3所示。图3中,以圆形为标记的曲线为实施例1中的检测试剂盒的测试结果曲线,以菱形为标记的曲线为青岛三凯试剂盒的测试结果曲线。
表1 实施例和对比例的检测试剂盒及市售试剂盒的测试结果对比
Figure PCTCN2019122548-appb-000001
其中,CV值的计算公式为:CV值=标准差/平均值×100%。从上述实验 结果中可以看出,采用实施例1~实施例3中的检测试剂盒,测试结果的CV值均在5%左右,重复性好,而采用对比例1中的检测试剂盒,测试结果的CV值较大,这是由于稀释液中氯化钠的浓度较低,使得尿液在用活性炭纯化步骤中的纯化效果较差。但采用对比例1中的检测试剂盒的CV值较青岛三凯试剂盒的CV值仍较低,说明采用对比例中的显色反应体系较采用青岛三凯试剂盒的显色反应体系的重复性好。
根据尿液的成分,考察了抗坏血酸(Vc)、氯化钠(NaCl)、胆红素等对测试过程的干扰,将下述待测样分别采用实施例1中的检测试剂盒进行重复三次测试,实验结果如下表2所示。
表2 实施例1中的检测试剂盒对不同尿液的测试结果
Figure PCTCN2019122548-appb-000002
其中,相对误差按照如下公式计算得到:相对误差(%)=(干扰样品的测定平均值-空白样品的测定平均值)×100%/空白样品的测定平均值。空白样品即干扰物浓度为0的待测尿液。
上述实验结果表明,空白样中分别加入三类干扰物质后,与空白对照组对比,相对误差均小于15%,因此上述显色反应体系在经过活性炭纯化后可以排除抗坏血酸、氯化钠、胆红素对尿液中碘含量检测的干扰。
上述实验结果均表明,采用实施例中的尿液中碘含量的检测试剂盒对尿液进行检测,检测结果的重复性好,且能够排除干扰性物质的影响,抗干扰性好。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种尿液中碘含量的检测试剂盒,包括稀释液、显色剂、氧化剂及纯化剂,所述稀释液包括质量浓度为3.5%~4.5%的氯化钠,所述稀释液的pH为4.6,所述显色剂包括浓度为50mg/L的3,3',5,5'-四甲基联苯胺,所述氧化剂包括过氧乙酸及所述稀释液,所述过氧乙酸的质量浓度为0.25%。
  2. 根据权利要求1所述的尿液中碘含量的检测试剂盒,其特征在于,所述稀释液还包括pH调节剂,所述pH调节剂为乙酸-乙酸钠缓冲溶液。
  3. 根据权利要求1所述的尿液中碘含量的检测试剂盒,其特征在于,所述显色剂还包括:浓度为1.9g/L的柠檬酸、浓度为0.4g/L的乙二胺四乙酸钠、与所述显色剂体积比为0.1的甘油及与所述显色剂体积比为0.01的二甲基亚砜。
  4. 根据权利要求1所述的尿液中碘含量的检测试剂盒,其特征在于,所述纯化剂为活性炭。
  5. 根据权利要求1所述的尿液中碘含量的检测试剂盒,其特征在于,还包括水凝胶芯片,所述水凝胶芯片设有纯化池和检测池,所述纯化池内承载有所述纯化剂,所述检测池内承载有能够检测碘含量的检测器,所述纯化池与所述检测池通过第一通道连通,所述水凝胶芯片还设有第二通道和第三通道,所述第二通道与所述第一通道连通,所述第三通道与所述第一通道连通,所述第二通道较所述第三通道靠近所述纯化池,所述水凝胶芯片还设有与所述纯化池连通的第四通道,所述稀释液和待测尿液能够从所述第四通道流入,所述显色剂能够从所述第二通道流入,所述氧化剂能够从所述第三通道流入。
  6. 根据权利要求5所述的尿液中碘含量的检测试剂盒,其特征在于,所述水凝胶芯片包括检测板和盖板,所述检测板上设有所述纯化池、所述检测 池、所述第一通道、所述第二通道、所述第三通道及所述第四通道,所述盖板盖设在所述检测板上,并遮蔽所述纯化池、所述检测池、所述第一通道、所述第二通道、所述第三通道及所述第四通道。
  7. 根据权利要求5所述的尿液中碘含量的检测试剂盒,其特征在于,所述检测器为颜色识别传感器。
  8. 根据权利要求5所述的尿液中碘含量的检测试剂盒,其特征在于,所述水凝胶芯片的长度为5cm~10cm。
  9. 根据权利要求1所述的尿液中碘含量的检测试剂盒,其特征在于,还包括多个浓度梯度的碘标准溶液。
  10. 根据权利要求9所述的尿液中碘含量的检测试剂盒,其特征在于,所述碘标准溶液包括碘离子浓度分别为10μg/L、60μg/L、80μg/L、100μg/L、300μg/L、400μg/L以及500μg/L的碘化钾溶液。
  11. 一种尿液中碘含量的检测方法,包括以下步骤:
    取待测尿液,并与稀释液混合,得到稀释尿液,其中,所述稀释液包括质量浓度为3.5%~4.5%的氯化钠,所述稀释液的pH为4.6;
    将所述稀释尿液用纯化剂进行纯化处理,向纯化后的所述稀释尿液依次加入显色剂和氧化剂,得到混合液,其中,所述显色剂包括浓度为50mg/L的3,3',5,5'-四甲基联苯胺,所述氧化剂包括过氧乙酸及所述稀释液,所述过氧乙酸的质量浓度为0.25%;及
    对所述混合液进行检测,得到所述待测尿液中的碘含量。
  12. 根据权利要求11所述的尿液中碘含量的检测方法,其特征在于,所述取待测尿液,并与稀释液混合的步骤中,所述待测尿液与所述稀释液的体积比为1:5。
  13. 根据权利要求11或12所述的尿液中碘含量的检测方法,其特征在于,所述稀释液还包括pH调节剂,所述pH调节剂为乙酸-乙酸钠缓冲溶液。
  14. 根据权利要求11所述的尿液中碘含量的检测方法,其特征在于,所述将所述稀释尿液用纯化剂进行纯化处理的步骤中,所述纯化剂与所述稀释尿液的用量比为0.111g/mL~0.222g/mL。
  15. 根据权利要求11或14所述的尿液中碘含量的检测方法,其特征在于,所述纯化剂为活性炭。
  16. 根据权利要求11所述的尿液中碘含量的检测方法,其特征在于,所述向纯化后的所述稀释尿液依次加入显色剂和氧化剂的步骤中,所述稀释尿液、所述氧化剂及所述显色剂的体积比为3:1:1。
  17. 根据权利要求11或16所述的尿液中碘含量的检测方法,其特征在于,所述显色剂还包括:浓度为1.9g/L的柠檬酸、浓度为0.4g/L的乙二胺四乙酸钠、与所述显色剂体积比为0.1的甘油及与所述显色剂体积比为0.01的二甲基亚砜。
  18. 根据权利要求11所述的尿液中碘含量的检测方法,其特征在于,所述将所述稀释尿液用纯化剂进行纯化处理,向纯化后的所述稀释尿液依次加入显色剂和氧化剂的步骤包括:
    提供水凝胶芯片,所述水凝胶芯片包括纯化池和检测池,所述纯化池内承载有所述纯化剂,所述检测池内承载有能够检测碘含量的检测器,所述纯化池与所述检测池通过第一通道连通,所述水凝胶芯片还设有第二通道和第三通道,所述第二通道与所述第一通道连通,所述第三通道与所述第一通道连通,所述第二通道较所述第三通道靠近所述纯化池,所述水凝胶芯片还设有与所述纯化池连通的第四通道,所述稀释液和待测尿液能够从所述第四通 道流入,所述显色剂能够从所述第二通道流入,所述氧化剂能够从所述第三通道流入;
    取所述稀释尿液、所述显色剂及所述氧化剂,并分别注入所述水凝胶芯片的所述第四通道、所述第二通道及所述第三通道内,以使所述稀释尿液在所述纯化池内被纯化,然后与所述显色剂、所述氧化剂混合。
  19. 根据权利要求18所述的尿液中碘含量的检测方法,其特征在于,所述对所述混合液进行检测的步骤包括:待所述混合液全部流入所述水凝胶芯片的所述检测池时开始计时,300s后,用所述检测器对所述检测池内的所述混合液进行检测。
  20. 根据权利要求11所述的尿液中碘含量的检测方法,其特征在于,还包括:对多个浓度梯度的碘离子标准溶液进行检测,得到碘离子的浓度与吸光度的关系曲线,所述对所述混合液进行检测,得到所述待测尿液中的碘含量的步骤包括:对所述混合液的吸光度进行测试,根据所述碘离子的浓度与吸光度的关系曲线及测得的待测尿液的吸光度,计算得到所述待测尿液中的碘含量。
PCT/CN2019/122548 2019-04-01 2019-12-03 尿液中碘含量的检测试剂盒及尿液中碘含量的检测方法 WO2020199630A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910260923.3 2019-04-01
CN201910260923.3A CN110006881B (zh) 2019-04-01 2019-04-01 尿液中碘含量的检测试剂盒及尿液中碘含量的检测方法

Publications (1)

Publication Number Publication Date
WO2020199630A1 true WO2020199630A1 (zh) 2020-10-08

Family

ID=67169437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122548 WO2020199630A1 (zh) 2019-04-01 2019-12-03 尿液中碘含量的检测试剂盒及尿液中碘含量的检测方法

Country Status (2)

Country Link
CN (1) CN110006881B (zh)
WO (1) WO2020199630A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006881B (zh) * 2019-04-01 2020-09-11 深圳大学 尿液中碘含量的检测试剂盒及尿液中碘含量的检测方法
CN112972128B (zh) * 2021-02-03 2022-03-29 杭州可靠护理用品股份有限公司 一种婴儿尿纸尿裤及其尿显线
CN113959822B (zh) * 2021-10-29 2024-02-20 珠海市丽拓生物科技股份有限公司 过氧乙酸氧化法测定尿碘含量的稀释液、氧化剂及应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1429339A (zh) * 2000-03-15 2003-07-09 阿克雷株式会社 具有分离固体能力的测试片
CN1811394A (zh) * 2006-03-07 2006-08-02 北京中生金域诊断技术有限公司 尿液碘测定试剂盒
CN102866249A (zh) * 2012-08-15 2013-01-09 华北制药集团新药研究开发有限责任公司 Tmb显色体系
CN103272656A (zh) * 2011-12-20 2013-09-04 国家纳米科学中心 条形码微流控芯片及其用途
US20150204763A1 (en) * 2012-07-30 2015-07-23 Nmi Naturwissenschaftliches Und Medizinisches Institut An Der Universitaet Tuebingen System for analyzing biological sample material
CN105004719A (zh) * 2015-07-21 2015-10-28 杨先锋 一种尿碘测定试剂盒及其应用
CN106546586A (zh) * 2016-11-09 2017-03-29 安徽惠邦生物工程股份有限公司 一种体外检测尿液中碘含量的检测试剂
CN108890937A (zh) * 2018-06-29 2018-11-27 山东省科学院能源研究所 一种树枝状通道结构的水凝胶芯片的制备方法
CN110006881A (zh) * 2019-04-01 2019-07-12 深圳大学 尿液中碘含量的检测试剂盒及尿液中碘含量的检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19507685B4 (de) * 1995-03-04 2005-05-25 Merck Patent Gmbh Verfahren und Mittel zur Bestimmung von Jodid
CN105424629B (zh) * 2015-12-11 2018-10-23 苏州汶颢芯片科技有限公司 微流控芯片及铜离子检测***
CN109470849A (zh) * 2018-10-24 2019-03-15 四川农业大学 一种副猪嗜血杆菌抗体检测试剂盒及其使用方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1429339A (zh) * 2000-03-15 2003-07-09 阿克雷株式会社 具有分离固体能力的测试片
CN1811394A (zh) * 2006-03-07 2006-08-02 北京中生金域诊断技术有限公司 尿液碘测定试剂盒
CN103272656A (zh) * 2011-12-20 2013-09-04 国家纳米科学中心 条形码微流控芯片及其用途
US20150204763A1 (en) * 2012-07-30 2015-07-23 Nmi Naturwissenschaftliches Und Medizinisches Institut An Der Universitaet Tuebingen System for analyzing biological sample material
CN102866249A (zh) * 2012-08-15 2013-01-09 华北制药集团新药研究开发有限责任公司 Tmb显色体系
CN105004719A (zh) * 2015-07-21 2015-10-28 杨先锋 一种尿碘测定试剂盒及其应用
CN106546586A (zh) * 2016-11-09 2017-03-29 安徽惠邦生物工程股份有限公司 一种体外检测尿液中碘含量的检测试剂
CN108890937A (zh) * 2018-06-29 2018-11-27 山东省科学院能源研究所 一种树枝状通道结构的水凝胶芯片的制备方法
CN110006881A (zh) * 2019-04-01 2019-07-12 深圳大学 尿液中碘含量的检测试剂盒及尿液中碘含量的检测方法

Also Published As

Publication number Publication date
CN110006881A (zh) 2019-07-12
CN110006881B (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2020199630A1 (zh) 尿液中碘含量的检测试剂盒及尿液中碘含量的检测方法
CN108120790B (zh) 同时在线分析水样中微量硫离子和氯离子的低压阴离子交换色谱-光度比浊法
CN103760121B (zh) 一种血液中亚硝酸盐的检测方法
CN113310915A (zh) 一种啤酒中残留直链烷基苯磺酸钠含量的测定方法
CN106526072A (zh) 一步检测Cd2+预制试剂及方法
Tzanavaras et al. Sequential injection method for the direct spectrophotometric determination of bismuth in pharmaceutical products
Amin Utilization of solid phase spectrophotometry for determination of trace amounts of beryllium in natural water
Themelis et al. Flow injection manifold for the direct spectrophotometric determination of bismuth in pharmaceutical products using Methylthymol Blue as a chromogenic reagent
CN111721757A (zh) 一种水体磷酸盐连续流动分析仪及检测方法
CN111220607A (zh) 一种铜显色液及其制备方法与应用
JP6994024B2 (ja) アンモニウムの定量方法
CN107084956B (zh) 一种基于醇溶剂诱导银纳米簇荧光增强的尿液中碘离子检测方法
Walash et al. Kinetic spectrophotometric determination of famotidine in pharmaceutical preparations
CN110849869A (zh) 一种检定放射性注射液中铜离子浓度限度的显色方法及试剂盒
CN111157666A (zh) 一种同时定量分析胺溶液中亚硫酸根和硫酸根离子的方法
JP2005069746A (ja) ケイモリブデン酸逆抽出法およびケイモリブデン酸(青)吸光光度法によるケイ素定量法
Kemula et al. Microdetermination of chloride in water
CN110082445A (zh) 一种同时测定葡萄糖酸氯己定和对氯苯胺含量的方法
CN113959822B (zh) 过氧乙酸氧化法测定尿碘含量的稀释液、氧化剂及应用
Stang et al. A Colorimetric Method for the Determination of Sulphur Dioxide in Air
Maren A simple and accurate method for the determination of mercury in biologic material
CN116285967B (zh) 一种硅掺杂碳量子点、制备方法及其在尿液中巯基化合物含量检测中的应用
JP2001099826A (ja) 錯体の発色方法および発色用試薬
JPH1019898A (ja) 総蛋白質の定量方法および定量用試薬
CN106442363A (zh) 废水中砷含量的测定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19923024

Country of ref document: EP

Kind code of ref document: A1