WO2020196877A1 - ショベル及び施工システム - Google Patents

ショベル及び施工システム Download PDF

Info

Publication number
WO2020196877A1
WO2020196877A1 PCT/JP2020/014231 JP2020014231W WO2020196877A1 WO 2020196877 A1 WO2020196877 A1 WO 2020196877A1 JP 2020014231 W JP2020014231 W JP 2020014231W WO 2020196877 A1 WO2020196877 A1 WO 2020196877A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
bucket
control amount
actuator
excavator
Prior art date
Application number
PCT/JP2020/014231
Other languages
English (en)
French (fr)
Inventor
泉川 岳哉
Original Assignee
住友建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友建機株式会社 filed Critical 住友建機株式会社
Priority to EP20778486.9A priority Critical patent/EP3951077B1/en
Priority to CN202311678120.2A priority patent/CN117468520A/zh
Priority to JP2021509670A priority patent/JP7367001B2/ja
Priority to KR1020217032667A priority patent/KR20210140742A/ko
Priority to CN202080025422.8A priority patent/CN113631777A/zh
Publication of WO2020196877A1 publication Critical patent/WO2020196877A1/ja
Priority to US17/448,948 priority patent/US20220010519A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2029Controlling the position of implements in function of its load, e.g. modifying the attitude of implements in accordance to vehicle speed
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2054Fleet management
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)

Definitions

  • This disclosure relates to excavators and construction systems as excavators.
  • This excavator is configured to output an alarm sound based on the shortest distance between the bucket and the target surface. Specifically, the excavator is configured to increase the frequency of the alarm sound as its shortest distance becomes shorter. This is to make the excavator operator recognize that the bucket is too close to the target surface.
  • the alarm sound does not change when the toe of the bucket is on the target surface, that is, when the shortest distance is zero. Therefore, the operator of the excavator may recognize that the toe of the bucket is detected as the portion closest to the target surface as long as this state continues.
  • the above-mentioned excavator makes the back surface of the bucket contact the target surface when the arm is opened while the toe of the bucket is in contact with the target surface. There is a risk of breaking it. This is because even if the inclined surface, which is another part of the target surface, is close to the back surface of the bucket, the operator cannot recognize that the back surface of the bucket and the inclined surface are close to each other.
  • the excavator according to the embodiment of the present invention includes a lower traveling body, an upper rotating body rotatably mounted on the lower traveling body, an attachment attached to the upper rotating body, and an end attachment constituting the attachment. , And a control device that autonomously operates the actuator, and the control device calculates a control amount of the actuator with respect to each of a plurality of predetermined points in the end attachment, and obtains each of the calculated control amounts. Based on this, the actuator is operated autonomously.
  • FIG. 1 is a side view of the excavator 100
  • FIG. 2 is a top view of the excavator 100.
  • the lower traveling body 1 of the excavator 100 includes the crawler 1C.
  • the crawler 1C is driven by a traveling hydraulic motor 2M as a traveling actuator mounted on the lower traveling body 1.
  • the crawler 1C includes a left crawler 1CL and a right crawler 1CR.
  • the left crawler 1CL is driven by the left traveling hydraulic motor 2ML
  • the right crawler 1CR is driven by the right traveling hydraulic motor 2MR.
  • the lower traveling body 1 is mounted so that the upper rotating body 3 can be swiveled via the swivel mechanism 2.
  • the swivel mechanism 2 is driven by a swivel hydraulic motor 2A as a swivel actuator mounted on the upper swivel body 3.
  • the swivel actuator may be a swivel motor generator as an electric actuator.
  • a boom 4 is attached to the upper swing body 3.
  • An arm 5 is attached to the tip of the boom 4, and a bucket 6 as an end attachment is attached to the tip of the arm 5.
  • the boom 4, arm 5, and bucket 6 form an excavation attachment AT, which is an example of an attachment.
  • the boom 4 is driven by the boom cylinder 7, the arm 5 is driven by the arm cylinder 8, and the bucket 6 is driven by the bucket cylinder 9.
  • the boom cylinder 7, arm cylinder 8 and bucket cylinder 9 constitute an attachment actuator.
  • the end attachment may be a slope bucket.
  • the boom 4 is supported so as to be rotatable up and down with respect to the upper swing body 3.
  • a boom angle sensor S1 is attached to the boom 4.
  • the boom angle sensor S1 can detect the boom angle ⁇ , which is the rotation angle of the boom 4.
  • the boom angle ⁇ is, for example, an ascending angle from the state in which the boom 4 is most lowered. Therefore, the boom angle ⁇ becomes maximum when the boom 4 is raised most.
  • the arm 5 is rotatably supported with respect to the boom 4.
  • An arm angle sensor S2 is attached to the arm 5.
  • the arm angle sensor S2 can detect the arm angle ⁇ , which is the rotation angle of the arm 5.
  • the arm angle ⁇ is, for example, an opening angle from the most closed state of the arm 5. Therefore, the arm angle ⁇ becomes maximum when the arm 5 is opened most.
  • the bucket 6 is rotatably supported with respect to the arm 5.
  • a bucket angle sensor S3 is attached to the bucket 6.
  • the bucket angle sensor S3 can detect the bucket angle ⁇ , which is the rotation angle of the bucket 6.
  • the bucket angle ⁇ is an opening angle from the most closed state of the bucket 6. Therefore, the bucket angle ⁇ becomes maximum when the bucket 6 is opened most.
  • each of the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 is composed of a combination of an acceleration sensor and a gyro sensor. However, it may be composed only of an acceleration sensor. Further, the boom angle sensor S1 may be a stroke sensor attached to the boom cylinder 7, a rotary encoder, a potentiometer, an inertial measurement unit, or the like. The same applies to the arm angle sensor S2 and the bucket angle sensor S3.
  • the upper swing body 3 is provided with a cabin 10 as a driver's cab, and is equipped with a power source such as an engine 11. Further, a space recognition device 70, an orientation detection device 71, a positioning device 73, an airframe tilt sensor S4, a swivel angular velocity sensor S5, and the like are attached to the upper swivel body 3. Inside the cabin 10, an operation device 26, a controller 30, an information input device 72, a display device D1, a voice output device D2, and the like are provided. In this document, for convenience, the side of the upper swing body 3 to which the excavation attachment AT is attached is referred to as the front, and the side to which the counterweight is attached is referred to as the rear.
  • the space recognition device 70 is configured to recognize an object existing in the three-dimensional space around the excavator 100. Further, the space recognition device 70 may be configured to calculate the distance from the space recognition device 70 or the excavator 100 to the recognized object.
  • the space recognition device 70 includes, for example, an ultrasonic sensor, a millimeter wave radar, a monocular camera, a stereo camera, a LIDAR, a range image sensor, an infrared sensor, or any combination thereof.
  • the space recognition device 70 is attached to the front sensor 70F attached to the front end of the upper surface of the cabin 10, the rear sensor 70B attached to the rear end of the upper surface of the upper swing body 3, and the left end of the upper surface of the upper swing body 3.
  • the left sensor 70L and the right sensor 70R attached to the upper right end of the upper swing body 3 are included.
  • An upper sensor that recognizes an object existing in the space above the upper swivel body 3 may be attached to the excavator 100.
  • the orientation detection device 71 is configured to detect information regarding the relative relationship between the orientation of the upper swing body 3 and the orientation of the lower traveling body 1.
  • the orientation detection device 71 may be composed of, for example, a combination of a geomagnetic sensor attached to the lower traveling body 1 and a geomagnetic sensor attached to the upper rotating body 3.
  • the orientation detection device 71 may be composed of a combination of a GNSS receiver attached to the lower traveling body 1 and a GNSS receiver attached to the upper rotating body 3.
  • the orientation detection device 71 may be a rotary encoder, a rotary position sensor, or any combination thereof.
  • the orientation detection device 71 may be configured by a resolver.
  • the orientation detection device 71 may be attached to, for example, a center joint provided in connection with the swivel mechanism 2 that realizes the relative rotation between the lower traveling body 1 and the upper swivel body 3.
  • the orientation detection device 71 may be composed of a camera attached to the upper swing body 3. In this case, the orientation detection device 71 performs known image processing on the image (input image) captured by the camera attached to the upper swivel body 3 to detect the image of the lower traveling body 1 included in the input image. Then, the orientation detection device 71 identifies the longitudinal direction of the lower traveling body 1 by detecting the image of the lower traveling body 1 by using a known image recognition technique. Then, the angle formed between the direction of the front-rear axis of the upper swing body 3 and the longitudinal direction of the lower traveling body 1 is derived. The direction of the front-rear axis of the upper swing body 3 is derived from the mounting position of the camera.
  • the orientation detection device 71 can specify the longitudinal direction of the lower traveling body 1 by detecting the image of the crawler 1C.
  • the orientation detection device 71 may be integrated with the controller 30.
  • the camera may be a space recognition device 70.
  • the information input device 72 is configured so that the operator of the excavator can input information to the controller 30.
  • the information input device 72 is a switch panel installed close to the display unit of the display device D1.
  • the information input device 72 may be a touch panel arranged on the display unit of the display device D1, or may be a voice input device such as a microphone arranged in the cabin 10.
  • the information input device 72 may be a communication device that acquires information from the outside.
  • the positioning device 73 is configured to measure the position of the upper swing body 3.
  • the positioning device 73 is a GNSS receiver, detects the position of the upper swing body 3, and outputs the detected value to the controller 30.
  • the positioning device 73 may be a GNSS compass. In this case, since the positioning device 73 can detect the position and orientation of the upper swing body 3, it also functions as the orientation detecting device 71.
  • the body tilt sensor S4 detects the tilt of the upper swivel body 3 with respect to a predetermined plane.
  • the airframe tilt sensor S4 is an acceleration sensor that detects the tilt angle around the front-rear axis and the tilt angle around the left-right axis of the upper swing body 3 with respect to the horizontal plane.
  • the front-rear axis and the left-right axis of the upper swivel body 3 pass, for example, the excavator center point which is one point on the swivel axis of the excavator 100 orthogonal to each other.
  • the turning angular velocity sensor S5 detects the turning angular velocity of the upper swing body 3. In this embodiment, it is a gyro sensor. It may be a resolver, a rotary encoder, or any combination thereof. The turning angular velocity sensor S5 may detect the turning velocity. The turning speed may be calculated from the turning angular velocity.
  • At least one of the boom angle sensor S1, the arm angle sensor S2, the bucket angle sensor S3, the body tilt sensor S4, and the turning angular velocity sensor S5 is also referred to as an attitude detection device.
  • the posture of the excavation attachment AT is detected based on, for example, the outputs of the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3.
  • the display device D1 is a device that displays information.
  • the display device D1 is a liquid crystal display installed in the cabin 10.
  • the display device D1 may be a display of a mobile terminal such as a smartphone.
  • the audio output device D2 is a device that outputs audio.
  • the voice output device D2 includes at least one device that outputs voice to the operator inside the cabin 10 and a device that outputs voice to the operator outside the cabin 10. It may be a speaker of a mobile terminal.
  • the operating device 26 is a device used by the operator to operate the actuator.
  • the operating device 26 includes, for example, an operating lever and an operating pedal.
  • the actuator includes at least one of a hydraulic actuator and an electric actuator.
  • the controller 30 is a control device for controlling the excavator 100.
  • the controller 30 is composed of a computer including a CPU, a volatile storage device, a non-volatile storage device, and the like. Then, the controller 30 reads the program corresponding to each function from the non-volatile storage device, loads it into the volatile storage device, and causes the CPU to execute the corresponding process.
  • Each function is, for example, a machine guidance function for guiding the manual operation of the excavator 100 by the operator, supporting the manual operation of the excavator 100 by the operator, or operating the excavator 100 automatically or autonomously. Includes a machine control function.
  • the controller 30 includes a contact avoidance function for automatically or autonomously operating or stopping the excavator 100 in order to avoid contact between an object existing within the monitoring range around the excavator 100 and the excavator 100. You may. Monitoring of objects around the excavator 100 is performed not only within the monitoring range but also outside the monitoring range. At this time, the controller 30 detects the type of the object and the position of the object.
  • FIG. 3 is a diagram showing a configuration example of a hydraulic system mounted on the excavator 100.
  • the mechanical power transmission system, the hydraulic oil line, the pilot line and the electric control system are shown by double lines, solid lines, broken lines and dotted lines, respectively.
  • the hydraulic system of the excavator 100 mainly includes an engine 11, a regulator 13, a main pump 14, a pilot pump 15, a control valve unit 17, an operating device 26, a discharge pressure sensor 28, an operating pressure sensor 29, a controller 30, and the like.
  • the hydraulic system is configured to circulate hydraulic oil from the main pump 14 driven by the engine 11 to the hydraulic oil tank via the center bypass pipeline 40 or the parallel pipeline 42.
  • the engine 11 is a drive source for the excavator 100.
  • the engine 11 is, for example, a diesel engine that operates so as to maintain a predetermined rotation speed.
  • the output shaft of the engine 11 is connected to each input shaft of the main pump 14 and the pilot pump 15.
  • the main pump 14 is configured so that hydraulic oil can be supplied to the control valve unit 17 via the hydraulic oil line.
  • the main pump 14 is a swash plate type variable displacement hydraulic pump.
  • the regulator 13 is configured to be able to control the discharge amount of the main pump 14.
  • the regulator 13 controls the discharge amount of the main pump 14 by adjusting the swash plate tilt angle of the main pump 14 in response to a control command from the controller 30.
  • the pilot pump 15 is an example of a pilot pressure generating device, and is configured to be able to supply hydraulic oil to a hydraulic control device including an operating device 26 via a pilot line.
  • the pilot pump 15 is a fixed displacement hydraulic pump.
  • the pilot pressure generator may be realized by the main pump 14. That is, the main pump 14 has a function of supplying hydraulic oil to the control valve unit 17 via the hydraulic oil line and a function of supplying hydraulic oil to various hydraulic control devices including the operating device 26 via the pilot line. May be. In this case, the pilot pump 15 may be omitted.
  • the control valve unit 17 is a hydraulic control device that controls the hydraulic system in the excavator 100.
  • the control valve unit 17 includes control valves 171 to 176.
  • the control valve 175 includes a control valve 175L and a control valve 175R
  • the control valve 176 includes a control valve 176L and a control valve 176R.
  • the control valve unit 17 is configured to selectively supply the hydraulic oil discharged by the main pump 14 to one or a plurality of hydraulic actuators through the control valves 171 to 176.
  • the control valves 171 to 176 control, for example, the flow rate of the hydraulic oil flowing from the main pump 14 to the hydraulic actuator and the flow rate of the hydraulic oil flowing from the hydraulic actuator to the hydraulic oil tank.
  • the hydraulic actuator includes a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, a left traveling hydraulic motor 2ML, a right traveling hydraulic motor 2MR, and a swivel hydraulic motor 2A.
  • the operating device 26 is configured to be able to supply the hydraulic oil discharged by the pilot pump 15 to the pilot port of the corresponding control valve in the control valve unit 17 via the pilot line.
  • the pressure of the hydraulic oil (pilot pressure) supplied to each of the pilot ports is a pressure corresponding to the operation direction and the operation amount of the operation device 26 corresponding to each of the hydraulic actuators.
  • the operating device 26 may be an electrically controlled type instead of the pilot pressure type as described above.
  • the control valve in the control valve unit 17 may be an electromagnetic solenoid type spool valve.
  • the discharge pressure sensor 28 is configured to be able to detect the discharge pressure of the main pump 14. In the present embodiment, the discharge pressure sensor 28 outputs the detected value to the controller 30.
  • the operating pressure sensor 29 is configured to be able to detect the content of the operation of the operating device 26 by the operator.
  • the operating pressure sensor 29 detects the operating direction and operating amount of the operating device 26 corresponding to each of the actuators in the form of pressure (operating pressure), and outputs the detected value to the controller 30.
  • the content of the operation of the operating device 26 may be detected by using a sensor other than the operating pressure sensor.
  • the main pump 14 includes a left main pump 14L and a right main pump 14R. Then, the left main pump 14L circulates the hydraulic oil to the hydraulic oil tank via the left center bypass line 40L or the left parallel line 42L, and the right main pump 14R is the right center bypass line 40R or the right parallel line 42R. The hydraulic oil is circulated to the hydraulic oil tank via.
  • the left center bypass pipeline 40L is a hydraulic oil line passing through the control valves 171, 173, 175L and 176L arranged in the control valve unit 17.
  • the right center bypass line 40R is a hydraulic oil line passing through the control valves 172, 174, 175R and 176R arranged in the control valve unit 17.
  • the control valve 171 supplies the hydraulic oil discharged by the left main pump 14L to the left hydraulic motor 2ML, and discharges the hydraulic oil discharged by the left hydraulic motor 2ML to the hydraulic oil tank. It is a spool valve that switches.
  • the control valve 172 supplies the hydraulic oil discharged by the right main pump 14R to the right traveling hydraulic motor 2MR, and discharges the hydraulic oil discharged by the right traveling hydraulic motor 2MR to the hydraulic oil tank. It is a spool valve that switches.
  • the control valve 173 supplies the hydraulic oil discharged by the left main pump 14L to the swing hydraulic motor 2A, and switches the flow of the hydraulic oil in order to discharge the hydraulic oil discharged by the swing hydraulic motor 2A to the hydraulic oil tank. It is a valve.
  • the control valve 174 is a spool valve that supplies the hydraulic oil discharged by the right main pump 14R to the bucket cylinder 9 and switches the flow of the hydraulic oil in order to discharge the hydraulic oil in the bucket cylinder 9 to the hydraulic oil tank. ..
  • the control valve 175L is a spool valve that switches the flow of hydraulic oil in order to supply the hydraulic oil discharged by the left main pump 14L to the boom cylinder 7.
  • the control valve 175R is a spool valve that supplies the hydraulic oil discharged by the right main pump 14R to the boom cylinder 7 and switches the flow of the hydraulic oil in order to discharge the hydraulic oil in the boom cylinder 7 to the hydraulic oil tank. ..
  • the control valve 176L is a spool valve that supplies the hydraulic oil discharged by the left main pump 14L to the arm cylinder 8 and switches the flow of the hydraulic oil in order to discharge the hydraulic oil in the arm cylinder 8 to the hydraulic oil tank. ..
  • the control valve 176R is a spool valve that supplies the hydraulic oil discharged by the right main pump 14R to the arm cylinder 8 and switches the flow of the hydraulic oil in order to discharge the hydraulic oil in the arm cylinder 8 to the hydraulic oil tank. ..
  • the left parallel pipeline 42L is a hydraulic oil line parallel to the left center bypass pipeline 40L.
  • the left parallel pipeline 42L supplies hydraulic oil to the control valve further downstream when the flow of hydraulic oil through the left center bypass pipeline 40L is restricted or blocked by any of the control valves 171, 173, and 175L. it can.
  • the right parallel pipeline 42R is a hydraulic oil line parallel to the right center bypass pipeline 40R.
  • the right parallel pipeline 42R supplies hydraulic oil to the control valve further downstream when the flow of hydraulic oil through the right center bypass pipeline 40R is restricted or blocked by any of the control valves 172, 174, and 175R. it can.
  • the regulator 13 includes a left regulator 13L and a right regulator 13R.
  • the left regulator 13L controls the discharge amount of the left main pump 14L by adjusting the swash plate tilt angle of the left main pump 14L according to the discharge pressure of the left main pump 14L.
  • the left regulator 13L reduces the discharge amount by adjusting the swash plate tilt angle of the left main pump 14L in response to an increase in the discharge pressure of the left main pump 14L, for example.
  • the operating device 26 includes a left operating lever 26L, a right operating lever 26R, and a traveling lever 26D.
  • the traveling lever 26D includes a left traveling lever 26DL and a right traveling lever 26DR.
  • the left operation lever 26L is used for turning operation and operation of the arm 5.
  • the hydraulic oil discharged by the pilot pump 15 is used to introduce a control pressure according to the lever operating amount into the pilot port of the control valve 176.
  • the hydraulic oil discharged by the pilot pump 15 is used to introduce a control pressure according to the lever operation amount into the pilot port of the control valve 173.
  • the hydraulic oil is introduced into the right pilot port of the control valve 176L and the hydraulic oil is introduced into the left pilot port of the control valve 176R. ..
  • the hydraulic oil is introduced into the left pilot port of the control valve 176L and the hydraulic oil is introduced into the right pilot port of the control valve 176R.
  • hydraulic oil is introduced into the left pilot port of the control valve 173, and when operated in the right turning direction, the right pilot port of the control valve 173 is introduced. Introduce hydraulic oil.
  • the right operating lever 26R is used for operating the boom 4 and the bucket 6.
  • the hydraulic oil discharged by the pilot pump 15 is used to introduce a control pressure according to the lever operating amount into the pilot port of the control valve 175.
  • the hydraulic oil discharged by the pilot pump 15 is used to introduce a control pressure according to the lever operation amount into the pilot port of the control valve 174.
  • hydraulic oil is introduced into the left pilot port of the control valve 175R.
  • the hydraulic oil is introduced into the right pilot port of the control valve 175L and the hydraulic oil is introduced into the left pilot port of the control valve 175R.
  • the right operating lever 26R causes hydraulic oil to be introduced into the right pilot port of the control valve 174 when operated in the bucket closing direction, and into the left pilot port of the control valve 174 when operated in the bucket opening direction. Introduce hydraulic oil.
  • the traveling lever 26D is used to operate the crawler 1C.
  • the left traveling lever 26DL is used for operating the left crawler 1CL. It may be configured to work with the left travel pedal.
  • the hydraulic oil discharged by the pilot pump 15 is used to introduce a control pressure according to the lever operating amount into the pilot port of the control valve 171.
  • the right traveling lever 26DR is used to operate the right crawler 1CR. It may be configured to work with the right-hand drive pedal.
  • the hydraulic oil discharged by the pilot pump 15 is used to introduce a control pressure according to the lever operating amount into the pilot port of the control valve 172.
  • the discharge pressure sensor 28 includes a discharge pressure sensor 28L and a discharge pressure sensor 28R.
  • the discharge pressure sensor 28L detects the discharge pressure of the left main pump 14L and outputs the detected value to the controller 30. The same applies to the discharge pressure sensor 28R.
  • the operating pressure sensor 29 includes the operating pressure sensors 29LA, 29LB, 29RA, 29RB, 29DL, and 29DR.
  • the operating pressure sensor 29LA detects the content of the operator's operation of the left operating lever 26L in the front-rear direction in the form of pressure, and outputs the detected value to the controller 30.
  • the contents of the operation are, for example, the lever operation direction, the lever operation amount (lever operation angle), and the like.
  • the operation pressure sensor 29LB detects the content of the operation by the operator in the left-right direction with respect to the left operation lever 26L in the form of pressure, and outputs the detected value to the controller 30.
  • the operating pressure sensor 29RA detects the content of the operator's operation of the right operating lever 26R in the front-rear direction in the form of pressure, and outputs the detected value to the controller 30.
  • the operating pressure sensor 29RB detects the content of the operator's operation of the right operating lever 26R in the left-right direction in the form of pressure, and outputs the detected value to the controller 30.
  • the operating pressure sensor 29DL detects the content of the operator's operation of the left traveling lever 26DL in the front-rear direction in the form of pressure, and outputs the detected value to the controller 30.
  • the operating pressure sensor 29DR detects the content of the operator's operation of the right traveling lever 26DR in the front-rear direction in the form of pressure, and outputs the detected value to the controller 30.
  • the controller 30 receives the output of the operating pressure sensor 29, outputs a control command to the regulator 13 as necessary, and changes the discharge amount of the main pump 14. Further, the controller 30 receives the output of the control pressure sensor 19 provided upstream of the throttle 18, outputs a control command to the regulator 13 as needed, and changes the discharge amount of the main pump 14.
  • the diaphragm 18 includes a left diaphragm 18L and a right diaphragm 18R, and the control pressure sensor 19 includes a left control pressure sensor 19L and a right control pressure sensor 19R.
  • a left throttle 18L is arranged between the most downstream control valve 176L and the hydraulic oil tank. Therefore, the flow of hydraulic oil discharged by the left main pump 14L is limited by the left throttle 18L. Then, the left diaphragm 18L generates a control pressure for controlling the left regulator 13L.
  • the left control pressure sensor 19L is a sensor for detecting this control pressure, and outputs the detected value to the controller 30.
  • the controller 30 controls the discharge amount of the left main pump 14L by adjusting the swash plate tilt angle of the left main pump 14L according to this control pressure. The controller 30 decreases the discharge amount of the left main pump 14L as the control pressure is larger, and increases the discharge amount of the left main pump 14L as the control pressure is smaller.
  • the discharge amount of the right main pump 14R is also controlled in the same manner.
  • the hydraulic oil discharged by the left main pump 14L passes through the left center bypass pipeline 40L to the left. Aperture reaches 18L. Then, the flow of hydraulic oil discharged by the left main pump 14L increases the control pressure generated upstream of the left throttle 18L. As a result, the controller 30 reduces the discharge amount of the left main pump 14L to the allowable minimum discharge amount, and suppresses the pressure loss (pumping loss) when the discharged hydraulic oil passes through the left center bypass line 40L.
  • the hydraulic oil discharged from the left main pump 14L flows into the hydraulic actuator to be operated via the control valve corresponding to the hydraulic actuator to be operated. Then, the flow of the hydraulic oil discharged by the left main pump 14L reduces or eliminates the amount reaching the left throttle 18L, and lowers the control pressure generated upstream of the left throttle 18L. As a result, the controller 30 increases the discharge amount of the left main pump 14L, circulates sufficient hydraulic oil to the hydraulic actuator to be operated, and ensures the driving of the hydraulic actuator to be operated. The controller 30 also controls the discharge amount of the right main pump 14R in the same manner.
  • the hydraulic system of FIG. 3 can suppress wasteful energy consumption in the main pump 14 in the standby state. Wasted energy consumption includes pumping loss generated in the center bypass line 40 by the hydraulic oil discharged from the main pump 14. Further, in the hydraulic system of FIG. 3, when operating the hydraulic actuator, the necessary and sufficient hydraulic oil can be reliably supplied from the main pump 14 to the hydraulic actuator to be operated.
  • FIGS. 4A to 4D are views of a part of the hydraulic system.
  • FIG. 4A is a diagram showing an extracted hydraulic system portion related to the operation of the arm cylinder 8
  • FIG. 4B is a diagram showing an extracted hydraulic system portion related to the operation of the boom cylinder 7.
  • FIG. 4C is a diagram showing an extracted hydraulic system portion related to the operation of the bucket cylinder 9
  • FIG. 4D is a diagram showing an extracted hydraulic system portion related to the operation of the swing hydraulic motor 2A.
  • the hydraulic system includes a proportional valve 31, a shuttle valve 32, and a proportional valve 33.
  • the proportional valve 31 includes proportional valves 31AL to 31DL and 31AR to 31DR
  • the shuttle valve 32 includes shuttle valves 32AL to 32DL and 32AR to 32DR
  • the proportional valve 33 includes proportional valves 33AL to 33DL and 33AR to 33DR. ..
  • the proportional valve 31 functions as a control valve for machine control.
  • the proportional valve 31 is arranged in a pipeline connecting the pilot pump 15 and the shuttle valve 32, and is configured so that the flow path area of the pipeline can be changed.
  • the proportional valve 31 operates in response to a control command output from the controller 30. Therefore, the controller 30 supplies the hydraulic oil discharged by the pilot pump 15 to the corresponding control valve in the control valve unit 17 via the proportional valve 31 and the shuttle valve 32, regardless of the operation of the operating device 26 by the operator. Can be supplied to the pilot port.
  • the shuttle valve 32 has two inlet ports and one outlet port. One of the two inlet ports is connected to the operating device 26 and the other is connected to the proportional valve 31. The outlet port is connected to the pilot port of the corresponding control valve in the control valve unit 17. Therefore, the shuttle valve 32 can make the higher of the pilot pressure generated by the operating device 26 and the pilot pressure generated by the proportional valve 31 act on the pilot port of the corresponding control valve.
  • the proportional valve 33 functions as a machine control control valve in the same manner as the proportional valve 31.
  • the proportional valve 33 is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32, and is configured so that the flow path area of the pipeline can be changed.
  • the proportional valve 33 operates in response to a control command output from the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged from the operating device 26 regardless of the operation of the operating device 26 by the operator, and then controls the corresponding control in the control valve unit 17 via the shuttle valve 32. Can be supplied to the pilot port of the valve.
  • the controller 30 can operate the hydraulic actuator corresponding to the specific operating device 26 even when the specific operating device 26 is not operated. Further, the controller 30 can forcibly stop the operation of the hydraulic actuator corresponding to the specific operating device 26 even when the operation on the specific operating device 26 is being performed.
  • the left operating lever 26L is used to operate the arm 5.
  • the left operating lever 26L utilizes the hydraulic oil discharged by the pilot pump 15 to apply a pilot pressure corresponding to the operation in the front-rear direction to the pilot port of the control valve 176.
  • the pilot pressure according to the amount of operation is applied to the right pilot port of the control valve 176L and the left pilot port of the control valve 176R. Let it work.
  • the pilot pressure according to the operating amount is applied to the left pilot port of the control valve 176L and the right pilot port of the control valve 176R.
  • a switch NS is provided on the left operating lever 26L.
  • the switch NS is a push button switch provided at the tip of the left operating lever 26L. The operator can operate the left operation lever 26L while pressing the switch NS.
  • the switch NS may be provided on the right operating lever 26R or may be provided at another position in the cabin 10.
  • the operating pressure sensor 29LA detects the content of the operator's operation of the left operating lever 26L in the front-rear direction in the form of pressure, and outputs the detected value to the controller 30.
  • the proportional valve 31AL operates in response to a control command (current command) output by the controller 30. Then, the pilot pressure by the hydraulic oil introduced from the pilot pump 15 to the right side pilot port of the control valve 176L and the left side pilot port of the control valve 176R via the proportional valve 31AL and the shuttle valve 32AL is adjusted.
  • the proportional valve 31AR operates in response to a control command (current command) output by the controller 30. Then, the pilot pressure due to the hydraulic oil introduced from the pilot pump 15 to the left side pilot port of the control valve 176L and the right side pilot port of the control valve 176R via the proportional valve 31AR and the shuttle valve 32AR is adjusted.
  • the proportional valves 31AL and 31AR can adjust the pilot pressure so that the control valves 176L and 176R can be stopped at any valve position.
  • the controller 30 supplies the hydraulic oil discharged by the pilot pump 15 to the right side pilot port of the control valve 176L and the control valve 176R via the proportional valve 31AL and the shuttle valve 32AL, regardless of the arm closing operation by the operator. Can be supplied to the left pilot port of. That is, the arm 5 can be closed. Further, the controller 30 supplies the hydraulic oil discharged by the pilot pump 15 via the proportional valve 31AR and the shuttle valve 32AR to the left side pilot port of the control valve 176L and the right side of the control valve 176R regardless of the arm opening operation by the operator. Can be supplied to the pilot port. That is, the arm 5 can be opened.
  • the proportional valve 33AL operates in response to a control command (current command) output by the controller 30. Then, the pilot pressure due to the hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 176L and the left pilot port of the control valve 176R via the left operating lever 26L, the proportional valve 33AL, and the shuttle valve 32AL is reduced.
  • the proportional valve 33AR operates in response to a control command (current command) output by the controller 30. Then, the pilot pressure due to the hydraulic oil introduced from the pilot pump 15 to the left pilot port of the control valve 176L and the right pilot port of the control valve 176R is reduced via the left operating lever 26L, the proportional valve 33AR, and the shuttle valve 32AR.
  • the proportional valves 33AL and 33AR can adjust the pilot pressure so that the control valves 176L and 176R can be stopped at any valve position.
  • the controller 30 can use the pilot port on the closing side of the control valve 176 (the left side pilot port of the control valve 176L and the control valve, if necessary, even when the arm closing operation is performed by the operator.
  • the pilot pressure acting on the right pilot port of the 176R) can be reduced to forcibly stop the closing operation of the arm 5. The same applies to the case where the opening operation of the arm 5 is forcibly stopped while the arm opening operation is being performed by the operator.
  • the controller 30 controls the proportional valve 31AR as necessary even when the arm closing operation is performed by the operator, and is on the opposite side of the pilot port on the closing side of the control valve 176.
  • the arm The closing operation of 5 may be forcibly stopped.
  • the proportional valve 33AL may be omitted. The same applies to the case where the opening operation of the arm 5 is forcibly stopped when the arm opening operation is performed by the operator.
  • the right operating lever 26R is used to operate the boom 4.
  • the right operating lever 26R utilizes the hydraulic oil discharged by the pilot pump 15 to apply a pilot pressure corresponding to the operation in the front-rear direction to the pilot port of the control valve 175. More specifically, when the right operating lever 26R is operated in the boom raising direction (rear direction), the pilot pressure according to the amount of operation is applied to the right pilot port of the control valve 175L and the left pilot port of the control valve 175R. Let it work. Further, when the right operating lever 26R is operated in the boom lowering direction (forward direction), the pilot pressure corresponding to the operating amount is applied to the right pilot port of the control valve 175R.
  • the operating pressure sensor 29RA detects the content of the operator's operation of the right operating lever 26R in the front-rear direction in the form of pressure, and outputs the detected value to the controller 30.
  • the proportional valve 31BL operates in response to a control command (current command) output by the controller 30. Then, the pilot pressure due to the hydraulic oil introduced from the pilot pump 15 to the right side pilot port of the control valve 175L and the left side pilot port of the control valve 175R via the proportional valve 31BL and the shuttle valve 32BL is adjusted.
  • the proportional valve 31BR operates in response to a control command (current command) output by the controller 30. Then, the pilot pressure by the hydraulic oil introduced from the pilot pump 15 to the left side pilot port of the control valve 175L and the right side pilot port of the control valve 175R via the proportional valve 31BR and the shuttle valve 32BR is adjusted.
  • the proportional valves 31BL and 31BR can adjust the pilot pressure so that the control valves 175L and 175R can be stopped at any valve position.
  • the controller 30 supplies the hydraulic oil discharged by the pilot pump 15 to the right pilot port of the control valve 175L and the control valve 175R via the proportional valve 31BL and the shuttle valve 32BL, regardless of the boom raising operation by the operator. Can be supplied to the left pilot port of. That is, the boom 4 can be raised. Further, the controller 30 can supply the hydraulic oil discharged by the pilot pump 15 to the right pilot port of the control valve 175R via the proportional valve 31BR and the shuttle valve 32BR regardless of the boom lowering operation by the operator. That is, the boom 4 can be lowered.
  • the right operating lever 26R is also used to operate the bucket 6. Specifically, the right operating lever 26R utilizes the hydraulic oil discharged by the pilot pump 15 to apply a pilot pressure corresponding to the operation in the left-right direction to the pilot port of the control valve 174. More specifically, when the right operating lever 26R is operated in the bucket closing direction (left direction), the pilot pressure according to the operating amount is applied to the left pilot port of the control valve 174. Further, when the right operating lever 26R is operated in the bucket opening direction (right direction), the pilot pressure corresponding to the operating amount is applied to the right pilot port of the control valve 174.
  • the operating pressure sensor 29RB detects the content of the operator's operation of the right operating lever 26R in the left-right direction in the form of pressure, and outputs the detected value to the controller 30.
  • the proportional valve 31CL operates in response to a control command (current command) output by the controller 30. Then, the pilot pressure due to the hydraulic oil introduced from the pilot pump 15 to the left pilot port of the control valve 174 via the proportional valve 31CL and the shuttle valve 32CL is adjusted.
  • the proportional valve 31CR operates in response to a control command (current command) output by the controller 30. Then, the pilot pressure due to the hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 174 via the proportional valve 31CR and the shuttle valve 32CR is adjusted.
  • the proportional valves 31CL and 31CR can adjust the pilot pressure so that the control valve 174 can be stopped at an arbitrary valve position.
  • the controller 30 can supply the hydraulic oil discharged by the pilot pump 15 to the left pilot port of the control valve 174 via the proportional valve 31CL and the shuttle valve 32CL regardless of the bucket closing operation by the operator. That is, the bucket 6 can be closed. Further, the controller 30 can supply the hydraulic oil discharged by the pilot pump 15 to the right pilot port of the control valve 174 via the proportional valve 31CR and the shuttle valve 32CR regardless of the bucket opening operation by the operator. That is, the bucket 6 can be opened.
  • the left operating lever 26L is also used to operate the turning mechanism 2.
  • the left operating lever 26L utilizes the hydraulic oil discharged by the pilot pump 15 to apply a pilot pressure corresponding to the operation in the left-right direction to the pilot port of the control valve 173. More specifically, when the left operating lever 26L is operated in the left turning direction (left direction), the pilot pressure according to the operating amount is applied to the left pilot port of the control valve 173. Further, when the left operating lever 26L is operated in the right turning direction (right direction), the pilot pressure according to the operating amount is applied to the right pilot port of the control valve 173.
  • the operating pressure sensor 29LB detects the content of the operator's operation of the left operating lever 26L in the left-right direction in the form of pressure, and outputs the detected value to the controller 30.
  • the proportional valve 31DL operates in response to a control command (current command) output by the controller 30. Then, the pilot pressure due to the hydraulic oil introduced from the pilot pump 15 to the left pilot port of the control valve 173 via the proportional valve 31DL and the shuttle valve 32DL is adjusted.
  • the proportional valve 31DR operates in response to a control command (current command) output by the controller 30. Then, the pilot pressure due to the hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 173 via the proportional valve 31DR and the shuttle valve 32DR is adjusted.
  • the proportional valves 31DL and 31DR can adjust the pilot pressure so that the control valve 173 can be stopped at an arbitrary valve position.
  • the controller 30 can supply the hydraulic oil discharged by the pilot pump 15 to the left pilot port of the control valve 173 via the proportional valve 31DL and the shuttle valve 32DL, regardless of the left turning operation by the operator. That is, the turning mechanism 2 can be turned to the left. Further, the controller 30 can supply the hydraulic oil discharged by the pilot pump 15 to the right pilot port of the control valve 173 via the proportional valve 31DR and the shuttle valve 32DR regardless of the right turning operation by the operator. That is, the swivel mechanism 2 can be swiveled to the right.
  • the excavator 100 may have a configuration in which the lower traveling body 1 is automatically or autonomously moved forward and backward.
  • the hydraulic system portion related to the operation of the left traveling hydraulic motor 2ML and the hydraulic system portion related to the operation of the right traveling hydraulic motor 2MR may be configured in the same manner as the hydraulic system portion related to the operation of the boom cylinder 7.
  • the electric operation lever provided with the electric pilot circuit may be adopted instead of the hydraulic operation lever.
  • the lever operation amount of the electric operation lever is input to the controller 30 as an electric signal.
  • an electromagnetic valve is arranged between the pilot pump 15 and the pilot port of each control valve.
  • the solenoid valve is configured to operate in response to an electrical signal from the controller 30.
  • the controller 30 moves each control valve by controlling the solenoid valve by an electric signal corresponding to the lever operation amount to increase or decrease the pilot pressure. be able to.
  • Each control valve may be composed of an electromagnetic spool valve. In this case, the electromagnetic spool valve operates in response to an electric signal from the controller 30 corresponding to the lever operation amount of the electric operation lever.
  • FIG. 5 is a diagram showing a configuration example of the controller 30.
  • the controller 30 receives various signals output by at least one of the attitude detection device, the operation device 26, the space recognition device 70, the orientation detection device 71, the information input device 72, the positioning device 73, the switch NS, and the like. It is configured so that it can execute a calculation and output a control command to at least one of the proportional valve 31, the display device D1, the audio output device D2, and the like.
  • the attitude detection device includes a boom angle sensor S1, an arm angle sensor S2, a bucket angle sensor S3, a body tilt sensor S4, and a turning angular velocity sensor S5.
  • the controller 30 has a position calculation unit 30A, a trajectory acquisition unit 30B, and an autonomous control unit 30C as functional elements.
  • the position calculation unit 30A, the trajectory acquisition unit 30B, and the autonomous control unit 30C are shown separately for convenience of explanation, but they do not need to be physically distinguished, and may be used as a whole or a part. It may be composed of common software components or hardware components. Further, one or a plurality of functional elements in the controller 30 may be functional elements in another control device such as the management device 300 described later. That is, each functional element may be realized by any control device.
  • the autonomous control unit 30C may be realized by a management device 300 outside the excavator 100.
  • the position calculation unit 30A is configured to calculate the position of the positioning target.
  • the position calculation unit 30A calculates the coordinate points in the reference coordinate system of the predetermined portion of the attachment.
  • the predetermined portion is, for example, the toe of the bucket 6.
  • the origin of the reference coordinate system is, for example, the intersection of the swivel axis and the ground plane of the excavator 100.
  • the reference coordinate system is, for example, an XYZ Cartesian coordinate system, in which an X axis parallel to the front-rear axis of the excavator 100, a Y axis parallel to the left-right axis of the excavator 100, and a Z axis parallel to the swivel axis of the excavator 100 Have.
  • the position calculation unit 30A calculates, for example, the coordinate points of the toes of the bucket 6 from the rotation angles of the boom 4, the arm 5, and the bucket 6.
  • the position calculation unit 30A may calculate not only the coordinate point at the center of the toe of the bucket 6, but also the coordinate point at the left end of the toe of the bucket 6 and the coordinate point at the right end of the toe of the bucket 6. In this case, the position calculation unit 30A may use the output of the airframe tilt sensor S4. Further, the position calculation unit 30A may calculate the coordinate points in the world coordinate system of the predetermined portion of the attachment by using the output of the positioning device 73.
  • the trajectory acquisition unit 30B is configured to acquire a target trajectory, which is a trajectory followed by a predetermined portion of the attachment when the excavator 100 is autonomously operated.
  • the trajectory acquisition unit 30B acquires a target trajectory used when the autonomous control unit 30C autonomously operates the excavator 100.
  • the trajectory acquisition unit 30B derives a target trajectory based on data on the target surface (hereinafter referred to as “design data”) stored in the non-volatile storage device.
  • the trajectory acquisition unit 30B may derive a target trajectory based on the information regarding the terrain around the excavator 100 recognized by the space recognition device 70.
  • the trajectory acquisition unit 30B may derive information on the past trajectory of the toe of the bucket 6 from the past output of the posture detection device stored in the volatile storage device, and derive a target trajectory based on the information. .. Alternatively, the trajectory acquisition unit 30B may derive a target trajectory based on the current position of the predetermined portion of the attachment and the design data.
  • the autonomous control unit 30C is configured so that the excavator 100 can be operated autonomously.
  • the trajectory acquisition unit 30B is configured to move a predetermined portion of the attachment along the acquired target trajectory.
  • the excavator 100 is autonomously operated so that the predetermined portion moves along the target trajectory.
  • the autonomous control unit 30C is configured to support the manual operation of the excavator by the operator by autonomously operating the actuator.
  • the autonomous control unit 30C has a boom cylinder 7 and an arm cylinder 8 so that the target trajectory and the position of the toe of the bucket 6 match when the operator manually closes the arm while pressing the switch NS.
  • at least one of the bucket cylinders 9 may be autonomously expanded and contracted.
  • the operator can close the arm 5 while aligning the toes of the bucket 6 with the target trajectory by simply operating the left operating lever 26L in the arm closing direction, for example.
  • the arm cylinder 8 which is the main operation target is referred to as a "main actuator”.
  • the boom cylinder 7 and the bucket cylinder 9, which are passive operation targets that move according to the movement of the main actuator are referred to as "dependent actuators”.
  • the autonomous control unit 30C autonomously operates each actuator by giving a control command (current command) to the proportional valve 31 and individually adjusting the pilot pressure acting on the control valve corresponding to each actuator. Can be made to. For example, at least one of the boom cylinder 7 and the bucket cylinder 9 can be operated regardless of whether the right operating lever 26R is tilted or not.
  • FIG. 6 shows a configuration example on the input side of the autonomous control unit 30C.
  • FIG. 7 shows a configuration example on the output side of the autonomous control unit 30C.
  • the autonomous control unit 30C is configured to calculate the control amount of the actuator for each of a plurality of predetermined points in the end attachment in the slope finishing work or the leveling work.
  • the plurality of predetermined points in the end attachment include, for example, a point at the toe of the bucket 6 and a point at the back surface of the bucket 6.
  • the current position of a predetermined point is represented by, for example, a coordinate point in a reference coordinate system.
  • the control amount of the actuator includes, for example, the control amount of the boom cylinder 7, the control amount of the arm cylinder 8, the control amount of the bucket cylinder 9, and the like.
  • the control amount of the boom cylinder 7 is represented by, for example, the stroke amount of the boom cylinder 7, the boom angle ⁇ , or the like. The same applies to the control amount of the arm cylinder 8 and the control amount of the bucket cylinder 9.
  • the autonomous control unit 30C can rotate the boom 4 by X degrees by outputting a control command regarding the boom angle "X degrees" as the control amount of the boom cylinder 7 to the proportional valve 31, for example.
  • the autonomous control unit 30C first calculates the control amount of the arm cylinder 8 which is the main actuator, and then calculates the control amount of each of the boom cylinder 7 and the bucket cylinder 9 which are the subordinate actuators.
  • the control amount of the arm cylinder 8 which is the main actuator is adjusted (corrected) as necessary after being calculated based on the operation amount of the left operation lever 26L, for example.
  • the control amount of the arm cylinder 8 changes, the control amounts of the boom cylinder 7 and the bucket cylinder 9 also change according to the change.
  • the autonomous control unit 30C includes a target value calculation unit 30D, a synthesis unit 30E, and a calculation unit 30F.
  • the target value calculation unit 30D is configured to calculate a target value for each of a plurality of predetermined points in the end attachment for each predetermined control cycle.
  • the target value is, for example, a value related to a position (target position) of a predetermined point after a predetermined time in the end attachment, and is typically represented by a target boom angle, a target arm angle, and a target bucket angle.
  • the target value calculation unit 30D, the synthesis unit 30E, and the calculation unit 30F are shown separately for convenience of explanation, but they do not need to be physically distinguished and may be totally or partially separated.
  • one or more functional elements in the autonomous control unit 30C may be functional elements in other control devices such as the management device 300 described later. That is, each functional element may be realized by any control device.
  • the target value calculation unit 30D and the synthesis unit 30E may be realized by a management device 300 outside the excavator 100.
  • the target value calculation unit 30D includes a first target value calculation unit 30D1 and a second target value calculation unit 30D2.
  • the first target value calculation unit 30D1 is configured to calculate the target value for the control reference point Pa (see FIG. 1) of the toe of the bucket 6.
  • the second target value calculation unit 30D2 is configured to calculate the target value for the control reference point Pb (see FIG. 1) on the back surface of the bucket 6.
  • the first target value calculation unit 30D1 has the target position of the control reference point Pa of the toe of the bucket 6 based on the outputs of the operation pressure sensor 29LA, the information input device 72, the switch NS, and the position calculation unit 30A. Is calculated.
  • the target position is a position where the control reference point Pa reaches after a predetermined time.
  • the first target value calculation unit 30D1 determines whether the left operation lever 26L is operated in the front-rear direction while the switch NS is pressed based on the output of the operation pressure sensor 29LA and the output of the switch NS. Judge whether or not. Then, when it is determined that the left operation lever 26L is operated in the front-rear direction while the switch NS is pressed, the first target value calculation unit 30D1 obtains information regarding the current position of the control reference point Pa and the target surface. Based on this, the target position of the control reference point Pa is calculated.
  • Information about the target plane is derived from, for example, design data input through the information input device 72. Information about the target plane includes, for example, a slope angle and the like.
  • the current position of the control reference point Pa is calculated by, for example, the position calculation unit 30A.
  • the position calculation unit 30A calculates the current position of the control reference point Pa based on the outputs of the boom angle sensor S1, the arm angle sensor S2, the bucket angle sensor S3, and the like, for example.
  • the first target value calculation unit 30D1 derives the boom angle ⁇ t1, the arm angle ⁇ t1 and the bucket angle ⁇ t1 when the control reference point Pa is moved to the target position based on the calculated target position of the control reference point Pa.
  • the boom angle ⁇ t1 represents the first control amount with respect to the boom cylinder 7.
  • the arm angle ⁇ t1 represents the first control amount with respect to the arm cylinder 8
  • the bucket angle ⁇ t1 represents the first control amount with respect to the bucket cylinder 9.
  • the second target value calculation unit 30D2 controls the back surface of the bucket 6 based on the outputs of the operation pressure sensor 29LA, the information input device 72, the switch NS, and the position calculation unit 30A.
  • the target position of the reference point Pb is calculated.
  • the target position is a position where the control reference point Pb reaches after a predetermined time.
  • the second target value calculation unit 30D2 determines whether or not the left operation lever 26L is operated in the front-rear direction while the switch NS is pressed, similarly to the first target value calculation unit 30D1. .. Then, when it is determined that the left operation lever 26L is operated in the front-rear direction while the switch NS is pressed, the second target value calculation unit 30D2 obtains information regarding the current position of the control reference point Pb and the target surface. Based on this, the target position of the control reference point Pb is calculated.
  • the second target value calculation unit 30D2 derives the boom angle ⁇ t2, the arm angle ⁇ t2, and the bucket angle ⁇ t2 when the control reference point Pb is moved to the target position based on the calculated target position of the control reference point Pb.
  • the boom angle ⁇ t2 represents a second control amount with respect to the boom cylinder 7.
  • the arm angle ⁇ t2 represents the second control amount with respect to the arm cylinder 8
  • the bucket angle ⁇ t2 represents the second control amount with respect to the bucket cylinder 9.
  • the first target value calculation unit 30D1 and the second target value calculation unit 30D2 are separate functional elements that operate independently of each other, but even if they are integrally configured as the same one functional element. Good.
  • the synthesis unit 30E is configured to synthesize a plurality of control amounts related to one actuator.
  • the synthesis unit 30E includes a first synthesis unit 30E1, a second synthesis unit 30E2, and a third synthesis unit 30E3.
  • the calculation unit 30F is configured to generate a control command (current command) to be output to the proportional valve 31 based on the synthesis control amount output by the synthesis unit 30E.
  • the calculation unit 30F includes a first calculation unit 30F1, a second calculation unit 30F2, and a third calculation unit 30F3.
  • the first synthesis unit 30E1 is configured to output the combined control amount ⁇ t derived by synthesizing a plurality of control amounts related to the boom cylinder 7 to the first calculation unit 30F1. Then, the first calculation unit 30F1 is configured to generate a control command (current command) to be output to the proportional valves 31BL and 31BR related to the boom cylinder 7 based on the synthesis control amount ⁇ t output by the first synthesis unit 30E1. Has been done. In the present embodiment, the first synthesis unit 30E1 synthesizes the first control amount (boom angle ⁇ t1) and the second control amount (boom angle ⁇ t2) with respect to the boom cylinder 7 to derive the synthesis control amount ⁇ t.
  • the "synthesis” may be any of arithmetic mean, geometric mean, weighted mean, alternatives and the like.
  • the first synthesis unit 30E1 may, for example, compare the first control amount and the second control amount and select the larger one.
  • the first calculation unit 30F1 generates a control command so that the difference between the combined control amount ⁇ t and the current boom angle ⁇ approaches zero, and issues the control command to the proportional valves 31BL and 31BR relating to the boom cylinder 7. Output.
  • the second synthesis unit 30E2 is configured to output the combined control amount ⁇ t derived by synthesizing a plurality of control amounts related to the arm cylinder 8 to the second calculation unit 30F2. Then, the second calculation unit 30F2 is configured to generate a control command (current command) to be output to the proportional valves 31AL and 31AR relating to the arm cylinder 8 based on the synthesis control amount ⁇ t output by the second synthesis unit 30E2. Has been done. In the present embodiment, the second synthesis unit 30E2 synthesizes the first control amount (arm angle ⁇ t1) and the second control amount (arm angle ⁇ t2) with respect to the arm cylinder 8 to derive the synthesis control amount ⁇ t.
  • the "synthesis” may be any of arithmetic mean, geometric mean, weighted mean, alternatives and the like.
  • the second synthesis unit 30E2 may, for example, compare the first control amount and the second control amount and select the larger one.
  • the second calculation unit 30F2 generates a control command so that the difference between the combined control amount ⁇ t and the current arm angle ⁇ approaches zero, and issues the control command to the proportional valves 31BL and 31BR relating to the arm cylinder 8. Output.
  • the third synthesis unit 30E3 is configured to output the synthesis control amount ⁇ t derived by synthesizing a plurality of control amounts related to the bucket cylinder 9 to the third calculation unit 30F3. Then, the third calculation unit 30F3 is configured to generate a control command (current command) to be output to the proportional valves 31CL and 31CR regarding the bucket cylinder 9 based on the synthesis control amount ⁇ t output by the third synthesis unit 30E3. Has been done. In the present embodiment, the third synthesis unit 30E3 synthesizes the first control amount (bucket angle ⁇ t1) and the second control amount (bucket angle ⁇ t2) with respect to the bucket cylinder 9 to derive the synthesis control amount ⁇ t.
  • the "synthesis” may be any of arithmetic mean, geometric mean, weighted mean, alternatives and the like.
  • the third synthesis unit 30E3 may, for example, compare the first control amount and the second control amount and select the larger one.
  • the third calculation unit 30F3 generates a control command so that the difference between the combined control amount ⁇ t and the current bucket angle ⁇ approaches zero, and issues the control command to the proportional valves 31CL and 31CR relating to the bucket cylinder 9. Output.
  • the first synthesis unit 30E1, the second synthesis unit 30E2, and the third synthesis unit 30E3 are separate functional elements that operate independently of each other, but are integrally configured as the same one functional element. You may be.
  • the "synthesis" may be any of an arithmetic mean, a geometric mean, a weighted average, an alternative, and the like.
  • the integrally configured functional element may be selected, for example, by comparing the first control amount and the second control amount.
  • the autonomous control unit 30C is based on predetermined conditions such as driving the boom 4 to raise the entire bucket 6 and rotating the bucket 6 so that the toes of the bucket 6 are raised. To control the hydraulic actuator.
  • the first calculation unit 30F1, the second calculation unit 30F2, and the third calculation unit 30F3 are separate functional elements that operate independently of each other, they may be integrally configured as the same one functional element. ..
  • the proportional valves 31BL and 31BR apply a pilot pressure according to the control command to the control valve 175 related to the boom cylinder 7.
  • the control valve 175 that receives the pilot pressure generated by the proportional valves 31BL and 31BR supplies the hydraulic oil discharged by the main pump 14 to the boom cylinder 7 in the flow direction and the flow rate corresponding to the pilot pressure.
  • the autonomous control unit 30C may generate a spool control command based on the spool displacement amount of the control valve 175, which is a detection value of the spool displacement sensor (not shown). Then, the control current corresponding to the spool control command may be output to the proportional valves 31BL and 31BR. This is to control the control valve 175 with higher accuracy.
  • the boom cylinder 7 expands and contracts due to the hydraulic oil supplied via the control valve 175.
  • the boom angle sensor S1 detects the boom angle ⁇ of the boom 4 moved by the telescopic boom cylinder 7. Then, the boom angle sensor S1 feeds back the detected boom angle ⁇ to the first calculation unit 30F1 as the current value of the boom angle ⁇ .
  • the above description relates to the control of the boom 4 based on the synthetic control amount ⁇ t, but similarly to the control of the arm 5 based on the synthetic control amount ⁇ t and the control of the bucket 6 based on the synthetic control amount ⁇ t. Applicable. Therefore, the description of the flow of control of the arm 5 based on the combined control amount ⁇ t and the flow of control of the bucket 6 based on the combined control amount ⁇ t will be omitted.
  • the synthesis unit 30E may be configured to synthesize a plurality of control amounts related to the swivel actuator to derive the combined control amount. Further, the above description can be applied to the control of the tilt bucket when the tilt bucket is attached to the tip of the arm 5 instead of the bucket 6. In this case, the synthesis unit 30E may be configured to synthesize a plurality of control amounts related to the tilt drive unit (tilt cylinder) to derive the composite control amount.
  • FIGS. 8A and 8B are side views of the bucket 6 moving along the target surface TS.
  • the target plane TS includes a horizontal portion HS and an inclined portion SL.
  • the autonomous control unit 30C sets the bucket 6 as the target surface while maintaining the excavation angle ⁇ of the bucket 6 with respect to the target surface TS.
  • the excavator 100 is autonomously operated so as to move along the TS.
  • the autonomous control unit 30C moves the bucket 6 from left to right along the target surface TS between the first time point and the fourth time point.
  • the bucket 6 at the first time point is indicated by the alternate long and short dash line
  • the bucket 6 at the second time point is indicated by the alternate long and short dash line
  • the bucket 6 at the third time point is indicated by the broken line.
  • the bucket 6 at the time point (current time) is shown by a solid line.
  • FIG. 8A shows the movement path of the bucket 6 when the excavation attachment AT is autonomously operated according to the control amount derived by the autonomous control unit 30C based on one control reference point. That is, in the example of FIG. 8A, the autonomous control unit 30C has the excavation attachment AT according to the control amount derived based on the control reference point Pa or the control reference point Pb, which is the control reference point closest to the target surface TS at each time point. Is operating autonomously. The autonomous control unit 30C derives the control amount based on the current position of the control reference point closest to the target surface TS and the information on the target surface.
  • the autonomous control unit 30C calculates the control amount based on the control reference point Pb1 in contact with the horizontal portion HS. Then, the autonomous control unit 30C calculates the control amount so as to move the bucket 6 along the horizontal portion HS, that is, to move the bucket 6 in the horizontal direction indicated by the arrow AR1.
  • the autonomous control unit 30C calculates the control amount based on the control reference point Pb2 in contact with the horizontal portion HS, as in the case of the first time point. Then, the autonomous control unit 30C calculates the control amount so as to move the bucket 6 along the horizontal portion HS, that is, to move the bucket 6 in the horizontal direction indicated by the arrow AR2.
  • the autonomous control unit 30C calculates the control amount based on the control reference point Pa3 in contact with the inclined portion SL. Then, the autonomous control unit 30C calculates the control amount so as to move the bucket 6 along the inclined portion SL, that is, to move the bucket 6 in the diagonally upward direction indicated by the arrow AR3. Specifically, the autonomous control unit 30C calculates the control amount so that the control reference point Pb can be brought into contact with the inclined portion SL at the excavation angle ⁇ .
  • the autonomous control unit 30C calculates the control amount based on the control reference point Pb until the control reference point Pa3 comes into contact with the inclined portion SL. Then, when the control reference point Pa3 comes into contact with the inclined portion SL, the autonomous control unit 30C switches the control reference point, which is the reference for calculating the control amount, from the control reference point Pb to the control reference point Pa, and based on the control reference point Pa. Calculate the control amount. This is because the nearest nearest point with respect to the target surface TS is switched from the control reference point Pb to the control reference point Pa.
  • the autonomous control unit 30C tries to move the bucket 6 along the target surface TS, but as represented by the bucket 6 shown by the dotted line, the toe of the bucket 6 immediately after the third time point. It cannot be prevented from digging into the target surface TS. This is because the bucket 6 moves to the right in the horizontal direction due to inertia even if the control content suddenly changes due to the switching of the nearest neighbor points. That is, the autonomous control unit 30C cannot make the change in the position of the toe of the bucket 6 follow the change in the target surface TS (change from the horizontal portion HS to the inclined portion SL).
  • the autonomous control unit 30C is configured to autonomously operate the excavation attachment AT with a control amount derived based on the predicted positions of the two control reference points. Specifically, in the example of FIG. 8B, the autonomous control unit 30C synthesizes a control amount derived based on the predicted position of the control reference point Pa and a control amount derived based on the predicted position of the control reference point Pb. The excavation attachment AT is autonomously operated by the combined control amount obtained. That is, the example of FIG. 8B is different from the example of FIG. 8A in that the point is based on the two control reference points and the point is based on the predicted position instead of the current position of the control reference point.
  • the predicted position of the control reference point means the position of the control reference point after a predetermined time predicted from the current position of the control reference point.
  • the predetermined time is, for example, a time corresponding to one or a plurality of control cycles.
  • the autonomous control unit 30C may be configured to autonomously operate the excavation attachment AT with a control amount derived based on the current positions of the two control reference points.
  • the predicted position of the control reference point is calculated based on the current position of the control reference point and the amount of operation of the left operating lever 26L in the arm closing direction.
  • the autonomous control unit 30C calculates the control amount so as to move the bucket 6 in the horizontal direction indicated by the arrow AR11, as in the case of the example of FIG. 8A.
  • the autonomous control unit 30C calculates the control amount so as to move the bucket 6 in the diagonally upward direction indicated by the arrow AR12, unlike the case of the example of FIG. 8A. This is because the autonomous control unit 30C calculates the final control amount by synthesizing the control amount calculated based on the control reference point Pa2 and the control amount calculated based on the control reference point Pb2. ..
  • the control amount calculated based on the control reference point Pb2 is the control amount for moving the bucket 6 in the horizontal direction indicated by the dotted line arrow AR12a, and the control amount calculated based on the control reference point Pa2 is the dotted line arrow.
  • This is a control amount for moving the bucket 6 in the diagonally upward direction indicated by AR12b.
  • the autonomous control unit 30C reduces the control amount for moving the bucket 6 in the direction indicated by the dotted arrow AR12a. It is configured to calculate the final control amount. However, even in such a case, the autonomous control unit 30C is configured to calculate the final control amount so that the control amount for moving the bucket 6 in the direction indicated by the dotted arrow AR12a does not become small. You may.
  • the autonomous control unit 30C continuously and individually calculates the control amount based on each of the control reference point Pa and the control reference point Pb, and then calculates the two control amounts. Synthesize to derive the final control amount. Therefore, the autonomous control unit 30C can capture the influence of the control amount calculated based on the control reference points other than the control reference points closest to the target surface TS relatively early, as compared with the example of FIG. 8A. Therefore, the autonomous control unit 30C can make the change in the position of the toe of the bucket 6 follow the change in the target surface TS. Strictly speaking, the autonomous control unit 30C can change the position of the toe of the bucket 6 prior to the change of the target surface TS. As a result, the autonomous control unit 30C can prevent the toes of the bucket 6 from biting into the target surface TS immediately after the third time point.
  • FIG. 9 is a rear perspective view of the bucket 6.
  • the autonomous control unit 30C calculates the control amount based on each of the control reference point Pa and the control reference point Pb as described above, but instead calculates the control amount based on each of the four control reference points as shown in FIG. May be configured to calculate.
  • the four control reference points include the control reference points PaL, PaR, PbL and PbR.
  • the control reference point PaL is set at the left end of the toe of the bucket 6.
  • the control reference point PaR is set at the right end of the toe of the bucket 6.
  • the control reference point PbL is set at the left end of the back surface of the bucket 6.
  • the control reference point PbR is set at the right end of the back surface of the bucket 6.
  • the autonomous control unit 30C autonomously performs the excavation attachment AT based on the combined control amount obtained by synthesizing the control amounts derived based on the current position or the predicted position of each of the four control reference points, for example. It may be configured to work. Further, the autonomous control unit 30C autonomously performs the excavation attachment AT based on the combined control amount obtained by synthesizing the control amounts derived based on the current position or the predicted position of each of the three or five or more control reference points. It may be configured to operate in a similar manner.
  • the control reference points are set at the control reference points PaL, PaR, PbL and PbR, the control reference point set at the central end of the back surface of the bucket 6, and the central end of the toe of the bucket 6. It may include a control reference point.
  • the autonomous control unit 30C may dynamically determine the number of control reference points used for calculating the control amount based on the information on the excavator 100, the information on the target surface TS, and the like. That is, the autonomous control unit 30C may dynamically determine which of the plurality of control reference points to use. For example, when the autonomous control unit 30C determines that the shovel 100 is located on a sloping ground, the autonomous control unit 30C calculates a control amount based on each of the four control reference points PaL, PaR, PbL, and PbR, and the shovel 100 is positioned on a flat ground. If it is determined that the control amount is determined to be so, the control amount may be calculated based on each of the two control reference points PaL and PbL. In this case, the autonomous control unit 30C may determine whether the excavator 100 is located on an inclined ground or a flat ground based on the output of the airframe inclination sensor S4.
  • the autonomous control unit 30C may dynamically determine which of the plurality of control reference points to use during the turning operation. For example, when the autonomous control unit 30C determines that the turning operation is in progress, the autonomous control unit 30C may calculate the control amount based on each of the four control reference points PaL, PaR, PbL, and PbR. Alternatively, the autonomous control unit 30C may be configured to calculate the control amount based on each of the two control reference points PaL and PbL when it is determined that the turning is stopped.
  • the autonomous control unit 30C determines the lever operation amount in the left-right direction (swivel direction) of the left operation lever 26L, the pilot pressure acting on the pilot port of the control valve 173, the hydraulic oil pressure in the swivel hydraulic motor 2A, and swivel. It may be determined whether the turning operation is in progress or the turning is stopped based on at least one of the detection values of the angular velocity sensor S5 and the like.
  • FIG. 10 is a front view of the excavator 100.
  • the right crawler 1CR is located on the horizontal plane
  • the left crawler 1CL is located on the stone ST on the horizontal plane. Therefore, the excavator 100 is tilted so that the right side is lowered. Then, the operator is trying to move the toe of the bucket 6 along the target surface TS by turning left.
  • the target surface TS has a horizontal portion HS and an inclined portion SL, and has an upward slope toward the left.
  • the autonomous control unit 30C calculates the control amount based only on the control reference point PaR in contact with the horizontal portion HS
  • the left operating lever 26L is operated in the left turning direction and the bucket 6 is moved to the left.
  • the control reference point PaL comes into contact with the inclined portion SL and damages the target surface TS.
  • the bucket 6A shown by the broken line in FIG. 10 represents the state of the bucket 6 when the left end of the toe of the bucket 6 bites into the inclined portion SL of the target surface TS.
  • the autonomous control unit 30C determines that the shovel 100 is tilted so that the right side is lowered based on the output of the aircraft tilt sensor S4, the four control reference points PaL, PaR, PbL, and The control amount is calculated based on each of PbR.
  • the autonomous control unit 30C determines that the turning operation is being performed based on, for example, the output of the operation pressure sensor 29LB, it is based on each of the four control reference points PaL, PaR, PbL, and PbR. To calculate the control amount. In this case, the autonomous control unit 30C may calculate the control amount based on each of the four control reference points PaL, PaR, PbL, and PbR regardless of whether the excavator 100 is tilted or not.
  • the autonomous control unit 30C determines that the left turn operation is being performed based on the output of the operation pressure sensor 29LB, calculates the control amount based on at least one of the control reference points PaL and PbL. May be good. This is because the control reference points PaL and PbL are located at the head in the turning direction.
  • the autonomous control unit 30C determines that the right turn operation is being performed based on the output of the operation pressure sensor 29LB, calculates the control amount based on at least one of the control reference points PaR and PbR. You may. This is because the control reference points PaR and PbR are located at the head in the turning direction.
  • the autonomous control unit 30C may calculate the control amount based on each of the two four control reference points PaL and PaR.
  • the control reference point PaL (the left end of the toe of the bucket 6) bites into the inclined portion SL of the target surface TS. It can be prevented from being stowed.
  • the bucket 6B shown by the alternate long and short dash line in FIG. 10 represents the state of the bucket 6 when the left end of the toe of the bucket 6 is lifted slightly upward so as not to bite into the inclined portion SL of the target surface TS. There is.
  • FIG. 11 is a perspective view of the tilt bucket 6T when the tilt bucket 6T is viewed from the cabin 10.
  • the autonomous control unit 30C may be configured to calculate the control amount based on each of the four control reference points, as in the case of FIG.
  • the four control reference points include the control reference points PaL, PaR, PbL and PbR.
  • the control reference point PaL is set at the left end of the toe of the tilt bucket 6T.
  • the control reference point PaR is set at the right end of the toe of the tilt bucket 6T.
  • the control reference point PbL is set at the left end of the back surface of the tilt bucket 6T.
  • the control reference point PbR is set at the right end of the back surface of the tilt bucket 6T.
  • the controller 30 can tilt the tilt bucket 6T around the tilt axis AX by separately expanding and contracting each of the pair of left and right tilt cylinders TC. It should be noted that only one tilt cylinder TC may be attached to the left side of the tilt shaft AX, or only one may be attached to the right side of the tilt shaft AX.
  • FIG. 12 is a front view of the excavator 100 and corresponds to FIG.
  • the right crawler 1CR is located on the horizontal plane and the left crawler 1CL is located on the stone ST on the horizontal plane, as in the case of FIG. Therefore, the excavator 100 is tilted so that the right side is lowered. Then, the operator is trying to move the back surface of the tilt bucket 6T along the target surface TS by turning left.
  • the target surface TS has a horizontal portion HS and an inclined portion SL, and has an upward slope toward the left.
  • the autonomous control unit 30C calculates the control amount based only on the control reference point PaR in contact with the horizontal portion HS
  • the left operating lever 26L is operated in the left turning direction and the tilt bucket 6T moves to the left.
  • the control reference point PaL comes into contact with the inclined portion SL, and the target surface TS is damaged.
  • the tilt bucket 6TA shown by the broken line in FIG. 12 represents the state of the tilt bucket 6T when the left end of the toe of the tilt bucket 6T bites into the inclined portion SL of the target surface TS.
  • the autonomous control unit 30C determines that the shovel 100 is tilted so that the right side is lowered based on the output of the airframe tilt sensor S4, the left end and the right side of the toe of the tilt bucket 6T
  • the tilt bucket 6T is tilted around the tilt axis AX so that both ends of the surface are in contact with the target surface TS.
  • the autonomous control unit 30C tilts the tilt bucket 6T around the tilt axis AX so that the back surface of the tilt bucket 6T is parallel to the horizontal portion HS of the target surface TS.
  • the autonomous control unit 30C calculates the control amount based on each of the four control reference points PaL, PaR, PbL, and PbR.
  • the autonomous control unit 30C determines that the turning operation is being performed based on, for example, the output of the operation pressure sensor 29LB, it is based on each of the four control reference points PaL, PaR, PbL, and PbR. To calculate the control amount. In this case, the autonomous control unit 30C may calculate the control amount based on each of the four control reference points PaL, PaR, PbL, and PbR regardless of whether the excavator 100 is tilted or not.
  • the autonomous control unit 30C determines that the left turn operation is being performed based on the output of the operation pressure sensor 29LB, calculates the control amount based on at least one of the control reference points PaL and PbL. May be good. This is because the control reference points PaL and PbL are located at the head in the turning direction.
  • the autonomous control unit 30C determines that the right turn operation is being performed based on the output of the operation pressure sensor 29LB, calculates the control amount based on at least one of the control reference points PaR and PbR. You may. This is because the control reference points PaR and PbR are located at the head in the turning direction.
  • the autonomous control unit 30C may calculate the control amount based on each of the two control reference points PaL and PaR. That is, the autonomous control unit 30C may calculate the control amount without being based on the remaining two control reference points PbL and PbR.
  • the control reference point PaL (the left end of the toe of the tilt bucket 6T) becomes the inclined portion SL of the target surface TS. You can prevent it from biting into it.
  • the right end of the toe of the tilt bucket 6T coincides with the horizontal portion HS of the target surface TS, and the left end of the toe of the tilt bucket 6T is the target surface. It shows the state of the tilt bucket 6T when it is tilted around the tilt axis AX so as to coincide with the inclined portion SL of the TS.
  • FIG. 13 is a schematic view showing an example of the construction system SYS.
  • the construction system SYS includes a shovel 100, a support device 200, and a management device 300.
  • the construction system SYS is configured to support construction by one or a plurality of excavators 100.
  • the information acquired by the excavator 100 may be shared with the manager, other excavator operators, and the like through the construction system SYS.
  • Each of the excavator 100, the support device 200, and the management device 300 constituting the construction system SYS may be one unit or a plurality of units.
  • the construction system SYS includes one excavator 100, one support device 200, and one management device 300.
  • the support device 200 is typically a mobile terminal device, for example, a laptop-type computer terminal, a tablet terminal, a smartphone, or the like carried by a worker or the like at a construction site.
  • the support device 200 may be a mobile terminal carried by the operator of the excavator 100.
  • the support device 200 may be a fixed terminal device.
  • the management device 300 is typically a fixed terminal device, for example, a server computer (so-called cloud server) installed in a management center or the like outside the construction site. Further, the management device 300 may be, for example, an edge server set at the construction site. Further, the management device 300 may be a portable terminal device (for example, a laptop computer terminal, a tablet terminal, or a mobile terminal such as a smartphone).
  • a server computer so-called cloud server
  • the management device 300 may be, for example, an edge server set at the construction site.
  • the management device 300 may be a portable terminal device (for example, a laptop computer terminal, a tablet terminal, or a mobile terminal such as a smartphone).
  • At least one of the support device 200 and the management device 300 may include a monitor and an operation device for remote control.
  • the operator who uses the support device 200 or the management device 300 may operate the excavator 100 while using the remote control operation device.
  • the operation device for remote control is communicably connected to the controller 30 mounted on the excavator 100 through a wireless communication network such as a short-range wireless communication network, a mobile phone communication network, or a satellite communication network.
  • various information images displayed on the display device D1 installed in the cabin 10 are at least the support device 200 and the management device 300. It may be displayed on a display device connected to one side.
  • the image information representing the surrounding state of the excavator 100 may be generated based on the image captured by the imaging device (for example, the camera as the space recognition device 70).
  • the worker who uses the support device 200, the manager who uses the management device 300, etc. can remotely control the excavator 100 while checking the surroundings of the excavator 100, and various types of the excavator 100. You can make settings.
  • the controller 30 of the excavator 100 determines the time and place when the switch NS is pressed, the target trajectory used when the excavator 100 is autonomously operated, and the time and place when the excavator 100 is autonomously operated.
  • Information about at least one such as the trajectory actually followed by the part may be transmitted to at least one of the support device 200 and the management device 300.
  • the controller 30 may transmit the captured image of the imaging device to at least one of the support device 200 and the management device 300.
  • the captured image may be a plurality of images captured during the autonomous operation.
  • the controller 30 provides information on at least one such as data on the operation content of the excavator 100 during autonomous operation, data on the posture of the excavator 100, and data on the posture of the excavation attachment, at least one of the support device 200 and the management device 300. May be sent to.
  • the worker who uses the support device 200 or the manager who uses the management device 300 can obtain information about the excavator 100 during autonomous operation.
  • the types and positions of the monitoring targets outside the monitoring range of the excavator 100 are stored in the storage unit in chronological order.
  • the object (information) stored in the support device 200 or the management device 300 may be a type and position of a monitoring target outside the monitoring range of the excavator 100 and within the monitoring range of another excavator.
  • the construction system SYS makes it possible to share information about the excavator 100 with the manager, other excavator operators, and the like.
  • the communication device mounted on the excavator 100 is configured to transmit and receive information to and from the communication device T2 installed in the remote control room RC via wireless communication. May be good.
  • the communication device and the communication device T2 mounted on the excavator 100 transmit and receive information via a fifth generation mobile communication line (5G line), an LTE line, a satellite line, or the like. It is configured.
  • 5G line fifth generation mobile communication line
  • LTE line Long Term Evolution
  • satellite line or the like. It is configured.
  • a remote controller 30R In the remote control room RC, a remote controller 30R, a sound output device A2, an indoor image pickup device C2, a display device RD, a communication device T2, and the like are installed. Further, in the remote control room RC, a driver's seat DS on which the operator OP who remotely controls the excavator 100 sits is installed.
  • the remote controller 30R is an arithmetic unit that executes various arithmetic operations.
  • the remote controller 30R like the controller 30, is composed of a microcomputer including a CPU and a memory. Then, various functions of the remote controller 30R are realized by the CPU executing a program stored in the memory.
  • the sound output device A2 is configured to output sound.
  • the sound output device A2 is a speaker, and is configured to reproduce the sound collected by the sound collecting device (not shown) attached to the excavator 100.
  • the indoor imaging device C2 is configured to image the inside of the remote control room RC.
  • the indoor image pickup device C2 is a camera installed inside the remote control room RC, and is configured to take an image of the operator OP seated in the driver's seat DS.
  • the communication device T2 is configured to control wireless communication with the communication device attached to the excavator 100.
  • the driver's seat DS has the same structure as the driver's seat installed in the cabin of a normal excavator. Specifically, the left console box is arranged on the left side of the driver's seat DS, and the right console box is arranged on the right side of the driver's seat DS. A left operation lever is arranged at the front end of the upper surface of the left console box, and a right operation lever is arranged at the front end of the upper surface of the right console box. Further, a traveling lever and a traveling pedal are arranged in front of the driver's seat DS. Further, a dial 75 is arranged at the center of the upper surface of the right console box. Each of the left operating lever, the right operating lever, the traveling lever, the traveling pedal, and the dial 75 constitutes the operating device 26A.
  • the dial 75 is a dial for adjusting the engine speed, and is configured so that the engine speed can be switched in four stages, for example.
  • the dial 75 is configured so that the engine speed can be switched in four stages of SP mode, H mode, A mode, and idling mode.
  • the dial 75 transmits data regarding the setting of the engine speed to the controller 30.
  • the SP mode is a rotation speed mode selected when the operator OP wants to prioritize the amount of work, and uses the highest engine speed.
  • the H mode is a rotation speed mode selected when the operator OP wants to achieve both work load and fuel consumption, and uses the second highest engine speed.
  • the A mode is a rotation speed mode selected when the operator OP wants to operate the excavator with low noise while giving priority to fuel consumption, and uses the third highest engine speed.
  • the idling mode is a rotation speed mode selected when the operator OP wants to put the engine in the idling state, and uses the lowest engine speed. Then, the engine 11 is constantly controlled in rotation speed by the engine rotation speed in the rotation speed mode selected via the dial 75.
  • the operation device 26A is provided with an operation sensor 29A for detecting the operation content of the operation device 26A.
  • the operation sensor 29A is, for example, an inclination sensor that detects the inclination angle of the operation lever, an angle sensor that detects the swing angle around the swing axis of the operation lever, and the like.
  • the operation sensor 29A may be composed of other sensors such as a pressure sensor, a current sensor, a voltage sensor, or a distance sensor.
  • the operation sensor 29A outputs information regarding the detected operation content of the operation device 26A to the remote controller 30R.
  • the remote controller 30R generates an operation signal based on the received information, and transmits the generated operation signal to the excavator 100.
  • the operation sensor 29A may be configured to generate an operation signal. In this case, the operation sensor 29A may output the operation signal to the communication device T2 without going through the remote controller 30R.
  • the display device RD is configured to display information on the surrounding conditions of the excavator 100.
  • the display device RD is a multi-display composed of nine monitors having three rows vertically and three rows horizontally so as to be able to display the state of the space in front, left, and right of the excavator 100. It is configured.
  • Each monitor is a liquid crystal monitor, an organic EL monitor, or the like.
  • the display device RD may be composed of one or a plurality of curved surface monitors, or may be composed of a projector.
  • the display device RD may be a display device that can be worn by the operator OP.
  • the display device RD may be a head-mounted display and may be configured so that information can be transmitted and received to and from the remote controller 30R by wireless communication.
  • the head-mounted display may be wiredly connected to the remote controller.
  • the head-mounted display may be a transmissive head-mounted display or a non-transmissive head-mounted display.
  • the head-mounted display may be a monocular head-mounted display or a binocular head-mounted display.
  • the display device RD is configured to display an image that allows the operator OP in the remote control room RC to visually recognize the surroundings of the excavator 100. That is, the display device RD has an image so that the situation around the excavator 100 can be confirmed as if the operator is in the cabin 10 of the excavator 100 even though the operator is in the remote control room RC. Is displayed.
  • the construction system SYS is configured to support construction by the excavator 100.
  • the construction system SYS has a communication device CD and a control device CTR that communicate with the excavator 100.
  • the control device CTR is configured to include a first control unit that autonomously operates the actuator of the excavator 100 and a second control unit that autonomously operates the actuator. Then, when the control device CTR determines that a conflict has occurred in a plurality of control units including the first control unit and the second control unit, the control device CTR of the plurality of control units including the first control unit and the second control unit.
  • first control unit and the second control unit are represented separately for convenience of explanation, they do not need to be physically distinguished, and software components that are generally or partially common. Alternatively, it may be composed of hardware components.
  • the excavator 100 includes a lower traveling body 1, an upper rotating body 3 rotatably mounted on the lower traveling body 1, and an attachment attached to the upper rotating body 3. It has an end attachment that constitutes the attachment, an actuator that moves the attachment, and a controller 30 as a control device that autonomously operates the actuator. Then, the controller 30 is configured to calculate the control amount of the actuator for each of the plurality of predetermined points (control reference points) in the end attachment, and to autonomously operate the actuator based on each calculated control amount. .. With this configuration, the excavator 100 can more reliably prevent damage to the target surface TS due to the end attachment when the work using the machine control function is performed.
  • the end attachment is typically a bucket 6.
  • the plurality of control reference points in the bucket 6 may be one point on the toe of the bucket 6 or one point on the back surface of the bucket 6.
  • the plurality of control reference points in the bucket 6 may include the left end point and the right end point of the toe of the bucket 6 and the left rear end point and the right rear end point on the back surface of the bucket 6. ..
  • the controller 30 may be configured to synthesize each control amount to calculate the combined control amount and autonomously operate the actuator based on the combined control amount.
  • the controller 30 can appropriately reflect the control amount calculated based on the control reference point other than the control reference point closest to the target surface TS in the combined control amount, and the target surface TS by the bucket 6 can be reflected. Damage can be prevented more reliably.
  • the controller 30 may be configured to calculate the control amount of the actuator for each of the plurality of control reference points based on the change in the distance between each of the plurality of control reference points and the target surface. For example, when the controller 30 synthesizes each control amount to calculate the combined control amount, the influence of the control amount on the control reference point having the largest change in distance among the plurality of control reference points is maximized. It may be configured. With this configuration, the controller 30 preferentially reflects the control amount calculated based on the control reference point having the highest possibility of accidentally biting into the target surface TS among the plurality of control reference points in the combined control amount. This makes it possible to more reliably prevent damage to the target surface TS due to the bucket 6.
  • the controller 30 is configured to predict the position of each of the plurality of control reference points after a predetermined time, and calculate the control amount of the actuator for each of the plurality of control reference points based on the position after the predetermined time. You may. With this configuration, the controller 30 can determine earlier whether or not each control reference point may bite into the target surface TS, and can more reliably prevent damage to the target surface TS by the bucket 6.
  • the predicted position of the control reference point is a position after a predetermined time of the control reference point predicted from the current position of the control reference point, and the predetermined time is controlled one or more times, for example. It is said to be the time corresponding to the cycle. That is, the predetermined time is a time in the range of several tens of milliseconds to several hundreds of milliseconds. However, the predetermined time may be one second or longer.
  • the autonomous control unit 30C may be configured to autonomously operate the excavator 100 by utilizing model prediction control using an observer (state observer).
  • 2nd synthesis unit 30E3 ... 3rd synthesis unit 30F Calculation unit 30F1 ... 1st calculation unit 30F2 ... 2nd calculation unit 30F3 ... 3rd calculation unit 30R ...
  • Remote controller 31 31AL to 31DL, 31AR to 31DR ... ...
  • Proportional valve 40 ... Center bypass pipeline 42 ...
  • Parallel pipeline 70 ... ⁇ Space recognition device 70F ⁇ ⁇ ⁇ Front sensor 70B ⁇ ⁇ ⁇ Rear sensor 70L ⁇ ⁇ ⁇ Left sensor 70R ⁇ ⁇ ⁇ Right sensor 71 ⁇ ⁇ ⁇ Direction detection device 72 ⁇ ⁇ ⁇ Information input device 73 ⁇ ⁇ ⁇ Positioning device 75 ... Dial 100 ... Excavator 171 to 176 ... Control valve 200 ... Support device 300 ... Management device A2 ... Sound output device AT ... Excavation attachment C2 ... Indoor imaging device CD ... communication device CTR ... control device D1 ... display device D2 ... audio output device DS ... driver's seat NS ... switch O P ... Operator RC ... Remote control room RD ...
  • Display device S1 Boom angle sensor S2 ... Arm angle sensor S3 ... Bucket angle sensor S4 ... Aircraft tilt sensor S5 ... ⁇ Turning angular velocity sensor SYS ⁇ ⁇ ⁇ Construction system T2 ⁇ ⁇ ⁇ Communication device

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

ショベル(100)は、下部走行体(1)と、下部走行体(1)に旋回可能に搭載された上部旋回体(3)と、上部旋回体(3)に取り付けられた掘削アタッチメント(AT)と、掘削アタッチメント(AT)を構成するバケット(6)と、掘削アタッチメント(AT)を動かすアタッチメントアクチュエータと、アタッチメントアクチュエータを自律的に動作させるコントローラ(30)と有している。コントローラ(30)は、バケット(6)の爪先の制御基準点(Pa)及び背面の制御基準点(Pb)のそれぞれに関してアタッチメントアクチュエータの制御量を算出し、算出した各制御量に基づいてアタッチメントアクチュエータを自律的に動作させる。

Description

ショベル及び施工システム
 本開示は、掘削機としてのショベル及び施工システムに関する。
 従来、操作者が手動で操作装置を操作してブーム、アーム、及びバケットを動かしながら法面仕上げ作業を行う際に、バケットの各部位のうち目標面に最も近い部位と目標面との距離(最短距離)を算出して表示するショベルが知られている(例えば、特許文献1参照)。
 このショベルは、バケットと目標面との間の最短距離に基づいて警報音を出力するように構成されている。具体的には、ショベルは、その最短距離が短くなるにしたがって警報音の周波数を高くするように構成されている。目標面に対してバケットが近づき過ぎていることをショベルの操作者に認識させるためである。
特開2014-101664号公報
 しかしながら、上述のショベルでは、バケットの爪先が目標面上にある場合、すなわち、最短距離がゼロになっている場合、警報音は変化しない。そのため、ショベルの操作者は、この状態が継続している限り、バケットの爪先が目標面に最も近い部位として検知されているものと認識してしまうおそれがある。その結果、ショベルから遠ざかるにつれて目標面の傾斜角が大きくなる状況では、上述のショベルは、バケットの爪先を目標面に接触させながらアームを開くときにバケットの背面を目標面に接触させ目標面を崩してしまうおそれがある。目標面の別の一部である傾斜面がバケットの背面に近づいていたとしても、操作者は、バケットの背面と傾斜面とが接近していることを認識できないためである。
 そこで、エンドアタッチメントによる目標面の損傷をより確実に防止できるショベルを提供することが望ましい。
 本発明の実施形態に係るショベルは、下部走行体と、前記下部走行体に旋回可能に搭載された上部旋回体と、前記上部旋回体に取り付けられたアタッチメントと、前記アタッチメントを構成するエンドアタッチメントと、アクチュエータと、前記アクチュエータを自律的に動作させる制御装置と、有し、前記制御装置は、前記エンドアタッチメントにおける複数の所定点のそれぞれに関して前記アクチュエータの制御量を算出し、算出した各制御量に基づいて前記アクチュエータを自律的に動作させる。
 上述の手段により、エンドアタッチメントによる目標面の損傷をより確実に防止できるショベルが提供される。
本発明の実施形態に係るショベルの側面図である。 図1のショベルの上面図である。 図1のショベルに搭載される油圧システムの構成例を示す図である。 アームシリンダの操作に関する油圧システム部分を抜き出した図である。 ブームシリンダの操作に関する油圧システム部分を抜き出した図である。 バケットシリンダの操作に関する油圧システム部分を抜き出した図である。 旋回油圧モータの操作に関する油圧システム部分を抜き出した図である。 コントローラの構成例を示す図である。 自律制御部の入力側の構成例を示す図である。 自律制御部の出力側の構成例を示す図である。 目標面に沿って移動するバケットの側面図である。 目標面に沿って移動するバケットの側面図である。 バケットの斜視図である。 目標面に沿って移動するバケットの正面図である。 チルトバケットの斜視図である。 目標面に沿って移動するチルトバケットの正面図である。 施工システムの一例を示す概略図である。 施工システムの別の一例を示す概略図である。
 最初に、図1及び図2を参照して、本発明の実施形態に係る掘削機としてのショベル100について説明する。図1はショベル100の側面図であり、図2はショベル100の上面図である。
 本実施形態では、ショベル100の下部走行体1はクローラ1Cを含む。クローラ1Cは、下部走行体1に搭載されている走行アクチュエータとしての走行油圧モータ2Mによって駆動される。具体的には、クローラ1Cは左クローラ1CL及び右クローラ1CRを含む。左クローラ1CLは左走行油圧モータ2MLによって駆動され、右クローラ1CRは右走行油圧モータ2MRによって駆動される。
 下部走行体1には旋回機構2を介して上部旋回体3が旋回可能に搭載されている。旋回機構2は、上部旋回体3に搭載されている旋回アクチュエータとしての旋回油圧モータ2Aによって駆動される。但し、旋回アクチュエータは、電動アクチュエータとしての旋回電動発電機であってもよい。
 上部旋回体3にはブーム4が取り付けられている。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはエンドアタッチメントとしてのバケット6が取り付けられている。ブーム4、アーム5及びバケット6は、アタッチメントの一例である掘削アタッチメントATを構成する。ブーム4はブームシリンダ7で駆動され、アーム5はアームシリンダ8で駆動され、バケット6はバケットシリンダ9で駆動される。ブームシリンダ7、アームシリンダ8及びバケットシリンダ9は、アタッチメントアクチュエータを構成している。エンドアタッチメントは、法面バケットであってもよい。
 ブーム4は、上部旋回体3に対して上下に回動可能に支持されている。そして、ブーム4にはブーム角度センサS1が取り付けられている。ブーム角度センサS1は、ブーム4の回動角度であるブーム角度αを検出できる。ブーム角度αは、例えば、ブーム4を最も下降させた状態からの上昇角度である。そのため、ブーム角度αは、ブーム4を最も上昇させたときに最大となる。
 アーム5は、ブーム4に対して回動可能に支持されている。そして、アーム5にはアーム角度センサS2が取り付けられている。アーム角度センサS2は、アーム5の回動角度であるアーム角度βを検出できる。アーム角度βは、例えば、アーム5を最も閉じた状態からの開き角度である。そのため、アーム角度βは、アーム5を最も開いたときに最大となる。
 バケット6は、アーム5に対して回動可能に支持されている。そして、バケット6にはバケット角度センサS3が取り付けられている。バケット角度センサS3は、バケット6の回動角度であるバケット角度γを検出できる。バケット角度γは、バケット6を最も閉じた状態からの開き角度である。そのため、バケット角度γは、バケット6を最も開いたときに最大となる。
 図1の実施形態では、ブーム角度センサS1、アーム角度センサS2及びバケット角度センサS3のそれぞれは、加速度センサとジャイロセンサの組み合わせで構成されている。但し、加速度センサのみで構成されていてもよい。また、ブーム角度センサS1は、ブームシリンダ7に取り付けられたストロークセンサであってもよく、ロータリエンコーダ、ポテンショメータ、又は慣性計測装置等であってもよい。アーム角度センサS2及びバケット角度センサS3についても同様である。
 上部旋回体3には、運転室としてのキャビン10が設けられ、且つ、エンジン11等の動力源が搭載されている。また、上部旋回体3には、空間認識装置70、向き検出装置71、測位装置73、機体傾斜センサS4、及び旋回角速度センサS5等が取り付けられている。キャビン10の内部には、操作装置26、コントローラ30、情報入力装置72、表示装置D1、及び音声出力装置D2等が設けられている。なお、本書では、便宜上、上部旋回体3における、掘削アタッチメントATが取り付けられている側を前方とし、カウンタウェイトが取り付けられている側を後方とする。
 空間認識装置70は、ショベル100の周囲の三次元空間に存在する物体を認識するように構成されている。また、空間認識装置70は、空間認識装置70又はショベル100から認識された物体までの距離を算出するように構成されていてもよい。空間認識装置70は、例えば、超音波センサ、ミリ波レーダ、単眼カメラ、ステレオカメラ、LIDAR、距離画像センサ、赤外線センサ等、又はそれらの任意の組み合わせを含む。本実施形態では、空間認識装置70は、キャビン10の上面前端に取り付けられた前方センサ70F、上部旋回体3の上面後端に取り付けられた後方センサ70B、上部旋回体3の上面左端に取り付けられた左方センサ70L、及び、上部旋回体3の上面右端に取り付けられた右方センサ70Rを含む。上部旋回体3の上方の空間に存在する物体を認識する上方センサがショベル100に取り付けられていてもよい。
 向き検出装置71は、上部旋回体3の向きと下部走行体1の向きとの相対的な関係に関する情報を検出するように構成されている。向き検出装置71は、例えば、下部走行体1に取り付けられた地磁気センサと上部旋回体3に取り付けられた地磁気センサの組み合わせで構成されていてもよい。或いは、向き検出装置71は、下部走行体1に取り付けられたGNSS受信機と上部旋回体3に取り付けられたGNSS受信機の組み合わせで構成されていてもよい。向き検出装置71は、ロータリエンコーダ、ロータリポジションセンサ等、又は、それらの任意の組み合わせであってもよい。旋回電動発電機で上部旋回体3が旋回駆動される構成では、向き検出装置71は、レゾルバで構成されていてもよい。向き検出装置71は、例えば、下部走行体1と上部旋回体3との間の相対回転を実現する旋回機構2に関連して設けられるセンタージョイントに取り付けられていてもよい。
 向き検出装置71は、上部旋回体3に取り付けられたカメラで構成されていてもよい。この場合、向き検出装置71は、上部旋回体3に取り付けられているカメラが撮像した画像(入力画像)に既知の画像処理を施して入力画像に含まれる下部走行体1の画像を検出する。そして、向き検出装置71は、既知の画像認識技術を用いて下部走行体1の画像を検出することで、下部走行体1の長手方向を特定する。そして、上部旋回体3の前後軸の方向と下部走行体1の長手方向との間に形成される角度を導き出す。上部旋回体3の前後軸の方向は、カメラの取り付け位置から導き出される。特に、クローラ1Cは上部旋回体3から突出しているため、向き検出装置71は、クローラ1Cの画像を検出することで下部走行体1の長手方向を特定できる。この場合、向き検出装置71は、コントローラ30に統合されていてもよい。また、カメラは、空間認識装置70であってもよい。
 情報入力装置72は、ショベルの操作者がコントローラ30に対して情報を入力できるように構成されている。本実施形態では、情報入力装置72は、表示装置D1の表示部に近接して設置されるスイッチパネルである。但し、情報入力装置72は、表示装置D1の表示部の上に配置されるタッチパネルであってもよく、キャビン10内に配置されているマイクロフォン等の音声入力装置であってもよい。また、情報入力装置72は、外部からの情報を取得する通信装置であってもよい。
 測位装置73は、上部旋回体3の位置を測定するように構成されている。本実施形態では、測位装置73は、GNSS受信機であり、上部旋回体3の位置を検出し、検出値をコントローラ30に対して出力する。測位装置73は、GNSSコンパスであってもよい。この場合、測位装置73は、上部旋回体3の位置及び向きを検出できるため、向き検出装置71としても機能する。
 機体傾斜センサS4は、所定の平面に対する上部旋回体3の傾斜を検出する。本実施形態では、機体傾斜センサS4は、水平面に関する上部旋回体3の前後軸回りの傾斜角及び左右軸回りの傾斜角を検出する加速度センサである。上部旋回体3の前後軸及び左右軸は、例えば、互いに直交してショベル100の旋回軸上の一点であるショベル中心点を通る。
 旋回角速度センサS5は、上部旋回体3の旋回角速度を検出する。本実施形態では、ジャイロセンサである。レゾルバ、ロータリエンコーダ等、又はそれらの任意の組み合わせであってもよい。旋回角速度センサS5は、旋回速度を検出してもよい。旋回速度は、旋回角速度から算出されてもよい。
 以下では、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4及び旋回角速度センサS5の少なくとも1つは、姿勢検出装置とも称される。掘削アタッチメントATの姿勢は、例えば、ブーム角度センサS1、アーム角度センサS2及びバケット角度センサS3のそれぞれの出力に基づいて検出される。
 表示装置D1は、情報を表示する装置である。本実施形態では、表示装置D1は、キャビン10内に設置された液晶ディスプレイである。但し、表示装置D1は、スマートフォン等の携帯端末のディスプレイであってもよい。
 音声出力装置D2は、音声を出力する装置である。音声出力装置D2は、キャビン10内の操作者に向けて音声を出力する装置、及び、キャビン10外の作業者に向けて音声を出力する装置の少なくとも1つを含む。携帯端末のスピーカであってもよい。
 操作装置26は、操作者がアクチュエータの操作のために用いる装置である。操作装置26は、例えば、操作レバー及び操作ペダルを含む。アクチュエータは、油圧アクチュエータ及び電動アクチュエータの少なくとも1つを含む。
 コントローラ30は、ショベル100を制御するための制御装置である。本実施形態では、コントローラ30は、CPU、揮発性記憶装置、及び不揮発性記憶装置等を備えたコンピュータで構成されている。そして、コントローラ30は、各機能に対応するプログラムを不揮発性記憶装置から読み出して揮発性記憶装置にロードし、対応する処理をCPUに実行させる。各機能は、例えば、操作者によるショベル100の手動操作をガイド(案内)するマシンガイダンス機能、及び、操作者によるショベル100の手動操作を支援したり或いはショベル100を自動的或いは自律的に動作させたりするマシンコントロール機能を含む。コントローラ30は、ショベル100の周囲の監視範囲内に存在する物体とショベル100との接触を回避するためにショベル100を自動的或いは自律的に動作させたり或いは停止させたりする接触回避機能を含んでいてもよい。ショベル100の周囲の物体の監視は、監視範囲内だけでなく監視範囲外に対しても実行される。この際、コントローラ30は、物体の種類と物体の位置を検出する。
 次に、図3を参照し、ショベル100に搭載される油圧システムの構成例について説明する。図3は、ショベル100に搭載される油圧システムの構成例を示す図である。図3は、機械的動力伝達系、作動油ライン、パイロットライン及び電気制御系を、それぞれ、二重線、実線、破線及び点線で示している。
 ショベル100の油圧システムは、主に、エンジン11、レギュレータ13、メインポンプ14、パイロットポンプ15、コントロールバルブユニット17、操作装置26、吐出圧センサ28、操作圧センサ29、及びコントローラ30等を含む。
 図3において、油圧システムは、エンジン11によって駆動されるメインポンプ14から、センターバイパス管路40又はパラレル管路42を経て作動油タンクまで作動油を循環させることができるように構成されている。
 エンジン11は、ショベル100の駆動源である。本実施形態では、エンジン11は、例えば、所定の回転数を維持するように動作するディーゼルエンジンである。エンジン11の出力軸は、メインポンプ14及びパイロットポンプ15のそれぞれの入力軸に連結されている。
 メインポンプ14は、作動油ラインを介して作動油をコントロールバルブユニット17に供給できるように構成されている。本実施形態では、メインポンプ14は、斜板式可変容量型油圧ポンプである。
 レギュレータ13は、メインポンプ14の吐出量を制御できるように構成されている。本実施形態では、レギュレータ13は、コントローラ30からの制御指令に応じてメインポンプ14の斜板傾転角を調節することによってメインポンプ14の吐出量を制御する。
 パイロットポンプ15は、パイロット圧生成装置の一例であり、パイロットラインを介して操作装置26を含む油圧制御機器に作動油を供給できるように構成されている。本実施形態では、パイロットポンプ15は、固定容量型油圧ポンプである。但し、パイロット圧生成装置は、メインポンプ14によって実現されてもよい。すなわち、メインポンプ14は、作動油ラインを介して作動油をコントロールバルブユニット17に供給する機能に加え、パイロットラインを介して操作装置26を含む各種油圧制御機器に作動油を供給する機能を備えていてもよい。この場合、パイロットポンプ15は、省略されてもよい。
 コントロールバルブユニット17は、ショベル100における油圧システムを制御する油圧制御装置である。本実施形態では、コントロールバルブユニット17は、制御弁171~176を含む。制御弁175は制御弁175L及び制御弁175Rを含み、制御弁176は制御弁176L及び制御弁176Rを含む。コントロールバルブユニット17は、制御弁171~176を通じ、メインポンプ14が吐出する作動油を1又は複数の油圧アクチュエータに選択的に供給できるように構成されている。制御弁171~176は、例えば、メインポンプ14から油圧アクチュエータに流れる作動油の流量、及び、油圧アクチュエータから作動油タンクに流れる作動油の流量を制御する。油圧アクチュエータは、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、左走行油圧モータ2ML、右走行油圧モータ2MR及び旋回油圧モータ2Aを含む。
 操作装置26は、パイロットラインを介して、パイロットポンプ15が吐出する作動油を、コントロールバルブユニット17内の対応する制御弁のパイロットポートに供給できるように構成されている。パイロットポートのそれぞれに供給される作動油の圧力(パイロット圧)は、油圧アクチュエータのそれぞれに対応する操作装置26の操作方向及び操作量に応じた圧力である。但し、操作装置26は、上述のようなパイロット圧式ではなく、電気制御式であってもよい。この場合、コントロールバルブユニット17内の制御弁は、電磁ソレノイド式スプール弁であってもよい。
 吐出圧センサ28は、メインポンプ14の吐出圧を検出できるように構成されている。本実施形態では、吐出圧センサ28は、検出した値をコントローラ30に対して出力する。
 操作圧センサ29は、操作者による操作装置26の操作の内容を検出できるように構成されている。本実施形態では、操作圧センサ29は、アクチュエータのそれぞれに対応する操作装置26の操作方向及び操作量を圧力(操作圧)の形で検出し、検出した値をコントローラ30に対して出力する。操作装置26の操作の内容は、操作圧センサ以外の他のセンサを用いて検出されてもよい。
 メインポンプ14は、左メインポンプ14L及び右メインポンプ14Rを含む。そして、左メインポンプ14Lは、左センターバイパス管路40L又は左パラレル管路42Lを経て作動油タンクまで作動油を循環させ、右メインポンプ14Rは、右センターバイパス管路40R又は右パラレル管路42Rを経て作動油タンクまで作動油を循環させる。
 左センターバイパス管路40Lは、コントロールバルブユニット17内に配置された制御弁171、173、175L及び176Lを通る作動油ラインである。右センターバイパス管路40Rは、コントロールバルブユニット17内に配置された制御弁172、174、175R及び176Rを通る作動油ラインである。
 制御弁171は、左メインポンプ14Lが吐出する作動油を左走行油圧モータ2MLへ供給し、且つ、左走行油圧モータ2MLが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁172は、右メインポンプ14Rが吐出する作動油を右走行油圧モータ2MRへ供給し、且つ、右走行油圧モータ2MRが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁173は、左メインポンプ14Lが吐出する作動油を旋回油圧モータ2Aへ供給し、且つ、旋回油圧モータ2Aが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁174は、右メインポンプ14Rが吐出する作動油をバケットシリンダ9へ供給し、且つ、バケットシリンダ9内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁175Lは、左メインポンプ14Lが吐出する作動油をブームシリンダ7へ供給するために作動油の流れを切り換えるスプール弁である。制御弁175Rは、右メインポンプ14Rが吐出する作動油をブームシリンダ7へ供給し、且つ、ブームシリンダ7内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁176Lは、左メインポンプ14Lが吐出する作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁176Rは、右メインポンプ14Rが吐出する作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 左パラレル管路42Lは、左センターバイパス管路40Lに並行する作動油ラインである。左パラレル管路42Lは、制御弁171、173、及び175Lの何れかによって左センターバイパス管路40Lを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。右パラレル管路42Rは、右センターバイパス管路40Rに並行する作動油ラインである。右パラレル管路42Rは、制御弁172、174、及び175Rの何れかによって右センターバイパス管路40Rを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。
 レギュレータ13は、左レギュレータ13L及び右レギュレータ13Rを含む。左レギュレータ13Lは、左メインポンプ14Lの吐出圧に応じて左メインポンプ14Lの斜板傾転角を調節することによって、左メインポンプ14Lの吐出量を制御する。具体的には、左レギュレータ13Lは、例えば、左メインポンプ14Lの吐出圧の増大に応じて左メインポンプ14Lの斜板傾転角を調節して吐出量を減少させる。右レギュレータ13Rについても同様である。吐出圧と吐出量との積で表されるメインポンプ14の吸収パワー(吸収馬力)がエンジン11の出力パワー(出力馬力)を超えないようにするためである。
 操作装置26は、左操作レバー26L、右操作レバー26R及び走行レバー26Dを含む。走行レバー26Dは、左走行レバー26DL及び右走行レバー26DRを含む。
 左操作レバー26Lは、旋回操作とアーム5の操作に用いられる。左操作レバー26Lは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁176のパイロットポートに導入させる。また、左右方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁173のパイロットポートに導入させる。
 具体的には、左操作レバー26Lは、アーム閉じ方向に操作された場合に、制御弁176Lの右側パイロットポートに作動油を導入させ、且つ、制御弁176Rの左側パイロットポートに作動油を導入させる。また、左操作レバー26Lは、アーム開き方向に操作された場合には、制御弁176Lの左側パイロットポートに作動油を導入させ、且つ、制御弁176Rの右側パイロットポートに作動油を導入させる。また、左操作レバー26Lは、左旋回方向に操作された場合に、制御弁173の左側パイロットポートに作動油を導入させ、右旋回方向に操作された場合に、制御弁173の右側パイロットポートに作動油を導入させる。
 右操作レバー26Rは、ブーム4の操作とバケット6の操作に用いられる。右操作レバー26Rは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁175のパイロットポートに導入させる。また、左右方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁174のパイロットポートに導入させる。
 具体的には、右操作レバー26Rは、ブーム下げ方向に操作された場合に、制御弁175Rの左側パイロットポートに作動油を導入させる。また、右操作レバー26Rは、ブーム上げ方向に操作された場合には、制御弁175Lの右側パイロットポートに作動油を導入させ、且つ、制御弁175Rの左側パイロットポートに作動油を導入させる。また、右操作レバー26Rは、バケット閉じ方向に操作された場合に、制御弁174の右側パイロットポートに作動油を導入させ、バケット開き方向に操作された場合に、制御弁174の左側パイロットポートに作動油を導入させる。
 走行レバー26Dは、クローラ1Cの操作に用いられる。具体的には、左走行レバー26DLは、左クローラ1CLの操作に用いられる。左走行ペダルと連動するように構成されていてもよい。左走行レバー26DLは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁171のパイロットポートに導入させる。右走行レバー26DRは、右クローラ1CRの操作に用いられる。右走行ペダルと連動するように構成されていてもよい。右走行レバー26DRは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁172のパイロットポートに導入させる。
 吐出圧センサ28は、吐出圧センサ28L及び吐出圧センサ28Rを含む。吐出圧センサ28Lは、左メインポンプ14Lの吐出圧を検出し、検出した値をコントローラ30に対して出力する。吐出圧センサ28Rについても同様である。
 操作圧センサ29は、操作圧センサ29LA、29LB、29RA、29RB、29DL、29DRを含む。操作圧センサ29LAは、操作者による左操作レバー26Lに対する前後方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作の内容は、例えば、レバー操作方向、レバー操作量(レバー操作角度)等である。
 同様に、操作圧センサ29LBは、操作者による左操作レバー26Lに対する左右方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作圧センサ29RAは、操作者による右操作レバー26Rに対する前後方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作圧センサ29RBは、操作者による右操作レバー26Rに対する左右方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作圧センサ29DLは、操作者による左走行レバー26DLに対する前後方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作圧センサ29DRは、操作者による右走行レバー26DRに対する前後方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。
 コントローラ30は、操作圧センサ29の出力を受信し、必要に応じてレギュレータ13に対して制御指令を出力し、メインポンプ14の吐出量を変化させる。また、コントローラ30は、絞り18の上流に設けられた制御圧センサ19の出力を受信し、必要に応じてレギュレータ13に対して制御指令を出力し、メインポンプ14の吐出量を変化させる。絞り18は左絞り18L及び右絞り18Rを含み、制御圧センサ19は左制御圧センサ19L及び右制御圧センサ19Rを含む。
 左センターバイパス管路40Lには、最も下流にある制御弁176Lと作動油タンクとの間に左絞り18Lが配置されている。そのため、左メインポンプ14Lが吐出した作動油の流れは、左絞り18Lで制限される。そして、左絞り18Lは、左レギュレータ13Lを制御するための制御圧を発生させる。左制御圧センサ19Lは、この制御圧を検出するためのセンサであり、検出した値をコントローラ30に対して出力する。コントローラ30は、この制御圧に応じて左メインポンプ14Lの斜板傾転角を調節することによって、左メインポンプ14Lの吐出量を制御する。コントローラ30は、この制御圧が大きいほど左メインポンプ14Lの吐出量を減少させ、この制御圧が小さいほど左メインポンプ14Lの吐出量を増大させる。右メインポンプ14Rの吐出量も同様に制御される。
 具体的には、図3で示されるようにショベル100における油圧アクチュエータが何れも操作されていない待機状態の場合、左メインポンプ14Lが吐出する作動油は、左センターバイパス管路40Lを通って左絞り18Lに至る。そして、左メインポンプ14Lが吐出する作動油の流れは、左絞り18Lの上流で発生する制御圧を増大させる。その結果、コントローラ30は、左メインポンプ14Lの吐出量を許容最小吐出量まで減少させ、吐出した作動油が左センターバイパス管路40Lを通過する際の圧力損失(ポンピングロス)を抑制する。一方、何れかの油圧アクチュエータが操作された場合、左メインポンプ14Lが吐出する作動油は、操作対象の油圧アクチュエータに対応する制御弁を介して、操作対象の油圧アクチュエータに流れ込む。そして、左メインポンプ14Lが吐出する作動油の流れは、左絞り18Lに至る量を減少或いは消失させ、左絞り18Lの上流で発生する制御圧を低下させる。その結果、コントローラ30は、左メインポンプ14Lの吐出量を増大させ、操作対象の油圧アクチュエータに十分な作動油を循環させ、操作対象の油圧アクチュエータの駆動を確かなものとする。なお、コントローラ30は、右メインポンプ14Rの吐出量も同様に制御する。
 上述のような構成により、図3の油圧システムは、待機状態においては、メインポンプ14における無駄なエネルギ消費を抑制できる。無駄なエネルギ消費は、メインポンプ14が吐出する作動油がセンターバイパス管路40で発生させるポンピングロスを含む。また、図3の油圧システムは、油圧アクチュエータを作動させる場合には、メインポンプ14から必要十分な作動油を作動対象の油圧アクチュエータに確実に供給できる。
 次に、図4A~図4Dを参照し、コントローラ30がマシンコントロール機能によってアクチュエータを動作させるための構成について説明する。図4A~図4Dは、油圧システムの一部を抜き出した図である。具体的には、図4Aは、アームシリンダ8の操作に関する油圧システム部分を抜き出した図であり、図4Bは、ブームシリンダ7の操作に関する油圧システム部分を抜き出した図である。図4Cは、バケットシリンダ9の操作に関する油圧システム部分を抜き出した図であり、図4Dは、旋回油圧モータ2Aの操作に関する油圧システム部分を抜き出した図である。
 図4A~図4Dに示すように、油圧システムは、比例弁31、シャトル弁32、及び比例弁33を含む。比例弁31は、比例弁31AL~31DL及び31AR~31DRを含み、シャトル弁32は、シャトル弁32AL~32DL及び32AR~32DRを含み、比例弁33は、比例弁33AL~33DL及び33AR~33DRを含む。
 比例弁31は、マシンコントロール用制御弁として機能する。比例弁31は、パイロットポンプ15とシャトル弁32とを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁31は、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31及びシャトル弁32を介し、コントロールバルブユニット17内の対応する制御弁のパイロットポートに供給できる。
 シャトル弁32は、2つの入口ポートと1つの出口ポートを有する。2つの入口ポートのうちの1つは操作装置26に接続され、他方は比例弁31に接続されている。出口ポートは、コントロールバルブユニット17内の対応する制御弁のパイロットポートに接続されている。そのため、シャトル弁32は、操作装置26が生成するパイロット圧と比例弁31が生成するパイロット圧のうちの高い方を、対応する制御弁のパイロットポートに作用させることができる。
 比例弁33は、比例弁31と同様に、マシンコントロール用制御弁として機能する。比例弁33は、操作装置26とシャトル弁32とを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁33は、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32を介し、コントロールバルブユニット17内の対応する制御弁のパイロットポートに供給できる。
 この構成により、コントローラ30は、特定の操作装置26に対する操作が行われていない場合であっても、その特定の操作装置26に対応する油圧アクチュエータを動作させることができる。また、コントローラ30は、特定の操作装置26に対する操作が行われている場合であっても、その特定の操作装置26に対応する油圧アクチュエータの動作を強制的に停止させることができる。
 例えば、図4Aに示すように、左操作レバー26Lは、アーム5を操作するために用いられる。具体的には、左操作レバー26Lは、パイロットポンプ15が吐出する作動油を利用し、前後方向への操作に応じたパイロット圧を制御弁176のパイロットポートに作用させる。より具体的には、左操作レバー26Lは、アーム閉じ方向(後方向)に操作された場合に、操作量に応じたパイロット圧を制御弁176Lの右側パイロットポートと制御弁176Rの左側パイロットポートに作用させる。また、左操作レバー26Lは、アーム開き方向(前方向)に操作された場合には、操作量に応じたパイロット圧を制御弁176Lの左側パイロットポートと制御弁176Rの右側パイロットポートに作用させる。
 左操作レバー26LにはスイッチNSが設けられている。本実施形態では、スイッチNSは、左操作レバー26Lの先端に設けられた押しボタンスイッチである。操作者は、スイッチNSを押しながら左操作レバー26Lを操作できる。スイッチNSは、右操作レバー26Rに設けられていてもよく、キャビン10内の他の位置に設けられていてもよい。
 操作圧センサ29LAは、操作者による左操作レバー26Lに対する前後方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。
 比例弁31ALは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31AL及びシャトル弁32ALを介して制御弁176Lの右側パイロットポート及び制御弁176Rの左側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31ARは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31AR及びシャトル弁32ARを介して制御弁176Lの左側パイロットポート及び制御弁176Rの右側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31AL、31ARは、制御弁176L、176Rを任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者によるアーム閉じ操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31AL及びシャトル弁32ALを介し、制御弁176Lの右側パイロットポート及び制御弁176Rの左側パイロットポートに供給できる。すなわち、アーム5を閉じることができる。また、コントローラ30は、操作者によるアーム開き操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31AR及びシャトル弁32ARを介し、制御弁176Lの左側パイロットポート及び制御弁176Rの右側パイロットポートに供給できる。すなわち、アーム5を開くことができる。
 比例弁33ALは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から左操作レバー26L、比例弁33AL、及びシャトル弁32ALを介して制御弁176Lの右側パイロットポート及び制御弁176Rの左側パイロットポートに導入される作動油によるパイロット圧を減圧する。比例弁33ARは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から左操作レバー26L、比例弁33AR、及びシャトル弁32ARを介して制御弁176Lの左側パイロットポート及び制御弁176Rの右側パイロットポートに導入される作動油によるパイロット圧を減圧する。比例弁33AL、33ARは、制御弁176L、176Rを任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者によるアーム閉じ操作が行われている場合であっても、必要に応じて、制御弁176の閉じ側のパイロットポート(制御弁176Lの左側パイロットポート及び制御弁176Rの右側パイロットポート)に作用するパイロット圧を減圧し、アーム5の閉じ動作を強制的に停止させることができる。操作者によるアーム開き操作が行われているときにアーム5の開き動作を強制的に停止させる場合についても同様である。
 或いは、コントローラ30は、操作者によるアーム閉じ操作が行われている場合であっても、必要に応じて、比例弁31ARを制御し、制御弁176の閉じ側のパイロットポートの反対側にある、制御弁176の開き側のパイロットポート(制御弁176Lの右側パイロットポート及び制御弁176Rの左側パイロットポート)に作用するパイロット圧を増大させ、制御弁176を強制的に中立位置に戻すことで、アーム5の閉じ動作を強制的に停止させてもよい。この場合、比例弁33ALは省略されてもよい。操作者によるアーム開き操作が行われている場合にアーム5の開き動作を強制的に停止させる場合についても同様である。
 また、以下の図4B~図4Dを参照しながらの説明を省略するが、操作者によるブーム上げ操作又はブーム下げ操作が行われている場合にブーム4の動作を強制的に停止させる場合、操作者によるバケット閉じ操作又はバケット開き操作が行われている場合にバケット6の動作を強制的に停止させる場合、及び、操作者による旋回操作が行われている場合に上部旋回体3の旋回動作を強制的に停止させる場合についても同様である。また、操作者による走行操作が行われている場合に下部走行体1の走行動作を強制的に停止させる場合についても同様である。
 また、図4Bに示すように、右操作レバー26Rは、ブーム4を操作するために用いられる。具体的には、右操作レバー26Rは、パイロットポンプ15が吐出する作動油を利用し、前後方向への操作に応じたパイロット圧を制御弁175のパイロットポートに作用させる。より具体的には、右操作レバー26Rは、ブーム上げ方向(後方向)に操作された場合に、操作量に応じたパイロット圧を制御弁175Lの右側パイロットポートと制御弁175Rの左側パイロットポートに作用させる。また、右操作レバー26Rは、ブーム下げ方向(前方向)に操作された場合には、操作量に応じたパイロット圧を制御弁175Rの右側パイロットポートに作用させる。
 操作圧センサ29RAは、操作者による右操作レバー26Rに対する前後方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。
 比例弁31BLは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31BL及びシャトル弁32BLを介して制御弁175Lの右側パイロットポート及び制御弁175Rの左側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31BRは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31BR及びシャトル弁32BRを介して制御弁175Lの左側パイロットポート及び制御弁175Rの右側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31BL、31BRは、制御弁175L、175Rを任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者によるブーム上げ操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31BL及びシャトル弁32BLを介し、制御弁175Lの右側パイロットポート及び制御弁175Rの左側パイロットポートに供給できる。すなわち、ブーム4を上げることができる。また、コントローラ30は、操作者によるブーム下げ操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31BR及びシャトル弁32BRを介し、制御弁175Rの右側パイロットポートに供給できる。すなわち、ブーム4を下げることができる。
 また、図4Cに示すように、右操作レバー26Rは、バケット6を操作するためにも用いられる。具体的には、右操作レバー26Rは、パイロットポンプ15が吐出する作動油を利用し、左右方向への操作に応じたパイロット圧を制御弁174のパイロットポートに作用させる。より具体的には、右操作レバー26Rは、バケット閉じ方向(左方向)に操作された場合に、操作量に応じたパイロット圧を制御弁174の左側パイロットポートに作用させる。また、右操作レバー26Rは、バケット開き方向(右方向)に操作された場合には、操作量に応じたパイロット圧を制御弁174の右側パイロットポートに作用させる。
 操作圧センサ29RBは、操作者による右操作レバー26Rに対する左右方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。
 比例弁31CLは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31CL及びシャトル弁32CLを介して制御弁174の左側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31CRは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31CR及びシャトル弁32CRを介して制御弁174の右側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31CL、31CRは、制御弁174を任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者によるバケット閉じ操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31CL及びシャトル弁32CLを介し、制御弁174の左側パイロットポートに供給できる。すなわち、バケット6を閉じることができる。また、コントローラ30は、操作者によるバケット開き操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31CR及びシャトル弁32CRを介し、制御弁174の右側パイロットポートに供給できる。すなわち、バケット6を開くことができる。
 また、図4Dに示すように、左操作レバー26Lは、旋回機構2を操作するためにも用いられる。具体的には、左操作レバー26Lは、パイロットポンプ15が吐出する作動油を利用し、左右方向への操作に応じたパイロット圧を制御弁173のパイロットポートに作用させる。より具体的には、左操作レバー26Lは、左旋回方向(左方向)に操作された場合に、操作量に応じたパイロット圧を制御弁173の左側パイロットポートに作用させる。また、左操作レバー26Lは、右旋回方向(右方向)に操作された場合には、操作量に応じたパイロット圧を制御弁173の右側パイロットポートに作用させる。
 操作圧センサ29LBは、操作者による左操作レバー26Lに対する左右方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。
 比例弁31DLは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31DL及びシャトル弁32DLを介して制御弁173の左側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31DRは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31DR及びシャトル弁32DRを介して制御弁173の右側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31DL、31DRは、制御弁173を任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者による左旋回操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31DL及びシャトル弁32DLを介し、制御弁173の左側パイロットポートに供給できる。すなわち、旋回機構2を左旋回させることができる。また、コントローラ30は、操作者による右旋回操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31DR及びシャトル弁32DRを介し、制御弁173の右側パイロットポートに供給できる。すなわち、旋回機構2を右旋回させることができる。
 ショベル100は、下部走行体1を自動的或いは自律的に前進・後進させる構成を備えていてもよい。この場合、左走行油圧モータ2MLの操作に関する油圧システム部分、及び、右走行油圧モータ2MRの操作に関する油圧システム部分は、ブームシリンダ7の操作に関する油圧システム部分等と同じように構成されてもよい。
 また、操作装置26の形態として油圧式パイロット回路を備えた油圧式操作レバーに関する説明を記載したが、油圧式操作レバーではなく電気式パイロット回路を備えた電気式操作レバーが採用されてもよい。この場合、電気式操作レバーのレバー操作量は、電気信号としてコントローラ30へ入力される。また、パイロットポンプ15と各制御弁のパイロットポートとの間には電磁弁が配置される。電磁弁は、コントローラ30からの電気信号に応じて動作するように構成される。この構成により、電気式操作レバーを用いた手動操作が行われると、コントローラ30は、レバー操作量に対応する電気信号によって電磁弁を制御してパイロット圧を増減させることで各制御弁を移動させることができる。なお、各制御弁は電磁スプール弁で構成されていてもよい。この場合、電磁スプール弁は、電気式操作レバーのレバー操作量に対応するコントローラ30からの電気信号に応じて動作する。
 次に、図5を参照し、コントローラ30の構成例について説明する。図5は、コントローラ30の構成例を示す図である。図5では、コントローラ30は、姿勢検出装置、操作装置26、空間認識装置70、向き検出装置71、情報入力装置72、測位装置73及びスイッチNS等の少なくとも1つが出力する信号を受け、様々な演算を実行し、比例弁31、表示装置D1及び音声出力装置D2等の少なくとも1つに制御指令を出力できるように構成されている。姿勢検出装置は、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4及び旋回角速度センサS5を含む。コントローラ30は、位置算出部30A、軌道取得部30B、及び自律制御部30Cを機能要素として有する。なお、位置算出部30A、軌道取得部30B、及び自律制御部30Cは、説明の便宜のために区別されて示されているが、物理的に区別されている必要はなく、全体的に或いは部分的に共通のソフトウェアコンポーネント若しくはハードウェアコンポーネントで構成されていてもよい。また、コントローラ30における1又は複数の機能要素は、後述の管理装置300等の他の制御装置における機能要素であってもよい。すなわち、各機能要素は、何れの制御装置によって実現されてもよい。例えば、自律制御部30Cは、ショベル100の外部にある管理装置300によって実現されてもよい。
 位置算出部30Aは、測位対象の位置を算出するように構成されている。本実施形態では、位置算出部30Aは、アタッチメントの所定部位の基準座標系における座標点を算出する。所定部位は、例えば、バケット6の爪先である。基準座標系の原点は、例えば、旋回軸とショベル100の接地面との交点である。基準座標系は、例えば、XYZ直交座標系であり、ショベル100の前後軸に平行なX軸と、ショベル100の左右軸に平行なY軸と、ショベル100の旋回軸に平行なZ軸とを有する。位置算出部30Aは、例えば、ブーム4、アーム5及びバケット6のそれぞれの回動角度からバケット6の爪先の座標点を算出する。位置算出部30Aは、バケット6の爪先の中央の座標点だけでなく、バケット6の爪先の左端の座標点、及び、バケット6の爪先の右端の座標点を算出してもよい。この場合、位置算出部30Aは、機体傾斜センサS4の出力を利用してもよい。また、位置算出部30Aは、測位装置73の出力を利用し、アタッチメントの所定部位の世界座標系における座標点を算出してもよい。
 軌道取得部30Bは、ショベル100を自律的に動作させるときにアタッチメントの所定部位が辿る軌道である目標軌道を取得するように構成されている。本実施形態では、軌道取得部30Bは、自律制御部30Cがショベル100を自律的に動作させるときに利用する目標軌道を取得する。具体的には、軌道取得部30Bは、不揮発性記憶装置に記憶されている目標面に関するデータ(以下、「設計データ」とする。)に基づいて目標軌道を導き出す。軌道取得部30Bは、空間認識装置70が認識したショベル100の周囲の地形に関する情報に基づいて目標軌道を導き出してもよい。或いは、軌道取得部30Bは、揮発性記憶装置に記憶されている姿勢検出装置の過去の出力からバケット6の爪先の過去の軌跡に関する情報を導き出し、その情報に基づいて目標軌道を導き出してもよい。或いは、軌道取得部30Bは、アタッチメントの所定部位の現在位置と設計データとに基づいて目標軌道を導き出してもよい。
 自律制御部30Cは、ショベル100を自律的に動作させることができるように構成されている。本実施形態では、所定の開始条件が満たされた場合に、軌道取得部30Bが取得した目標軌道に沿ってアタッチメントの所定部位を移動させるように構成されている。具体的には、スイッチNSが押されている状態で操作装置26が操作されたときに、所定部位が目標軌道に沿って移動するように、ショベル100を自律的に動作させる。
 本実施形態では、自律制御部30Cは、アクチュエータを自律的に動作させることで操作者によるショベルの手動操作を支援するように構成されている。例えば、自律制御部30Cは、操作者がスイッチNSを押しながら手動でアーム閉じ操作を行っている場合に、目標軌道とバケット6の爪先の位置とが一致するようにブームシリンダ7、アームシリンダ8及びバケットシリンダ9の少なくとも1つを自律的に伸縮させてもよい。この場合、操作者は、例えば、左操作レバー26Lをアーム閉じ方向に操作するだけで、バケット6の爪先を目標軌道に一致させながら、アーム5を閉じることができる。この例では、主な操作対象であるアームシリンダ8は「主要アクチュエータ」と称される。また、主要アクチュエータの動きに応じて動く従動的な操作対象であるブームシリンダ7及びバケットシリンダ9は「従属アクチュエータ」と称される。
 本実施形態では、自律制御部30Cは、比例弁31に制御指令(電流指令)を与えて各アクチュエータに対応する制御弁に作用するパイロット圧を個別に調整することで各アクチュエータを自律的に動作させることができる。例えば、右操作レバー26Rが傾倒されたか否かにかかわらず、ブームシリンダ7及びバケットシリンダ9の少なくとも1つを動作させることができる。
 次に、図6及び図7を参照し、自律制御部30Cの構成例について説明する。図6は、自律制御部30Cの入力側の構成例を示す。図7は、自律制御部30Cの出力側の構成例を示す。
 本実施形態では、自律制御部30Cは、法面仕上げ作業又は均し作業等において、エンドアタッチメントにおける複数の所定点のそれぞれに関してアクチュエータの制御量を算出するように構成されている。エンドアタッチメントにおける複数の所定点は、例えば、バケット6の爪先における点、及び、バケット6の背面における点等を含む。所定点の現在位置は、例えば、基準座標系における座標点で表される。アクチュエータの制御量は、例えば、ブームシリンダ7の制御量、アームシリンダ8の制御量及びバケットシリンダ9の制御量等を含む。ブームシリンダ7の制御量は、例えば、ブームシリンダ7のストローク量又はブーム角度α等で表される。アームシリンダ8の制御量及びバケットシリンダ9の制御量についても同様である。
 自律制御部30Cは、例えば、ブームシリンダ7の制御量としてのブーム角度「X度」に関する制御指令を比例弁31に対して出力することで、ブーム4をX度だけ回動させることができる。
 自律制御部30Cは、例えば、主要アクチュエータであるアームシリンダ8の制御量を最初に算出し、その後に、従属アクチュエータであるブームシリンダ7及びバケットシリンダ9のそれぞれの制御量を算出する。主要アクチュエータであるアームシリンダ8の制御量は、例えば、左操作レバー26Lの操作量に基づいて算出された後で、必要に応じて調節(補正)される。そして、アームシリンダ8の制御量が変化すると、その変化に応じてブームシリンダ7及びバケットシリンダ9のそれぞれの制御量も変化する。
 本実施形態では、自律制御部30Cは、目標値算出部30D、合成部30E及び演算部30Fを含む。目標値算出部30Dは、所定の制御周期毎に、エンドアタッチメントにおける複数の所定点のそれぞれに関する目標値を算出するように構成されている。目標値は、例えば、エンドアタッチメントにおける所定点の所定時間後の位置(目標位置)に関する値であり、典型的には、目標ブーム角度、目標アーム角度及び目標バケット角度で表される。なお、目標値算出部30D、合成部30E及び演算部30Fは、説明の便宜のために区別されて示されているが、物理的に区別されている必要はなく、全体的に或いは部分的に共通のソフトウェアコンポーネント若しくはハードウェアコンポーネントで構成されていてもよい。また、自律制御部30Cにおける1又は複数の機能要素は、後述の管理装置300等の他の制御装置における機能要素であってもよい。すなわち、各機能要素は、何れの制御装置によって実現されてもよい。例えば、目標値算出部30D及び合成部30Eは、ショベル100の外部にある管理装置300によって実現されてもよい。
 本実施形態では、目標値算出部30Dは、第1目標値算出部30D1及び第2目標値算出部30D2を含む。第1目標値算出部30D1は、バケット6の爪先の制御基準点Pa(図1参照。)に関する目標値を算出するように構成されている。第2目標値算出部30D2は、バケット6の背面の制御基準点Pb(図1参照。)に関する目標値を算出するように構成されている。
 具体的には、第1目標値算出部30D1は、操作圧センサ29LA、情報入力装置72、スイッチNS及び位置算出部30Aのそれぞれの出力に基づき、バケット6の爪先の制御基準点Paの目標位置を算出する。目標位置は、制御基準点Paが所定時間後に到達する位置である。
 より具体的には、第1目標値算出部30D1は、操作圧センサ29LAの出力とスイッチNSの出力とに基づき、スイッチNSが押された状態で左操作レバー26Lが前後方向に操作されているか否かを判定する。そして、スイッチNSが押された状態で左操作レバー26Lが前後方向に操作されていると判定した場合、第1目標値算出部30D1は、制御基準点Paの現在位置と目標面に関する情報とに基づき、制御基準点Paの目標位置を算出する。目標面に関する情報は、例えば、情報入力装置72を通じて入力される設計データから導き出される。目標面に関する情報は、例えば、法面角度等を含む。制御基準点Paの現在位置は、例えば、位置算出部30Aによって算出される。位置算出部30Aは、例えば、ブーム角度センサS1、アーム角度センサS2及びバケット角度センサS3等の出力に基づいて制御基準点Paの現在位置を算出する。そして、第1目標値算出部30D1は、算出した制御基準点Paの目標位置に基づき、制御基準点Paを目標位置に移動させたときのブーム角度αt1、アーム角度βt1及びバケット角度γt1を導き出す。本実施形態では、ブーム角度αt1は、ブームシリンダ7に関する第1制御量を表す。同様に、アーム角度βt1は、アームシリンダ8に関する第1制御量を表し、バケット角度γt1は、バケットシリンダ9に関する第1制御量を表す。
 第2目標値算出部30D2は、第1目標値算出部30D1と同様に、操作圧センサ29LA、情報入力装置72、スイッチNS及び位置算出部30Aのそれぞれの出力に基づき、バケット6の背面の制御基準点Pbの目標位置を算出する。目標位置は、制御基準点Pbが所定時間後に到達する位置である。
 具体的には、第2目標値算出部30D2は、第1目標値算出部30D1と同様に、スイッチNSが押された状態で左操作レバー26Lが前後方向に操作されているか否かを判定する。そして、スイッチNSが押された状態で左操作レバー26Lが前後方向に操作されていると判定した場合、第2目標値算出部30D2は、制御基準点Pbの現在位置と目標面に関する情報とに基づき、制御基準点Pbの目標位置を算出する。そして、第2目標値算出部30D2は、算出した制御基準点Pbの目標位置に基づき、制御基準点Pbを目標位置に移動させたときのブーム角度αt2、アーム角度βt2及びバケット角度γt2を導き出す。本実施形態では、ブーム角度αt2は、ブームシリンダ7に関する第2制御量を表す。同様に、アーム角度βt2は、アームシリンダ8に関する第2制御量を表し、バケット角度γt2は、バケットシリンダ9に関する第2制御量を表す。
 本実施形態では、第1目標値算出部30D1及び第2目標値算出部30D2は、互いに独立して動作する別々の機能要素であるが、同じ1つの機能要素として一体的に構成されていてもよい。
 合成部30Eは、1つのアクチュエータに関する複数の制御量を合成するように構成されている。本実施形態では、合成部30Eは、第1合成部30E1、第2合成部30E2及び第3合成部30E3を含む。
 演算部30Fは、合成部30Eが出力する合成制御量に基づき、比例弁31に対して出力する制御指令(電流指令)を生成するように構成されている。本実施形態では、演算部30Fは、第1演算部30F1、第2演算部30F2及び第3演算部30F3を含む。
 第1合成部30E1は、ブームシリンダ7に関する複数の制御量を合成して導き出した合成制御量αtを第1演算部30F1に対して出力するように構成されている。そして、第1演算部30F1は、第1合成部30E1が出力する合成制御量αtに基づき、ブームシリンダ7に関する比例弁31BL、31BRに対して出力する制御指令(電流指令)を生成するように構成されている。本実施形態では、第1合成部30E1は、ブームシリンダ7に関する第1制御量(ブーム角度αt1)と第2制御量(ブーム角度αt2)とを合成して合成制御量αtを導き出す。「合成」は、相加平均、相乗平均、加重平均、又は択一等の何れであってもよい。択一の場合、第1合成部30E1は、例えば、第1制御量と第2制御量とを比較して大きい方を選択してもよい。第1演算部30F1は、例えば、合成制御量αtと現在のブーム角度αとの差がゼロに近づくように制御指令を生成し、その制御指令をブームシリンダ7に関する比例弁31BL、31BRに対して出力する。
 第2合成部30E2は、アームシリンダ8に関する複数の制御量を合成して導き出した合成制御量βtを第2演算部30F2に対して出力するように構成されている。そして、第2演算部30F2は、第2合成部30E2が出力する合成制御量βtに基づき、アームシリンダ8に関する比例弁31AL、31ARに対して出力する制御指令(電流指令)を生成するように構成されている。本実施形態では、第2合成部30E2は、アームシリンダ8に関する第1制御量(アーム角度βt1)と第2制御量(アーム角度βt2)とを合成して合成制御量βtを導き出す。「合成」は、相加平均、相乗平均、加重平均、又は択一等の何れであってもよい。択一の場合、第2合成部30E2は、例えば、第1制御量と第2制御量とを比較して大きい方を選択してもよい。第2演算部30F2は、例えば、合成制御量βtと現在のアーム角度βとの差がゼロに近づくように制御指令を生成し、その制御指令をアームシリンダ8に関する比例弁31BL、31BRに対して出力する。
 第3合成部30E3は、バケットシリンダ9に関する複数の制御量を合成して導き出した合成制御量γtを第3演算部30F3に対して出力するように構成されている。そして、第3演算部30F3は、第3合成部30E3が出力する合成制御量γtに基づき、バケットシリンダ9に関する比例弁31CL、31CRに対して出力する制御指令(電流指令)を生成するように構成されている。本実施形態では、第3合成部30E3は、バケットシリンダ9に関する第1制御量(バケット角度γt1)と第2制御量(バケット角度γt2)とを合成して合成制御量γtを導き出す。「合成」は、相加平均、相乗平均、加重平均、又は択一等の何れであってもよい。択一の場合、第3合成部30E3は、例えば、第1制御量と第2制御量とを比較して大きい方を選択してもよい。第3演算部30F3は、例えば、合成制御量γtと現在のバケット角度γとの差がゼロに近づくように制御指令を生成し、その制御指令をバケットシリンダ9に関する比例弁31CL、31CRに対して出力する。
 本実施形態では、第1合成部30E1、第2合成部30E2、及び第3合成部30E3は、互いに独立して動作する別々の機能要素であるが、同じ1つの機能要素として一体的に構成されていてもよい。この場合も、「合成」は、相加平均、相乗平均、加重平均、又は択一等の何れであってもよい。択一の場合、その一体的に構成された機能要素は、例えば、第1制御量と第2制御量とを比較して大きい方を選択してもよい。このようにして、自律制御部30Cは、バケット6の全体を上げるためにブーム4を駆動させたり、バケット6の爪先が高くなるようにバケット6を回動させたりする等、所定の条件に基づいて油圧アクチュエータを制御する。また、第1演算部30F1、第2演算部30F2及び第3演算部30F3は、互いに独立して動作する別々の機能要素であるが、同じ1つの機能要素として一体的に構成されていてもよい。
 比例弁31BL、31BRは、制御指令に応じたパイロット圧をブームシリンダ7に関する制御弁175に対して作用させる。比例弁31BL、31BRが生成したパイロット圧を受けた制御弁175は、メインポンプ14が吐出する作動油を、パイロット圧に対応する流れ方向及び流量でブームシリンダ7に供給する。
 このとき、自律制御部30Cは、スプール変位センサ(図示せず。)の検出値である制御弁175のスプール変位量に基づいてスプール制御指令を生成してもよい。そして、スプール制御指令に対応する制御電流を比例弁31BL、31BRに対して出力してもよい。制御弁175をより高精度に制御するためである。
 ブームシリンダ7は、制御弁175を介して供給される作動油により伸縮する。ブーム角度センサS1は、伸縮するブームシリンダ7によって動かされるブーム4のブーム角度αを検出する。そして、ブーム角度センサS1は、検出したブーム角度αをブーム角度αの現在値として第1演算部30F1にフィードバックする。
 なお、上述の説明は、合成制御量αtに基づくブーム4の制御に関するものであるが、合成制御量βtに基づくアーム5の制御、及び、合成制御量γtに基づくバケット6の制御にも同様に適用可能である。そのため、合成制御量βtに基づくアーム5の制御の流れ、及び、合成制御量γtに基づくバケット6の制御の流れについてはその説明を省略する。
 また、上述の説明は、ブーム4、アーム5、及びバケット6の制御に関するものであるが、旋回制御にも適用可能である。この場合、合成部30Eは、旋回アクチュエータに関する複数の制御量を合成して合成制御量を導き出すように構成されていてもよい。また、上述の説明は、アーム5の先端にバケット6ではなくチルトバケットが取り付けられている場合には、チルトバケットの制御にも適用可能である。この場合、合成部30Eは、チルト駆動部(チルトシリンダ)に関する複数の制御量を合成して合成制御量を導き出すように構成されていてもよい。
 次に、図8A及び図8Bを参照し、複数の制御基準点に基づいてアクチュエータを自律的に動作させることによる効果について説明する。図8A及び図8Bは、目標面TSに沿って移動するバケット6の側面図である。図8A及び図8Bの例では、目標面TSは、水平部分HSと傾斜部分SLとを含む。自律制御部30Cは、スイッチNSが押されている状態で左操作レバー26Lがアーム閉じ方向に操作されたときに、目標面TSに対するバケット6の掘削角度θを維持しながら、バケット6を目標面TSに沿って移動させるように、ショベル100を自律的に動作させる。
 図8A及び図8Bの例では、自律制御部30Cは、第1時点から第4時点の間に、バケット6を目標面TSに沿って左から右に移動させている。図8A及び図8Bの例では、第1時点におけるバケット6は二点鎖線で示され、第2時点におけるバケット6は一点鎖線で示され、第3時点におけるバケット6は破線で示され、第4時点(現時点)におけるバケット6は実線で示されている。
 図8Aは、自律制御部30Cが1つの制御基準点に基づいて導き出した制御量に応じて掘削アタッチメントATを自律的に動作させたときのバケット6の移動経路を示す。すなわち、図8Aの例では、自律制御部30Cは、各時点で目標面TSに最も近い制御基準点である制御基準点Pa又は制御基準点Pbに基づいて導き出した制御量に応じて掘削アタッチメントATを自律的に動作させている。なお、自律制御部30Cは、目標面TSに最も近い制御基準点の現在位置と目標面に関する情報とに基づいて制御量を導き出している。
 具体的には、自律制御部30Cは、第1時点では、水平部分HSと接している制御基準点Pb1に基づいて制御量を算出している。そして、自律制御部30Cは、バケット6を水平部分HSに沿って移動させるように、すなわち、矢印AR1で示す水平方向にバケット6を移動させるように制御量を算出している。
 第2時点では、第1時点の場合と同様に、自律制御部30Cは、水平部分HSと接している制御基準点Pb2に基づいて制御量を算出している。そして、自律制御部30Cは、バケット6を水平部分HSに沿って移動させるように、すなわち、矢印AR2で示す水平方向にバケット6を移動させるように制御量を算出している。
 第3時点では、自律制御部30Cは、傾斜部分SLと接している制御基準点Pa3に基づいて制御量を算出している。そして、自律制御部30Cは、バケット6を傾斜部分SLに沿って移動させるように、すなわち、矢印AR3で示す斜め上方向にバケット6を移動させるように、制御量を算出している。具体的には、自律制御部30Cは、掘削角度θで制御基準点Pbを傾斜部分SLに接触させることができるように制御量を算出している。
 このように、図8Aの例では、自律制御部30Cは、制御基準点Pa3が傾斜部分SLと接触するまでは、制御基準点Pbに基づいて制御量を算出している。そして、自律制御部30Cは、制御基準点Pa3が傾斜部分SLと接触すると、制御量算出の基準となる制御基準点を制御基準点Pbから制御基準点Paに切り換え、制御基準点Paに基づいて制御量を算出する。目標面TSに関する最近傍点が制御基準点Pbから制御基準点Paに切り換わるためである。このときも、自律制御部30Cは、目標面TSに沿ってバケット6を移動させようとするが、点線で示すバケット6で表されるように、第3時点の直後に、バケット6の爪先が目標面TSに食い込んでしまうのを防止できない。最近傍点の切り換わりによって制御内容が急変しても、バケット6は、慣性によって水平方向右側に移動してしまうためである。すなわち、自律制御部30Cは、バケット6の爪先の位置の変化を、目標面TSの変化(水平部分HSから傾斜部分SLへの変化)に追従させることができないためである。
 これに対し、図8Bの例では、自律制御部30Cは、2つの制御基準点のそれぞれの予測位置に基づいて導き出した制御量で掘削アタッチメントATを自律的に動作させるように構成されている。具体的には、図8Bの例では、自律制御部30Cは、制御基準点Paの予測位置に基づいて導き出した制御量と、制御基準点Pbの予測位置に基づいて導き出した制御量とを合成して得られる合成制御量で掘削アタッチメントATを自律的に動作させている。すなわち、図8Bの例は、2つの制御基準点に基づく点、及び、制御基準点の現在位置ではなく予測位置に基づく点で図8Aの例とは異なる。
 制御基準点の予測位置は、制御基準点の現在位置から予測される制御基準点の所定時間後の位置を意味する。所定時間は、例えば、1又は複数回の制御周期に相当する時間である。但し、自律制御部30Cは、2つの制御基準点の現在位置に基づいて導き出した制御量で掘削アタッチメントATを自律的に動作させるように構成されていてもよい。なお、図8Bの例では、制御基準点の予測位置は、制御基準点の現在位置と左操作レバー26Lのアーム閉じ方向への操作量とに基づいて算出される。
 より具体的には、自律制御部30Cは、第1時点では、図8Aの例の場合と同様、矢印AR11で示す水平方向にバケット6を移動させるように制御量を算出する。しかしながら、自律制御部30Cは、第2時点では、図8Aの例の場合と異なり、矢印AR12で示す斜め上方向にバケット6を移動させるように制御量を算出する。これは、自律制御部30Cが、制御基準点Pa2に基づいて算出される制御量と、制御基準点Pb2に基づいて算出される制御量とを合成して最終的な制御量を算出することによる。なお、制御基準点Pb2に基づいて算出される制御量は、点線矢印AR12aで示す水平方向にバケット6を移動させる制御量であり、制御基準点Pa2に基づいて算出される制御量は、点線矢印AR12bで示す斜め上方向にバケット6を移動させる制御量である。図8Bの例では、点線矢印AR12aで示す方向と点線矢印AR12bで示す方向とが異なるため、自律制御部30Cは、点線矢印AR12aで示す方向にバケット6を移動させる制御量が小さくなるように、最終的な制御量を算出するように構成されている。但し、自律制御部30Cは、このような場合であっても、点線矢印AR12aで示す方向にバケット6を移動させる制御量が小さくならないように、最終的な制御量を算出するように構成されていてもよい。
 このように、図8Bの例では、自律制御部30Cは、制御基準点Pa及び制御基準点Pbのそれぞれに基づいて継続的に且つ個別に制御量を算出した上で、それら2つの制御量を合成して最終的な制御量を導き出す。そのため、自律制御部30Cは、図8Aの例に比べ、目標面TSに最も近い制御基準点以外の制御基準点に基づいて算出される制御量による影響を比較的早期に取り込むことができる。そのため、自律制御部30Cは、バケット6の爪先の位置の変化を、目標面TSの変化に追従させることができる。厳密には、自律制御部30Cは、目標面TSの変化に先だってバケット6の爪先の位置を変化させることができる。その結果、自律制御部30Cは、第3時点の直後に、バケット6の爪先が目標面TSに食い込んでしまうのを防止できる。
 次に、図9を参照し、バケット6における制御基準点の別の設定例について説明する。図9は、バケット6の背面斜視図である。自律制御部30Cは、上述のように制御基準点Pa及び制御基準点Pbのそれぞれに基づいて制御量を算出する代わりに、図9に示すような4つの制御基準点のそれぞれに基づいて制御量を算出するように構成されていてもよい。
 4つ制御基準点は、制御基準点PaL、PaR、PbL及びPbRを含む。制御基準点PaLは、バケット6の爪先の左側の端部に設定されている。制御基準点PaRは、バケット6の爪先の右側の端部に設定されている。制御基準点PbLは、バケット6の背面の左側の端部に設定されている。制御基準点PbRは、バケット6の背面の右側の端部に設定されている。
 この場合、自律制御部30Cは、例えば、4つの制御基準点のそれぞれの現在位置又は予測位置に基づいて導き出した制御量を合成して得られる合成制御量に基づいて掘削アタッチメントATを自律的に動作させるように構成されていてもよい。また、自律制御部30Cは、3つ又は5つ以上の制御基準点のそれぞれの現在位置又は予測位置に基づいて導き出した制御量を合成して得られる合成制御量に基づいて掘削アタッチメントATを自律的に動作させるように構成されていてもよい。例えば、制御基準点は、制御基準点PaL、PaR、PbL及びPbRと、バケット6の背面の中央の端部に設定された制御基準点と、バケット6の爪先の中央の端部に設定された制御基準点とを含んでいてもよい。
 また、自律制御部30Cは、ショベル100に関する情報又は目標面TSに関する情報等に基づき、制御量の算出のために利用する制御基準点の数を動的に決定してもよい。すなわち、自律制御部30Cは、複数の制御基準点のうちの何れの制御基準点を利用するかを動的に決定してもよい。例えば、自律制御部30Cは、ショベル100が傾斜地に位置すると判定した場合、4つの制御基準点PaL、PaR、PbL、及びPbRのそれぞれに基づいて制御量を算出し、ショベル100が平坦地に位置すると判定した場合、2つの制御基準点PaL及びPbLのそれぞれに基づいて制御量を算出するように構成されていてもよい。この場合、自律制御部30Cは、機体傾斜センサS4の出力に基づいてショベル100が傾斜地に位置するか平坦地に位置するかを判定してもよい。
 更に、自律制御部30Cは、旋回動作中において、複数の制御基準点のうちの何れの制御基準点を利用するかを動的に決定してもよい。例えば、自律制御部30Cは、旋回動作中であると判定した場合、4つの制御基準点PaL、PaR、PbL、及びPbRのそれぞれに基づいて制御量を算出してもよい。或いは、自律制御部30Cは、旋回停止中であると判定した場合、2つの制御基準点PaL及びPbLのそれぞれに基づいて制御量を算出するように構成されていてもよい。この場合、自律制御部30Cは、左操作レバー26Lの左右方向(旋回方向)におけるレバー操作量、制御弁173のパイロットポートに作用するパイロット圧、旋回油圧モータ2Aにおける作動油の圧力、及び、旋回角速度センサS5の検出値等の少なくとも1つに基づいて旋回動作中であるか旋回停止中であるかを判定してもよい。
 この構成により、自律制御部30Cは、例えば、ショベル100が法面に正対していない状態で、マシンコントロール機能を利用した法面仕上げ作業が行われる際に、バケット6の爪先が法面に食い込んでしまうのをより確実に防止できる。
 次に、図10を参照し、図9に示された4つの制御基準点PaL、PaR、PbL、及びPbRが利用される場合の効果について説明する。図10は、ショベル100の正面図である。
 図10に示す例では、右クローラ1CRは水平面の上に位置し、左クローラ1CLが水平面上にある石STの上に位置している。そのため、ショベル100は、右側が低くなるように傾いている。そして、操作者は、左旋回によってバケット6の爪先を目標面TSに沿って移動させようとしている。目標面TSは、水平部分HSと傾斜部分SLとを有し、左に向かって上り勾配となっている。
 この場合、自律制御部30Cは、水平部分HSと接している制御基準点PaRのみに基づいて制御量を算出すると、左操作レバー26Lが左旋回方向に操作されてバケット6が左方に移動したときに制御基準点PaLが傾斜部分SLと接触し、目標面TSを損傷してしまう。図10において破線で示されるバケット6Aは、バケット6の爪先の左側の端部が目標面TSの傾斜部分SLに食い込んだときのバケット6の状態を表している。
 そこで、自律制御部30Cは、例えば、機体傾斜センサS4の出力に基づき、右側が低くなるようにショベル100が傾いていると判定した場合には、4つの制御基準点PaL、PaR、PbL、及びPbRのそれぞれに基づいて制御量を算出する。
 或いは、自律制御部30Cは、例えば、操作圧センサ29LBの出力に基づき、旋回操作が行われていると判定した場合には、4つの制御基準点PaL、PaR、PbL、及びPbRのそれぞれに基づいて制御量を算出する。この場合、自律制御部30Cは、ショベル100が傾いているか否かにかかわらず、4つの制御基準点PaL、PaR、PbL、及びPbRのそれぞれに基づいて制御量を算出してもよい。
 或いは、自律制御部30Cは、操作圧センサ29LBの出力に基づき、左旋回操作が行われていると判定した場合には、制御基準点PaL及びPbLの少なくとも一方に基づいて制御量を算出してもよい。制御基準点PaL及びPbLは、旋回方向の先頭に位置しているためである。同様に、自律制御部30Cは、操作圧センサ29LBの出力に基づき、右旋回操作が行われていると判定した場合には、制御基準点PaR及びPbRの少なくとも一方に基づいて制御量を算出してもよい。制御基準点PaR及びPbRは、旋回方向の先頭に位置しているためである。
 なお、自律制御部30Cは、バケット6の背面を目標面TSに接触させない場合には、2つの4つの制御基準点PaL及びPaRのそれぞれに基づいて制御量を算出してもよい。
 この構成により、自律制御部30Cは、バケット6が左方に移動した場合であっても、制御基準点PaL(バケット6の爪先の左側の端部)が目標面TSの傾斜部分SLに食い込んでしまうのを防止できる。図10において一点鎖線で示されるバケット6Bは、バケット6の爪先の左側の端部が目標面TSの傾斜部分SLに食い込まないように僅かに上方に持ち上げられたときのバケット6の状態を表している。
 次に、図11を参照し、チルトバケット6Tにおける制御基準点の設定例について説明する。図11は、チルトバケット6Tをキャビン10から見たときのチルトバケット6Tの斜視図である。自律制御部30Cは、図9の場合と同様に、4つの制御基準点のそれぞれに基づいて制御量を算出するように構成されていてもよい。
 4つ制御基準点は、制御基準点PaL、PaR、PbL及びPbRを含む。制御基準点PaLは、チルトバケット6Tの爪先の左側の端部に設定されている。制御基準点PaRは、チルトバケット6Tの爪先の右側の端部に設定されている。制御基準点PbLは、チルトバケット6Tの背面の左側の端部に設定されている。制御基準点PbRは、チルトバケット6Tの背面の右側の端部に設定されている。
 図11に示す例では、コントローラ30は、左右一対のチルトシリンダTCのそれぞれを別々に伸縮させることによってチルトバケット6Tをチルト軸AX回りに傾けることができる。なお、チルトシリンダTCは、チルト軸AXの左側に1つだけ取り付けられていてもよく、チルト軸AXの右側に1つだけ取り付けられていてもよい。
 次に、図12を参照し、図11に示された4つの制御基準点PaL、PaR、PbL、及びPbRが利用される場合の効果について説明する。図12は、ショベル100の正面図であり、図10に対応している。
 図12に示す例では、図10の場合と同様に、右クローラ1CRは水平面の上に位置し、左クローラ1CLが水平面上にある石STの上に位置している。そのため、ショベル100は、右側が低くなるように傾いている。そして、操作者は、左旋回によってチルトバケット6Tの背面を目標面TSに沿って移動させようとしている。目標面TSは、水平部分HSと傾斜部分SLとを有し、左に向かって上り勾配となっている。
 この場合、自律制御部30Cは、水平部分HSと接している制御基準点PaRのみに基づいて制御量を算出すると、左操作レバー26Lが左旋回方向に操作されてチルトバケット6Tが左方に移動したときに制御基準点PaLが傾斜部分SLと接触し、目標面TSを損傷してしまう。図12において破線で示されるチルトバケット6TAは、チルトバケット6Tの爪先の左側の端部が目標面TSの傾斜部分SLに食い込んだときのチルトバケット6Tの状態を表している。
 そこで、自律制御部30Cは、例えば、機体傾斜センサS4の出力に基づき、右側が低くなるようにショベル100が傾いていると判定した場合には、チルトバケット6Tの爪先の左側の端部と右側の端部の双方が目標面TSと接触するように、チルト軸AX回りにチルトバケット6Tを傾けるようにする。ここでは、自律制御部30Cは、チルトバケット6Tの背面が目標面TSの水平部分HSと平行になるように、チルト軸AX回りにチルトバケット6Tを傾けるようにする。
 その上で、自律制御部30Cは、4つの制御基準点PaL、PaR、PbL、及びPbRのそれぞれに基づいて制御量を算出する。
 或いは、自律制御部30Cは、例えば、操作圧センサ29LBの出力に基づき、旋回操作が行われていると判定した場合には、4つの制御基準点PaL、PaR、PbL、及びPbRのそれぞれに基づいて制御量を算出する。この場合、自律制御部30Cは、ショベル100が傾いているか否かにかかわらず、4つの制御基準点PaL、PaR、PbL、及びPbRのそれぞれに基づいて制御量を算出してもよい。
 或いは、自律制御部30Cは、操作圧センサ29LBの出力に基づき、左旋回操作が行われていると判定した場合には、制御基準点PaL及びPbLの少なくとも一方に基づいて制御量を算出してもよい。制御基準点PaL及びPbLは、旋回方向の先頭に位置しているためである。同様に、自律制御部30Cは、操作圧センサ29LBの出力に基づき、右旋回操作が行われていると判定した場合には、制御基準点PaR及びPbRの少なくとも一方に基づいて制御量を算出してもよい。制御基準点PaR及びPbRは、旋回方向の先頭に位置しているためである。
 なお、自律制御部30Cは、チルトバケット6Tの背面を目標面TSに接触させない場合には、2つの制御基準点PaL及びPaRのそれぞれに基づいて制御量を算出してもよい。すなわち、自律制御部30Cは、残りの2つの制御基準点PbL及びPbRに基づかずに制御量を算出してもよい。
 この構成により、自律制御部30Cは、チルトバケット6Tが左方に移動した場合であっても、制御基準点PaL(チルトバケット6Tの爪先の左側の端部)が目標面TSの傾斜部分SLに食い込んでしまうのを防止できる。図12において一点鎖線で示されるチルトバケット6TBは、チルトバケット6Tの爪先の右側の端部が目標面TSの水平部分HSと一致し、且つ、チルトバケット6Tの爪先の左側の端部が目標面TSの傾斜部分SLと一致するようにチルト軸AX回りに傾けられたときのチルトバケット6Tの状態を表している。
 次に、図13を参照して、施工システムSYSについて説明する。図13は、施工システムSYSの一例を示す概略図である。図13に示すように、施工システムSYSは、ショベル100と、支援装置200と、管理装置300とを含む。施工システムSYSは、1台又は複数台のショベル100による施工を支援できるように構成されている。
 ショベル100が取得する情報は、施工システムSYSを通じ、管理者及び他のショベルの操作者等と共有されてもよい。施工システムSYSを構成するショベル100、支援装置200、及び管理装置300のそれぞれは、1台であってもよく、複数台であってもよい。図13に示す例では、施工システムSYSは、1台のショベル100と、1台の支援装置200と、1台の管理装置300とを含む。
 支援装置200は、典型的には携帯端末装置であり、例えば、施工現場にいる作業者等が携帯するラップトップ型のコンピュータ端末、タブレット端末、或いはスマートフォン等である。支援装置200は、ショベル100の操作者が携帯する携帯端末であってもよい。支援装置200は、固定端末装置であってもよい。
 管理装置300は、典型的には固定端末装置であり、例えば、施工現場外の管理センタ等に設置されるサーバコンピュータ(いわゆるクラウドサーバ)である。また、管理装置300は、例えば、施工現場に設定されるエッジサーバであってもよい。また、管理装置300は、可搬性の端末装置(例えば、ラップトップ型のコンピュータ端末、タブレット端末、或いはスマートフォン等の携帯端末)であってもよい。
 支援装置200及び管理装置300の少なくとも一方は、モニタと遠隔操作用の操作装置とを備えていてもよい。この場合、支援装置200や管理装置300を利用する操作者は、遠隔操作用の操作装置を用いつつ、ショベル100を操作してもよい。遠隔操作用の操作装置は、例えば、近距離無線通信網、携帯電話通信網、又は衛星通信網等の無線通信網を通じ、ショベル100に搭載されているコントローラ30に通信可能に接続される。
 また、キャビン10内に設置された表示装置D1に表示される各種情報画像(例えば、ショベル100の周囲の様子を表す画像情報や各種の設定画面等)が、支援装置200及び管理装置300の少なくとも一方に接続された表示装置で表示されてもよい。ショベル100の周囲の様子を表す画像情報は、撮像装置(例えば空間認識装置70としてのカメラ)の撮像画像に基づき生成されてよい。これにより、支援装置200を利用する作業者、或いは、管理装置300を利用する管理者等は、ショベル100の周囲の様子を確認しながら、ショベル100の遠隔操作を行ったり、ショベル100に関する各種の設定を行ったりすることができる。
 例えば、施工システムSYSにおいて、ショベル100のコントローラ30は、スイッチNSが押されたときの時刻及び場所、ショベル100を自律的に動作させる際に利用された目標軌道、並びに、自律動作の際に所定部位が実際に辿った軌跡等の少なくとも1つに関する情報を支援装置200及び管理装置300の少なくとも一方に送信してもよい。その際、コントローラ30は、撮像装置の撮像画像を支援装置200及び管理装置300の少なくとも一方に送信してもよい。撮像画像は、自律動作中に撮像された複数の画像であってもよい。更に、コントローラ30は、自律動作中におけるショベル100の動作内容に関するデータ、ショベル100の姿勢に関するデータ、及び掘削アタッチメントの姿勢に関するデータ等の少なくとも1つに関する情報を支援装置200及び管理装置300の少なくとも一方に送信してもよい。これにより、支援装置200を利用する作業者、又は、管理装置300を利用する管理者は、自律動作中のショベル100に関する情報を入手することができる。
 このようにして、支援装置200又は管理装置300において、ショベル100の監視範囲外における監視対象の種類及び位置が時系列的に記憶部に記憶される。ここで、支援装置200又は管理装置300において記憶される対象物(情報)は、ショベル100の監視範囲外であり、他のショベルの監視範囲内における監視対象の種類及び位置であってもよい。
 このように、施工システムSYSは、ショベル100に関する情報を管理者及び他のショベルの操作者等と共有できるようにする。
 なお、図13に示すように、ショベル100に搭載されている通信装置は、無線通信を介し、遠隔操作室RCに設置された通信装置T2との間で情報を送受信するように構成されていてもよい。図13に示す例では、ショベル100に搭載されている通信装置と通信装置T2とは、第5世代移動通信回線(5G回線)、LTE回線、又は衛星回線等を介して情報を送受信するように構成されている。
 遠隔操作室RCには、遠隔コントローラ30R、音出力装置A2、室内撮像装置C2、表示装置RD、及び通信装置T2等が設置されている。また、遠隔操作室RCには、ショベル100を遠隔操作する操作者OPが座る運転席DSが設置されている。
 遠隔コントローラ30Rは、各種演算を実行する演算装置である。本実施形態では、遠隔コントローラ30Rは、コントローラ30と同様、CPU及びメモリを含むマイクロコンピュータで構成されている。そして、遠隔コントローラ30Rの各種機能は、CPUがメモリに格納されたプログラムを実行することで実現される。
 音出力装置A2は、音を出力するように構成されている。本実施形態では、音出力装置A2は、スピーカであり、ショベル100に取り付けられている集音装置(図示せず。)が集めた音を再生するように構成されている。
 室内撮像装置C2は、遠隔操作室RC内を撮像するように構成されている。本実施形態では、室内撮像装置C2は、遠隔操作室RCの内部に設置されたカメラであり、運転席DSに着座する操作者OPを撮像するように構成されている。
 通信装置T2は、ショベル100に取り付けられた通信装置との無線通信を制御するように構成されている。
 本実施形態では、運転席DSは、通常のショベルのキャビン内に設置される運転席と同様の構造を有する。具体的には、運転席DSの左側には左コンソールボックスが配置され、運転席DSの右側には右コンソールボックスが配置されている。そして、左コンソールボックスの上面前端には左操作レバーが配置され、右コンソールボックスの上面前端には右操作レバーが配置されている。また、運転席DSの前方には、走行レバー及び走行ペダルが配置されている。更に、右コンソールボックスの上面中央部には、ダイヤル75が配置されている。左操作レバー、右操作レバー、走行レバー、走行ペダル、及びダイヤル75のそれぞれは、操作装置26Aを構成している。
 ダイヤル75は、エンジン11の回転数を調整するためのダイヤルであり、例えばエンジン回転数を4段階で切り換えできるように構成されている。
 具体的には、ダイヤル75はSPモード、Hモード、Aモード、及びアイドリングモードの4段階でエンジン回転数の切り換えができるように構成されている。ダイヤル75は、エンジン回転数の設定に関するデータをコントローラ30に送信する。
 SPモードは、操作者OPが作業量を優先させたい場合に選択される回転数モードであり、最も高いエンジン回転数を利用する。Hモードは、操作者OPが作業量と燃費を両立させたい場合に選択される回転数モードであり、二番目に高いエンジン回転数を利用する。Aモードは、操作者OPが燃費を優先させながら低騒音でショベルを稼働させたい場合に選択される回転数モードであり、三番目に高いエンジン回転数を利用する。アイドリングモードは、操作者OPがエンジンをアイドリング状態にしたい場合に選択される回転数モードであり、最も低いエンジン回転数を利用する。そして、エンジン11は、ダイヤル75を介して選択された回転数モードのエンジン回転数で一定に回転数制御される。
 操作装置26Aには、操作装置26Aの操作内容を検出するための操作センサ29Aが設置されている。操作センサ29Aは、例えば、操作レバーの傾斜角度を検出する傾斜センサ、又は、操作レバーの揺動軸回りの揺動角度を検出する角度センサ等である。操作センサ29Aは、圧力センサ、電流センサ、電圧センサ、又は距離センサ等の他のセンサで構成されていてもよい。操作センサ29Aは、検出した操作装置26Aの操作内容に関する情報を遠隔コントローラ30Rに対して出力する。遠隔コントローラ30Rは、受信した情報に基づいて操作信号を生成し、生成した操作信号をショベル100に向けて送信する。操作センサ29Aは、操作信号を生成するように構成されていてもよい。この場合、操作センサ29Aは、遠隔コントローラ30Rを経由せずに、操作信号を通信装置T2に出力してもよい。
 表示装置RDは、ショベル100の周囲の状況に関する情報を表示するように構成されている。本実施形態では、表示装置RDは、縦3段、横3列の9つのモニタで構成されるマルチディスプレイであり、ショベル100の前方、左方、及び右方の空間の様子を表示できるように構成されている。各モニタは、液晶モニタ又は有機ELモニタ等である。但し、表示装置RDは、1又は複数の曲面モニタで構成されていてもよく、プロジェクタで構成されていてもよい。
 表示装置RDは、操作者OPが着用可能な表示装置であってもよい。例えば、表示装置RDは、ヘッドマウントディスプレイであり、無線通信によって、遠隔コントローラ30Rとの間で情報を送受信できるように構成されていてもよい。ヘッドマウントディスプレイは、遠隔コントローラに有線接続されていてもよい。ヘッドマウントディスプレイは、透過型ヘッドマウントディスプレイであってもよく、非透過型ヘッドマウントディスプレイであってもよい。ヘッドマウントディスプレイは、片眼型ヘッドマウントディスプレイであってもよく、両眼型ヘッドマウントディスプレイであってもよい。
 表示装置RDは、遠隔操作室RCにいる操作者OPがショベル100の周囲を視認できるようにする画像を表示するように構成されている。すなわち、表示装置RDは、操作者が遠隔操作室RCにいるにもかかわらず、あたかもショベル100のキャビン10内にいるかのように、ショベル100の周囲の状況を確認することができるように、画像を表示する。
 次に、図14を参照し、施工システムSYSの別の構成例について説明する。図14に示す例では、施工システムSYSは、ショベル100による施工を支援するように構成されている。具体的には、施工システムSYSは、ショベル100と通信を行う通信装置CD及び制御装置CTRを有する。制御装置CTRは、ショベル100のアクチュエータを自律的に動作させる第1制御部、及び、アクチュエータを自律的に動作させる第2制御部を含むように構成されている。そして、制御装置CTRは、第1制御部と第2制御部とを含む複数の制御部で競合が生じていると判定した場合、第1制御部及び第2制御部を含む複数の制御部のうちの1つを優先的に動作させる優先制御部として選択するように構成されている。なお、第1制御部及び第2制御部は、説明の便宜のために区別されて表されているが、物理的に区別されている必要はなく、全体的に或いは部分的に共通のソフトウェアコンポーネント若しくはハードウェアコンポーネントで構成されていてもよい。
 上述のように、本発明の実施形態に係るショベル100は、下部走行体1と、下部走行体1に旋回可能に搭載された上部旋回体3と、上部旋回体3に取り付けられたアタッチメントと、アタッチメントを構成するエンドアタッチメントと、アタッチメントを動かすアクチュエータと、アクチュエータを自律的に動作させる制御装置としてのコントローラ30と、有している。そして、コントローラ30は、エンドアタッチメントにおける複数の所定点(制御基準点)のそれぞれに関してアクチュエータの制御量を算出し、算出した各制御量に基づいてアクチュエータを自律的に動作させるように構成されている。この構成により、ショベル100は、マシンコントロール機能を利用した作業が行われる際に、エンドアタッチメントによる目標面TSの損傷をより確実に防止できる。
 エンドアタッチメントは、典型的には、バケット6である。この場合、バケット6における複数の制御基準点は、バケット6の爪先の一点であってもよく、バケット6の背面上の一点であってもよい。或いは、バケット6における複数の制御基準点は、図9に示すように、バケット6の爪先の左端点及び右端点と、バケット6の背面の左後端点及び右後端点とを含んでいてもよい。この構成により、ショベル100は、マシンコントロール機能を利用した作業が行われる際に、バケット6による目標面TSの損傷をより確実に防止できる。
 コントローラ30は、例えば、各制御量を合成して合成制御量を算出し、その合成制御量に基づいてアクチュエータを自律的に動作させるように構成されていてもよい。この構成により、コントローラ30は、目標面TSに最も近い制御基準点以外の制御基準点に基づいて算出される制御量を合成制御量に適切に反映させることができ、バケット6による目標面TSの損傷をより確実に防止できる。
 コントローラ30は、複数の制御基準点のそれぞれと目標面との距離の変化に基づいて複数の制御基準点のそれぞれに関するアクチュエータの制御量を算出するように構成されていてもよい。例えば、コントローラ30は、各制御量を合成して合成制御量を算出する際に、複数の制御基準点のうち、距離の変化が最も大きい制御基準点に関する制御量の影響が最も大きくなるように構成されていてもよい。この構成により、コントローラ30は、複数の制御基準点のうち、目標面TSに誤って食い込む可能性が最も高い制御基準点に基づいて算出される制御量を合成制御量に優先的に反映させることができ、バケット6による目標面TSの損傷をより確実に防止できる。
 コントローラ30は、複数の制御基準点のそれぞれの所定時間後の位置を予測し、その所定時間後の位置に基づいて複数の制御基準点のそれぞれに関するアクチュエータの制御量を算出するように構成されていてもよい。この構成により、コントローラ30は、各制御基準点が目標面TSに食い込むおそれがあるか否かをより早期に判断でき、バケット6による目標面TSの損傷をより確実に防止できる。
 以上、本発明の好ましい実施形態について詳説した。しかしながら、本発明は、上述した実施形態に制限されることはない。上述した実施形態は、本発明の範囲を逸脱することなしに、種々の変形又は置換等が適用され得る。また、別々に説明された特徴は、技術的な矛盾が生じない限り、組み合わせが可能である。
 例えば、上述の実施形態では、制御基準点の予測位置は、制御基準点の現在位置から予測される制御基準点の所定時間後の位置とされ、所定時間は、例えば、1又は複数回の制御周期に相当する時間とされている。すなわち、所定時間は、数十ミリ秒から数百ミリ秒の範囲の時間とされている。しかしながら、所定時間は、1秒以上の時間であってもよい。また、自律制御部30Cは、オブザーバ(状態観測器)を用いたモデル予測制御を利用してショベル100を自律的に動作させるように構成されていてもよい。
 本願は、2019年3月28日に出願した日本国特許出願2019-065022号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。
 1・・・下部走行体 1C・・・クローラ 1CL・・・左クローラ 1CR・・・右クローラ 2・・・旋回機構 2A・・・旋回油圧モータ 2M・・・走行油圧モータ 2ML・・・左走行油圧モータ 2MR・・・右走行油圧モータ 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 13・・・レギュレータ 14・・・メインポンプ 15・・・パイロットポンプ 17・・・コントロールバルブユニット 18・・・絞り 19・・・制御圧センサ 26、26A・・・操作装置 26D・・・走行レバー 26DL・・・左走行レバー 26DR・・・右走行レバー 26L・・・左操作レバー 26R・・・右操作レバー 28・・・吐出圧センサ 29、29DL、29DR、29LA、29LB、29RA、29RB・・・操作圧センサ 29A・・・操作センサ 30・・・コントローラ 30A・・・位置算出部 30B・・・軌道取得部 30C・・・自律制御部 30D・・・目標値算出部 30D1・・・第1目標値算出部 30D2・・・第2目標値算出部 30E・・・合成部 30E1・・・第1合成部 30E2・・・第2合成部 30E3・・・第3合成部 30F・・・演算部 30F1・・・第1演算部 30F2・・・第2演算部 30F3・・・第3演算部 30R・・・遠隔コントローラ 31、31AL~31DL、31AR~31DR・・・比例弁 32、32AL~32DL、32AR~32DR・・・シャトル弁 33、33AL~33DL、33AR~33DR・・・比例弁 40・・・センターバイパス管路 42・・・パラレル管路 70・・・空間認識装置 70F・・・前方センサ 70B・・・後方センサ 70L・・・左方センサ 70R・・・右方センサ 71・・・向き検出装置 72・・・情報入力装置 73・・・測位装置 75・・・ダイヤル 100・・・ショベル 171~176・・・制御弁 200・・・支援装置 300・・・管理装置 A2・・・音出力装置 AT・・・掘削アタッチメント C2・・・室内撮像装置 CD・・・通信装置 CTR・・・制御装置 D1・・・表示装置 D2・・・音声出力装置 DS・・・運転席 NS・・・スイッチ OP・・・操作者 RC・・・遠隔操作室 RD・・・表示装置 S1・・・ブーム角度センサ S2・・・アーム角度センサ S3・・・バケット角度センサ S4・・・機体傾斜センサ S5・・・旋回角速度センサ SYS・・・施工システム T2・・・通信装置

Claims (12)

  1.  下部走行体と、
     前記下部走行体に旋回可能に搭載された上部旋回体と、
     前記上部旋回体に取り付けられたアタッチメントと、
     前記アタッチメントを構成するエンドアタッチメントと、
     アクチュエータと、
     前記アクチュエータを自律的に動作させる制御装置と、有し、
     前記制御装置は、前記エンドアタッチメントにおける複数の所定点のそれぞれに関して前記アクチュエータの制御量を算出し、算出した各制御量に基づいて前記アクチュエータを自律的に動作させる、
     ショベル。
  2.  前記エンドアタッチメントはバケットであり、
     複数の前記所定点は、前記バケットの爪先の左端点及び右端点と、前記バケットの背面の左後端点及び右後端点とを含む、
     請求項1に記載のショベル。
  3.  前記制御装置は、各制御量を合成して合成制御量を算出し、該合成制御量に基づいて前記アクチュエータを自律的に動作させる、
     請求項1に記載のショベル。
  4.  前記制御装置は、複数の前記所定点のそれぞれと予め設定された目標面との距離の変化に基づいて複数の前記所定点のそれぞれに関する前記アクチュエータの制御量を算出する、
     請求項1に記載のショベル。
  5.  前記制御装置は、複数の前記所定点のそれぞれの所定時間後の位置を予測し、該所定時間後の位置に基づいて複数の前記所定点のそれぞれに関する前記アクチュエータの制御量を算出する、
     請求項1に記載のショベル。
  6.  前記制御装置は、所定の条件に基づいて各制御量から選択された少なくとも一つの制御量を用いて前記アクチュエータを自律的に動作させる、
     請求項1に記載のショベル。
  7.  下部走行体と、前記下部走行体に旋回可能に搭載された上部旋回体と、前記上部旋回体に取り付けられたアタッチメントと、前記アタッチメントを構成するエンドアタッチメントと、アクチュエータとを備えるショベルによる施工を支援する施工システムであって、
     ショベルと通信を行う通信装置と、
     制御装置と、を有し、
     前記制御装置は、前記エンドアタッチメントにおける複数の所定点のそれぞれに関して前記アクチュエータの制御量を算出し、算出した各制御量に基づいて前記アクチュエータを自律的に動作させる指令を、前記通信装置を介して、ショベルへ出力する、
     施工システム。
  8.  前記エンドアタッチメントはバケットであり、
     複数の前記所定点は、前記バケットの爪先の左端点及び右端点と、前記バケットの背面の左後端点及び右後端点とを含む、
     請求項7に記載の施工システム。
  9.  前記制御装置は、各制御量を合成して合成制御量を算出し、該合成制御量に基づいて前記アクチュエータを自律的に動作させる、
     請求項7に記載の施工システム。
  10.  前記制御装置は、複数の前記所定点のそれぞれと予め設定された目標面との距離の変化に基づいて複数の前記所定点のそれぞれに関する前記アクチュエータの制御量を算出する、
     請求項7に記載の施工システム。
  11.  前記制御装置は、複数の前記所定点のそれぞれの所定時間後の位置を予測し、該所定時間後の位置に基づいて複数の前記所定点のそれぞれに関する前記アクチュエータの制御量を算出する、
     請求項7に記載の施工システム。
  12.  前記制御装置は、所定の条件に基づいて各制御量から選択された少なくとも一つの制御量を用いて前記アクチュエータを自律的に動作させる、
     請求項7に記載の施工システム。
PCT/JP2020/014231 2019-03-28 2020-03-27 ショベル及び施工システム WO2020196877A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20778486.9A EP3951077B1 (en) 2019-03-28 2020-03-27 Excavator and construction system
CN202311678120.2A CN117468520A (zh) 2019-03-28 2020-03-27 挖土机及施工***
JP2021509670A JP7367001B2 (ja) 2019-03-28 2020-03-27 ショベル及び施工システム
KR1020217032667A KR20210140742A (ko) 2019-03-28 2020-03-27 쇼벨 및 시공시스템
CN202080025422.8A CN113631777A (zh) 2019-03-28 2020-03-27 挖土机及施工***
US17/448,948 US20220010519A1 (en) 2019-03-28 2021-09-27 Shovel and construction system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019065022 2019-03-28
JP2019-065022 2019-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/448,948 Continuation US20220010519A1 (en) 2019-03-28 2021-09-27 Shovel and construction system

Publications (1)

Publication Number Publication Date
WO2020196877A1 true WO2020196877A1 (ja) 2020-10-01

Family

ID=72608470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014231 WO2020196877A1 (ja) 2019-03-28 2020-03-27 ショベル及び施工システム

Country Status (6)

Country Link
US (1) US20220010519A1 (ja)
EP (1) EP3951077B1 (ja)
JP (1) JP7367001B2 (ja)
KR (1) KR20210140742A (ja)
CN (2) CN117468520A (ja)
WO (1) WO2020196877A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7155516B2 (ja) * 2017-12-20 2022-10-19 コベルコ建機株式会社 建設機械
EP3862491B1 (en) * 2018-10-03 2024-04-10 Sumitomo Heavy Industries, Ltd. Excavator
JP7255364B2 (ja) * 2019-05-31 2023-04-11 セイコーエプソン株式会社 移動体、センサーモジュール及びセンサーモジュールの較正方法
US11851844B2 (en) * 2020-01-21 2023-12-26 Caterpillar Inc. Implement travel prediction for a work machine
CN115262672A (zh) * 2022-08-30 2022-11-01 江苏徐工国重实验室科技有限公司 挖掘机和挖掘机的斜坡作业方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101664A (ja) 2012-11-19 2014-06-05 Komatsu Ltd 掘削機械の表示システム及び掘削機械
JP2018003388A (ja) * 2016-06-30 2018-01-11 日立建機株式会社 作業機械
JP2018172858A (ja) * 2017-03-31 2018-11-08 日立建機株式会社 作業機械
WO2019053833A1 (ja) * 2017-09-13 2019-03-21 日立建機株式会社 作業機械
JP2019065022A (ja) 2013-10-11 2019-04-25 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Trpa1調節因子として有用な置換複素環式スルホンアミド化合物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9834905B2 (en) * 2015-09-25 2017-12-05 Komatsu Ltd. Work machine control device, work machine, and work machine control method
KR102298318B1 (ko) 2016-03-30 2021-09-03 스미토모 겐키 가부시키가이샤 쇼벨 및 쇼벨의 표시장치
JP2017210729A (ja) 2016-05-23 2017-11-30 住友建機株式会社 ショベル
KR102550948B1 (ko) 2017-03-31 2023-07-03 스미토모 겐키 가부시키가이샤 쇼벨, 쇼벨의 표시장치 및 쇼벨에 있어서의 화상의 표시방법
EP3666979B1 (en) 2017-08-09 2022-12-21 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Display device for a shovel, corresponding shovel and display method
CN108797669B (zh) * 2018-06-20 2020-12-22 清华大学 一种自主3d挖掘施工机器人

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101664A (ja) 2012-11-19 2014-06-05 Komatsu Ltd 掘削機械の表示システム及び掘削機械
JP2019065022A (ja) 2013-10-11 2019-04-25 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Trpa1調節因子として有用な置換複素環式スルホンアミド化合物
JP2018003388A (ja) * 2016-06-30 2018-01-11 日立建機株式会社 作業機械
JP2018172858A (ja) * 2017-03-31 2018-11-08 日立建機株式会社 作業機械
WO2019053833A1 (ja) * 2017-09-13 2019-03-21 日立建機株式会社 作業機械

Also Published As

Publication number Publication date
JPWO2020196877A1 (ja) 2020-10-01
KR20210140742A (ko) 2021-11-23
CN117468520A (zh) 2024-01-30
US20220010519A1 (en) 2022-01-13
EP3951077B1 (en) 2024-07-10
JP7367001B2 (ja) 2023-10-23
CN113631777A (zh) 2021-11-09
EP3951077A4 (en) 2022-06-08
EP3951077A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2020196877A1 (ja) ショベル及び施工システム
KR102685684B1 (ko) 쇼벨, 쇼벨의 제어장치
KR102685681B1 (ko) 쇼벨 및 쇼벨의 관리시스템
WO2020196888A1 (ja) ショベル及び施工システム
JPWO2019124549A1 (ja) ショベル及びショベルの管理システム
US20210010239A1 (en) Work machine and information processing apparatus
JPWO2019181872A1 (ja) ショベル
JP7474192B2 (ja) ショベル
KR102671152B1 (ko) 쇼벨
WO2020203843A1 (ja) ショベル
JPWO2019189031A1 (ja) ショベル
WO2020101004A1 (ja) ショベル、ショベルの制御装置
JP2023184732A (ja) ショベル
WO2020203887A1 (ja) ショベル及びショベルの制御装置
WO2021066032A1 (ja) ショベル、ショベルの制御装置
WO2021241727A1 (ja) ショベル
JP2023151586A (ja) 建設機械の作業支援システム
JP2024092244A (ja) ショベル、ショベルの操作システム
JP2021188432A (ja) ショベル
JP2024001736A (ja) ショベル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509670

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217032667

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020778486

Country of ref document: EP

Effective date: 20211028