WO2020196631A1 - 被覆工具及びこれを備えた切削工具 - Google Patents

被覆工具及びこれを備えた切削工具 Download PDF

Info

Publication number
WO2020196631A1
WO2020196631A1 PCT/JP2020/013363 JP2020013363W WO2020196631A1 WO 2020196631 A1 WO2020196631 A1 WO 2020196631A1 JP 2020013363 W JP2020013363 W JP 2020013363W WO 2020196631 A1 WO2020196631 A1 WO 2020196631A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
coating layer
imax
tool according
coating
Prior art date
Application number
PCT/JP2020/013363
Other languages
English (en)
French (fr)
Inventor
剛 山▲崎▼
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US17/598,209 priority Critical patent/US20220176462A1/en
Priority to EP20777866.3A priority patent/EP3950189A4/en
Priority to JP2021509512A priority patent/JP7195410B2/ja
Priority to CN202080024377.4A priority patent/CN113631305B/zh
Publication of WO2020196631A1 publication Critical patent/WO2020196631A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23C2224/14Chromium aluminium nitride (CrAlN)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23C2224/24Titanium aluminium nitride (TiAlN)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape

Definitions

  • the present disclosure relates to a covering tool used in cutting and a cutting tool equipped with the covering tool.
  • a covering tool used for cutting such as turning and turning
  • a covering member for a cutting tool in which a coating is coated on the surface of a base material as described in Patent Document 1 is known.
  • the hard film covering the tool substrate is made of a cubic metal compound. Then, it is described that the wear resistance of the covering tool is enhanced by inclining the (111) surface and the (200) surface of the metal compound at predetermined angles with respect to the surface of the substrate.
  • the coating tool of the present disclosure includes a substrate and a coating layer located on the substrate.
  • the coating layer comprises at least one element selected from Group 4, 5, 6 elements, Al, Si, B, Y and Mn, and at least one selected from C, N and O.
  • the X-ray intensity distribution (111) on the ⁇ -axis of the positive electrode point diagram with respect to the (111) plane of the cubic crystal exists in a region where the maximum peak is 50 ° or more. When the intensity at the maximum peak is Imax, the peak width at 0.8 Imax of the maximum peak is 20 ° or more, and the intensity at 90 ° is 0.78 Imax or more.
  • the cutting tool of the present disclosure includes a holder extending from the first end toward the second end and having a pocket on the first end side, and the covering tool described above located in the pocket.
  • FIG. 1 is a perspective view showing an example of the covering tool of the present disclosure.
  • FIG. 2 is a cross-sectional view of the AA cross section of the covering tool shown in FIG.
  • FIG. 3A is an enlarged view of the region B1 shown in FIG.
  • FIG. 3B is an enlarged view of another form in the region B1 shown in FIG.
  • FIG. 4 is an example of the X-ray intensity distribution on the ⁇ -axis of the positive electrode point diagram with respect to the (111) plane of the cubic crystal in the coating layer of the coating tool of the present disclosure.
  • FIG. 5 is an example of the X-ray intensity distribution on the ⁇ -axis of the positive electrode point diagram with respect to the (111) plane of the cubic crystal in the coating layer of the coating tool of the comparative example.
  • FIG. 1 is a perspective view showing an example of the covering tool of the present disclosure.
  • FIG. 2 is a cross-sectional view of the AA cross section of the covering tool shown in FIG.
  • FIG. 3A
  • FIG. 6 is an example of the X-ray intensity distribution on the ⁇ -axis of the positive electrode point diagram with respect to the (111) plane of the cubic crystal in the coating layer of the coating tool of the comparative example.
  • FIG. 7 is an example of the X-ray intensity distribution on the ⁇ -axis of the positive electrode point diagram with respect to the (200) plane of the cubic crystal in the coating layer of the coating tool of the present disclosure.
  • FIG. 8 is a plan view showing an example of the cutting tool of the present disclosure.
  • the covering tool of the present disclosure will be described in detail with reference to the drawings.
  • each figure referred to below is for convenience of explanation, and only the main members necessary for explaining the embodiment are shown in a simplified manner. Accordingly, the coated tools of the present disclosure may include any component not shown in each of the referenced figures. Further, the dimensions of the members in each drawing do not faithfully represent the dimensions of the actual constituent members and the dimensional ratio of each member. These points are the same for the cutting tools described later.
  • the covering tool 1 of the present disclosure has a quadrangular plate shape, and has a quadrangular first surface 3 (upper surface in FIG. 1), a second surface 5 (side surface in FIG. 1), and a first surface 3 and a second surface 5. It has a cutting edge 7 located at least a part of the ridge line where the two intersect. Further, the covering tool 1 of the present embodiment further has a quadrangular third surface 8 (lower surface in FIG. 1).
  • the entire outer circumference of the first surface 3 may be a cutting edge 7, but the covering tool 1 is not limited to such a configuration.
  • it may have a cutting edge 7 on only one side of the first surface 3 of the quadrangle or partially.
  • the first surface 3 has at least a part of the rake surface region 3a, and the region of the first surface 3 along the cutting edge 7 may be the rake surface region 3a.
  • the second surface 5 may have a flank region 5a at least in a part thereof, and the region along the cutting edge 7 on the second surface 5 may be the flank region 5a. According to such a configuration, it may be said that the cutting edge 7 is located at the portion where the rake face region 3a and the flank region 5a intersect.
  • FIG. 1 the boundary between the rake face region 3a on the first surface 3 and the other regions is shown by a alternate long and short dash line. Further, the boundary between the flank region 5a on the second surface 5 and the other regions is indicated by a alternate long and short dash line. In FIG. 1, since all the ridge lines where the first surface 3 and the second surface 5 intersect are the cutting blades 7, the alternate long and short dash line indicating the boundary on the first surface 3 is annular.
  • the size of the covering tool 1 is not particularly limited, but for example, the length of one side of the first surface 3 may be 3 to 20 mm. Further, the height from the first surface 3 to the third surface 8 located on the opposite side of the first surface 3 may be about 5 to 20 mm.
  • the coating tool 1 of the present disclosure includes a square plate-shaped substrate 9 and a coating layer 11 that covers the surface of the substrate 9.
  • the coating layer 11 may cover the entire surface of the substrate 9, or may cover only a part of the surface.
  • the coating layer 11 covers only a part of the substrate 9, it can be said that the coating layer 11 is located at least a part on the substrate 9.
  • the thickness of the coating layer 11 may be, for example, about 0.1 to 10 ⁇ m.
  • the thickness of the coating layer 11 may be constant or may vary depending on the location.
  • the covering tool 1 of the present disclosure includes a covering layer 11 on the surface of the substrate 9.
  • the coating layer 11 is composed of at least one element selected from the elements of Groups 4, 5 and 6 of the periodic table, Al, Si, B, Y and Mn, and at least one selected from C, N and O.
  • the TiAlN crystal is a crystal in which Al is dissolved in the TiN crystal.
  • the covering tool 1 of the present disclosure improves the durability of the covering tool 1 by controlling the orientation of cubic crystals in the coating layer 11.
  • the cubic crystal contained in the coating layer 11 has a (111) plane.
  • the orientation of the cubic crystal can be evaluated by measuring the inclination angle of the (111) plane of the cubic crystal of the coating layer 11 with respect to the surface of the substrate 9 using an X-ray diffractometer.
  • the orientation of the (111) plane in the cubic crystal can be evaluated by the X-ray intensity distribution (111) in the positive electrode point diagram as shown in FIG.
  • the coating layer 11 in the coating tool 1 of the present disclosure has an X-ray intensity distribution (111) in the range of 0 ° to 90 ° on the ⁇ axis of the positive electrode point diagram with respect to the (111) plane of the cubic crystal. Exists in the region where the maximum peak is 50 ° or more.
  • the intensity at the maximum peak is Imax
  • the peak width at 0.8 Imax of the maximum peak is 20 ° or more.
  • the maximum peak in the X-ray intensity distribution (111) exists on the high angle side, and the intensity of 0.8 Imax or more exists in a wide range of 20 ° or more.
  • the covering tool 1 of the present disclosure has a strength of 0.78 Imax or more at 90 °.
  • the covering tool 1 of the present disclosure has high strength even at 90 °.
  • the covering tool 1 of the present disclosure is excellent in durability.
  • the coating film 11 may have a peak of 0.8 Imax (111) or more in a range of 25 ° or more. With such a configuration, the covering tool has excellent durability.
  • the X-ray intensity distribution (111) has a peak width of 15 ° or more at the maximum peak of 0.9 Imax. With such a configuration, the covering tool 1 is excellent in durability because a region having high X-ray intensity exists widely on the high angle side.
  • the X-ray intensity distribution (111) may have a peak intensity at 90 ° of 0.9 Imax or more. With such a configuration, the coating tool 1 is excellent in durability because the orientation of the (111) plane of the cubic crystal is high even at a high angle of 90 °.
  • the X-ray intensity distribution (111) may have a peak intensity of less than 0.6 Imax in a region of 15 ° or less. With such a configuration, the orientation of the (111) plane on the low angle side is low, and the orientation strength of the (111) plane on the relatively high angle side is high, so that the covering tool 1 is excellent in durability.
  • the X-ray intensity distribution in the range of 0 to 90 ° on the ⁇ axis of the positive electrode point diagram with respect to the (200) plane of the cubic crystal has the first peak and this first peak.
  • the coating layer 11 has a first peak between 15 ° and 30 ° in the X-ray intensity distribution of the ⁇ -axis of the positive electrode point diagram with respect to the (200) plane of the cubic crystal. , May have a second peak between 60 ° and 75 °. With such a configuration, the hardness and peeling load of the coating layer 11 increase.
  • the characteristics of the covering tool 1 can be evaluated by, for example, hardness or a peeling load measured by a scratch test.
  • the durability of the covering tool 1 is affected by the hardness and the peeling load. Even if only one of them is high, the covering tool 1 does not have high durability.
  • the covering tool 1 of the present disclosure has a good balance between hardness and peeling load, and is excellent in durability.
  • the coating layer 11 may include an AlTiN layer 13 containing AlTiN crystals as cubic crystals.
  • the AlTiN layer 13 may have a higher aluminum content than the titanium content. Further, the AlTiN layer 13 may have a titanium content higher than that of aluminum. Further, the AlTiN layer 13 may further contain chromium in addition to aluminum and titanium. However, the total content of aluminum and titanium is higher than that of the chromium component.
  • the chromium content in the AlTiN layer 13 may be, for example, 0.1 to 20%.
  • the "content ratio" in the above indicates the content ratio in atomic ratio.
  • the coating layer 11 may have an AlCrN layer containing an AlCrN crystal as a cubic crystal.
  • the covering tool 1 of the present disclosure may have an AlCrN layer 15 containing an AlCrN crystal in addition to the AlTiN layer 13. Further, a plurality of AlTiN layer 13 and AlCrN layer 15 may be laminated. The order of lamination may be reversed, and a plurality of AlTiN layers 13 and AlCrN layers 15 may be laminated on each other.
  • the AlCrN layer 15 may be composed of only aluminum and chromium, but contains metal components such as Si, Nb, Hf, V, Ta, Mo, Zr, Ti and W in addition to aluminum and chromium. You may. However, in the AlCrN layer 15, the total content ratios of aluminum and chromium are higher than those of the above metal components.
  • the content ratio of aluminum may be, for example, 20 to 60%.
  • the chromium content may be, for example, 40 to 80%.
  • the content ratio of aluminum in each AlCrN layer 15 may be higher than the content ratio of chromium, and in each of the plurality of AlCrN layers 15, of chromium.
  • the content ratio may be higher than the content ratio of aluminum.
  • the AlCrN layer 15 may be composed of only metal components containing aluminum and chromium, but aluminum and chromium may be nitrides, carbides or carbonitrides containing only or both of them.
  • composition of the AlTiN layer 13 and the AlCrN layer 15 can be measured by, for example, energy dispersive X-ray spectroscopic analysis (EDS) or X-ray photoelectron spectroscopic analysis (XPS).
  • EDS energy dispersive X-ray spectroscopic analysis
  • XPS X-ray photoelectron spectroscopic analysis
  • the number of layers of the AlTiN layer 13 and the AlCrN layer 15 is not limited to a specific value.
  • the number of AlTiN layers 13 and AlCrN layers 15 may be, for example, 2 to 500.
  • the coating layer 11 has the AlTiN layer 13
  • the fracture resistance becomes high.
  • the coating layer 11 has the AlCrN layer 15
  • the abrasion resistance becomes high.
  • the coating layer 11 is configured such that the plurality of AlTiN layers 13 and the plurality of AlCrN layers 15 are alternately located, the strength of the coating layer 11 as a whole is increased.
  • the plurality of AlTiN layers 13 and the plurality of AlCrN layers 15 are thicker than each of the plurality of AlTiN layers 13 and the plurality of AlCrN layers 15 and the number of the plurality of AlTiN layers 13 and the plurality of AlCrN layers 15 is smaller than that in the case where the plurality of AlTiN layers 13 and the plurality of AlCrN layers 15 are thick.
  • the thickness of each of the layers 15 is thin and the number of the plurality of AlTiN layers 13 and the plurality of AlCrN layers 15 is large, the overall strength of the coating layer 11 is higher.
  • the thickness of the AlTiN layer 13 and the AlCrN layer 15 is not limited to a specific value, but can be set to, for example, 5 nm to 100 nm, respectively.
  • the thicknesses of the plurality of AlTiN layers 13 and the plurality of AlCrN layers 15 may be constant or different from each other.
  • the covering tool 1 of the present disclosure has a square plate shape as shown in FIG. 1, but the shape of the covering tool 1 is not limited to such a shape. For example, there is no problem even if the first surface 3 and the third surface 8 are not a quadrangle but a triangle, a hexagon, or a circle.
  • the covering tool 1 of the present disclosure may have, for example, a through hole 17.
  • the through hole 17 is formed from the first surface 3 to the third surface 8 located on the opposite side of the first surface 3, and is open in these surfaces.
  • the through hole 17 can be used to attach a screw, a clamp member, or the like when holding the covering tool 1 in the holder. It should be noted that there is no problem even if the through hole 17 is configured to open in a region located on the second surface 5 opposite to each other.
  • Examples of the material of the substrate 9 include inorganic materials such as cemented carbide, cermet and ceramics.
  • examples of the composition of the cemented carbide include WC (tungsten carbide) -Co, WC-TiC (titanium carbide) -Co and WC-TiC-TaC (tantalum carbide) -Co.
  • WC, TiC and TaC are hard particles
  • Co is a bonding phase.
  • Cermet is a sintered composite material in which a metal is composited with a ceramic component.
  • Specific examples of the cermet include a compound containing TiC or TiN (titanium nitride) as a main component.
  • the material of the substrate 9 is not limited to these.
  • the coating layer 11 can be positioned on the substrate 9 by using, for example, a physical vapor deposition (PVD) method.
  • PVD physical vapor deposition
  • the coating layer 11 is formed by using the above-mentioned vapor deposition method while holding the substrate 9 on the inner peripheral surface of the through hole 17, the entire surface of the substrate 9 excluding the inner peripheral surface of the through hole 17 is formed.
  • the coating layer 11 can be positioned so as to cover the.
  • the physical vapor deposition method examples include an ion plating method and a sputtering method.
  • the coating layer 11 can be produced by the following method.
  • a metal target containing at least one element selected from the Periodic Tables 4, 5 and 6 elements, Al, Si, B, Y and Mn, a composite alloy target or firing Prepare a uniting target.
  • the above-mentioned target which is a metal source, is evaporated and ionized by arc discharge or glow discharge.
  • the ionized target is reacted with nitrogen (N 2 ) gas as a nitrogen source, methane (CH 4 ) gas as a carbon source, acetylene (C 2 H 2 ) gas, or the like, and is deposited on the surface of the substrate 9.
  • N 2 nitrogen
  • CH 4 methane
  • C 2 H 2 acetylene
  • a cubic coating layer 11 such as an AlTiN layer or an AlCrN layer can be formed.
  • the coating layer 11 may be a single layer or a laminated film.
  • a metal target containing at least one element selected from the elements of Groups 4, 5 and 6 of the Periodic Table, Al, Si, B, Y and Mn Prepare a composite alloy target or sintered target.
  • the above-mentioned target which is a metal source, is evaporated and ionized by arc discharge or glow discharge.
  • the ionized target is reacted with nitrogen (N 2 ) gas as a nitrogen source, methane (CH 4 ) gas as a carbon source, acetylene (C 2 H 2 ) gas, or the like, and is deposited on the surface of the substrate 9.
  • N 2 nitrogen
  • CH 4 methane
  • C 2 H 2 acetylene
  • a coating layer 11 having a structure in which a plurality of AlTiN layers 13 and a plurality of AlCrN layers 15 are alternately laminated.
  • only a single layer may be provided.
  • the temperature of the substrate is set to 300 to 600 ° C
  • the pressure is set to 2.0 to 6.0 Pa
  • the DC bias voltage is applied to the substrate. It is preferable to apply 55V to -95V and set the arc discharge current to 120 to 180A.
  • the peak width at 0.8 Imax, the peak width at 0.9 Imax, and the intensity at 90 ° can be changed.
  • the DC bias voltage may be 60 V or more and 90 V or less.
  • the DC bias voltage may be 65 V or more and 85 V or less. Under such film forming conditions, the peak width at 0.8 Imax, the peak width at 0.9 Imax are wide, and the intensity at 90 ° is high.
  • the cutting tool 101 of the present disclosure is, for example, a rod-shaped body extending from the first end (upper end in FIG. 8) to the second end (lower end in FIG. 8).
  • the cutting tool 101 includes a holder 105 having a pocket 103 on the first end side (tip side) and the above-mentioned covering tool 1 located in the pocket 103. Since the cutting tool 101 includes the covering tool 1, stable cutting can be performed for a long period of time.
  • the pocket 103 is a portion on which the covering tool 1 is mounted, and has a seating surface parallel to the lower surface of the holder 105 and a restraining side surface inclined with respect to the seating surface. Further, the pocket 103 is open on the first end side of the holder 105.
  • the covering tool 1 is located in the pocket 103. At this time, the lower surface of the covering tool 1 may be in direct contact with the pocket 103, or a sheet (not shown) may be sandwiched between the covering tool 1 and the pocket 103.
  • the covering tool 1 is attached to the holder 105 so that at least a part of the portion used as the cutting edge 7 at the ridge line where the first surface 3 and the second surface 5 intersect protrudes outward from the holder 105.
  • the covering tool 1 is attached to the holder 105 by the fixing screw 107. That is, by inserting the fixing screw 107 into the through hole 17 of the covering tool 1, inserting the tip of the fixing screw 107 into the screw hole (not shown) formed in the pocket 103, and screwing the screw portions together.
  • the covering tool 1 is attached to the holder 105.
  • Steel, cast iron, etc. can be used as the material of the holder 105.
  • steel having high toughness may be used.
  • a cutting tool used for so-called turning is illustrated.
  • the turning process include inner diameter processing, outer diameter processing, and grooving processing.
  • the cutting tool is not limited to the one used for turning.
  • the covering tool 1 of the above embodiment may be used as the cutting tool used for the milling process.
  • the temperature of the substrate was 550 ° C. and the pressure was 4.0 Pa.
  • DC bias voltages of -35V, -55V, and -115V were applied to the substrate, and the arc discharge current was 160A when the AlTiN layer was formed and 140A when the AlCrN layer was formed.
  • the examples of DC bias currents of -35V and -115V are comparative examples.
  • FIG. 4 shows the sample No. obtained with the DC bias voltage set to -55V.
  • the X-ray intensity distribution of the ⁇ -axis of the positive electrode point diagram about the (111) plane of the cubic crystal of the coating film of 1 is shown.
  • FIG. 5 the sample No. obtained with the DC bias voltage set to ⁇ 35 V.
  • the X-ray intensity distribution of the ⁇ -axis of the positive electrode point diagram about the (111) plane of the cubic crystal of the coating film of 2 is shown.
  • FIG. 6 shows the sample No. obtained with the DC bias voltage set to -115V.
  • the X-ray intensity distribution of the ⁇ -axis of the positive electrode point diagram regarding the (111) plane of the cubic crystal of the coating film of No. 3 is shown.
  • FIG. 7 the sample No. obtained with the DC bias voltage of ⁇ 55 V was obtained.
  • the X-ray intensity distribution of the ⁇ -axis of the positive electrode point diagram about the (200) plane of the cubic crystal of the coating film of 1 is shown
  • the measurement conditions for the X-ray intensity distribution were as follows. When the sample surface normal is on a plane determined by the incident line and the diffraction line, the ⁇ angle is set to 90 °. When the ⁇ angle is 90 °, it is the center point on the positive electrode point diagram.
  • Table 1 shows the sample No.
  • the maximum peak angle of the (111) plane of the cubic crystal of the coating film 1 to 3 the peak width at 0.8 Imax, the peak width at 0.9 Imax, and the intensity at 90 ° are shown.
  • Sample No. which is the covering tool of the present disclosure.
  • the peeling load was large and the hardness was also excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

本開示の被覆工具は、基体と、該基体の上に位置する被覆層とを備える。該被覆層は、周期表4、5、6族元素、Al、Si、B、YおよびMnの中から選ばれた少なくとも1種の元素と、C、NおよびOの中から選ばれた少なくとも1種の元素とからなる立方晶結晶を含有する。前記立方晶結晶の(111)面に関する正極点図のα軸のX線強度分布(111)は、最大ピークが50°以上の領域に存在する。前記最大ピークにおける強度をImaxとしたとき、前記最大ピークの0.8Imaxにおけるピーク幅が、20°以上であり、90°における強度が、0.78Imax以上である。本開示の切削工具は、第1端から第2端に向かって延び、前記第1端側にポケットを有するホルダと、前記ポケットに位置する上述の記載の被覆工具と、を備える。

Description

被覆工具及びこれを備えた切削工具
 本開示は、切削加工において用いられる被覆工具及びこれを備えた切削工具に関する。
 旋削加工及び転削加工のような切削加工に用いられる被覆工具としては、例えば特許文献1に記載されているような基材の表面に被膜を被覆した切削工具用被覆部材が知られている。特許文献1に記載の被覆工具においては、工具基体を被覆する硬質膜が立方晶の金属化合物からなっている。そして、この金属化合物の(111)面および(200)面を、基体の表面に対して、それぞれ所定の角度で傾けることで、被覆工具の耐摩耗性が高くなることが記載されている。
国際公開第2011/016488
 本開示の被覆工具は、基体と、該基体の上に位置する被覆層とを備える。該被覆層は、周期表4、5、6族元素、Al、Si、B、YおよびMnの中から選ばれた少なくとも1種の元素と、C、NおよびOの中から選ばれた少なくとも1種の元素とからなる立方晶結晶を含有する。前記立方晶結晶の(111)面に関する正極点図のα軸のX線強度分布(111)は、最大ピークが50°以上の領域に存在する。前記最大ピークにおける強度をImaxとしたとき、前記最大ピークの0.8Imaxにおけるピーク幅が、20°以上であり、90°における強度が、0.78Imax以上である。本開示の切削工具は、第1端から第2端に向かって延び、前記第1端側にポケットを有するホルダと、前記ポケットに位置する上述の記載の被覆工具と、を備える。
図1は、本開示の被覆工具の一例を示す斜視図である。 図2は、図1に示す被覆工具におけるA-A断面の断面図である。 図3(a)は、図2に示す領域B1における拡大図である。図3(b)は、図2に示す領域B1における他の形態の拡大図である。 図4は、本開示の被覆工具の被覆層における立方晶の結晶の(111)面に関する正極点図のα軸のX線強度分布の一例である。 図5は、比較例の被覆工具の被覆層における立方晶の結晶の(111)面に関する正極点図のα軸のX線強度分布の一例である。 図6は、比較例の被覆工具の被覆層における立方晶の結晶の(111)面に関する正極点図のα軸のX線強度分布の一例である。 図7は、本開示の被覆工具の被覆層における立方晶結晶の(200)面に関する正極点図のα軸のX線強度分布の一例である。 図8は、本開示の切削工具の一例を示す平面図である。
 <被覆工具>
 以下、本開示の被覆工具について、図面を用いて詳細に説明する。但し、以下で参照する各図は、説明の便宜上、実施形態を説明する上で必要な主要部材のみを簡略化して示したものである。したがって、本開示の被覆工具は、参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法及び各部材の寸法比率などを忠実に表したものではない。これらの点は、後述する切削工具においても同様である。
 本開示の被覆工具1は、四角板形状であって、四角形の第1面3(図1における上面)と、第2面5(図1における側面)と、第1面3及び第2面5が交わる稜線の少なくとも一部に位置する切刃7とを有している。また、本実施形態の被覆工具1は、四角形の第3面8(図1における下面)をさらに有している。
 本開示の被覆工具1においては、第1面3の外周の全体が切刃7となっていてもよいが、被覆工具1はこのような構成に限定されるものではない。例えば、四角形の第1面3における一辺のみ、若しくは、部分的に切刃7を有するものであってもよい。
 第1面3は、少なくとも一部にすくい面領域3aを有しており、第1面3における切刃7に沿った領域がすくい面領域3aとなっていてもよい。第2面5は、少なくとも一部に逃げ面領域5aを有しており、第2面5における切刃7に沿った領域が逃げ面領域5aとなっていてもよい。このような構成によれば、すくい面領域3a及び逃げ面領域5aが交わる部分に切刃7が位置していると言い換えてもよい。
 図1では、第1面3におけるすくい面領域3aと、それ以外の領域との境界を一点鎖線で示している。また、第2面5における逃げ面領域5aと、それ以外の領域との境界を一点鎖線で示している。図1においては、第1面3及び第2面5が交わる稜線の全てが切刃7である例を示しているため、第1面3において上記境界を示す一点鎖線は環状となっている。
 被覆工具1の大きさは特に限定されるものではないが、例えば、第1面3の一辺の長さは、3~20mmとしてもよい。また、第1面3から第1面3の反対側に位置する第3面8までの高さは、5~20mm程度としてもよい。
 本開示の被覆工具1は、図1及び図2に示すように、四角板形状の基体9と、この基体9の表面を被覆する被覆層11とを備えている。被覆層11は、基体9の表面の全体を覆っていてもよく、また、一部のみを覆っていてもよい。被覆層11が基体9の一部のみを被覆しているときには、被覆層11は、基体9の上の少なくとも一部に位置しているとも言うことができる。
 被覆層11の厚みは、例えば、0.1~10μm程度としてもよい。なお、被覆層11の厚みは一定であっても、場所によって異なっていてもよい。
 本開示の被覆工具1は、図3(a)に示すように、基体9の表面に、被覆層11を備える。被覆層11は、周期表4、5、6族元素、Al、Si、B、YおよびMnの中から選ばれた少なくとも1種の元素と、C、NおよびOの中から選ばれた少なくとも1種の元素とからなる立方晶結晶を含有する。立方晶結晶は、例えば、AlTiNやAlCrN、TiNなどである。TiAlN結晶は、TiN結晶にAlが固溶した結晶である。
 これらの立方晶結晶は、高い硬度と優れた耐摩耗性を有することから、被覆工具1の被覆層11に好適に用いられるものである。
 本開示の被覆工具1は、被覆層11における立方晶結晶の配向を制御することで、被覆工具1の耐久性を向上させたものである。被覆層11に含まれる立方晶結晶は、(111)面を有している。基体9の表面に対する被覆層11の立方晶結晶における(111)面の傾き角度を、X線回折装置を用いて測定することで、立方晶結晶の配向性を評価することができる。
 立方晶結晶における(111)面の配向性は、図4に示すように正極点図のX線強度分布(111)で評価することができる。
 例えば、立方晶結晶の(111)面の正極点図のα軸の0~90°の範囲におけるX線強度分布において50°の位置にピークがあるとき、基体9の表面に対して、(111)面が50°傾いている立方晶結晶の数が多いことになる。
 本開示の被覆工具1における被覆層11は、図4に示すように、立方晶結晶の(111)面に関する正極点図のα軸の0°~90°の範囲におけるX線強度分布(111)は、最大ピークが50°以上の領域に存在する。この最大ピークにおける強度をImaxとしたとき、最大ピークの0.8Imaxにおけるピーク幅が、20°以上である。
 言い換えると、X線強度分布(111)における最大ピークは、高角度側に存在し、かつ、0.8Imax以上の強度が20°以上の広い範囲に存在している。
 また、本開示の被覆工具1は、90°における強度が、0.78Imax以上である。本開示の被覆工具1は、90°においても、高い強度を有している。
 このような構成を有することから、本開示の被覆工具1は、耐久性に優れる。
 被覆膜11は、0.8Imax(111)以上のピークが25°以上の範囲に存在していてもよい。このような構成を有すると、被覆工具は耐久性に優れる。
 また、本開示の被覆工具1において、X線強度分布(111)は、最大ピークの0.9Imaxにおけるピーク幅が、15°以上である。このような構成を有すると、高いX線強度を有する領域が高角度側に広く存在するため、被覆工具1は耐久性に優れる。
 また、本開示の被覆工具1において、X線強度分布(111)は、90°におけるピーク強度が、0.9Imax以上であってもよい。このような構成を有すると、90°という高角度においても、立方晶結晶の(111)面の配向性が高いため、被覆工具1は耐久性に優れる。
 また、本開示の被覆工具1において、X線強度分布(111)は、15°以下の領域におけるピーク強度が0.6Imax未満であってもよい。このような構成を有すると、低角度側における(111)面の配向性が低くなり、相対的に高角度側における(111)面の配向強度が高いため、被覆工具1は耐久性に優れる。
 また、図7に示すように、被覆層11は、立方晶結晶の(200)面に関する正極点図のα軸の0~90°の範囲におけるX線強度分布が、第1ピークと、この第1ピークよりも高角度に位置する第2ピークとを有し、さらに、第1ピークおよび第2ピークの間に第1ピークおよび第2ピークのX線強度よりもX線強度が低い谷部を有していてもよい。
 このように、立方晶結晶の(200)面に関する正極点図のα軸のX線強度分布が、0°~90°の間に第1ピークおよび第2ピークを有すると、耐久性に優れた被覆工具1となる。
 また、図7に示すように、被覆層11は、立方晶結晶の(200)面に関する正極点図のα軸のX線強度分布は、15°~30°の間に第1ピークを有し、60°~75°の間に第2ピークを有していてもよい。このような構成を有する場合、被覆層11の硬度、剥離荷重が大きくなる。
 被覆工具1の特性は、例えば、硬度や、スクラッチ試験により測定する剥離荷重で評価することができる。被覆工具1の耐久性は、硬度と剥離荷重の影響を受ける。いずれか一方だけが高くとも被覆工具1は、高い耐久性を有するものとならない。本開示の被覆工具1は、硬度と剥離荷重のバランスがよく、耐久性に優れている。
 被覆層11は、立方晶結晶としてAlTiN結晶を含有するAlTiN層13を備えていてもよい。AlTiN層13は、アルミニウムの含有比率がチタンの含有比率よりも高くてもよい。また、AlTiN層13は、チタンの含有比率がアルミニウムの含有比率よりも高くてもよい。また、AlTiN層13は、アルミニウム及びチタンに加えて、クロムをさらに含有していてもよい。但し、クロム成分と比較してアルミニウム及びチタンのそれぞれの含有比率の合計が高い。AlTiN層13におけるクロムの含有比率は、例えば、0.1~20%としてもよい。なお、上記における「含有比率」とは、原子比での含有比率を示している。
 また、被覆層11は、立方晶結晶として、AlCrN結晶を含有するAlCrN層を有していてもよい。
 また、図3(b)に示すように、本開示の被覆工具1は、AlTiN層13に加えて、AlCrN結晶を含有するAlCrN層15を有していてもよい。また、AlTiN層13およびAlCrN層15はそれぞれ複数積層されていてもよい。積層の順は、逆でもよく、相互に複数のAlTiN層13とAlCrN層15とを積層されていてもよい。
 AlCrN層15は、アルミニウム及びクロムのみによって構成されていてもよいが、アルミニウム及びクロムに加えて、Si、Nb、Hf、V、Ta、Mo、Zr、Ti及びWなどの金属成分を含有していてもよい。但し、AlCrN層15では、上記の金属成分と比較してアルミニウム及びクロムのそれぞれの含有比率の合計が高い。アルミニウムの含有比率は、例えば、20~60%としてもよい。また、クロムの含有比率は、例えば、40~80%にしてもよい。
 被覆工具1が、複数のAlCrN層15を有する場合、それぞれのAlCrN層15において、アルミニウムの含有比率がクロムの含有比率よりも高くてもよく、また、複数のAlCrN層15のそれぞれにおいて、クロムの含有比率がアルミニウムの含有比率よりも高くてもよい。
 また、AlCrN層15は、アルミニウム及びクロムを含む金属成分のみによって構成されていてもよいが、アルミニウム及びクロムは、単独またはいずれも含む、窒化物、炭化物又は炭窒化物であってもよい。
 AlTiN層13及びAlCrN層15の組成は、例えば、エネルギー分散型X線分光分析法(EDS)又はX線光電子分光分析法(XPS)などによって測定することが可能である。
 AlTiN層13及びAlCrN層15の積層数は、特定の値に限定されるものではない。AlTiN層13及びAlCrN層15の数は、例えば、2~500としてもよい。
 被覆層11は、AlTiN層13を有すると耐欠損性が高くなる。また、被覆層11は、AlCrN層15を有すると耐摩耗性が高くなる。被覆層11は、複数のAlTiN層13及び複数のAlCrN層15が交互に位置する構成とすると、被覆層11の全体としての強度が高くなる。
 なお、複数のAlTiN層13及び複数のAlCrN層15のそれぞれの厚みが厚く、且つ、複数のAlTiN層13及び複数のAlCrN層15の数が少ない場合よりも、複数のAlTiN層13及び複数のAlCrN層15のそれぞれの厚みが薄く、且つ、複数のAlTiN層13及び複数のAlCrN層15の数が多い場合の方が、被覆層11の全体としての強度が高い。
 AlTiN層13及びAlCrN層15の厚みは、特定の値に限定されるものではないが、例えば、それぞれ5nm~100nmに設定できる。なお、複数のAlTiN層13及び複数のAlCrN層15の厚みは、一定であっても、互いに異なっていてもよい。
 なお、本開示の被覆工具1は、図1に示すように四角板形状であるが、被覆工具1の形状としてはこのような形状に限定されるものではない。例えば、第1面3及び第3面8が四角形ではなく、三角形、六角形又は円形などであっても何ら問題ない。
 本開示の被覆工具1は、図1に示すように、例えば、貫通孔17を有していてもよい。貫通孔17は、第1面3から第1面3の反対側に位置する第3面8にかけて形成されており、これらの面において開口している。貫通孔17は、被覆工具1をホルダに保持する際に、ネジ又はクランプ部材などを取り付けるために用いることが可能である。なお、貫通孔17は、第2面5における互いに反対側に位置する領域において開口する構成であっても何ら問題ない。
 基体9の材質としては、例えば、超硬合金、サーメット及びセラミックスなどの無機材料が挙げられる。超硬合金の組成としては、例えば、WC(炭化タングステン)-Co、WC-TiC(炭化チタン)-Co及びWC-TiC-TaC(炭化タンタル)-Coなどが挙げられる。ここで、WC、TiC及びTaCは硬質粒子であり、Coは結合相である。また、サーメットは、セラミック成分に金属を複合させた焼結複合材料である。具体的には、サーメットとして、TiC又はTiN(窒化チタン)を主成分とした化合物などが挙げられる。なお、基体9の材質としては、これらに限定されるものではない。
 被覆層11は、例えば、物理蒸着(PVD)法などを用いることによって、基体9の上に位置させることが可能である。例えば、貫通孔17の内周面で基体9を保持した状態で上記の蒸着法を利用して被覆層11を形成する場合には、貫通孔17の内周面を除く基体9の表面の全体を覆うように被覆層11を位置させることができる。
 物理蒸着法としては、例えば、イオンプレーティング法及びスパッタリング法などが挙げられる。一例として、イオンプレーティング法で作製する場合には、下記の方法によって被覆層11を作製することができる。
 第1の手順として、周期律表4、5、6族元素、Al、Si、B、YおよびMnの中から選ばれた少なくとも1種の元素を含有する金属ターゲット、複合化した合金ターゲット又は焼結体ターゲットを準備する。金属源である上記のターゲットをアーク放電又はグロー放電などによって蒸発させてイオン化する。イオン化したターゲットを、窒素源の窒素(N)ガス、炭素源のメタン(CH)ガス又はアセチレン(C)ガスなどと反応させるとともに、基体9の表面に蒸着させる。以上の手順によって、例えば、AlTiN層やAlCrN層などの立方晶の被覆層11を形成することが可能である。被覆層11は、単層であっても、積層膜であってもよい。
 交互積層にする場合には、第2の手順として、周期表4、5、6族元素、Al、Si、B、YおよびMnの中から選ばれた少なくとも1種の元素を含有する金属ターゲット、複合化した合金ターゲット又は焼結体ターゲットを準備する。金属源である上記のターゲットをアーク放電又はグロー放電などによって蒸発させてイオン化する。イオン化したターゲットを、窒素源の窒素(N)ガス、炭素源のメタン(CH)ガス又はアセチレン(C)ガスなどと反応させるとともに、基体9の表面に蒸着させる。以上の手順によって例えば、AlTiN層13と、AlCrN層15を積層した被覆層11を形成することが可能である。
 上記の第1の手順及び第2の手順を交互に繰り返すことによって、複数のAlTiN層13及び複数のAlCrN層15が交互に積層された構成の被覆層11を形成することが可能である。なお、まず第2の手順を行った後に第1の手順を行ってもよい。また、単層のみを設けてもよい。
 本開示の被覆工具1を得るには、上記の第1および第2の手順において、基体の温度を300~600℃とし、圧力を2.0~6.0Paとし、基体に直流バイアス電圧を-55V~-95Vを印可して、アーク放電電流を120~180Aとするとよい。
 成膜条件のうち、直流バイアス電圧を変化させると、0.8Imaxにおけるピーク幅、0.9Imaxにおけるピーク幅、90°における強度を変化させることができる。
 直流バイアス電圧は、60V以上、90V以下としてもよい。また、直流バイアス電圧は、65V以上、85V以下としてもよい。このような成膜条件とすると、0.8Imaxにおけるピーク幅、0.9Imaxにおけるピーク幅が広い、また、90°における強度が高い。
 <切削工具>
 次に、本開示の切削工具について図面を用いて説明する。
 本開示の切削工具101は、図8に示すように、例えば、第1端(図8における上端)から第2端(図8における下端)に向かって延びる棒状体である。切削工具101は、図8に示すように、第1端側(先端側)にポケット103を有するホルダ105と、ポケット103に位置する上記の被覆工具1とを備えている。切削工具101は、被覆工具1を備えているため、長期に渡り安定した切削加工を行うことができる。
 ポケット103は、被覆工具1が装着される部分であり、ホルダ105の下面に対して平行な着座面と、着座面に対して傾斜する拘束側面とを有している。また、ポケット103は、ホルダ105の第1端側において開口している。
 ポケット103には被覆工具1が位置している。このとき、被覆工具1の下面がポケット103に直接に接していてもよく、また、被覆工具1とポケット103との間にシート(不図示)が挟まれていてもよい。
 被覆工具1は、第1面3及び第2面5が交わる稜線における切刃7として用いられる部分の少なくとも一部がホルダ105から外方に突出するようにホルダ105に装着される。本実施形態においては、被覆工具1は、固定ネジ107によって、ホルダ105に装着されている。すなわち、被覆工具1の貫通孔17に固定ネジ107を挿入し、この固定ネジ107の先端をポケット103に形成されたネジ孔(不図示)に挿入してネジ部同士を螺合させることによって、被覆工具1がホルダ105に装着されている。
 ホルダ105の材質としては、鋼、鋳鉄などを用いることができる。これらの部材の中で靱性の高い鋼を用いてもよい。
 本実施形態においては、いわゆる旋削加工に用いられる切削工具を例示している。旋削加工としては、例えば、内径加工、外径加工及び溝入れ加工などが挙げられる。なお、切削工具としては旋削加工に用いられるものに限定されない。例えば、転削加工に用いられる切削工具に上記の実施形態の被覆工具1を用いてもよい。
 WC-Co系の超硬合金の表面に、厚みが約15nmのAlTiN層と、厚みが約15nmのAlCrN層とを交互に積層して、約5μmの厚みの被覆膜を形成した。被覆膜の形成にあたり、基体の温度は、550℃とし、圧力は、4.0Paとした。基体に直流バイアス電圧-35V、-55V、-115Vを印可して、アーク放電電流は、AlTiN層の成膜時は160Aとし、AlCrN層の成膜時には140Aとした。なお、直流バイアス電流-35V、-115Vの例は、比較例である。
 図4に、直流バイアス電圧を-55Vとして得られた試料No.1の被覆膜の立方晶結晶の(111)面に関する正極点図のα軸のX線強度分布を示す。図5に、直流バイアス電圧を-35Vとして得られた試料No.2の被覆膜の立方晶結晶の(111)面に関する正極点図のα軸のX線強度分布を示す。図6に、直流バイアス電圧を-115Vとして得られた試料No.3の被覆膜の立方晶結晶の(111)面に関する正極点図のα軸のX線強度分布を示す。また、図7に直流バイアス電圧を-55Vとして得られた試料No.1の被覆膜の立方晶結晶の(200)面に関する正極点図のα軸のX線強度分布を示す。
 X線強度分布の測定条件は以下の通りとした。なお、試料面法線が入射線と回折線で決まる平面上にあるとき、α角を90°とする。α角が90°のとき、正極点図上では中心の点となる。
   ・ 平板コリメータ
   ・ 走査方法:同心円
   ・ β走査範囲:0~360°/2.5°ピッチ
   ・ θ固定角度:AlTiN結晶の(111)面の回折角度は36.0°から38.0°までの間で回折強度が最も高くなる角度とする。AlTiN結晶の(200)面の回折角度は42.0°から44.0°までの間で回折強度が最も高くなる角度とする。
   ・ α走査範囲:0~90°/2.5°ステップ
   ・ ターゲット:CuKα、電圧:45kV、電流:40mA
 また、剥離荷重は、スクラッチ試験機にて荷重範囲0~100Nとして、剥離が生じた荷重を測定した。
Figure JPOXMLDOC01-appb-T000001
 表1に試料No.1~3の被覆膜の立方晶結晶の(111)面の最大ピークの角度、0.8Imaxにおけるピーク幅、0.9Imaxにおけるピーク幅、90°における強度を示す。
 本開示の被覆工具である試料No.1は、剥離荷重が大きく、硬度も優れていた。
  1・・・被覆工具
  3・・・第1面、すくい面
  5・・・第2面、逃げ面
  7・・・切刃
  9・・・基体
 11・・・被覆層
 13・・・AlTiN層
 15・・・AlCrN層
 17・・・貫通孔
101・・・切削工具
103・・・ポケット
105・・・ホルダ
107・・・固定ネジ

Claims (11)

  1.  基体と、該基体の上に位置する被覆層とを備え、
     該被覆層は、周期表4、5、6族元素、Al、Si、B、YおよびMnの中から選ばれた少なくとも1種の元素と、C、NおよびOの中から選ばれた少なくとも1種の元素とからなる立方晶結晶を含有し、
     前記立方晶結晶の(111)面に関する正極点図のα軸のX線強度分布(111)は、
      最大ピークが50°以上の領域に存在し、
      前記最大ピークにおける強度をImaxとしたとき、前記最大ピークの0.8Imaxにおけるピーク幅が、20°以上であり、
      90°における強度が、0.78Imax以上である、被覆工具。
  2.  前記X線強度分布(111)は、前記最大ピークの0.9Imaxにおけるピーク幅が、15°以上である、請求項1に記載の被覆工具。
  3. 前記X線強度分布(111)は、90°における強度が、0.9Imax以上である、請求項1または2に記載の被覆工具。
  4.  前記X線強度分布(111)は、15°以下における強度が0.6Imax未満である、請求項1~3のいずれかに記載の被覆工具。
  5.  前記被覆層は、前記立方晶結晶の(200)面に関する正極点図のα軸のX線強度分布(200)が、
      第1ピークと、
      該第1ピークよりも高角度に位置する第2ピークと、
      さらに、前記第1ピークおよび前記第2ピークの間に、前記第1ピークおよび前記第2ピークよりも強度が低い谷部とを有する、請求項1~4のいずれかに記載の被覆工具。
  6.  前記被覆層は、前記第1ピークが15°~30°の間に位置し、前記第2ピークが60°~75°の間に位置する、請求項5に記載の被覆工具。
  7.  前記被覆層は、前記立方晶結晶としてAlTiN結晶を含有するAlTiN層を有する、請求項1~6のいずれかに記載の被覆工具。
  8.  前記被覆層は、前記立方晶結晶としてAlCrN結晶を含有するAlCrN層を有する、請求項1~7のいずれかに記載の被覆工具。
  9.  前記被覆層は、複数の前記AlTiN層および複数の前記AlCrN層を有し、前記AlTiN層と前記AlCrN層とが交互に位置する、請求項8に記載の被覆工具。
  10.  前記基体は、炭化タングステン及びコバルトを含有する請求項1~9のいずれかに記載の被覆工具。
  11.  第1端から第2端に向かって延び、前記第1端側にポケットを有するホルダと、
     前記ポケットに位置する請求項1~10のいずれかに記載の被覆工具と、を備えた切削工具。
PCT/JP2020/013363 2019-03-27 2020-03-25 被覆工具及びこれを備えた切削工具 WO2020196631A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/598,209 US20220176462A1 (en) 2019-03-27 2020-03-25 Coated tool and cutting tool including same
EP20777866.3A EP3950189A4 (en) 2019-03-27 2020-03-25 COATED TOOL AND CUTTING TOOL PROVIDED THEREOF
JP2021509512A JP7195410B2 (ja) 2019-03-27 2020-03-25 被覆工具及びこれを備えた切削工具
CN202080024377.4A CN113631305B (zh) 2019-03-27 2020-03-25 涂层刀具以及具备该涂层刀具的切削刀具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019060829 2019-03-27
JP2019-060829 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020196631A1 true WO2020196631A1 (ja) 2020-10-01

Family

ID=72610035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013363 WO2020196631A1 (ja) 2019-03-27 2020-03-25 被覆工具及びこれを備えた切削工具

Country Status (5)

Country Link
US (1) US20220176462A1 (ja)
EP (1) EP3950189A4 (ja)
JP (1) JP7195410B2 (ja)
CN (1) CN113631305B (ja)
WO (1) WO2020196631A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008131A1 (ja) * 2021-07-30 2023-02-02 京セラ株式会社 被覆工具および切削工具
WO2023008133A1 (ja) * 2021-07-30 2023-02-02 京セラ株式会社 被覆工具および切削工具
WO2023162682A1 (ja) * 2022-02-28 2023-08-31 京セラ株式会社 被覆工具および切削工具
WO2024048304A1 (ja) * 2022-08-29 2024-03-07 株式会社Moldino 被覆工具

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381690B (zh) * 2022-01-11 2024-03-01 厦门钨业股份有限公司 一种CrAlMeN-CrAlN纳米多层结构涂层及其制备方法与用途
CN114932386B (zh) * 2022-04-24 2023-12-22 维克多精密工业技术(苏州)有限责任公司 高合格率刀具制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203485A (ja) * 2008-02-26 2009-09-10 Tungaloy Corp 被覆部材
WO2010007958A1 (ja) * 2008-07-14 2010-01-21 株式会社タンガロイ 被覆部材
WO2011016488A1 (ja) 2009-08-04 2011-02-10 株式会社タンガロイ 被覆部材
WO2019146711A1 (ja) * 2018-01-26 2019-08-01 京セラ株式会社 被覆工具及びこれを備えた切削工具

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346812A (ja) * 2001-05-25 2002-12-04 Ngk Spark Plug Co Ltd 切削工具及びホルダ付き工具
JP5116777B2 (ja) * 2008-01-29 2013-01-09 京セラ株式会社 切削工具
JP2009203489A (ja) * 2008-02-26 2009-09-10 Tungaloy Corp 被覆部材
WO2012018063A1 (ja) * 2010-08-04 2012-02-09 株式会社タンガロイ 被覆工具
JP2015066644A (ja) * 2013-09-30 2015-04-13 三菱マテリアル株式会社 高速切削加工で硬質被覆層がすぐれた耐摩耗性と耐チッピング性を発揮する表面被覆切削工具
JP6677932B2 (ja) * 2015-08-29 2020-04-08 三菱マテリアル株式会社 強断続切削加工においてすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
US10837100B2 (en) * 2015-12-22 2020-11-17 Sandvik Intellectual Property Ab Method of producing a PVD layer and a coated cutting tool
JPWO2019044714A1 (ja) * 2017-08-29 2020-09-17 京セラ株式会社 被覆工具及びこれを備えた切削工具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203485A (ja) * 2008-02-26 2009-09-10 Tungaloy Corp 被覆部材
WO2010007958A1 (ja) * 2008-07-14 2010-01-21 株式会社タンガロイ 被覆部材
WO2011016488A1 (ja) 2009-08-04 2011-02-10 株式会社タンガロイ 被覆部材
WO2019146711A1 (ja) * 2018-01-26 2019-08-01 京セラ株式会社 被覆工具及びこれを備えた切削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950189A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008131A1 (ja) * 2021-07-30 2023-02-02 京セラ株式会社 被覆工具および切削工具
WO2023008133A1 (ja) * 2021-07-30 2023-02-02 京セラ株式会社 被覆工具および切削工具
WO2023162682A1 (ja) * 2022-02-28 2023-08-31 京セラ株式会社 被覆工具および切削工具
WO2024048304A1 (ja) * 2022-08-29 2024-03-07 株式会社Moldino 被覆工具

Also Published As

Publication number Publication date
JP7195410B2 (ja) 2022-12-23
EP3950189A4 (en) 2022-08-31
CN113631305A (zh) 2021-11-09
JPWO2020196631A1 (ja) 2020-10-01
EP3950189A1 (en) 2022-02-09
US20220176462A1 (en) 2022-06-09
CN113631305B (zh) 2024-01-19

Similar Documents

Publication Publication Date Title
WO2020196631A1 (ja) 被覆工具及びこれを備えた切削工具
JP7032448B2 (ja) 被覆工具及びこれを備えた切削工具
JP6998403B2 (ja) 被覆工具及びこれを備えた切削工具
US20200222989A1 (en) Coated tool and cutting tool including same
US20200189007A1 (en) Coated tool and cutting tool including same
JP6918951B2 (ja) 被覆工具及びこれを備えた切削工具
CN110709197B (zh) 被覆工具和具备其的切削工具
US11478858B2 (en) Coated tool, cutting tool, and method for manufacturing machined product
WO2023008189A1 (ja) 被覆工具および切削工具
WO2021193876A1 (ja) 被覆工具および切削工具
WO2021193867A1 (ja) 被覆工具および切削工具
JP2020124748A (ja) 被覆工具及びこれを備えた切削工具
JP2020127976A (ja) 被覆工具及びこれを備えた切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020777866

Country of ref document: EP

Effective date: 20211027