WO2020196179A1 - Film-forming device, film-forming method, and film-forming system - Google Patents

Film-forming device, film-forming method, and film-forming system Download PDF

Info

Publication number
WO2020196179A1
WO2020196179A1 PCT/JP2020/012073 JP2020012073W WO2020196179A1 WO 2020196179 A1 WO2020196179 A1 WO 2020196179A1 JP 2020012073 W JP2020012073 W JP 2020012073W WO 2020196179 A1 WO2020196179 A1 WO 2020196179A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply
film forming
substrate
film
back surface
Prior art date
Application number
PCT/JP2020/012073
Other languages
French (fr)
Japanese (ja)
Inventor
敦史 久保
博充 阪上
新藤 健弘
弘弥 似鳥
篤史 遠藤
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2020196179A1 publication Critical patent/WO2020196179A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • Various aspects and embodiments of the present disclosure relate to film forming equipment, film forming methods, and film forming systems.
  • the device is formed by forming a plurality of different materials on a substrate, etching the formed materials, and the like. Since the linear expansion coefficient differs between the substrate and the material formed on the substrate, when the substrate returns to room temperature after the film formation, stress may be generated on the substrate, and warpage or cracks may occur. Therefore, in order to reduce the stress applied to the substrate after the element is formed, there is known a technique of forming a film on the back surface of the surface on which the element is formed (see, for example, Patent Document 1 below).
  • the present disclosure provides a film forming apparatus, a film forming method, and a film forming system capable of reducing the man-hours required for film formation in order to reduce the warpage of the substrate.
  • One aspect of the present disclosure is a film forming apparatus, which includes a processing container, a support ring, a film forming section, and a control section.
  • the support ring supports the periphery of the substrate placed in the processing vessel.
  • the film forming section has a plurality of supply ports, and forms a film on the back surface of the substrate by supplying the material gas from each supply port toward the back surface of the surface of the substrate on which the element is formed.
  • the control unit independently controls the supply and stop of the supply of the material gas from each supply port.
  • FIG. 1 is a system configuration diagram showing an example of a semiconductor manufacturing system according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view showing an example of a second film forming apparatus according to the embodiment of the present disclosure.
  • FIG. 3 is a perspective view showing an example of the holding mechanism according to the embodiment of the present disclosure.
  • FIG. 4 is a perspective view showing an example of the film forming mechanism according to the embodiment of the present disclosure.
  • FIG. 5 is a partial cross-sectional view showing an example of the film-forming portion according to the embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram for explaining an example of gas flow in one embodiment of the present disclosure.
  • FIG. 7 is a diagram showing another example of the arrangement of the supply unit.
  • FIG. 1 is a system configuration diagram showing an example of a semiconductor manufacturing system according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view showing an example of a second film forming apparatus according to the embodiment of the present disclosure
  • FIG. 8 is a diagram showing another example of the film forming mechanism.
  • FIG. 9 is a cross-sectional view showing another example of the film-forming portion.
  • FIG. 10 is a diagram showing another example of the film forming mechanism.
  • FIG. 11 is a cross-sectional view showing another example of the film-forming portion.
  • FIG. 12 is a diagram showing another example of the holding mechanism.
  • FIG. 13 is a diagram showing another example of the film-forming portion.
  • FIG. 14 is a diagram showing another example in the moving direction of the film-forming portion.
  • the element is formed by etching the material formed on the substrate into various shapes. Therefore, the stress applied to the substrate after the element is formed has a complicated distribution on the substrate. As a result, the pattern of the film to be formed on the back surface of the substrate in order to cancel the stress having a complicated distribution becomes complicated.
  • a mask material is formed on the back surface of the substrate, and a pattern for canceling stress is formed on the formed mask by photolithography or the like. Then, a film having a shape corresponding to the mask pattern is formed on the back surface of the substrate.
  • a protective film for protecting the element on the surface of the substrate on which the element is formed or after the film formation on the back surface is completed.
  • a step of removing the protective film is also required. As described above, a plurality of steps are required to form a film having a predetermined pattern on the back surface. Therefore, the throughput in the manufacture of the semiconductor device using the substrate is lowered.
  • the present disclosure provides a technique capable of reducing the man-hours required for film formation in order to reduce the warpage of the substrate.
  • FIG. 1 is a system configuration diagram showing an example of the semiconductor manufacturing system 100 according to the embodiment of the present disclosure.
  • the semiconductor manufacturing system 100 includes a first film forming apparatus 200, an etching apparatus 300, a measuring apparatus 400, and a second film forming apparatus 500. These devices are connected to the four side walls of the vacuum transfer chamber 101 having a heptagonal planar shape via a gate valve G, respectively.
  • the semiconductor manufacturing system 100 is a multi-chamber type vacuum processing system, and the inside of the vacuum transfer chamber 101 is exhausted by a vacuum pump to maintain a predetermined degree of vacuum.
  • the semiconductor manufacturing system 100 is an example of a film forming system.
  • the first film forming apparatus 200 forms a conductive film, an insulating film, or the like on a substantially disk-shaped wafer W, which is an example of a substrate.
  • the etching apparatus 300 etches the conductive film or the like formed on the wafer W by the first film forming apparatus 200 into a predetermined pattern by dry etching or the like. By repeating the film formation by the first film forming apparatus 200 and the etching by the etching apparatus 300, an element used for the semiconductor apparatus is formed on the wafer W.
  • the measuring device 400 measures the height distribution of the wafer W on which the element is formed, and outputs the measurement result to the control device 110.
  • the height distribution of the wafer W can be measured using a measuring instrument such as a laser beam displacement meter.
  • a measuring instrument such as a laser beam displacement meter.
  • the wafer W on which the element is formed is mounted on a mounting table in the measuring device 400, and a laser beam displacement meter placed on the ceiling of the measuring device 400 horizontally above the wafer W on the mounting table. While moving, the surface of the wafer W on which the element is formed is irradiated with a laser beam.
  • the laser beam displacement meter can measure the height of the wafer W by measuring the reflected light reflected by the wafer W.
  • the measured height distribution corresponds to information indicating the distortion and warpage of the wafer W. That is, local distortion and warpage occur in the wafer W depending on the presence or absence of the film and the thick and thin portions of the film.
  • the control device 110 is a film forming pattern formed on the back surface of the surface of the wafer W on which the element is formed (hereinafter, simply referred to as the back surface) based on the measurement result measured by the measuring device 400, and is a wafer.
  • the film formation pattern for reducing the distortion and warpage generated in W is calculated.
  • the second film forming apparatus 500 forms a predetermined film on the back surface of the wafer W according to the film forming pattern calculated by the control device 110. As a result, the stress generated on the wafer W by the element formed on one surface of the wafer W is reduced, and the distortion and warpage of the wafer W are reduced.
  • Three load lock chambers 102 are connected to the other three side walls of the vacuum transfer chamber 101 via a gate valve G1.
  • An air transport chamber 103 is provided on the opposite side of the vacuum transport chamber 101 with the load lock chamber 102 in between.
  • Each of the three load lock chambers 102 is connected to the atmospheric transport chamber 103 via a gate valve G2.
  • the load lock chamber 102 controls the pressure between the atmospheric pressure and the vacuum when the wafer W is transported between the atmospheric transport chamber 103 and the vacuum transport chamber 101.
  • a transfer mechanism 106 such as a robot arm is provided in the vacuum transfer chamber 101.
  • the transport mechanism 106 transports the wafer W between the first film forming apparatus 200, the etching apparatus 300, the measuring apparatus 400, the second film forming apparatus 500, and the respective load lock chamber 102.
  • the transport mechanism 106 has two arms 107a and 107b that can move independently.
  • a transport mechanism 108 such as a robot arm is provided in the atmospheric transport chamber 103.
  • the transfer mechanism 108 transfers the wafer W between each carrier C, each load lock chamber 102, and an alignment chamber 104.
  • the semiconductor manufacturing system 100 includes a control device 110 having a memory, a processor, and an input / output interface.
  • the memory stores a program executed by the processor and a recipe including conditions for each process.
  • the processor executes a program read from the memory and controls each part of the semiconductor manufacturing system 100 via the input / output interface based on the recipe stored in the memory.
  • the control device 110 is an example of a control unit and a calculation device.
  • FIG. 2 is a schematic cross-sectional view showing an example of the second film forming apparatus 500 according to the embodiment of the present disclosure.
  • the second film forming apparatus 500 has a bottomed and tubular processing container 10 having a space formed inside. The upper part of the processing container 10 is closed by the lid 11. An opening 13 is provided on the side wall of the processing container 10, and the opening 13 is opened and closed by the gate valve G.
  • One end of the exhaust pipe 15 is connected to the bottom of the processing container 10.
  • the other end of the exhaust pipe 15 is connected to the exhaust device 17 via an APC (Automatic Pressure Controller) valve 16.
  • APC Automatic Pressure Controller
  • a holding mechanism 20 for holding the wafer W in the processing container 10 is provided in the processing container 10.
  • the holding mechanism 20 has a support ring 21, a plurality of support portions 22, and a plurality of drive portions 23. Further, the description will be continued with reference to FIG.
  • FIG. 3 is a perspective view showing an example of the holding mechanism 20 according to the embodiment of the present disclosure.
  • the support ring 21 has a substantially annular shape and supports the peripheral edge of the wafer W from below.
  • the central axis of the support ring 21 is defined as the axis X. Further, for example, as shown in FIG. 3, a part of the support ring 21 is cut so as not to interfere with the arm 107a.
  • Each support portion 22 is fixed to the support ring 21 and supports the support ring 21.
  • the holding mechanism 20 has three support portions 22.
  • Each drive unit 23 is arranged on the lid body 11 and moves the support unit 22 in the vertical direction.
  • the holding mechanism 20 has three support portions 22, and one drive portion 23 moves one support portion 22 in the vertical direction.
  • a plurality of support units 22 may be driven by one drive unit 23.
  • each drive unit 23 lowers the support unit 22. Then, the arm 107a on which the wafer W is placed so that the surface on which the element is formed faces upward enters the position on the support ring 21 so that the central axis of the wafer W and the axis X are aligned with each other. Then, each drive unit 23 raises the support unit 22, so that the wafer W is delivered to the support ring 21. Then, after the arm 107a is retracted from the processing container 10, each drive unit 23 lowers the support portion 22, so that the support ring 21 is lowered along the axis X and the wafer W reaches the position at the time of film formation. Descend.
  • a temperature control unit 12 for controlling the temperature of the wafer W held on the support ring 21 is provided.
  • the temperature control unit 12 is, for example, a heater, a lamp, or the like, and controls the temperature of the wafer W held on the support ring 21 by radiant heat to a temperature suitable for film formation.
  • a film forming mechanism 30 for forming a film according to the film forming pattern calculated by the control device 110 is arranged on the back surface of the wafer W.
  • the film forming mechanism 30 has a film forming section 31, a support section 32, and a driving section 33. Further, the description will be continued with reference to FIGS. 4 and 5.
  • FIG. 4 is a perspective view showing an example of the film forming mechanism 30 according to the embodiment of the present disclosure.
  • FIG. 5 is a partial cross-sectional view showing an example of the film forming portion 31 according to the embodiment of the present disclosure.
  • a plurality of supply units 310-1 to 310-n (n is an integer of 2 or more) are provided on the upper surface of the film forming unit 31.
  • the plurality of supply units 310-1 to 310-n are arranged side by side below the wafer W held by the support ring 21 along the radial direction of the wafer W, that is, the radial direction of the circle centered on the axis X. ing. Further, in the radial direction of the circle centered on the axis X, the length of the region where the plurality of supply units 310-1 to 310-n are arranged is longer than the radius of the wafer W.
  • the supply units 310-1 to 310-n will be referred to as the supply unit 310 when they are generically referred to without distinction.
  • Each supply unit 310 has a first supply port 311, an exhaust port 312, and a second supply port 313, for example, as shown in FIG.
  • the first supply port 311 supplies the first gas used for film formation to the back surface of the wafer W.
  • the exhaust port 312 sucks the gas supplied to the back surface of the wafer W.
  • the second supply port 313 supplies the second gas used for film formation to the back surface of the wafer W.
  • the first gas and the second gas are examples of material gases.
  • the exhaust port 312 is adjacent to the first supply port 311 and the second supply port 313. Further, the first supply port 311 is formed in the film forming portion 31 so as to surround the exhaust port 312.
  • Flow path 316 is formed.
  • One flow path 314 is connected to the first supply port 311 of one supply unit 310 via a supply hole 317.
  • the first gas supplied to the flow path 314 is supplied to the back surface of the wafer W from the first supply port 311 of the corresponding supply unit 310 through the corresponding supply hole 317.
  • one flow path 315 is connected to the exhaust port 312 of one supply unit 310 via the exhaust hole 318.
  • the gas sucked from the exhaust port 312 flows to the corresponding flow path 315 through the corresponding exhaust hole 318 and is exhausted.
  • one flow path 316 is connected to the second supply port 313 of one supply unit 310 via the supply hole 319.
  • the second gas supplied to the flow path 316 is supplied to the back surface of the wafer W from the second supply port 313 of the corresponding supply unit 310 through the corresponding supply hole 319.
  • the supply and suspension of gas supply from the supply unit 310 to the back surface of the wafer W, and the exhaust and exhaust stop of the gas supplied from the supply unit 310 to the back surface of the wafer W are independently controlled by the respective supply units 310.
  • a flow path 320 and a flow path 321 through which a heat medium such as Galden (registered trademark) flows are formed.
  • the temperature of the film forming unit 31 is controlled to a predetermined temperature by circulating the heat medium whose temperature is controlled by a temperature control device (not shown) in the flow path 320 and the flow path 321.
  • a temperature control device not shown
  • FIG. 6 is a schematic diagram for explaining an example of gas flow in one embodiment of the present disclosure.
  • the first gas supplied from the first supply port 311 and the second gas supplied from the second supply port 313 toward the back surface of the wafer W for example, as shown in FIG. Is supplied.
  • the first gas and the second gas supplied to the back surface of the wafer W diffuse along the back surface of the wafer W.
  • the first gas and the second gas are mixed on the back surface of the wafer W to form a predetermined film on the back surface of the wafer W.
  • the first gas and the second gas diffused along the back surface of the wafer W flow into the exhaust port 312 adjacent to the first supply port 311 and the second supply port 313. That is, in each of the supply units 310, the gas supplied from the first supply port 311 and the second supply port 313 to the back surface of the wafer W via the exhaust port 312 is the first supply port 311 and the second supply port 311 and the second. The gas is exhausted in the direction opposite to the direction in which the gas is supplied from the supply port 313 of the above. Therefore, for example, as shown in FIG. 6, a gas flow is generated from the first supply port 311 and the second supply port 313 to the exhaust port 312, and the leakage of gas outside the region of the supply unit 310 is suppressed. Will be done. Therefore, on the back surface of the wafer W, a film can be formed using the first gas and the second gas directly above the supply unit 310.
  • the support portion 32 supports the film forming portion 31.
  • the drive unit 33 rotates the support unit 32 around the shaft X.
  • the drive unit 33 is an example of a rotation mechanism.
  • the film forming portion 31 also rotates about the axis X, for example, as shown in FIG. As a result, the film forming portion 31 moves relatively in the processing container 10 with respect to the wafer W held on the support ring 21.
  • the first gas supply mechanism 50, the second gas supply mechanism 60, and the valve group 70 are connected to the film forming section 31.
  • the first gas supply mechanism 50 has a gas supply source 51, a plurality of MFCs (Mass Flow Controllers) 52-1 to 52-n, and a plurality of valves 53-1 to 53-n.
  • MFCs Mass Flow Controllers
  • valve 53 Describe.
  • One MFC 52 and one valve 53 are provided for one supply unit 310.
  • One end of each valve 53 is connected to a flow path 314 for supplying the first gas to the first supply port 311 of the corresponding supply unit 310 via a pipe.
  • the other end of each valve 53 is connected to the gas supply source 51, which is the first gas supply source, via the corresponding MFC 52.
  • Each MFC 52 controls the flow rate of the first gas supplied from the gas supply source 51, and supplies the flow-controlled first gas to the corresponding flow path 314 via the corresponding valve 53.
  • Each MFC 52 and valve 53 are controlled independently of each other by the control device 110.
  • the second gas supply mechanism 60 has a gas supply source 61, a plurality of MFCs 62-1 to 62-n, and a plurality of valves 63-1 to 63-n.
  • MFC62 a gas supply source
  • valve 63 a plurality of valves 63-1 to 63-n.
  • One MFC 62 and one valve 63 are provided for one supply unit 310.
  • One end of each valve 63 is connected to a flow path 316 for supplying the second gas to the second supply port 313 of the corresponding supply unit 310 via a pipe.
  • the other end of each valve 63 is connected to a gas supply source 61 which is a second gas supply source via a corresponding MFC 62.
  • Each MFC 62 controls the flow rate of the second gas supplied from the gas supply source 61, and supplies the flow-controlled second gas to the corresponding flow path 316 via the corresponding valve 63.
  • Each MFC 62 and valve 63 are controlled independently of each other by the control device 110.
  • the valve group 70 has a plurality of valves 71-1 to 71-n.
  • valves 71-1 to 71-n will be referred to as valves 71 when they are generically referred to without distinction.
  • One valve 71 is provided for one supply unit 310. One end of each valve 71 is connected to a flow path 315 through which the gas sucked from the exhaust port 312 of the corresponding supply unit 310 flows through a pipe. Further, the other end of each valve 71 is connected to the exhaust device 17. Each valve 71 is controlled independently of each other by the control device 110.
  • the gas supply and exhaust to the back surface of the wafer W are individually supplied to the back surface of the wafer W while rotating the film forming section 31 around the axis X. Be controlled.
  • a film having a film formation pattern calculated by the control device 110 is formed on the back surface of the wafer W held on the support ring 21.
  • the lid 11 is formed with a gas introduction port 14 for supplying purge gas into the processing container 10.
  • a purge gas supply mechanism 40 is connected to the gas introduction port 14 via a pipe.
  • the purge gas supply mechanism 40 has a gas supply source 41, an MFC 42, and a valve 43.
  • One end of the valve 43 is connected to the gas introduction port 14 via a pipe.
  • the other end of the valve 43 is connected to the gas supply source 41, which is a supply source of purge gas, via the MFC 42.
  • the purge gas is an inert gas such as helium gas, argon gas, or nitrogen gas.
  • the MFC 42 controls the flow rate of the purge gas supplied from the gas supply source 41 at the time of film formation on the back surface of the wafer W, and the flow-controlled purge gas is supplied into the processing container 10 via the valve 43 and the gas introduction port 14. Supply to.
  • the gas introduction port 14 supplies purge gas to the surface of the wafer W on which the element is formed while the wafer W is supported by the support ring 21.
  • the gas introduction port 14 is an example of a second purge gas supply port.
  • the semiconductor manufacturing system 100 in this embodiment includes a measuring device 400, a control device 110, and a second film forming device 500.
  • the measuring device 400 measures the height distribution of the wafer W.
  • the control device 110 calculates a film formation pattern for reducing the stress applied to the wafer W from the height distribution measured by the measuring device 400.
  • the second film forming apparatus 500 forms a film on the back surface of the surface of the wafer W on which the element is formed according to the film forming pattern calculated by the control device 110.
  • the second film forming apparatus 500 includes a processing container 10, a support ring 21, and a film forming section 31.
  • the support ring 21 supports the peripheral edge of the wafer W arranged in the processing container 10.
  • the film forming unit 31 has a plurality of supply units 310, and forms a film on the back surface of the wafer W by supplying the material gas from each supply unit 310 toward the back surface of the wafer W.
  • the control device 110 independently controls the supply and stop of the supply of the material gas from each supply unit 310. As a result, the man-hours required for film formation for reducing the warpage of the wafer W can be reduced.
  • the film forming unit 31 moves relative to the wafer W in the processing container 10. As a result, a film having an arbitrary pattern can be efficiently formed on the back surface of the wafer W.
  • the wafer W has a substantially disk shape, and the plurality of supply units 310 are arranged below the back surface of the wafer W in the radial direction of the wafer W.
  • the second film forming apparatus 500 includes a driving unit 33 that supports the film forming section 31 and rotates the film forming section 31 around the central axis of the wafer W. As a result, a film having an arbitrary pattern can be efficiently formed on the back surface of the wafer W.
  • each supply unit 310 has a first supply port 311 for supplying the material gas to the back surface of the wafer W, and an exhaust port 312 adjacent to the first supply port 311.
  • the material gas supplied from the first supply port 311 to the back surface of the wafer W is made of material from the first supply port 311 via the exhaust port 312 adjacent to the first supply port 311.
  • the gas is exhausted in the direction opposite to the direction in which the gas is supplied.
  • the material gas supplied from each supply unit 310 is suppressed from entering the region of the other supply unit 310.
  • a film can be formed on the back surface of the wafer W for each region of the supply unit 310.
  • the first supply port 311 is formed in the film forming unit 31 so as to surround the exhaust port 312 adjacent to the first supply port 311.
  • the material gas supplied from each supply unit 310 is suppressed from entering the region of the other supply unit 310.
  • a film can be formed on the back surface of the wafer W for each region of the supply unit 310.
  • the purge gas supply mechanism 40 for supplying the purge gas to the surface of the wafer W on which the element is formed is provided in a state where the wafer W is supported by the support ring 21.
  • the purge gas supply mechanism 40 for supplying the purge gas to the surface of the wafer W on which the element is formed is provided in a state where the wafer W is supported by the support ring 21.
  • the film forming portion 31 is formed with a flow path 320 and a flow path 321 through which a temperature-controlled heat medium flows.
  • a temperature-controlled heat medium flows in the flow path 320 and the flow path 321, it is possible to suppress the deposition of the depot on the film forming portion 31.
  • the plurality of supply units 310 are arranged side by side in a row along the radial direction of the circle centered on the axis X, for example, as shown in FIG.
  • the disclosed technique is not limited to this, and if they are arranged at different positions in the radial direction of the circle centered on the axis X, they may not be arranged side by side in a row.
  • the plurality of supply units 310 may be arranged at positions different from each other by the width L1 of the respective supply units 310 in the radial direction r of the circle centered on the axis X.
  • FIG. 7 is a diagram showing another example of the arrangement of the supply unit 310.
  • each supply unit 310 is arranged at a different position in the radial direction of the circle centered on the axis X, and the total length of the width L1 of each supply unit 310 is a plurality of lengths. It has the same length as the length L2 of the region where the supply unit 310 is arranged.
  • the length L2 may be, for example, the same length as the radius of the wafer W.
  • the plurality of supply portions 310 can be densely arranged in the radial direction of the circle centered on the axis X, and a film formation pattern having a finer shape can be formed on the back surface of the wafer W.
  • the plurality of supply units 310 are arranged in the film forming unit 31 so as to be arranged in a row from the axis X in the radial direction of the circle centered on the axis X. Is not limited to this.
  • the plurality of supply units 310 are arranged in the film forming unit 31 so as to be arranged in the radial direction of the circle centered on the axis X from the axis X, for example, as shown in FIG. 8, a plurality of directions It may be arranged side by side in. As a result, the time required to form the film formation pattern on the back surface of the wafer W can be shortened.
  • FIG. 8 is a diagram showing another example of the film forming mechanism 30.
  • the plurality of supply units 310 may be arranged in the film forming unit 31 so as to be arranged in the diameter direction of the circle centered on the axis X.
  • the plurality of supply units 310 are arranged in the film forming unit 31 so as to be arranged in the radial direction of the circle centered on the axis X and in the direction intersecting each other. You may be.
  • the plurality of supply units 310 are arranged so as to be arranged in two directions from the axis X, and in the example of FIG.
  • the plurality of supply units 310 are arranged from the axis X. They are arranged so as to line up in four directions.
  • the plurality of supply units 310 may be arranged so as to be arranged in three directions from the axis X, or may be arranged so as to be arranged in five or more directions from the axis X.
  • a film having a predetermined pattern is formed on the back surface of the wafer W by supplying the material gas to the back surface of the wafer W, but the disclosed technique is not limited to this.
  • the second gas may be turned into plasma, and a film having a predetermined pattern may be formed on the back surface of the wafer W using the active species contained in the plasma.
  • FIG. 9 is a cross-sectional view showing another example of the film forming portion 31.
  • the electrode 3131 and the electrode 3132 are provided on the inner side wall of the second supply port 313 with the insulating member 3130 interposed therebetween.
  • the electrode 3131 and the electrode 3132 are formed in a plate shape and are arranged on the inner side wall of the second supply port 313 so as to face each other.
  • a high frequency power supply 3133 is electrically connected to the electrode 3131, and the electrode 3132 is grounded.
  • the electrode 3131, the electrode 3132, and the high-frequency power supply 3133 are examples of the plasma generation unit.
  • the film forming section 31 may be provided with a purge gas supply port 330 so as to surround the plurality of supply sections 310, for example, as shown in FIGS. 10 and 11.
  • FIG. 10 is a diagram showing another example of the film forming mechanism 30.
  • FIG. 11 is a cross-sectional view showing another example of the film forming portion 31.
  • the supply port 330 is connected to the flow path 332 through which the purge gas flows through the supply hole 331, for example, as shown in FIG.
  • the purge gas is an inert gas such as helium gas, argon gas, or nitrogen gas.
  • the purge gas supplied into the flow path 332 from a gas supply mechanism (not shown) is supplied to the back surface of the wafer W from the supply port 330 through the supply hole 331.
  • the purge gas supplied to the back surface of the wafer W diffuses along the back surface of the wafer W and is exhausted through the exhaust port 312.
  • the supply port 330 supplies purge gas in the same direction in which gas is supplied from each supply unit 310.
  • the supply port 330 is an example of the first purge gas supply port.
  • a purge gas supply port 330 may be provided so as to surround the plurality of supply sections 310.
  • the film forming section 31 moves with respect to the wafer W, but if the film forming section 31 moves relative to the wafer W in the processing container 10, for example, FIG. 12 shows.
  • the wafer W may be moved so as to be used.
  • FIG. 12 is a diagram showing another example of the holding mechanism 20.
  • the holding mechanism 20 has a support ring 21, a plurality of support portions 26, a pedestal 27, and a drive portion 28.
  • the support ring 21 is fixed to a plurality of support portions 26 and is supported by the plurality of support portions 26.
  • Each support portion 26 is fixed to a pedestal 27.
  • the drive unit 28 rotates the pedestal 27 about the axis X. As the pedestal 27 rotates about the axis X, the wafer W held on the support ring 21 rotates about the axis X together with the support ring 21 supported by the support portion 26.
  • the drive unit 28 is an example of a rotation mechanism. In the example of FIG. 12, the film forming portion 31 does not rotate.
  • the wafer W rotates relative to the film forming section 31, and each of the supply sections 310 of the film forming section 31 can form a film at an arbitrary position on the back surface of the wafer W. Both the wafer W and the film forming portion 31 may rotate in opposite directions.
  • the film forming portion 31 moves relative to the wafer W, but if the film forming can be performed at an arbitrary position on the back surface of the wafer W, the film forming portion is formed with respect to the wafer W. 31 does not have to move relatively.
  • the film forming portion 31 is configured as shown in FIG. 13, for example.
  • FIG. 13 is a diagram showing another example of the film forming portion 31.
  • a plurality of surfaces of the film forming portion 31 facing the back surface of the wafer W which are the same size as the region of the back surface of the wafer W or wider than the region of the back surface of the wafer W.
  • the supply units 310 are densely arranged. By controlling the supply of the material gas from each supply unit 310, the film can be formed at an arbitrary position on the back surface of the wafer W.
  • the film forming portion 31 moves in the direction of rotation relative to the wafer W to form a film at an arbitrary position on the back surface of the wafer W. Not limited to. If the film forming section 31 moves relative to the wafer W, the film forming section 31 may move in another direction with respect to the wafer W.
  • FIG. 14 is a diagram showing another example in the moving direction of the film forming portion 31.
  • the film-forming portion 31 may be moved along the back surface of the wafer W in a direction intersecting the longitudinal direction of the film-forming portion 31.
  • the length of the region of the film forming section 31 in which the plurality of supply sections 310 are arranged is the same as the diameter of the wafer W, or the length of the wafer W. Longer than the diameter.
  • the measuring device 400 measures the height distribution of the wafer W after the element is formed, and the control device 110 calculates the film formation pattern based on the measurement result.
  • Technology is not limited to this. For example, when an element is formed on the wafer W so that the height distribution of the wafer W becomes a preset distribution, the height distribution of the wafer W after the element is formed is measured. It does not have to be. In this case, a film formation pattern corresponding to the preset height distribution is formed on the back surface of the wafer W without measuring the height distribution.
  • a predetermined film formation pattern is formed on the back surface of the wafer W after the element is formed, but the disclosed technique is not limited to this.
  • the height is set in advance before the element is formed on the wafer W.
  • a film forming pattern corresponding to the distribution of the above may be formed on the back surface of the wafer W.
  • the exhaust port 312 is arranged around the second supply port 313 so as to surround the second supply port 313, and around the exhaust port 312 so as to surround the exhaust port 312.
  • the first supply port 311 is arranged in, but the disclosed technology is not limited to this.
  • the first supply port 311 and the exhaust port 312, and the second supply port 313 are formed in a straight line, and the first supply port 311 and the second supply port 313 are laterally sandwiched by the exhaust port 312. They may be arranged side by side.
  • the temperature of the wafer W held on the support ring 21 is controlled by the temperature control unit 12 such as a heater or a lamp arranged on the lower surface of the lid 11, but the disclosed technique is described. Not limited to this.
  • the processing container 10 and the lid 11 are made of quartz or the like, and the processing container 10 and the lid 11 are outside the processing container 10 and the lid 11.
  • a temperature control mechanism for controlling the temperature of the lid may be provided.
  • the processing container 10 and the lid 11 are controlled to predetermined temperatures by the temperature control mechanism, and the temperature of the wafer W held on the support ring 21 is adjusted by the radiant heat from the processing container 10 and the lid 11. Since the radiant heat is applied to the wafer W not only from above the wafer W held on the support ring 21 but also from the surroundings, the temperature of the wafer W can be kept more uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

This film-forming device is provided with a processing container, a support ring, a film-forming unit, and a control unit. The support ring supports the peripheral edge of a substrate disposed on the processing container. The film-forming unit has a plurality of supply ports. The film forming unit supplies a material gas from the supply ports to the reverse surface of the substrate in relation to the surface on which an element is formed, and thereby forms a film on the reverse surface of the substrate. The control unit independently controls the supplying of the material gas, and the stopping of the supplying of the material gas, from each of the supply ports.

Description

成膜装置、成膜方法、および成膜システムFilm formation equipment, film formation method, and film formation system
 本開示の種々の側面および実施形態は、成膜装置、成膜方法、および成膜システムに関する。 Various aspects and embodiments of the present disclosure relate to film forming equipment, film forming methods, and film forming systems.
 半導体デバイスの製造過程では、基板上に様々な素子が形成される。素子は、複数の異なる材料を基板上に成膜したり、成膜された材料をエッチングする等によって形成される。基板とその上に成膜される材料とは、線膨張係数が異なるため、成膜後に基板が室温に戻ると、基板に応力が発生し、反りやクラックが発生する場合がある。そこで、素子形成後の基板に加わる応力を低減するために、素子が形成された面の裏面に成膜を行う技術が知られている(例えば、下記特許文献1参照)。 In the process of manufacturing semiconductor devices, various elements are formed on the substrate. The device is formed by forming a plurality of different materials on a substrate, etching the formed materials, and the like. Since the linear expansion coefficient differs between the substrate and the material formed on the substrate, when the substrate returns to room temperature after the film formation, stress may be generated on the substrate, and warpage or cracks may occur. Therefore, in order to reduce the stress applied to the substrate after the element is formed, there is known a technique of forming a film on the back surface of the surface on which the element is formed (see, for example, Patent Document 1 below).
米国特許出願公開第2015/0340225号明細書U.S. Patent Application Publication No. 2015/0340225
 本開示は、基板の反り等を低減するための成膜に要する工数を削減することができる成膜装置、成膜方法、および成膜システムを提供する。 The present disclosure provides a film forming apparatus, a film forming method, and a film forming system capable of reducing the man-hours required for film formation in order to reduce the warpage of the substrate.
 本開示の一側面は、成膜装置であって、処理容器と、支持リングと、成膜部と、制御部とを備える。支持リングは、処理容器内に配置された基板の周縁を支持する。成膜部は、複数の供給口を有し、素子が形成される基板の面の裏面に向かってそれぞれの供給口から材料ガスを供給することにより、基板の裏面に成膜を行う。制御部は、それぞれの供給口からの材料ガスの供給および供給停止を独立に制御する。 One aspect of the present disclosure is a film forming apparatus, which includes a processing container, a support ring, a film forming section, and a control section. The support ring supports the periphery of the substrate placed in the processing vessel. The film forming section has a plurality of supply ports, and forms a film on the back surface of the substrate by supplying the material gas from each supply port toward the back surface of the surface of the substrate on which the element is formed. The control unit independently controls the supply and stop of the supply of the material gas from each supply port.
 本開示の種々の側面および実施形態によれば、基板の反り等を低減するための成膜に要する工数を削減することができる。 According to various aspects and embodiments of the present disclosure, it is possible to reduce the man-hours required for film formation to reduce the warpage of the substrate.
図1は、本開示の一実施形態における半導体製造システムの一例を示すシステム構成図である。FIG. 1 is a system configuration diagram showing an example of a semiconductor manufacturing system according to an embodiment of the present disclosure. 図2は、本開示の一実施形態における第2の成膜装置の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of a second film forming apparatus according to the embodiment of the present disclosure. 図3は、本開示の一実施形態における保持機構の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of the holding mechanism according to the embodiment of the present disclosure. 図4は、本開示の一実施形態における成膜機構の一例を示す斜視図である。FIG. 4 is a perspective view showing an example of the film forming mechanism according to the embodiment of the present disclosure. 図5は、本開示の一実施形態における成膜部の一例を示す部分断面図である。FIG. 5 is a partial cross-sectional view showing an example of the film-forming portion according to the embodiment of the present disclosure. 図6は、本開示の一実施形態におけるガスの流れの一例を説明するための模式図である。FIG. 6 is a schematic diagram for explaining an example of gas flow in one embodiment of the present disclosure. 図7は、供給部の配置の他の例を示す図である。FIG. 7 is a diagram showing another example of the arrangement of the supply unit. 図8は、成膜機構の他の例を示す図である。FIG. 8 is a diagram showing another example of the film forming mechanism. 図9は、成膜部の他の例を示す断面図である。FIG. 9 is a cross-sectional view showing another example of the film-forming portion. 図10は、成膜機構の他の例を示す図である。FIG. 10 is a diagram showing another example of the film forming mechanism. 図11は、成膜部の他の例を示す断面図である。FIG. 11 is a cross-sectional view showing another example of the film-forming portion. 図12は、保持機構の他の例を示す図である。FIG. 12 is a diagram showing another example of the holding mechanism. 図13は、成膜部の他の例を示す図である。FIG. 13 is a diagram showing another example of the film-forming portion. 図14は、成膜部の移動方向の他の例を示す図である。FIG. 14 is a diagram showing another example in the moving direction of the film-forming portion.
 以下に、開示される成膜装置、成膜方法、および成膜システムの実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態により、開示される成膜装置、成膜方法、および成膜システムが限定されるものではない。 The disclosed film forming apparatus, film forming method, and embodiment of the film forming system will be described in detail below with reference to the drawings. It should be noted that the following embodiments do not limit the disclosed film forming apparatus, film forming method, and film forming system.
 ところで、素子は、基板に成膜された材料が様々な形状にエッチングされることにより形成される。そのため、素子が形成された後の基板に加わる応力は、基板上で複雑な分布となる。これにより、複雑な分布となった応力をキャンセルするために基板の裏面に成膜すべき膜のパターンも複雑になる。 By the way, the element is formed by etching the material formed on the substrate into various shapes. Therefore, the stress applied to the substrate after the element is formed has a complicated distribution on the substrate. As a result, the pattern of the film to be formed on the back surface of the substrate in order to cancel the stress having a complicated distribution becomes complicated.
 基板の裏面に複雑なパターンの膜を形成する場合、例えば、基板の裏面にマスク材料が成膜され、フォトリソグラフィ等により、成膜されたマスクに応力をキャンセルするためのパターンが形成される。そして、基板の裏面にマスクパターンに応じた形状の膜が成膜される。 When forming a film having a complicated pattern on the back surface of a substrate, for example, a mask material is formed on the back surface of the substrate, and a pattern for canceling stress is formed on the formed mask by photolithography or the like. Then, a film having a shape corresponding to the mask pattern is formed on the back surface of the substrate.
 また、基板上に形成された素子の損傷や変質を防ぐために、素子を保護するための保護膜を素子が形成された基板の面に積層させる工程や、裏面への成膜が終了した後に、保護膜を除去する工程も必要となる。このように、裏面に所定のパターンの膜を成膜するために複数の工程が必要となる。そのため、基板を用いた半導体装置の製造におけるスループットが低下する。 Further, in order to prevent damage or deterioration of the element formed on the substrate, after the step of laminating a protective film for protecting the element on the surface of the substrate on which the element is formed or after the film formation on the back surface is completed. A step of removing the protective film is also required. As described above, a plurality of steps are required to form a film having a predetermined pattern on the back surface. Therefore, the throughput in the manufacture of the semiconductor device using the substrate is lowered.
 そこで、本開示は、基板の反り等を低減するための成膜に要する工数を削減することができる技術を提供する。 Therefore, the present disclosure provides a technique capable of reducing the man-hours required for film formation in order to reduce the warpage of the substrate.
[半導体製造システム]
 図1は、本開示の一実施形態における半導体製造システム100の一例を示すシステム構成図である。半導体製造システム100は、第1の成膜装置200、エッチング装置300、測定装置400、および第2の成膜装置500を有する。これらの装置は、平面形状が七角形をなす真空搬送室101の4つの側壁にそれぞれゲートバルブGを介して接続されている。半導体製造システム100は、マルチチャンバータイプの真空処理システムであり、真空搬送室101内は、真空ポンプにより排気されて所定の真空度に保たれている。半導体製造システム100は、成膜システムの一例である。
[Semiconductor manufacturing system]
FIG. 1 is a system configuration diagram showing an example of the semiconductor manufacturing system 100 according to the embodiment of the present disclosure. The semiconductor manufacturing system 100 includes a first film forming apparatus 200, an etching apparatus 300, a measuring apparatus 400, and a second film forming apparatus 500. These devices are connected to the four side walls of the vacuum transfer chamber 101 having a heptagonal planar shape via a gate valve G, respectively. The semiconductor manufacturing system 100 is a multi-chamber type vacuum processing system, and the inside of the vacuum transfer chamber 101 is exhausted by a vacuum pump to maintain a predetermined degree of vacuum. The semiconductor manufacturing system 100 is an example of a film forming system.
 第1の成膜装置200は、基板の一例である略円板状のウエハW上に導電膜や絶縁膜等を成膜する。エッチング装置300は、第1の成膜装置200によってウエハW上に成膜された導電膜等を、ドライエッチング等により所定パターンにエッチングする。第1の成膜装置200による成膜と、エッチング装置300によるエッチングとが繰り返されることにより、ウエハW上に半導体装置に用いられる素子が形成される。 The first film forming apparatus 200 forms a conductive film, an insulating film, or the like on a substantially disk-shaped wafer W, which is an example of a substrate. The etching apparatus 300 etches the conductive film or the like formed on the wafer W by the first film forming apparatus 200 into a predetermined pattern by dry etching or the like. By repeating the film formation by the first film forming apparatus 200 and the etching by the etching apparatus 300, an element used for the semiconductor apparatus is formed on the wafer W.
 測定装置400は、素子が形成されたウエハWの高さの分布を測定し、測定結果を制御装置110へ出力する。ウエハWの高さの分布は、例えばレーザ光変位計等の測定器を用いて測定することができる。例えば、素子が形成されたウエハWが測定装置400内の載置台に載置され、測定装置400の天井部に配置されたレーザ光変位計が、載置台上のウエハWの上方を水平方向に移動しながら、素子が形成されたウエハWの面にレーザ光を照射する。 The measuring device 400 measures the height distribution of the wafer W on which the element is formed, and outputs the measurement result to the control device 110. The height distribution of the wafer W can be measured using a measuring instrument such as a laser beam displacement meter. For example, the wafer W on which the element is formed is mounted on a mounting table in the measuring device 400, and a laser beam displacement meter placed on the ceiling of the measuring device 400 horizontally above the wafer W on the mounting table. While moving, the surface of the wafer W on which the element is formed is irradiated with a laser beam.
 レーザ光変位計は、ウエハWによって反射された反射光を測定することにより、ウエハWの高さを測定することができる。測定された高さの分布は、ウエハWの歪みや反りを示す情報に対応する。つまり、膜の有無や膜の厚い部分と薄い部分とによりウエハWに局所的な歪や反りが生じる。 The laser beam displacement meter can measure the height of the wafer W by measuring the reflected light reflected by the wafer W. The measured height distribution corresponds to information indicating the distortion and warpage of the wafer W. That is, local distortion and warpage occur in the wafer W depending on the presence or absence of the film and the thick and thin portions of the film.
 制御装置110は、測定装置400によって測定された測定結果に基づいて、素子が形成されたウエハWの面の裏面(以下、単に裏面と記載する)に形成される成膜パターンであって、ウエハWに生じている歪みや反りを低減するための成膜パターンを算出する。 The control device 110 is a film forming pattern formed on the back surface of the surface of the wafer W on which the element is formed (hereinafter, simply referred to as the back surface) based on the measurement result measured by the measuring device 400, and is a wafer. The film formation pattern for reducing the distortion and warpage generated in W is calculated.
 第2の成膜装置500は、制御装置110によって算出された成膜パターンに従って、ウエハWの裏面に、所定の膜を成膜する。これにより、ウエハWの一方の面に形成された素子によってウエハWに生じた応力が低減され、ウエハWの歪みや反りが低減される。 The second film forming apparatus 500 forms a predetermined film on the back surface of the wafer W according to the film forming pattern calculated by the control device 110. As a result, the stress generated on the wafer W by the element formed on one surface of the wafer W is reduced, and the distortion and warpage of the wafer W are reduced.
 真空搬送室101の他の3つの側壁には、3つのロードロック室102がゲートバルブG1を介して接続されている。ロードロック室102を挟んで真空搬送室101の反対側には、大気搬送室103が設けられている。3つのロードロック室102のそれぞれは、ゲートバルブG2を介して大気搬送室103に接続されている。ロードロック室102は、大気搬送室103と真空搬送室101との間でウエハWを搬送する際に、大気圧と真空との間で圧力制御を行う。 Three load lock chambers 102 are connected to the other three side walls of the vacuum transfer chamber 101 via a gate valve G1. An air transport chamber 103 is provided on the opposite side of the vacuum transport chamber 101 with the load lock chamber 102 in between. Each of the three load lock chambers 102 is connected to the atmospheric transport chamber 103 via a gate valve G2. The load lock chamber 102 controls the pressure between the atmospheric pressure and the vacuum when the wafer W is transported between the atmospheric transport chamber 103 and the vacuum transport chamber 101.
 大気搬送室103のゲートバルブG2が設けられた側面とは反対側の側面には、ウエハWを収容するキャリア(FOUP(Front-Opening Unified Pod)等)Cを取り付けるための3つのポート105が設けられている。また、大気搬送室103の側壁には、ウエハWのアライメントを行うためのアライメント室104が設けられている。大気搬送室103内には清浄空気のダウンフローが形成される。 On the side surface of the air transport chamber 103 opposite to the side surface on which the gate valve G2 is provided, three ports 105 for attaching a carrier (FOUP (Front-Opening Unified Pod), etc.) C for accommodating the wafer W are provided. Has been done. Further, an alignment chamber 104 for aligning the wafer W is provided on the side wall of the air transport chamber 103. A downflow of clean air is formed in the air transport chamber 103.
 真空搬送室101内には、ロボットアーム等の搬送機構106が設けられている。搬送機構106は、第1の成膜装置200、エッチング装置300、測定装置400、第2の成膜装置500、およびそれぞれのロードロック室102の間でウエハWを搬送する。搬送機構106は、独立に移動可能な2つのアーム107aおよび107bを有する。 A transfer mechanism 106 such as a robot arm is provided in the vacuum transfer chamber 101. The transport mechanism 106 transports the wafer W between the first film forming apparatus 200, the etching apparatus 300, the measuring apparatus 400, the second film forming apparatus 500, and the respective load lock chamber 102. The transport mechanism 106 has two arms 107a and 107b that can move independently.
 大気搬送室103内には、ロボットアーム等の搬送機構108が設けられている。搬送機構108は、それぞれのキャリアC、それぞれのロードロック室102、およびアライメント室104の間でウエハWを搬送する。 A transport mechanism 108 such as a robot arm is provided in the atmospheric transport chamber 103. The transfer mechanism 108 transfers the wafer W between each carrier C, each load lock chamber 102, and an alignment chamber 104.
 半導体製造システム100は、メモリ、プロセッサ、および入出力インターフェイスを有する制御装置110を有する。メモリには、プロセッサによって実行されるプログラム、および、各処理の条件等を含むレシピが格納されている。プロセッサは、メモリから読み出したプログラムを実行し、メモリ内に記憶されたレシピに基づいて、入出力インターフェイスを介して、半導体製造システム100の各部を制御する。制御装置110は、制御部および算出装置の一例である。 The semiconductor manufacturing system 100 includes a control device 110 having a memory, a processor, and an input / output interface. The memory stores a program executed by the processor and a recipe including conditions for each process. The processor executes a program read from the memory and controls each part of the semiconductor manufacturing system 100 via the input / output interface based on the recipe stored in the memory. The control device 110 is an example of a control unit and a calculation device.
[第2の成膜装置500の詳細]
 図2は、本開示の一実施形態における第2の成膜装置500の一例を示す概略断面図である。第2の成膜装置500は、内部に空間が形成された有底で筒状の処理容器10を有する。処理容器10の上部は、蓋体11によって塞がれている。処理容器10の側壁には、開口13が設けられており、開口13は、ゲートバルブGによって開閉される。
[Details of the Second Deposition Device 500]
FIG. 2 is a schematic cross-sectional view showing an example of the second film forming apparatus 500 according to the embodiment of the present disclosure. The second film forming apparatus 500 has a bottomed and tubular processing container 10 having a space formed inside. The upper part of the processing container 10 is closed by the lid 11. An opening 13 is provided on the side wall of the processing container 10, and the opening 13 is opened and closed by the gate valve G.
 処理容器10の底部には、排気管15の一端が接続されている。排気管15の他端は、APC(Automatic Pressure Controller)バルブ16を介して排気装置17に接続されている。排気装置17を駆動することにより、排気管15を介して処理容器10内のガスが排気され、APCバルブ16の開度を調整することにより、処理容器10内の圧力が調整される。 One end of the exhaust pipe 15 is connected to the bottom of the processing container 10. The other end of the exhaust pipe 15 is connected to the exhaust device 17 via an APC (Automatic Pressure Controller) valve 16. By driving the exhaust device 17, the gas in the processing container 10 is exhausted through the exhaust pipe 15, and the pressure in the processing container 10 is adjusted by adjusting the opening degree of the APC valve 16.
 処理容器10内には、処理容器10内においてウエハWを保持する保持機構20が設けられている。保持機構20は、支持リング21、複数の支持部22、および複数の駆動部23を有する。さらに図3を参照して説明を続ける。図3は、本開示の一実施形態における保持機構20の一例を示す斜視図である。 A holding mechanism 20 for holding the wafer W in the processing container 10 is provided in the processing container 10. The holding mechanism 20 has a support ring 21, a plurality of support portions 22, and a plurality of drive portions 23. Further, the description will be continued with reference to FIG. FIG. 3 is a perspective view showing an example of the holding mechanism 20 according to the embodiment of the present disclosure.
 支持リング21は、略円環状の形状であり、ウエハWの周縁を下方から支持する。支持リング21の中心軸を軸Xと定義する。また、例えば図3に示されるように、支持リング21の一部は、アーム107aと干渉しないように切りかかれている。 The support ring 21 has a substantially annular shape and supports the peripheral edge of the wafer W from below. The central axis of the support ring 21 is defined as the axis X. Further, for example, as shown in FIG. 3, a part of the support ring 21 is cut so as not to interfere with the arm 107a.
 それぞれの支持部22は、支持リング21に固定されており、支持リング21を支持する。本実施形態において、保持機構20は、3本の支持部22を有する。 Each support portion 22 is fixed to the support ring 21 and supports the support ring 21. In this embodiment, the holding mechanism 20 has three support portions 22.
 それぞれの駆動部23は、蓋体11上に配置され、支持部22を上下方向に移動させる。本実施形態において、保持機構20は、3個の支持部22を有し、1つの駆動部23は、1つの支持部22を上下方向に移動させる。なお、1つの駆動部23により、複数の支持部22が駆動されてもよい。 Each drive unit 23 is arranged on the lid body 11 and moves the support unit 22 in the vertical direction. In the present embodiment, the holding mechanism 20 has three support portions 22, and one drive portion 23 moves one support portion 22 in the vertical direction. A plurality of support units 22 may be driven by one drive unit 23.
 例えば、それぞれの駆動部23が支持部22を下降させる。そして、素子が形成された面が上方を向くようにウエハWを載せたアーム107aが、ウエハWの中心軸と軸Xとを合わせるように支持リング21上の位置まで進入する。そして、それぞれの駆動部23が支持部22を上昇させることにより、ウエハWが支持リング21に受け渡される。そして、アーム107aが処理容器10内から退避した後、それぞれの駆動部23が支持部22を下降させることにより、支持リング21が軸Xに沿って下降し、ウエハWが成膜時の位置まで下降する。 For example, each drive unit 23 lowers the support unit 22. Then, the arm 107a on which the wafer W is placed so that the surface on which the element is formed faces upward enters the position on the support ring 21 so that the central axis of the wafer W and the axis X are aligned with each other. Then, each drive unit 23 raises the support unit 22, so that the wafer W is delivered to the support ring 21. Then, after the arm 107a is retracted from the processing container 10, each drive unit 23 lowers the support portion 22, so that the support ring 21 is lowered along the axis X and the wafer W reaches the position at the time of film formation. Descend.
 蓋体11の下面には、支持リング21上に保持されたウエハWの温度を制御する温度制御部12が設けられている。温度制御部12は、例えばヒータやランプ等であり、輻射熱によって支持リング21上に保持されたウエハWの温度を、成膜に適した温度に制御する。 On the lower surface of the lid 11, a temperature control unit 12 for controlling the temperature of the wafer W held on the support ring 21 is provided. The temperature control unit 12 is, for example, a heater, a lamp, or the like, and controls the temperature of the wafer W held on the support ring 21 by radiant heat to a temperature suitable for film formation.
 処理容器10の下部には、ウエハWの裏面に、制御装置110によって算出された成膜パターンに応じた膜を成膜する成膜機構30が配置されている。成膜機構30は、成膜部31、支持部32、および駆動部33を有する。さらに図4および図5を参照して説明を続ける。図4は、本開示の一実施形態における成膜機構30の一例を示す斜視図である。図5は、本開示の一実施形態における成膜部31の一例を示す部分断面図である。 In the lower part of the processing container 10, a film forming mechanism 30 for forming a film according to the film forming pattern calculated by the control device 110 is arranged on the back surface of the wafer W. The film forming mechanism 30 has a film forming section 31, a support section 32, and a driving section 33. Further, the description will be continued with reference to FIGS. 4 and 5. FIG. 4 is a perspective view showing an example of the film forming mechanism 30 according to the embodiment of the present disclosure. FIG. 5 is a partial cross-sectional view showing an example of the film forming portion 31 according to the embodiment of the present disclosure.
 成膜部31の上面には、例えば図4に示されるように、複数の供給部310-1~310-n(nは、2以上の整数)が設けられている。複数の供給部310-1~310-nは、支持リング21に保持されたウエハWの下方に、ウエハWの径方向、即ち、軸Xを中心とする円の径方向に沿って並べて配置されている。また、軸Xを中心とする円の径方向において、複数の供給部310-1~310-nが配置されている領域の長さは、ウエハWの半径以上の長さである。なお、以下では、供給部310-1~310-nのそれぞれを区別することなく総称する場合に供給部310と記載する。 As shown in FIG. 4, for example, a plurality of supply units 310-1 to 310-n (n is an integer of 2 or more) are provided on the upper surface of the film forming unit 31. The plurality of supply units 310-1 to 310-n are arranged side by side below the wafer W held by the support ring 21 along the radial direction of the wafer W, that is, the radial direction of the circle centered on the axis X. ing. Further, in the radial direction of the circle centered on the axis X, the length of the region where the plurality of supply units 310-1 to 310-n are arranged is longer than the radius of the wafer W. In the following, the supply units 310-1 to 310-n will be referred to as the supply unit 310 when they are generically referred to without distinction.
 それぞれの供給部310は、例えば図5に示されるように、第1の供給口311、排気口312、および第2の供給口313を有する。第1の供給口311は、成膜に用いられる第1のガスをウエハWの裏面に供給する。排気口312は、ウエハWの裏面に供給されたガスを吸引する。第2の供給口313は、成膜に用いられる第2のガスをウエハWの裏面に供給する。第1のガスおよび第2のガスは、材料ガスの一例である。例えば図5に示されるように、排気口312は、第1の供給口311および第2の供給口313に隣接している。また、第1の供給口311は、排気口312を囲むように成膜部31に形成されている。 Each supply unit 310 has a first supply port 311, an exhaust port 312, and a second supply port 313, for example, as shown in FIG. The first supply port 311 supplies the first gas used for film formation to the back surface of the wafer W. The exhaust port 312 sucks the gas supplied to the back surface of the wafer W. The second supply port 313 supplies the second gas used for film formation to the back surface of the wafer W. The first gas and the second gas are examples of material gases. For example, as shown in FIG. 5, the exhaust port 312 is adjacent to the first supply port 311 and the second supply port 313. Further, the first supply port 311 is formed in the film forming portion 31 so as to surround the exhaust port 312.
 成膜部31内には、例えば図5に示されるように、第1のガスが流れる複数の流路314、排気されるガスが流れる複数の流路315、および、第2のガスが流れる複数の流路316が形成されている。 In the film forming section 31, for example, as shown in FIG. 5, a plurality of flow paths 314 through which the first gas flows, a plurality of flow paths 315 through which the exhaust gas flows, and a plurality of flow paths 315 through which the second gas flows. Flow path 316 is formed.
 1つの流路314は、供給穴317を介して、1つの供給部310の第1の供給口311に繋がっている。流路314に供給された第1のガスは、対応する供給穴317を介して、対応する供給部310の第1の供給口311からウエハWの裏面に供給される。 One flow path 314 is connected to the first supply port 311 of one supply unit 310 via a supply hole 317. The first gas supplied to the flow path 314 is supplied to the back surface of the wafer W from the first supply port 311 of the corresponding supply unit 310 through the corresponding supply hole 317.
 また、1つの流路315は、排気穴318を介して、1つの供給部310の排気口312に繋がっている。排気口312から吸引されたガスは、対応する排気穴318を介して、対応する流路315へ流れ、排気される。 Further, one flow path 315 is connected to the exhaust port 312 of one supply unit 310 via the exhaust hole 318. The gas sucked from the exhaust port 312 flows to the corresponding flow path 315 through the corresponding exhaust hole 318 and is exhausted.
 また、1つの流路316は、供給穴319を介して、1つの供給部310の第2の供給口313に繋がっている。流路316に供給された第2のガスは、対応する供給穴319を介して、対応する供給部310の第2の供給口313からウエハWの裏面に供給される。供給部310からウエハWの裏面へのガスの供給および供給停止、ならびに、供給部310からウエハWの裏面へ供給されガスの排気および排気停止は、それぞれの供給部310において独立に制御される。 Further, one flow path 316 is connected to the second supply port 313 of one supply unit 310 via the supply hole 319. The second gas supplied to the flow path 316 is supplied to the back surface of the wafer W from the second supply port 313 of the corresponding supply unit 310 through the corresponding supply hole 319. The supply and suspension of gas supply from the supply unit 310 to the back surface of the wafer W, and the exhaust and exhaust stop of the gas supplied from the supply unit 310 to the back surface of the wafer W are independently controlled by the respective supply units 310.
 また、成膜部31内には、ガルデン(登録商標)等の熱媒体が流れる流路320および流路321が形成されている。図示しない温度制御装置によって温度制御された熱媒体が流路320および流路321内を循環することにより、成膜部31の温度が所定温度に制御される。成膜部31の温度を、反応副生成物(いわゆるデポ)が発生し難い温度に制御することにより、成膜部31へのデポの堆積を抑制することができる。 Further, in the film forming portion 31, a flow path 320 and a flow path 321 through which a heat medium such as Galden (registered trademark) flows are formed. The temperature of the film forming unit 31 is controlled to a predetermined temperature by circulating the heat medium whose temperature is controlled by a temperature control device (not shown) in the flow path 320 and the flow path 321. By controlling the temperature of the film forming section 31 to a temperature at which reaction by-products (so-called depots) are unlikely to be generated, it is possible to suppress the deposition of depots on the film forming section 31.
 図6は、本開示の一実施形態におけるガスの流れの一例を説明するための模式図である。例えば、第1の供給口311から供給された第1のガス、および、第2の供給口313から供給された第2のガスは、例えば図6に示されるように、ウエハWの裏面に向かって供給される。ウエハWの裏面に供給された第1のガスおよび第2のガスは、ウエハWの裏面に沿って拡散する。そして、第1のガスと第2のガスとがウエハWの裏面において混合されることにより、ウエハWの裏面に所定の膜が成膜される。 FIG. 6 is a schematic diagram for explaining an example of gas flow in one embodiment of the present disclosure. For example, the first gas supplied from the first supply port 311 and the second gas supplied from the second supply port 313 toward the back surface of the wafer W, for example, as shown in FIG. Is supplied. The first gas and the second gas supplied to the back surface of the wafer W diffuse along the back surface of the wafer W. Then, the first gas and the second gas are mixed on the back surface of the wafer W to form a predetermined film on the back surface of the wafer W.
 また、ウエハWの裏面に沿って拡散した第1のガスおよび第2のガスは、第1の供給口311および第2の供給口313に隣接する排気口312内に流れ込む。即ち、それぞれの供給部310において、第1の供給口311および第2の供給口313からウエハWの裏面に供給されたガスは、排気口312を介して、第1の供給口311および第2の供給口313からガスが供給される方向とは反対の方向に排気される。そのため、例えば図6に示されるように、第1の供給口311および第2の供給口313から排気口312へのガスの流れが発生し、供給部310の領域外へのガスの漏洩が抑制される。そのため、ウエハWの裏面において、供給部310の直上に第1のガスおよび第2のガスを用いた成膜を行うことができる。 Further, the first gas and the second gas diffused along the back surface of the wafer W flow into the exhaust port 312 adjacent to the first supply port 311 and the second supply port 313. That is, in each of the supply units 310, the gas supplied from the first supply port 311 and the second supply port 313 to the back surface of the wafer W via the exhaust port 312 is the first supply port 311 and the second supply port 311 and the second. The gas is exhausted in the direction opposite to the direction in which the gas is supplied from the supply port 313 of the above. Therefore, for example, as shown in FIG. 6, a gas flow is generated from the first supply port 311 and the second supply port 313 to the exhaust port 312, and the leakage of gas outside the region of the supply unit 310 is suppressed. Will be done. Therefore, on the back surface of the wafer W, a film can be formed using the first gas and the second gas directly above the supply unit 310.
 支持部32は、成膜部31を支持する。駆動部33は、軸Xを中心として支持部32を回転させる。駆動部33は、回転機構の一例である。支持部32が回転することにより、例えば図4に示されるように、成膜部31も軸Xを中心として回転する。これにより、支持リング21上に保持されたウエハWに対して、成膜部31が処理容器10内で相対的に移動する。 The support portion 32 supports the film forming portion 31. The drive unit 33 rotates the support unit 32 around the shaft X. The drive unit 33 is an example of a rotation mechanism. As the support portion 32 rotates, the film forming portion 31 also rotates about the axis X, for example, as shown in FIG. As a result, the film forming portion 31 moves relatively in the processing container 10 with respect to the wafer W held on the support ring 21.
 成膜部31には、第1のガス供給機構50、第2のガス供給機構60、およびバルブ群70が接続されている。第1のガス供給機構50は、ガス供給源51、複数のMFC(Mass Flow Controller)52-1~52-n、および複数のバルブ53-1~53-nを有する。なお、以下では、MFC52-1~52-nのそれぞれを区別することなく総称する場合にMFC52と記載し、バルブ53-1~53-nのそれぞれを区別することなく総称する場合にバルブ53と記載する。 The first gas supply mechanism 50, the second gas supply mechanism 60, and the valve group 70 are connected to the film forming section 31. The first gas supply mechanism 50 has a gas supply source 51, a plurality of MFCs (Mass Flow Controllers) 52-1 to 52-n, and a plurality of valves 53-1 to 53-n. In the following, when each of MFC52-1 to 52-n is generically referred to as MFC52, and when each of valves 53-1 to 53-n is generically referred to as valve 53, it is referred to as valve 53. Describe.
 1つの供給部310に対して、1つのMFC52および1つのバルブ53が設けられている。それぞれのバルブ53の一端は、配管を介して対応する供給部310の第1の供給口311に第1のガスを供給する流路314に接続されている。また、それぞれのバルブ53の他端は、対応するMFC52を介して、第1のガスの供給源であるガス供給源51に接続されている。それぞれのMFC52は、ガス供給源51から供給された第1のガスの流量を制御し、流量が制御された第1のガスを、対応するバルブ53を介して対応する流路314に供給する。それぞれのMFC52およびバルブ53は、制御装置110によって互いに独立に制御される。 One MFC 52 and one valve 53 are provided for one supply unit 310. One end of each valve 53 is connected to a flow path 314 for supplying the first gas to the first supply port 311 of the corresponding supply unit 310 via a pipe. Further, the other end of each valve 53 is connected to the gas supply source 51, which is the first gas supply source, via the corresponding MFC 52. Each MFC 52 controls the flow rate of the first gas supplied from the gas supply source 51, and supplies the flow-controlled first gas to the corresponding flow path 314 via the corresponding valve 53. Each MFC 52 and valve 53 are controlled independently of each other by the control device 110.
 第2のガス供給機構60は、ガス供給源61、複数のMFC62-1~62-n、および複数のバルブ63-1~63-nを有する。なお、以下では、MFC62-1~62-nのそれぞれを区別することなく総称する場合にMFC62と記載し、バルブ63-1~63-nのそれぞれを区別することなく総称する場合にバルブ63と記載する。 The second gas supply mechanism 60 has a gas supply source 61, a plurality of MFCs 62-1 to 62-n, and a plurality of valves 63-1 to 63-n. In the following, when each of MFC62-1 to 62-n is generically referred to as MFC62, and when each of valves 63-1 to 63-n is generically referred to as valve 63, it is referred to as valve 63. Describe.
 1つの供給部310に対して、1つのMFC62および1つのバルブ63が設けられている。それぞれのバルブ63の一端は、配管を介して対応する供給部310の第2の供給口313に第2のガスを供給する流路316に接続されている。また、それぞれのバルブ63の他端は、対応するMFC62を介して、第2のガスの供給源であるガス供給源61に接続されている。それぞれのMFC62は、ガス供給源61から供給された第2のガスの流量を制御し、流量が制御された第2のガスを、対応するバルブ63を介して対応する流路316に供給する。それぞれのMFC62およびバルブ63は、制御装置110によって互いに独立に制御される。 One MFC 62 and one valve 63 are provided for one supply unit 310. One end of each valve 63 is connected to a flow path 316 for supplying the second gas to the second supply port 313 of the corresponding supply unit 310 via a pipe. Further, the other end of each valve 63 is connected to a gas supply source 61 which is a second gas supply source via a corresponding MFC 62. Each MFC 62 controls the flow rate of the second gas supplied from the gas supply source 61, and supplies the flow-controlled second gas to the corresponding flow path 316 via the corresponding valve 63. Each MFC 62 and valve 63 are controlled independently of each other by the control device 110.
 バルブ群70は、複数のバルブ71-1~71-nを有する。なお、以下では、バルブ71-1~71-nのそれぞれを区別することなく総称する場合にバルブ71と記載する。 The valve group 70 has a plurality of valves 71-1 to 71-n. In the following, valves 71-1 to 71-n will be referred to as valves 71 when they are generically referred to without distinction.
 1つの供給部310に対して、1つのバルブ71が設けられている。それぞれのバルブ71の一端は、配管を介して対応する供給部310の排気口312から吸引されたガスが流れる流路315に接続されている。また、それぞれのバルブ71の他端は排気装置17に接続されている。それぞれのバルブ71は、制御装置110によって互いに独立に制御される。 One valve 71 is provided for one supply unit 310. One end of each valve 71 is connected to a flow path 315 through which the gas sucked from the exhaust port 312 of the corresponding supply unit 310 flows through a pipe. Further, the other end of each valve 71 is connected to the exhaust device 17. Each valve 71 is controlled independently of each other by the control device 110.
 このように構成された第2の成膜装置500において、軸Xを中心として成膜部31を回転させながら、ウエハWの裏面へのガスの供給および排気が、それぞれの供給部310において個別に制御される。これにより、支持リング21上に保持されたウエハWの裏面に、制御装置110によって算出された成膜パターンの膜が成膜される。 In the second film forming apparatus 500 configured in this way, the gas supply and exhaust to the back surface of the wafer W are individually supplied to the back surface of the wafer W while rotating the film forming section 31 around the axis X. Be controlled. As a result, a film having a film formation pattern calculated by the control device 110 is formed on the back surface of the wafer W held on the support ring 21.
 蓋体11には、処理容器10内にパージガスを供給するためのガス導入口14が形成されている。ガス導入口14には、配管を介してパージガス供給機構40が接続されている。パージガス供給機構40は、ガス供給源41、MFC42、およびバルブ43を有する。バルブ43の一端は、配管を介してガス導入口14に接続されている。また、バルブ43の他端は、MFC42を介して、パージガスの供給源であるガス供給源41に接続されている。パージガスは、例えばヘリウムガス、アルゴンガス、または窒素ガス等の不活性ガスである。 The lid 11 is formed with a gas introduction port 14 for supplying purge gas into the processing container 10. A purge gas supply mechanism 40 is connected to the gas introduction port 14 via a pipe. The purge gas supply mechanism 40 has a gas supply source 41, an MFC 42, and a valve 43. One end of the valve 43 is connected to the gas introduction port 14 via a pipe. The other end of the valve 43 is connected to the gas supply source 41, which is a supply source of purge gas, via the MFC 42. The purge gas is an inert gas such as helium gas, argon gas, or nitrogen gas.
 MFC42は、ウエハWの裏面への成膜時に、ガス供給源41から供給されたパージガスの流量を制御し、流量が制御されたパージガスを、バルブ43およびガス導入口14を介して処理容器10内に供給する。ガス導入口14は、ウエハWが支持リング21によって支持されている状態で、素子が形成されるウエハWの面にパージガスを供給する。ガス導入口14は、第2のパージガス供給口の一例である。これにより、ウエハWの裏面への成膜時に、ウエハWの裏面への成膜に用いられるガスや、ウエハWの裏面への成膜時に発生したパーティクル等が、ウエハWの上面側に侵入することが抑制される。 The MFC 42 controls the flow rate of the purge gas supplied from the gas supply source 41 at the time of film formation on the back surface of the wafer W, and the flow-controlled purge gas is supplied into the processing container 10 via the valve 43 and the gas introduction port 14. Supply to. The gas introduction port 14 supplies purge gas to the surface of the wafer W on which the element is formed while the wafer W is supported by the support ring 21. The gas introduction port 14 is an example of a second purge gas supply port. As a result, when the film is formed on the back surface of the wafer W, the gas used for forming the film on the back surface of the wafer W, the particles generated during the film formation on the back surface of the wafer W, and the like invade the upper surface side of the wafer W. Is suppressed.
 以上、一実施形態について説明した。上記したように、本実施形態における半導体製造システム100は、測定装置400と、制御装置110と、第2の成膜装置500とを備える。測定装置400は、ウエハWの高さの分布を測定する。制御装置110は、測定装置400によって測定された高さの分布からウエハWに加わっている応力を低減する成膜パターンを算出する。第2の成膜装置500は、制御装置110によって算出された成膜パターンに従って、素子が形成されたウエハWの面の裏面に成膜を行う。第2の成膜装置500は、処理容器10と、支持リング21と、成膜部31とを備える。支持リング21は、処理容器10内に配置されたウエハWの周縁を支持する。成膜部31は、複数の供給部310を有し、ウエハWの裏面に向かってそれぞれの供給部310から材料ガスを供給することにより、ウエハWの裏面に成膜を行う。制御装置110は、それぞれの供給部310からの材料ガスの供給および供給停止を独立に制御する。これにより、ウエハWの反り等を低減するための成膜に要する工数を削減することができる。 The embodiment has been described above. As described above, the semiconductor manufacturing system 100 in this embodiment includes a measuring device 400, a control device 110, and a second film forming device 500. The measuring device 400 measures the height distribution of the wafer W. The control device 110 calculates a film formation pattern for reducing the stress applied to the wafer W from the height distribution measured by the measuring device 400. The second film forming apparatus 500 forms a film on the back surface of the surface of the wafer W on which the element is formed according to the film forming pattern calculated by the control device 110. The second film forming apparatus 500 includes a processing container 10, a support ring 21, and a film forming section 31. The support ring 21 supports the peripheral edge of the wafer W arranged in the processing container 10. The film forming unit 31 has a plurality of supply units 310, and forms a film on the back surface of the wafer W by supplying the material gas from each supply unit 310 toward the back surface of the wafer W. The control device 110 independently controls the supply and stop of the supply of the material gas from each supply unit 310. As a result, the man-hours required for film formation for reducing the warpage of the wafer W can be reduced.
 また、上記した実施形態において、成膜部31は、処理容器10内でウエハWに対して相対的に移動する。これにより、ウエハWの裏面に任意のパターンの膜を効率よく成膜することができる。 Further, in the above-described embodiment, the film forming unit 31 moves relative to the wafer W in the processing container 10. As a result, a film having an arbitrary pattern can be efficiently formed on the back surface of the wafer W.
 また、上記した実施形態において、ウエハWは、略円板状であり、複数の供給部310は、ウエハWの裏面の下方に、ウエハWの径方向に並べて配置されている。また、第2の成膜装置500は、成膜部31を支持し、ウエハWの中心軸を中心として成膜部31を回転させる駆動部33を備える。これにより、ウエハWの裏面に任意のパターンの膜を効率よく成膜することができる。 Further, in the above-described embodiment, the wafer W has a substantially disk shape, and the plurality of supply units 310 are arranged below the back surface of the wafer W in the radial direction of the wafer W. Further, the second film forming apparatus 500 includes a driving unit 33 that supports the film forming section 31 and rotates the film forming section 31 around the central axis of the wafer W. As a result, a film having an arbitrary pattern can be efficiently formed on the back surface of the wafer W.
 また、上記した実施形態において、それぞれの供給部310は、材料ガスをウエハWの裏面に供給する第1の供給口311と、第1の供給口311に隣接する排気口312とを有する。それぞれの供給部310において、第1の供給口311からウエハWの裏面に供給された材料ガスは、第1の供給口311に隣接する排気口312を介して、第1の供給口311から材料ガスが供給される方向とは反対の方向に排気される。これにより、それぞれの供給部310から供給された材料ガスが、他の供給部310の領域に侵入することが抑制される。これにより、供給部310の領域毎にウエハWの裏面に成膜を行うことができる。 Further, in the above-described embodiment, each supply unit 310 has a first supply port 311 for supplying the material gas to the back surface of the wafer W, and an exhaust port 312 adjacent to the first supply port 311. In each supply unit 310, the material gas supplied from the first supply port 311 to the back surface of the wafer W is made of material from the first supply port 311 via the exhaust port 312 adjacent to the first supply port 311. The gas is exhausted in the direction opposite to the direction in which the gas is supplied. As a result, the material gas supplied from each supply unit 310 is suppressed from entering the region of the other supply unit 310. As a result, a film can be formed on the back surface of the wafer W for each region of the supply unit 310.
 また、上記した実施形態において、それぞれの供給部310において、第1の供給口311は、第1の供給口311に隣接する排気口312を囲むように成膜部31に形成されている。これにより、それぞれの供給部310から供給された材料ガスが、他の供給部310の領域に侵入することが抑制される。これにより、供給部310の領域毎にウエハWの裏面に成膜を行うことができる。 Further, in the above-described embodiment, in each supply unit 310, the first supply port 311 is formed in the film forming unit 31 so as to surround the exhaust port 312 adjacent to the first supply port 311. As a result, the material gas supplied from each supply unit 310 is suppressed from entering the region of the other supply unit 310. As a result, a film can be formed on the back surface of the wafer W for each region of the supply unit 310.
 また、上記した実施形態において、ウエハWが支持リング21によって支持されている状態で、素子が形成されるウエハWの面にパージガスを供給するパージガス供給機構40を備える。これにより、ウエハWの裏面への成膜時に、ウエハWの裏面への成膜に用いられるガスや、ウエハWの裏面への成膜時に発生したパーティクル等が、ウエハWの上面側に侵入することが抑制される。 Further, in the above-described embodiment, the purge gas supply mechanism 40 for supplying the purge gas to the surface of the wafer W on which the element is formed is provided in a state where the wafer W is supported by the support ring 21. As a result, when the film is formed on the back surface of the wafer W, the gas used for forming the film on the back surface of the wafer W, the particles generated during the film formation on the back surface of the wafer W, and the like enter the upper surface side of the wafer W. Is suppressed.
 また、上記した実施形態において、成膜部31には、温度制御された熱媒体が流れる流路320および流路321が形成されている。流路320および流路321内に温度制御された熱媒体が循環させることにより、成膜部31へのデポの堆積を抑制することができる。 Further, in the above-described embodiment, the film forming portion 31 is formed with a flow path 320 and a flow path 321 through which a temperature-controlled heat medium flows. By circulating the temperature-controlled heat medium in the flow path 320 and the flow path 321, it is possible to suppress the deposition of the depot on the film forming portion 31.
[その他]
 なお、本願に開示された技術は、上記した実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
[Other]
The technique disclosed in the present application is not limited to the above-described embodiment, and many modifications can be made within the scope of the gist thereof.
 例えば、上記した実施形態において、複数の供給部310は、例えば図4に示されるように、軸Xを中心とする円の径方向に沿って1列に並べて配置される。しかし、開示の技術はこれに限られず、軸Xを中心とする円の径方向において異なる位置に配置されていれば、1列に並べて配置されていなくてもよい。複数の供給部310は、例えば図7に示されるように、軸Xを中心とする円の径方向rにおいて、それぞれの供給部310の幅L1分異なる位置に配置されてもよい。図7は、供給部310の配置の他の例を示す図である。 For example, in the above embodiment, the plurality of supply units 310 are arranged side by side in a row along the radial direction of the circle centered on the axis X, for example, as shown in FIG. However, the disclosed technique is not limited to this, and if they are arranged at different positions in the radial direction of the circle centered on the axis X, they may not be arranged side by side in a row. As shown in FIG. 7, for example, the plurality of supply units 310 may be arranged at positions different from each other by the width L1 of the respective supply units 310 in the radial direction r of the circle centered on the axis X. FIG. 7 is a diagram showing another example of the arrangement of the supply unit 310.
 図7の例では、それぞれの供給部310は、軸Xを中心とする円の径方向において、異なる位置に配置され、かつ、それぞれの供給部310の幅L1の合計の長さが、複数の供給部310が配置される領域の長さL2と同じ長さになっている。長さL2は、例えばウエハWの半径と同じ長さであってもよい。これにより、軸Xを中心とする円の径方向において複数の供給部310を密に配置することができ、より細かい形状の成膜パターンをウエハWの裏面に成膜することができる。 In the example of FIG. 7, each supply unit 310 is arranged at a different position in the radial direction of the circle centered on the axis X, and the total length of the width L1 of each supply unit 310 is a plurality of lengths. It has the same length as the length L2 of the region where the supply unit 310 is arranged. The length L2 may be, for example, the same length as the radius of the wafer W. As a result, the plurality of supply portions 310 can be densely arranged in the radial direction of the circle centered on the axis X, and a film formation pattern having a finer shape can be formed on the back surface of the wafer W.
 また、上記した実施形態において、複数の供給部310は、軸Xから、軸Xを中心とする円の径方向へ1列に並ぶように成膜部31に配置されているが、開示の技術はこれに限られない。例えば、複数の供給部310は、軸Xから、軸Xを中心とする円の径方向へ並ぶように成膜部31に配置されていれば、例えば図8に示されるように、複数の方向に並べて配置されてもよい。これにより、成膜パターンをウエハWの裏面に成膜するのに要する時間を短縮することができる。 Further, in the above-described embodiment, the plurality of supply units 310 are arranged in the film forming unit 31 so as to be arranged in a row from the axis X in the radial direction of the circle centered on the axis X. Is not limited to this. For example, if the plurality of supply units 310 are arranged in the film forming unit 31 so as to be arranged in the radial direction of the circle centered on the axis X from the axis X, for example, as shown in FIG. 8, a plurality of directions It may be arranged side by side in. As a result, the time required to form the film formation pattern on the back surface of the wafer W can be shortened.
 図8は、成膜機構30の他の例を示す図である。複数の供給部310は、例えば図8(a)に示されるように、軸Xを中心とする円の直径方向へ並ぶように成膜部31に配置されていてもよい。また、複数の供給部310は、例えば図8(b)に示されるように、軸Xを中心とする円の径方向であって、互いに交差する方向へ並ぶように成膜部31に配置されていてもよい。図8(a)の例では、複数の供給部310は、軸Xから2つの方向に並ぶように配置されており、図8(b)の例では、複数の供給部310は、軸Xから4つの方向に並ぶように配置されている。なお、複数の供給部310は、軸Xから3つの方向に並ぶように配置されてもよく、軸Xから5つ以上の方向に並ぶように配置されてもよい。 FIG. 8 is a diagram showing another example of the film forming mechanism 30. As shown in FIG. 8A, for example, the plurality of supply units 310 may be arranged in the film forming unit 31 so as to be arranged in the diameter direction of the circle centered on the axis X. Further, as shown in FIG. 8B, for example, the plurality of supply units 310 are arranged in the film forming unit 31 so as to be arranged in the radial direction of the circle centered on the axis X and in the direction intersecting each other. You may be. In the example of FIG. 8 (a), the plurality of supply units 310 are arranged so as to be arranged in two directions from the axis X, and in the example of FIG. 8 (b), the plurality of supply units 310 are arranged from the axis X. They are arranged so as to line up in four directions. The plurality of supply units 310 may be arranged so as to be arranged in three directions from the axis X, or may be arranged so as to be arranged in five or more directions from the axis X.
 また、上記した実施形態では、ウエハWの裏面に材料ガスを供給することにより、ウエハWの裏面に所定パターンの膜が成膜されるが、開示の技術はこれに限られない。例えば第2のガスをプラズマ化させ、プラズマに含まれる活性種を用いてウエハWの裏面に所定パターンの膜が成膜されてもよい。 Further, in the above-described embodiment, a film having a predetermined pattern is formed on the back surface of the wafer W by supplying the material gas to the back surface of the wafer W, but the disclosed technique is not limited to this. For example, the second gas may be turned into plasma, and a film having a predetermined pattern may be formed on the back surface of the wafer W using the active species contained in the plasma.
 図9は、成膜部31の他の例を示す断面図である。図9の例では、第2の供給口313の内側壁に絶縁部材3130を挟んで電極3131および電極3132が設けられている。電極3131と電極3132とは、板状に形成され、互いに対向するように第2の供給口313の内側壁に配置されている。電極3131には、高周波電源3133が電気的に接続されており、電極3132は、接地されている。高周波電源3133からの高周波電力が電極3131に供給されることにより、第2の供給口313内を流れる第2のガスがプラズマ化され、プラズマに含まれる活性種がウエハWの裏面に供給される。そして、プラズマに含まれる活性種によりウエハWの裏面に所定の膜が成膜される。電極3131、電極3132、および高周波電源3133は、プラズマ生成部の一例である。 FIG. 9 is a cross-sectional view showing another example of the film forming portion 31. In the example of FIG. 9, the electrode 3131 and the electrode 3132 are provided on the inner side wall of the second supply port 313 with the insulating member 3130 interposed therebetween. The electrode 3131 and the electrode 3132 are formed in a plate shape and are arranged on the inner side wall of the second supply port 313 so as to face each other. A high frequency power supply 3133 is electrically connected to the electrode 3131, and the electrode 3132 is grounded. By supplying high-frequency power from the high-frequency power supply 3133 to the electrode 3131, the second gas flowing in the second supply port 313 is turned into plasma, and the active species contained in the plasma is supplied to the back surface of the wafer W. .. Then, a predetermined film is formed on the back surface of the wafer W by the active species contained in the plasma. The electrode 3131, the electrode 3132, and the high-frequency power supply 3133 are examples of the plasma generation unit.
 また、成膜部31には、例えば図10および図11に示されるように、複数の供給部310を囲むようにパージガスの供給口330が設けられてもよい。図10は、成膜機構30の他の例を示す図である。図11は、成膜部31の他の例を示す断面図である。 Further, the film forming section 31 may be provided with a purge gas supply port 330 so as to surround the plurality of supply sections 310, for example, as shown in FIGS. 10 and 11. FIG. 10 is a diagram showing another example of the film forming mechanism 30. FIG. 11 is a cross-sectional view showing another example of the film forming portion 31.
 供給口330は、例えば図11に示されるように、供給穴331を介してパージガスが流れる流路332に繋がっている。パージガスは、例えばヘリウムガス、アルゴンガス、または窒素ガス等の不活性ガスである。図示しないガス供給機構から流路332内に供給されたパージガスは、供給穴331を介して供給口330からウエハWの裏面に供給される。ウエハWの裏面に供給されたパージガスは、ウエハWの裏面に沿って拡散し、排気口312を介して排気される。供給口330は、それぞれの供給部310からガスが供給される方向と同じ方向にパージガスを供給する。供給口330は、第1のパージガス供給口の一例である。 The supply port 330 is connected to the flow path 332 through which the purge gas flows through the supply hole 331, for example, as shown in FIG. The purge gas is an inert gas such as helium gas, argon gas, or nitrogen gas. The purge gas supplied into the flow path 332 from a gas supply mechanism (not shown) is supplied to the back surface of the wafer W from the supply port 330 through the supply hole 331. The purge gas supplied to the back surface of the wafer W diffuses along the back surface of the wafer W and is exhausted through the exhaust port 312. The supply port 330 supplies purge gas in the same direction in which gas is supplied from each supply unit 310. The supply port 330 is an example of the first purge gas supply port.
 供給口330からウエハWの裏面に供給されるパージガスによって、第1の供給口311から供給される第1のガス、および、第2の供給口313から供給される第2のガスの供給部310の領域外への漏洩が抑制される。なお、図9に例示された成膜部31においても、複数の供給部310を囲むようにパージガスの供給口330が設けられてもよい。 The supply unit 310 of the first gas supplied from the first supply port 311 and the second gas supplied from the second supply port 313 by the purge gas supplied from the supply port 330 to the back surface of the wafer W. Leakage to the outside of the area is suppressed. In the film forming section 31 illustrated in FIG. 9, a purge gas supply port 330 may be provided so as to surround the plurality of supply sections 310.
 また、上記した実施形態では、ウエハWに対して成膜部31が移動するが、ウエハWに対して、成膜部31が処理容器10内で相対的に移動すれば、例えば図12に示されるようにウエハWの方が移動してもよい。 Further, in the above-described embodiment, the film forming section 31 moves with respect to the wafer W, but if the film forming section 31 moves relative to the wafer W in the processing container 10, for example, FIG. 12 shows. The wafer W may be moved so as to be used.
 図12は、保持機構20の他の例を示す図である。図12の例では、保持機構20は、支持リング21、複数の支持部26、台座27、および駆動部28を有する。支持リング21は、複数の支持部26に固定され、複数の支持部26によって支持されている。それぞれの支持部26は、台座27に固定されている。駆動部28は、軸Xを中心として台座27を回転させる。軸Xを中心として台座27が回転することにより、支持部26に支持された支持リング21と共に、支持リング21上に保持されたウエハWが軸Xを中心として回転する。駆動部28は、回転機構の一例である。図12の例では、成膜部31は回転しない。そのため、成膜部31に対してウエハWが相対的に回転し、成膜部31のそれぞれ供給部310によって、ウエハWの裏面の任意の位置に成膜を行うことができる。なお、ウエハWと成膜部31とは、両方とも、互いに反対方向に回転してもよい。 FIG. 12 is a diagram showing another example of the holding mechanism 20. In the example of FIG. 12, the holding mechanism 20 has a support ring 21, a plurality of support portions 26, a pedestal 27, and a drive portion 28. The support ring 21 is fixed to a plurality of support portions 26 and is supported by the plurality of support portions 26. Each support portion 26 is fixed to a pedestal 27. The drive unit 28 rotates the pedestal 27 about the axis X. As the pedestal 27 rotates about the axis X, the wafer W held on the support ring 21 rotates about the axis X together with the support ring 21 supported by the support portion 26. The drive unit 28 is an example of a rotation mechanism. In the example of FIG. 12, the film forming portion 31 does not rotate. Therefore, the wafer W rotates relative to the film forming section 31, and each of the supply sections 310 of the film forming section 31 can form a film at an arbitrary position on the back surface of the wafer W. Both the wafer W and the film forming portion 31 may rotate in opposite directions.
 また、上記した実施形態では、ウエハWに対して成膜部31が相対的に移動するが、ウエハWの裏面の任意の位置に成膜を行うことができれば、ウエハWに対して成膜部31は相対的に移動しなくてもよい。この場合、成膜部31は、例えば図13のように構成される。図13は、成膜部31の他の例を示す図である。図13の例では、ウエハWの裏面に対向する成膜部31の面であって、ウエハWの裏面の領域と同じ大きさか、あるいは、ウエハWの裏面の領域よりも広い領域に、複数の供給部310が密に配置されている。それぞれの供給部310からの材料ガスの供給を制御することにより、ウエハWの裏面の任意の位置に成膜を行うことができる。 Further, in the above embodiment, the film forming portion 31 moves relative to the wafer W, but if the film forming can be performed at an arbitrary position on the back surface of the wafer W, the film forming portion is formed with respect to the wafer W. 31 does not have to move relatively. In this case, the film forming portion 31 is configured as shown in FIG. 13, for example. FIG. 13 is a diagram showing another example of the film forming portion 31. In the example of FIG. 13, a plurality of surfaces of the film forming portion 31 facing the back surface of the wafer W, which are the same size as the region of the back surface of the wafer W or wider than the region of the back surface of the wafer W. The supply units 310 are densely arranged. By controlling the supply of the material gas from each supply unit 310, the film can be formed at an arbitrary position on the back surface of the wafer W.
 また、上記した実施形態では、ウエハWに対して成膜部31が相対的に回転する方向に移動することにより、ウエハWの裏面の任意の位置に成膜を行うが、開示の技術はこれに限られない。ウエハWに対して成膜部31が相対的に移動すれば、ウエハWに対して成膜部31が他の方向に移動してもよい。 Further, in the above-described embodiment, the film forming portion 31 moves in the direction of rotation relative to the wafer W to form a film at an arbitrary position on the back surface of the wafer W. Not limited to. If the film forming section 31 moves relative to the wafer W, the film forming section 31 may move in another direction with respect to the wafer W.
 図14は、成膜部31の移動方向の他の例を示す図である。例えば図14に示されるように、ウエハWの裏面に沿って、成膜部31の長手方向に交差する方向へ成膜部31を移動させてもよい。図14の例では、成膜部31の長手方向において、複数の供給部310が配置されている成膜部31の領域の長さは、ウエハWの直径と同じ長さか、あるいは、ウエハWの直径よりも長い。ウエハWの裏面に沿って、成膜部31の長手方向に交差する方向へ成膜部31を移動させることにより、ウエハWの裏面の任意の位置に成膜を行うことができる。 FIG. 14 is a diagram showing another example in the moving direction of the film forming portion 31. For example, as shown in FIG. 14, the film-forming portion 31 may be moved along the back surface of the wafer W in a direction intersecting the longitudinal direction of the film-forming portion 31. In the example of FIG. 14, in the longitudinal direction of the film forming section 31, the length of the region of the film forming section 31 in which the plurality of supply sections 310 are arranged is the same as the diameter of the wafer W, or the length of the wafer W. Longer than the diameter. By moving the film forming portion 31 along the back surface of the wafer W in a direction intersecting the longitudinal direction of the film forming portion 31, film formation can be performed at an arbitrary position on the back surface of the wafer W.
 また、上記した実施形態では、測定装置400が、素子が形成された後のウエハWの高さの分布を測定し、制御装置110が、測定結果に基づいて成膜パターンを算出したが、開示の技術はこれに限られない。例えば、ウエハWの高さの分布が予め設定された分布となるように、ウエハW上に素子が形成される場合には、素子が形成された後のウエハWの高さの分布が測定されなくてもよい。この場合、高さの分布の測定を行うことなく、予め設定された高さの分布に対応する成膜パターンがウエハWの裏面に成膜される。 Further, in the above-described embodiment, the measuring device 400 measures the height distribution of the wafer W after the element is formed, and the control device 110 calculates the film formation pattern based on the measurement result. Technology is not limited to this. For example, when an element is formed on the wafer W so that the height distribution of the wafer W becomes a preset distribution, the height distribution of the wafer W after the element is formed is measured. It does not have to be. In this case, a film formation pattern corresponding to the preset height distribution is formed on the back surface of the wafer W without measuring the height distribution.
 また、上記した実施形態では、素子が形成された後のウエハWの裏面に、所定の成膜パターンが成膜されるが、開示の技術はこれに限られない。例えば、ウエハWの高さの分布が予め設定された分布となるようにウエハW上に素子が形成される場合には、ウエハW上に素子が形成される前に、予め設定された高さの分布に対応する成膜パターンがウエハWの裏面に成膜されてもよい。 Further, in the above-described embodiment, a predetermined film formation pattern is formed on the back surface of the wafer W after the element is formed, but the disclosed technique is not limited to this. For example, when an element is formed on the wafer W so that the height distribution of the wafer W is a preset distribution, the height is set in advance before the element is formed on the wafer W. A film forming pattern corresponding to the distribution of the above may be formed on the back surface of the wafer W.
 また、上記した実施形態における供給部310では、第2の供給口313を囲むように第2の供給口313の周囲に排気口312が配置され、排気口312を囲むように排気口312の周囲に第1の供給口311が配置されるが、開示の技術はこれに限られない。例えば、第1の供給口311、排気口312、および第2の供給口313が直線状に形成され、排気口312を挟んで、第1の供給口311および第2の供給口313が横に並べて配置されてもよい。 Further, in the supply unit 310 in the above-described embodiment, the exhaust port 312 is arranged around the second supply port 313 so as to surround the second supply port 313, and around the exhaust port 312 so as to surround the exhaust port 312. The first supply port 311 is arranged in, but the disclosed technology is not limited to this. For example, the first supply port 311 and the exhaust port 312, and the second supply port 313 are formed in a straight line, and the first supply port 311 and the second supply port 313 are laterally sandwiched by the exhaust port 312. They may be arranged side by side.
 また、上記した実施形態において、支持リング21上に保持されたウエハWの温度は、蓋体11の下面に配置されたヒータやランプ等の温度制御部12によって制御されるが、開示の技術はこれに限られない。例えば、蓋体11の下面に配置された温度制御部12に代えて、処理容器10および蓋体11を石英等で構成し、処理容器10および蓋体11の外部に処理容器10および蓋体11の温度を制御する温度制御機構を設けてもよい。温度制御機構によって処理容器10および蓋体11が所定温度に制御され、処理容器10および蓋体11からの輻射熱により、支持リング21上に保持されたウエハWの温度が調整される。輻射熱が、支持リング21上に保持されたウエハWの上方からだけでなく、周囲からもウエハWに照射されるため、ウエハWの温度をより均一に保つことができる。 Further, in the above-described embodiment, the temperature of the wafer W held on the support ring 21 is controlled by the temperature control unit 12 such as a heater or a lamp arranged on the lower surface of the lid 11, but the disclosed technique is described. Not limited to this. For example, instead of the temperature control unit 12 arranged on the lower surface of the lid 11, the processing container 10 and the lid 11 are made of quartz or the like, and the processing container 10 and the lid 11 are outside the processing container 10 and the lid 11. A temperature control mechanism for controlling the temperature of the lid may be provided. The processing container 10 and the lid 11 are controlled to predetermined temperatures by the temperature control mechanism, and the temperature of the wafer W held on the support ring 21 is adjusted by the radiant heat from the processing container 10 and the lid 11. Since the radiant heat is applied to the wafer W not only from above the wafer W held on the support ring 21 but also from the surroundings, the temperature of the wafer W can be kept more uniform.
 なお、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 It should be noted that the embodiments disclosed this time are examples in all respects and are not restrictive. Indeed, the above embodiments can be embodied in a variety of forms. In addition, the above-described embodiment may be omitted, replaced, or changed in various forms without departing from the scope of the appended claims and the purpose thereof.
G ゲートバルブ
W ウエハ
100 半導体製造システム
101 真空搬送室
110 制御装置
200 第1の成膜装置
300 エッチング装置
400 測定装置
500 第2の成膜装置
10 処理容器
12 温度制御部
14 ガス導入口
15 排気管
16 APCバルブ
17 排気装置
20 保持機構
21 支持リング
22 支持部
23 駆動部
26 支持部
27 台座
28 駆動部
30 成膜機構
31 成膜部
310 供給部
311 第1の供給口
312 排気口
313 第2の供給口
32 支持部
33 駆動部
40 パージガス供給機構
50 第1のガス供給機構
60 第2のガス供給機構
61 ガス供給源
70 バルブ群
G Gate valve W Wafer 100 Semiconductor manufacturing system 101 Vacuum transfer chamber 110 Control device 200 First film forming device 300 Etching device 400 Measuring device 500 Second film forming device 10 Processing container 12 Temperature control unit 14 Gas inlet 15 Exhaust pipe 16 APC valve 17 Exhaust device 20 Holding mechanism 21 Support ring 22 Support part 23 Drive part 26 Support part 27 Pedestal 28 Drive part 30 Film formation mechanism 31 Film formation part 310 Supply part 311 First supply port 312 Exhaust port 313 Second Supply port 32 Support unit 33 Drive unit 40 Purge gas supply mechanism 50 First gas supply mechanism 60 Second gas supply mechanism 61 Gas supply source 70 Valve group

Claims (12)

  1.  処理容器と、
     前記処理容器内に配置された基板の周縁を支持する支持リングと、
     材料ガスを供給する複数の供給部を有し、素子が形成される前記基板の面の裏面に向かってそれぞれの前記供給部から前記材料ガスを供給することにより、前記裏面に成膜を行う成膜部と、
     それぞれの前記供給部からの前記材料ガスの供給および供給停止を独立に制御する制御部と
    を備える成膜装置。
    Processing container and
    A support ring that supports the peripheral edge of the substrate arranged in the processing container, and
    A film is formed on the back surface by supplying the material gas from each of the supply units toward the back surface of the surface of the substrate on which the element is formed, which has a plurality of supply units for supplying the material gas. Membrane and
    A film forming apparatus including a control unit that independently controls the supply and stop of supply of the material gas from each of the supply units.
  2.  前記成膜部は、前記処理容器内で前記基板に対して相対的に移動する請求項1に記載の成膜装置。 The film forming apparatus according to claim 1, wherein the film forming section moves relative to the substrate in the processing container.
  3.  前記基板は、略円板状であり、
     複数の前記供給部は、前記支持リングに保持された前記基板の下方に、前記基板の径方向に並べて配置されており、
     前記成膜装置は、
     前記成膜部を支持し、前記基板の中心軸を中心として前記成膜部を回転させる回転機構を備える請求項2に記載の成膜装置。
    The substrate has a substantially disk shape.
    The plurality of supply units are arranged side by side in the radial direction of the substrate below the substrate held by the support ring.
    The film forming apparatus is
    The film forming apparatus according to claim 2, further comprising a rotation mechanism that supports the film forming portion and rotates the film forming portion around a central axis of the substrate.
  4.  前記基板は、略円板状であり、
     複数の前記供給部は、前記基板の前記裏面の下方に、前記基板の径方向に並べて配置されており、
     前記成膜装置は、
     前記基板の中心軸を中心として前記支持リングを回転させる回転機構を備える請求項2に記載の成膜装置。
    The substrate has a substantially disk shape.
    The plurality of supply units are arranged below the back surface of the substrate so as to be arranged in the radial direction of the substrate.
    The film forming apparatus is
    The film forming apparatus according to claim 2, further comprising a rotation mechanism for rotating the support ring about the central axis of the substrate.
  5.  それぞれの前記供給部は、
     前記材料ガスを前記基板の前記裏面に供給する供給口と、
     前記供給口に隣接する排気口と
    を有し、
     それぞれの前記供給部において、前記供給口から前記基板の前記裏面に供給された前記材料ガスは、前記供給口に隣接する前記排気口を介して、前記供給口から前記材料ガスが供給される方向とは反対の方向に排気される請求項1から4のいずれか一項に記載の成膜装置。
    Each said supply unit
    A supply port for supplying the material gas to the back surface of the substrate, and
    It has an exhaust port adjacent to the supply port, and has an exhaust port.
    In each of the supply units, the material gas supplied from the supply port to the back surface of the substrate is supplied from the supply port through the exhaust port adjacent to the supply port. The film forming apparatus according to any one of claims 1 to 4, which is exhausted in the opposite direction to the above.
  6.  それぞれの前記供給部において、前記供給口は、前記供給口に隣接する前記排気口を囲むように前記成膜部に形成されている請求項5に記載の成膜装置。 The film forming apparatus according to claim 5, wherein in each of the supply sections, the supply port is formed in the film forming section so as to surround the exhaust port adjacent to the supply port.
  7.  前記成膜部は、
     複数の前記供給部を囲むように形成され、それぞれの前記供給部から前記材料ガスが供給される方向と同じ方向にパージガスを供給する第1のパージガス供給口を備える請求項6に記載の成膜装置。
    The film-forming portion is
    The film formation according to claim 6, further comprising a first purge gas supply port formed so as to surround the plurality of supply portions and supplying purge gas in the same direction as the material gas is supplied from each of the supply portions. apparatus.
  8.  前記基板が前記支持リングによって支持されている状態で、素子が形成される前記基板の面にパージガスを供給する第2のパージガス供給口を備える請求項1から7のいずれか一項に記載の成膜装置。 The result according to any one of claims 1 to 7, further comprising a second purge gas supply port for supplying purge gas to the surface of the substrate on which the element is formed in a state where the substrate is supported by the support ring. Membrane device.
  9.  それぞれの前記供給部には、前記材料ガスをプラズマ化するプラズマ生成部が設けられ、
     前記基板の前記裏面には、前記プラズマ生成部によって生成されたプラズマに含まれる活性種が供給される請求項1から8のいずれか一項に記載の成膜装置。
    Each of the supply units is provided with a plasma generation unit that turns the material gas into plasma.
    The film forming apparatus according to any one of claims 1 to 8, wherein an active species contained in the plasma generated by the plasma generating unit is supplied to the back surface of the substrate.
  10.  前記成膜部には、温度制御された熱媒体が流れる流路が形成されている請求項1から9のいずれか一項に記載の成膜装置。 The film forming apparatus according to any one of claims 1 to 9, wherein a flow path through which a temperature-controlled heat medium flows is formed in the film forming section.
  11.  処理容器内において基板の周縁を支持する工程と、
     素子が形成される前記基板の面の裏面に向かって複数の供給部のそれぞれから供給される材料ガスの供給および供給停止を独立に制御することにより、前記裏面に成膜を行う工程と
    を含む成膜方法。
    The process of supporting the peripheral edge of the substrate in the processing container,
    This includes a step of forming a film on the back surface by independently controlling the supply and stop of supply of the material gas supplied from each of the plurality of supply units toward the back surface of the surface of the substrate on which the element is formed. Film formation method.
  12.  基板の高さの分布を測定する測定装置と、
     前記測定装置によって測定された高さの分布から前記基板に加わっている応力を低減する成膜パターンを算出する算出装置と、
     前記算出装置によって算出された成膜パターンに従って、素子が形成された前記基板の面の裏面に成膜を行う成膜装置と
    を備え、
     前記成膜装置は、
     処理容器と、
     前記処理容器内に配置された前記基板の周縁を支持する支持リングと、
     材料ガスを供給する複数の供給部を有し、前記基板の前記裏面に向かってそれぞれの前記供給部から前記材料ガスを供給することにより、前記裏面に成膜を行う成膜部と、
     それぞれの前記供給部からの前記材料ガスの供給および供給停止を独立に制御する制御部と
    を備える成膜システム。
    A measuring device that measures the height distribution of the substrate,
    A calculation device that calculates a film formation pattern that reduces the stress applied to the substrate from the height distribution measured by the measurement device, and a calculation device.
    A film forming apparatus for forming a film on the back surface of the substrate on which the element is formed is provided according to the film forming pattern calculated by the calculating apparatus.
    The film forming apparatus is
    Processing container and
    A support ring that supports the peripheral edge of the substrate arranged in the processing container, and
    A film forming section having a plurality of supply sections for supplying the material gas and forming a film on the back surface by supplying the material gas from the respective supply sections toward the back surface of the substrate.
    A film forming system including a control unit that independently controls the supply and stop of supply of the material gas from each of the supply units.
PCT/JP2020/012073 2019-03-27 2020-03-18 Film-forming device, film-forming method, and film-forming system WO2020196179A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019061825A JP2020158856A (en) 2019-03-27 2019-03-27 Film deposition apparatus, film deposition method and film deposition system
JP2019-061825 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020196179A1 true WO2020196179A1 (en) 2020-10-01

Family

ID=72611840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012073 WO2020196179A1 (en) 2019-03-27 2020-03-18 Film-forming device, film-forming method, and film-forming system

Country Status (2)

Country Link
JP (1) JP2020158856A (en)
WO (1) WO2020196179A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021004413T5 (en) 2020-09-23 2023-06-15 Rohm Co. Ltd. Semiconductor device, semiconductor module, motor driving device and vehicle
JP2023096874A (en) * 2021-12-27 2023-07-07 東京エレクトロン株式会社 Substrate processing method and substrate processing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273029A (en) * 1994-04-01 1995-10-20 Nippon Steel Corp Compound semiconductor substrate
JPH0936050A (en) * 1995-07-25 1997-02-07 Mitsubishi Electric Corp Normal pressure cvd device
JP2004134631A (en) * 2002-10-11 2004-04-30 Matsushita Electric Ind Co Ltd Lamp heat treatment device
JP2015525302A (en) * 2012-06-20 2015-09-03 エムティーエスナノテック株式会社Mts Nanotech Inc. Atomic layer deposition apparatus and method
KR20180017676A (en) * 2016-08-10 2018-02-21 주식회사 테스 Thin film deposition apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273029A (en) * 1994-04-01 1995-10-20 Nippon Steel Corp Compound semiconductor substrate
JPH0936050A (en) * 1995-07-25 1997-02-07 Mitsubishi Electric Corp Normal pressure cvd device
JP2004134631A (en) * 2002-10-11 2004-04-30 Matsushita Electric Ind Co Ltd Lamp heat treatment device
JP2015525302A (en) * 2012-06-20 2015-09-03 エムティーエスナノテック株式会社Mts Nanotech Inc. Atomic layer deposition apparatus and method
KR20180017676A (en) * 2016-08-10 2018-02-21 주식회사 테스 Thin film deposition apparatus

Also Published As

Publication number Publication date
JP2020158856A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP5650935B2 (en) Substrate processing apparatus, positioning method, and focus ring arrangement method
KR101433391B1 (en) Substrate processing method, computer-readable storage medium, and substrate processing system
KR101578412B1 (en) Photoresist coating and developing apparatus, substrate transfer method and interface apparatus
JP4899879B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
WO2020196179A1 (en) Film-forming device, film-forming method, and film-forming system
KR102616708B1 (en) Film formation method and semiconductor manufacturing device
CN106469667B (en) Substrate processing apparatus and substrate processing method
US20220216073A1 (en) Processing module and processing method
US20220213594A1 (en) Process module, substrate processing system, and processing method
TW201017805A (en) Substrate processing apparatus and substrate processing method
JP2012195427A (en) Substrate processing apparatus and substrate processing method
TW202221825A (en) Wafer edge temperature correction in batch thermal process chamber
JP6749268B2 (en) Substrate processing equipment
WO2020209067A1 (en) Film forming apparatus, film forming method, and film forming system
US20220009111A1 (en) Vacuum processing apparatus and method of controlling vacuum processing apparatus
KR20190042839A (en) Apparatus and Method for treating substrate
WO2020195920A1 (en) Film forming apparatus and film forming method
WO2020203503A1 (en) Film forming device, film forming method, and film forming system
TW202221824A (en) Batch thermal process chamber
KR20220062186A (en) Apparatus for treating substrate and method for teaching conveying robot
JP2007088176A (en) Substrate treating device, and method for manufacturing semiconductor device
US20220293399A1 (en) Substrate processing apparatus and method of controlling the same
JP7341348B2 (en) Bonding equipment, bonding system and bonding method
US20240011148A1 (en) Film forming position misalignment correction method and film forming system
WO2022190921A1 (en) Vacuum processing device and tilt adjustment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777722

Country of ref document: EP

Kind code of ref document: A1