WO2020195132A1 - Perfume microcapsules, perfume microcapsule composition, softener, and detergent - Google Patents

Perfume microcapsules, perfume microcapsule composition, softener, and detergent Download PDF

Info

Publication number
WO2020195132A1
WO2020195132A1 PCT/JP2020/003196 JP2020003196W WO2020195132A1 WO 2020195132 A1 WO2020195132 A1 WO 2020195132A1 JP 2020003196 W JP2020003196 W JP 2020003196W WO 2020195132 A1 WO2020195132 A1 WO 2020195132A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcapsules
mass
microcapsule
present disclosure
manufactured
Prior art date
Application number
PCT/JP2020/003196
Other languages
French (fr)
Japanese (ja)
Inventor
優樹 中川
加藤 進也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020195132A1 publication Critical patent/WO2020195132A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/65Collagen; Gelatin; Keratin; Derivatives or degradation products thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules

Definitions

  • the present disclosure relates to perfume microcapsules, perfume microcapsule compositions, fabric softeners and detergents.
  • microcapsules have added new value to customers in terms of containing and protecting functional materials such as fragrances, dyes, heat storage materials, and pharmaceutical ingredients, and releasing functional materials in response to stimuli. It is attracting attention because it may be provided to.
  • the fragrance in the form of containing the fragrance in the microcapsules, for example, by mixing the microcapsules containing the fragrance (hereinafter, also referred to as the fragrance capsule) with the softener, the fragrance can be given to the clothes after washing. That is, when clothes are washed with a softener, the fragrance capsules contained in the softener adhere to the clothes, and when the attached fragrance capsules are destroyed by an external stimulus such as pressure, the contained fragrance is released. , Can produce a fragrance.
  • the shell material used for perfume capsules is mainly composed of a reaction product of aldehyde and amine (for example, melamine formaldehyde resin).
  • gelatin is generally known as a biodegradable resin.
  • Japanese Patent No. 6250055 describes a core / multilayer composed of an outer shell formed by adding glutaraldehyde to gelatin, which is an outer shell material and contains a fragrance as a core material, and a multi-layer microcapsule in which the inner shell material is polyurea.
  • the capsule system is disclosed.
  • An object to be solved by one embodiment of the present disclosure is to provide microcapsules that are biodegradable, have a thin shell portion, and have excellent storage stability in the coexistence of polar substances.
  • the problem to be solved by other embodiments of the present disclosure is a microcapsule composition which is biodegradable and in which the core material contained in the shell portion is stably held in the shell portion, as well as a softener and a softener. To provide detergent.
  • the means for solving the above problems include the following aspects.
  • the core portion includes a core portion and a shell portion containing the core portion, the shell portion has a thickness of less than 2 ⁇ m, and contains a cross-linked structure derived from the reaction between the biodegradable resin and the cross-linking agent, and the core portion includes the core portion.
  • ⁇ 3> The perfume microcapsule according to ⁇ 1> or ⁇ 2>, wherein the biodegradable resin contains at least one selected from the group consisting of gelatin, hydroxypropylmethyl cellulose, hydroxypropyl cellulose, and chitosan.
  • ⁇ 4> The method according to any one of ⁇ 1> to ⁇ 3>, wherein the ratio of the structural portion derived from the biodegradable resin to the structural portion derived from the cross-linking agent is 2% by mass to 50% by mass. Fragrance microcapsules.
  • ⁇ 5> A perfume microcapsule composition containing the perfume microcapsule according to any one of ⁇ 1> to ⁇ 4> and a solvent.
  • ⁇ 6> A softener containing the perfume microcapsules according to any one of ⁇ 1> to ⁇ 4>.
  • ⁇ 7> A detergent containing the perfume microcapsules according to any one of ⁇ 1> to ⁇ 4>.
  • a perfume microcapsule having biodegradability and having a thin shell portion and excellent storage stability in the coexistence of a polar substance.
  • a perfume microcapsule composition which is biodegradable and in which a core material contained in a shell portion is stably held in the shell, and a softener and a detergent. Will be done.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • the amount of each component in the composition or layer is the amount of the above-mentioned plurality of substances existing in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. Means the total amount.
  • “% by mass” is synonymous with “% by weight” and “parts by weight” is synonymous with “parts by weight”.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • the “shell portion” refers to the outer shell forming the particles of the microcapsules, and refers to the so-called capsule wall.
  • the “core portion” is also referred to as a “core portion” and refers to a portion included by the shell portion.
  • the material for forming the shell portion is referred to as “shell material” or “wall material”
  • the component contained in the core portion is referred to as “core material”, “inclusion component” or “inclusion”.
  • the “inclusion” refers to a state in which a target object (encapsulation) is covered and confined in a shell portion of a microcapsule.
  • the perfume microcapsules of the present disclosure include a core portion and a shell portion containing the core portion, and the shell portion has a thickness of less than 2 ⁇ m and is biodegradable. It contains a cross-linked structure derived from the reaction of a resin and a cross-linking agent, and the core portion contains a fragrance. That is, in the microcapsules of the present disclosure, the core portion contains a fragrance as a core material, and the shell portion containing the core portion has a thin thickness of less than 2 ⁇ m, and has a structure derived from a biodegradable resin and a cross-linking agent.
  • microcapsules include a microcapsule dispersion, and it is preferable that the microcapsules are in the form of a microcapsule water dispersion in which the microcapsules are dispersed in an aqueous solvent.
  • the microcapsules of the present disclosure include a core material forming a core portion and have a shell portion which is an outer shell for forming capsule particles.
  • the shell portion in the present disclosure includes a cross-linked structure derived from the reaction of the biodegradable resin and the cross-linking agent. That is, the shell material forming the shell portion includes a structure derived from a biodegradable resin and a structure derived from a cross-linking agent.
  • Confirmation that the shell portion of the microcapsule has a crosslinked structure can be performed by the following method.
  • the prepared microcapsule composition is centrifuged to separate the microcapsules from the liquid.
  • the separated microcapsules are mixed with dimethyl sulfoxide (DMSO) (1% by mass to 5% by mass based on DMSO) to prepare a DMSO mixture.
  • DMSO dimethyl sulfoxide
  • the DMSO mixed solution mixed with the microcapsules becomes opaque or the swelling of the microcapsules can be confirmed, it is determined that the shell of the microcapsules has a crosslinked structure.
  • the microcapsules are dissolved and the DMSO mixture becomes transparent, it is assumed that the shell of the microcapsules does not have a crosslinked structure. Confirmation that the DMSO mixture is opaque is visually confirmed, and confirmation that the microcapsules are swollen is performed by observation with an optical microscope.
  • the thickness (wall thickness) of the shell portion (wall) in the present disclosure is set to be less than 2 ⁇ m.
  • the microcapsules of the present disclosure can stably maintain the shape of the capsule even if the thickness of the shell portion is less than 2 ⁇ m, and are excellent in storage stability. As a result, when an external force such as scratching is applied, it is possible to stably release the amount of core material planned from the intended stage.
  • the thickness (wall thickness) of the shell portion (wall) is preferably 1.5 ⁇ m or less, more preferably 1.0 ⁇ m or less, and further preferably 0.5 ⁇ m or less.
  • the lower limit of the thickness of the shell portion may be appropriately selected within a manufacturable range, and may be, for example, 0.1 ⁇ m.
  • the thickness (wall thickness) of the shell portion (wall) is the average value obtained by calculating the individual wall thickness ( ⁇ m) of the five microcapsules with a scanning electron microscope (SEM) and averaging them. Specifically, the microcapsule solution is applied onto an arbitrary support and dried to form a coating film. A cross-sectional section of the obtained coating film is prepared, the cross section is observed using SEM, any five microcapsules are selected, and the cross section of each of the microcapsules is observed to measure the wall thickness. And calculate the average value.
  • SEM scanning electron microscope
  • the ratio of the structural portion derived from the cross-linking agent to the structural portion derived from the biodegradable resin is preferably 2% by mass to 50% by mass, preferably 3% by mass to 25% by mass. It is more preferable that the amount is 3% by mass to 10% by mass. The above ratio is preferable because the storage stability is better and the scent intensity is more excellent.
  • the "structural portion derived from the biodegradable resin” refers to a structural unit formed from the biodegradable resin when the biodegradable resin is reacted with the cross-linking agent, and the "structure derived from the cross-linking agent”.
  • Part refers to a structural unit formed from a cross-linking agent when the biodegradable resin is reacted with the cross-linking agent.
  • the biodegradable resin in the present disclosure refers to a resin having a biodegradability (aerobic ultimate decomposition: JIS K 6950 (2000) or 6953 (2011), 6955 (2017)) of 30% or more. .. From the viewpoint of decomposition in a practical period, it is more preferably 40% or more, and further preferably 60% or more.
  • Biodegradable resins are described in the "Biodegradable Plastics Handbook” (edited by the Biodegradable Plastics Research Association, published by NTS Co., Ltd. (1995)).
  • polysaccharides such as starch and gelatin.
  • examples thereof include proteins such as, polyvinyl alcohol resin, and polyester resin.
  • polysaccharide a polysaccharide that forms a gel is preferably used.
  • examples of such polysaccharides include agar, carrageenan, arabic gum, gellan gum, xanthan gum, pectin, alginic acid, methyl cellulose, hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC), carboxymethyl cellulose, sodium carboxymethyl cellulose, chitosan, dextrin and the like.
  • HPC hydroxypropyl cellulose
  • HPMC hydroxypropyl methyl cellulose
  • carboxymethyl cellulose sodium carboxymethyl cellulose
  • chitosan dextrin and the like.
  • Examples of the protein include, but are not limited to, gelatin and the like.
  • the gelatin is not particularly limited, and includes gelatin treated with alkali (also referred to as alkali-treated gelatin), gelatin treated with acid (also referred to as acid-treated gelatin), and the like.
  • polyvinyl alcohol resin examples include, but are not limited to, completely saponified, partially saponified, anion-modified, or cation-modified polyvinyl alcohol resins.
  • polyester resin an aliphatic polyester-based resin, a copolymer-based resin of an aliphatic polyester and an aromatic polyester, or an aliphatic polycarbonate-based resin can be preferably used.
  • these resins include polyethylene succinate (PES), polybutylene succinate (PBS), polylactic acid (PLA), polyglycolic acid (PGA), polyhydroxybutyrate (PHB), polycaprolactone (PCL), and polycaprolactone.
  • a mixture or copolymer of polybutylene succinate and polybutylene succinate (PCL / PBS), a copolymer of polyhydroxybutyrate and polyhydroxyvariate (PHB / PHV), a mixture of polybutylene succinate and polybutylene adipate, or Resins such as a copolymer (PBS / PBA), a copolymer of polyethylene terephthalate and polyethylene succinate (PET / PES), and a copolymer of polybutylene terephthalate and polybutylene adipate (PBT / PBA) can be mentioned. , Not limited to these.
  • the biodegradable resin can be used alone or in combination of two or more.
  • the biodegradable resin in the present disclosure includes at least one selected from the group consisting of gelatin, hydroxypropylmethyl cellulose, hydroxypropyl cellulose, and chitosan from the viewpoint of having a functional group that reacts with a cross-linking agent. preferable.
  • cross-linking agent examples include isocyanate compounds, epoxy compounds, carboxylated compounds, aldehyde compounds, carbodiimide compounds, oxazoline compounds, acid anhydride compounds, organic boron compounds, silane coupling agents, transglutaminase and the like.
  • the cross-linking agent is preferably 2% by mass to 50% by mass, more preferably 3% by mass to 25% by mass, and 3% by mass to 10% by mass with respect to the biodegradable resin as the shell material. Is more preferable.
  • the shell material forming the shell portion may contain polyurethane or polyurea having a structure derived from an isocyanate compound.
  • a polyfunctional isocyanate compound (polyisocyanate) is preferable from the viewpoint of forming a crosslinked structure.
  • Polyisocyanates include aromatic polyisocyanates and aliphatic polyisocyanates.
  • the polyisocyanate includes a bifunctional polyisocyanate and a trifunctional or higher functional polyisocyanate.
  • the shell material forming the shell portion is polyurethane or polyurea
  • a structural portion derived from a trifunctional or higher functional isocyanate compound refers to a structural portion formed by urethanizing or ureaizing a trifunctional or higher functional isocyanate compound.
  • the trifunctional or higher functional isocyanate compound may be a trifunctional or higher functional aliphatic isocyanate compound.
  • Examples of the trifunctional or higher functional aliphatic isocyanate compound include a bifunctional aliphatic isocyanate compound (a compound having two isocyanate groups in the molecule) and a compound having three or more active hydrogen groups in the molecule (for example, trifunctional or higher).
  • Examples of adducts (additives) with polyols, polyamines, polythiols, etc.) include trifunctional or higher functional isocyanate compounds (adduct type) and difunctional aliphatic isocyanate compound trimerics (biuret type or isocyanurate type). Can be done.
  • D-160N all manufactured by Mitsui
  • the Takenate (registered trademark) series manufactured by Mitsui Chemicals, Inc. (for example, Takenate D-110N, D-120N, D-140N, D-160N, etc.) is more preferable.
  • isocyanurate-type trifunctional or higher functional isocyanate compound a commercially available product on the market may be used.
  • examples of commercially available products include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, D-177N (manufactured by Mitsui Chemicals, Inc.), Sumijour N3300, and Death Module (registered trademark) N3600.
  • N3900, Z4470BA manufactured by Bayer Co., Ltd.
  • Coronate registered trademark
  • HK manufactured by Tosoh Corporation
  • Duranate registered trademark
  • TPA-100, TKA-100 manufactured by Asahi Kasei Corporation
  • Barnock registered trademark
  • Examples thereof include DN-980 (manufactured by DIC Co., Ltd.).
  • biuret-type trifunctional or higher functional isocyanate compound commercially available products on the market may be used.
  • trifunctional or higher functional aromatic isocyanate compound examples include 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, an adduct of hexamethylene diisocyanate and trimethylolpropane (adduct), biuret or isocyanate. Nurate form and the like can be mentioned.
  • Commercially available products marketed as trifunctional or higher functional aromatic isocyanate compounds may be used, and examples of the commercially available products include Burnock (registered trademark) D-750, D-800 (manufactured by DIC Co., Ltd.), and Takenate (registered).
  • the isocyanate compound in the present disclosure may include a bifunctional isocyanate compound.
  • the shell material forming the shell portion is polyurethane or polyurea
  • the structural portion derived from the bifunctional aliphatic isocyanate compound refers to a structural portion formed by urethanizing or ureaizing the bifunctional aliphatic isocyanate compound.
  • the structural portion derived from the bifunctional aromatic isocyanate compound refers to the structural portion formed by urethanizing or ureaizing the bifunctional aromatic isocyanate compound.
  • bifunctional aliphatic isocyanate compound examples include trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanate, butylene-1,2-diisocyanate, cyclohexylene-1,2-diisocyanate, and cyclohexylene-1, 3-Diisocyanate, cyclohexylene-1,4-diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,4-bis (isocyanatemethyl) cyclohexane and 1,3-bis (isocyanatemethyl) cyclohexane, isophorone diisocyanate, lysine diisocyanate , Hydroxylylene diisocyanate and the like.
  • bifunctional aromatic isocyanate compound examples include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, naphthalene-1,4-diisocyanate, and methylene diphenyl-4.
  • Isocyanate compounds are described in the "Polyurethane Resin Handbook" (edited by Keiji Iwata, published by Nikkan Kogyo Shimbun (1987)).
  • the microcapsules of the present disclosure have a core portion contained in a shell portion, and the core portion contains a fragrance as a core material.
  • fragrances synthetic fragrances, natural essential oils, and natural fragrances described in "Patent Office, Well-known Conventional Technology Collection (Fragrance) Part III Cosmetic Fragrances, pp. 49-103, published on June 15, 2001". , Animal and plant extracts, etc., suitable ones can be appropriately selected and used.
  • fragrances include pinene, milsen, camphene, monoterpenes (eg R-limonene, D-limonene, etc.), sesquiterpenes such as sedren, cariophyllene, longifolene, 1,3,5-undecatorien, ⁇ - Synthetic fragrances such as amilcinnamylaldehyde, dihydrojasmon, methylionone, ⁇ -damascon, acetylsedrene, methyl dihydrojasmonate, cyclopentadecanolide, and natural essential oils such as orange essential oil, lemon essential oil, bergamot essential oil, and mandarin essential oil. ..
  • the content of the fragrance with respect to the total mass of the core material is preferably 20% by mass to 100% by mass, more preferably 30% by mass to 95% by mass, still more preferably 40% by mass to 85% by mass.
  • the core material can contain inclusion components other than fragrances, and examples of other inclusion components include solvents, auxiliary solvents, and the like.
  • the core material may contain a solvent as an oil component.
  • a solvent examples include tri (capryl capric acid) glyceryl (eg, glycerin fatty acid ester such as polyglycerol octacaprate (for example, Saracos (registered trademark) HG-8 manufactured by Nisshin Oillio Group Co., Ltd.), myristic acid.
  • Fatty acid ester compounds such as isopropyl, alkylnaphthalene compounds such as diisopropylnaphthalene, diarylalkane compounds such as 1-phenyl-1-xsilylethane, alkylbiphenyl compounds such as isopropylbiphenyl, triarylmethane compounds, alkylbenzene compounds, Aromatic hydrocarbons such as benzylnaphthalene compounds, diarylalkylene compounds, arylindane compounds; aliphatic hydrocarbons such as dibutylphthalate and isoparaffin; camellia oil, soybean oil, corn oil, cottonseed oil, rapeseed oil, olive oil, palm oil , Natural animal and vegetable oils such as castor oil and fish oil; high boiling point distillates of natural compounds such as mineral oils.
  • the content of the solvent in the inclusion component is preferably less than 50% by mass, more preferably 40% by mass or less, and most preferably 30% by mass or less, based on the total mass of the inclusion
  • the inclusion component may contain an auxiliary solvent as an oil phase component for increasing the solubility of the wall material in the oil phase during the production of microcapsules.
  • the auxiliary solvent does not include the above solvent.
  • the auxiliary solvent include a ketone compound such as methyl ethyl ketone, an ester compound such as ethyl acetate, and an alcohol compound such as isopropyl alcohol.
  • the co-solvent has a boiling point of 130 ° C. or lower.
  • the content of the auxiliary solvent in the inclusion component is preferably less than 50% by mass, more preferably less than 30% by mass, still more preferably less than 20% by mass, based on the total mass of the inclusion component.
  • additives such as UV absorbers, light stabilizers, antioxidants, waxes, and odor suppressants can be encapsulated in microcapsules, if necessary.
  • the additive can be contained, for example, 0% by mass to 20% by mass, preferably 1% by mass to 15% by mass, and more preferably 5% by mass to 10% by mass with respect to the total mass of the core material.
  • the microcapsules of the present disclosure preferably have an anionic charge or a cationic charge on the surface.
  • the fact that the microcapsules have an electric charge on the surface can be confirmed by measuring the zeta potential when the microcapsules are dispersed in water. When the zeta potential is negative, it means that the surface of the microcapsule is covered with anionic charge, and when it is positive, it means that the surface of the microcapsule is covered with cation charge.
  • the absolute value is preferably larger than
  • Zero potential (z) means the apparent electrostatic potential generated by a charged object in solution, measured by a special measurement technique.
  • zeta potential The zeta potential of an object is measured at some distance from the surface of the object and generally does not exceed the electrostatic potential on the surface itself. However, that value can be a good measure of an object's ability to establish electrostatic interactions with other objects in solution, especially with molecules that have multiple binding sites.
  • the zeta potential is a relative measurement value, and the value tends to depend on the measurement method.
  • the zeta potential is a value measured by the following method.
  • a. As the apparatus, ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.) is used.
  • b. The settings of the device are as follows.
  • c. The sample preparation procedure is as follows.
  • the slurry containing the target microcapsules is added to water so that the capsule concentration is 0.5% by mass, and the slurry is diluted. If necessary, the measured concentration is adjusted so that the measurement rate is within a preferable range by automatic detection.
  • Ii The zeta potential of the diluted sample is measured without filtering the sample.
  • the filtered slurry is injected into a standard cell unit (manufactured by Otsuka Electronics Co., Ltd.), and the cell is inserted into the device. Set the test temperature to 25 ° C. (Iv) The measurement is started after the temperature stabilizes (usually after 3 to 5 minutes). For each sample, set and measure 5 times. d.
  • the zeta potential in the present disclosure is a value measured in units of "mV" as an average of three measured values for each slurry. Based on the above, the zeta potential of microcapsules can be measured using ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
  • the method of imparting an electric charge to the surface of the microcapsules is not particularly limited, and for example, a method of imparting an electric charge with a functional group possessed by the biodegradable resin itself, a method of binding an anionic or cationic group imparting agent to a shell, a micro Examples thereof include a method of surface anionizing the surface of the capsule or a method of applying an electric charge using a cationizing agent.
  • a method of imparting an electric charge with a functional group possessed by the biodegradable resin itself a method of subjecting an electric charge using a surface anionizing agent or a cationizing agent is preferable.
  • the median diameter (D50) of the volume standard of the microcapsules is preferably 0.1 ⁇ m to 100 ⁇ m.
  • the median diameter (D50) is 0.1 ⁇ m or more, it is possible to prevent the microcapsules from entering the fine voids of the object (hair, fiber, etc.) to which the microcapsules adhere and becoming difficult to crack.
  • the median diameter (D50) is 100 ⁇ m or less, deterioration of adhesiveness can be prevented.
  • the median diameter (D50) of the volume standard of the microcapsules is preferably 1 ⁇ m to 70 ⁇ m, more preferably 5 ⁇ m to 50 ⁇ m, and further preferably 5 ⁇ m to 30 ⁇ m.
  • the median diameter of the volume standard of the microcapsules can be controlled by changing the dispersion conditions or the like.
  • the standard median diameter of the volume of microcapsules is the volume of particles on the large diameter side and the small diameter side when the entire microcapsule is divided into two with the particle diameter at which the cumulative volume is 50% as a threshold. The diameter at which the total is equal.
  • the median diameter of the volume standard of microcapsules is measured using Microtrack MT3300EXII (manufactured by Nikkiso Co., Ltd.).
  • the microcapsules of the present disclosure are produced by an interfacial polymerization method, an in-situ polymerization method, a simple core selvation method, a complex core selvation method, an aerial suspension method, a spray granulation method, a pan coating method, and an electrostatic coalescence method. , Vacuum vapor deposition method, phase separation method from organic solution system, in-liquid drying method, melt dispersion cooling method, in-liquid curing coating method and the like.
  • the perfume microcapsule composition (hereinafter, also referred to as a microcapsule composition) contains the perfume microcapsules of the present disclosure described above and a solvent. Since the details of the perfume microcapsules of the present disclosure are as described above, detailed description thereof will be omitted here.
  • the content of the microcapsules may be appropriately selected depending on the purpose or application.
  • the content of the microcapsules in the microcapsule composition can be, for example, 1% by mass to 99% by mass, preferably 1% by mass to 95% by mass, based on the total mass of the microcapsule composition. .. [0056]
  • -solvent- As the solvent, an aqueous solvent is preferable.
  • the microcapsule composition contains a solvent
  • the microcapsule composition can be easily blended when used for various purposes.
  • the aqueous solvent include water, water, alcohol and the like.
  • the content of the solvent in the microcapsule composition can be appropriately selected depending on the purpose or application.
  • the microcapsule-containing composition can contain a dispersion medium other than the above-mentioned solvent for dispersing the microcapsules. Since the microcapsule composition contains a dispersion medium, the microcapsule composition can be easily blended when used for various purposes.
  • the dispersion medium here can be appropriately selected according to the intended use of the composition, and is preferably a liquid component that does not affect the shell material of the microcapsules. Preferred dispersion mediums include viscosity modifiers, stabilizers and the like.
  • the content of the dispersion medium in the microcapsule composition may be appropriately selected depending on the purpose or application.
  • the microcapsule composition can contain other components in addition to the microcapsules, solvent and dispersion medium.
  • the other components are not particularly limited and may be appropriately selected depending on the purpose or necessity. Examples of other components include surfactants, cross-linking agents, lubricants, ultraviolet absorbers, antioxidants, antistatic agents and the like.
  • microcapsules and microcapsule compositions of the present disclosure can be used for various purposes.
  • the microcapsules and microcapsule compositions of the present disclosure can be applied to applications such as laundry, hair care, and day care.
  • microcapsules of the present disclosure can be used for washing.
  • the present disclosure includes an embodiment of a fabric softener containing the microcapsules of the present disclosure (for example, a fabric softener for clothing).
  • the softener of the present disclosure contains the microcapsules of the present disclosure described above, and may further contain a solvent. If the softener of the present disclosure further comprises a solvent, the softener of the present disclosure is an example of the microcapsule composition of the present disclosure.
  • the softener of the present disclosure contains a fragrance as a core material and can be used as a softener for clothing.
  • the fabric softeners of the present disclosure can also be used for towels, bedding, and other textile products.
  • the microcapsule composition of the present disclosure can be applied as a laundry softener having performances such as fragrance and deodorization.
  • the fabric softener of the present disclosure When the fabric softener of the present disclosure is used for clothing, for example, by immersing the clothing, dehydrating and drying it, the microcapsules are adsorbed on the fibers of the clothing, or the microcapsules enter the fine voids between the fibers. Is held in. Therefore, the original effect of the softener is imparted to the clothing, and the core material (fragrance, etc.) can be selectively or sustainedly released at a desired time. Needless to say, the same effect can be obtained when used for textile products other than clothing.
  • the core material is stably contained in the microcapsules, so that the clothing or the like may be rubbed even after a lapse of time.
  • the core material fragment, etc.
  • the core material can be released by applying stress and disintegrating the microcapsules.
  • the microcapsules can be disintegrated and the core material (fragrance, etc.) can be released by coloring and acting on the clothes without applying any particular stress.
  • the softening agent for example, it is preferable to contain 0.3% by mass to 10% by mass of microcapsules with respect to the total mass of the microcapsule composition prepared as the softening agent.
  • known components contained in the softener such as antifoaming agent and coloring material, can be further contained.
  • Water such as ion-exchanged water is preferable as the dispersion medium used for the softener.
  • the present disclosure includes aspects of being a detergent containing the microcapsules of the present disclosure (eg, laundry detergent).
  • the detergent of the present disclosure contains the microcapsules of the present disclosure described above, and may further contain a solvent. If the detergent of the present disclosure further comprises a solvent, the detergent of the present disclosure is an example of the microcapsule composition of the present disclosure.
  • the detergent of the present disclosure contains a fragrance as a core material and can be used as a detergent for clothing.
  • the detergents of the present disclosure can be used not only for clothing, but also for towels, bedding and other textile products.
  • the microcapsule composition of the present disclosure can be applied as a laundry detergent having performances such as fragrance and deodorization.
  • the content of microcapsules may be appropriately determined according to the form of the detergent.
  • microcapsules of the present disclosure can be used for hair care applications.
  • microcapsule composition containing the microcapsules of the present disclosure and the dispersion medium (solvent) of the microcapsules can be directly applied to the hair care composition. That is, the hair care composition containing the microcapsules of the present disclosure and the dispersion medium (solvent) of the microcapsules is an example of the microcapsule composition of the present disclosure. In day care applications, the content of microcapsules may be appropriately determined according to the form of the hair care composition.
  • the hair care composition can be arbitrarily applied to hair cosmetics such as conditioners, conditioners, and hair styling products.
  • hair cosmetics such as conditioners, conditioners, and hair styling products.
  • the microcapsule composition of the present disclosure which is a hair cosmetic, causes the microcapsules to adhere to the hair, and when the hair is rubbed or combed, the microcapsules collapse due to stress, and the core material is used. Can be released.
  • the microcapsules can be stably stored for a longer period of time.
  • the hair cosmetic is applied to the hair by spraying, the dispersion medium and the microcapsules adhere to the hair. After that, by massaging the scalp or the like, stress is applied to the microcapsules, so that the microcapsules disintegrate and the core material (fragrance or the like) can be attached to the hair.
  • the microcapsule composition of the present disclosure which is a hair cosmetic, can optionally contain a known component that can be contained in the hair cosmetic.
  • Known ingredients that can be contained in hair cosmetics include aqueous media such as alcohol, oils, surfactants as cleaning or dispersing ingredients, active ingredients that penetrate the skin, coloring materials, fragrances and the like.
  • microcapsules of the present disclosure can be used for day care applications.
  • the microcapsule composition containing the microcapsules of the present disclosure and the dispersion medium (solvent) of the microcapsules includes, for example, a support and the above-mentioned microcapsule composition of the present disclosure impregnated in the support. It can be applied to day care compositions including cosmetic sheets or diapers. That is, the day care composition containing the microcapsules of the present disclosure and the dispersion medium (solvent) of the microcapsules is an example of the microcapsule composition of the present disclosure. In day care applications, the content of microcapsules may be appropriately determined according to the form of the day care product.
  • the support is not particularly limited as long as it can retain a liquid component.
  • a non-woven fabric, a fiber aggregate having voids for retaining moisture such as a woven fabric, a porous body such as a sponge sheet, or the like is preferable.
  • the microcapsules can be disintegrated and the core material (fragrance, etc.) can be released at any time by pressing the support against the skin and rubbing it. ..
  • the microcapsule composition can be used as a skin cleaning sheet by containing a cleaning component such as a surfactant.
  • cosmetic sheets, diapers and the like are preferably packaged in a water-impermeable packaging material from the viewpoint of long-lasting effect.
  • the microcapsules of the present disclosure can be applied to various uses because they can release core materials (fragrances, etc.) at any time at a required timing.
  • the above-mentioned uses are an example thereof, and the uses of the microcapsules and microcapsule compositions of the present disclosure are not limited to the above description.
  • Example 1 -Making microcapsules- 3.0 parts of Sarakos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd.) as a solvent, 9.0 parts of D-limonene (manufactured by Yasuhara Chemical Co., Ltd.) as a fragrance, and an aliphatic polyisosi as a cross-linking agent.
  • Sarakos registered trademark
  • HG-8 manufactured by Nisshin Oillio Group Co., Ltd.
  • D-limonene manufactured by Yasuhara Chemical Co., Ltd.
  • an aliphatic polyisosi as a cross-linking agent.
  • An oil phase solution was obtained by stirring and mixing 0.057 parts of Takenate (registered trademark) D-160N (manufactured by Mitsui Kagaku Co., Ltd., hexamethylene diisocyanate trimethylolpropane adduct; cross-linking agent) which is hexamethylene. Further, the temperature of the system was kept at 40 ° C., and 70 parts by mass (aqueous phase solution) of a 4.3 mass% gelatin aqueous solution in which acid-treated gelatin (biodegradable resin) having an isoionic point of 9.1 was dissolved in water was prepared.
  • the temperature of this emulsion system is raised to 20 ° C., and 10 parts by mass of a 10% by mass aqueous solution of sulfonic acid-modified polyvinyl alcohol (Gosenex L-3266, biodegradable resin manufactured by Nippon Synthetic Chemical Industries, Ltd.) is added.
  • As a cross-linking agent 0.18 parts by mass of 25% glutaraldehyde (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added.
  • a 10 mass% sodium hydroxide aqueous solution was added to adjust the pH (25 ° C.) to 8.5, the temperature of the system was raised to 30 ° C., and stirring was continued for 16 hours to cure the film.
  • a dispersion microcapsule composition
  • the pH was measured using a commercially available pH meter while maintaining the liquid temperature at 25 ° C. The same applies to the following.
  • the volume-based median diameter (D50) of the obtained microcapsules was 20 ⁇ m.
  • the zeta potential after water-diluting this microcapsule aqueous dispersion was ⁇ 25 mV, and the zeta potential after adjusting the pH of this diluted solution to 3.5 was +10 mV.
  • the zeta potential was measured by ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
  • the wall thickness of the microcapsules was 0.1 ⁇ m.
  • the D50 and the wall thickness were measured by the method described above.
  • the presence or absence of a crosslinked structure in the microcapsules was confirmed by the following method.
  • the obtained microcapsule aqueous dispersion was centrifuged to separate the microcapsules from the liquid.
  • the separated microcapsules were mixed with dimethyl sulfoxide (DMSO) (5% by mass) to prepare a DMSO mixture.
  • DMSO dimethyl sulfoxide
  • the DMSO mixture became opaque or the swelling of the Icrocapsules was confirmed, it was judged that the microcapsules had a crosslinked structure.
  • the microcapsules were dissolved and the DMSO mixture became transparent, it was determined that the shell of the microcapsules did not have a crosslinked structure.
  • Example 2 to 12 Adjust the amount of Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct), which is an aliphatic polyisocyanate, as a cross-linking agent, and adjust the amount of microcapsule water dispersion as shown in Table 1.
  • a microcapsule aqueous dispersion was prepared in the same manner as in Example 1 except that the above was obtained.
  • the D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 13 to 14 Takenate (registered trademark) D-160N (registered trademark), which is an aliphatic polyisocyanate, is not added as a cross-linking agent of 25% glutaraldehyde (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and hexamethylene diisocyanate triisocyanate is manufactured by Mitsui Chemical Industries, Ltd.
  • a microcapsule water dispersion was prepared in the same manner as in Example 1 except that the amount of the methylolpropane adduct body) was adjusted to obtain a microcapsule water dispersion as shown in Table 2.
  • the D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
  • Example 15 An ethyl acetate solution of HS2H-201AP (manufactured by Toyokuni Oil Co., Ltd., biodegradable resin) as a polyester polyol is added to the oil phase solution, and Takenate (registered trademark) D-160N (registered trademark), which is an aliphatic polyisocyanate, is used as a cross-linking agent.
  • HS2H-201AP manufactured by Toyokuni Oil Co., Ltd., biodegradable resin
  • D-160N registered trademark
  • Microcapsule water dispersion (microcapsule water dispersion (microcapsule water dispersion) in the same manner as in Example 1 except that the amount of hexamethylene diisocyanate trimethylolpropane adduct (manufactured by Chemical Co., Ltd.) was adjusted to obtain a microcapsule water dispersion as shown in Table 2.
  • Microcapsule composition was prepared. The D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
  • Example 16 Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct), which is an aliphatic polyisocyanate, is not added as a cross-linking agent, and 4,4'-methylenebis (N, N-di) is not added.
  • a microcapsule water dispersion (microcapsule composition) was prepared in the same manner as in Example 13 except that the amount of glycidylaniline) was adjusted to obtain a microcapsule water dispersion as shown in Table 2.
  • the D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
  • Example 17 Transglutaminase (Activa TG-S manufactured by Ajinomoto Co., Ltd.) without adding Takenate (registered trademark) D-160N (Mitsui Chemicals Co., Ltd., hexamethylene diisocyanate trimethylolpropane adduct), which is an aliphatic polyisocyanate, as a cross-linking agent.
  • a microcapsule aqueous dispersion was obtained as shown in Table 2, except that the pH (25 ° C.) adjusted with a 10 mass% aqueous sodium hydroxide solution was adjusted to 7.5 instead of 8.5.
  • a microcapsule aqueous dispersion (microcapsule composition) was prepared in the same manner as in Example 13. The D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
  • Example 18 25% glutaraldehyde (Fujifilm Wako Pure Chemical Industries, Ltd.) without adding the aliphatic polyisocyanate Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct) as a cross-linking agent.
  • a microcapsule water dispersion (microcapsule composition) was prepared in the same manner as in Example 1 except that a microcapsule water dispersion was obtained as shown in Table 2.
  • the D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
  • Example 19 As a solvent, 2.9 parts by mass of Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd .; glycerin fatty acid ester), 8.6 parts by mass of D-limonene (manufactured by Yasuhara Chemical Co., Ltd .; fragrance), and shell material. 0.47 parts by mass of Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct; cross-linking agent), which is a trifunctional aliphatic isocyanate compound, is stirred and mixed to obtain oil. A phase solution was obtained.
  • HPMC aqueous solution a 2.0% by mass aqueous solution (hereinafter referred to as HPMC aqueous solution) of Metrose® 60SH50 (Shinetsu Chemical Industry Co., Ltd., hydroxypropylmethylcellulose (HPMC); polysaccharide, biodegradable resin) was prepared, and an aqueous phase solution was prepared. And said.
  • HPMC aqueous solution a 2.0% by mass aqueous solution
  • Metrose® 60SH50 Shinetsu Chemical Industry Co., Ltd., hydroxypropylmethylcellulose (HPMC); polysaccharide, biodegradable resin
  • aqueous phase solution 180 parts by mass of the HPMC aqueous solution (aqueous phase solution) was heated to 40 ° C., and the above oil phase solution was added and dispersed to generate an emulsion. Then, it heated to 60 degreeC and stirred for 20 minutes. Then, 8.0 parts by mass of a 25.0% by mass aqueous solution of Sunfood (registered trademark) 100 (Mitsubishi Chemical Foods Co., Ltd .; polyphenol compound, biodegradable resin), which is a tea extract, was added and kept at 60 ° C. for 1 hour. Stirring was stopped, heating was stopped and stirring was continued overnight. As described above, a microcapsule aqueous dispersion (microcapsule composition) was obtained. The D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
  • Example 20 As solvent, 5.3 parts by mass of Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd .; glycerin fatty acid ester), 15.8 parts by mass of D-limonene (manufactured by Yasuhara Chemical Co., Ltd .; fragrance), and shell material. 0.87 parts by mass of Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct; cross-linking agent), which is a trifunctional aliphatic isocyanate compound, is stirred and mixed to obtain oil. A phase solution was obtained.
  • Saracos registered trademark
  • HG-8 manufactured by Nisshin Oillio Group Co., Ltd .
  • glycerin fatty acid ester 15.8 parts by mass of D-limonene (manufactured by Yasuhara Chemical
  • a 2.0% by mass aqueous solution of hydroxypropyl cellulose 6.0 to 10.0 (Hydroxypropyl cellulose (HPC); polysaccharide, biodegradable resin, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) (hereinafter, HPC aqueous solution).
  • HPC aqueous solution 10% by mass aqueous solution of Kuraray Poval (registered trademark) PVA-217E (manufactured by Kuraray Co., Ltd .; PVA, biodegradable resin) which is polyvinyl alcohol was prepared.
  • Kuraray Poval registered trademark
  • PVA-217E manufactured by Kuraray Co., Ltd .
  • PVA biodegradable resin
  • An aqueous phase solution prepared by mixing 90 parts by mass of an HPC aqueous solution and 9 parts by mass of a PVA-217E 10% by mass aqueous solution was heated to 40 ° C. and dispersed by adding the above oil phase solution to generate an emulsion. Then, 30 parts by mass of a 25.0% by mass aqueous solution of Sandec # 180 (Sanwa Stardust Industry Co., Ltd., dextrin; polysaccharide, biodegradable resin) was added to the produced emulsion, and the mixture was heated to 60 ° C. for 20 minutes. Stirred.
  • Sandec # 180 Sanwa Stardust Industry Co., Ltd., dextrin; polysaccharide, biodegradable resin
  • Example 21 As a solvent, 0.9 parts by mass of Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd .; glycerin fatty acid ester), 2.7 parts by mass of D-limonene (manufactured by Yasuhara Chemical Co., Ltd .; fragrance), and shell material. 0.15 parts by mass of Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct; cross-linking agent), which is a trifunctional aliphatic isocyanate compound, is stirred and mixed to obtain oil. A phase solution was obtained.
  • Chitosan (5-20 mPa ⁇ s, 0.5% in 0.5% Active Acid at 20 ° C) (manufactured by Tokyo Kasei Kogyo Co., Ltd., chitosan; polysaccharide, biodegradable resin) 30.0 parts by mass and lactic acid (Manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 30.0 parts by mass was diluted with 1440.0 mass of water to prepare a 2.0 mass% aqueous solution (hereinafter, chitosan aqueous solution).
  • aqueous phase solution prepared by mixing 90 parts by mass of an aqueous chitosan solution and 9 parts by mass of a 10 mass% PVA-217E aqueous solution was added and dispersed at 20 ° C. to generate an emulsion. Then, 20.0 parts by mass of a 1.0 mol / L sodium hydroxide aqueous solution was added to the produced emulsion, the temperature was raised to 30 ° C., and stirring was continued overnight. As described above, a microcapsule aqueous dispersion (microcapsule composition) was obtained. The D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
  • Example 22 As a solvent, 4.5 parts by mass of Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd .; glycerin fatty acid ester), 13.5 parts by mass of D-limonene (manufactured by Yasuhara Chemical Co., Ltd .; fragrance), and shell material. 0.75 parts by mass of Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct; cross-linking agent), which is a trifunctional aliphatic isocyanate compound, is stirred and mixed to obtain oil. A phase solution was obtained.
  • HPMC aqueous solution a 6.0% by mass aqueous solution (hereinafter referred to as HPMC aqueous solution) of Metrose® 60SH50 (Shinetsu Chemical Industry Co., Ltd., hydroxypropylmethylcellulose (HPMC); polysaccharide, biodegradable resin) was prepared, and an aqueous phase solution was prepared. And said.
  • HPMC aqueous solution a 6.0% by mass aqueous solution
  • Metrose® 60SH50 Shinetsu Chemical Industry Co., Ltd., hydroxypropylmethylcellulose (HPMC); polysaccharide, biodegradable resin
  • an unscented softener Ultra Downy Free & Gentle, manufactured by Proctor & Gamble Japan Co., Ltd.
  • microcapsule aqueous dispersion obtained above is diluted with a fragrance-free softener containing a cationic surfactant (ULTRA Downy, manufactured by Procter & Gamble Japan Co., Ltd.) so that the fragrance concentration is 1.0%.
  • a microcapsule-containing composition was prepared.
  • the microcapsule-containing composition prepared above and water were mixed to make a total of 1000 parts by mass.
  • a cotton towel (35 cm ⁇ 35 cm) was immersed in this for 15 minutes, squeezed and dried for 24 hours to prepare a sample for evaluation.
  • the unit of the mixing ratio in Tables 1 and 2 is the mass part.
  • the description of "-" in Tables 1 and 2 means that the corresponding component is not contained.
  • the ratio (mass%) of the cross-linking material in Tables 1 and 2 indicates the ratio (mass%) of the structural portion derived from the cross-linking agent to the structural portion derived from the biodegradable resin.
  • Comparative Example 3 is an example in which fragrance microcapsules that do not use a biodegradable resin were prepared for comparative examination of biodegradability evaluation. Details of Comparative Example 3 will be described later.
  • the microcapsules of Examples 1 to 22 showed good biodegradability with a biodegradability of 30% by mass or more, but the microcapsules of Comparative Example 3 had a biodegradability of less than 30%. , Biodegradability was insufficient.
  • Nikaresin S-260 manufactured by Nippon Carbide Industries Co., Ltd.
  • Nikaresin S-260 manufactured by Nippon Carbide Industries Co., Ltd.
  • a melamine-formaldehyde prepolymer was added to the emulsion, and then heated to reach 65 ° C., followed by a 24-hour capsule formation reaction.
  • 29% by mass aqueous ammonia was added until the pH reached 7.5 to obtain a microcapsule aqueous dispersion.
  • the obtained microcapsules had an average particle size of 20 ⁇ m and a film thickness of 0.3 ⁇ m.

Abstract

Provided are perfume microcapsules each comprising a core and a shell containing the core enclosed therein, the shell having a thickness less than 2 μm and including a crosslinked structure derived from a reaction between a biodegradable resin and a crosslinking agent and the core including a perfume. Also provided are a microcapsule composition, a softener, and a detergent.

Description

香料マイクロカプセル、香料マイクロカプセル組成物、柔軟剤及び洗剤Fragrance microcapsules, perfume microcapsule compositions, fabric softeners and detergents
 本開示は、香料マイクロカプセル、香料マイクロカプセル組成物、柔軟剤及び洗剤に関する。 The present disclosure relates to perfume microcapsules, perfume microcapsule compositions, fabric softeners and detergents.
 近年、マイクロカプセルは、香料、染料、蓄熱材、医薬品成分などの機能性材料を内包して保護すること、機能性材料を刺激に応答して放出させること等の点で、新たな価値を顧客に提供できる可能性があることから注目されている。 In recent years, microcapsules have added new value to customers in terms of containing and protecting functional materials such as fragrances, dyes, heat storage materials, and pharmaceutical ingredients, and releasing functional materials in response to stimuli. It is attracting attention because it may be provided to.
 香料をマイクロカプセルに内包する形態では、例えば、香料が内包されたマイクロカプセル(以下、香料カプセルともいう。)を柔軟剤と混合することで、洗濯後の衣類に香りを付与することができる。即ち、柔軟剤を使用して衣服を洗濯することで、柔軟剤に含まれる香料カプセルが衣服に付着し、圧力等の外部刺激により付着した香料カプセルが破壊した際、内包された香料が放出され、香料による香りを生じさせることができる。近年、香料カプセルに用いられているシェル材は、アルデヒドとアミンとの反応生成物(例えばメラミンホルムアルデヒド樹脂)が主な成分とされている。 In the form of containing the fragrance in the microcapsules, for example, by mixing the microcapsules containing the fragrance (hereinafter, also referred to as the fragrance capsule) with the softener, the fragrance can be given to the clothes after washing. That is, when clothes are washed with a softener, the fragrance capsules contained in the softener adhere to the clothes, and when the attached fragrance capsules are destroyed by an external stimulus such as pressure, the contained fragrance is released. , Can produce a fragrance. In recent years, the shell material used for perfume capsules is mainly composed of a reaction product of aldehyde and amine (for example, melamine formaldehyde resin).
 一方、最近では環境面及び人体への安全性の面から、石油系原料に代えて生物由来の材料を用いることが検討されている。マイクロカプセルの作製に用いる材料においても例外ではなく、マイクロカプセルの形態をなすシェル(いわゆるカプセル壁)の形成に石油系原料を用いず、生物由来の物質を用いることに対する要望が高まっている。 On the other hand, recently, from the viewpoint of environment and safety to the human body, it is being considered to use biological materials instead of petroleum-based raw materials. The materials used for the production of microcapsules are no exception, and there is an increasing demand for the use of biological substances instead of petroleum-based raw materials for the formation of shells (so-called capsule walls) in the form of microcapsules.
 生物由来の物質を用いる例として、例えばゼラチンは、一般的に生分解性樹脂として知られている。例えば、特許第6250055号公報には、コア材料として香料を含み、外側シェル材であるゼラチンにグルタルアルデヒドを添加して形成した外側シェルと、内側シェル材をポリウレアとした多層マイクロカプセルによるコア/多層カプセルシステムが開示されている。 As an example of using a substance derived from a living body, for example, gelatin is generally known as a biodegradable resin. For example, Japanese Patent No. 6250055 describes a core / multilayer composed of an outer shell formed by adding glutaraldehyde to gelatin, which is an outer shell material and contains a fragrance as a core material, and a multi-layer microcapsule in which the inner shell material is polyurea. The capsule system is disclosed.
 上記のように、生分解性樹脂を用いてマイクロカプセルを製造する技術は種々検討されるに至っているものの、特に極性物質の共存下では、コア部をなす被内包物を内包するシェル部のバリア機能が低下し、被内包物を安定的にシェル部内に保持し得ない課題がある。かかる課題に対しては、マイクロカプセルのシェル部は厚膜であることが望ましいが、シェル部の厚みが2μm以上の厚膜であると、逆に被内包物の放出性が損なわれる傾向がある。
 特許第6250055号公報には、シェル部が2μm未満の薄膜である場合は開示されていないため、極性物質の共存下において、マイクロカプセルの形態の安定性(保存安定性)と被内包物の放出性とのバランスを保つことまで予定されていないと推測される。したがって、特許第6250055号公報に記載の発明では、所望とする被内包物を内包したマイクロカプセルの適用が望まれる使用態様において、極性物質が共存する環境では使用が困難であり、使用による所期の効果も必ずしも期待できない。
As described above, various techniques for producing microcapsules using biodegradable resins have been studied, but especially in the coexistence of polar substances, the barrier of the shell portion containing the inclusions forming the core portion. There is a problem that the function is deteriorated and the inclusion cannot be stably held in the shell portion. To solve this problem, it is desirable that the shell portion of the microcapsules has a thick film, but if the shell portion has a thickness of 2 μm or more, the release property of the inclusions tends to be impaired. ..
Patent No. 6250055 does not disclose the case where the shell portion is a thin film of less than 2 μm. Therefore, in the presence of polar substances, the morphological stability (storage stability) of the microcapsules and the release of inclusions It is presumed that there are no plans to maintain a balance with sex. Therefore, in the invention described in Japanese Patent No. 6250055, it is difficult to use in an environment where polar substances coexist in a usage mode in which it is desired to apply a microcapsule containing a desired inclusion. The effect of is not always expected.
 本開示は、上記の事情に鑑みなされたものである。
 本開示の一実施形態が解決しようとする課題は、生分解性を有し、シェル部を薄膜としつつ、極性物質の共存下での保存安定性に優れたマイクロカプセルを提供することにある。
 本開示の他の実施形態が解決しようとする課題は、生分解性を有し、シェル部に内包されたコア材が安定的にシェル部内に保持されたマイクロカプセル組成物、並びに、柔軟剤及び洗剤を提供することにある。
The present disclosure has been made in view of the above circumstances.
An object to be solved by one embodiment of the present disclosure is to provide microcapsules that are biodegradable, have a thin shell portion, and have excellent storage stability in the coexistence of polar substances.
The problem to be solved by other embodiments of the present disclosure is a microcapsule composition which is biodegradable and in which the core material contained in the shell portion is stably held in the shell portion, as well as a softener and a softener. To provide detergent.
 上記課題を解決する手段には、以下の態様が含まれる。
 <1> コア部とコア部を内包するシェル部とを含み、シェル部は、厚みが2μm未満であり、かつ、生分解性樹脂と架橋剤との反応由来の架橋構造を含み、コア部は、コア材として香料を含む、香料マイクロカプセルである。
 <2> 架橋剤が、イソシアネート化合物である、<1>に記載の香料マイクロカプセルである。
 <3> 生分解性樹脂が、ゼラチン、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、及びキトサンからなる群より選ばれる少なくとも一つを含む、<1>または<2>に記載の香料マイクロカプセルである。
 <4> 生分解性樹脂に由来の構造部分と架橋剤に由来の構造部分との比率が、2質量%~50質量%である、<1>~<3>のいずれか1つに記載の香料マイクロカプセル。
 <5> <1>~<4>のいずれか1つに記載の香料マイクロカプセルと、溶媒と、を含有する香料マイクロカプセル組成物である。
 <6> <1>~<4>のいずれか1つに記載の香料マイクロカプセルを含む柔軟剤である。
 <7> <1>~<4>のいずれか1つに記載の香料マイクロカプセルを含む洗剤である。
The means for solving the above problems include the following aspects.
<1> The core portion includes a core portion and a shell portion containing the core portion, the shell portion has a thickness of less than 2 μm, and contains a cross-linked structure derived from the reaction between the biodegradable resin and the cross-linking agent, and the core portion includes the core portion. , A fragrance microcapsule containing a fragrance as a core material.
<2> The perfume microcapsules according to <1>, wherein the cross-linking agent is an isocyanate compound.
<3> The perfume microcapsule according to <1> or <2>, wherein the biodegradable resin contains at least one selected from the group consisting of gelatin, hydroxypropylmethyl cellulose, hydroxypropyl cellulose, and chitosan.
<4> The method according to any one of <1> to <3>, wherein the ratio of the structural portion derived from the biodegradable resin to the structural portion derived from the cross-linking agent is 2% by mass to 50% by mass. Fragrance microcapsules.
<5> A perfume microcapsule composition containing the perfume microcapsule according to any one of <1> to <4> and a solvent.
<6> A softener containing the perfume microcapsules according to any one of <1> to <4>.
<7> A detergent containing the perfume microcapsules according to any one of <1> to <4>.
 本発明の一実施形態によれば、生分解性を有し、シェル部を薄膜としつつ、極性物質の共存下での保存安定性に優れた香料マイクロカプセルが提供される。
 本発明の他の実施形態によれば、生分解性を有し、シェル部に内包されたコア材が安定的にシェル内に保持された香料マイクロカプセル組成物、並びに、柔軟剤及び洗剤が提供される。
According to one embodiment of the present invention, there is provided a perfume microcapsule having biodegradability and having a thin shell portion and excellent storage stability in the coexistence of a polar substance.
According to another embodiment of the present invention, there is provided a perfume microcapsule composition which is biodegradable and in which a core material contained in a shell portion is stably held in the shell, and a softener and a detergent. Will be done.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
In the present specification, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
 また、本開示において、組成物又は層中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する上記複数の物質の合計量を意味する。
 本開示において、「質量%」は「重量%」と同義であり、「質量部」は「重量部」と同義である。
 更に、本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
Further, in the present disclosure, the amount of each component in the composition or layer is the amount of the above-mentioned plurality of substances existing in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. Means the total amount.
In the present disclosure, "% by mass" is synonymous with "% by weight" and "parts by weight" is synonymous with "parts by weight".
Further, in the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
 本明細書において、「シェル部」は、マイクロカプセルの粒子を形づくる外殻を指し、いわゆるカプセル壁のことをいう。また、「コア部」は、「芯部」ともいい、シェル部により内包されている部分を指す。
 本明細書において、シェル部を形成するための材料を「シェル材」又は「壁材」といい、コア部に含まれる成分を「コア材」、「内包成分」又は「被内包物」という。
 また、本開示において、「内包」とは、目的とする物(被内包物)がマイクロカプセルのシェル部に覆われて閉じ込められている状態を指す。
In the present specification, the "shell portion" refers to the outer shell forming the particles of the microcapsules, and refers to the so-called capsule wall. Further, the "core portion" is also referred to as a "core portion" and refers to a portion included by the shell portion.
In the present specification, the material for forming the shell portion is referred to as "shell material" or "wall material", and the component contained in the core portion is referred to as "core material", "inclusion component" or "inclusion".
Further, in the present disclosure, the “inclusion” refers to a state in which a target object (encapsulation) is covered and confined in a shell portion of a microcapsule.
≪香料マイクロカプセル≫
 本開示の香料マイクロカプセル(以下、単に「マイクロカプセル」ともいう。)は、コア部とコア部を内包するシェル部とを含み、シェル部は、厚みが2μm未満であり、かつ、生分解性樹脂と架橋剤との反応由来の架橋構造を含み、コア部は、香料を含む。
 即ち、本開示のマイクロカプセルは、コア部には、コア材として香料を含め、コア部を内包するシェル部では、厚みを2μm未満の薄厚とし、生分解性樹脂に由来する構造と、架橋剤に由来する構造と、を有するものとする。
 マイクロカプセルの形態としては、例えば、マイクロカプセル分散液を挙げることができ、マイクロカプセルが水系溶媒に分散されたマイクロカプセル水分散液の形態であることが好ましい。
≪Fragrance microcapsules≫
The perfume microcapsules of the present disclosure (hereinafter, also simply referred to as “microcapsules”) include a core portion and a shell portion containing the core portion, and the shell portion has a thickness of less than 2 μm and is biodegradable. It contains a cross-linked structure derived from the reaction of a resin and a cross-linking agent, and the core portion contains a fragrance.
That is, in the microcapsules of the present disclosure, the core portion contains a fragrance as a core material, and the shell portion containing the core portion has a thin thickness of less than 2 μm, and has a structure derived from a biodegradable resin and a cross-linking agent. It shall have a structure derived from.
Examples of the form of the microcapsules include a microcapsule dispersion, and it is preferable that the microcapsules are in the form of a microcapsule water dispersion in which the microcapsules are dispersed in an aqueous solvent.
<シェル部>
 本開示のマイクロカプセルは、コア部をなすコア材を内包し、かつ、カプセル粒子を形作るための外殻であるシェル部を有する。
 本開示におけるシェル部は、生分解性樹脂と架橋剤との反応由来の架橋構造を含む。即ち、シェル部を形成するシェル材は、生分解性樹脂に由来する構造と、架橋剤に由来する構造を含む。
<Shell part>
The microcapsules of the present disclosure include a core material forming a core portion and have a shell portion which is an outer shell for forming capsule particles.
The shell portion in the present disclosure includes a cross-linked structure derived from the reaction of the biodegradable resin and the cross-linking agent. That is, the shell material forming the shell portion includes a structure derived from a biodegradable resin and a structure derived from a cross-linking agent.
 マイクロカプセルのシェル部が架橋構造を有することの確認は、以下の方法により行うことができる。
 初めに、調製したマイクロカプセル組成物に対して遠心分離を施し、マイクロカプセルを液中から分離する。分離したマイクロカプセルをジメチルスルホキシド(DMSO)に混合(DMSOに対して1質量%~5質量%)してDMSO混合液を調製する。そして、マイクロカプセルを混合したDMSO混合液が不透明化するか、又はマイクロカプセルの膨潤が確認できた場合は、マイクロカプセルのシェルが架橋構造を有するものと判断する。また、マイクロカプセルが溶解してDMSO混合液が透明化した場合は、マイクロカプセルのシェルが架橋構造を有していないものとする。DMSO混合液が不透明化していることの確認は目視により行い、マイクロカプセルが膨潤していることの確認は光学顕微鏡での観察により行う。
Confirmation that the shell portion of the microcapsule has a crosslinked structure can be performed by the following method.
First, the prepared microcapsule composition is centrifuged to separate the microcapsules from the liquid. The separated microcapsules are mixed with dimethyl sulfoxide (DMSO) (1% by mass to 5% by mass based on DMSO) to prepare a DMSO mixture. Then, when the DMSO mixed solution mixed with the microcapsules becomes opaque or the swelling of the microcapsules can be confirmed, it is determined that the shell of the microcapsules has a crosslinked structure. When the microcapsules are dissolved and the DMSO mixture becomes transparent, it is assumed that the shell of the microcapsules does not have a crosslinked structure. Confirmation that the DMSO mixture is opaque is visually confirmed, and confirmation that the microcapsules are swollen is performed by observation with an optical microscope.
 また、本開示におけるシェル部(壁)の厚み(壁厚)は、2μm未満とされている。
 本開示のマイクロカプセルは、シェル部の厚みが2μm未満の薄膜であっても、カプセルの形態を安定的に維持でき、保存安定性に優れている。これにより、擦過等の外力が与えられた場合に所期より予定していた量のコア材を安定的に放出することが可能である。
 シェル部(壁)の厚み(壁厚)は、1.5μm以下が好ましく、1.0μm以下がより好ましく、0.5μm以下が更に好ましい。また、本開示におけるマイクロカプセルは、架橋構造を有して形状を保持しやすいため、シェル部の厚みの下限は、製造可能な範囲で適宜選択すればよく、例えば0.1μmとしてもよい。
Further, the thickness (wall thickness) of the shell portion (wall) in the present disclosure is set to be less than 2 μm.
The microcapsules of the present disclosure can stably maintain the shape of the capsule even if the thickness of the shell portion is less than 2 μm, and are excellent in storage stability. As a result, when an external force such as scratching is applied, it is possible to stably release the amount of core material planned from the intended stage.
The thickness (wall thickness) of the shell portion (wall) is preferably 1.5 μm or less, more preferably 1.0 μm or less, and further preferably 0.5 μm or less. Further, since the microcapsules in the present disclosure have a crosslinked structure and easily retain their shape, the lower limit of the thickness of the shell portion may be appropriately selected within a manufacturable range, and may be, for example, 0.1 μm.
 シェル部(壁)の厚み(壁厚)は、5個のマイクロカプセルの個々の壁厚(μm)を走査型電子顕微鏡(SEM)により求めて平均した平均値をいう。具体的には、マイクロカプセル液を任意の支持体上に塗布し、乾燥させて塗布膜を形成する。得られた塗布膜の断面切片を作製し、その断面をSEMを用いて観察し、任意の5個のマイクロカプセルを選択して、それら個々のマイクロカプセルの断面を観察して壁厚を測定して平均値を算出する。 The thickness (wall thickness) of the shell portion (wall) is the average value obtained by calculating the individual wall thickness (μm) of the five microcapsules with a scanning electron microscope (SEM) and averaging them. Specifically, the microcapsule solution is applied onto an arbitrary support and dried to form a coating film. A cross-sectional section of the obtained coating film is prepared, the cross section is observed using SEM, any five microcapsules are selected, and the cross section of each of the microcapsules is observed to measure the wall thickness. And calculate the average value.
 本開示のマイクロカプセルにおいて、生分解性樹脂に由来の構造部分に対する、架橋剤に由来の構造部分の比率は、2質量%~50質量%であることが好ましく、3質量%~25質量%であることがより好ましく、3質量%~10質量%であることがさらに好ましい。上記の比率であることで、保存安定性がより良好となり、かつ、より優れた香り強度であるため好ましい。
 なお、「生分解性樹脂に由来する構造部分」とは、生分解性樹脂と架橋剤とを反応させた際に生分解性樹脂から形成される構造単位を指し、「架橋剤に由来する構造部分」とは、生分解性樹脂と架橋剤とを反応させた際に架橋剤から形成される構造単位を指す。
In the microcapsules of the present disclosure, the ratio of the structural portion derived from the cross-linking agent to the structural portion derived from the biodegradable resin is preferably 2% by mass to 50% by mass, preferably 3% by mass to 25% by mass. It is more preferable that the amount is 3% by mass to 10% by mass. The above ratio is preferable because the storage stability is better and the scent intensity is more excellent.
The "structural portion derived from the biodegradable resin" refers to a structural unit formed from the biodegradable resin when the biodegradable resin is reacted with the cross-linking agent, and the "structure derived from the cross-linking agent". "Part" refers to a structural unit formed from a cross-linking agent when the biodegradable resin is reacted with the cross-linking agent.
<生分解性樹脂>
 本開示における生分解性樹脂は、生分解度(好気的究極分解度:JIS K 6950(2000年)又は6953(2011年)、6955(2017年))が、30%以上であるものを指す。実用的な期間で分解する点から、40%以上であることがより好ましく、60%以上であることがさらに好ましい。
<Biodegradable resin>
The biodegradable resin in the present disclosure refers to a resin having a biodegradability (aerobic ultimate decomposition: JIS K 6950 (2000) or 6953 (2011), 6955 (2017)) of 30% or more. .. From the viewpoint of decomposition in a practical period, it is more preferably 40% or more, and further preferably 60% or more.
 生分解性樹脂については、「生分解性プラスチックハンドブック」(生分解性プラスチック研究会編、株式会社エヌ・ティー・エス発行(1995))に記載されており、例えば、でん粉等の多糖類、ゼラチン等のたん白質、ポリビニルアルコール樹脂、ポリエステル樹脂が挙げられる。 Biodegradable resins are described in the "Biodegradable Plastics Handbook" (edited by the Biodegradable Plastics Research Association, published by NTS Co., Ltd. (1995)). For example, polysaccharides such as starch and gelatin. Examples thereof include proteins such as, polyvinyl alcohol resin, and polyester resin.
 多糖類としては、ゲルを形成する多糖類が好ましく用いられる。このような多糖類としては、寒天、カラギーナン、アラビアガム、ジェランガム、キサンタンガム、ペクチン、アルギン酸、メチルセルロース、ヒドロキシプロピルセルロース(HPC)、ヒドロキシプロピルメチルセルロース(HPMC)、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、キトサン、デキストリンなどが挙げられるが、これらに限定されない。 As the polysaccharide, a polysaccharide that forms a gel is preferably used. Examples of such polysaccharides include agar, carrageenan, arabic gum, gellan gum, xanthan gum, pectin, alginic acid, methyl cellulose, hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC), carboxymethyl cellulose, sodium carboxymethyl cellulose, chitosan, dextrin and the like. However, it is not limited to these.
 たん白質としては、ゼラチンなどが挙げられるが、これらに限定されない。
 ゼラチンは、特に限定されず、ゼラチンをアルカリ処理したもの(アルカリ処理ゼラチンとも称する。)、ゼラチンを酸処理したもの(酸処理ゼラチンとも称する。)などを包含する。
Examples of the protein include, but are not limited to, gelatin and the like.
The gelatin is not particularly limited, and includes gelatin treated with alkali (also referred to as alkali-treated gelatin), gelatin treated with acid (also referred to as acid-treated gelatin), and the like.
 ポリビニルアルコール樹脂としては、完全ケン化、部分ケン化、アニオン変性、又はカチオン変性のポリビニルアルコール樹脂などが挙げられるが、これらに限定されない。 Examples of the polyvinyl alcohol resin include, but are not limited to, completely saponified, partially saponified, anion-modified, or cation-modified polyvinyl alcohol resins.
 ポリエステル樹脂としては、脂肪族ポリエステル系、脂肪族ポリエステルと芳香族ポリエステルとの共重合系、又は脂肪族ポリカーボネート系の樹脂を好ましく用いることができる。これらの樹脂としては、ポリエチレンサクシネート(PES)、ポリブチレンサクシネート(PBS)、ポリ乳酸(PLA)、ポリグリコール酸(PGA)、ポリヒドロキシブチレート(PHB)、ポリカプロラクトン(PCL)、ポリカプロラクトンとポリブチレンサクシネートとの混合物若しくは共重合物(PCL/PBS)、ポリヒドロキシブチレートとポリヒドロキシバリレートとの共重合物(PHB/PHV)、ポリブチレンサクシネートとポリブチレンアジペートとの混合物若しくは共重合物(PBS/PBA)、ポリエチレンテレフタレートとポリエチレンサクシネートとの共重合物(PET/PES)、ポリブチレンテレフタレートとポリブチレンアジペートとの共重合物(PBT/PBA)等の樹脂が挙げられるが、これらに限定されない。
 生分解性樹脂は、単独で又は二以上を組み合わせて用いることができる。
As the polyester resin, an aliphatic polyester-based resin, a copolymer-based resin of an aliphatic polyester and an aromatic polyester, or an aliphatic polycarbonate-based resin can be preferably used. Examples of these resins include polyethylene succinate (PES), polybutylene succinate (PBS), polylactic acid (PLA), polyglycolic acid (PGA), polyhydroxybutyrate (PHB), polycaprolactone (PCL), and polycaprolactone. A mixture or copolymer of polybutylene succinate and polybutylene succinate (PCL / PBS), a copolymer of polyhydroxybutyrate and polyhydroxyvariate (PHB / PHV), a mixture of polybutylene succinate and polybutylene adipate, or Resins such as a copolymer (PBS / PBA), a copolymer of polyethylene terephthalate and polyethylene succinate (PET / PES), and a copolymer of polybutylene terephthalate and polybutylene adipate (PBT / PBA) can be mentioned. , Not limited to these.
The biodegradable resin can be used alone or in combination of two or more.
 本開示における生分解性樹脂としては、ゼラチン、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、及びキトサンからなる群より選ばれる少なくとも一つを含む態様であることが、架橋剤と反応する官能基を有する観点から好ましい。 The biodegradable resin in the present disclosure includes at least one selected from the group consisting of gelatin, hydroxypropylmethyl cellulose, hydroxypropyl cellulose, and chitosan from the viewpoint of having a functional group that reacts with a cross-linking agent. preferable.
-架橋剤-
 本開示における架橋剤としては、イソシアネート化合物、エポキシ化合物、カルボン酸塩化物、アルデヒド化合物、カルボジイミド化合物、オキサゾリン化合物、酸無水物化合物、有機ホウ素化合物、シランカップリング剤、トランスグルタミナーゼなどが挙げられる。
-Crosslinking agent-
Examples of the cross-linking agent in the present disclosure include isocyanate compounds, epoxy compounds, carboxylated compounds, aldehyde compounds, carbodiimide compounds, oxazoline compounds, acid anhydride compounds, organic boron compounds, silane coupling agents, transglutaminase and the like.
 架橋剤は、シェル材である生分解性樹脂に対して、2質量%~50質量%であることが好ましく、3質量%~25質量%であることがより好ましく、3質量%~10質量%であることがさらに好ましい。 The cross-linking agent is preferably 2% by mass to 50% by mass, more preferably 3% by mass to 25% by mass, and 3% by mass to 10% by mass with respect to the biodegradable resin as the shell material. Is more preferable.
 シェル部を形成するシェル材は、イソシアネート化合物に由来する構造を有するポリウレタン又はポリウレアを含むものであってもよい。
 イソシアネート化合物としては、架橋構造を形成する観点から、多官能イソシアネート化合物(ポリイソシアネート)が好ましい。
 ポリイソシアネートには、芳香族ポリイソシアネート及び脂肪族ポリイソシアネート等が含まれる。ポリイソシアネートには、2官能のポリイソシアネート及び3官能以上のポリイソシアネートが含まれる。
The shell material forming the shell portion may contain polyurethane or polyurea having a structure derived from an isocyanate compound.
As the isocyanate compound, a polyfunctional isocyanate compound (polyisocyanate) is preferable from the viewpoint of forming a crosslinked structure.
Polyisocyanates include aromatic polyisocyanates and aliphatic polyisocyanates. The polyisocyanate includes a bifunctional polyisocyanate and a trifunctional or higher functional polyisocyanate.
-3官能以上のイソシアネート化合物-
 シェル部を形成するシェル材がポリウレタン又はポリウレアである場合、3官能以上のイソシアネート化合物に由来する構造部分を有することが好ましい。3官能以上のイソシアネート化合物に由来する構造部分を有することで、架橋密度を高め、かつ、シェル部の柔軟性を高めることができる。
 3官能以上のイソシアネート化合物に由来する構造部分とは、3官能以上のイソシアネート化合物がウレタン化又はウレア化して形成される構造部分を指す。
 3官能以上のイソシアネート化合物は、3官能以上の脂肪族イソシアネート化合物であってもよい。
-3 Functional or higher functional isocyanate compounds-
When the shell material forming the shell portion is polyurethane or polyurea, it is preferable to have a structural portion derived from a trifunctional or higher functional isocyanate compound. By having a structural portion derived from a trifunctional or higher functional isocyanate compound, the crosslink density can be increased and the flexibility of the shell portion can be increased.
The structural portion derived from a trifunctional or higher functional isocyanate compound refers to a structural portion formed by urethanizing or ureaizing a trifunctional or higher functional isocyanate compound.
The trifunctional or higher functional isocyanate compound may be a trifunctional or higher functional aliphatic isocyanate compound.
 3官能以上の脂肪族イソシアネート化合物としては、2官能の脂肪族イソシアネート化合物(分子中に2つのイソシアネート基を有する化合物)と分子中に3つ以上の活性水素基を有する化合物(3官能以上の例えばポリオール、ポリアミン又はポリチオール等)とのアダクト体(付加物)として3官能以上としたイソシアネート化合物(アダクト型)、2官能の脂肪族イソシアネート化合物の3量体(ビウレット型又はイソシアヌレート型)を挙げることができる。 Examples of the trifunctional or higher functional aliphatic isocyanate compound include a bifunctional aliphatic isocyanate compound (a compound having two isocyanate groups in the molecule) and a compound having three or more active hydrogen groups in the molecule (for example, trifunctional or higher). Examples of adducts (additives) with polyols, polyamines, polythiols, etc.) include trifunctional or higher functional isocyanate compounds (adduct type) and difunctional aliphatic isocyanate compound trimerics (biuret type or isocyanurate type). Can be done.
 アダクト型の3官能以上のイソシアネート化合物は、上市されている市販品を用いてもよい。市販品の例としては、タケネート(登録商標)D-120N(イソシアネート価=3.5 mmol/g)、D-140N、D-160N(以上、三井化学株式会社製)、スミジュール(登録商標)HT(バイエル株式会社製)、コロネート(登録商標)HL、HX(東ソー株式会社製)、デュラネートP301-75E(旭化成株式会社製)、バーノック(登録商標)DN-950(DIC株式会社製)などが挙げられる。
 中でも、アダクト型の3官能以上のイソシアネート化合物として、三井化学株式会社製のタケネート(登録商標)シリーズ(例えば、タケネートD-110N、D-120N、D-140N、D-160N等)がより好ましい。
As the adduct-type trifunctional or higher functional isocyanate compound, a commercially available product on the market may be used. Examples of commercially available products include Takenate (registered trademark) D-120N (isocyanate value = 3.5 mmol / g), D-140N, D-160N (all manufactured by Mitsui Chemicals, Inc.), Sumijour (registered trademark). HT (Bayer Co., Ltd.), Coronate (registered trademark) HL, HX (Tosoh Co., Ltd.), Duranate P301-75E (Asahi Kasei Co., Ltd.), Burnock (registered trademark) DN-950 (DIC Corporation), etc. Can be mentioned.
Among them, as an adduct-type trifunctional or higher functional isocyanate compound, the Takenate (registered trademark) series manufactured by Mitsui Chemicals, Inc. (for example, Takenate D-110N, D-120N, D-140N, D-160N, etc.) is more preferable.
 イソシアヌレート型の3官能以上のイソシアネート化合物は、上市されている市販品を用いてもよい。市販品の例としては、タケネート(登録商標)D-127N、D-170N、D-170HN、D-172N、D-177N(三井化学株式会社製)、スミジュールN3300、デスモジュール(登録商標)N3600、N3900、Z4470BA(以上、バイエル株式会社製)、コロネート(登録商標)HK(東ソー株式会社製)、デュラネート(登録商標)TPA-100、TKA-100(旭化成株式会社製)、バーノック(登録商標)DN-980(DIC株式会社製)などが挙げられる。 As the isocyanurate-type trifunctional or higher functional isocyanate compound, a commercially available product on the market may be used. Examples of commercially available products include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, D-177N (manufactured by Mitsui Chemicals, Inc.), Sumijour N3300, and Death Module (registered trademark) N3600. , N3900, Z4470BA (manufactured by Bayer Co., Ltd.), Coronate (registered trademark) HK (manufactured by Tosoh Corporation), Duranate (registered trademark) TPA-100, TKA-100 (manufactured by Asahi Kasei Corporation), Barnock (registered trademark) Examples thereof include DN-980 (manufactured by DIC Co., Ltd.).
 ビウレット型の3官能以上のイソシアネート化合物は、上市されている市販品を用いてもよく、例えば、タケネート(登録商標)D-165N、NP1200(三井化学株式会社製)、デスモジュール(登録商標)N3200A(バイエル株式会社製)、デュラネート(登録商標)24A-100、22A-75P(旭化成株式会社製)などが挙げられる。 As the biuret-type trifunctional or higher functional isocyanate compound, commercially available products on the market may be used. For example, Takenate (registered trademark) D-165N, NP1200 (manufactured by Mitsui Chemicals, Inc.), Death Module (registered trademark) N3200A. (Manufactured by Bayer Corporation), Duranate (registered trademark) 24A-100, 22A-75P (manufactured by Asahi Kasei Corporation) and the like.
 3官能以上の芳香族イソシアネート化合物の具体例としては、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート又はヘキサメチレンジイソシアネートとトリメチロールプロパンとの付加物(アダクト体)、ビウレット体もしくはイソシアヌレート体等が挙げられる。
 3官能以上の芳香族イソシアネート化合物として上市されている市販品を用いてもよく、市販品の例としては、バーノック(登録商標)D-750、D-800(DIC株式会社製)、タケネート(登録商標)D-102、D-103、D-103H、D-103M2、D-110N、オレスター(登録商標)P49-75S(以上、三井化学株式会社製)、デスモジュール(登録商標)L75、IL-135-BA、HL-BA、スミジュール(登録商標)E-21-1(バイエル株式会社製)、コロネート(登録商標)L、L-55、L-55E(東ソー株式会社製)等が挙げられる。
Specific examples of the trifunctional or higher functional aromatic isocyanate compound include 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, an adduct of hexamethylene diisocyanate and trimethylolpropane (adduct), biuret or isocyanate. Nurate form and the like can be mentioned.
Commercially available products marketed as trifunctional or higher functional aromatic isocyanate compounds may be used, and examples of the commercially available products include Burnock (registered trademark) D-750, D-800 (manufactured by DIC Co., Ltd.), and Takenate (registered). Trademarks) D-102, D-103, D-103H, D-103M2, D-110N, Olestar (registered trademark) P49-75S (all manufactured by Mitsui Chemicals, Inc.), Death Module (registered trademark) L75, IL -135-BA, HL-BA, Sumijour (registered trademark) E-21-1 (manufactured by Bayer Co., Ltd.), Coronate (registered trademark) L, L-55, L-55E (manufactured by Tosoh Corporation), etc. Be done.
(2官能のイソシアネート化合物)
 本開示におけるイソシアネート化合物は、2官能のイソシアネート化合物を含んでもよい。
 シェル部を形成するシェル材がポリウレタン又はポリウレアである場合、2官能のイソシアネート化合物に由来する構造部分を有することが好ましい。即ち、シェル部を形成するシェル材であるポリウレタン又はポリウレアは、2官能の脂肪族イソシアネート化合物に由来する構造部分及び2官能の芳香族イソシアネート化合物に由来する構造部分から選ばれる少なくとも一方の構造部分を有することが好ましい。
 2官能の脂肪族イソシアネート化合物に由来する構造部分とは、2官能の脂肪族イソシアネート化合物がウレタン化又はウレア化して形成される構造部分を指す。
 2官能の芳香族イソシアネート化合物に由来する構造部分とは、2官能の芳香族イソシアネート化合物がウレタン化又はウレア化して形成される構造部分を指す。
(Bifunctional isocyanate compound)
The isocyanate compound in the present disclosure may include a bifunctional isocyanate compound.
When the shell material forming the shell portion is polyurethane or polyurea, it is preferable to have a structural portion derived from a bifunctional isocyanate compound. That is, polyurethane or polyurea, which is a shell material forming the shell portion, has at least one structural portion selected from a structural portion derived from a bifunctional aliphatic isocyanate compound and a structural portion derived from a bifunctional aromatic isocyanate compound. It is preferable to have.
The structural portion derived from the bifunctional aliphatic isocyanate compound refers to a structural portion formed by urethanizing or ureaizing the bifunctional aliphatic isocyanate compound.
The structural portion derived from the bifunctional aromatic isocyanate compound refers to the structural portion formed by urethanizing or ureaizing the bifunctional aromatic isocyanate compound.
 2官能の脂肪族イソシアネート化合物としては、例えば、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、ブチレン-1,2-ジイソシアネート、シクロヘキシレン-1,2-ジイソシアネート、シクロヘキシレン-1,3-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,4-ビス(イソシアネートメチル)シクロヘキサン及び1,3-ビス(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート、リジンジイソシアネート、水素化キシリレンジイソシアネート等が挙げられる。 Examples of the bifunctional aliphatic isocyanate compound include trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanate, butylene-1,2-diisocyanate, cyclohexylene-1,2-diisocyanate, and cyclohexylene-1, 3-Diisocyanate, cyclohexylene-1,4-diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,4-bis (isocyanatemethyl) cyclohexane and 1,3-bis (isocyanatemethyl) cyclohexane, isophorone diisocyanate, lysine diisocyanate , Hydroxylylene diisocyanate and the like.
 2官能の芳香族イソシアネート化合物としては、例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート、ナフタレン-1,4-ジイソシアネート、メチレンジフェニル-4,4’-ジイソシアネート、3,3’-ジメトキシ-ビフェニルジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、キシリレン-1,4-ジイソシアネート、キシリレン-1,3-ジイソシアネート、4-クロロキシリレン-1,3-ジイソシアネート、2-メチルキシリレン-1,3-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、4,4’-ジフェニルヘキサフルオロプロパンジイソシアネート等が挙げられる。 Examples of the bifunctional aromatic isocyanate compound include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, naphthalene-1,4-diisocyanate, and methylene diphenyl-4. , 4'-diisocyanate, 3,3'-dimethoxy-biphenyldiisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, xylylene-1,4-diisocyanate, xylylene-1,3-diisocyanate, 4-chloro Examples thereof include xylylene-1,3-diisocyanate, 2-methylxylylene-1,3-diisocyanate, 4,4′-diphenylpropanediisocyanate, and 4,4′-diphenylhexafluoropropanediisocyanate.
 イソシアネート化合物については「ポリウレタン樹脂ハンドブック」(岩田敬治編、日刊工業新聞社発行(1987))に記載されている。 Isocyanate compounds are described in the "Polyurethane Resin Handbook" (edited by Keiji Iwata, published by Nikkan Kogyo Shimbun (1987)).
<コア部>
 本開示のマイクロカプセルは、シェル部に内包されたコア部を有し、コア部には、コア材として香料を含む。
<Core part>
The microcapsules of the present disclosure have a core portion contained in a shell portion, and the core portion contains a fragrance as a core material.
-香料-
 香料としては、「特許庁、周知慣用技術集(香料)第III部香粧品香料、頁49-103頁、平成13年6月15日発行」に記載されている合成香料、天然精油、天然香料、動植物エキスなどから、適するものを適宜選択し、用いることができる。
 具体的な香料としては、ピネン、ミルセン、カンフェン、モノテルペン(例:R-リモネン、D-リモネン等)、セドレン、カリオフィレン、ロンギフォレンなどのセスキテルペン、1,3,5-ウンデカトリエン、α-アミルシンナミルアルデヒド、ジヒドロジャスモン、メチルイオノン、α-ダマスコン、アセチルセドレン、ジヒドロジャスモン酸メチル、シクロペンタデカノリドなど合成香料、オレンジ精油、レモン精油、ベルガモット精油、マンダリン精油などの天然精油が挙げられる。
 コア材の全質量に対する香料の含有量としては、20質量%~100質量%が好ましく、30質量%~95質量%がより好ましく、40質量%~85質量%が更に好ましい。
-Fragrance-
As fragrances, synthetic fragrances, natural essential oils, and natural fragrances described in "Patent Office, Well-known Conventional Technology Collection (Fragrance) Part III Cosmetic Fragrances, pp. 49-103, published on June 15, 2001". , Animal and plant extracts, etc., suitable ones can be appropriately selected and used.
Specific fragrances include pinene, milsen, camphene, monoterpenes (eg R-limonene, D-limonene, etc.), sesquiterpenes such as sedren, cariophyllene, longifolene, 1,3,5-undecatorien, α- Synthetic fragrances such as amilcinnamylaldehyde, dihydrojasmon, methylionone, α-damascon, acetylsedrene, methyl dihydrojasmonate, cyclopentadecanolide, and natural essential oils such as orange essential oil, lemon essential oil, bergamot essential oil, and mandarin essential oil. ..
The content of the fragrance with respect to the total mass of the core material is preferably 20% by mass to 100% by mass, more preferably 30% by mass to 95% by mass, still more preferably 40% by mass to 85% by mass.
 コア材には、香料以外の他の内包成分を含めることができ、他の内包成分の例としては、溶媒、補助溶媒等が挙げられる。 The core material can contain inclusion components other than fragrances, and examples of other inclusion components include solvents, auxiliary solvents, and the like.
-溶媒-
 コア材は、オイル成分として溶媒を含有してもよい。
 溶媒の例としては、トリ(カプリル・カプリン酸)グリセリル(例:オクタカプリン酸ポリグリセロール等のグリセリン脂肪酸エステル(例えば、日清オイリオグループ株式会社製のサラコス(登録商標)HG-8)、ミリスチン酸イソプロピル等の脂肪酸エステル系化合物、ジイソプロピルナフタレン等のアルキルナフタレン系化合物、1-フェニル-1-キシリルエタン等のジアリールアルカン系化合物、イソプロピルビフェニル等のアルキルビフェニル系化合物、トリアリールメタン系化合物、アルキルベンゼン系化合物、ベンジルナフタレン系化合物、ジアリールアルキレン系化合物、アリールインダン系化合物等の芳香族炭化水素;フタル酸ジブチル、イソパラフィン等の脂肪族炭化水素;ツバキ油、大豆油、コーン油、綿実油、菜種油、オリーブ油、ヤシ油、ひまし油、魚油等の天然動植物油;鉱物油等の天然物高沸点留分などが挙げられる。
 内包成分中の溶媒の含有量は、内包成分の全質量に対して、50質量%未満が好ましく、40質量%以下がより好ましく、30質量%以下が最も好ましい。
-solvent-
The core material may contain a solvent as an oil component.
Examples of the solvent include tri (capryl capric acid) glyceryl (eg, glycerin fatty acid ester such as polyglycerol octacaprate (for example, Saracos (registered trademark) HG-8 manufactured by Nisshin Oillio Group Co., Ltd.), myristic acid. Fatty acid ester compounds such as isopropyl, alkylnaphthalene compounds such as diisopropylnaphthalene, diarylalkane compounds such as 1-phenyl-1-xsilylethane, alkylbiphenyl compounds such as isopropylbiphenyl, triarylmethane compounds, alkylbenzene compounds, Aromatic hydrocarbons such as benzylnaphthalene compounds, diarylalkylene compounds, arylindane compounds; aliphatic hydrocarbons such as dibutylphthalate and isoparaffin; camellia oil, soybean oil, corn oil, cottonseed oil, rapeseed oil, olive oil, palm oil , Natural animal and vegetable oils such as castor oil and fish oil; high boiling point distillates of natural compounds such as mineral oils.
The content of the solvent in the inclusion component is preferably less than 50% by mass, more preferably 40% by mass or less, and most preferably 30% by mass or less, based on the total mass of the inclusion component.
-補助溶媒-
 内包成分は、必要に応じて、マイクロカプセルを製造する際の壁材の油相中への溶解性を高めるための油相成分として補助溶媒を含有してもよい。補助溶媒には、上記の溶媒は含まれない。また、補助溶剤を含有することにより油相の粘度を変化させ、乳化におけるせん断の程度が変わるため、変動係数を調整することができる。
 補助溶媒としては、例えば、メチルエチルケトン等のケトン系化合物、酢酸エチル等のエステル系化合物、イソプロピルアルコール等のアルコール系化合物等が挙げられる。好ましくは、補助溶媒は、沸点が130℃以下である。
 内包成分における補助溶媒の含有量は、内包成分の全質量に対して、50質量%未満が好ましく、30質量%未満がより好ましく、20質量%未満がさらに好ましい。
-Auxiliary solvent-
If necessary, the inclusion component may contain an auxiliary solvent as an oil phase component for increasing the solubility of the wall material in the oil phase during the production of microcapsules. The auxiliary solvent does not include the above solvent. Further, since the viscosity of the oil phase is changed by containing the auxiliary solvent and the degree of shearing in emulsification is changed, the coefficient of variation can be adjusted.
Examples of the auxiliary solvent include a ketone compound such as methyl ethyl ketone, an ester compound such as ethyl acetate, and an alcohol compound such as isopropyl alcohol. Preferably, the co-solvent has a boiling point of 130 ° C. or lower.
The content of the auxiliary solvent in the inclusion component is preferably less than 50% by mass, more preferably less than 30% by mass, still more preferably less than 20% by mass, based on the total mass of the inclusion component.
-添加剤-
 例えば、紫外線吸収剤、光安定化剤、酸化防止剤、ワックス、臭気抑制剤などの添加剤は、必要に応じて、マイクロカプセルに内包することができる。
 添加剤は、コア材の全質量に対し、例えば、0質量%~20質量%、好ましくは1質量%~15質量%、より好ましくは5質量%~10質量%含有することができる。
-Additive-
For example, additives such as UV absorbers, light stabilizers, antioxidants, waxes, and odor suppressants can be encapsulated in microcapsules, if necessary.
The additive can be contained, for example, 0% by mass to 20% by mass, preferably 1% by mass to 15% by mass, and more preferably 5% by mass to 10% by mass with respect to the total mass of the core material.
-カプセル電荷-
 本開示のマイクロカプセルは、表面に、アニオン電荷もしくはカチオン電荷を有することが好ましい。
 マイクロカプセルが表面に電荷を有することは、マイクロカプセルを水中に分散させた場合のゼータ電位を測定することで確認できる。ゼータ電位がマイナスである場合、マイクロカプセルの表面がアニオン電荷で覆われている、プラスである場合、マイクロカプセルの表面がカチオン電荷で覆われていることを指す。
-Capsule charge-
The microcapsules of the present disclosure preferably have an anionic charge or a cationic charge on the surface.
The fact that the microcapsules have an electric charge on the surface can be confirmed by measuring the zeta potential when the microcapsules are dispersed in water. When the zeta potential is negative, it means that the surface of the microcapsule is covered with anionic charge, and when it is positive, it means that the surface of the microcapsule is covered with cation charge.
 マイクロカプセルのゼータ電位としては、水中に分散した場合の値として、絶対値が|5mV|より大きいことが好ましく、|10mV|~|80mV|であることがより好ましく、|15mV|~|60mV|であることが更に好ましい。 As the zeta potential of the microcapsules, the absolute value is preferably larger than | 5 mV |, more preferably | 10 mV | to | 80 mV |, and | 15 mV | to | 60 mV | as a value when dispersed in water. Is more preferable.
 「ゼータ電位」(z)は、特殊な測定技術によって測定される、溶液中の帯電物体によって生成される見掛けの静電位を意味する。ゼータ電位の論理的基本及び実際の関連性の詳細な考察は、例えば、「Colloid Science:Zeta Potential in Colloid Sciences:Principles and Applications」(Hunter Robert J.;Editor.;Publisher(Academic Press,London);1981;p 1988)に記載されている。物体のゼータ電位は、物体の表面からある程度の距離で測定され、一般に表面自体での静電位を超えない。しかしながら、その値は、溶液中にある他の物体、特に複数の結合部位を有する分子との静電的相互作用を確立する物体の能力の好適な尺度となり得る。 "Zeta potential" (z) means the apparent electrostatic potential generated by a charged object in solution, measured by a special measurement technique. A detailed discussion of the logical basis of the zeta potential and its actual relevance can be found, for example, in "Colloid Science: Zeta Potential in Colloid Sciences: Principles and Applications" (Hunter Robert J.; Edit. 1981; p. 1988). The zeta potential of an object is measured at some distance from the surface of the object and generally does not exceed the electrostatic potential on the surface itself. However, that value can be a good measure of an object's ability to establish electrostatic interactions with other objects in solution, especially with molecules that have multiple binding sites.
 ゼータ電位は、相対測定値であり、値は測定方法に依存する傾向がある。本開示において、ゼータ電位は、以下の方法により測定される値である。
 a.装置はELSZ-2000ZS(大塚電子株式会社製)を用いる。
 b.装置の設定は以下の通りである。
 c.試料の調製手順は以下の通りである。
 (i)対象とするマイクロカプセルを含有するスラリーをカプセル濃度として0.5質量%となるように水に加え、スラリーを希釈する。測定濃度は必要に応じて、計測率が自動検出により好ましい範囲になるように調整する。
 (ii)希釈した試料のゼータ電位を、試料を濾過せずに測定する。
 (iii)濾過したスラリーを標準セルユニット(大塚電子株式会社製)に注入し、セルを装置に挿入する。試験温度を25℃に設定する。
 (iv)温度が安定してから(通常3~5分後)測定を開始する。それぞれの試料に
ついて、5回の測定を行うように設定し、測定する。
 d.本開示におけるゼータ電位は、各スラリーに対して3回の測定値の平均として「mV」を単位として測定される値である。
 上記のもと、マイクロカプセルのゼータ電位は、ELSZ-2000ZS(大塚電子株式会社製)を用いて測定することができる。
The zeta potential is a relative measurement value, and the value tends to depend on the measurement method. In the present disclosure, the zeta potential is a value measured by the following method.
a. As the apparatus, ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.) is used.
b. The settings of the device are as follows.
c. The sample preparation procedure is as follows.
(I) The slurry containing the target microcapsules is added to water so that the capsule concentration is 0.5% by mass, and the slurry is diluted. If necessary, the measured concentration is adjusted so that the measurement rate is within a preferable range by automatic detection.
(Ii) The zeta potential of the diluted sample is measured without filtering the sample.
(Iii) The filtered slurry is injected into a standard cell unit (manufactured by Otsuka Electronics Co., Ltd.), and the cell is inserted into the device. Set the test temperature to 25 ° C.
(Iv) The measurement is started after the temperature stabilizes (usually after 3 to 5 minutes). For each sample, set and measure 5 times.
d. The zeta potential in the present disclosure is a value measured in units of "mV" as an average of three measured values for each slurry.
Based on the above, the zeta potential of microcapsules can be measured using ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
 マイクロカプセル表面に電荷を付与する方法としては、特に制限はなく、例えば、生分解性樹脂自身が有する官能基で付与する方法、アニオン性、若しくはカチオン性基付与剤をシェルに結合させる方法、マイクロカプセル表面に表面アニオン化、もしくはカチオン化剤を用いて電荷を付与する方法等が挙げられる。中でも、作業効率の観点から、生分解性樹脂自身が有する官能基で付与する方法、もしくは、表面アニオン化、もしくはカチオン化剤を用いて電荷を付与する方法が好ましい。 The method of imparting an electric charge to the surface of the microcapsules is not particularly limited, and for example, a method of imparting an electric charge with a functional group possessed by the biodegradable resin itself, a method of binding an anionic or cationic group imparting agent to a shell, a micro Examples thereof include a method of surface anionizing the surface of the capsule or a method of applying an electric charge using a cationizing agent. Above all, from the viewpoint of work efficiency, a method of imparting an electric charge with a functional group possessed by the biodegradable resin itself, a method of subjecting an electric charge using a surface anionizing agent or a cationizing agent is preferable.
~メジアン径(D50)~
 マイクロカプセルの体積標準のメジアン径(D50)は、0.1μm~100μmであることが好ましい。
 メジアン径(D50)が0.1μm以上であることで、マイクロカプセルが、付着する対象物(毛、繊維等)が有する微細な空隙に入り込むことで、割れにくくなることを防ぐことができる。メジアン径(D50)が100μm以下であることで、付着性の低下を防ぐことができる。
 上記の観点から、マイクロカプセルの体積標準のメジアン径(D50)は、1μm~70μmであることが好ましく、5μm~50μmであることがより好ましく、5μm~30μmであることが更に好ましい。
 マイクロカプセルの体積標準のメジアン径は、分散条件を変更すること等により制御することができる。
 ここで、マイクロカプセルの体積標準のメジアン径とは、マイクロカプセル全体を体積累計が50%となる粒子径を閾値に2つに分けた場合に、大径側と小径側での粒子の体積の合計が等量となる径をいう。
 本開示において、マイクロカプセルの体積標準のメジアン径は、マイクロトラックMT3300EXII(日機装株式会社製)を用いて測定される。
~ Median diameter (D50) ~
The median diameter (D50) of the volume standard of the microcapsules is preferably 0.1 μm to 100 μm.
When the median diameter (D50) is 0.1 μm or more, it is possible to prevent the microcapsules from entering the fine voids of the object (hair, fiber, etc.) to which the microcapsules adhere and becoming difficult to crack. When the median diameter (D50) is 100 μm or less, deterioration of adhesiveness can be prevented.
From the above viewpoint, the median diameter (D50) of the volume standard of the microcapsules is preferably 1 μm to 70 μm, more preferably 5 μm to 50 μm, and further preferably 5 μm to 30 μm.
The median diameter of the volume standard of the microcapsules can be controlled by changing the dispersion conditions or the like.
Here, the standard median diameter of the volume of microcapsules is the volume of particles on the large diameter side and the small diameter side when the entire microcapsule is divided into two with the particle diameter at which the cumulative volume is 50% as a threshold. The diameter at which the total is equal.
In the present disclosure, the median diameter of the volume standard of microcapsules is measured using Microtrack MT3300EXII (manufactured by Nikkiso Co., Ltd.).
<マイクロカプセルの製造方法>
 本開示のマイクロカプセルの製造は、界面重合法、in-situ重合法、単純コアセルベーション法、コンプレックスコアセルベーション法、気中懸濁法、噴霧造粒法、パンコーティング法、静電合体法、真空蒸着法、有機溶液系からの相離法、液中乾燥法、融解分散冷却法、液中硬化被覆法などの公知の方法により行うことができる。
<Manufacturing method of microcapsules>
The microcapsules of the present disclosure are produced by an interfacial polymerization method, an in-situ polymerization method, a simple core selvation method, a complex core selvation method, an aerial suspension method, a spray granulation method, a pan coating method, and an electrostatic coalescence method. , Vacuum vapor deposition method, phase separation method from organic solution system, in-liquid drying method, melt dispersion cooling method, in-liquid curing coating method and the like.
≪香料マイクロカプセル組成物≫
 香料マイクロカプセル組成物(以下、マイクロカプセル組成物とも称する。)は、既述の本開示の香料マイクロカプセルと、溶媒と、を含有する。
 本開示の香料マイクロカプセルの詳細については、既述の通りであるので、ここでの詳細な説明は省略する。
 本開示のマイクロカプセル組成物中において、マイクロカプセルの含有量は、目的又は用途に応じて適宜選択すればよい。マイクロカプセル組成物中におけるマイクロカプセルの含有量は、例えば、マイクロカプセル組成物の全質量に対して、1質量%~99質量%とすることができ、好ましくは1質量%~95質量%である。
   [0056]
-溶媒-
 溶媒としては、水系溶媒が好適である。
 マイクロカプセル組成物が溶媒を含むことで、マイクロカプセル組成物は、種々の用途に用いる場合に容易に配合することができる。水系溶媒としては、水、水及びアルコール等が挙げられる。
 マイクロカプセル組成物における溶媒の含有量は、目的又は用途に応じて適宜選択することができる。
≪Fragrance microcapsule composition≫
The perfume microcapsule composition (hereinafter, also referred to as a microcapsule composition) contains the perfume microcapsules of the present disclosure described above and a solvent.
Since the details of the perfume microcapsules of the present disclosure are as described above, detailed description thereof will be omitted here.
In the microcapsule composition of the present disclosure, the content of the microcapsules may be appropriately selected depending on the purpose or application. The content of the microcapsules in the microcapsule composition can be, for example, 1% by mass to 99% by mass, preferably 1% by mass to 95% by mass, based on the total mass of the microcapsule composition. ..
[0056]
-solvent-
As the solvent, an aqueous solvent is preferable.
Since the microcapsule composition contains a solvent, the microcapsule composition can be easily blended when used for various purposes. Examples of the aqueous solvent include water, water, alcohol and the like.
The content of the solvent in the microcapsule composition can be appropriately selected depending on the purpose or application.
-分散媒-
 マイクロカプセル含有組成物は、マイクロカプセルを分散する上記溶媒以外の分散媒を含むことができる。マイクロカプセル組成物が分散媒を含むことで、マイクロカプセル組成物は種々の用途に用いる際に容易に配合することができる。
 ここでの分散媒は、組成物の使用目的に応じて適宜選択することができ、マイクロカプセルのシェル材に影響を与えない液状成分であることが好ましい。好ましい分散媒は、粘度調整剤、安定化剤などが挙げられる。
 マイクロカプセル組成物における分散媒の含有量は、目的又は用途に応じて適宜選択すればよい。
-Dispersion medium-
The microcapsule-containing composition can contain a dispersion medium other than the above-mentioned solvent for dispersing the microcapsules. Since the microcapsule composition contains a dispersion medium, the microcapsule composition can be easily blended when used for various purposes.
The dispersion medium here can be appropriately selected according to the intended use of the composition, and is preferably a liquid component that does not affect the shell material of the microcapsules. Preferred dispersion mediums include viscosity modifiers, stabilizers and the like.
The content of the dispersion medium in the microcapsule composition may be appropriately selected depending on the purpose or application.
-その他の成分-
 マイクロカプセル組成物は、マイクロカプセル、溶媒及び分散媒に加え、更にその他の成分を含有することができる。
 その他の成分には、特に制限はなく、目的又は必要に応じて適宜選択すればよい。その他の成分としては、例えば、界面活性剤、架橋剤、潤滑剤、紫外線吸収剤、酸化防止剤、帯電防止剤等が挙げられる。
-Other ingredients-
The microcapsule composition can contain other components in addition to the microcapsules, solvent and dispersion medium.
The other components are not particularly limited and may be appropriately selected depending on the purpose or necessity. Examples of other components include surfactants, cross-linking agents, lubricants, ultraviolet absorbers, antioxidants, antistatic agents and the like.
~用途~
 本開示のマイクロカプセル及びマイクロカプセル組成物は、種々の用途に使用することができる。
 本開示のマイクロカプセル及びマイクロカプセル組成物は、例えば、洗濯、ヘアケア、デイケア等の用途に適用することができる。
~ Applications ~
The microcapsules and microcapsule compositions of the present disclosure can be used for various purposes.
The microcapsules and microcapsule compositions of the present disclosure can be applied to applications such as laundry, hair care, and day care.
(洗濯用途)
 本開示のマイクロカプセルは、洗濯用途に供することができる。
(For washing)
The microcapsules of the present disclosure can be used for washing.
-柔軟剤-
 本開示は、本開示のマイクロカプセルを含む柔軟剤(例えば、衣料用柔軟剤)である態様を含む。
 本開示の柔軟剤は、既述の本開示のマイクロカプセルを含有し、更に溶媒を含んでもよい。本開示の柔軟剤が更に溶媒を含む場合は、本開示の柔軟剤は、本開示のマイクロカプセル組成物の一例である。
-Softener-
The present disclosure includes an embodiment of a fabric softener containing the microcapsules of the present disclosure (for example, a fabric softener for clothing).
The softener of the present disclosure contains the microcapsules of the present disclosure described above, and may further contain a solvent. If the softener of the present disclosure further comprises a solvent, the softener of the present disclosure is an example of the microcapsule composition of the present disclosure.
 本開示の柔軟剤は、コア材として香料を含み、衣料用柔軟剤とすることができる。
 また、本開示の柔軟剤は、衣料の他、タオル、寝具、その他の繊維製品に対しても用いることができる。
 これにより、本開示のマイクロカプセル組成物は、芳香、消臭等の性能を備えた洗濯用柔軟剤として適用することができる。
The softener of the present disclosure contains a fragrance as a core material and can be used as a softener for clothing.
In addition to clothing, the fabric softeners of the present disclosure can also be used for towels, bedding, and other textile products.
As a result, the microcapsule composition of the present disclosure can be applied as a laundry softener having performances such as fragrance and deodorization.
 本開示の柔軟剤は、例えば衣料に用いる場合であれば、衣料を浸漬し、脱水及び乾燥することで、マイクロカプセルが衣料の繊維に吸着したり、繊維間の微細な空隙に入り込む等により衣料に保持される。このため、衣料に対し、柔軟剤本来の効果が付与され、かつ、コア材(香料等)を所望の時期に選択的に又は徐放的に放出することが可能になる。
 衣料の以外の繊維製品に用いた場合についても、同様の効果が得られることは言うまでもない。
When the fabric softener of the present disclosure is used for clothing, for example, by immersing the clothing, dehydrating and drying it, the microcapsules are adsorbed on the fibers of the clothing, or the microcapsules enter the fine voids between the fibers. Is held in. Therefore, the original effect of the softener is imparted to the clothing, and the core material (fragrance, etc.) can be selectively or sustainedly released at a desired time.
Needless to say, the same effect can be obtained when used for textile products other than clothing.
 本開示の柔軟剤により処理した衣料等を使用した場合、柔らかな着心地又は肌触りに加え、マイクロカプセル内にコア材が安定に含まれるため、経時後であっても、衣料等を擦るなどして応力を与え、マイクロカプセルを崩壊させることでコア材(香料等)を放出させることができる。
 また、特に応力を付与しなくても、衣服を着色し、行動することにより、マイクロカプセルが崩壊され、コア材(香料等)を放出させることができる。
When clothing or the like treated with the softener of the present disclosure is used, in addition to being soft to the touch or soft to the touch, the core material is stably contained in the microcapsules, so that the clothing or the like may be rubbed even after a lapse of time. The core material (fragrance, etc.) can be released by applying stress and disintegrating the microcapsules.
In addition, the microcapsules can be disintegrated and the core material (fragrance, etc.) can be released by coloring and acting on the clothes without applying any particular stress.
 柔軟剤としては、例えば、柔軟剤として調製したマイクロカプセル組成物の全質量に対して、マイクロカプセルを0.3質量%~10質量%含むことが好ましい。
 その他、柔軟剤に含まれる公知の成分、例えば、消泡剤、色材等を更に含むことができる。柔軟剤に用いられる分散媒としては、イオン交換水等の水が好ましい。
As the softening agent, for example, it is preferable to contain 0.3% by mass to 10% by mass of microcapsules with respect to the total mass of the microcapsule composition prepared as the softening agent.
In addition, known components contained in the softener, such as antifoaming agent and coloring material, can be further contained. Water such as ion-exchanged water is preferable as the dispersion medium used for the softener.
-洗剤-
 本開示は、本開示のマイクロカプセルを含む洗剤(例えば、洗濯用洗剤)である態様を含む。
 本開示の洗剤は、既述の本開示のマイクロカプセルを含有し、更に溶媒を含んでもよい。本開示の洗剤が更に溶媒を含む場合は、本開示の洗剤は、本開示のマイクロカプセル組成物の一例である。
-detergent-
The present disclosure includes aspects of being a detergent containing the microcapsules of the present disclosure (eg, laundry detergent).
The detergent of the present disclosure contains the microcapsules of the present disclosure described above, and may further contain a solvent. If the detergent of the present disclosure further comprises a solvent, the detergent of the present disclosure is an example of the microcapsule composition of the present disclosure.
 本開示の洗剤は、コア材として香料を含み、衣料用洗剤とすることができる。
 本開示の洗剤は、衣料の他、タオル、寝具、その他の繊維製品に対しても用いることができる。
 これにより、本開示のマイクロカプセル組成物は、芳香、消臭等の性能を備えた洗濯用洗剤として適用することができる。
The detergent of the present disclosure contains a fragrance as a core material and can be used as a detergent for clothing.
The detergents of the present disclosure can be used not only for clothing, but also for towels, bedding and other textile products.
As a result, the microcapsule composition of the present disclosure can be applied as a laundry detergent having performances such as fragrance and deodorization.
 洗剤用途において、マイクロカプセルの含有量としては、洗剤の形態に応じて適宜決定すればよい。 In detergent applications, the content of microcapsules may be appropriately determined according to the form of the detergent.
(ヘアケア用途)
 本開示のマイクロカプセルは、ヘアケア用途に供することができる。
(For hair care)
The microcapsules of the present disclosure can be used for hair care applications.
 本開示のマイクロカプセルと、マイクロカプセルの分散媒(溶媒)とを含むマイクロカプセル組成物は、そのままヘアケア組成物に適用することができる。
 すなわち、本開示のマイクロカプセルと、マイクロカプセルの分散媒(溶媒)と、を含むヘアケア組成物は、本開示のマイクロカプセル組成物の一例である。
 デイケア用途において、マイクロカプセルの含有量としては、ヘアケア組成物の形態に応じて適宜決定すればよい。
The microcapsule composition containing the microcapsules of the present disclosure and the dispersion medium (solvent) of the microcapsules can be directly applied to the hair care composition.
That is, the hair care composition containing the microcapsules of the present disclosure and the dispersion medium (solvent) of the microcapsules is an example of the microcapsule composition of the present disclosure.
In day care applications, the content of microcapsules may be appropriately determined according to the form of the hair care composition.
 ヘアケア組成物の用途としては、リンス、コンディショナー、整髪料等の毛髪化粧料等に任意に適用することができる。
 毛髪化粧料である本開示のマイクロカプセル組成物は、毛髪に適用した場合、マイクロカプセルが毛髪に付着し、毛髪を擦る、櫛でとく等した場合、応力によりマイクロカプセルが崩壊し、コア材を放出することができる。
The hair care composition can be arbitrarily applied to hair cosmetics such as conditioners, conditioners, and hair styling products.
When applied to hair, the microcapsule composition of the present disclosure, which is a hair cosmetic, causes the microcapsules to adhere to the hair, and when the hair is rubbed or combed, the microcapsules collapse due to stress, and the core material is used. Can be released.
 液状の毛髪化粧料の場合、スプレー容器に充填することで、より長時間に亘り、マイクロカプセルを安定に保存することができ、好ましい。
 スプレーにより毛髪化粧料を毛髪に付与した場合、分散媒とマイクロカプセルとが、毛髪に付着する。その後、頭皮をマッサージするなどを行なうことにより、マイクロカプセルに応力が掛かることでマイクロカプセルが崩壊し、コア材(香料等)を毛髪に付着させることができる。
 毛髪化粧料である本開示のマイクロカプセル組成物には、毛髪化粧料に含まれ得る公知の成分を任意に含有することができる。
 毛髪化粧料の含まれ得る公知の成分としては、アルコールなどの水性媒体、油剤、洗浄成分或いは分散成分としての界面活性剤、皮膚に浸透する有効成分、色材、香料などが挙げられる。
In the case of liquid hair cosmetics, it is preferable to fill the spray container because the microcapsules can be stably stored for a longer period of time.
When the hair cosmetic is applied to the hair by spraying, the dispersion medium and the microcapsules adhere to the hair. After that, by massaging the scalp or the like, stress is applied to the microcapsules, so that the microcapsules disintegrate and the core material (fragrance or the like) can be attached to the hair.
The microcapsule composition of the present disclosure, which is a hair cosmetic, can optionally contain a known component that can be contained in the hair cosmetic.
Known ingredients that can be contained in hair cosmetics include aqueous media such as alcohol, oils, surfactants as cleaning or dispersing ingredients, active ingredients that penetrate the skin, coloring materials, fragrances and the like.
(デイケア用途)
 本開示のマイクロカプセルは、デイケア用途に供することができる。
(For day care)
The microcapsules of the present disclosure can be used for day care applications.
 本開示のマイククロカプセルと、マイクロカプセルの分散媒(溶媒)とを含むマイクロカプセル組成物は、例えば、支持体と、支持体に含浸された既述の本開示のマイクロカプセル組成物とを含む化粧用シート又はおむつ等が含むデイケア組成物に適用することができる。
 すなわち、本開示のマイクロカプセルと、マイクロカプセルの分散媒(溶媒)と、を含むデイケア組成物は、本開示のマイクロカプセル組成物の一例である。
 デイケア用途において、マイクロカプセルの含有量としては、デイケア製品の形態に応じて適宜決定すればよい。
The microcapsule composition containing the microcapsules of the present disclosure and the dispersion medium (solvent) of the microcapsules includes, for example, a support and the above-mentioned microcapsule composition of the present disclosure impregnated in the support. It can be applied to day care compositions including cosmetic sheets or diapers.
That is, the day care composition containing the microcapsules of the present disclosure and the dispersion medium (solvent) of the microcapsules is an example of the microcapsule composition of the present disclosure.
In day care applications, the content of microcapsules may be appropriately determined according to the form of the day care product.
 支持体としては、液状成分を保持することができれば特に制限はない。支持体としては、不織布、織布などの内部に水分を保持する空隙を有する繊維集合体、スポンジシートなどの多孔質体等が好ましい。
 支持体に、本開示のマイクロカプセル組成物を含浸させることで、支持体を皮膚に押しつけて擦ることで、マイクロカプセルが崩壊し、任意の時期にコア材(香料等)を放出することができる。また、マイクロカプセル組成物が、界面活性剤等の洗浄成分を含むことで、皮膚清拭用のシートとすることができる。
 化粧用シート、おむつ等は、マイクロカプセル組成物を安定に保持するため、水不透過性の包装材料により包装されることが、効果の持続性の観点から好ましい。
The support is not particularly limited as long as it can retain a liquid component. As the support, a non-woven fabric, a fiber aggregate having voids for retaining moisture such as a woven fabric, a porous body such as a sponge sheet, or the like is preferable.
By impregnating the support with the microcapsule composition of the present disclosure, the microcapsules can be disintegrated and the core material (fragrance, etc.) can be released at any time by pressing the support against the skin and rubbing it. .. In addition, the microcapsule composition can be used as a skin cleaning sheet by containing a cleaning component such as a surfactant.
In order to stably hold the microcapsule composition, cosmetic sheets, diapers and the like are preferably packaged in a water-impermeable packaging material from the viewpoint of long-lasting effect.
 既述のように、本開示のマイクロカプセルは、必要なタイミングで任意の時期にコア材(香料等)を放出しうるため、種々の用途に適用することができる。既述の用途は、その一例であり、本開示のマイクロカプセル及びマイクロカプセル組成物の用途は、上記記載には限定されない。 As described above, the microcapsules of the present disclosure can be applied to various uses because they can release core materials (fragrances, etc.) at any time at a required timing. The above-mentioned uses are an example thereof, and the uses of the microcapsules and microcapsule compositions of the present disclosure are not limited to the above description.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「%」は質量基準である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded. Unless otherwise specified, "%" is based on mass.
(実施例1)
-マイクロカプセルの作製-
 溶媒としてサラコス(登録商標)HG-8(日清オイリオグループ株式会社製)を3.0部、香料としてD-リモネン(ヤスハラケミカル株式会社製)を9.0部、架橋剤として脂肪族ポリイソシヘキサメチレアネートであるタケネート(登録商標)D-160N(三井化学株式会社製、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体;架橋剤)0.057部を撹拌混合して油相溶液を得た。
 また、系の温度を40℃に保ち、等イオン点が9.1の酸処理ゼラチン(生分解性樹脂)を水に溶解させた4.3質量%ゼラチン水溶液70質量部(水相溶液)に、上記の油相溶液の全量を加えて分散した後、ポリアニオンとして1.25質量%カルボキシメチルセルロースナトリウム水溶液(第一工業製薬株式会社製、セロゲンF-7A、生分解性樹脂)30質量部、及びイオン交換水300質量部を混合して均一にした。
 このエマルジョンを撹拌しながら5℃まで徐々に冷却して皮膜をゲル化させ、30分間5℃に保って安定化させた。このエマルジョンの系の温度を20℃まで昇温させ、スルホン酸変性ポリビニルアルコール(日本合成化学工業株式会社製 ゴーセネックスL-3266、生分解性樹脂)の10質量%水溶液を10質量部添加した後、架橋剤として25%グルタルアルデヒド(富士フイルム和光純薬株式会社製)0.18質量部を添加した。その後、10質量%水酸化ナトリウム水溶液を添加してpH(25℃)を8.5に調整し、系の温度を30℃に昇温して16h撹拌を継続し、皮膜が硬化したマイクロカプセル水分散液(マイクロカプセル組成物)を得た。
 pHは、市販のpHメーターを用いて25℃に液温を保って測定した。以下においても同様とした。
(Example 1)
-Making microcapsules-
3.0 parts of Sarakos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd.) as a solvent, 9.0 parts of D-limonene (manufactured by Yasuhara Chemical Co., Ltd.) as a fragrance, and an aliphatic polyisosi as a cross-linking agent. An oil phase solution was obtained by stirring and mixing 0.057 parts of Takenate (registered trademark) D-160N (manufactured by Mitsui Kagaku Co., Ltd., hexamethylene diisocyanate trimethylolpropane adduct; cross-linking agent) which is hexamethylene.
Further, the temperature of the system was kept at 40 ° C., and 70 parts by mass (aqueous phase solution) of a 4.3 mass% gelatin aqueous solution in which acid-treated gelatin (biodegradable resin) having an isoionic point of 9.1 was dissolved in water was prepared. After adding and dispersing the entire amount of the above oil phase solution, 30 parts by mass of a 1.25 mass% carboxymethyl cellulose sodium aqueous solution (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., cellogen F-7A, biodegradable resin) as a polyanion, and 300 parts by mass of ion-exchanged water was mixed and made uniform.
The emulsion was gradually cooled to 5 ° C. with stirring to gel the film and kept at 5 ° C. for 30 minutes for stabilization. The temperature of this emulsion system is raised to 20 ° C., and 10 parts by mass of a 10% by mass aqueous solution of sulfonic acid-modified polyvinyl alcohol (Gosenex L-3266, biodegradable resin manufactured by Nippon Synthetic Chemical Industries, Ltd.) is added. As a cross-linking agent, 0.18 parts by mass of 25% glutaraldehyde (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added. After that, a 10 mass% sodium hydroxide aqueous solution was added to adjust the pH (25 ° C.) to 8.5, the temperature of the system was raised to 30 ° C., and stirring was continued for 16 hours to cure the film. A dispersion (microcapsule composition) was obtained.
The pH was measured using a commercially available pH meter while maintaining the liquid temperature at 25 ° C. The same applies to the following.
 得られたマイクロカプセルの体積基準のメジアン径(D50)は20μmあった。
 このマイクロカプセル水分散液を水希釈した後のゼータ電位は-25mVであり、この希釈溶液のpHを3.5に調整した後のゼータ電位は+10mVであった。ゼータ電位はELSZ-2000ZS(大塚電子株式会社製)により測定した。
 また、マイクロカプセルの壁厚は、0.1μmであった。
 D50及び壁厚の測定は、既述した方法により行った。
The volume-based median diameter (D50) of the obtained microcapsules was 20 μm.
The zeta potential after water-diluting this microcapsule aqueous dispersion was −25 mV, and the zeta potential after adjusting the pH of this diluted solution to 3.5 was +10 mV. The zeta potential was measured by ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
The wall thickness of the microcapsules was 0.1 μm.
The D50 and the wall thickness were measured by the method described above.
 マイクロカプセルにおける架橋構造の有無を、以下の方法で確認した。
 得られたマイクロカプセル水分散液に対して遠心分離を施し、マイクロカプセルを液中から分離した。分離されたマイクロカプセルをジメチルスルホキシド(DMSO)に混合(5質量%)してDMSO混合液を調製した。DMSO混合液が不透明化するか、又はイクロカプセルの膨潤が確認できた場合は、マイクロカプセルが架橋構造を有するものと判断した。これに対し、マイクロカプセルが溶解してDMSO混合液が透明化した場合は、マイクロカプセルのシェルが架橋構造を有しないものと判断した。DMSO混合液における不透明化及び膨潤の有無の確認は、目視観察及び光学顕微鏡観察により行った。
 結果、DMSO混合液が不透明化したことから、実施例1で得られたマイクロカプセルは、シェル部が架橋構造を有していることが確認された。
The presence or absence of a crosslinked structure in the microcapsules was confirmed by the following method.
The obtained microcapsule aqueous dispersion was centrifuged to separate the microcapsules from the liquid. The separated microcapsules were mixed with dimethyl sulfoxide (DMSO) (5% by mass) to prepare a DMSO mixture. When the DMSO mixture became opaque or the swelling of the Icrocapsules was confirmed, it was judged that the microcapsules had a crosslinked structure. On the other hand, when the microcapsules were dissolved and the DMSO mixture became transparent, it was determined that the shell of the microcapsules did not have a crosslinked structure. The presence or absence of opacity and swelling in the DMSO mixed solution was confirmed by visual observation and optical microscope observation.
As a result, since the DMSO mixed solution became opaque, it was confirmed that the shell portion of the microcapsules obtained in Example 1 had a crosslinked structure.
(実施例2~12)
 架橋剤として脂肪族ポリイソシアネートであるタケネート(登録商標)D-160N(三井化学株式会社製、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体)の量を調整し、表1に示す通りにマイクロカプセル水分散液を得た以外は、実施例1と同様にしてマイクロカプセル水分散液(マイクロカプセル組成物)を作製した。
 得られたマイクロカプセルのD50及び壁厚、並びに、ゼータ電位について、実施例1と同様にして測定した。結果を表1に示す。
(Examples 2 to 12)
Adjust the amount of Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct), which is an aliphatic polyisocyanate, as a cross-linking agent, and adjust the amount of microcapsule water dispersion as shown in Table 1. A microcapsule aqueous dispersion (microcapsule composition) was prepared in the same manner as in Example 1 except that the above was obtained.
The D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 1.
 実施例1と同様の方法により、マイクロカプセルにおける架橋構造の有無を確認したところ、DMSO混合液が不透明化した。これにより、実施例2~12のマイクロカプセルは、いずれもシェル部が架橋構造を有していることが確認された。 When the presence or absence of a crosslinked structure in the microcapsules was confirmed by the same method as in Example 1, the DMSO mixed solution became opaque. From this, it was confirmed that the shell portions of the microcapsules of Examples 2 to 12 all had a crosslinked structure.
(実施例13~14)
 架橋剤として25%グルタルアルデヒド(富士フイルム和光純薬株式会社製)を添加せず、架橋剤として脂肪族ポリイソシアネートであるタケネート(登録商標)D-160N(三井化学株式会社製、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体)の量を調整し、表2に示す通りにマイクロカプセル水分散液を得た以外は、実施例1と同様にしてマイクロカプセル水分散液(マイクロカプセル組成物)を作製した。
 得られたマイクロカプセルのD50及び壁厚、並びに、ゼータ電位について、実施例1と同様にして測定した。結果を表2に示す。
(Examples 13 to 14)
Takenate (registered trademark) D-160N (registered trademark), which is an aliphatic polyisocyanate, is not added as a cross-linking agent of 25% glutaraldehyde (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and hexamethylene diisocyanate triisocyanate is manufactured by Mitsui Chemical Industries, Ltd. A microcapsule water dispersion (microcapsule composition) was prepared in the same manner as in Example 1 except that the amount of the methylolpropane adduct body) was adjusted to obtain a microcapsule water dispersion as shown in Table 2.
The D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
 実施例1と同様の方法により、マイクロカプセルにおける架橋構造の有無を確認したところ、DMSO混合液が不透明化した。これにより、実施例13~14のマイクロカプセルは、いずれもシェル部が架橋構造を有していることが確認された。 When the presence or absence of a crosslinked structure in the microcapsules was confirmed by the same method as in Example 1, the DMSO mixed solution became opaque. From this, it was confirmed that the shell portions of the microcapsules of Examples 13 to 14 all had a crosslinked structure.
(実施例15)
 油相溶液に、ポリエステルポリオールとしてHS2H-201AP(株式会社豊国製油製、生分解性樹脂)の酢酸エチル溶液を添加し、架橋剤として脂肪族ポリイソシアネートであるタケネート(登録商標)D-160N(三井化学株式会社製、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体)の量を調整し、表2に示す通りにマイクロカプセル水分散液を得た以外は、実施例1と同様にしてマイクロカプセル水分散液(マイクロカプセル組成物)を作製した。
 得られたマイクロカプセルのD50及び壁厚、並びに、ゼータ電位について、実施例1と同様にして測定した。結果を表2に示す。
(Example 15)
An ethyl acetate solution of HS2H-201AP (manufactured by Toyokuni Oil Co., Ltd., biodegradable resin) as a polyester polyol is added to the oil phase solution, and Takenate (registered trademark) D-160N (registered trademark), which is an aliphatic polyisocyanate, is used as a cross-linking agent. Microcapsule water dispersion (microcapsule water dispersion (microcapsule water dispersion) in the same manner as in Example 1 except that the amount of hexamethylene diisocyanate trimethylolpropane adduct (manufactured by Chemical Co., Ltd.) was adjusted to obtain a microcapsule water dispersion as shown in Table 2. Microcapsule composition) was prepared.
The D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
 実施例1と同様の方法により、マイクロカプセルにおける架橋構造の有無を確認したところ、DMSO混合液が不透明化した。これにより、実施例15のマイクロカプセルは、シェル部が架橋構造を有していることが確認された。 When the presence or absence of a crosslinked structure in the microcapsules was confirmed by the same method as in Example 1, the DMSO mixed solution became opaque. From this, it was confirmed that the shell portion of the microcapsules of Example 15 had a crosslinked structure.
(実施例16)
 架橋剤として脂肪族ポリイソシアネートであるタケネート(登録商標)D-160N(三井化学株式会社製、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体)を添加せず、4,4’-メチレンビス(N,N-ジグリシジルアニリン)の量を調整し、表2に示す通りにマイクロカプセル水分散液を得た以外は、実施例13と同様にしてマイクロカプセル水分散液(マイクロカプセル組成物)を作製した。
 得られたマイクロカプセルのD50及び壁厚、並びに、ゼータ電位について、実施例1と同様にして測定した。結果を表2に示す。
(Example 16)
Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct), which is an aliphatic polyisocyanate, is not added as a cross-linking agent, and 4,4'-methylenebis (N, N-di) is not added. A microcapsule water dispersion (microcapsule composition) was prepared in the same manner as in Example 13 except that the amount of glycidylaniline) was adjusted to obtain a microcapsule water dispersion as shown in Table 2.
The D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
 実施例1と同様の方法により、マイクロカプセルにおける架橋構造の有無を確認したところ、DMSO混合液が不透明化した。これにより、実施例17のマイクロカプセルは、シェル部が架橋構造を有していることが確認された。 When the presence or absence of a crosslinked structure in the microcapsules was confirmed by the same method as in Example 1, the DMSO mixed solution became opaque. From this, it was confirmed that the shell portion of the microcapsules of Example 17 had a crosslinked structure.
(実施例17)
 架橋剤として脂肪族ポリイソシアネートであるタケネート(登録商標)D-160N(三井化学株式会社製、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体)を添加せず、トランスグルタミナーゼ(味の素株式会社製 アクティバTG-S)の量を調整し、かつ10質量%水酸化ナトリウム水溶液で調整するpH(25℃)を8.5ではなく7.5にした以外は、表2に示す通りにマイクロカプセル水分散液を得た以外は、実施例13と同様にしてマイクロカプセル水分散液(マイクロカプセル組成物)を作製した。
 得られたマイクロカプセルのD50及び壁厚、並びに、ゼータ電位について、実施例1と同様にして測定した。結果を表2に示す。
(Example 17)
Transglutaminase (Activa TG-S manufactured by Ajinomoto Co., Ltd.) without adding Takenate (registered trademark) D-160N (Mitsui Chemicals Co., Ltd., hexamethylene diisocyanate trimethylolpropane adduct), which is an aliphatic polyisocyanate, as a cross-linking agent. A microcapsule aqueous dispersion was obtained as shown in Table 2, except that the pH (25 ° C.) adjusted with a 10 mass% aqueous sodium hydroxide solution was adjusted to 7.5 instead of 8.5. A microcapsule aqueous dispersion (microcapsule composition) was prepared in the same manner as in Example 13.
The D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
 実施例1と同様の方法により、マイクロカプセルにおける架橋構造の有無を確認したところ、DMSO混合液が不透明化した。これにより、実施例17のマイクロカプセルは、いずれもシェル部が架橋構造を有していることが確認された。 When the presence or absence of a crosslinked structure in the microcapsules was confirmed by the same method as in Example 1, the DMSO mixed solution became opaque. From this, it was confirmed that the shell portion of each of the microcapsules of Example 17 had a crosslinked structure.
(実施例18)
 架橋剤として脂肪族ポリイソシアネートであるタケネート(登録商標)D-160N(三井化学株式会社製、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体)を添加せず、25%グルタルアルデヒド(富士フイルム和光純薬株式会社製)の量を調整し、表2に示す通りにマイクロカプセル水分散液を得た以外は、実施例1と同様にしてマイクロカプセル水分散液(マイクロカプセル組成物)を作製した。
 得られたマイクロカプセルのD50及び壁厚、並びに、ゼータ電位について、実施例1と同様にして測定した。結果を表2に示す。
(Example 18)
25% glutaraldehyde (Fujifilm Wako Pure Chemical Industries, Ltd.) without adding the aliphatic polyisocyanate Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct) as a cross-linking agent. A microcapsule water dispersion (microcapsule composition) was prepared in the same manner as in Example 1 except that a microcapsule water dispersion was obtained as shown in Table 2.
The D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
 実施例1と同様の方法により、マイクロカプセルにおける架橋構造の有無を確認したところ、DMSO混合液が不透明化した。これにより、実施例18のマイクロカプセルは、シェル部が架橋構造を有していることが確認された。 When the presence or absence of a crosslinked structure in the microcapsules was confirmed by the same method as in Example 1, the DMSO mixed solution became opaque. From this, it was confirmed that the shell portion of the microcapsules of Example 18 had a crosslinked structure.
(実施例19)
 溶媒としてサラコス(登録商標)HG-8(日清オイリオグループ株式会社製;グリセリン脂肪酸エステル)2.9質量部と、D-リモネン(ヤスハラケミカル株式会社製;香料)8.6質量部と、シェル材として3官能の脂肪族イソシアネート化合物であるタケネート(登録商標)D-160N(三井化学株式会社製、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体;架橋剤)0.47質量部と、を撹拌混合し、油相溶液を得た。
(Example 19)
As a solvent, 2.9 parts by mass of Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd .; glycerin fatty acid ester), 8.6 parts by mass of D-limonene (manufactured by Yasuhara Chemical Co., Ltd .; fragrance), and shell material. 0.47 parts by mass of Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct; cross-linking agent), which is a trifunctional aliphatic isocyanate compound, is stirred and mixed to obtain oil. A phase solution was obtained.
 また、メトローズ(登録商標)60SH50(信越化学工業株式会社、ヒドロキシプロピルメチルセルロース(HPMC);多糖類、生分解性樹脂)の2.0質量%水溶液(以下、HPMC水溶液)を用意し、水相溶液とした。 In addition, a 2.0% by mass aqueous solution (hereinafter referred to as HPMC aqueous solution) of Metrose® 60SH50 (Shinetsu Chemical Industry Co., Ltd., hydroxypropylmethylcellulose (HPMC); polysaccharide, biodegradable resin) was prepared, and an aqueous phase solution was prepared. And said.
 HPMC水溶液(水相溶液)180質量部を40℃に加温した状態で上記の油相溶液を加えて分散し、乳化液を生成した。その後、60℃まで加熱して20分間撹拌した。その後、茶抽出物であるサンフード(登録商標)100(三菱ケミカルフーズ株式会社;ポリフェノール化合物、生分解性樹脂)の25.0質量%水溶液8.0質量部を加えて60℃のまま1時間撹拌し、加熱を止めて一晩撹拌を続けた。
 以上のようにして、マイクロカプセル水分散液(マイクロカプセル組成物)を得た。
 得られたマイクロカプセルのD50及び壁厚、並びに、ゼータ電位について、実施例1と同様にして測定した。結果を表2に示す。
180 parts by mass of the HPMC aqueous solution (aqueous phase solution) was heated to 40 ° C., and the above oil phase solution was added and dispersed to generate an emulsion. Then, it heated to 60 degreeC and stirred for 20 minutes. Then, 8.0 parts by mass of a 25.0% by mass aqueous solution of Sunfood (registered trademark) 100 (Mitsubishi Chemical Foods Co., Ltd .; polyphenol compound, biodegradable resin), which is a tea extract, was added and kept at 60 ° C. for 1 hour. Stirring was stopped, heating was stopped and stirring was continued overnight.
As described above, a microcapsule aqueous dispersion (microcapsule composition) was obtained.
The D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
 実施例1と同様の方法により、マイクロカプセルにおける架橋構造の有無を確認したところ、DMSO混合液が不透明化した。これにより、実施例19のマイクロカプセルは、いずれもシェル部が架橋構造を有していることが確認された。 When the presence or absence of a crosslinked structure in the microcapsules was confirmed by the same method as in Example 1, the DMSO mixed solution became opaque. From this, it was confirmed that the shell portion of each of the microcapsules of Example 19 had a crosslinked structure.
(実施例20)
 溶媒としてサラコス(登録商標)HG-8(日清オイリオグループ株式会社製;グリセリン脂肪酸エステル)5.3質量部と、D-リモネン(ヤスハラケミカル株式会社製;香料)15.8質量部と、シェル材として3官能の脂肪族イソシアネート化合物であるタケネート(登録商標)D-160N(三井化学株式会社製、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体;架橋剤)0.87質量部と、を撹拌混合し、油相溶液を得た。
(Example 20)
As solvent, 5.3 parts by mass of Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd .; glycerin fatty acid ester), 15.8 parts by mass of D-limonene (manufactured by Yasuhara Chemical Co., Ltd .; fragrance), and shell material. 0.87 parts by mass of Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct; cross-linking agent), which is a trifunctional aliphatic isocyanate compound, is stirred and mixed to obtain oil. A phase solution was obtained.
 また、ヒドロキシプロピルセルロース6.0~10.0(富士フイルム和光純薬株式会社製、ヒドロキシプロピルセルロース(HPC);多糖類、生分解性樹脂)の2.0質量%水溶液(以下、HPC水溶液)、ポリビニルアルコールであるクラレポバール(登録商標)PVA-217E(株式会社クラレ製;PVA、生分解性樹脂)の10質量%水溶液を用意した。 In addition, a 2.0% by mass aqueous solution of hydroxypropyl cellulose 6.0 to 10.0 (Hydroxypropyl cellulose (HPC); polysaccharide, biodegradable resin, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) (hereinafter, HPC aqueous solution). , 10% by mass aqueous solution of Kuraray Poval (registered trademark) PVA-217E (manufactured by Kuraray Co., Ltd .; PVA, biodegradable resin) which is polyvinyl alcohol was prepared.
 HPC水溶液90質量部とPVA-217E 10質量%水溶液9質量部を混合した水相溶液を40℃に加温した状態で上記の油相溶液を加えて分散し、乳化液を生成した。その後、生成した乳化液に、サンデック#180(三和澱粉工業株式会社、デキストリン;多糖類、生分解性樹脂)の25.0質量%水溶液30質量部を加え、60℃まで加熱して20分間撹拌した。その後、茶抽出物であるサンフード(登録商標)100(三菱ケミカルフーズ株式会社;ポリフェノール化合物、生分解性樹脂)の25.0質量%水溶液4.0質量部を加えて60℃のまま1時間撹拌し、加熱を止めて一晩撹拌を続けた。
 以上のようにして、マイクロカプセル水分散液(マイクロカプセル組成物)を得た。
 得られたマイクロカプセルのD50及び壁厚、並びに、ゼータ電位について、実施例1と同様にして測定した。結果を表2に示す。
 
An aqueous phase solution prepared by mixing 90 parts by mass of an HPC aqueous solution and 9 parts by mass of a PVA-217E 10% by mass aqueous solution was heated to 40 ° C. and dispersed by adding the above oil phase solution to generate an emulsion. Then, 30 parts by mass of a 25.0% by mass aqueous solution of Sandec # 180 (Sanwa Stardust Industry Co., Ltd., dextrin; polysaccharide, biodegradable resin) was added to the produced emulsion, and the mixture was heated to 60 ° C. for 20 minutes. Stirred. Then, 4.0 parts by mass of a 25.0% by mass aqueous solution of Sunfood (registered trademark) 100 (Mitsubishi Chemical Foods Co., Ltd .; polyphenol compound, biodegradable resin), which is a tea extract, was added and kept at 60 ° C. for 1 hour. Stirring was stopped, heating was stopped and stirring was continued overnight.
As described above, a microcapsule aqueous dispersion (microcapsule composition) was obtained.
The D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
 実施例1と同様の方法により、マイクロカプセルにおける架橋構造の有無を確認したところ、DMSO混合液が不透明化した。これにより、実施例20のマイクロカプセルは、いずれもシェル部が架橋構造を有していることが確認された。 When the presence or absence of a crosslinked structure in the microcapsules was confirmed by the same method as in Example 1, the DMSO mixed solution became opaque. From this, it was confirmed that the shell portion of each of the microcapsules of Example 20 had a crosslinked structure.
(実施例21)
 溶媒としてサラコス(登録商標)HG-8(日清オイリオグループ株式会社製;グリセリン脂肪酸エステル)0.9質量部と、D-リモネン(ヤスハラケミカル株式会社製;香料)2.7質量部と、シェル材として3官能の脂肪族イソシアネート化合物であるタケネート(登録商標)D-160N(三井化学株式会社製、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体;架橋剤)0.15質量部と、を撹拌混合し、油相溶液を得た。
(Example 21)
As a solvent, 0.9 parts by mass of Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd .; glycerin fatty acid ester), 2.7 parts by mass of D-limonene (manufactured by Yasuhara Chemical Co., Ltd .; fragrance), and shell material. 0.15 parts by mass of Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct; cross-linking agent), which is a trifunctional aliphatic isocyanate compound, is stirred and mixed to obtain oil. A phase solution was obtained.
 また、Chitosan(5-20mPa・s,0.5% in 0.5% Acetic Acid at 20℃)(東京化成工業株式会社製、キトサン;多糖類、生分解性樹脂)30.0質量部と乳酸(富士フイルム和光純薬株式会社製)30.0質量部を水1440.0質量で希釈し、2.0質量%水溶液(以下、キトサン水溶液)を用意した。また、ポリビニルアルコールであるクラレポバール(登録商標)PVA-217E(株式会社クラレ製;PVA、生分解性樹脂)の10質量%水溶液を用意した。 In addition, Chitosan (5-20 mPa · s, 0.5% in 0.5% Active Acid at 20 ° C) (manufactured by Tokyo Kasei Kogyo Co., Ltd., chitosan; polysaccharide, biodegradable resin) 30.0 parts by mass and lactic acid (Manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 30.0 parts by mass was diluted with 1440.0 mass of water to prepare a 2.0 mass% aqueous solution (hereinafter, chitosan aqueous solution). Further, a 10% by mass aqueous solution of Kuraray Poval (registered trademark) PVA-217E (manufactured by Kuraray Co., Ltd .; PVA, biodegradable resin) which is a polyvinyl alcohol was prepared.
 キトサン水溶液90質量部とPVA-217E 10質量%水溶液9質量部とを混合した水相溶液を20℃にした状態で上記の油相溶液を加えて分散し、乳化液を生成した。その後、生成した乳化液に、1.0mol/L水酸化ナトリウム水溶液20.0質量部を加え、30℃まで昇温して一晩撹拌を続けた。
 以上のようにして、マイクロカプセル水分散液(マイクロカプセル組成物)を得た。
 得られたマイクロカプセルのD50及び壁厚、並びに、ゼータ電位について、実施例1と同様にして測定した。結果を表2に示す。
An aqueous phase solution prepared by mixing 90 parts by mass of an aqueous chitosan solution and 9 parts by mass of a 10 mass% PVA-217E aqueous solution was added and dispersed at 20 ° C. to generate an emulsion. Then, 20.0 parts by mass of a 1.0 mol / L sodium hydroxide aqueous solution was added to the produced emulsion, the temperature was raised to 30 ° C., and stirring was continued overnight.
As described above, a microcapsule aqueous dispersion (microcapsule composition) was obtained.
The D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
 実施例1と同様の方法により、マイクロカプセルにおける架橋構造の有無を確認したところ、DMSO混合液が不透明化した。これにより、実施例21のマイクロカプセルは、いずれもシェル部が架橋構造を有していることが確認された。 When the presence or absence of a crosslinked structure in the microcapsules was confirmed by the same method as in Example 1, the DMSO mixed solution became opaque. From this, it was confirmed that the shell portion of each of the microcapsules of Example 21 had a crosslinked structure.
(実施例22)
 溶媒としてサラコス(登録商標)HG-8(日清オイリオグループ株式会社製;グリセリン脂肪酸エステル)4.5質量部と、D-リモネン(ヤスハラケミカル株式会社製;香料)13.5質量部と、シェル材として3官能の脂肪族イソシアネート化合物であるタケネート(登録商標)D-160N(三井化学株式会社製、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体;架橋剤)0.75質量部と、を撹拌混合し、油相溶液を得た。
(Example 22)
As a solvent, 4.5 parts by mass of Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd .; glycerin fatty acid ester), 13.5 parts by mass of D-limonene (manufactured by Yasuhara Chemical Co., Ltd .; fragrance), and shell material. 0.75 parts by mass of Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct; cross-linking agent), which is a trifunctional aliphatic isocyanate compound, is stirred and mixed to obtain oil. A phase solution was obtained.
 また、メトローズ(登録商標)60SH50(信越化学工業株式会社、ヒドロキシプロピルメチルセルロース(HPMC);多糖類、生分解性樹脂)の6.0質量%水溶液(以下、HPMC水溶液)を用意し、水相溶液とした。 In addition, a 6.0% by mass aqueous solution (hereinafter referred to as HPMC aqueous solution) of Metrose® 60SH50 (Shinetsu Chemical Industry Co., Ltd., hydroxypropylmethylcellulose (HPMC); polysaccharide, biodegradable resin) was prepared, and an aqueous phase solution was prepared. And said.
 HPMC水溶液(水相溶液)120質量部を40℃に加温した状態で上記の油相溶液を加えて分散し、乳化液を生成した。その後、生成した乳化液に、Xanthan Gum(東京化成工業株式会社製、キサンタンガム;多糖類、生分解性樹脂)の1.0質量%水溶液80.0質量部を加え、60℃まで加熱して20分間撹拌した。その後、茶抽出物であるサンフード(登録商標)100(三菱ケミカルフーズ株式会社;ポリフェノール化合物、生分解性樹脂)の25.0質量%水溶液3.4質量部を加えて60℃のまま1時間撹拌し、加熱を止めて一晩撹拌を続けた。
 以上のようにして、マイクロカプセル水分散液(マイクロカプセル組成物)を得た。
 得られたマイクロカプセルのD50及び壁厚、並びに、ゼータ電位について、実施例1と同様にして測定した。結果を表2に示す。
In a state where 120 parts by mass of the HPMC aqueous solution (aqueous phase solution) was heated to 40 ° C., the above oil phase solution was added and dispersed to generate an emulsion. Then, 80.0 parts by mass of a 1.0% by mass aqueous solution of Xanthan Gum (manufactured by Tokyo Kasei Kogyo Co., Ltd., xanthan gum; polysaccharide, biodegradable resin) was added to the produced emulsion, and the mixture was heated to 60 ° C. to 20%. Stirred for minutes. Then, 3.4 parts by mass of a 25.0 mass% aqueous solution of Sunfood (registered trademark) 100 (Mitsubishi Chemical Foods Co., Ltd .; polyphenol compound, biodegradable resin), which is a tea extract, was added and kept at 60 ° C. for 1 hour. Stirring was stopped, heating was stopped and stirring was continued overnight.
As described above, a microcapsule aqueous dispersion (microcapsule composition) was obtained.
The D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
 実施例1と同様の方法により、マイクロカプセルにおける架橋構造の有無を確認したところ、DMSO混合液が不透明化した。これにより、実施例22のマイクロカプセルは、いずれもシェル部が架橋構造を有していることが確認された。 When the presence or absence of a crosslinked structure in the microcapsules was confirmed by the same method as in Example 1, the DMSO mixed solution became opaque. From this, it was confirmed that the shell portion of each of the microcapsules of Example 22 had a crosslinked structure.
(比較例1~2)
 架橋剤として脂肪族ポリイソシアネートであるタケネート(登録商標)D-160N(三井化学株式会社製、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体)の量を調整し、表2に示す通りにマイクロカプセル水分散液を得た以外は、実施例1と同様にしてマイクロカプセル水分散液(マイクロカプセル組成物)を作製した。
 得られたマイクロカプセルのD50及び壁厚、並びに、ゼータ電位について、実施例1と同様にして測定した。結果を表2に示す。
(Comparative Examples 1 and 2)
Adjust the amount of Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct), which is an aliphatic polyisocyanate, as a cross-linking agent, and adjust the amount of microcapsule water dispersion as shown in Table 2. A microcapsule aqueous dispersion (microcapsule composition) was prepared in the same manner as in Example 1 except that the above was obtained.
The D50 and wall thickness of the obtained microcapsules and the zeta potential were measured in the same manner as in Example 1. The results are shown in Table 2.
 実施例1と同様の方法により、マイクロカプセルにおける架橋構造の有無を確認したところ、DMSO混合液が不透明化した。これにより、比較例1~2のマイクロカプセルは、いずれもシェル部が架橋構造を有していることが確認された。 When the presence or absence of a crosslinked structure in the microcapsules was confirmed by the same method as in Example 1, the DMSO mixed solution became opaque. From this, it was confirmed that the shell portions of the microcapsules of Comparative Examples 1 and 2 all had a crosslinked structure.
(評価)
-形態観察-
 以下の手順で、柔軟剤中に残存するマイクロカプセルを確認した。
 得られたマイクロカプセル水分散液1.0質量部を、無香料柔軟剤(ウルトラダウニー フリー&ジェントル、プロクター・アンド・ギャンブル・ジャパン株式会社製)を水で希釈した柔軟剤液49.0質量部(無香料柔軟剤:水=9:1[質量比])に混合し、マイクロカプセル組成物を作製した。得られたマイクロカプセル組成物を1日間経時させた。経時後のマイクロカプセル組成物を、プレパラートに数滴滴下して乾燥した後、金属顕微鏡(エクリプスLV100D、ニコン社製)でマイクロカプセル(100個)の観察を行い、下記の評価基準にしたがって評価した。結果を、表1及び表2の「カプセル結果確認」の欄に示す。
 A又はBが実用上許容されるランクであり、保存安定性を有すると判断する。最も優れるランクは、Aである。
 <評価基準>
A:柔軟剤中において、100個全てがカプセル形状を維持していた。
B:柔軟剤中において、50%以上100%未満のマイクロカプセルがカプセル形状を維持していた。
C:柔軟剤中において、マイクロカプセルが確認できなかった(消失した)。
(Evaluation)
-Morphological observation-
The microcapsules remaining in the softener were confirmed by the following procedure.
1.0 part by mass of the obtained microcapsule water dispersion was diluted with water to an unscented softener (Ultra Downy Free & Gentle, manufactured by Proctor & Gamble Japan Co., Ltd.) 49.0 parts by mass. (Fragrance-free softener: water = 9: 1 [mass ratio]) was mixed to prepare a microcapsule composition. The obtained microcapsule composition was allowed to pass for 1 day. After aging, a few drops of the microcapsule composition were added dropwise to the preparation and dried, and then the microcapsules (100 pieces) were observed with a metallurgical microscope (Eclipse LV100D, manufactured by Nikon Corporation) and evaluated according to the following evaluation criteria. .. The results are shown in the "Capsule Result Confirmation" column of Tables 1 and 2.
It is judged that A or B is a practically acceptable rank and has storage stability. The best rank is A.
<Evaluation criteria>
A: In the softener, all 100 capsules maintained their capsule shape.
B: In the softener, 50% or more and less than 100% of the microcapsules maintained the capsule shape.
C: Microcapsules could not be confirmed (disappeared) in the softener.
-香り強度-
上記で得られたマイクロカプセル水分散液を、カチオン性界面活性剤を含む無香料柔軟剤(ULTRA Downy、プロクター・アンド・ギャンブル・ジャパン株式会社製)で香料濃度1.0%になるように希釈することで、マイクロカプセル含有組成物を作製した。
 上記で作製したマイクロカプセル含有組成物と、水とを混合し合計1000質量部とした。これに木綿タオル(35cm×35cm)を15分浸漬し、絞った後24時間乾燥し、評価用サンプルを作製した。
 上記で得た評価サンプル(木綿タオル)を5回擦り合わせた後、発生した香りの強度を10人のパネラーに評価してもらい、下記評価基準に従って7段階に分けて点数(0点(香り強度弱い)~6点(香り強度強い))をつけ、平均値(整数に四捨五入)を求めて官能評価を行った。結果は表1及び表2の「香り強度」の欄に示す。
 点数が大きい程、マイクロカプセルは、より優れた放出性を有すると判断する。1点~6点が実用上許容される点数であり、最も優れる点数は6点である。
 <評価基準>
0:香りを全く感じ取れない。
1:香りをわずかに感じとれるが、ほとんど香りを感じない。
2:弱い香りを感じ取れる。
3:香りを感じ取れる。
4:はっきりと香りを感じ取れる。
5:強い香りを感じ取れる。
6:非常に強い香りを感じ取れる。
-Aroma intensity-
The microcapsule aqueous dispersion obtained above is diluted with a fragrance-free softener containing a cationic surfactant (ULTRA Downy, manufactured by Procter & Gamble Japan Co., Ltd.) so that the fragrance concentration is 1.0%. By doing so, a microcapsule-containing composition was prepared.
The microcapsule-containing composition prepared above and water were mixed to make a total of 1000 parts by mass. A cotton towel (35 cm × 35 cm) was immersed in this for 15 minutes, squeezed and dried for 24 hours to prepare a sample for evaluation.
After rubbing the evaluation sample (cotton towel) obtained above 5 times, the intensity of the generated scent was evaluated by 10 panelists, and the score (0 points (fragrance intensity)) was divided into 7 stages according to the following evaluation criteria. Weak) to 6 points (strong scent intensity)), and the average value (rounded to an integer) was calculated and sensory evaluation was performed. The results are shown in the "Aroma intensity" column of Tables 1 and 2.
It is judged that the higher the score, the better the release property of the microcapsules. A score of 1 to 6 is a practically acceptable score, and the best score is 6.
<Evaluation criteria>
0: I can't feel the scent at all.
1: A slight scent can be felt, but almost no scent is felt.
2: You can feel a weak scent.
3: You can feel the scent.
4: You can clearly feel the scent.
5: You can feel a strong scent.
6: You can feel a very strong scent.
 なお、表1及び表2における混合比の単位は、質量部である。また、表1及び表2中の「-」の記載は、該当成分を含有していないことを意味する。表1及び表2中の架橋材の比率(質量%)は、生分解性樹脂に由来の構造部分に対する架橋剤に由来の構造部分の比率(質量%)を示す。 The unit of the mixing ratio in Tables 1 and 2 is the mass part. In addition, the description of "-" in Tables 1 and 2 means that the corresponding component is not contained. The ratio (mass%) of the cross-linking material in Tables 1 and 2 indicates the ratio (mass%) of the structural portion derived from the cross-linking agent to the structural portion derived from the biodegradable resin.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
-生分解性-
 次に、実施例1~実施例22のマイクロカプセル、および以下に示す比較例3のマイクロカプセルを用いて、JIS K 6953-1(2011年)に準拠して180日後の生分解度を測定した。
 なお、比較例3は、生分解性評価の比較検討のために、生分解性樹脂を用いない香料マイクロカプセルを作製した例である。比較例3の詳細は後述のとおりである。
-Biodegradable-
Next, the degree of biodegradation after 180 days was measured according to JIS K 6953-1 (2011) using the microcapsules of Examples 1 to 22 and the microcapsules of Comparative Example 3 shown below. ..
In addition, Comparative Example 3 is an example in which fragrance microcapsules that do not use a biodegradable resin were prepared for comparative examination of biodegradability evaluation. Details of Comparative Example 3 will be described later.
 その結果、実施例1~実施例22のマイクロカプセルは、生分解度が30質量%以上と良好な生分解性を示したものの、比較例3のマイクロカプセルは生分解度が30%未満であり、生分解性が不足していた。 As a result, the microcapsules of Examples 1 to 22 showed good biodegradability with a biodegradability of 30% by mass or more, but the microcapsules of Comparative Example 3 had a biodegradability of less than 30%. , Biodegradability was insufficient.
(比較例3)
 イソバン(登録商標)10(株式会社クラレ製、10質量%イソブチレン-無水マレイン酸共重合体水溶液)19.1質量部と水20.3質量部とを混合し、得られた混合液のpH(25℃)を10質量%水酸化ナトリウム水溶液で4.5に調整し、水相溶液とした。溶媒としてサラコス(登録商標)HG-8(日清オイリオ製)4.7質量部、及び香料としてD-リモネン(ヤスハラケミカル株式会社製)13.9質量部を混合し、油相溶液とした。そして、水相溶液39.4質量部に油相溶液の全量を加えて分散し、乳化液を得た。
 次いで、メラミン-ホルムアルデヒドプレポリマーであるニカレジンS-260(日本カーバイド工業株式会社製)2.6質量部を乳化液に加え、その後加熱を行って65℃に達した後、24時間カプセル形成反応を続けた。そして、残留ホルムアルデヒドを減少させるために30℃に冷却後、29質量%アンモニア水をpH7.5になるまで添加し、マイクロカプセル水分散液を得た。
 得られたマイクロカプセルは、平均粒径20μm、膜厚0.3μmであった。
(Comparative Example 3)
Isovan (registered trademark) 10 (manufactured by Kuraray Co., Ltd., 10% by mass isobutylene-maleic anhydride copolymer aqueous solution) 19.1 parts by mass and 20.3 parts by mass of water were mixed, and the pH of the obtained mixed solution ( 25 ° C.) was adjusted to 4.5 with a 10 mass% aqueous sodium hydroxide solution to prepare an aqueous phase solution. 4.7 parts by mass of Sarakos (registered trademark) HG-8 (manufactured by Nisshin Oillio) as a solvent and 13.9 parts by mass of D-limonene (manufactured by Yasuhara Chemical Co., Ltd.) as a fragrance were mixed to prepare an oil phase solution. Then, the entire amount of the oil phase solution was added to 39.4 parts by mass of the aqueous phase solution and dispersed to obtain an emulsion.
Next, 2.6 parts by mass of Nikaresin S-260 (manufactured by Nippon Carbide Industries Co., Ltd.), which is a melamine-formaldehyde prepolymer, was added to the emulsion, and then heated to reach 65 ° C., followed by a 24-hour capsule formation reaction. Continued. Then, after cooling to 30 ° C. in order to reduce residual formaldehyde, 29% by mass aqueous ammonia was added until the pH reached 7.5 to obtain a microcapsule aqueous dispersion.
The obtained microcapsules had an average particle size of 20 μm and a film thickness of 0.3 μm.
 実施例1と同様の方法により、マイクロカプセルにおける架橋構造の有無を確認したところ、DMSO混合液が不透明化した。これにより、比較例3の香料マイクロカプセルは、シェル部が架橋構造を有していることが確認された。 When the presence or absence of a crosslinked structure in the microcapsules was confirmed by the same method as in Example 1, the DMSO mixed solution became opaque. From this, it was confirmed that the fragrance microcapsules of Comparative Example 3 had a crosslinked structure in the shell portion.
 表1及び表2に示すとおり、実施例1~実施例22のいずれのマイクロカプセルも、保存安定性に優れ、香り強度が良好であった。
 また、JIS K 6953-1(2011年)の評価から、実施例1~実施例22のいずれのマイクロカプセルも生分解性に優れていた。
As shown in Tables 1 and 2, all of the microcapsules of Examples 1 to 22 had excellent storage stability and good scent intensity.
Moreover, from the evaluation of JIS K 6953-1 (2011), all the microcapsules of Examples 1 to 22 were excellent in biodegradability.
 2019年3月28日に出願された日本国特許出願2019-064701、及び2019年10月11日に出願された日本国特許出願2019-187397の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosures of Japanese Patent Application 2019-064701 filed on March 28, 2019 and Japanese Patent Application 2019-187397 filed on October 11, 2019 are incorporated herein by reference in their entirety. Is done.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (7)

  1.  コア部と前記コア部を内包するシェル部とを含み、
     前記シェル部は、厚みが2μm未満であり、かつ、生分解性樹脂と架橋剤との反応由来の架橋構造を含み、
     前記コア部は、香料を含む、香料マイクロカプセル。
    Including the core portion and the shell portion containing the core portion,
    The shell portion has a thickness of less than 2 μm and contains a cross-linked structure derived from the reaction between the biodegradable resin and the cross-linking agent.
    The core portion is a fragrance microcapsule containing a fragrance.
  2.  前記架橋剤が、イソシアネート化合物である、請求項1に記載の香料マイクロカプセル。 The perfume microcapsule according to claim 1, wherein the cross-linking agent is an isocyanate compound.
  3.  前記生分解性樹脂が、ゼラチン、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、及びキトサンからなる群より選ばれる少なくとも一つを含む、請求項1または請求項2に記載の香料マイクロカプセル。 The perfume microcapsule according to claim 1 or 2, wherein the biodegradable resin contains at least one selected from the group consisting of gelatin, hydroxypropylmethyl cellulose, hydroxypropyl cellulose, and chitosan.
  4.  前記生分解性樹脂に由来の構造部分に対する、前記架橋剤に由来の構造部分の比率が、2質量%~50質量%である、請求項1~請求項3のいずれか1項に記載の香料マイクロカプセル。 The fragrance according to any one of claims 1 to 3, wherein the ratio of the structural portion derived from the cross-linking agent to the structural portion derived from the biodegradable resin is 2% by mass to 50% by mass. Microcapsules.
  5.  請求項1~請求項4のいずれか1項に記載の香料マイクロカプセルと、溶媒と、を含有する香料マイクロカプセル組成物。 A perfume microcapsule composition containing the perfume microcapsule according to any one of claims 1 to 4 and a solvent.
  6.  請求項1~請求項4のいずれか1項に記載の香料マイクロカプセルを含む柔軟剤。 A softener containing the perfume microcapsules according to any one of claims 1 to 4.
  7.  請求項1~請求項4のいずれか1項に記載の香料マイクロカプセルを含む洗剤。 Detergent containing the perfume microcapsules according to any one of claims 1 to 4.
PCT/JP2020/003196 2019-03-28 2020-01-29 Perfume microcapsules, perfume microcapsule composition, softener, and detergent WO2020195132A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-064701 2019-03-28
JP2019064701 2019-03-28
JP2019-187397 2019-10-11
JP2019187397 2019-10-11

Publications (1)

Publication Number Publication Date
WO2020195132A1 true WO2020195132A1 (en) 2020-10-01

Family

ID=72609800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003196 WO2020195132A1 (en) 2019-03-28 2020-01-29 Perfume microcapsules, perfume microcapsule composition, softener, and detergent

Country Status (1)

Country Link
WO (1) WO2020195132A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021239742A1 (en) * 2020-05-26 2021-12-02 Givaudan Sa Encapsulated composition comprising core-shell microcapsules and process for its preparation
WO2022013821A1 (en) * 2020-07-15 2022-01-20 Isp Investments Llc Biodegradable microcapsules. process for preparing the same and method of use thereof
WO2022112189A1 (en) 2020-11-30 2022-06-02 Jafer Enterprises R&D Sl Method for producing fragrance microcapsules
US11465117B2 (en) 2020-01-30 2022-10-11 Trucapsol Llc Environmentally biodegradable microcapsules
US11542392B1 (en) 2019-04-18 2023-01-03 Trucapsol Llc Multifunctional particle additive for enhancement of toughness and degradation in biodegradable polymers
CN115590162A (en) * 2022-11-03 2023-01-13 武汉轻工大学(Cn) Application of microcapsule as shelf life prolonging additive in meat paste preparation
EP4124383A1 (en) 2021-07-27 2023-02-01 International Flavors & Fragrances Inc. Biodegradable microcapsules
US11571674B1 (en) 2019-03-28 2023-02-07 Trucapsol Llc Environmentally biodegradable microcapsules
EP4212239A1 (en) 2022-01-14 2023-07-19 International Flavors & Fragrances Inc. Biodegradable prepolymer microcapsules
US11794161B1 (en) 2018-11-21 2023-10-24 Trucapsol, Llc Reduced permeability microcapsules
EP4265326A2 (en) 2022-04-19 2023-10-25 TRuCapSol, LLC. Microcapsules comprising natural materials
EP4302869A1 (en) 2022-07-06 2024-01-10 International Flavors & Fragrances Inc. Biodegradable protein and polysaccharide-based microcapsules
US11904288B1 (en) 2023-02-13 2024-02-20 Trucapsol Llc Environmentally biodegradable microcapsules
US11969491B1 (en) 2023-02-22 2024-04-30 Trucapsol Llc pH triggered release particle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248137A (en) * 1996-01-08 1997-09-22 Ajinomoto Co Inc Food microcapsule and food containing the same
JPH09309595A (en) * 1996-05-20 1997-12-02 Sumitomo Chem Co Ltd Transfer method of capsulized liquid
CN1833725A (en) * 2005-03-18 2006-09-20 中国科学院过程工程研究所 Chitosan pellet/microsac and prepn. thereof
WO2014024971A1 (en) * 2012-08-08 2014-02-13 積水化学工業株式会社 Microcapsule-manufacturing process and microcapsules
CN106212485A (en) * 2016-07-28 2016-12-14 山东省农药科学研究院 Matrine microcapsule formulation and preparation method thereof
JP2017128587A (en) * 2010-09-20 2017-07-27 エスピーアイ ファーマ,インコーポレイテッド Microencapsulation process and product
WO2018002214A1 (en) * 2016-06-30 2018-01-04 Firmenich Sa Core-composite shell microcapsules
JP2018507199A (en) * 2015-02-06 2018-03-15 フイルメニツヒ ソシエテ アノニムFirmenich Sa A microcapsule that emits a strong vanilla fragrance note

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248137A (en) * 1996-01-08 1997-09-22 Ajinomoto Co Inc Food microcapsule and food containing the same
JPH09309595A (en) * 1996-05-20 1997-12-02 Sumitomo Chem Co Ltd Transfer method of capsulized liquid
CN1833725A (en) * 2005-03-18 2006-09-20 中国科学院过程工程研究所 Chitosan pellet/microsac and prepn. thereof
JP2017128587A (en) * 2010-09-20 2017-07-27 エスピーアイ ファーマ,インコーポレイテッド Microencapsulation process and product
WO2014024971A1 (en) * 2012-08-08 2014-02-13 積水化学工業株式会社 Microcapsule-manufacturing process and microcapsules
JP2018507199A (en) * 2015-02-06 2018-03-15 フイルメニツヒ ソシエテ アノニムFirmenich Sa A microcapsule that emits a strong vanilla fragrance note
WO2018002214A1 (en) * 2016-06-30 2018-01-04 Firmenich Sa Core-composite shell microcapsules
CN106212485A (en) * 2016-07-28 2016-12-14 山东省农药科学研究院 Matrine microcapsule formulation and preparation method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11794161B1 (en) 2018-11-21 2023-10-24 Trucapsol, Llc Reduced permeability microcapsules
US11571674B1 (en) 2019-03-28 2023-02-07 Trucapsol Llc Environmentally biodegradable microcapsules
US11542392B1 (en) 2019-04-18 2023-01-03 Trucapsol Llc Multifunctional particle additive for enhancement of toughness and degradation in biodegradable polymers
US11465117B2 (en) 2020-01-30 2022-10-11 Trucapsol Llc Environmentally biodegradable microcapsules
US11484857B2 (en) 2020-01-30 2022-11-01 Trucapsol Llc Environmentally biodegradable microcapsules
US11547978B2 (en) 2020-01-30 2023-01-10 Trucapsol Llc Environmentally biodegradable microcapsules
WO2021239742A1 (en) * 2020-05-26 2021-12-02 Givaudan Sa Encapsulated composition comprising core-shell microcapsules and process for its preparation
WO2022013821A1 (en) * 2020-07-15 2022-01-20 Isp Investments Llc Biodegradable microcapsules. process for preparing the same and method of use thereof
WO2022112189A1 (en) 2020-11-30 2022-06-02 Jafer Enterprises R&D Sl Method for producing fragrance microcapsules
FR3116735A1 (en) * 2020-11-30 2022-06-03 Jafer Enterprises R&D Sl Process for preparing perfume microcapsules
WO2023009514A1 (en) 2021-07-27 2023-02-02 International Flavors & Fragrances Inc. Biodegradable microcapsules
EP4124383A1 (en) 2021-07-27 2023-02-01 International Flavors & Fragrances Inc. Biodegradable microcapsules
EP4212239A1 (en) 2022-01-14 2023-07-19 International Flavors & Fragrances Inc. Biodegradable prepolymer microcapsules
WO2023137121A1 (en) 2022-01-14 2023-07-20 International Flavors & Fragrances Inc. Biodegradable prepolymer microcapsules
EP4265326A2 (en) 2022-04-19 2023-10-25 TRuCapSol, LLC. Microcapsules comprising natural materials
US11878280B2 (en) 2022-04-19 2024-01-23 Trucapsol Llc Microcapsules comprising natural materials
EP4302869A1 (en) 2022-07-06 2024-01-10 International Flavors & Fragrances Inc. Biodegradable protein and polysaccharide-based microcapsules
WO2024010814A1 (en) 2022-07-06 2024-01-11 International Flavors & Fragrances Inc. Biodegradable microcapsules comprising beta-1-4 non-ionic polysaccharide
CN115590162A (en) * 2022-11-03 2023-01-13 武汉轻工大学(Cn) Application of microcapsule as shelf life prolonging additive in meat paste preparation
US11904288B1 (en) 2023-02-13 2024-02-20 Trucapsol Llc Environmentally biodegradable microcapsules
US11969491B1 (en) 2023-02-22 2024-04-30 Trucapsol Llc pH triggered release particle

Similar Documents

Publication Publication Date Title
WO2020195132A1 (en) Perfume microcapsules, perfume microcapsule composition, softener, and detergent
US11179302B2 (en) Core-composite shell microcapsules
Rodrigues et al. Microencapsulation of limonene for textile application
Bruyninckx et al. Sustainable chemistry considerations for the encapsulation of volatile compounds in laundry-type applications
Bezerra et al. Controlled release of microencapsulated citronella essential oil on cotton and polyester matrices
Cheng et al. Development of cosmetic textiles using microencapsulation technology
US20200315168A1 (en) Aroma-Loaded Microcapsules with Antibacterial Activity for Eco-friendly Applications
WO2020194910A1 (en) Microcapsules, microcapsule composition, softener, and detergent
JP2023512861A (en) Polyurea capsules crosslinked with chitosan
Singh et al. Microencapsulation and its application in production of functional textiles
Peng et al. Biopolymers-based microencapsulation technology for sustainable textiles development: A short review
JP2019167455A (en) Manufacturing method of micro capsule and manufacturing method of micro capsule-containing composition
Meirowitz Microencapsulation technology for coating and laminating
WO2019171929A1 (en) Microcapsule-containing composition
US9968096B2 (en) Process for preparing antimicrobial microcapsules
Abdel-Aziz et al. Microencapsulation and its application in textile wet processing: A review
JP2021053594A (en) Microcapsule, microcapsule composition and production method of the same, as well as softener and detergent
JP2019150783A (en) Manufacturing method of microcapsule and manufacturing method of microcapsule-containing composition
WO2019187835A1 (en) Microcapsule-containing composition
WO2019181668A1 (en) Microcapsule-containing composition, laundry composition, daycare composition and haircare composition
EP3654926B1 (en) Controlled release polymer encapsulated fragrances
WO2019181682A1 (en) Microcapsule-containing composition, laundering composition, day-care composition, and hair-care composition
KR100523479B1 (en) Microcapsule which is made of chitosan and composition which contains the microcapsule
Oloko Microencapsulation of Vitamin E and Application to Textile
WO2019171959A1 (en) Microcapsule and microcapsule-containing composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP