WO2019171959A1 - Microcapsule and microcapsule-containing composition - Google Patents

Microcapsule and microcapsule-containing composition Download PDF

Info

Publication number
WO2019171959A1
WO2019171959A1 PCT/JP2019/006372 JP2019006372W WO2019171959A1 WO 2019171959 A1 WO2019171959 A1 WO 2019171959A1 JP 2019006372 W JP2019006372 W JP 2019006372W WO 2019171959 A1 WO2019171959 A1 WO 2019171959A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcapsule
mass
isocyanate compound
containing composition
shell
Prior art date
Application number
PCT/JP2019/006372
Other languages
French (fr)
Japanese (ja)
Inventor
田中 智史
優樹 中川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019171959A1 publication Critical patent/WO2019171959A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/87Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q13/00Formulations or additives for perfume preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes

Definitions

  • the present disclosure relates to a microcapsule and a composition containing a microcapsule.
  • microcapsules have added new value to customers by including and protecting functional materials such as fragrances, dyes, heat storage materials, and pharmaceutical ingredients, and releasing functional materials in response to stimuli. It is attracting attention because there is a possibility that it can be provided.
  • the microcapsule encapsulating the fragrance (hereinafter also referred to as the fragrance capsule) is mixed with the softening agent, and then the clothes are washed using the softening agent and then softened.
  • the encapsulated fragrance is released. Therefore, by encapsulating the fragrance, the fragrance can be held for a certain period of time, and the fragrance by the fragrance can be generated at a desired time.
  • the shell material used for the fragrance capsule is mainly a reaction product of aldehyde and amine (for example, melamine formaldehyde resin).
  • a melamine formaldehyde resin for a shell, a microcapsule using a resin containing a fragrance as a core material and a resin containing a reaction product of an aldehyde (eg formaldehyde) and an amine (eg melamine) as a wall material (shell material) is disclosed.
  • an aldehyde eg formaldehyde
  • an amine eg melamine
  • microcapsules using polyurethane or polyurea as the shell have been proposed.
  • a polyurea wall (polyurea wall) containing a reaction product of polymerization of polyisocyanate and polyamine and a polyurea microcapsule containing a fragrance encapsulated in the polyurea wall are disclosed (for example, see Patent Document 2). ).
  • the fragrance capsules as described above use pressure responsiveness to release the encapsulated components to the outside, for example, when pressure is applied to clothing, the capsules are broken and the fragrance by the fragrance is diffused. Therefore, in the state where no pressure is applied to the capsule, the fragrance is held in the capsule and cannot be continuously obtained.
  • a fragrance capsule it is desirable that a desired fragrance is obtained at a desired pressure, and it is desirable that a fragrance is diffused at a desired time. Therefore, there is a demand for a fragrance capsule with pressure response, but even in a situation where the capsule is not destroyed.
  • the adhesion of microcapsules to hair or fibers is an important factor for maintaining a fragrance for a long period of time, for example, in the case of perfume capsules. If the adhesion of microcapsules is further improved, the adhesion to polyurethane or polyurea It is expected that the replacement will be further advanced.
  • the present disclosure has been made in view of the above.
  • the problem to be solved by one embodiment of the present invention is to provide a microcapsule that has both pressure responsiveness and sustained release that gradually releases an encapsulated component.
  • Another problem to be solved by other embodiments of the present invention is to provide a microcapsule-containing composition that has both pressure responsiveness and sustained release that gradually releases an encapsulated component.
  • ⁇ 1> A structure derived from a trifunctional or higher aliphatic isocyanate compound, a structure derived from a bifunctional aliphatic isocyanate compound, and a structure derived from a bifunctional aromatic isocyanate compound as a shell material of a shell enclosing a core
  • a microcapsule containing polyurethane or polyurea having at least one structure selected from the group consisting of: ⁇ 2> The microcapsule according to ⁇ 1>, wherein a ratio derived from a trifunctional or higher functional aliphatic isocyanate compound is 20% by mass to 90% by mass with respect to the total mass of the shell material.
  • ⁇ 3> The ratio of at least one structure selected from a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound to the total mass of the shell material is 10% by mass to 70%
  • ⁇ 4> The microcapsule according to any one of ⁇ 1> to ⁇ 3>, wherein the core includes a fragrance as a core material.
  • a microcapsule-containing composition comprising the microcapsule according to any one of ⁇ 1> to ⁇ 4> and water.
  • a microcapsule having both pressure responsiveness and sustained release for gradually releasing an encapsulated component is provided.
  • a microcapsule-containing composition that has both pressure responsiveness and sustained release that gradually releases an encapsulated component.
  • microcapsules and the microcapsule-containing composition of the present disclosure will be described in detail.
  • a numerical range indicated by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value, respectively.
  • an upper limit value or a lower limit value described in a numerical range may be replaced with an upper limit value or a lower limit value in another numerical range.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the values shown in the examples.
  • shell refers to a microcapsule wall (also referred to as a capsule wall), and “core” refers to a portion enclosed in the shell.
  • core material a material for forming the shell
  • core material a component contained in the core
  • the “encapsulation” refers to a state in which an object is covered and confined by a shell (capsule wall) of the microcapsule.
  • the microcapsule of the present disclosure includes a structure derived from a trifunctional or higher functional aliphatic isocyanate compound, a structure derived from a bifunctional aliphatic isocyanate compound, and a bifunctional aromatic isocyanate compound as a shell material of a shell enclosing a core And polyurethane or polyurea having at least one structure selected from structures derived from.
  • a microcapsule using pressure responsiveness For example, there is a technique in which a fragrance is encapsulated in a shell (wall) as an encapsulated component and released when pressure is applied to diffuse a fragrance.
  • Conventionally known microcapsules generally have a function in which a fragrance is held in a capsule in a state where no pressure is applied, and the fragrance by the fragrance is released unless the capsule shell is broken. Not done.
  • a microcapsule having a shell using a tri- or higher functional aliphatic isocyanate compound and an aliphatic or aromatic bifunctional isocyanate compound is provided.
  • flexibility can be imparted to the shell of the microcapsule, and a sustained release property capable of gradually releasing the inclusion component can be imparted.
  • releases an inclusion component can also be improved with a temperature rise.
  • the microcapsule of the present disclosure has a shell that encloses a core.
  • the shell material forming the shell in the present disclosure includes polyurethane or polyurea.
  • the polyurethane or polyurea in the present disclosure is at least one selected from a structure derived from a trifunctional or higher functional aliphatic isocyanate compound, a structure derived from a bifunctional aliphatic isocyanate compound, and a structure derived from a bifunctional aromatic isocyanate compound. It has the structure of.
  • a trifunctional aliphatic isocyanate compound and a bifunctional isocyanate compound are used, so that the shell in the present disclosure has both pressure response and sustained release characteristics.
  • bifunctional aliphatic isocyanate compound and the bifunctional aromatic isocyanate compound may be collectively referred to as “specific diisocyanate”.
  • Polyurethane or polyurea which is a shell material that forms a shell, has a structure derived from a tri- or higher functional aliphatic isocyanate compound.
  • a structure derived from a trifunctional or higher functional aliphatic isocyanate compound By having a structure derived from a trifunctional or higher functional aliphatic isocyanate compound, the flexibility of the shell can be increased, and adhesion to an object to be adhered such as fiber or hair can be obtained.
  • the structure derived from a trifunctional or higher aliphatic isocyanate compound refers to a structure formed by urethanization or urea conversion of a trifunctional or higher aliphatic isocyanate compound.
  • Examples of the trifunctional or higher functional aliphatic isocyanate compound include a bifunctional aliphatic isocyanate compound (a compound having two isocyanate groups in the molecule) and a compound having three or more active hydrogen groups in the molecule (for example, a trifunctional or higher functional group).
  • adduct adduct with a polyol, polyamine, polythiol, etc.
  • a trifunctional or higher functional isocyanate compound adduct type
  • a bifunctional aliphatic isocyanate compound trimer (biuret type or isocyanurate type) Can do.
  • a commercially available product may be used as the adduct type trifunctional or higher functional isocyanate compound.
  • HT manufactured by Bayer Corporation
  • Coronate registered trademark
  • HX manufactured by Tosoh Corporation
  • Duranate P301-75E manufactured by Asahi Kasei Co., Ltd.
  • Barnock registered trademark
  • Takenate (registered trademark) series for example, Takenate D-110N, D-120N, D-140N, D-160N, etc.
  • Mitsui Chemicals, Inc. is more preferable.
  • isocyanurate-type trifunctional or higher functional isocyanate compound a commercially available product may be used.
  • examples of commercially available products include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, D-177N (manufactured by Mitsui Chemicals), Sumidur N3300, Death Module (registered trademark) N3600.
  • biuret type trifunctional or higher functional isocyanate compound commercially available products may be used.
  • D-165N Takenate (registered trademark) D-165N, NP1200 (manufactured by Mitsui Chemicals), Desmodur (registered trademark) N3200A (Manufactured by Bayer Corporation), Duranate (registered trademark) 24A-100, 22A-75P (manufactured by Asahi Kasei Corporation) and the like.
  • the ratio of the structure derived from the trifunctional or higher aliphatic isocyanate compound to the total mass of the shell material is preferably 20% by mass to 95% by mass, and more preferably 20% by mass to 90% by mass.
  • the content is preferably 50% by mass to 80% by mass.
  • the proportion of the structure derived from the trifunctional or higher aliphatic isocyanate compound is 20% by mass or more, good flexibility can be imparted to the shell.
  • the ratio of the structure derived from the trifunctional or higher aliphatic isocyanate compound is 95% by mass or less, it is suitable for maintaining the sustained release property to the outside of the core material.
  • the polyurethane or polyurea that is a shell material forming the shell is at least one selected from a structure derived from a specific diisocyanate, that is, a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound. It has the following structure.
  • the structure derived from a bifunctional aliphatic isocyanate compound refers to a structure formed by urethanization or urea conversion of a bifunctional aliphatic isocyanate.
  • the structure derived from a bifunctional aromatic isocyanate compound refers to a structure formed by urethanization or urea conversion of a bifunctional aromatic isocyanate.
  • bifunctional aliphatic isocyanate compound examples include trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanate, butylene-1,2-diisocyanate, cyclohexylene-1,2-diisocyanate, cyclohexylene-1, 3-diisocyanate, cyclohexylene-1,4-diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 1,4-bis (isocyanatemethyl) cyclohexane and 1,3-bis (isocyanatemethyl) cyclohexane, isophorone diisocyanate, lysine diisocyanate And hydrogenated xylylene diisocyanate.
  • bifunctional aromatic isocyanate compound examples include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, naphthalene-1,4-diisocyanate, diphenylmethane-4, 4'-diisocyanate, 3,3'-dimethoxy-biphenyl diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, xylylene-1,4-diisocyanate, xylylene-1,3-diisocyanate, 4-chloroxyl Len-1,3-diisocyanate, 2-methylxylylene-1,3-diisocyanate, 4,4'-diphenylpropane diisocyanate, 4,4'-diphenylhexafluoropropane diisocyanate, etc. It is.
  • Isocyanate compounds are described in “Polyurethane Resin Handbook” (edited by Keiji Iwata, published by Nikkan Kogyo Shimbun (1987)).
  • the total mass ratio is preferably 5% by mass to 80% by mass, preferably 10% by mass to 70% by mass, more preferably 10% by mass to 50% by mass, and more preferably 15% by mass to 45% by mass.
  • the mass is preferably 20% by mass, and more preferably 20% by mass to 40% by mass.
  • the proportion of the structure derived from the specific diisocyanate is 5% by mass or more, the crosslinking density of the shell is lowered, and the sustained release property of the core material to be included can be enhanced. Further, when the proportion of the structure derived from the specific diisocyanate is 80% by mass or less, and further 70% by mass or less, the flexibility of the shell can be easily maintained, and, for example, adhesion to fibers or hairs can be favorably maintained. .
  • the ratio of the trifunctional aliphatic isocyanate compound to the specific diisocyanate is preferably from 95/5 to 50/50, more preferably from 75/10 to 50/50, more preferably from 75/25 to 50/50 on a mass basis. More preferably, it is 50/50.
  • the core material has excellent sustained release properties and excellent adhesion to fibers or hairs.
  • -Other isocyanate compounds Polyurethane or polyurea, which is a shell material that forms a shell, may have a structure derived from other isocyanate compounds in addition to the trifunctional aliphatic isocyanate compound and the specific diisocyanate.
  • the structure derived from another isocyanate compound refers to a structure formed by urethanization or urea formation of another isocyanate compound.
  • Examples of other isocyanate compounds include trifunctional or higher functional aromatic isocyanate compounds.
  • trifunctional or higher functional aromatic isocyanate compound examples include 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, or an adduct (adduct) of hexamethylene diisocyanate and trimethylolpropane, biuret or isocyanate.
  • a nurate body etc. are mentioned.
  • Commercial products marketed as aromatic isocyanate compounds having three or more functional groups may be used.
  • Examples of commercially available products include Barnock (registered trademark) D-750, D-800 (manufactured by DIC Corporation), Takenate (registered) Trademarks) D-102, D-103, D-103H, D-103M2, D-110N, Olester (registered trademark) P49-75S (Mitsui Chemicals, Inc.), Death Module (registered trademark) L75, IL -135-BA, HL-BA, Sumijoule (registered trademark) E-21-1 (manufactured by Bayer Corporation), Coronate (registered trademark) L, L-55, L-55E (manufactured by Tosoh Corporation) It is done.
  • the thickness (wall thickness) of the shell (wall) of the microcapsule is preferably 0.01 ⁇ m to 1 ⁇ m.
  • the wall thickness of the microcapsule is 0.01 ⁇ m or more, the microcapsule is prevented from being easily broken, and the core material can be protected in the core until it is desired to release the core material.
  • the wall thickness of the microcapsule is 1 ⁇ m or less, the microcapsule can be moderately fragile, and the core material can be released at a desired time.
  • the wall thickness of the microcapsule is more preferably 0.05 ⁇ m to 0.7 ⁇ m, and still more preferably 0.05 ⁇ m to 0.2 ⁇ m.
  • the wall thickness refers to an average value obtained by averaging the individual wall thicknesses ( ⁇ m) of five microcapsules with a scanning electron microscope (SEM). Specifically, a microcapsule solution is applied on an arbitrary support and dried to form a coating film. A cross section of the obtained coating film is prepared, the cross section is observed using an SEM, arbitrary five microcapsules are selected, the cross section of each of the microcapsules is observed, and the wall thickness is measured. And calculating the average value.
  • SEM scanning electron microscope
  • the microcapsule of the present disclosure has a core enclosed in a shell.
  • the core can contain a desired inclusion component, and examples of the inclusion component include a fragrance, a solvent, and an auxiliary solvent.
  • a fragrance is contained as a core material in the core.
  • the microcapsules of the present disclosure are used by being attached to, for example, clothes fibers or hair (hair, etc.), even if no pressure is applied to the clothes, hair, etc. by including the fragrance as a core material, Sustained release that allows the fragrance to spread gradually is developed. Moreover, when pressure is given to clothes or hair by rubbing or the like, the capsule is broken and the fragrance is released, so that the desired fragrance can be diffused.
  • fragrance synthetic fragrances, natural essential oils, natural fragrances described in “Patent Office, well-known conventional technology collection (fragrance) Part III, cosmetic fragrances, pages 49-103, issued on June 15, 2001”
  • a suitable one can be appropriately selected from animal and plant extracts.
  • Examples of the perfume include monoterpenes such as pinene, myrcene, camphene, and R limonene; sesquiterpenes such as cedrene, caryophyllene, and longifolene; 1,3,5-undecatriene, ⁇ -amylcinnamyl aldehyde, dihydrojasmon, methylionone , ⁇ -damascone, acetyl cedrene, methyl dihydrojasmonate, cyclopentadecanolide and the like; natural essential oils such as orange essential oil, lemon essential oil, bergamot essential oil, and mandarin essential oil.
  • the content of the fragrance relative to the total mass of the core material is preferably 100% by mass to 20% by mass, more preferably 95% by mass to 30% by mass, and still more preferably 85% by mass to 40% by mass.
  • the core may contain a solvent.
  • the solvent include fatty acid ester compounds such as tri (capryl / capric acid) glyceryl and isopropyl myristate, alkylnaphthalene compounds such as diisopropylnaphthalene, diarylalkane compounds such as 1-phenyl-1-xylylethane, isopropylbiphenyl, and the like.
  • Aromatic hydrocarbons such as alkylbiphenyl compounds such as triarylmethane compounds, alkylbenzene compounds, benzylnaphthalene compounds, diarylalkylene compounds, arylindane compounds; aliphatic hydrocarbons such as dibutyl phthalate and isoparaffins; Examples include camellia oil, soybean oil, corn oil, cottonseed oil, rapeseed oil, natural animal and vegetable oils such as olive oil, coconut oil, castor oil, and fish oil; high-boiling fractions of natural products such as mineral oil.
  • the content of the solvent in the core material is preferably less than 50% by mass, more preferably 40% by mass or less, and most preferably 30% by mass or less with respect to the total mass of the core material.
  • the core may contain an auxiliary solvent as an oil phase component from the viewpoint of enhancing the solubility of the shell material used in manufacturing the microcapsule in the oil phase.
  • the auxiliary solvent does not include the above solvent.
  • the auxiliary solvent include ketone compounds such as methyl ethyl ketone, ester compounds such as ethyl acetate, alcohol compounds such as isopropyl alcohol, and the like.
  • the boiling point of the auxiliary solvent is preferably 130 ° C. or lower.
  • the content of the auxiliary solvent in the core material is preferably less than 50% by mass, more preferably less than 30% by mass, and still more preferably less than 20% by mass with respect to the total mass of the core material.
  • the core may contain additives such as an ultraviolet absorber, a light stabilizer, an antioxidant, a wax, and an odor inhibitor.
  • the content of the additive may be in a range that does not impair the effects of the present invention, and is preferably 0% by mass to 20% by mass, more preferably 1% by mass to 15% by mass with respect to the total mass of the core material. More preferably, it is 5 to 10% by mass.
  • microcapsule examples include a microcapsule dispersion, and preferably a microcapsule aqueous dispersion in which microcapsules are dispersed in an aqueous solvent.
  • the median diameter (D50) of the volume standard of the microcapsules is preferably 0.1 ⁇ m to 100 ⁇ m.
  • the median diameter (D50) is 0.1 ⁇ m or more, it is possible to prevent the microcapsule from entering a minute gap of the attached object (hair, fiber, etc.) and becoming difficult to break.
  • the median diameter (D50) is 100 ⁇ m or less, it is possible to prevent a decrease in adhesion.
  • the volume standard median diameter (D50) of the microcapsules is preferably 1 ⁇ m to 70 ⁇ m, more preferably 5 ⁇ m to 50 ⁇ m, and still more preferably 5 ⁇ m to 30 ⁇ m.
  • the volume standard median diameter of the microcapsules can be controlled by changing the dispersion condition.
  • the median diameter of the volume standard of the microcapsule is the volume of the particle on the large diameter side and the small diameter side when the entire microcapsule is divided into two with the particle diameter at which the cumulative volume is 50% as a threshold value. The diameter is the same as the total.
  • the volume standard median diameter of the microcapsules is measured by using Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
  • the level of monodispersity of the microcapsules can be expressed using a CV value (coefficient of variation).
  • the CV value is a value obtained by the following formula.
  • CV value (%) (standard deviation / volume average particle diameter) ⁇ 100 The lower the CV value, the higher the monodispersity of the microcapsules, and the higher the CV value, the lower the monodispersibility of the microcapsules.
  • the volume average particle diameter and the standard deviation are calculated using Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
  • “highly monodispersed” of a microcapsule means that the CV value of the particle size distribution of the microcapsule is preferably 40% or less, more preferably 35% or less, even more preferably 30% or less, most preferably It can also be said that it is 25% or less.
  • the CV value is in the above range, since the monodispersity of the microcapsule particle size is high, handling of the microcapsules, control of function expression, and the like are facilitated.
  • the microcapsule-containing composition of the present disclosure contains at least the microcapsules of the present disclosure described above and an aqueous solvent.
  • the microcapsule-containing composition of the present disclosure preferably further contains a cationic surfactant, an anionic group-imparting agent, a surface anionizing agent, and the like, if necessary. Other components may be contained.
  • microcapsules contained in the microcapsule-containing composition of the present disclosure are as described above, and preferred embodiments are also the same.
  • the content ratio of the microcapsules in the microcapsule-containing composition is not particularly limited, and may be selected according to the purpose or the case. For example, 20% of the total solid content of the microcapsule-containing composition is 20%.
  • the mass can be from 50% by mass to 50% by mass.
  • aqueous solvent examples include water, water, alcohol and the like, and ion-exchanged water or the like can be used.
  • the content ratio of the aqueous solvent in the microcapsule-containing composition is not particularly limited, and may be selected depending on the purpose or the case. For example, 50% of the total solid content of the microcapsule-containing composition is 50%.
  • the mass may be from 70% by mass.
  • the microcapsule-containing composition of the present disclosure preferably has an embodiment in which the microcapsule has an anionic charge on the surface and further contains a cationic surfactant. Thereby, an interaction is obtained between the microcapsule and the cationic surfactant, and a positive charge of the cationic surfactant can be imparted around the microcapsule. As a result, it becomes possible to improve the adhesion property of the microcapsule to an attachment object (for example, hair or fiber) having an anionic charge.
  • an attachment object for example, hair or fiber
  • the microcapsule has an anionic charge on the surface by measuring the zeta potential when the microcapsule is dispersed in water. When the zeta potential is negative, it indicates that the surface of the microcapsule is covered with an anionic charge.
  • the zeta potential of the microcapsule when dispersed in water, is preferably ⁇ 80 meV to ⁇ 5 meV, more preferably ⁇ 80 meV to ⁇ 11 meV, and further preferably ⁇ 50 meV to ⁇ 10 meV. preferable.
  • Zero potential (z) means the apparent electrostatic potential generated by a charged object in solution, measured by a special measurement technique. A detailed discussion of the logical basis and actual relevance of the zeta potential can be found, for example, in “Colloid Science: Zeta Potential in Colloid Sciences: Principles and Applications” (Hunter Robert J .; EdP. 1981; p 1988). The zeta potential of an object is measured at some distance from the surface of the object and generally does not exceed the electrostatic potential at the surface itself. However, the value can be a good measure of the ability of an object to establish an electrostatic interaction with other objects in solution, particularly molecules having multiple binding sites.
  • the zeta potential is a relative measurement value, and the value tends to depend on the measurement method.
  • the zeta potential is a value measured by the following method.
  • the apparatus uses ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
  • the device settings are as follows.
  • the sample preparation procedure is as follows.
  • the slurry containing the target capsule is added to water so that the capsule concentration is 0.5% by mass, and the slurry is diluted.
  • the measurement concentration is adjusted as necessary so that the measurement rate falls within a preferable range by automatic detection.
  • the zeta potential of the diluted sample is measured without filtering the sample.
  • the filtered slurry is poured into a standard cell unit (manufactured by Otsuka Electronics Co., Ltd.), and the cell is inserted into the apparatus. Set the test temperature to 25 ° C. (Iv) Start the measurement after the temperature has stabilized (usually after 3 to 5 minutes). Each sample is set to measure 5 times and measured. d.
  • the zeta potential in the present disclosure is a value measured in units of “mV” as an average of three measured values for each slurry. Based on the above, the zeta potential of the microcapsule can be measured using ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
  • the method for imparting an anionic charge to the microcapsule surface is not particularly limited, for example, a method for binding an anionic group-imparting agent to the shell, a method for imparting an anionic charge to the microcapsule surface using a surface anionic agent, Is mentioned. Among these, from the viewpoint of work efficiency, a method of imparting an anionic charge to the microcapsule surface using a surface anionizing agent is preferable.
  • an oil phase is prepared by stirring and mixing a solvent, a trifunctional aliphatic isocyanate which is a shell material, and a specific diisocyanate.
  • an aqueous solution containing an anionic group-imparting agent for example, lysine
  • the oil phase is added to the prepared aqueous phase to disperse and emulsify, and the resulting emulsion is heated and stirred and then cooled.
  • an aqueous solution of a base for example, sodium hydroxide
  • a base for example, sodium hydroxide
  • the aqueous solution containing the anionic group-imparting agent may be added after the emulsion is formed, or an aqueous base solution may be added to the aqueous phase in advance.
  • content of said each component can be changed suitably.
  • -Anionic group imparting agent- There is no restriction
  • the protective colloid means a colloid that can impart an anionic charge to the microcapsule surface by being present on the microcapsule surface.
  • the surface anionizing agent is not particularly limited as long as it can give an anionic charge to the microcapsule surface (anionic water-soluble polymers (anionic polysaccharides such as anion-modified polyvinyl alcohol, carboxymethyl cellulose, carrageenan, polyacrylic acid)). And copolymers with sodium and other monomers, copolymers with sodium polymaleate and other monomers) and anionic surfactants (sodium dodecyl sulfate, sodium lauryl sulfate, etc.).
  • anionic water-soluble polymers anionic polysaccharides such as anion-modified polyvinyl alcohol, carboxymethyl cellulose, carrageenan, polyacrylic acid
  • anionic surfactants sodium dodecyl sulfate, sodium lauryl sulfate, etc.
  • the microcapsule in the microcapsule-containing composition of the present disclosure preferably has an anion-modified polyvinyl alcohol on at least a part of the surface from the viewpoint of imparting an anionic charge to the microcapsule surface.
  • Examples of the method for forming a protective colloid on the surface of the microcapsule using the surface anionizing agent include the following methods. However, the present disclosure is not limited to the following method. First, an oil phase is prepared by stirring and mixing a solvent, a trifunctional aliphatic isocyanate and a specific diisocyanate which are shell materials. Subsequently, an aqueous solution containing a surface anionizing agent (for example, anion-modified polyvinyl alcohol) is prepared as an aqueous phase. The oil phase is added to the prepared aqueous phase and dispersed to emulsify, and the resulting emulsion is heated, stirred and cooled.
  • a surface anionizing agent for example, anion-modified polyvinyl alcohol
  • a base for example, sodium hydroxide aqueous solution
  • a base for example, sodium hydroxide aqueous solution
  • content of each above-mentioned component can be changed suitably.
  • Anion-modified polyvinyl alcohol is polyvinyl alcohol modified with a carboxyl group or a sulfonic acid group, and commercially available products can be used.
  • commercially available products are Kuraray Poval KM-618 (manufactured by Kuraray Co., Ltd.), Kuraray Poval KL-318 (manufactured by Kuraray Co., Ltd.), Gohsenol L-3266 (manufactured by Nippon Synthetic Chemical Co., Ltd.), Gohsenol T-330 (Japan) Synthetic Chemical Co., Ltd.).
  • the anion-modified polyvinyl alcohol is preferably Kuraray Poval KM-618 or Gohsenol L-3266, and more preferably Kuraray Poval KM-618.
  • the microcapsule-containing composition of the present disclosure preferably contains a cationic surfactant when an anionic charge is imparted to the microcapsule surface.
  • a cationic surfactant when an anionic charge is imparted to the microcapsule surface.
  • the anion charge (minus charge) of the microcapsule and the plus charge of the cationic surfactant attract each other due to the interaction, so that the plus charge of the cationic surfactant covers the microcapsule.
  • a positive charge can be generated as a whole capsule, and the positive charge of the microcapsule attracts the negative charge of the attached object (for example, fiber or hair) to which the microcapsule adheres. Adhesion can be further improved.
  • the cationic surfactant is not particularly limited, and conventionally known cationic surfactants can be used.
  • alkylamine salts for example, quaternary ammonium salts (for example, hexadecyltrimethylammonium chloride), polyoxyethylene alkylamine salts, polyethylene Examples include polyamine derivatives.
  • a commercially available product may be used as the cationic surfactant.
  • examples of commercially available products include cation EQ-01D (NOF Corporation), cation SF-10 (manufactured by Sanyo Kasei Kogyo Co., Ltd.), cation SF-75PA (manufactured by Sanyo Kasei Kogyo Co., Ltd.), and Adecamin SF-108 (stock) The company ADEKA).
  • the microcapsule-containing composition of the present disclosure may contain a dispersion medium other than the aqueous solvent.
  • a microcapsule dispersion medium By further containing a microcapsule dispersion medium, the microcapsule-containing composition can be easily blended when used in various applications.
  • the dispersion medium in the microcapsule-containing composition can be appropriately selected according to the purpose of use of the composition.
  • the dispersion medium is preferably a liquid component that does not affect the wall material of the microcapsule.
  • Preferable other dispersion media include viscosity modifiers and stabilizers.
  • what is necessary is just to select suitably content of the dispersion medium in the microcapsule containing composition of this indication according to a use.
  • the microcapsule-containing composition of the present disclosure can contain components other than the above-described components.
  • Other components are not particularly limited and may be appropriately selected depending on the purpose or circumstances. Examples of other components include a surfactant, a crosslinking agent, a lubricant, an ultraviolet absorber, an antioxidant, and an antistatic agent.
  • microcapsules of the present disclosure can be manufactured by a known method, for example, the manufacturing method shown below. However, the present disclosure is not limited to the following method.
  • the microcapsules of the present disclosure include an oil phase containing a trifunctional aliphatic isocyanate as a shell material and a specific diisocyanate, and an aqueous phase containing an emulsifier and (optionally an anionic group imparting agent or a surface anionizing agent).
  • a step of preparing an emulsified liquid by dispersing in an emulsion emulsification step
  • a step of forming a shell by polymerizing the shell material at the interface between the oil phase and the aqueous phase to form a microcapsule including the core encapsulation step
  • an oil phase containing a trifunctional aliphatic isocyanate and a specific diisocyanate that are a solvent and a shell material is dispersed in an aqueous phase containing an emulsifier and (an anionic group-imparting agent or a surface anionizing agent as necessary).
  • an emulsion When the oil phase contains a solvent, the monodispersity of the microcapsules is enhanced.
  • Emulsified liquid of the present disclosure can be prepared by dispersing an oil phase containing a solvent and a shell material in an aqueous phase containing an emulsifier.
  • the oil phase in the present disclosure includes at least a solvent, a trifunctional aliphatic isocyanate that is a shell material, and a specific diisocyanate, and optionally includes other components such as a fragrance, a co-solvent, and an additive. May be.
  • the details of the fragrance, the auxiliary solvent, and the additive are as described in the above-mentioned section of the microcapsule.
  • the shell material in the present disclosure includes a trifunctional aliphatic isocyanate and a specific diisocyanate.
  • the content of the shell material in the oil phase is preferably more than 0.1% by mass and 20% by mass or less, more preferably 0.5% by mass to 10% by mass, and more preferably 1% by mass with respect to the total mass of the oil phase. More preferably, it is ⁇ 5 mass%.
  • the concentration of the shell material can be appropriately adjusted in view of the size of the microcapsules, the wall thickness, and the like.
  • the aqueous phase in the present disclosure preferably includes at least an aqueous solvent and an emulsifier, and can further include, for example, an anionic group-imparting agent or a surface anionizing agent as a component for imparting an anionic charge to the surface of the microcapsule.
  • aqueous medium of the present disclosure examples include water, water, alcohol, and the like, and ion-exchanged water or the like can be used.
  • the content of the aqueous medium in the aqueous phase is preferably 20% by mass to 80% by mass, and preferably 30% by mass to 70% by mass with respect to the total mass of the emulsion obtained by emulsifying and dispersing the oil phase in the aqueous phase. Is more preferable, and 40% by mass to 60% by mass is even more preferable.
  • -emulsifier- Emulsifiers include dispersants or surfactants or combinations thereof.
  • the dispersant include polyvinyl alcohol and modified products thereof (for example, anion-modified polyvinyl alcohol), polyacrylic acid amide and derivatives thereof, ethylene-vinyl acetate copolymer, styrene-maleic anhydride copolymer, and ethylene-maleic anhydride.
  • Acid copolymer isobutylene-maleic anhydride copolymer, polyvinylpyrrolidone, ethylene-acrylic acid copolymer, vinyl acetate-acrylic acid copolymer, carboxymethylcellulose, methylcellulose, casein, gelatin, starch derivative, gum arabic and alginic acid Sodium etc.
  • Polyvinyl alcohol is preferable. It is preferable that the dispersant does not react with the shell material or is extremely difficult to react. For example, those having a reactive amino group in a molecular chain such as gelatin may be preliminarily treated to lose the reactivity. preferable.
  • surfactant examples include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants.
  • Surfactant may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Nonionic surfactant is not particularly limited, and a conventionally known nonionic surfactant can be used.
  • Nonionic surfactants include, for example, polyoxyethylene alkyl ether compounds, polyoxyethylene alkyl phenyl ether compounds, polyoxyethylene polystyryl phenyl ether compounds, polyoxyethylene polyoxypropylene alkyl ether compounds, glycerin fatty acid moieties.
  • anionic surfactant is not specifically limited, A conventionally well-known thing can be used.
  • examples of the anionic surfactant include fatty acid salts, abietic acid salts, hydroxyalkane sulfonates, alkane sulfonates, dialkyl sulfosuccinate esters, linear alkyl benzene sulfonates, branched alkyl benzene sulfonates, and alkyl naphthalenes.
  • a cationic surfactant is not specifically limited, A conventionally well-known thing can be used.
  • the cationic surfactant include alkylamine salts, quaternary ammonium salts (for example, hexadecyltrimethylammonium chloride), polyoxyethylene alkylamine salts, and polyethylene polyamine derivatives.
  • amphoteric surfactant is not specifically limited, A conventionally well-known thing can be used.
  • amphoteric surfactant include carboxybetaine, aminocarboxylic acid, sulfobetaine, aminosulfate, and imidazoline.
  • the concentration of the emulsifier is preferably more than 0% by mass and 20% by mass or less, more preferably 0.005% by mass to 10% by mass, and more preferably 0.01% by mass to 10% by mass with respect to the total mass of the emulsion. Still more preferred is 1 to 5% by weight.
  • the aqueous phase in the present disclosure preferably contains an anionic group-imparting agent or a surface anionizing agent.
  • the details of the anionic group-imparting agent and the surface anionizing agent are as described in the above-mentioned section of the microcapsule.
  • some anionic group imparting agents and surface anionizing agents for example, anion-modified polyvinyl alcohol
  • some anionic group imparting agents and surface anionic agents are used. When using, the emulsifier mentioned later does not need to be added.
  • the content of the anionic group-imparting agent in the shell is preferably 0.5% by mass to 20% by mass, more preferably 1% by mass to 10% by mass, and 2.5% by mass with respect to the total mass of the shell material. More preferably, it is 7% by mass.
  • the content of the surface anionizing agent is preferably 1% by mass to 15% by mass, more preferably 2% by mass to 12% by mass, and still more preferably 4% by mass to 10% by mass with respect to the total mass of the aqueous phase. .
  • the aqueous phase may contain other components such as an ultraviolet absorber, an antioxidant, and a preservative as necessary.
  • the content is preferably more than 0% by mass and 20% by mass or less, more preferably more than 0.1% by mass and 15% by mass or less, more preferably more than 1% by mass with respect to the total mass of the aqueous phase. 10 mass% or less is still more preferable.
  • Dispersion refers to dispersing (emulsifying) the oil phase of the present disclosure as oil droplets in the water phase of the present disclosure.
  • the dispersion can be carried out by means usually used for dispersion of an oil phase and an aqueous phase, for example, a homogenizer, a Manton Gory, an ultrasonic disperser, a dissolver, a teddy mill, or other known dispersion devices.
  • the mixing ratio of the oil phase to the water phase is preferably 0.1 to 1.5, more preferably 0.2 to 1.2, and 0.4 to 1.0. Further preferred. When the mixing ratio is in the range of 0.1 to 1.5, an appropriate viscosity can be maintained, the production suitability is excellent, and the stability of the emulsion is excellent.
  • the manufacturing method of the microcapsule of this indication includes the process of polymerizing a shell material in the interface of an oil phase and a water phase, forming a shell, and forming the microcapsule which includes a solvent. Thereby, the microcapsule in which the solvent of the present disclosure is encapsulated in the shell is formed.
  • Polymerization is a step of polymerizing the shell material contained in the oil phase in the emulsion at the interface with the aqueous phase, whereby a shell is formed.
  • the polymerization is preferably performed under heating.
  • the reaction temperature in the polymerization is usually preferably 40 ° C to 100 ° C, more preferably 50 ° C to 80 ° C.
  • the polymerization reaction time is usually preferably about 0.5 to 10 hours, more preferably about 1 to 5 hours. The higher the polymerization temperature, the shorter the polymerization time, but when using encapsulated components or shell materials that may decompose at high temperatures, select a polymerization initiator that operates at low temperatures and polymerize at relatively low temperatures. Is desirable.
  • an aqueous solution for example, water, an aqueous acetic acid solution, etc.
  • a dispersing agent for preventing aggregation may be added again during the polymerization process.
  • a charge control agent such as nigrosine, or any other auxiliary agent can be added as necessary.
  • microcapsule-containing composition of the present disclosure can be used for various applications.
  • the microcapsule-containing composition can be applied to uses such as washing, hair care, and day care.
  • the microcapsule-containing composition of the present disclosure can be made into a softener for clothing, for example, by including a core material (for example, a fragrance) in the microcapsule.
  • a core material for example, a fragrance
  • the microcapsule-containing composition of the present disclosure is suitable for laundry applications.
  • the microcapsule-containing composition which is a softener for clothing, is obtained by immersing the clothing in the microcapsule-containing composition, dehydrating, and drying the microcapsule contained in the microcapsule-containing composition and, if necessary, cationic surfactant.
  • the agent is held on the clothing by adsorbing on the fibers of the clothing or entering into fine gaps between the fibers.
  • the inclusion component (core material) is stably contained in the microcapsule.
  • the encapsulated component can be released by applying stress and collapsing the microcapsules.
  • the inclusion component is naturally released, so that the release effect of the inclusion component can be obtained over a long period of time.
  • the microcapsule attached to the clothes gradually breaks along with the action and releases the core material, and is not accompanied by any action by attaching or detaching before or after wearing the clothes.
  • the core material can be released.
  • the softening agent for clothing preferably has a content of 0.3% by mass to 3% by mass with respect to the total mass of the microcapsule-containing composition.
  • the microcapsule-containing composition further contains a cationic surfactant
  • the content of the cationic surfactant with respect to the total mass of the microcapsule-containing composition is preferably 10% by mass to 30% by mass.
  • the microcapsule-containing composition can further include known components (for example, an antifoaming agent, a coloring material, a fragrance, etc.) included in the softener for clothing.
  • the dispersion medium used for the softener for clothing is preferably water such as ion exchange water.
  • the microcapsule of the present disclosure, and the microcapsule-containing composition containing the microcapsule and the aqueous solvent can be applied to hair care applications as they are.
  • hair care it can be arbitrarily applied to hair cosmetics such as rinses, conditioners, hair styling agents and the like.
  • the microcapsule-containing composition of the present disclosure which is a hair cosmetic, adheres to the hair, and when the hair is rubbed or combed, the microcapsule disintegrates due to stress, and the core material Can be released.
  • the microcapsules can be stably stored for a longer time by filling the spray container.
  • the hair cosmetic is applied to the hair by spraying, the dispersion medium and the microcapsules adhere to the hair. Thereafter, by performing massage or the like on the scalp, the microcapsules are collapsed by applying stress to the microcapsules, and the core material can be attached to the hair.
  • the microcapsule-containing composition of the present disclosure that is a hair cosmetic can optionally contain known components that can be included in the hair cosmetic.
  • Known components that can be included in hair cosmetics include aqueous media such as alcohol, oil agents, surfactants as cleaning or dispersing components, active ingredients that penetrate the skin, colorants, and fragrances.
  • the microcapsule-containing composition of the present disclosure can be applied to, for example, a day care (for example, a cosmetic sheet, a diaper, etc.) including a support and the above-described microcapsule-containing composition impregnated in the support. it can.
  • a microcapsule containing composition contains cleaning components, such as surfactant, it can be set as the sheet
  • the support is not particularly limited as long as the liquid component can be retained.
  • the support is preferably a non-woven fabric, a woven fabric or the like, a fiber assembly having a void for retaining moisture therein, a porous material such as a sponge sheet, and the like.
  • the microcapsule can be broken by pressing the support against the skin and rubbing, and the inclusion component (core material) can be released at any time, and Even in the state where no stress is applied, the inclusion component is naturally released, so that the release effect of the inclusion component can be obtained over a long period of time.
  • Cosmetic sheets, diapers and the like are preferably packaged with a water-impermeable packaging material in order to stably hold the microcapsule-containing composition, from the viewpoint of sustaining effects.
  • microcapsule-containing composition of the present disclosure can release the core material at any time when necessary, it can be applied to various applications.
  • the use described above is an example thereof, and the use of the microcapsule-containing composition of the present disclosure is not limited to the above description.
  • volume-based median diameter, standard deviation, and volume average particle diameter were measured with Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
  • the thickness (wall thickness) of the shell was measured by observing a cross section of the microcapsule with a scanning electron microscope JSM-7800F (manufactured by JEOL Ltd.).
  • the zeta potential was measured using ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.). As described below, the measurement was performed three times for each of the slurries, and the zeta potential (unit: mV) was obtained by averaging the three measurement values.
  • the slurry containing the target capsule was added to water so that the capsule concentration would be 0.5% by mass, and the slurry was diluted. The measurement concentration was adjusted as necessary so that the measurement rate was in a preferable range by automatic detection.
  • the zeta potential of the diluted sample was measured without filtering the sample.
  • Example 1 Preparation of sample for evaluation- Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd.) 18.2 parts by mass as a solvent, D-limonene (manufactured by Yashara Chemical Co., Ltd .; fragrance) 54.7 parts by mass, and a shell material Burnock (registered trademark) D-750 (tridicylene isocyanate trimethylolpropane adduct) manufactured by DIC Corporation, which is a trifunctional aromatic isocyanate compound, 1.1 parts by mass, and Takenate, which is a trifunctional aliphatic isocyanate compound (Registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct), 2.3 parts by mass, and 4,4′-diphenylmethane diisocyanate (MDI, manufactured by Wako Pure Chemical Industries,
  • Kuraray Poval registered trademark
  • PVA-217E manufactured by Kuraray Co., Ltd .
  • PVA polyvinyl alcohol
  • the volume-based median diameter (D50) of the obtained microcapsules was 17 ⁇ m.
  • the zeta potential of the microcapsule aqueous dispersion was 0 mV.
  • ULTRA Downy, Procter & Gamble Japan Co., Ltd. 99% by mass
  • Example 1 was used as a reference (3 points).
  • the evaluation samples prepared in each Example and Comparative Example were scored in 6 steps (0 points (weak fragrance strength) to 5 points (strong fragrance strength)), and the average value (rounded to an integer) The qualitative evaluation was performed.
  • An extract amount (microcapsule adhesion amount)
  • One-sixth of the evaluation sample (cotton towel) obtained above was immersed in 100 g of dimethyl sulfoxide and allowed to stand for 24 hours to extract the fragrance inside the microcapsule.
  • the dimethyl sulfoxide solution after completion of the extraction was subjected to gas chromatography mass spectrometry (GC / MS) to quantify the extracted amount of the fragrance, and used as an index for evaluating the adhesion amount of the microcapsules.
  • GC / MS gas chromatography mass spectrometry
  • Example 2 to Example 8 A microcapsule aqueous dispersion was obtained in the same manner as in Example 1 except that the combination of isocyanate compounds used in Example 1 was changed as shown in Table 1. The volume-based median diameter, standard deviation, volume average particle diameter, zeta potential, and shell thickness (wall thickness) of the obtained microcapsules were measured in the same manner as in Example 1.
  • Example 9 to Example 33 a microcapsule aqueous dispersion was used in the same manner as in Example 1 except that polyvinyl alcohol was replaced with anion-modified polyvinyl alcohol and the type and mixing ratio of the isocyanate compound were changed as shown in Table 1.
  • the volume-based median diameter, standard deviation, volume average particle diameter, zeta potential, and shell thickness (wall thickness) of the obtained microcapsules were measured in the same manner as in Example 1.
  • Example 1 A microcapsule aqueous dispersion was obtained in the same manner as in Example 1 except that the polyisocyanate was changed as shown in Table 1 in Example 1.
  • the volume-based median diameter, standard deviation, volume average particle diameter, zeta potential, and shell thickness (wall thickness) of the obtained microcapsules were measured in the same manner as in Example 1.
  • Table 1 Details of the components in Table 1 are as follows. 217E: Kuraray Poval PVA-217E (partially saponified polyvinyl alcohol), Kuraray Co., Ltd. KM-618: Kuraray Poval KM-618 (anion-modified polyvinyl alcohol), Kuraray Co., Ltd. KL-318: Kuraray Poval KL-318 (anion) Modified polyvinyl alcohol), Kuraray Co., Ltd. L-3266: Gohsenol L-3266 (anion-modified polyvinyl alcohol), Nippon Synthetic Chemical Co., Ltd.
  • D-750 Vernock D-750 (tolylene diisocyanate trimethylolpropane adduct; trifunctional The above aromatic isocyanate compound), DIC Corporation D-160N: Takenate D-160N (hexamethylene diisocyanate trimethylolpropane adduct; trifunctional aliphatic isocyanate compound), Made well Chemical Co., Ltd.
  • MDI 4,4'- diphenylmethane diisocyanate (manufactured by Wako Pure Chemical Industries, Ltd.)
  • HDI Hexamethylene diisocyanate (Wako Pure Chemical Industries, Ltd.)
  • DMDI 4,4′-dicyclohexylmethane diisocyanate (manufactured by Wako Pure Chemical Industries, Ltd.)
  • THDI Trimethylhexamethylene diisocyanate (Wako Pure Chemical Industries, Ltd.)
  • the microcapsules of Examples 17 to 21 or Examples 22 to 27 it can be seen that there is a preferable range in the quantitative relationship between the tri- or higher functional aliphatic isocyanate compound and the specific diisocyanate compound in terms of sustained release. Moreover, it turns out that it becomes favorable in terms of the adhesion property of the microcapsule to the fiber as the ratio of the specific diisocyanate becomes lower. Further, considering Examples 28 to 29, the zeta potential of the microcapsule is preferably in the range of ⁇ 50 meV to ⁇ 10 meV. Furthermore, it is considered that the thickness of the shell of the microcapsule is preferably 0.05 ⁇ m to 0.2 ⁇ m when Examples 32 to 33 are compared with Example 9.
  • microcapsules of the present disclosure can be suitably used in a mode of enclosing a core material (particularly a fragrance), and can exhibit various preferable functions such as fragrance protection and stimulus responsiveness.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Cosmetics (AREA)
  • Fats And Perfumes (AREA)

Abstract

Provided are: a microcapsule which has both pressure responsiveness and sustained release properties of slowly releasing the internal contents; and a microcapsule-containing composition. A microcapsule which contains, as a shell material for a shell that internally contains a core, a polyurethane or polyurea that has a structure derived from a tri- or higher functional aliphatic isocyanate compound and at least one structure selected from among a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound; and a microcapsule-containing composition.

Description

マイクロカプセル及びマイクロカプセル含有組成物Microcapsules and compositions containing microcapsules
 本開示は、マイクロカプセル及びマイクロカプセル含有組成物に関する。 The present disclosure relates to a microcapsule and a composition containing a microcapsule.
 近年、マイクロカプセルは、香料、染料、蓄熱材、医薬品成分などの機能性材料を内包して保護すること、機能性材料を刺激に応答して放出させること等の点で、新たな価値を顧客に提供できる可能性があることから注目されている。 In recent years, microcapsules have added new value to customers by including and protecting functional materials such as fragrances, dyes, heat storage materials, and pharmaceutical ingredients, and releasing functional materials in response to stimuli. It is attracting attention because there is a possibility that it can be provided.
 香料をマイクロカプセルに内包する場合には、例えば、香料を内包したマイクロカプセル(以下、香料カプセルともいう。)を柔軟剤と混合することで、柔軟剤を使用して衣服を洗濯した後、柔軟剤に含まれるマイクロカプセルが衣服に付着し、圧力等が加えられてマイクロカプセルが破壊されると、内包されている香料が放出される。したがって、香料をカプセル化することにより、香料を一定期間保持でき、香料による香りを所望の時期に生じさせることができる。 When the fragrance is encapsulated in the microcapsule, for example, the microcapsule encapsulating the fragrance (hereinafter also referred to as the fragrance capsule) is mixed with the softening agent, and then the clothes are washed using the softening agent and then softened. When the microcapsules contained in the agent adhere to the clothes and pressure or the like is applied to destroy the microcapsules, the encapsulated fragrance is released. Therefore, by encapsulating the fragrance, the fragrance can be held for a certain period of time, and the fragrance by the fragrance can be generated at a desired time.
 香料カプセルに用いられるシェル材としては、アルデヒドとアミンとの反応生成物(例えばメラミンホルムアルデヒド樹脂)が主体である。シェルにメラミンホルムアルデヒド樹脂を用いる例として、コア材料として香料を含み、壁材料(シェル材)としてアルデヒド(例えばホルムアルデヒド)とアミン(例えばメラミン)の反応生成物を含む樹脂を用いたマイクロカプセルが開示されている(例えば、特許文献1参照)。 The shell material used for the fragrance capsule is mainly a reaction product of aldehyde and amine (for example, melamine formaldehyde resin). As an example of using a melamine formaldehyde resin for a shell, a microcapsule using a resin containing a fragrance as a core material and a resin containing a reaction product of an aldehyde (eg formaldehyde) and an amine (eg melamine) as a wall material (shell material) is disclosed. (For example, refer to Patent Document 1).
 また、シェルとしてポリウレタン又はポリウレアを用いるマイクロカプセルも提案されている。例えば、ポリイソシアネートとポリアミンとの重合の反応生成物を含むポリ尿素壁(ポリウレア壁)と、ポリ尿素壁に封入された香料を含むポリ尿素マイクロカプセルが開示されている(例えば、特許文献2参照)。 Also, microcapsules using polyurethane or polyurea as the shell have been proposed. For example, a polyurea wall (polyurea wall) containing a reaction product of polymerization of polyisocyanate and polyamine and a polyurea microcapsule containing a fragrance encapsulated in the polyurea wall are disclosed (for example, see Patent Document 2). ).
特開2017-122235号公報JP 2017-122235 A 特表2013-530825号公報Special table 2013-530825 gazette
 しかしながら、上記のような香料カプセルは、圧力応答性を利用して内包成分を外部へ放出するものであるため、例えば衣類に圧力が加えられることでカプセルが壊れ、香料による芳香が拡散される。したがって、圧力がカプセルに加えられない状態では、香料はカプセル内に閉じ込められたまま保持され、香料による芳香を継続的に得ることはできない。
 香料カプセルとしては、所望の芳香が所望の圧力で得られること、所望の時期に芳香が拡散されることが望ましいため、圧力応答性のある香料カプセルに対する要求がある一方、カプセルが破壊されない状況でも、僅かながら芳香が得られ、かつ、芳香を長時間に亘って持続させることができる性質、即ち香料が自然的に徐々に放出される徐放性を有する香料カプセルに対する要望が高まっている。
However, since the fragrance capsules as described above use pressure responsiveness to release the encapsulated components to the outside, for example, when pressure is applied to clothing, the capsules are broken and the fragrance by the fragrance is diffused. Therefore, in the state where no pressure is applied to the capsule, the fragrance is held in the capsule and cannot be continuously obtained.
As a fragrance capsule, it is desirable that a desired fragrance is obtained at a desired pressure, and it is desirable that a fragrance is diffused at a desired time. Therefore, there is a demand for a fragrance capsule with pressure response, but even in a situation where the capsule is not destroyed. However, there is an increasing demand for a fragrance capsule having a property that a fragrance can be obtained slightly and the fragrance can be maintained for a long time, that is, a sustained release property in which the fragrance is naturally and gradually released.
 また、上記した従来技術のうち、特許文献1に記載の発明のように、メラミンホルムアルデヒド樹脂をマイクロカプセルのシェル材として用いる場合、原料のホルムアルデヒドの溶出が懸念されている。したがって、安全性の観点から、メラミンホルムアルデヒド樹脂を、シェル材として安全性の高いポリウレタン又はポリウレアに置き換えることが検討されている。 In addition, among the above-described conventional techniques, when melamine formaldehyde resin is used as a shell material for microcapsules as in the invention described in Patent Document 1, elution of raw material formaldehyde is a concern. Therefore, from the viewpoint of safety, it has been studied to replace melamine formaldehyde resin with highly safe polyurethane or polyurea as a shell material.
 一方、マイクロカプセルの毛又は繊維に対する付着性は、例えば香料カプセルの場合には芳香を長期間持続させるのに重要な要素であり、マイクロカプセルの付着性がより向上されれば、ポリウレタン又はポリウレアへの置き換えが更に進むことが期待される。 On the other hand, the adhesion of microcapsules to hair or fibers is an important factor for maintaining a fragrance for a long period of time, for example, in the case of perfume capsules. If the adhesion of microcapsules is further improved, the adhesion to polyurethane or polyurea It is expected that the replacement will be further advanced.
 本開示は、上記に鑑みなされたものである。
 本発明の一実施形態が解決しようとする課題は、圧力応答性と内包成分を徐々に放出する徐放性とを兼ね備えたマイクロカプセルを提供することにある。
 また、本発明の他の実施形態が解決しようとする課題は、圧力応答性と内包成分を徐々に放出する徐放性とを兼ね備えたマイクロカプセル含有組成物を提供することにある。
The present disclosure has been made in view of the above.
The problem to be solved by one embodiment of the present invention is to provide a microcapsule that has both pressure responsiveness and sustained release that gradually releases an encapsulated component.
Another problem to be solved by other embodiments of the present invention is to provide a microcapsule-containing composition that has both pressure responsiveness and sustained release that gradually releases an encapsulated component.
 課題を解決するための具体的手段には、以下の態様が含まれる。
 <1> コアを内包するシェルのシェル材として、3官能以上の脂肪族イソシアネート化合物に由来する構造と、2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造と、を有するポリウレタン又はポリウレアを含むマイクロカプセルである。
 <2> 3官能以上の脂肪族イソシアネート化合物に由来する構造の、シェル材の全質量に占める割合が、20質量%~90質量%である<1>に記載のマイクロカプセルである。
 <3> 2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造の、シェル材の全質量に占める割合が、10質量%~70質量%である<1>又は<2>に記載のマイクロカプセルである。
 <4> コアがコア材として香料を含む<1>~<3>のいずれか1つに記載のマイクロカプセルである。
Specific means for solving the problems include the following aspects.
<1> A structure derived from a trifunctional or higher aliphatic isocyanate compound, a structure derived from a bifunctional aliphatic isocyanate compound, and a structure derived from a bifunctional aromatic isocyanate compound as a shell material of a shell enclosing a core A microcapsule containing polyurethane or polyurea having at least one structure selected from the group consisting of:
<2> The microcapsule according to <1>, wherein a ratio derived from a trifunctional or higher functional aliphatic isocyanate compound is 20% by mass to 90% by mass with respect to the total mass of the shell material.
<3> The ratio of at least one structure selected from a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound to the total mass of the shell material is 10% by mass to 70% The microcapsule according to <1> or <2>, which is% by mass.
<4> The microcapsule according to any one of <1> to <3>, wherein the core includes a fragrance as a core material.
 <5> <1>~<4>のいずれか1つに記載のマイクロカプセルと、水と、を含有するマイクロカプセル含有組成物である。
 <6> マイクロカプセルは表面にアニオン電荷を有し、かつ、更にカチオン性界面活性剤を含有する<5>に記載のマイクロカプセル含有組成物である。
 <7> マイクロカプセルが、表面の少なくとも一部にアニオン変性ポリビニルアルコールを有する<6>に記載のマイクロカプセル含有組成物である。
 <8> マイクロカプセルのゼータ電位が、-80meV~-5meVである<5>~<7>のいずれか1つに記載のマイクロカプセル含有組成物である。
 <9> 洗濯、デイケア、又はヘアケアの用途に用いられる<5>~<8>のいずれか1つに記載のマイクロカプセル含有組成物である。
<5> A microcapsule-containing composition comprising the microcapsule according to any one of <1> to <4> and water.
<6> The microcapsule-containing composition according to <5>, wherein the microcapsule has an anionic charge on the surface and further contains a cationic surfactant.
<7> The microcapsule-containing composition according to <6>, wherein the microcapsule has an anion-modified polyvinyl alcohol on at least a part of its surface.
<8> The microcapsule-containing composition according to any one of <5> to <7>, wherein the microcapsule has a zeta potential of −80 meV to −5 meV.
<9> The microcapsule-containing composition according to any one of <5> to <8>, which is used for laundry, day care, or hair care.
 本発明の一実施形態によれば、圧力応答性と内包成分を徐々に放出する徐放性とを兼ね備えたマイクロカプセルが提供される。
 また、本発明の他の実施形態によれば、圧力応答性と内包成分を徐々に放出する徐放性とを兼ね備えたマイクロカプセル含有組成物が提供される。
According to one embodiment of the present invention, a microcapsule having both pressure responsiveness and sustained release for gradually releasing an encapsulated component is provided.
In addition, according to another embodiment of the present invention, there is provided a microcapsule-containing composition that has both pressure responsiveness and sustained release that gradually releases an encapsulated component.
 以下、本開示のマイクロカプセル及びマイクロカプセル含有組成物について詳細に説明する。 Hereinafter, the microcapsules and the microcapsule-containing composition of the present disclosure will be described in detail.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In this specification, a numerical range indicated by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value, respectively. In a numerical range described in stages in the present disclosure, an upper limit value or a lower limit value described in a numerical range may be replaced with an upper limit value or a lower limit value in another numerical range. Further, in the numerical ranges described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the values shown in the examples.
 本明細書において、「シェル」とはマイクロカプセルの壁(カプセル壁ともいう。)をいい、「コア」とはシェルに内包された部分をいう。また、本明細書において、シェルを形成するための材料を「シェル材」といい、コアに含まれる成分を「コア材」という。
 本開示のマイクロカプセルにおいて、「内包」とは、目的物がマイクロカプセルのシェル(カプセル壁)に覆われて閉じ込められている状態を指す。
In this specification, “shell” refers to a microcapsule wall (also referred to as a capsule wall), and “core” refers to a portion enclosed in the shell. In this specification, a material for forming the shell is referred to as “shell material”, and a component contained in the core is referred to as “core material”.
In the microcapsule of the present disclosure, the “encapsulation” refers to a state in which an object is covered and confined by a shell (capsule wall) of the microcapsule.
<マイクロカプセル>
 本開示のマイクロカプセルは、コアを内包するシェルのシェル材として、3官能以上の脂肪族イソシアネート化合物に由来する構造と、2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造と、を有するポリウレタン又はポリウレアを含む。
<Microcapsule>
The microcapsule of the present disclosure includes a structure derived from a trifunctional or higher functional aliphatic isocyanate compound, a structure derived from a bifunctional aliphatic isocyanate compound, and a bifunctional aromatic isocyanate compound as a shell material of a shell enclosing a core And polyurethane or polyurea having at least one structure selected from structures derived from.
 従来から圧力応答性を利用したマイクロカプセルが提案されており、例えば香料を内包成分としてシェル(壁)内に内包し、圧力が加えられた際に放出させて芳香を拡散する技術がある。従来より知られているマイクロカプセルは、一般的に圧力が加えられない状態では、香料はカプセル内に閉じ込められたまま保持され、カプセルのシェルが破壊されない限り香料による芳香が放散される機能を有していない。ところが、近年では、所望時に内包成分を放出できる圧力応答性を有しつつ、圧力が加えられない状態でも徐々に内包成分が放出される機能を有するマイクロカプセルに対する要望がある。
 上記に鑑み、本開示では、特にマイクロカプセルのシェル構造に着目し、3官能以上の脂肪族イソシアネート化合物と脂肪族又は芳香族の2官能のイソシアネート化合物とを用いたシェルを有するマイクロカプセルとする。これにより、マイクロカプセルのシェルに柔軟性が付与され、かつ、内包成分を徐々に放出させることができる徐放性を付与することができる。また、温度上昇により、内包成分を放出させる単位時間あたりの量を向上させることもできる。
Conventionally, a microcapsule using pressure responsiveness has been proposed. For example, there is a technique in which a fragrance is encapsulated in a shell (wall) as an encapsulated component and released when pressure is applied to diffuse a fragrance. Conventionally known microcapsules generally have a function in which a fragrance is held in a capsule in a state where no pressure is applied, and the fragrance by the fragrance is released unless the capsule shell is broken. Not done. However, in recent years, there is a demand for a microcapsule having a pressure responsiveness capable of releasing an encapsulated component when desired, and a function of gradually releasing the encapsulated component even when no pressure is applied.
In view of the above, in the present disclosure, focusing on the shell structure of the microcapsule, a microcapsule having a shell using a tri- or higher functional aliphatic isocyanate compound and an aliphatic or aromatic bifunctional isocyanate compound is provided. Thereby, flexibility can be imparted to the shell of the microcapsule, and a sustained release property capable of gradually releasing the inclusion component can be imparted. Moreover, the quantity per unit time which discharge | releases an inclusion component can also be improved with a temperature rise.
(シェル)
 本開示のマイクロカプセルは、コアを内包するシェルを有する。
 本開示におけるシェルを形成するシェル材は、ポリウレタン又はポリウレアを含む。
 本開示におけるポリウレタン又はポリウレアは、3官能以上の脂肪族イソシアネート化合物に由来する構造と、2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造と、を有している。
 ポリウレタン又はポリウレアの形成において、3官能の脂肪族イソシアネート化合物と2官能のイソシアネート化合物とが用いられることで、本開示におけるシェルは、圧力応答性と徐放性とを兼ね備えたものである。
(shell)
The microcapsule of the present disclosure has a shell that encloses a core.
The shell material forming the shell in the present disclosure includes polyurethane or polyurea.
The polyurethane or polyurea in the present disclosure is at least one selected from a structure derived from a trifunctional or higher functional aliphatic isocyanate compound, a structure derived from a bifunctional aliphatic isocyanate compound, and a structure derived from a bifunctional aromatic isocyanate compound. It has the structure of.
In the formation of polyurethane or polyurea, a trifunctional aliphatic isocyanate compound and a bifunctional isocyanate compound are used, so that the shell in the present disclosure has both pressure response and sustained release characteristics.
 なお、以下において、2官能の脂肪族イソシアネート化合物及び2官能の芳香族イソシアネート化合物を総じて、「特定ジイソシアネート」と称する場合がある。 In the following, the bifunctional aliphatic isocyanate compound and the bifunctional aromatic isocyanate compound may be collectively referred to as “specific diisocyanate”.
-3官能以上の脂肪族イソシアネート化合物-
 シェルを形成するシェル材であるポリウレタン又はポリウレアは、3官能以上の脂肪族イソシアネート化合物に由来する構造を有する。3官能以上の脂肪族イソシアネート化合物に由来する構造を有していることで、シェルの柔軟性を高めることができ、繊維又は毛等の付着対象物に対する付着性が得られる。
 3官能以上の脂肪族イソシアネート化合物に由来する構造とは、3官能以上の脂肪族イソシアネート化合物がウレタン化又はウレア化して形成される構造を指す。
-3 Functional or higher aliphatic isocyanate compounds
Polyurethane or polyurea, which is a shell material that forms a shell, has a structure derived from a tri- or higher functional aliphatic isocyanate compound. By having a structure derived from a trifunctional or higher functional aliphatic isocyanate compound, the flexibility of the shell can be increased, and adhesion to an object to be adhered such as fiber or hair can be obtained.
The structure derived from a trifunctional or higher aliphatic isocyanate compound refers to a structure formed by urethanization or urea conversion of a trifunctional or higher aliphatic isocyanate compound.
 3官能以上の脂肪族イソシアネート化合物としては、2官能の脂肪族イソシアネート化合物(分子中に2つのイソシアネート基を有する化合物)と分子中に3つ以上の活性水素基を有する化合物(3官能以上の例えばポリオール、ポリアミン又はポリチオール等)とのアダクト体(付加物)として3官能以上としたイソシアネート化合物(アダクト型)、2官能の脂肪族イソシアネート化合物の3量体(ビウレット型又はイソシアヌレート型)を挙げることができる。 Examples of the trifunctional or higher functional aliphatic isocyanate compound include a bifunctional aliphatic isocyanate compound (a compound having two isocyanate groups in the molecule) and a compound having three or more active hydrogen groups in the molecule (for example, a trifunctional or higher functional group). As an adduct (adduct) with a polyol, polyamine, polythiol, etc.), a trifunctional or higher functional isocyanate compound (adduct type), a bifunctional aliphatic isocyanate compound trimer (biuret type or isocyanurate type) Can do.
 アダクト型の3官能以上のイソシアネート化合物は、上市されている市販品を用いてもよい。市販品の例としては、タケネート(登録商標)D-120N(イソシアネート価=3.5 mmol/g)、D-140N、D-160N(以上、三井化学株式会社製)、スミジュール(登録商標)HT(バイエル株式会社製)、コロネート(登録商標)HL、HX(東ソー株式会社製)、デュラネートP301-75E(旭化成株式会社製)、バーノック(登録商標)DN-950(DIC株式会社製)などが挙げられる。
 中でも、アダクト型の3官能以上のイソシアネート化合物として、三井化学株式会社製のタケネート(登録商標)シリーズ(例えば、タケネートD-110N、D-120N、D-140N、D-160N等)がより好ましい。
A commercially available product may be used as the adduct type trifunctional or higher functional isocyanate compound. Examples of commercially available products include Takenate (registered trademark) D-120N (isocyanate number = 3.5 mmol / g), D-140N, D-160N (manufactured by Mitsui Chemicals, Inc.), Sumijoule (registered trademark). HT (manufactured by Bayer Corporation), Coronate (registered trademark) HL, HX (manufactured by Tosoh Corporation), Duranate P301-75E (manufactured by Asahi Kasei Co., Ltd.), Barnock (registered trademark) DN-950 (manufactured by DIC Corporation), etc. Can be mentioned.
Among them, as an adduct type trifunctional or higher functional isocyanate compound, Takenate (registered trademark) series (for example, Takenate D-110N, D-120N, D-140N, D-160N, etc.) manufactured by Mitsui Chemicals, Inc. is more preferable.
 イソシアヌレート型の3官能以上のイソシアネート化合物は、上市されている市販品を用いてもよい。市販品の例としては、タケネート(登録商標)D-127N、D-170N、D-170HN、D-172N、D-177N(三井化学株式会社製)、スミジュールN3300、デスモジュール(登録商標)N3600、N3900、Z4470BA(以上、バイエル株式会社製)、コロネート(登録商標)HK(東ソー株式会社製)、デュラネート(登録商標)TPA-100、TKA-100(旭化成株式会社製)、バーノック(登録商標)DN-980(DIC株式会社製)などが挙げられる。 As the isocyanurate-type trifunctional or higher functional isocyanate compound, a commercially available product may be used. Examples of commercially available products include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, D-177N (manufactured by Mitsui Chemicals), Sumidur N3300, Death Module (registered trademark) N3600. N3900, Z4470BA (manufactured by Bayer Co., Ltd.), Coronate (registered trademark) HK (manufactured by Tosoh Corporation), Duranate (registered trademark) TPA-100, TKA-100 (manufactured by Asahi Kasei Corporation), Barnock (registered trademark) DN-980 (manufactured by DIC Corporation) and the like.
 ビウレット型の3官能以上のイソシアネート化合物は、上市されている市販品を用いてもよく、例えば、タケネート(登録商標)D-165N、NP1200(三井化学株式会社製)、デスモジュール(登録商標)N3200A(バイエル株式会社製)、デュラネート(登録商標)24A-100、22A-75P(旭化成株式会社製)などが挙げられる。 As the biuret type trifunctional or higher functional isocyanate compound, commercially available products may be used. For example, Takenate (registered trademark) D-165N, NP1200 (manufactured by Mitsui Chemicals), Desmodur (registered trademark) N3200A (Manufactured by Bayer Corporation), Duranate (registered trademark) 24A-100, 22A-75P (manufactured by Asahi Kasei Corporation) and the like.
 3官能以上の脂肪族イソシアネート化合物に由来する構造の、シェル材の全質量に占める割合としては、20質量%~95質量%であることが好ましく、20質量%~90質量%であることがより好ましく、50質量%~80質量%であることが更に好ましい。
 3官能以上の脂肪族イソシアネート化合物に由来する構造の割合が20質量%以上であると、シェルに良好な柔軟性を付与することができる。また、3官能以上の脂肪族イソシアネート化合物に由来する構造の割合が95質量%以下であると、コア材の外部への徐放性を保持するのに適している。
The ratio of the structure derived from the trifunctional or higher aliphatic isocyanate compound to the total mass of the shell material is preferably 20% by mass to 95% by mass, and more preferably 20% by mass to 90% by mass. The content is preferably 50% by mass to 80% by mass.
When the proportion of the structure derived from the trifunctional or higher aliphatic isocyanate compound is 20% by mass or more, good flexibility can be imparted to the shell. Moreover, when the ratio of the structure derived from the trifunctional or higher aliphatic isocyanate compound is 95% by mass or less, it is suitable for maintaining the sustained release property to the outside of the core material.
-特定ジイソシアネート-
 シェルを形成するシェル材であるポリウレタン又はポリウレアは、特定ジイソシアネートに由来する構造、即ち、2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造を有する。
 2官能の脂肪族イソシアネート化合物に由来する構造とは、2官能の脂肪族イソシアネートがウレタン化又はウレア化して形成される構造を指す。
 2官能の芳香族イソシアネート化合物に由来する構造とは、2官能の芳香族イソシアネートがウレタン化又はウレア化して形成される構造を指す。
-Specific diisocyanate-
The polyurethane or polyurea that is a shell material forming the shell is at least one selected from a structure derived from a specific diisocyanate, that is, a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound. It has the following structure.
The structure derived from a bifunctional aliphatic isocyanate compound refers to a structure formed by urethanization or urea conversion of a bifunctional aliphatic isocyanate.
The structure derived from a bifunctional aromatic isocyanate compound refers to a structure formed by urethanization or urea conversion of a bifunctional aromatic isocyanate.
 2官能の脂肪族イソシアネート化合物としては、例えば、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、ブチレン-1,2-ジイソシアネート、シクロヘキシレン-1,2-ジイソシアネート、シクロヘキシレン-1,3-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,4-ビス(イソシアネートメチル)シクロヘキサン及び1,3-ビス(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート、リジンジイソシアネート、水素化キシリレンジイソシアネート等が挙げられる。 Examples of the bifunctional aliphatic isocyanate compound include trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanate, butylene-1,2-diisocyanate, cyclohexylene-1,2-diisocyanate, cyclohexylene-1, 3-diisocyanate, cyclohexylene-1,4-diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 1,4-bis (isocyanatemethyl) cyclohexane and 1,3-bis (isocyanatemethyl) cyclohexane, isophorone diisocyanate, lysine diisocyanate And hydrogenated xylylene diisocyanate.
 2官能の芳香族イソシアネート化合物としては、例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート、ナフタレン-1,4-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、3,3’-ジメトキシ-ビフェニルジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、キシリレン-1,4-ジイソシアネート、キシリレン-1,3-ジイソシアネート、4-クロロキシリレン-1,3-ジイソシアネート、2-メチルキシリレン-1,3-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、4,4’-ジフェニルヘキサフルオロプロパンジイソシアネート等が挙げられる。 Examples of the bifunctional aromatic isocyanate compound include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, naphthalene-1,4-diisocyanate, diphenylmethane-4, 4'-diisocyanate, 3,3'-dimethoxy-biphenyl diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, xylylene-1,4-diisocyanate, xylylene-1,3-diisocyanate, 4-chloroxyl Len-1,3-diisocyanate, 2-methylxylylene-1,3-diisocyanate, 4,4'-diphenylpropane diisocyanate, 4,4'-diphenylhexafluoropropane diisocyanate, etc. It is.
 イソシアネート化合物については「ポリウレタン樹脂ハンドブック」(岩田敬治編、日刊工業新聞社発行(1987))に記載されている。 Isocyanate compounds are described in “Polyurethane Resin Handbook” (edited by Keiji Iwata, published by Nikkan Kogyo Shimbun (1987)).
 特定ジイソシアネートに由来する構造、即ち、2官能の脂肪族イソシアネートに由来する構造及び2官能の芳香族イソシアネートに由来する構造から選ばれる少なくとも一方の構造の、シェル材の全質量に占める割合としては、合計の質量比率で5質量%~80質量%であることが好ましく、10質量%~70質量%であることが好ましく、10質量%~50質量%であることがより好ましく、15質量%~45質量%であることが好ましく、20質量%~40質量%であることが更に好ましい。
 特定ジイソシアネートに由来する構造の割合が5質量%以上であると、シェルの架橋密度が低くなり、内包されるコア材の徐放性を高めることができる。また、特定ジイソシアネートに由来する構造の割合が80質量%以下、更には70質量%以下であると、シェルの柔軟性を保ちやすく、例えば繊維又は毛等に対する付着性を良好に維持することができる。
As a ratio of at least one structure selected from a structure derived from a specific diisocyanate, that is, a structure derived from a bifunctional aliphatic isocyanate and a structure derived from a bifunctional aromatic isocyanate, to the total mass of the shell material, The total mass ratio is preferably 5% by mass to 80% by mass, preferably 10% by mass to 70% by mass, more preferably 10% by mass to 50% by mass, and more preferably 15% by mass to 45% by mass. The mass is preferably 20% by mass, and more preferably 20% by mass to 40% by mass.
When the proportion of the structure derived from the specific diisocyanate is 5% by mass or more, the crosslinking density of the shell is lowered, and the sustained release property of the core material to be included can be enhanced. Further, when the proportion of the structure derived from the specific diisocyanate is 80% by mass or less, and further 70% by mass or less, the flexibility of the shell can be easily maintained, and, for example, adhesion to fibers or hairs can be favorably maintained. .
 特定ジイソシアネートに対する3官能の脂肪族イソシアネート化合物の比率としては、質量基準で、95/5~50/50であることが好ましく、75/10~50/50であることがより好ましく、75/25~50/50であることが更に好ましい。
 特定ジイソシアネートに対する3官能の脂肪族イソシアネート化合物の比率が上記の範囲内であると、コア材の徐放性に優れ、かつ、繊維又は毛に対する付着性に優れたものとなる。
The ratio of the trifunctional aliphatic isocyanate compound to the specific diisocyanate is preferably from 95/5 to 50/50, more preferably from 75/10 to 50/50, more preferably from 75/25 to 50/50 on a mass basis. More preferably, it is 50/50.
When the ratio of the trifunctional aliphatic isocyanate compound to the specific diisocyanate is within the above range, the core material has excellent sustained release properties and excellent adhesion to fibers or hairs.
-他のイソシアネート化合物-
 シェルを形成するシェル材であるポリウレタン又はポリウレアは、上記の3官能の脂肪族イソシアネート化合物及び特定ジイソシアネート以外に、他のイソシアネート化合物に由来する構造を有していてもよい。
 他のイソシアネート化合物に由来する構造とは、他のイソシアネート化合物がウレタン化又はウレア化して形成される構造を指す。
-Other isocyanate compounds-
Polyurethane or polyurea, which is a shell material that forms a shell, may have a structure derived from other isocyanate compounds in addition to the trifunctional aliphatic isocyanate compound and the specific diisocyanate.
The structure derived from another isocyanate compound refers to a structure formed by urethanization or urea formation of another isocyanate compound.
 他のイソシアネート化合物としては、例えば、3官能以上の芳香族イソシアネート化合物が挙げられる。 Examples of other isocyanate compounds include trifunctional or higher functional aromatic isocyanate compounds.
 3官能以上の芳香族イソシアネート化合物の具体例としては、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート又はヘキサメチレンジイソシアネートとトリメチロールプロパンとの付加物(アダクト体)、ビウレット体もしくはイソシアヌレート体等が挙げられる。
 3官能以上の芳香族イソシアネート化合物として上市されている市販品を用いてもよく、市販品の例としては、バーノック(登録商標)D-750、D-800(DIC株式会社製)、タケネート(登録商標)D-102、D-103、D-103H、D-103M2、D-110N、オレスター(登録商標)P49-75S(以上、三井化学株式会社製)、デスモジュール(登録商標)L75、IL-135-BA、HL-BA、スミジュール(登録商標)E-21-1(バイエル株式会社製)、コロネート(登録商標)L、L-55、L-55E(東ソー株式会社製)等が挙げられる。
Specific examples of the trifunctional or higher functional aromatic isocyanate compound include 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, or an adduct (adduct) of hexamethylene diisocyanate and trimethylolpropane, biuret or isocyanate. A nurate body etc. are mentioned.
Commercial products marketed as aromatic isocyanate compounds having three or more functional groups may be used. Examples of commercially available products include Barnock (registered trademark) D-750, D-800 (manufactured by DIC Corporation), Takenate (registered) Trademarks) D-102, D-103, D-103H, D-103M2, D-110N, Olester (registered trademark) P49-75S (Mitsui Chemicals, Inc.), Death Module (registered trademark) L75, IL -135-BA, HL-BA, Sumijoule (registered trademark) E-21-1 (manufactured by Bayer Corporation), Coronate (registered trademark) L, L-55, L-55E (manufactured by Tosoh Corporation) It is done.
 マイクロカプセルのシェル(壁)の厚み(壁厚)としては、0.01μm~1μmが好ましい。マイクロカプセルの壁厚が0.01μm以上であることで、マイクロカプセルが割れやすくなることが抑制され、コア材を放出したい時期までコア材をコア内において保護することができる。マイクロカプセルの壁厚が1μm以下であることで、マイクロカプセルの適度な割れやすさを付与することができ、所望の時期にコア材を放出することができる。
 上記と同様の観点から、マイクロカプセルの壁厚は、より好ましくは0.05μm~0.7μmであり、さらに好ましくは0.05μm~0.2μmである。
The thickness (wall thickness) of the shell (wall) of the microcapsule is preferably 0.01 μm to 1 μm. When the wall thickness of the microcapsule is 0.01 μm or more, the microcapsule is prevented from being easily broken, and the core material can be protected in the core until it is desired to release the core material. When the wall thickness of the microcapsule is 1 μm or less, the microcapsule can be moderately fragile, and the core material can be released at a desired time.
From the same viewpoint as described above, the wall thickness of the microcapsule is more preferably 0.05 μm to 0.7 μm, and still more preferably 0.05 μm to 0.2 μm.
 壁厚は、5個のマイクロカプセルの個々の壁厚(μm)を走査型電子顕微鏡(SEM)により求めて平均した平均値をいう。
 具体的には、マイクロカプセル液を任意の支持体上に塗布し、乾燥させて塗布膜を形成する。得られた塗布膜の断面切片を作製し、その断面をSEMを用いて観察し、任意の5個のマイクロカプセルを選択して、それら個々のマイクロカプセルの断面を観察して壁厚を測定して平均値を算出することにより求められる。
The wall thickness refers to an average value obtained by averaging the individual wall thicknesses (μm) of five microcapsules with a scanning electron microscope (SEM).
Specifically, a microcapsule solution is applied on an arbitrary support and dried to form a coating film. A cross section of the obtained coating film is prepared, the cross section is observed using an SEM, arbitrary five microcapsules are selected, the cross section of each of the microcapsules is observed, and the wall thickness is measured. And calculating the average value.
(コア)
 本開示のマイクロカプセルは、シェルに内包されたコアを有する。
 コアには、所望とする内包成分を含めることができ、内包成分の例としては、香料、溶媒、補助溶媒等が挙げられる。
(core)
The microcapsule of the present disclosure has a core enclosed in a shell.
The core can contain a desired inclusion component, and examples of the inclusion component include a fragrance, a solvent, and an auxiliary solvent.
 コアにコア材として香料が含まれた態様が好ましい。
 本開示のマイクロカプセルが例えば衣服の繊維又は毛(毛髪等)等に付着させて使用される場合、コア材として香料を含むことにより、衣服又は毛髪等に圧力が与えられない場合でも、香料による芳香が徐々に拡がる徐放性が発現する。また、衣服又は毛髪に擦れ等により圧力が与えられた際には、カプセルが壊れて香料が放出され、所望とする芳香を拡散させることができる。
An embodiment in which a fragrance is contained as a core material in the core is preferable.
When the microcapsules of the present disclosure are used by being attached to, for example, clothes fibers or hair (hair, etc.), even if no pressure is applied to the clothes, hair, etc. by including the fragrance as a core material, Sustained release that allows the fragrance to spread gradually is developed. Moreover, when pressure is given to clothes or hair by rubbing or the like, the capsule is broken and the fragrance is released, so that the desired fragrance can be diffused.
-香料-
 香料としては、「特許庁、周知慣用技術集(香料)第III部香粧品香料、頁49-103頁、平成13年6月15日発行」に記載の、合成香料、天然精油、天然香料、動植物エキス等の中から適するものを適宜選択することができる。
 香料としては、例えば、ピネン、ミルセン、カンフェン、Rリモネン等のモノテルペン;セドレン、カリオフィレン、ロンギフォレン等のセスキテルペン;1,3,5-ウンデカトリエン、α-アミルシンナミルアルデヒド、ジヒドロジャスモン、メチルイオノン、α-ダマスコン、アセチルセドレン、ジヒドロジャスモン酸メチル、シクロペンタデカノリド等の合成香料;オレンジ精油、レモン精油、ベルガモット精油、マンダリン精油等の天然精油;が挙げられる。
 コア材の全質量に対する香料の含有量としては、100質量%~20質量%が好ましく、95質量%~30質量%がより好ましく、85質量%~40質量%が更に好ましい。
-Fragrance-
As the fragrance, synthetic fragrances, natural essential oils, natural fragrances described in “Patent Office, well-known conventional technology collection (fragrance) Part III, cosmetic fragrances, pages 49-103, issued on June 15, 2001” A suitable one can be appropriately selected from animal and plant extracts.
Examples of the perfume include monoterpenes such as pinene, myrcene, camphene, and R limonene; sesquiterpenes such as cedrene, caryophyllene, and longifolene; 1,3,5-undecatriene, α-amylcinnamyl aldehyde, dihydrojasmon, methylionone , Α-damascone, acetyl cedrene, methyl dihydrojasmonate, cyclopentadecanolide and the like; natural essential oils such as orange essential oil, lemon essential oil, bergamot essential oil, and mandarin essential oil.
The content of the fragrance relative to the total mass of the core material is preferably 100% by mass to 20% by mass, more preferably 95% by mass to 30% by mass, and still more preferably 85% by mass to 40% by mass.
-溶媒-
 コアには、溶媒が含有されてもよい。
 溶媒の例としては、トリ(カプリル・カプリン酸)グリセリル、ミリスチン酸イソプロピル等の脂肪酸エステル系化合物、ジイソプロピルナフタレン等のアルキルナフタレン系化合物、1-フェニル-1-キシリルエタン等のジアリールアルカン系化合物、イソプロピルビフェニル等のアルキルビフェニル系化合物、トリアリールメタン系化合物、アルキルベンゼン系化合物、ベンジルナフタレン系化合物、ジアリールアルキレン系化合物、アリールインダン系化合物等の芳香族炭化水素;フタル酸ジブチル、イソパラフィン等の脂肪族炭化水素;ツバキ油、大豆油、コーン油、綿実油、菜種油、オリーブ油、ヤシ油、ひまし油、魚油等の天然動植物油;鉱物油等の天然物高沸点留分などが挙げられる。
 溶媒のコア材中における含有量は、コア材の全質量に対して、50質量%未満が好ましく、40質量%以下がより好ましく、30質量%以下が最も好ましい。
-solvent-
The core may contain a solvent.
Examples of the solvent include fatty acid ester compounds such as tri (capryl / capric acid) glyceryl and isopropyl myristate, alkylnaphthalene compounds such as diisopropylnaphthalene, diarylalkane compounds such as 1-phenyl-1-xylylethane, isopropylbiphenyl, and the like. Aromatic hydrocarbons such as alkylbiphenyl compounds such as triarylmethane compounds, alkylbenzene compounds, benzylnaphthalene compounds, diarylalkylene compounds, arylindane compounds; aliphatic hydrocarbons such as dibutyl phthalate and isoparaffins; Examples include camellia oil, soybean oil, corn oil, cottonseed oil, rapeseed oil, natural animal and vegetable oils such as olive oil, coconut oil, castor oil, and fish oil; high-boiling fractions of natural products such as mineral oil.
The content of the solvent in the core material is preferably less than 50% by mass, more preferably 40% by mass or less, and most preferably 30% by mass or less with respect to the total mass of the core material.
-補助溶媒-
 コアには、マイクロカプセルを製造する際に用いられるシェル材の油相中への溶解性を高める観点から、油相成分として補助溶媒が含有されてもよい。補助溶媒には、上記の溶媒は含まれない。
 補助溶媒としては、例えば、メチルエチルケトン等のケトン系化合物、酢酸エチル等のエステル系化合物、イソプロピルアルコール等のアルコール系化合物等が挙げられる。補助溶媒の沸点は、130℃以下であることが好ましい。
 補助溶媒のコア材中における含有量は、コア材の全質量に対して、50質量%未満が好ましく、30質量%未満がより好ましく、20質量%未満がさらに好ましい。
-Auxiliary solvent-
The core may contain an auxiliary solvent as an oil phase component from the viewpoint of enhancing the solubility of the shell material used in manufacturing the microcapsule in the oil phase. The auxiliary solvent does not include the above solvent.
Examples of the auxiliary solvent include ketone compounds such as methyl ethyl ketone, ester compounds such as ethyl acetate, alcohol compounds such as isopropyl alcohol, and the like. The boiling point of the auxiliary solvent is preferably 130 ° C. or lower.
The content of the auxiliary solvent in the core material is preferably less than 50% by mass, more preferably less than 30% by mass, and still more preferably less than 20% by mass with respect to the total mass of the core material.
-添加剤-
 コアには、上記成分のほか、例えば、紫外線吸収剤、光安定化剤、酸化防止剤、ワックス、臭気抑制剤等の添加剤が含有されていてもよい。
 添加剤の含有量は、本発明の効果を損なわない範囲であればよく、コア材の全質量に対して、0質量%~20質量%が好ましく、1質量%~15質量%がより好ましく、5質量%~10質量%がさらに好ましい。
-Additive-
In addition to the above components, the core may contain additives such as an ultraviolet absorber, a light stabilizer, an antioxidant, a wax, and an odor inhibitor.
The content of the additive may be in a range that does not impair the effects of the present invention, and is preferably 0% by mass to 20% by mass, more preferably 1% by mass to 15% by mass with respect to the total mass of the core material. More preferably, it is 5 to 10% by mass.
 マイクロカプセルの形態としては、例えば、マイクロカプセル分散液を挙げることができ、好ましくは、マイクロカプセルが水系溶媒に分散されたマイクロカプセル水分散液の形態である。 Examples of the form of the microcapsule include a microcapsule dispersion, and preferably a microcapsule aqueous dispersion in which microcapsules are dispersed in an aqueous solvent.
 マイクロカプセルの体積標準のメジアン径(D50)は、0.1μm~100μmであることが好ましい。
 メジアン径(D50)が0.1μm以上であることで、マイクロカプセルが、付着する対象物(毛、繊維等)が有する微細な空隙に入り込んで割れにくくなることを防ぐことができる。メジアン径(D50)が100μm以下であることで、付着性の低下を防ぐことができる。
 上記の観点から、マイクロカプセルの体積標準のメジアン径(D50)は、1μm~70μmであることが好ましく、5μm~50μmであることがより好ましく、5μm~30μmであることが更に好ましい。
 マイクロカプセルの体積標準のメジアン径は、分散条件を変更すること等により制御することができる。
 ここで、マイクロカプセルの体積標準のメジアン径とは、マイクロカプセル全体を体積累計が50%となる粒子径を閾値に2つに分けた場合に、大径側と小径側での粒子の体積の合計が等量となる径をいう。
 本開示において、マイクロカプセルの体積標準のメジアン径は、マイクロトラックMT3300EXII(日機装株式会社製)を用いて測定される。
The median diameter (D50) of the volume standard of the microcapsules is preferably 0.1 μm to 100 μm.
When the median diameter (D50) is 0.1 μm or more, it is possible to prevent the microcapsule from entering a minute gap of the attached object (hair, fiber, etc.) and becoming difficult to break. When the median diameter (D50) is 100 μm or less, it is possible to prevent a decrease in adhesion.
From the above viewpoint, the volume standard median diameter (D50) of the microcapsules is preferably 1 μm to 70 μm, more preferably 5 μm to 50 μm, and still more preferably 5 μm to 30 μm.
The volume standard median diameter of the microcapsules can be controlled by changing the dispersion condition.
Here, the median diameter of the volume standard of the microcapsule is the volume of the particle on the large diameter side and the small diameter side when the entire microcapsule is divided into two with the particle diameter at which the cumulative volume is 50% as a threshold value. The diameter is the same as the total.
In the present disclosure, the volume standard median diameter of the microcapsules is measured by using Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
 本開示のマイクロカプセルについて、「単分散性が高い」とは、粒径分布の範囲が狭い(すなわち、粒径のバラツキが少ない)ことを意味し、「単分散性が低い」とは、粒径分布の範囲が広い(すなわち、粒径のバラツキが多い)ことを意味する。
 より具体的には、マイクロカプセルの単分散性の高低は、CV値(coefficient of variation;変動係数)を用いて表すことができる。ここで、CV値とは、下記式で求められる値である。
 CV値(%)=(標準偏差/体積平均粒径)×100
 CV値が低いほどマイクロカプセルの単分散性が高く、CV値が高いほどマイクロカプセルの単分散性が低いことが表される。
 本開示において、体積平均粒径及び標準偏差は、マイクロトラックMT3300EXII(日機装株式会社製)を用いて算出される。
With respect to the microcapsules of the present disclosure, “highly monodispersed” means that the range of particle size distribution is narrow (that is, there is little variation in particle size), and “lowly monodispersed” means It means that the range of the diameter distribution is wide (that is, there are many variations in particle diameter).
More specifically, the level of monodispersity of the microcapsules can be expressed using a CV value (coefficient of variation). Here, the CV value is a value obtained by the following formula.
CV value (%) = (standard deviation / volume average particle diameter) × 100
The lower the CV value, the higher the monodispersity of the microcapsules, and the higher the CV value, the lower the monodispersibility of the microcapsules.
In the present disclosure, the volume average particle diameter and the standard deviation are calculated using Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
 例えば、マイクロカプセルの「単分散性が高い」とは、マイクロカプセルの粒径分布のCV値が、好ましくは40%以下、より好ましくは35%以下、更により好ましくは30%以下、最も好ましくは25%以下であることをいうこともできる。CV値が上記範囲である場合、マイクロカプセルの粒径の単分散性が高いため、マイクロカプセルの取扱い、機能発現の制御などが容易になる。 For example, “highly monodispersed” of a microcapsule means that the CV value of the particle size distribution of the microcapsule is preferably 40% or less, more preferably 35% or less, even more preferably 30% or less, most preferably It can also be said that it is 25% or less. When the CV value is in the above range, since the monodispersity of the microcapsule particle size is high, handling of the microcapsules, control of function expression, and the like are facilitated.
<マイクロカプセル含有組成物>
 本開示のマイクロカプセル含有組成物は、少なくとも、既述の本開示のマイクロカプセルと、水系溶媒と、を含有する。本開示のマイクロカプセル含有組成物は、必要に応じて、更に、カチオン性界面活性剤、アニオン性基付与剤、表面アニオン化剤等を含有することが好ましく、必要に応じて、添加物等の他の成分を含有していてもよい。
<Microcapsule-containing composition>
The microcapsule-containing composition of the present disclosure contains at least the microcapsules of the present disclosure described above and an aqueous solvent. The microcapsule-containing composition of the present disclosure preferably further contains a cationic surfactant, an anionic group-imparting agent, a surface anionizing agent, and the like, if necessary. Other components may be contained.
 本開示のマイクロカプセル含有組成物に含まれるマイクロカプセルの詳細については、既述の通りであり、好ましい態様も同様である。 Details of the microcapsules contained in the microcapsule-containing composition of the present disclosure are as described above, and preferred embodiments are also the same.
 マイクロカプセルのマイクロカプセル含有組成物中における含有比率としては、特に制限されるものではなく、目的又は場合に応じて選択すればよく、例えば、マイクロカプセル含有組成物の全固形分に対して、20質量%~50質量%とすることができる。 The content ratio of the microcapsules in the microcapsule-containing composition is not particularly limited, and may be selected according to the purpose or the case. For example, 20% of the total solid content of the microcapsule-containing composition is 20%. The mass can be from 50% by mass to 50% by mass.
-水系溶媒-
 水系溶媒としては、水、水及びアルコール等が挙げられ、イオン交換水等を用いることができる。
 水系溶媒のマイクロカプセル含有組成物中における含有比率としては、特に制限されるものではなく、目的又は場合に応じて選択すればよく、例えば、マイクロカプセル含有組成物の全固形分に対して、50質量%~70質量%とすることができる。
-Aqueous solvent-
Examples of the aqueous solvent include water, water, alcohol and the like, and ion-exchanged water or the like can be used.
The content ratio of the aqueous solvent in the microcapsule-containing composition is not particularly limited, and may be selected depending on the purpose or the case. For example, 50% of the total solid content of the microcapsule-containing composition is 50%. The mass may be from 70% by mass.
 本開示のマイクロカプセル含有組成物は、マイクロカプセルが表面にアニオン電荷を有し、かつ、更にカチオン性界面活性剤を含有する態様が好ましい。
 これにより、マイクロカプセルとカチオン性界面活性剤との間に相互作用が得られ、マイクロカプセルの周囲にカチオン性界面活性剤の正電荷を付与することができる。結果、アニオン電荷を有する付着対象物(例えば毛又は繊維)に対するマイクロカプセルの付着性を向上することが可能になる。
The microcapsule-containing composition of the present disclosure preferably has an embodiment in which the microcapsule has an anionic charge on the surface and further contains a cationic surfactant.
Thereby, an interaction is obtained between the microcapsule and the cationic surfactant, and a positive charge of the cationic surfactant can be imparted around the microcapsule. As a result, it becomes possible to improve the adhesion property of the microcapsule to an attachment object (for example, hair or fiber) having an anionic charge.
 マイクロカプセルが表面にアニオン電荷を有することは、マイクロカプセルを水中に分散させた場合のゼータ電位を測定することで確認できる。ゼータ電位がマイナスである場合、マイクロカプセルの表面がアニオン電荷で覆われていることを指す。 It can be confirmed that the microcapsule has an anionic charge on the surface by measuring the zeta potential when the microcapsule is dispersed in water. When the zeta potential is negative, it indicates that the surface of the microcapsule is covered with an anionic charge.
 マイクロカプセルのゼータ電位としては、水中に分散した場合の値として、-80meV~-5meVであることが好ましく、-80meV~-11meVであることがより好ましく、-50meV~-10meVであることが更に好ましい。 The zeta potential of the microcapsule, when dispersed in water, is preferably −80 meV to −5 meV, more preferably −80 meV to −11 meV, and further preferably −50 meV to −10 meV. preferable.
 「ゼータ電位」(z)は、特殊な測定技術によって測定される、溶液中の帯電物体によって生成される見掛けの静電位を意味する。ゼータ電位の論理的基本及び実際の関連性の詳細な考察は、例えば、「Colloid Science:Zeta Potential in Colloid Sciences:Principles and Applications」(Hunter Robert J.;Editor.;Publisher(Academic Press,London);1981;p 1988)に記載されている。物体のゼータ電位は、物体の表面からある程度の距離で測定され、一般に表面自体での静電位を超えない。しかしながら、その値は、溶液中にある他の物体、特に複数の結合部位を有する分子との静電的相互作用を確立する物体の能力の好適な尺度となり得る。 “Zeta potential” (z) means the apparent electrostatic potential generated by a charged object in solution, measured by a special measurement technique. A detailed discussion of the logical basis and actual relevance of the zeta potential can be found, for example, in “Colloid Science: Zeta Potential in Colloid Sciences: Principles and Applications” (Hunter Robert J .; EdP. 1981; p 1988). The zeta potential of an object is measured at some distance from the surface of the object and generally does not exceed the electrostatic potential at the surface itself. However, the value can be a good measure of the ability of an object to establish an electrostatic interaction with other objects in solution, particularly molecules having multiple binding sites.
 ゼータ電位は、相対測定値であり、値は測定方法に依存する傾向がある。本開示において、ゼータ電位は、以下の方法により測定される値である。
 a.装置はELSZ-2000ZS(大塚電子株式会社製)を用いる。
 b.装置の設定は以下の通りである。
 c.試料の調製手順は以下の通りである。
 (i)対象とするカプセルを含有するスラリーをカプセル濃度として0.5質量%となるように水に加え、スラリーを希釈する。測定濃度は必要に応じて、計測率が自動検出により好ましい範囲になるように調整する。
 (ii)希釈した試料のゼータ電位を、試料を濾過せずに測定する。
 (iii)濾過したスラリーを標準セルユニット(大塚電子株式会社製)に注入し、セルを装置に挿入する。試験温度を25℃に設定する。
 (iv)温度が安定してから(通常3~5分後)測定を開始する。それぞれの試料について、5回の測定を行うように設定し、測定する。
 d.本開示におけるゼータ電位は、各スラリーに対して3回の測定値の平均として「mV」を単位として測定される値である。
 上記のもと、マイクロカプセルのゼータ電位は、ELSZ-2000ZS(大塚電子株式会社製)を用いて測定することができる。
The zeta potential is a relative measurement value, and the value tends to depend on the measurement method. In the present disclosure, the zeta potential is a value measured by the following method.
a. The apparatus uses ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
b. The device settings are as follows.
c. The sample preparation procedure is as follows.
(I) The slurry containing the target capsule is added to water so that the capsule concentration is 0.5% by mass, and the slurry is diluted. The measurement concentration is adjusted as necessary so that the measurement rate falls within a preferable range by automatic detection.
(Ii) The zeta potential of the diluted sample is measured without filtering the sample.
(Iii) The filtered slurry is poured into a standard cell unit (manufactured by Otsuka Electronics Co., Ltd.), and the cell is inserted into the apparatus. Set the test temperature to 25 ° C.
(Iv) Start the measurement after the temperature has stabilized (usually after 3 to 5 minutes). Each sample is set to measure 5 times and measured.
d. The zeta potential in the present disclosure is a value measured in units of “mV” as an average of three measured values for each slurry.
Based on the above, the zeta potential of the microcapsule can be measured using ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
 マイクロカプセル表面にアニオン電荷を付与する方法としては、特に制限はなく、例えば、アニオン性基付与剤をシェルに結合させる方法、マイクロカプセル表面に表面アニオン化剤を用いてアニオン電荷を付与する方法等が挙げられる。中でも、作業効率の観点から、マイクロカプセル表面に表面アニオン化剤を用いてアニオン電荷を付与する方法が好ましい。 The method for imparting an anionic charge to the microcapsule surface is not particularly limited, for example, a method for binding an anionic group-imparting agent to the shell, a method for imparting an anionic charge to the microcapsule surface using a surface anionic agent, Is mentioned. Among these, from the viewpoint of work efficiency, a method of imparting an anionic charge to the microcapsule surface using a surface anionizing agent is preferable.
 アニオン性基付与剤を用いてシェルの表面にアニオン性基を結合させる方法としては、以下の方法を一例として挙げることができる。
 即ち、溶媒、並びに、シェル材である3官能の脂肪族イソシアネート及び特定ジイソシアネートを撹拌混合して油相を調製する。続いて、水相として、アニオン性基付与剤(例えばリシン)を含む水溶液を調製する。調製した水相に油相を加えて分散して乳化し、得られた乳化液を加温して撹拌した後、冷却する。冷却後、塩基(例えば水酸化ナトリウム)の水溶液を添加し、表面にアニオン性基を有するマイクロカプセルの水分散液を得る。
 アニオン性基付与剤を含む水溶液は、乳化液を生成した後に添加してもよいし、塩基の水溶液を事前に水相に加えておいてもよい。
 なお、上記の各成分の含有量は、適宜変更することができる。
As a method for bonding an anionic group to the surface of the shell using an anionic group-imparting agent, the following method can be given as an example.
That is, an oil phase is prepared by stirring and mixing a solvent, a trifunctional aliphatic isocyanate which is a shell material, and a specific diisocyanate. Subsequently, an aqueous solution containing an anionic group-imparting agent (for example, lysine) is prepared as an aqueous phase. The oil phase is added to the prepared aqueous phase to disperse and emulsify, and the resulting emulsion is heated and stirred and then cooled. After cooling, an aqueous solution of a base (for example, sodium hydroxide) is added to obtain an aqueous dispersion of microcapsules having an anionic group on the surface.
The aqueous solution containing the anionic group-imparting agent may be added after the emulsion is formed, or an aqueous base solution may be added to the aqueous phase in advance.
In addition, content of said each component can be changed suitably.
-アニオン性基付与剤-
 アニオン性基付与剤としては、特に制限はなく、例えば、リシン、アスパラギン酸、グルタミン酸(以上、和光純薬工業株式会社製)等が挙げられる。
-Anionic group imparting agent-
There is no restriction | limiting in particular as an anionic group provision agent, For example, a lysine, aspartic acid, glutamic acid (above, Wako Pure Chemical Industries Ltd. make) etc. are mentioned.
 マイクロカプセル表面に表面アニオン化剤を用いてアニオン電荷を付与する方法としては、特に制限はなく、例えば、表面アニオン化剤を用いてマイクロカプセル表面に保護コロイドを形成する方法が好ましい。
 保護コロイドとは、マイクロカプセル表面に存在することでマイクロカプセル表面にアニオン電荷を付与できるコロイドをいう。
There is no restriction | limiting in particular as a method of providing an anionic charge using a surface anionizing agent on the microcapsule surface, For example, the method of forming a protective colloid on the microcapsule surface using a surface anionizing agent is preferable.
The protective colloid means a colloid that can impart an anionic charge to the microcapsule surface by being present on the microcapsule surface.
-表面アニオン化剤-
 表面アニオン化剤としては、マイクロカプセル表面にアニオン電荷を付与できるものであれば特に制限はなく、アニオン性水溶性ポリマー(アニオン変性ポリビニルアルコール、カルボキシメチルセルロース、カラギーナンなどのアニオン性多糖類、ポリアクリル酸ナトリウムおよび他のモノマーとの共重合体、ポリマレイン酸ナトリウム及び他のモノマーとの共重合体等)及びアニオン性界面活性剤(ドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム等)などが挙げられる。
-Surface anionizing agent-
The surface anionizing agent is not particularly limited as long as it can give an anionic charge to the microcapsule surface (anionic water-soluble polymers (anionic polysaccharides such as anion-modified polyvinyl alcohol, carboxymethyl cellulose, carrageenan, polyacrylic acid)). And copolymers with sodium and other monomers, copolymers with sodium polymaleate and other monomers) and anionic surfactants (sodium dodecyl sulfate, sodium lauryl sulfate, etc.).
 本開示のマイクロカプセル含有組成物におけるマイクロカプセルは、マイクロカプセル表面へのアニオン電荷付与の点から、表面の少なくとも一部にアニオン変性ポリビニルアルコールを有していることが好ましい。 The microcapsule in the microcapsule-containing composition of the present disclosure preferably has an anion-modified polyvinyl alcohol on at least a part of the surface from the viewpoint of imparting an anionic charge to the microcapsule surface.
 表面アニオン化剤を用いてマイクロカプセル表面に保護コロイドを形成する方法としては、例えば以下の方法が挙げられる。但し、本開示においては、以下の方法に限定されるものではない。
 まず、溶媒と、シェル材である3官能の脂肪族イソシアネート及び特定ジイソシアネートと、を撹拌混合して、油相を調製する。続いて、水相として、表面アニオン化剤(例えばアニオン変性ポリビニルアルコール)を含む水溶液を調製する。調製した水相に油相を加えて分散させて乳化し、生成した乳化液を加温して撹拌し、冷却する。冷却後、塩基(例えば水酸化ナトリウム水溶液)を添加し、表面に保護コロイドを有するマイクロカプセルの水分散液を得る。
 なお、上記した各成分の含有量は、適宜変更することができる。
Examples of the method for forming a protective colloid on the surface of the microcapsule using the surface anionizing agent include the following methods. However, the present disclosure is not limited to the following method.
First, an oil phase is prepared by stirring and mixing a solvent, a trifunctional aliphatic isocyanate and a specific diisocyanate which are shell materials. Subsequently, an aqueous solution containing a surface anionizing agent (for example, anion-modified polyvinyl alcohol) is prepared as an aqueous phase. The oil phase is added to the prepared aqueous phase and dispersed to emulsify, and the resulting emulsion is heated, stirred and cooled. After cooling, a base (for example, sodium hydroxide aqueous solution) is added to obtain an aqueous dispersion of microcapsules having a protective colloid on the surface.
In addition, content of each above-mentioned component can be changed suitably.
 アニオン変性ポリビニルアルコールはカルボキシル基またはスルホン酸基で変性されたポリビニルアルコールであり、上市されている市販品を用いることができる。
 市販品の例としては、クラレポバールKM-618(株式会社クラレ製)、クラレポバールKL-318(株式会社クラレ製)、ゴーセノールL-3266(日本合成化学株式会社製)、ゴーセノールT-330(日本合成化学株式会社製)等が挙げられる。中でも、アニオン性付与の観点から、アニオン変性ポリビニルアルコールとしては、クラレポバールKM-618、ゴーセノールL-3266が好ましく、クラレポバールKM-618がより好ましい。
Anion-modified polyvinyl alcohol is polyvinyl alcohol modified with a carboxyl group or a sulfonic acid group, and commercially available products can be used.
Examples of commercially available products are Kuraray Poval KM-618 (manufactured by Kuraray Co., Ltd.), Kuraray Poval KL-318 (manufactured by Kuraray Co., Ltd.), Gohsenol L-3266 (manufactured by Nippon Synthetic Chemical Co., Ltd.), Gohsenol T-330 (Japan) Synthetic Chemical Co., Ltd.). Among these, from the viewpoint of imparting anionic property, the anion-modified polyvinyl alcohol is preferably Kuraray Poval KM-618 or Gohsenol L-3266, and more preferably Kuraray Poval KM-618.
-カチオン性界面活性剤-
 本開示のマイクロカプセル含有組成物は、マイクロカプセル表面にアニオン電荷が付与されている場合には、カチオン性界面活性剤を含有していることが好ましい。これにより、マイクロカプセルのアニオン電荷(マイナス電荷)と、カチオン性界面活性剤のプラス電荷と、が相互作用によって引き合うことで、マイクロカプセルをカチオン性界面活性剤のプラス電荷が覆う。結果、カプセル全体として、プラス電荷を生じさせることができ、マイクロカプセルのプラス電荷とマイクロカプセルが付着する付着対象物(例えば繊維又は毛)が有するマイナス電荷とが引き合い、付着対象物に対するマイクロカプセルの付着性をより向上させることができる。
-Cationic surfactant-
The microcapsule-containing composition of the present disclosure preferably contains a cationic surfactant when an anionic charge is imparted to the microcapsule surface. Thereby, the anion charge (minus charge) of the microcapsule and the plus charge of the cationic surfactant attract each other due to the interaction, so that the plus charge of the cationic surfactant covers the microcapsule. As a result, a positive charge can be generated as a whole capsule, and the positive charge of the microcapsule attracts the negative charge of the attached object (for example, fiber or hair) to which the microcapsule adheres. Adhesion can be further improved.
 カチオン界面活性剤は、特に限定されず、従来公知のものを用いることができ、例えば、アルキルアミン塩、第四級アンモニウム塩(例えば、ヘキサデシルトリメチルアンモニウムクロライド)、ポリオキシエチレンアルキルアミン塩、ポリエチレンポリアミン誘導体が挙げられる。 The cationic surfactant is not particularly limited, and conventionally known cationic surfactants can be used. For example, alkylamine salts, quaternary ammonium salts (for example, hexadecyltrimethylammonium chloride), polyoxyethylene alkylamine salts, polyethylene Examples include polyamine derivatives.
 カチオン性界面活性剤としては、上市されている市販品を用いてもよい。市販品の例としては、カチオンEQ-01D(日油株式会社)、カチオンSF-10(三洋化成工業株式会社製)、カチオンSF-75PA(三洋化成工業株式会社製)、アデカミンSF-108(株式会社ADEKA製)等が挙げられる。 As the cationic surfactant, a commercially available product may be used. Examples of commercially available products include cation EQ-01D (NOF Corporation), cation SF-10 (manufactured by Sanyo Kasei Kogyo Co., Ltd.), cation SF-75PA (manufactured by Sanyo Kasei Kogyo Co., Ltd.), and Adecamin SF-108 (stock) The company ADEKA).
-分散媒-
 本開示のマイクロカプセル含有組成物は、水系溶媒以外の他の分散媒を含んでもよい。
 マイクロカプセルの分散媒を更に含むことで、マイクロカプセル含有組成物は、種々の用途に用いる際に容易に配合することができる。
 マイクロカプセル含有組成物における分散媒は、組成物の使用目的に応じて適宜選択することができる。分散媒としては、マイクロカプセルの壁材に影響を与えない液状成分であることが好ましい。
 好ましい他の分散媒としては、粘度調整剤、安定化剤などが挙げられる。
 なお、本開示のマイクロカプセル含有組成物における分散媒の含有量は、用途に応じて適宜選択すればよい。
-Dispersion medium-
The microcapsule-containing composition of the present disclosure may contain a dispersion medium other than the aqueous solvent.
By further containing a microcapsule dispersion medium, the microcapsule-containing composition can be easily blended when used in various applications.
The dispersion medium in the microcapsule-containing composition can be appropriately selected according to the purpose of use of the composition. The dispersion medium is preferably a liquid component that does not affect the wall material of the microcapsule.
Preferable other dispersion media include viscosity modifiers and stabilizers.
In addition, what is necessary is just to select suitably content of the dispersion medium in the microcapsule containing composition of this indication according to a use.
-他の成分-
 本開示のマイクロカプセル含有組成物は、上記した成分以外の他の成分を含有することができる。
 他の成分は、特に制限がなく、目的又は場合により適宜選択すればよい。他の成分としては、例えば、界面活性剤、架橋剤、潤滑剤、紫外線吸収剤、酸化防止剤、帯電防止剤等が挙げられる。
-Other ingredients-
The microcapsule-containing composition of the present disclosure can contain components other than the above-described components.
Other components are not particularly limited and may be appropriately selected depending on the purpose or circumstances. Examples of other components include a surfactant, a crosslinking agent, a lubricant, an ultraviolet absorber, an antioxidant, and an antistatic agent.
<マイクロカプセルの製造方法>
 本開示のマイクロカプセルの製造は、公知の方法により行うことができ、例えば以下に示す製造方法で製造することができる。但し、本開示は、以下の方法に制限されるものではない。
<Method for producing microcapsules>
The microcapsules of the present disclosure can be manufactured by a known method, for example, the manufacturing method shown below. However, the present disclosure is not limited to the following method.
 本開示のマイクロカプセルは、溶媒並びにシェル材である3官能の脂肪族イソシアネート及び特定ジイソシアネートを含む油相を、乳化剤及び(必要に応じてアニオン性基付与剤又は表面アニオン化剤)を含む水相に分散して乳化液を調製する工程(乳化工程)と、シェル材を油相と水相との界面で重合させてシェルを形成してコアを内包したマイクロカプセルを形成する工程(カプセル化工程)と、を有する方法で作製することができる。
 アニオン性基付与剤は、乳化工程後に添加してもよい。
The microcapsules of the present disclosure include an oil phase containing a trifunctional aliphatic isocyanate as a shell material and a specific diisocyanate, and an aqueous phase containing an emulsifier and (optionally an anionic group imparting agent or a surface anionizing agent). A step of preparing an emulsified liquid by dispersing in an emulsion (emulsification step), and a step of forming a shell by polymerizing the shell material at the interface between the oil phase and the aqueous phase to form a microcapsule including the core (encapsulation step) ).
You may add an anionic group provision agent after an emulsification process.
[乳化工程]
 乳化工程では、溶媒並びにシェル材である3官能の脂肪族イソシアネート及び特定ジイソシアネートを含む油相を、乳化剤及び(必要に応じてアニオン性基付与剤又は表面アニオン化剤)を含む水相に分散して乳化液を調製する。
 油相が溶媒を含むことにより、マイクロカプセルの単分散性が高められる。
[Emulsification process]
In the emulsification step, an oil phase containing a trifunctional aliphatic isocyanate and a specific diisocyanate that are a solvent and a shell material is dispersed in an aqueous phase containing an emulsifier and (an anionic group-imparting agent or a surface anionizing agent as necessary). To prepare an emulsion.
When the oil phase contains a solvent, the monodispersity of the microcapsules is enhanced.
~乳化液~
 本開示の乳化液は、溶媒とシェル材とを含む油相を、乳化剤を含む水相に分散させることにより調製することができる。
~ Emulsified liquid ~
The emulsified liquid of the present disclosure can be prepared by dispersing an oil phase containing a solvent and a shell material in an aqueous phase containing an emulsifier.
(油相)
 本開示における油相は、少なくとも、溶媒と、シェル材である3官能の脂肪族イソシアネート及び特定ジイソシアネートと、を含み、必要に応じて、香料、補助溶媒、添加剤などの他の成分が含まれてもよい。香料、補助溶媒、及び添加剤の詳細については、既述のマイクロカプセルの項に記載した通りである。
(Oil phase)
The oil phase in the present disclosure includes at least a solvent, a trifunctional aliphatic isocyanate that is a shell material, and a specific diisocyanate, and optionally includes other components such as a fragrance, a co-solvent, and an additive. May be. The details of the fragrance, the auxiliary solvent, and the additive are as described in the above-mentioned section of the microcapsule.
-溶媒-
 本開示における製造方法で使用することができる溶媒は、既述のマイクロカプセルの項に記載した通りである。
-solvent-
Solvents that can be used in the production method of the present disclosure are as described in the above-mentioned microcapsule section.
-シェル材- 
 本開示におけるシェル材は、3官能の脂肪族イソシアネート及び特定ジイソシアネートを含む。
 シェル材の油相中における含有量としては、油相の全質量に対して、0.1質量%超20質量%以下が好ましく、0.5質量%~10質量%がより好ましく、1質量%~5質量%が更に好ましい。
 シェル材の濃度は、マイクロカプセルの大きさ、壁厚等に鑑みて適宜調整することができる。
-Shell material-
The shell material in the present disclosure includes a trifunctional aliphatic isocyanate and a specific diisocyanate.
The content of the shell material in the oil phase is preferably more than 0.1% by mass and 20% by mass or less, more preferably 0.5% by mass to 10% by mass, and more preferably 1% by mass with respect to the total mass of the oil phase. More preferably, it is ˜5 mass%.
The concentration of the shell material can be appropriately adjusted in view of the size of the microcapsules, the wall thickness, and the like.
(水相)
 本開示における水相は、少なくとも水系溶媒及び乳化剤を含むことが好ましく、マイクロカプセルの表面にアニオン電荷を付与するための成分として例えばアニオン性基付与剤又は表面アニオン化剤を更に含むことができる。
(Water phase)
The aqueous phase in the present disclosure preferably includes at least an aqueous solvent and an emulsifier, and can further include, for example, an anionic group-imparting agent or a surface anionizing agent as a component for imparting an anionic charge to the surface of the microcapsule.
-水系媒体-
 本開示の水系媒体は、水、水及びアルコール等が挙げられ、イオン交換水等を用いることができる。
 水系媒体の水相中における含有量としては、水相に油相を乳化分散して得られる乳化液の全質量に対して、20質量%~80質量%が好ましく、30質量%~70質量%がより好ましく、40質量%~60質量%が更に好ましい。
-Aqueous medium-
Examples of the aqueous medium of the present disclosure include water, water, alcohol, and the like, and ion-exchanged water or the like can be used.
The content of the aqueous medium in the aqueous phase is preferably 20% by mass to 80% by mass, and preferably 30% by mass to 70% by mass with respect to the total mass of the emulsion obtained by emulsifying and dispersing the oil phase in the aqueous phase. Is more preferable, and 40% by mass to 60% by mass is even more preferable.
-乳化剤-
 乳化剤には、分散剤もしくは界面活性剤又はこれらの組み合わせが含まれる。
 分散剤としては、例えば、ポリビニルアルコール及びその変性物(例えばアニオン変性ポリビニルアルコール)、ポリアクリル酸アミド及びその誘導体、エチレン-酢酸ビニル共重合体、スチレン-無水マレイン酸共重合体、エチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体、ポリビニルピロリドン、エチレン-アクリル酸共重合体、酢酸ビニル-アクリル酸共重合体、カルボキシメチルセルロース、メチルセルロース、カゼイン、ゼラチン、澱粉誘導体、アラビアゴム及びアルギン酸ナトリウムなどを挙げることができ、ポリビニルアルコールが好ましい。
 分散剤は、シェル材と反応しないこと又は極めて反応し難いことが好ましく、例えばゼラチンなどの分子鎖中に反応性のアミノ基を有するものは、予め反応性を失わせる処理をしておくことが好ましい。
-emulsifier-
Emulsifiers include dispersants or surfactants or combinations thereof.
Examples of the dispersant include polyvinyl alcohol and modified products thereof (for example, anion-modified polyvinyl alcohol), polyacrylic acid amide and derivatives thereof, ethylene-vinyl acetate copolymer, styrene-maleic anhydride copolymer, and ethylene-maleic anhydride. Acid copolymer, isobutylene-maleic anhydride copolymer, polyvinylpyrrolidone, ethylene-acrylic acid copolymer, vinyl acetate-acrylic acid copolymer, carboxymethylcellulose, methylcellulose, casein, gelatin, starch derivative, gum arabic and alginic acid Sodium etc. can be mentioned, Polyvinyl alcohol is preferable.
It is preferable that the dispersant does not react with the shell material or is extremely difficult to react. For example, those having a reactive amino group in a molecular chain such as gelatin may be preliminarily treated to lose the reactivity. preferable.
 界面活性剤としては、ノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤等が挙げられる。界面活性剤は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Examples of the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants. Surfactant may be used individually by 1 type, and may be used in combination of 2 or more type.
 ノニオン界面活性剤は、特に制限されず、従来公知のものを用いることができる。
 ノニオン界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル系化合物、ポリオキシエチレンアルキルフェニルエーテル系化合物、ポリオキシエチレンポリスチリルフェニルエーテル系化合物、ポリオキシエチレンポリオキシプロピレンアルキルエーテル系化合物、グリセリン脂肪酸部分エステル系化合物、ソルビタン脂肪酸部分エステル系化合物、ペンタエリスリトール脂肪酸部分エステル系化合物、プロピレングリコールモノ脂肪酸エステル系化合物、ショ糖脂肪酸部分エステル系化合物、ポリオキシエチレンソルビタン脂肪酸部分エステル系化合物、ポリオキシエチレンソルビトール脂肪酸部分エステル系化合物、ポリエチレングリコール脂肪酸エステル系化合物、ポリグリセリン脂肪酸部分エステル系化合物、ポリオキシエチレン化ひまし油系化合物、ポリオキシエチレングリセリン脂肪酸部分エステル系化合物、脂肪酸ジエタノールアミド系化合物、N,N-ビス-2-ヒドロキシアルキルアミン系化合物、ポリオキシエチレンアルキルアミン、トリエタノールアミン脂肪酸エステル、トリアルキルアミンオキシド、ポリエチレングリコール、ポリエチレングリコールとポリプロピレングリコールの共重合体が挙げられる。
The nonionic surfactant is not particularly limited, and a conventionally known nonionic surfactant can be used.
Nonionic surfactants include, for example, polyoxyethylene alkyl ether compounds, polyoxyethylene alkyl phenyl ether compounds, polyoxyethylene polystyryl phenyl ether compounds, polyoxyethylene polyoxypropylene alkyl ether compounds, glycerin fatty acid moieties. Ester compounds, sorbitan fatty acid partial ester compounds, pentaerythritol fatty acid partial ester compounds, propylene glycol mono fatty acid ester compounds, sucrose fatty acid partial ester compounds, polyoxyethylene sorbitan fatty acid partial ester compounds, polyoxyethylene sorbitol fatty acids Partial ester compounds, polyethylene glycol fatty acid ester compounds, polyglycerin fatty acid partial ester compounds, polio Silylated castor oil compound, polyoxyethylene glycerin fatty acid partial ester compound, fatty acid diethanolamide compound, N, N-bis-2-hydroxyalkylamine compound, polyoxyethylene alkylamine, triethanolamine fatty acid ester, trialkyl Examples include amine oxide, polyethylene glycol, and a copolymer of polyethylene glycol and polypropylene glycol.
 アニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。
 アニオン界面活性剤としては、例えば、脂肪酸塩、アビエチン酸塩、ヒドロキシアルカンスルホン酸塩、アルカンスルホン酸塩、ジアルキルスルホ琥珀酸エステル塩、直鎖アルキルベンゼンスルホン酸塩、分岐鎖アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルフェノキシポリオキシエチレンプロピルスルホン酸塩、ポリオキシエチレンアルキルスルホフェニルエーテル塩、N-メチル-N-オレイルタウリンナトリウム塩、N-アルキルスルホコハク酸モノアミド二ナトリウム塩、石油スルホン酸塩、硫酸化牛脂油、脂肪酸アルキルエステルの硫酸エステル塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、脂肪酸モノグリセリド硫酸エステル塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンスチリルフェニルエーテル硫酸エステル塩、アルキルリン酸エステル塩、ポリオキシエチレンアルキルエーテルリン酸エステル塩、ポリオキシエチレンアルキルフェニルエーテルリン酸エステル塩、スチレン-無水マレイン酸共重合物の部分けん化物、オレフィン-無水マレイン酸共重合物の部分けん化物、ナフタレンスルホン酸塩ホルマリン縮合物、アルキルポリオキシアルキレンスルホアルキルエーテルの塩、アルケニルポリオキシアルキレンスルホアルキルエーテルの塩などが挙げられる。
An anionic surfactant is not specifically limited, A conventionally well-known thing can be used.
Examples of the anionic surfactant include fatty acid salts, abietic acid salts, hydroxyalkane sulfonates, alkane sulfonates, dialkyl sulfosuccinate esters, linear alkyl benzene sulfonates, branched alkyl benzene sulfonates, and alkyl naphthalenes. Sulfonate, alkylphenoxy polyoxyethylene propyl sulfonate, polyoxyethylene alkyl sulfophenyl ether salt, N-methyl-N-oleyl taurine sodium salt, N-alkyl sulfosuccinic acid monoamide disodium salt, petroleum sulfonate, sulfuric acid Fatty acid tallow oil, fatty acid alkyl ester sulfate, alkyl sulfate, polyoxyethylene alkyl ether sulfate, fatty acid monoglyceride sulfate, polyoxyethylene alkyl Phenyl ether sulfate, polyoxyethylene styryl phenyl ether sulfate, alkyl phosphate, polyoxyethylene alkyl ether phosphate, polyoxyethylene alkyl phenyl ether phosphate, styrene-maleic anhydride copolymer Partial saponified products, partial saponified products of olefin-maleic anhydride copolymer, naphthalene sulfonate formalin condensate, alkyl polyoxyalkylene sulfoalkyl ether salts, alkenyl polyoxyalkylene sulfoalkyl ether salts, etc. .
 カチオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。
 カチオン界面活性剤としては、例えば、アルキルアミン塩、第四級アンモニウム塩(例えば、ヘキサデシルトリメチルアンモニウムクロライド)、ポリオキシエチレンアルキルアミン塩、ポリエチレンポリアミン誘導体が挙げられる。
A cationic surfactant is not specifically limited, A conventionally well-known thing can be used.
Examples of the cationic surfactant include alkylamine salts, quaternary ammonium salts (for example, hexadecyltrimethylammonium chloride), polyoxyethylene alkylamine salts, and polyethylene polyamine derivatives.
 両性界面活性剤は、特に限定されず、従来公知のものを用いることができる。
 両性界面活性剤としては、例えば、カルボキシベタイン、アミノカルボン酸、スルホベタイン、アミノ硫酸エステル、イミタゾリンが挙げられる。
An amphoteric surfactant is not specifically limited, A conventionally well-known thing can be used.
Examples of the amphoteric surfactant include carboxybetaine, aminocarboxylic acid, sulfobetaine, aminosulfate, and imidazoline.
 乳化剤の濃度は、乳化液の全質量に対して、0質量%超20質量%以下が好ましく、0.005質量%以上10質量%以下がより好ましく、0.01質量%以上10質量%以下が更に更に好ましく、1質量%以上5質量%以下が更に好ましい。 The concentration of the emulsifier is preferably more than 0% by mass and 20% by mass or less, more preferably 0.005% by mass to 10% by mass, and more preferably 0.01% by mass to 10% by mass with respect to the total mass of the emulsion. Still more preferred is 1 to 5% by weight.
-アニオン性基付与剤又は表面アニオン化剤-
 本開示における水相は、アニオン性基付与剤又は表面アニオン化剤を含むことが好ましい。アニオン性基付与剤及び表面アニオン化剤の詳細については、既述のマイクロカプセルの項において説明した通りである。
 なお、一部のアニオン性基付与剤及び表面アニオン化剤(例えば、アニオン変性ポリビニルアルコール)は、後述する乳化剤としても用いることができるため、一部のアニオン性基付与剤及び表面アニオン化剤を用いる場合には、後述する乳化剤を添加しなくてもよい。
-Anionic group imparting agent or surface anionizing agent-
The aqueous phase in the present disclosure preferably contains an anionic group-imparting agent or a surface anionizing agent. The details of the anionic group-imparting agent and the surface anionizing agent are as described in the above-mentioned section of the microcapsule.
In addition, since some anionic group imparting agents and surface anionizing agents (for example, anion-modified polyvinyl alcohol) can also be used as an emulsifier described later, some anionic group imparting agents and surface anionic agents are used. When using, the emulsifier mentioned later does not need to be added.
 アニオン性基付与剤のシェルにおける含有量としては、シェル材の全質量に対して、0.5質量%~20質量%が好ましく、1質量%~10質量%がより好ましく、2.5質量%~7質量%がさらに好ましい。 The content of the anionic group-imparting agent in the shell is preferably 0.5% by mass to 20% by mass, more preferably 1% by mass to 10% by mass, and 2.5% by mass with respect to the total mass of the shell material. More preferably, it is 7% by mass.
 表面アニオン化剤の含有量としては、水相の全質量に対して、1質量%~15質量%が好ましく、2質量%~12質量%がより好ましく、4質量%~10質量%が更に好ましい。 The content of the surface anionizing agent is preferably 1% by mass to 15% by mass, more preferably 2% by mass to 12% by mass, and still more preferably 4% by mass to 10% by mass with respect to the total mass of the aqueous phase. .
 水相は、必要に応じて、紫外線吸収剤、酸化防止剤、防腐剤などの他の成分を含有してもよい。他の成分を含有する場合の含有量は、水相の全質量に対して、0質量%超20質量%以下が好ましく、0.1質量%超15質量%以下がより好ましく、1質量%超10質量%以下が更に好ましい。 The aqueous phase may contain other components such as an ultraviolet absorber, an antioxidant, and a preservative as necessary. When other components are contained, the content is preferably more than 0% by mass and 20% by mass or less, more preferably more than 0.1% by mass and 15% by mass or less, more preferably more than 1% by mass with respect to the total mass of the aqueous phase. 10 mass% or less is still more preferable.
(分散)
 分散は、本開示の油相を油滴として本開示の水相に分散させること(乳化)をいう。分散は、油相と水相との分散に通常用いられる手段、例えば、ホモジナイザー、マントンゴーリー、超音波分散機、ディゾルバー、ケディーミル、又はその他の公知の分散装置を用いて行うことができる。
(dispersion)
Dispersion refers to dispersing (emulsifying) the oil phase of the present disclosure as oil droplets in the water phase of the present disclosure. The dispersion can be carried out by means usually used for dispersion of an oil phase and an aqueous phase, for example, a homogenizer, a Manton Gory, an ultrasonic disperser, a dissolver, a teddy mill, or other known dispersion devices.
 水相に対する油相の混合比率(油相/水相;質量基準)としては、0.1~1.5が好ましく、0.2~1.2がより好ましく、0.4~1.0が更に好ましい。混合比率が0.1~1.5の範囲内であると、適度の粘度に保持でき、製造適性に優れ、乳化液の安定性に優れる。 The mixing ratio of the oil phase to the water phase (oil phase / water phase; mass basis) is preferably 0.1 to 1.5, more preferably 0.2 to 1.2, and 0.4 to 1.0. Further preferred. When the mixing ratio is in the range of 0.1 to 1.5, an appropriate viscosity can be maintained, the production suitability is excellent, and the stability of the emulsion is excellent.
[カプセル化工程]
 本開示のマイクロカプセルの製造方法は、シェル材を油相と水相との界面で重合させてシェルを形成し、溶媒を内包するマイクロカプセルを形成する工程を含む。これにより、本開示の溶媒がシェルに内包されたマイクロカプセルが形成される。
[Encapsulation process]
The manufacturing method of the microcapsule of this indication includes the process of polymerizing a shell material in the interface of an oil phase and a water phase, forming a shell, and forming the microcapsule which includes a solvent. Thereby, the microcapsule in which the solvent of the present disclosure is encapsulated in the shell is formed.
(重合)
 重合は、乳化液中の油相に含まれるシェル材を水相との界面で重合させる工程であり、これによりシェルが形成される。重合は、好ましくは加熱下で行われる。重合における反応温度は、通常は40℃~100℃が好ましく、50℃~80℃がより好ましい。また、重合の反応時間は、通常は0.5時間~10時間程度が好ましく、1時間~5時間程度がより好ましい。重合温度が高い程、重合時間は短くなるが、高温で分解するおそれのある内包成分やシェル材を使用する場合には、低温で作用する重合開始剤を選択して、比較的低温で重合させるのが望ましい。
(polymerization)
Polymerization is a step of polymerizing the shell material contained in the oil phase in the emulsion at the interface with the aqueous phase, whereby a shell is formed. The polymerization is preferably performed under heating. The reaction temperature in the polymerization is usually preferably 40 ° C to 100 ° C, more preferably 50 ° C to 80 ° C. The polymerization reaction time is usually preferably about 0.5 to 10 hours, more preferably about 1 to 5 hours. The higher the polymerization temperature, the shorter the polymerization time, but when using encapsulated components or shell materials that may decompose at high temperatures, select a polymerization initiator that operates at low temperatures and polymerize at relatively low temperatures. Is desirable.
 重合工程中に、マイクロカプセル同士の凝集を防止するためには、水性溶液(例えば、水、酢酸水溶液など)を更に加えてマイクロカプセル同士の衝突確率を下げることが好ましく、充分な攪拌を行うことも好ましい。重合工程中に改めて凝集防止用の分散剤を添加してもよい。更に、必要に応じて、ニグロシン等の荷電調節剤、又はその他任意の補助剤を添加することができる。これらの補助剤は、シェルの形成時、又は任意の時点で添加することができる。 In order to prevent the microcapsules from aggregating during the polymerization step, it is preferable to further add an aqueous solution (for example, water, an aqueous acetic acid solution, etc.) to reduce the collision probability between the microcapsules, and perform sufficient stirring. Is also preferable. A dispersing agent for preventing aggregation may be added again during the polymerization process. Furthermore, a charge control agent such as nigrosine, or any other auxiliary agent can be added as necessary. These adjuvants can be added at the time of shell formation or at any point.
~マイクロカプセル含有組成物の用途~
 本開示のマイクロカプセル含有組成物は種々の用途に使用することができる。
 マイクロカプセル含有組成物は、例えば、洗濯、ヘアケア、デイケア等の用途に適用することができる。
-Use of microcapsule-containing composition-
The microcapsule-containing composition of the present disclosure can be used for various applications.
The microcapsule-containing composition can be applied to uses such as washing, hair care, and day care.
-洗濯-
 本開示のマイクロカプセル含有組成物は、例えば、マイクロカプセル内にコア材(例えば香料)を含めることで、衣料用柔軟剤とすることができる。これにより、本開示のマイクロカプセル含有組成物は洗濯の用途に好適である。
 衣料用柔軟剤であるマイクロカプセル含有組成物は、衣料をマイクロカプセル含有組成物に浸漬し、脱水、乾燥することで、マイクロカプセル含有組成物に含まれるマイクロカプセル及び必要に応じてカチオン性界面活性剤が衣料の繊維に吸着したり、繊維間の微細な空隙に入り込む等することにより衣料に保持される。これにより、衣類に対して、柔軟性、帯電防止性などが付与され、更にマイクロカプセルが付与されることで、所望の時期に内包成分(コア材)を放出し得、かつ、圧力が加えられない状態でも内包成分が徐々に放出される徐放性を付与することができる。
-Washing-
The microcapsule-containing composition of the present disclosure can be made into a softener for clothing, for example, by including a core material (for example, a fragrance) in the microcapsule. Thereby, the microcapsule-containing composition of the present disclosure is suitable for laundry applications.
The microcapsule-containing composition, which is a softener for clothing, is obtained by immersing the clothing in the microcapsule-containing composition, dehydrating, and drying the microcapsule contained in the microcapsule-containing composition and, if necessary, cationic surfactant. The agent is held on the clothing by adsorbing on the fibers of the clothing or entering into fine gaps between the fibers. As a result, flexibility, antistatic properties, and the like are imparted to the garment, and further the microcapsules are imparted, whereby the inclusion component (core material) can be released at a desired time, and pressure is applied. Even in such a state, it is possible to impart a sustained release property in which the inclusion component is gradually released.
 衣料用柔軟剤により処理された衣料を着用した場合、柔らかな着心地に加え、マイクロカプセル内に内包成分(コア材)が安定に含まれるため、経時後であっても衣服を擦るなどして応力を与え、マイクロカプセルを崩壊させることで、内包成分を放出させることができる。また、応力を加えない状態でも、内包成分が自然的に放出されるので、長期に亘って内包成分の放出効果が得られる。例えば、衣服を着用して行動する際、行動に伴って衣服に付着したマイクロカプセルが徐々に壊れてコア材を放出し、また衣服を着用する前又は着用後に着脱する等して行動を伴わない場合にもコア材を放出することができる。 When wearing clothing treated with a softener for clothing, in addition to soft comfort, the inclusion component (core material) is stably contained in the microcapsule. The encapsulated component can be released by applying stress and collapsing the microcapsules. In addition, even when no stress is applied, the inclusion component is naturally released, so that the release effect of the inclusion component can be obtained over a long period of time. For example, when acting while wearing clothes, the microcapsule attached to the clothes gradually breaks along with the action and releases the core material, and is not accompanied by any action by attaching or detaching before or after wearing the clothes. In some cases, the core material can be released.
 衣料用柔軟剤は、マイクロカプセルのマイクロカプセル含有組成物の全質量に対する含有量が0.3質量%~3質量%であることが好ましい。また、マイクロカプセル含有組成物がカチオン性界面活性剤を更に含有する場合は、カチオン性界面活性剤のマイクロカプセル含有組成物の全質量に対する含有量が10質量%~30質量%であることが好ましい。
 そのほか、マイクロカプセル含有組成物は、衣料用柔軟剤に含まれる公知の成分(例えば、消泡剤、色材、香料など)を更に含むことができる。衣料用柔軟剤に用いられる分散媒としては、イオン交換水等の水が好ましい。
The softening agent for clothing preferably has a content of 0.3% by mass to 3% by mass with respect to the total mass of the microcapsule-containing composition. When the microcapsule-containing composition further contains a cationic surfactant, the content of the cationic surfactant with respect to the total mass of the microcapsule-containing composition is preferably 10% by mass to 30% by mass. .
In addition, the microcapsule-containing composition can further include known components (for example, an antifoaming agent, a coloring material, a fragrance, etc.) included in the softener for clothing. The dispersion medium used for the softener for clothing is preferably water such as ion exchange water.
-ヘアケア-
 本開示のマイクロカプセル、並びにマイクロカプセル及び水系溶媒を含むマイクロカプセル含有組成物は、そのままヘアケアの用途に適用することができる。
 ヘアケアの用途としては、リンス、コンディショナー、整髪料等の毛髪化粧料等に任意に適用することができる。
 毛髪化粧料である本開示のマイクロカプセル含有組成物は、毛髪に適用した場合、マイクロカプセルが毛髪に付着し、毛髪を擦る、櫛でとく等した場合、応力によりマイクロカプセルが崩壊し、コア材を放出することができる。
-hair care-
The microcapsule of the present disclosure, and the microcapsule-containing composition containing the microcapsule and the aqueous solvent can be applied to hair care applications as they are.
As a use of hair care, it can be arbitrarily applied to hair cosmetics such as rinses, conditioners, hair styling agents and the like.
When applied to hair, the microcapsule-containing composition of the present disclosure, which is a hair cosmetic, adheres to the hair, and when the hair is rubbed or combed, the microcapsule disintegrates due to stress, and the core material Can be released.
 液状の毛髪化粧料の場合、スプレー容器に充填することで、より長時間に亘り、マイクロカプセルを安定に保存することができ、好ましい。
 スプレーにより毛髪化粧料を毛髪に付与した場合、分散媒とマイクロカプセルとが、毛髪に付着する。その後、頭皮をマッサージするなどを行なうことにより、マイクロカプセルに応力が掛かることでマイクロカプセルが崩壊し、コア材を毛髪に付着させることができる。
 毛髪化粧料である本開示のマイクロカプセル含有組成物には、毛髪化粧料に含まれ得る公知の成分を任意に含有することができる。
 毛髪化粧料の含まれ得る公知の成分としては、アルコールなどの水性媒体、油剤、洗浄成分或いは分散成分としての界面活性剤、皮膚に浸透する有効成分、色材、香料などが挙げられる。
In the case of liquid hair cosmetics, it is preferable that the microcapsules can be stably stored for a longer time by filling the spray container.
When the hair cosmetic is applied to the hair by spraying, the dispersion medium and the microcapsules adhere to the hair. Thereafter, by performing massage or the like on the scalp, the microcapsules are collapsed by applying stress to the microcapsules, and the core material can be attached to the hair.
The microcapsule-containing composition of the present disclosure that is a hair cosmetic can optionally contain known components that can be included in the hair cosmetic.
Known components that can be included in hair cosmetics include aqueous media such as alcohol, oil agents, surfactants as cleaning or dispersing components, active ingredients that penetrate the skin, colorants, and fragrances.
-デイケア-
 本開示のマイクロカプセル含有組成物は、例えば、支持体と支持体に含浸された既述のマイクロカプセル含有組成物とを含むデイケア(例えば、化粧用シート、おむつ等)の用途に適用することができる。
 また、マイクロカプセル含有組成物が界面活性剤等の洗浄成分を含む場合、皮膚清拭用のシートとすることができる。
-Day care-
The microcapsule-containing composition of the present disclosure can be applied to, for example, a day care (for example, a cosmetic sheet, a diaper, etc.) including a support and the above-described microcapsule-containing composition impregnated in the support. it can.
Moreover, when a microcapsule containing composition contains cleaning components, such as surfactant, it can be set as the sheet | seat for skin wiping.
 支持体としては、液状成分を保持することができれば特に制限はない。支持体としては、不織布、織布などの内部に水分を保持する空隙を有する繊維集合体、スポンジシートなどの多孔質体等が好ましい。
 支持体に本開示のマイクロカプセル含有組成物を含浸させることで、支持体を皮膚に押しつけて擦ることでマイクロカプセルが壊れ、任意の時期に内包成分(コア材)を放出させることができ、かつ、応力を加えない状態でも、内包成分が自然的に放出されるので、長期に亘って内包成分の放出効果が得られる。
 化粧用シート、おむつ等は、マイクロカプセル含有組成物を安定に保持するため、水不透過性の包装材料により包装されることが、効果の持続性の観点から好ましい。
The support is not particularly limited as long as the liquid component can be retained. The support is preferably a non-woven fabric, a woven fabric or the like, a fiber assembly having a void for retaining moisture therein, a porous material such as a sponge sheet, and the like.
By impregnating the support with the microcapsule-containing composition of the present disclosure, the microcapsule can be broken by pressing the support against the skin and rubbing, and the inclusion component (core material) can be released at any time, and Even in the state where no stress is applied, the inclusion component is naturally released, so that the release effect of the inclusion component can be obtained over a long period of time.
Cosmetic sheets, diapers and the like are preferably packaged with a water-impermeable packaging material in order to stably hold the microcapsule-containing composition, from the viewpoint of sustaining effects.
 既述のように、本開示のマイクロカプセル含有組成物は、必要な時期に任意の時期にコア材を放出しうるため、種々の用途に適用することができる。既述の用途は、その一例であり、本開示のマイクロカプセル含有組成物の用途は、上記記載には限定されない。 As described above, since the microcapsule-containing composition of the present disclosure can release the core material at any time when necessary, it can be applied to various applications. The use described above is an example thereof, and the use of the microcapsule-containing composition of the present disclosure is not limited to the above description.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
 なお、本実施例において、体積基準のメジアン径、標準偏差、及び体積平均粒径は、マイクロトラックMT3300EXII(日機装株式会社製)により測定した。
 シェルの厚み(壁厚)は、マイクロカプセルを切断した断面を走査型電子顕微鏡JSM-7800F(日本電子株式会社製)により観察して測定した。
In this example, the volume-based median diameter, standard deviation, and volume average particle diameter were measured with Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
The thickness (wall thickness) of the shell was measured by observing a cross section of the microcapsule with a scanning electron microscope JSM-7800F (manufactured by JEOL Ltd.).
 また、ゼータ電位は、ELSZ-2000ZS(大塚電子株式会社製)を用いて測定した。以下のように、スラリーの各々に対して3回測定し、3回の測定値を平均してゼータ電位(単位:mV)を求めた。
(i)対象とするカプセルを含有するスラリーをカプセル濃度として0.5質量%となるように水に加え、スラリーを希釈した。測定濃度は必要に応じて、計測率が自動検出により好ましい範囲になるように調整した。
(ii)希釈した試料のゼータ電位を、試料を濾過せずに測定した。
(iii)濾過したスラリーを標準セルユニット(大塚電子株式会社製)に注入し、セルを装置に挿入した。試験温度は25℃に設定した。
(iv)温度が安定してから(通常3~5分後)測定を開始した。それぞれの試料について、5回の測定を行う設定とした。
The zeta potential was measured using ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.). As described below, the measurement was performed three times for each of the slurries, and the zeta potential (unit: mV) was obtained by averaging the three measurement values.
(I) The slurry containing the target capsule was added to water so that the capsule concentration would be 0.5% by mass, and the slurry was diluted. The measurement concentration was adjusted as necessary so that the measurement rate was in a preferable range by automatic detection.
(Ii) The zeta potential of the diluted sample was measured without filtering the sample.
(Iii) The filtered slurry was poured into a standard cell unit (manufactured by Otsuka Electronics Co., Ltd.), and the cell was inserted into the apparatus. The test temperature was set at 25 ° C.
(Iv) The measurement was started after the temperature was stabilized (usually after 3 to 5 minutes). Each sample was set to perform five measurements.
(実施例1)
-評価用サンプルの作製-
 溶媒としてサラコス(登録商標)HG-8(日清オイリオグループ株式会社製)18.2質量部と、香料であるD-リモネン(ヤスハラケミカル株式会社製;香料)54.7質量部と、シェル材として、3官能の芳香族イソシアネート化合物であるバーノック(登録商標)D-750(DIC株式会社製、トリレンジイソシアネートトリメチロールプロパンアダクト体)1.1質量部、及び3官能の脂肪族イソシアネート化合物であるタケネート(登録商標)D-160N(三井化学株式会社製、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体)2.3質量部と、4,4’-ジフェニルメタンジイソシアネート(MDI、和光純薬工業株式会社製;特定ジイソシアネート化合物)0.8質量部と、を撹拌混合して油相を得た。
 次に、ポリビニルアルコールであるクラレポバール(登録商標)PVA-217E(株式会社クラレ製;PVA)の5.8質量%水溶液を用意した。この水溶液157質量部に油相を加えて分散した後、生成した乳化液を70℃まで加温し、1時間撹拌した。続いて、冷却した後、10質量%水酸化ナトリウム水溶液を3.8質量部添加し、マイクロカプセル水分散液を得た。
Example 1
-Preparation of sample for evaluation-
Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd.) 18.2 parts by mass as a solvent, D-limonene (manufactured by Yashara Chemical Co., Ltd .; fragrance) 54.7 parts by mass, and a shell material Burnock (registered trademark) D-750 (tridicylene isocyanate trimethylolpropane adduct) manufactured by DIC Corporation, which is a trifunctional aromatic isocyanate compound, 1.1 parts by mass, and Takenate, which is a trifunctional aliphatic isocyanate compound (Registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct), 2.3 parts by mass, and 4,4′-diphenylmethane diisocyanate (MDI, manufactured by Wako Pure Chemical Industries, Ltd .; specific diisocyanate Compound) 0.8 parts by mass and stirring to obtain an oil phase It was.
Next, a 5.8 mass% aqueous solution of Kuraray Poval (registered trademark) PVA-217E (manufactured by Kuraray Co., Ltd .; PVA), which is polyvinyl alcohol, was prepared. After adding and dispersing the oil phase in 157 parts by mass of this aqueous solution, the produced emulsion was heated to 70 ° C. and stirred for 1 hour. Then, after cooling, 3.8 mass parts of 10 mass% sodium hydroxide aqueous solution was added, and the microcapsule aqueous dispersion liquid was obtained.
 得られたマイクロカプセルの体積基準のメジアン径(D50)は17μmであった。
 また、粒径分布のCV値[=(標準偏差/体積平均粒径)×100]は35%であった。マイクロカプセル水分散液のゼータ電位は0mVであった。
The volume-based median diameter (D50) of the obtained microcapsules was 17 μm.
The CV value [= (standard deviation / volume average particle size) × 100] of the particle size distribution was 35%. The zeta potential of the microcapsule aqueous dispersion was 0 mV.
 上記で得られたマイクロカプセルの香料換算1.0質量%と、カチオン性界面活性剤であるジアルキルエステル型4級アンモニウム塩を含む無香料柔軟剤(ULTRA Downy、プロクター・アンド・ギャンブル・ジャパン株式会社製)99質量%と、を混合してマイクロカプセル含有組成物とした。次いで、マイクロカプセル含有組成物5質量部と水95質量部とを混合し、これに木綿タオル(35cm×35cm)を20分浸漬し、絞った後24時間乾燥し、評価用サンプルを作製した。 Perfume conversion 1.0% by mass of the microcapsules obtained above and a non-fragrance softener containing a dialkyl ester type quaternary ammonium salt that is a cationic surfactant (ULTRA Downy, Procter & Gamble Japan Co., Ltd.) 99% by mass) was mixed to obtain a microcapsule-containing composition. Next, 5 parts by mass of the microcapsule-containing composition and 95 parts by mass of water were mixed, and a cotton towel (35 cm × 35 cm) was immersed in this for 20 minutes, squeezed and then dried for 24 hours to prepare a sample for evaluation.
-評価-
(徐放性の官能評価)
 上記で得た評価サンプル(木綿タオル)を25℃で経時し、香りの強度を24時間おきに10人のパネラーに評価してもらった。以下の基準で点数をつけ、5回の平均値(整数に四捨五入)を求めて徐放性を評価する指標とした。
 <評価基準>
0点:乾燥直後でも香りがしない。
1点:乾燥直後は香りがするが、24時間経時した時点では香りがしない。
2点:24時間以降も香りがするが、48時間経時した時点は香りがしない。
3点:48時間以降も香りがするが、72時間経時した時点は香りがしない。
4点:72時間以降も香りがする。
-Evaluation-
(Sensory evaluation of sustained release)
The evaluation sample (cotton towel) obtained above was aged at 25 ° C., and the scent intensity was evaluated by 10 panelists every 24 hours. The score was given according to the following criteria, and an average value of 5 times (rounded to the nearest whole number) was obtained as an index for evaluating sustained release.
<Evaluation criteria>
0 point: There is no scent immediately after drying.
1 point: Scented immediately after drying, but not scented after 24 hours.
2 points: scented after 24 hours, but not scented after 48 hours.
3 points: scented after 48 hours, but not scented after 72 hours.
4 points: Scented after 72 hours.
(香り強度の官能評価)
 上記で得た評価サンプル(木綿タオル)を5回擦り合わせた後、発生した香りの強度を10人のパネラーに評価してもらい、実施例1の香りの強度を基準(3点)とした。そして、各実施例及び比較例で作製した評価サンプルに対し、6段階に分けて点数(0点(香り強度弱い)~5点(香り強度強い))をつけ、平均値(整数に四捨五入)を求めて定性評価を行った。
(Sensory evaluation of fragrance strength)
After the evaluation sample (cotton towel) obtained above was rubbed 5 times, the strength of the generated scent was evaluated by 10 panelists, and the scent strength of Example 1 was used as a reference (3 points). The evaluation samples prepared in each Example and Comparative Example were scored in 6 steps (0 points (weak fragrance strength) to 5 points (strong fragrance strength)), and the average value (rounded to an integer) The qualitative evaluation was performed.
(香料の抽出量(マイクロカプセルの付着量))
 上記で得た評価サンプル(木綿タオル)の6分の1をジメチルスルホキシド100gに浸漬し、24時間静置することで、マイクロカプセル内部の香料を抽出した。
 抽出終了後のジメチルスルホキシド溶液に対して、ガスクロマトグラフィー質量分析法(GC/MS)を施して香料の抽出量を定量し、マイクロカプセルの付着量を評価する指標とした。
(Aroma extract amount (microcapsule adhesion amount))
One-sixth of the evaluation sample (cotton towel) obtained above was immersed in 100 g of dimethyl sulfoxide and allowed to stand for 24 hours to extract the fragrance inside the microcapsule.
The dimethyl sulfoxide solution after completion of the extraction was subjected to gas chromatography mass spectrometry (GC / MS) to quantify the extracted amount of the fragrance, and used as an index for evaluating the adhesion amount of the microcapsules.
(実施例2~実施例8)
 実施例1において、使用するイソシアネート化合物の組合せを表1に示すように変更したこと以外は、実施例1と同様にして、マイクロカプセル水分散液を得た。
 得られたマイクロカプセルの体積基準のメジアン径、標準偏差、体積平均粒径、ゼータ電位、及びシェル厚(壁厚)は、実施例1と同様に測定した。
(Example 2 to Example 8)
A microcapsule aqueous dispersion was obtained in the same manner as in Example 1 except that the combination of isocyanate compounds used in Example 1 was changed as shown in Table 1.
The volume-based median diameter, standard deviation, volume average particle diameter, zeta potential, and shell thickness (wall thickness) of the obtained microcapsules were measured in the same manner as in Example 1.
(実施例9~実施例33)
 実施例1において、ポリビニルアルコールをアニオン変性ポリビニルアルコールに代え、かつ、イソシアネート化合物の種類及び混合比を表1に示すように変更したこと以外は、実施例1と同様にして、マイクロカプセル水分散液を得た。
 得られたマイクロカプセルの体積基準のメジアン径、標準偏差、体積平均粒径、ゼータ電位、及びシェル厚(壁厚)は、実施例1と同様に測定した。
(Example 9 to Example 33)
In Example 1, a microcapsule aqueous dispersion was used in the same manner as in Example 1 except that polyvinyl alcohol was replaced with anion-modified polyvinyl alcohol and the type and mixing ratio of the isocyanate compound were changed as shown in Table 1. Got.
The volume-based median diameter, standard deviation, volume average particle diameter, zeta potential, and shell thickness (wall thickness) of the obtained microcapsules were measured in the same manner as in Example 1.
(比較例1~2)
 実施例1において、ポリイソシアネートを表1に示すように変更したこと以外は、実施例1と同様にして、マイクロカプセル水分散液を得た。得られたマイクロカプセルの体積基準のメジアン径、標準偏差、体積平均粒径、ゼータ電位、及びシェル厚(壁厚)は、実施例1と同様に測定した。
(Comparative Examples 1 and 2)
A microcapsule aqueous dispersion was obtained in the same manner as in Example 1 except that the polyisocyanate was changed as shown in Table 1 in Example 1. The volume-based median diameter, standard deviation, volume average particle diameter, zeta potential, and shell thickness (wall thickness) of the obtained microcapsules were measured in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中の成分の詳細は以下の通りである。
 217E:クラレポバールPVA―217E(部分ケン化ポリビニルアルコール)、株式会社クラレ製
 KM-618:クラレポバールKM-618(アニオン変性ポリビニルアルコール)、株式会社クラレ製
 KL-318:クラレポバールKL-318(アニオン変性ポリビニルアルコール)、株式会社クラレ製
 L-3266:ゴーセノールL-3266(アニオン変性ポリビニルアルコール)、日本合成化学株式会社製
 D-750:バーノックD-750(トリレンジイソシアネートトリメチロールプロパンアダクト体;3官能以上の芳香族イソシアネート化合物)、DIC社製
 D-160N:タケネートD-160N(ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体;3官能の脂肪族イソシアネート化合物)、三井化学株式会社製
 MDI:4,4’-ジフェニルメタンジイソシアネート(和光純薬工業株式会社製)
 HDI:ヘキサメチレンジイソシアネート(和光純薬工業株式会社製)
 DMDI:4,4’-ジシクロヘキシルメタンジイソシアネート(和光純薬工業株式会社製)
 THDI:トリメチルヘキサメチレンジイソシアネート(和光純薬工業株式会社製)
Details of the components in Table 1 are as follows.
217E: Kuraray Poval PVA-217E (partially saponified polyvinyl alcohol), Kuraray Co., Ltd. KM-618: Kuraray Poval KM-618 (anion-modified polyvinyl alcohol), Kuraray Co., Ltd. KL-318: Kuraray Poval KL-318 (anion) Modified polyvinyl alcohol), Kuraray Co., Ltd. L-3266: Gohsenol L-3266 (anion-modified polyvinyl alcohol), Nippon Synthetic Chemical Co., Ltd. D-750: Vernock D-750 (tolylene diisocyanate trimethylolpropane adduct; trifunctional The above aromatic isocyanate compound), DIC Corporation D-160N: Takenate D-160N (hexamethylene diisocyanate trimethylolpropane adduct; trifunctional aliphatic isocyanate compound), Made well Chemical Co., Ltd. MDI: 4,4'- diphenylmethane diisocyanate (manufactured by Wako Pure Chemical Industries, Ltd.)
HDI: Hexamethylene diisocyanate (Wako Pure Chemical Industries, Ltd.)
DMDI: 4,4′-dicyclohexylmethane diisocyanate (manufactured by Wako Pure Chemical Industries, Ltd.)
THDI: Trimethylhexamethylene diisocyanate (Wako Pure Chemical Industries, Ltd.)
 表1に示すように、実施例では、比較例1及び比較例2に比べ、長期に亘る徐放性が発現されていることが分かる。また、実施例のマイクロカプセルは、繊維への付着性も良好であり、繊維に付着した状態で保持され、一定の強度の芳香性(香り)発現させることができた。
 また、実施例9~16のマイクロカプセルは、表面にアニオン電荷が付されていない実施例1~8のマイクロカプセルに比べ、より長期に亘る徐放性が得られており、繊維への付着性の点でも優れていた。
 実施例17~21又は実施例22~27のマイクロカプセルを対比すると、徐放性の点で、3官能以上の脂肪族イソシアネート化合物と特定ジイソシアネート化合物の量的関係に好ましい範囲があることが分かる。また、繊維へのマイクロカプセルの付着性の点では、特定ジイソシアネートの比率がより低くなるにしたがい、良好になることが分かる。
 また、実施例28~29を踏まえると、マイクロカプセルのゼータ電位は、-50meV~-10meVの範囲が好適である。
 さらに、マイクロカプセルのシェルの厚みとしては、実施例32~33を実施例9と対比すると、0.05μm~0.2μmが好ましいと考えられる。
As shown in Table 1, in the Examples, it can be seen that sustained release characteristics over a long period of time are expressed as compared with Comparative Examples 1 and 2. In addition, the microcapsules of the examples had good adhesion to the fibers, were held in the state of being adhered to the fibers, and were able to express a certain degree of fragrance (fragrance).
In addition, the microcapsules of Examples 9 to 16 have sustained release properties over a longer period of time than the microcapsules of Examples 1 to 8 that do not have an anionic charge on the surface. Was also excellent.
Comparing the microcapsules of Examples 17 to 21 or Examples 22 to 27, it can be seen that there is a preferable range in the quantitative relationship between the tri- or higher functional aliphatic isocyanate compound and the specific diisocyanate compound in terms of sustained release. Moreover, it turns out that it becomes favorable in terms of the adhesion property of the microcapsule to the fiber as the ratio of the specific diisocyanate becomes lower.
Further, considering Examples 28 to 29, the zeta potential of the microcapsule is preferably in the range of −50 meV to −10 meV.
Furthermore, it is considered that the thickness of the shell of the microcapsule is preferably 0.05 μm to 0.2 μm when Examples 32 to 33 are compared with Example 9.
 本開示のマイクロカプセルは、コア材(特に香料)を内包する態様で好適に利用でき、香料の保護、刺激応答性等の種々の好ましい機能を発揮することができる。 The microcapsules of the present disclosure can be suitably used in a mode of enclosing a core material (particularly a fragrance), and can exhibit various preferable functions such as fragrance protection and stimulus responsiveness.

Claims (9)

  1.  コアを内包するシェルのシェル材として、3官能以上の脂肪族イソシアネート化合物に由来する構造と、2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造と、を有するポリウレタン又はポリウレアを含むマイクロカプセル。 The shell material of the shell enclosing the core is selected from a structure derived from a tri- or higher functional aliphatic isocyanate compound, a structure derived from a bifunctional aliphatic isocyanate compound, and a structure derived from a bifunctional aromatic isocyanate compound. A microcapsule comprising polyurethane or polyurea having at least one structure.
  2.  前記3官能以上の脂肪族イソシアネート化合物に由来する構造の、シェル材の全質量に占める割合が、20質量%~90質量%である請求項1に記載のマイクロカプセル。 The microcapsule according to claim 1, wherein a ratio of the structure derived from the trifunctional or higher functional aliphatic isocyanate compound to the total mass of the shell material is 20 mass% to 90 mass%.
  3.  前記2官能の脂肪族イソシアネート化合物に由来する構造及び前記2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造の、シェル材の全質量に占める割合が、10質量%~70質量%である請求項1又は請求項2に記載のマイクロカプセル。 The ratio of at least one structure selected from the structure derived from the bifunctional aliphatic isocyanate compound and the structure derived from the bifunctional aromatic isocyanate compound to the total mass of the shell material is 10% by mass to 70% by mass. The microcapsule according to claim 1 or 2, which is%.
  4.  前記コアがコア材として香料を含む請求項1~請求項3のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 3, wherein the core includes a fragrance as a core material.
  5.  請求項1~請求項4のいずれか1項に記載のマイクロカプセルと、水系溶媒と、を含有するマイクロカプセル含有組成物。 A microcapsule-containing composition comprising the microcapsule according to any one of claims 1 to 4 and an aqueous solvent.
  6.  前記マイクロカプセルは、表面にアニオン電荷を有し、かつ、更にカチオン性界面活性剤を含有する請求項5に記載のマイクロカプセル含有組成物。 The microcapsule-containing composition according to claim 5, wherein the microcapsule has an anionic charge on the surface and further contains a cationic surfactant.
  7.  前記マイクロカプセルが、表面の少なくとも一部にアニオン変性ポリビニルアルコールを有する請求項6に記載のマイクロカプセル含有組成物。 The microcapsule-containing composition according to claim 6, wherein the microcapsule has an anion-modified polyvinyl alcohol on at least a part of its surface.
  8.  前記マイクロカプセルのゼータ電位が、-80meV~-5meVである請求項5~請求項7のいずれか1項に記載のマイクロカプセル含有組成物。 The microcapsule-containing composition according to any one of claims 5 to 7, wherein the microcapsule has a zeta potential of -80 meV to -5 meV.
  9.  洗濯、デイケア、又はヘアケアの用途に用いられる請求項5~請求項8のいずれか1項に記載のマイクロカプセル含有組成物。 The microcapsule-containing composition according to any one of claims 5 to 8, which is used for washing, day care, or hair care.
PCT/JP2019/006372 2018-03-05 2019-02-20 Microcapsule and microcapsule-containing composition WO2019171959A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018038779A JP2021073166A (en) 2018-03-05 2018-03-05 Microcapsule and microcapsule-containing composition
JP2018-038779 2018-03-05

Publications (1)

Publication Number Publication Date
WO2019171959A1 true WO2019171959A1 (en) 2019-09-12

Family

ID=67847231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006372 WO2019171959A1 (en) 2018-03-05 2019-02-20 Microcapsule and microcapsule-containing composition

Country Status (2)

Country Link
JP (1) JP2021073166A (en)
WO (1) WO2019171959A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222866A (en) * 1984-04-20 1985-11-07 Konishiroku Photo Ind Co Ltd Microcapsule type toner
JPS60222870A (en) * 1984-04-20 1985-11-07 Konishiroku Photo Ind Co Ltd Microcapsule type toner
JPS60222869A (en) * 1984-04-20 1985-11-07 Konishiroku Photo Ind Co Ltd Microcapsule type toner
JPS60222868A (en) * 1984-04-20 1985-11-07 Konishiroku Photo Ind Co Ltd Microcapsule type toner
JP2013530825A (en) * 2010-06-11 2013-08-01 フイルメニツヒ ソシエテ アノニム Method for producing polyurea microcapsules
JP2014507433A (en) * 2011-02-07 2014-03-27 フイルメニツヒ ソシエテ アノニム Polyurea microcapsule
JP2014526954A (en) * 2011-06-28 2014-10-09 フイルメニツヒ ソシエテ アノニム Method for producing polyurea microcapsules
WO2017099946A1 (en) * 2015-12-11 2017-06-15 Rohm And Haas Company Concentrated polyolefin emulsions and personal care compositions containing them
JP2017520400A (en) * 2014-06-13 2017-07-27 フイルメニツヒ ソシエテ アノニムFirmenich Sa Method for producing polyurea microcapsules with improved adhesion
WO2017135087A1 (en) * 2016-02-05 2017-08-10 富士フイルム株式会社 Microcapsules, aqueous dispersion, production method for aqueous dispersion, and image formation method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222866A (en) * 1984-04-20 1985-11-07 Konishiroku Photo Ind Co Ltd Microcapsule type toner
JPS60222870A (en) * 1984-04-20 1985-11-07 Konishiroku Photo Ind Co Ltd Microcapsule type toner
JPS60222869A (en) * 1984-04-20 1985-11-07 Konishiroku Photo Ind Co Ltd Microcapsule type toner
JPS60222868A (en) * 1984-04-20 1985-11-07 Konishiroku Photo Ind Co Ltd Microcapsule type toner
JP2013530825A (en) * 2010-06-11 2013-08-01 フイルメニツヒ ソシエテ アノニム Method for producing polyurea microcapsules
JP2014507433A (en) * 2011-02-07 2014-03-27 フイルメニツヒ ソシエテ アノニム Polyurea microcapsule
JP2014526954A (en) * 2011-06-28 2014-10-09 フイルメニツヒ ソシエテ アノニム Method for producing polyurea microcapsules
JP2017520400A (en) * 2014-06-13 2017-07-27 フイルメニツヒ ソシエテ アノニムFirmenich Sa Method for producing polyurea microcapsules with improved adhesion
WO2017099946A1 (en) * 2015-12-11 2017-06-15 Rohm And Haas Company Concentrated polyolefin emulsions and personal care compositions containing them
WO2017135087A1 (en) * 2016-02-05 2017-08-10 富士フイルム株式会社 Microcapsules, aqueous dispersion, production method for aqueous dispersion, and image formation method

Also Published As

Publication number Publication date
JP2021073166A (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP6911014B2 (en) Encapsulation
WO2020195132A1 (en) Perfume microcapsules, perfume microcapsule composition, softener, and detergent
KR101833084B1 (en) Process for producing microcapsules
US11504689B2 (en) Encapsulated perfume compositions and methods of preparing them
US20150044262A1 (en) Encapsulation of perfumes
KR20170072344A (en) Capsule composition
US20230166230A1 (en) Encapsulated composition comprising core-shell microcapsules and process for its preparation
CN107106469B (en) Improvements in or relating to organic compounds
WO2020194910A1 (en) Microcapsules, microcapsule composition, softener, and detergent
JP2023512861A (en) Polyurea capsules crosslinked with chitosan
JP2019167455A (en) Manufacturing method of micro capsule and manufacturing method of micro capsule-containing composition
WO2019171929A1 (en) Microcapsule-containing composition
WO2019181668A1 (en) Microcapsule-containing composition, laundry composition, daycare composition and haircare composition
JP2019150783A (en) Manufacturing method of microcapsule and manufacturing method of microcapsule-containing composition
WO2019171959A1 (en) Microcapsule and microcapsule-containing composition
WO2019187835A1 (en) Microcapsule-containing composition
EP3515589B1 (en) Improvements in or relating to organic compounds
WO2020066159A1 (en) Microcapsule and microcapsule-containing composition
JP2021073323A (en) Microcapsule-containing composition
JP2019151759A (en) Method of manufacturing microcapsule, and method of manufacturing microcapsule-containing composition
WO2019181682A1 (en) Microcapsule-containing composition, laundering composition, day-care composition, and hair-care composition
JP2021053594A (en) Microcapsule, microcapsule composition and production method of the same, as well as softener and detergent
RU2774912C2 (en) Encapsulated perfume composition and its production method
WO2023064204A1 (en) Gelatin based urethane/urea microcapsules
BR112020016366B1 (en) PROCESS FOR PREPARING AN ENCAPSULATED FRAGRANCE COMPOSITION, USE OF AN ANIONICALLY MODIFIED POLYISOCYANATE, ENCAPSULATED FRAGRANCE COMPOSITION AND CONSUMER PRODUCT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP