WO2020189772A1 - 間欠連結型光ファイバテープ心線、光ファイバケーブルおよびコネクタ付き光ファイバコード - Google Patents

間欠連結型光ファイバテープ心線、光ファイバケーブルおよびコネクタ付き光ファイバコード Download PDF

Info

Publication number
WO2020189772A1
WO2020189772A1 PCT/JP2020/012419 JP2020012419W WO2020189772A1 WO 2020189772 A1 WO2020189772 A1 WO 2020189772A1 JP 2020012419 W JP2020012419 W JP 2020012419W WO 2020189772 A1 WO2020189772 A1 WO 2020189772A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core wire
tape core
fiber tape
intermittently connected
Prior art date
Application number
PCT/JP2020/012419
Other languages
English (en)
French (fr)
Inventor
佐藤 文昭
健太 土屋
天野 亜夫
高見 正和
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP20773448.4A priority Critical patent/EP3943992A4/en
Priority to US17/440,594 priority patent/US20220196945A1/en
Priority to JP2021507426A priority patent/JPWO2020189772A1/ja
Publication of WO2020189772A1 publication Critical patent/WO2020189772A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • G02B6/4404Multi-podded
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/25Preparing the ends of light guides for coupling, e.g. cutting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2553Splicing machines, e.g. optical fibre fusion splicer

Definitions

  • the present disclosure relates to intermittently connected optical fiber tape core wires, optical fiber cables and optical fiber cords with connectors.
  • This application claims the priority based on Japanese Application No. 2019-052762 filed on March 20, 2019, and incorporates all the contents described in the Japanese application.
  • Patent Document 1 the optical fiber tape resin is divided by intermittently provided divided portions along the longitudinal direction of the optical fiber tape core wire, and is continuously connected to the non-divided portions in the longitudinal direction.
  • the optical fiber tape core wire in which the optical fiber tape resin remains in the state is described.
  • Patent Document 2 describes an optical fiber tape core wire in which three or more optical fibers are arranged in parallel. An optical fiber tape core wire is described in which two optical fibers adjacent to each other are connected by a connecting portion, and the connecting portion is intermittently provided in the longitudinal direction of the tape core wire and the width direction of the tape core wire, respectively. Further, Patent Document 2 describes that the outer diameter dimension of the optical fiber constituting the optical fiber tape core wire is 220 ⁇ m or less, and the distance between the centers of adjacent optical fibers is 250 ⁇ 30 ⁇ m.
  • the intermittently connected optical fiber tape core wire is In a state where a plurality of optical fiber core wires are arranged in parallel in a direction orthogonal to the longitudinal direction of the plurality of optical fiber core wires, adjacent light in a part or all of the plurality of optical fiber core wires.
  • An intermittently connected optical fiber in which a connecting portion in which the fiber cores are connected and a non-connecting portion in which the adjacent optical fiber cores are not connected are intermittently provided in the longitudinal direction. It is a tape core wire
  • the outer diameter of each of the plurality of optical fiber core wires is 160 ⁇ m or more and 220 ⁇ m or less.
  • the amount of categorization at the tip of the intermittently connected optical fiber tape core wire is 0.1 mm or more and 2 mm or less.
  • optical fiber cable is An optical fiber cable on which the above-mentioned intermittently connected optical fiber tape core wire is mounted.
  • the core density is 4.5 cores / mm 2 or more.
  • the optical fiber cord with a connector is It has an optical fiber cord including the intermittently connected optical fiber tape core wire, and a connector connected to the optical fiber cord.
  • FIG. 1 is a diagram showing an example of an intermittently connected optical fiber tape core wire according to the present embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA of the intermittently connected optical fiber tape core wire shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the line AA of the intermittently connected optical fiber tape core wire shown in FIG. 1 in a state where the non-connected portion is not expanded.
  • FIG. 4 is a diagram showing another example of the intermittently connected optical fiber tape core wire according to the present embodiment.
  • FIG. 5 is a diagram showing still another example of the intermittently connected optical fiber tape core wire according to the present embodiment.
  • FIG. 6 is a diagram for explaining the catenary amount of the intermittently connected optical fiber tape core wire.
  • FIG. 7 is a diagram showing an intermittently connected optical fiber tape core wire set in a fusion splicer holder and a fusion splicer.
  • FIG. 8 is a cross-sectional view showing an example of the optical fiber cable according to the present embodiment.
  • FIG. 9 is a cross-sectional view showing another example of the optical fiber cable according to the present embodiment.
  • FIG. 10 is a perspective view showing an example of an optical fiber cord with a connector according to the present embodiment.
  • FIG. 11 is a front view of a connector insertion / removal portion in the optical fiber cord with a connector shown in FIG.
  • the conventional intermittently connected optical fiber tape core wire such as the optical fiber tape core wire described in Patent Documents 1 and 2 uses a thin optical fiber core wire as described above to form a divided portion or an intermittent pattern (connection).
  • a portion (part, non-connected) portion is formed, the rigidity is lowered and the portion is easily bent. It is difficult to set such an intermittently connected optical fiber tape core wire at an accurate fusion position by using a fiber holder when collectively performing fusion splicing.
  • the optical fiber core wire is bent and easily bent locally.
  • the rigidity of the intermittently connected optical fiber tape core wire is too high, it becomes difficult to deform, so that the intermittently connected optical fiber tape core wire cannot absorb the bending pressure when bending pressure is applied. Therefore, when the optical fiber tape core wire is mounted at a high density on the optical fiber cable, macrobend loss, which is a bending loss due to an extremely small bending radius, is likely to occur.
  • the present disclosure is an intermittent connection type in which even if a small-diameter optical fiber core wire is used, the optical fiber core wire is less likely to bend when collectively performing fusion splicing, and macrobend loss is less likely to occur even when the density is increased. It is an object of the present invention to provide an optical fiber tape core wire, an optical fiber cable, and an optical fiber cord with a connector.
  • the intermittently connected optical fiber tape core wire is (1) In a state where a plurality of optical fiber core wires are arranged in parallel in a direction orthogonal to the longitudinal direction of the plurality of optical fiber core wires, in a part or all of the plurality of optical fiber core wires. Intermittent connection in which a connecting portion in which adjacent optical fiber cores are connected and a non-connecting portion in which adjacent optical fiber cores are not connected are intermittently provided in the longitudinal direction.
  • Type optical fiber tape core wire The outer diameter of each of the plurality of optical fiber core wires is 160 ⁇ m or more and 220 ⁇ m or less.
  • the amount of categorization at the tip of the intermittently connected optical fiber tape core wire is 0.1 mm or more and 2 mm or less.
  • the intermittently connected optical fiber tape core wire of the present disclosure has a catenary amount of 0.1 mm or more and 2 mm or less at the gripped tip even if the optical fiber core wire has an outer diameter of 160 ⁇ m or more and 220 ⁇ m or less. ..
  • the catenary amount is 2 mm or less, the rigidity is moderately large, and the optical fiber core wire set in the fiber holder is less likely to bend. Therefore, the position of the tip of the optical fiber core wire is unlikely to shift when the fusion splicing is performed collectively. Further, when the fused intermittently connected optical fiber tape core wire is conveyed to the protective sleeve heating portion, it is difficult to bend locally.
  • the catenary amount is 0.1 mm or more, the intermittently connected optical fiber tape core wire is not too rigid, can be appropriately deformed with respect to the bending pressure, and can absorb the bending pressure. Therefore, when the intermittently connected optical fiber tape core wire is mounted on the optical fiber cable at a high density, macrobend loss, which is a bending loss due to an extremely small bending radius, is unlikely to occur.
  • the intermittently connected optical fiber tape core wire is The number of the plurality of optical fiber cores may be 16, and the width in the arrangement direction may be 3.5 mm or less. According to this configuration, even if the number of optical fiber cores is 16, the width of the intermittently connected optical fiber tape cores in the arrangement direction is 3.5 mm or less, so that the existing 12-core batch fusion splicer Can be used for batch fusion splicing.
  • the distance between the centers of the adjacent optical fiber core wires may be 200 ⁇ m ⁇ 30 ⁇ m. According to this configuration, since the distance between the centers of the adjacent optical fiber core wires is 200 ⁇ m ⁇ 30 ⁇ m, the width of the intermittently connected optical fiber tape core wires in the arrangement direction can be reduced.
  • the number of the plurality of optical fiber core wires is It may be a multiple of 8 and may have 16 or more cores. According to this configuration, since the number of optical fiber cores is a multiple of 8, bidirectional transmission can be easily performed every four cores. Moreover, since the number of cores is 16 or more, it is easy to increase the rigidity of the intermittently connected optical fiber tape core wire.
  • the plurality of optical fiber core wires include a glass fiber and a two-layer coating layer that covers the periphery of the glass fiber.
  • the inner coating layer of the two coating layers is formed of the primary resin.
  • the outer coating layer of the two coating layers is formed of a secondary resin.
  • the secondary resin may have a Young's modulus of 900 MPa or more at 23 ° C. According to this configuration, since the Young's modulus of the secondary resin at 23 ° C. is 900 MPa or more, the coating layer on the outer side of the optical fiber core wire is appropriately hard. Therefore, microbend loss that occurs when a non-uniform lateral pressure is applied to the optical fiber core wire is unlikely to occur. Therefore, the lateral pressure characteristic of the intermittently connected optical fiber tape core wire is improved.
  • the intermittently connected optical fiber tape core wire is The connecting portion and the non-connecting portion are formed for every four cores. Between the adjacent optical fiber core wires, the connecting portion where the tape resin covering the optical fiber core wires is continuous, and A non-connecting portion in which a slit is formed between the adjacent optical fiber core wires so as to penetrate the upper and lower surfaces of the intermittently connected optical fiber tape core wire with respect to the tape resin. Have, The end portion of the slit may be formed so as to cut at an acute angle with respect to the boundary with the connecting portion.
  • the tape resin of the connecting portion between the optical fiber core wires in which the non-connecting portion is formed can be easily torn from the boundary formed so that the end portion of the slit is cut at an acute angle. .. Since the non-connecting portion is formed for each of the four cores, the intermittently connected optical fiber tape core wire can be easily divided into every four cores or every multiple core of 4.
  • the optical fiber cable according to one aspect of the present disclosure is (8) An optical fiber cable to which the intermittently connected optical fiber tape core wire according to any one of (1) to (7) above is mounted.
  • the core density is 4.5 cores / mm 2 or more.
  • the optical fiber core wire can be mounted at a high density.
  • the rigidity of the intermittently connected optical fiber tape core wire mounted on the optical fiber cable is considered to be moderately high. Therefore, the position of the tip of the optical fiber core wire is set when the intermittently connected optical fiber tape core wire taken out from the optical fiber cable in which the optical fiber core wire is mounted at high density is collectively fused and connected. Hard to slip.
  • the intermittently connected optical fiber tape core wire taken out from the optical fiber cable and fused as described above is not easily bent locally when being conveyed to the protective sleeve heating portion. Further, the intermittently connected optical fiber tape core wire is not too rigid, can be appropriately deformed with respect to the bending pressure, and can absorb the bending pressure. Therefore, when the intermittently connected optical fiber tape core wire is mounted on the optical fiber cable at a high density, macrobend loss, which is a bending loss due to an extremely small bending radius, is unlikely to occur.
  • the optical fiber cord with a connector is (9) The optical fiber cord including the intermittently connected optical fiber tape core wire according to any one of (1) to (7) above, and a connector connected to the optical fiber cord.
  • the intermittently connected optical fiber tape core wire included in the optical fiber cord has moderately high rigidity, so that when the optical fiber cord with a connector is manufactured, it is separated into the optical fiber core wire and set in the connector.
  • each optical fiber core wire is hard to bend. Therefore, since the optical fiber core wires in the connector can be easily set in a desired arrangement at a desired arrangement pitch, it is possible to provide an optical fiber cord with a connector that is easy to manufacture.
  • the intermittently connected optical fiber tape core wire is not too rigid, can be appropriately deformed with respect to the bending pressure, and can absorb the bending pressure. Therefore, even if the density of the optical fiber cord is increased, macrobend loss, which is a bending loss due to the extremely small bending radius, is unlikely to occur.
  • the optical fiber core wire is less likely to bend when collectively performing fusion splicing, and macrobend loss is less likely to occur even when the density is increased.
  • Connected fiber optic tape cores, fiber optic cables and fiber optic cords with connectors can be provided.
  • the optical fiber tape core wire 1 of this example is a plurality of optical fiber core wires 11 (11A to 11P in this example) (the number of optical fiber core wires is 16 in this example). Are arranged in parallel in a direction orthogonal to the longitudinal direction of the optical fiber core wire 11.
  • the 16-core optical fiber core wires 11A to 11P are connected by resin with at least a part of the adjacent optical fiber core wires in contact with each other.
  • the optical fiber tape core wire 1 is a connecting portion in a state in which the optical fiber core wires are connected to each other with a resin for each of the two optical fiber core wires in a part or all of the plurality of optical fiber core wires 11.
  • This is an intermittently connected optical fiber tape core wire in which 12 and a non-connecting portion 13 in which the optical fiber core wires are not connected to each other by a resin are intermittently provided in the longitudinal direction.
  • the optical fiber tape core wire 1 In the optical fiber tape core wire 1, the core wire between the optical fiber core wire 11B and 11C, the core wire between the optical fiber core wire 11D and 11E, the core wire between the optical fiber core wire 11F and 11G, and the optical fiber core wire Between the cores of the wires 11H and 11I, between the cores of the optical fiber cores 11J and 11K, between the cores of the optical fiber cores 11L and 11M, and between the cores of the optical fiber cores 11N and 11O. , A connecting portion 12 and a non-connecting portion 13 are provided.
  • FIG. 1 shows an optical fiber tape core wire 1 in a state in which the non-connecting portion 13 is expanded in the arrangement direction of the optical fiber core wires 11A to 11P.
  • FIG. 2 shows a cross-sectional view taken along the line AA of the optical fiber tape core wire 1 of FIG.
  • FIG. 3 shows a cross-sectional view taken along the line AA of the optical fiber tape core wire 1 in a state where the non-connecting portion 13 is not expanded.
  • an intermittently connected optical fiber tape core wire composed of 16 optical fiber core wires is shown, but the number of optical fiber core wires is not limited to 16.
  • the number of optical fiber cores may be 16 or more and a multiple of 8.
  • the number of optical fiber cores may be, for example, 24 cores, 32 cores, ..., 96 cores, or the like.
  • the optical fiber core wire 11 has, for example, a glass fiber 14 composed of a core and a clad, and a two-layer coating layer that covers the periphery of the glass fiber 14.
  • the inner coating layer of the two coating layers is formed of the primary resin 15.
  • the outer coating layer of the two coating layers is formed of the secondary resin 16.
  • the primary resin 15 in contact with the glass fiber 14 a soft resin having a relatively low Young's modulus is used as the buffer layer.
  • a hard resin having a relatively high Young's modulus is used as the protective layer.
  • the secondary resin 16 has, for example, a Young's modulus at 23 ° C. of 900 MPa or more, preferably 1000 MPa or more, and more preferably 1500 MPa or more.
  • the primary resin 15 and the secondary resin 16 are formed of, for example, an ultraviolet curable resin, a thermosetting resin, or the like.
  • a tape resin 17 for connecting the optical fiber core wires 11A to 11P is provided around the optical fiber core wire 11.
  • the optical fiber core wires 11A to 11P are arranged in parallel in a contacted state, and are collectively covered with a tape resin 17 and connected.
  • the tape resin 17 to be collectively coated is provided so as to have a recess 17a between the cores of the optical fiber cores according to the recess formed between the cores of the adjacent optical fiber cores.
  • a connecting portion 12 and a non-connecting portion 13 are intermittently provided in the longitudinal direction for each of the two optical fiber core wires as described above. In this way, the cores of each of the two optical fiber cores in the optical fiber tape core 1 are intermittently connected by the tape resin 17 in the longitudinal direction of the optical fiber tape core 1.
  • the non-connecting portion 13 of the optical fiber tape core wire 1 has a connecting portion at the end of the slit 13a penetrating the upper and lower surfaces of the optical fiber tape core wire 1 with respect to the tape resin 17. It is formed so as to cut sharply with respect to the boundary 13b with 12.
  • Such a slit 13a is formed by cutting the tape resin 17 of the recess 17a provided between the core wires of the optical fiber core wire.
  • the outer diameter B (see FIG. 3) of each of the optical fiber core wires 11A to 11P is 160 ⁇ m or more and 220 ⁇ m or less.
  • the distance C between the centers of adjacent optical fiber core wires in the optical fiber core wires 11A to 11P is 170 ⁇ m or more and 230 ⁇ m or less.
  • the thickness D of the optical fiber tape core wire 1 is 255 ⁇ m or less.
  • the width E of the optical fiber tape core wire 1 (width in the direction in which the optical fiber core wires are arranged) E is 3.5 mm or less when the number of optical fiber core wires is 16.
  • the optical fiber tape core wire 1 of this example has a configuration in which the optical fiber core wires 11A to 11P are arranged in parallel in contact with each other and the periphery thereof is covered with the tape resin 17, but the configuration is not limited to this.
  • the optical fiber core wires 11A to 11P are arranged in parallel in a state where there is a slight gap between the adjacent optical fiber core wires, and the optical fiber core wire is in a state where the tape resin 17 is inserted in the gap between the core wires. It may be configured to cover 11A to 11P.
  • FIG. 4 is a diagram showing another example of the optical fiber tape core wire according to the present embodiment.
  • the optical fiber tape core wire 2 of this example every two optical fiber core wires are provided in that a connecting portion 22 and a non-connecting portion 23 are provided between the optical fiber core wires. It is different from the optical fiber tape core wire 1 of FIG. 1 in which the connecting portion 12 and the non-connecting portion 13 are provided.
  • the non-connecting portion 23 is formed so that the end portion of the slit 23a is cut at an acute angle with respect to the boundary 23b with the connecting portion 22, similarly to the non-connecting portion 13 in the optical fiber tape core wire 1 of FIG.
  • the optical fiber tape core wire 2 has 16 core optical fiber core wires 21 (21A to 21P in this example), and the number of optical fiber core wires is the same as that of the optical fiber tape core wire 1 of FIG. is there.
  • Other configurations for example, the glass fiber and coating layer constituting the optical fiber core wire, the outer diameter B of the optical fiber core wire and the distance C between the centers, the bending loss of the optical fiber core wire, and the thickness D of the optical fiber tape core wire.
  • the width E and the like are the same as those of the optical fiber tape core wire 1 of FIG.
  • FIG. 5 is a diagram showing still another example of the optical fiber tape core wire according to the present embodiment.
  • the optical fiber tape core wire 3 of this example has two optical fiber cores in that a connecting portion 32 and a non-connecting portion 33 are provided for each of the four optical fiber core wires. This is different from the optical fiber tape core wire 1 of FIG. 1, in which a connecting portion 12 and a non-connecting portion 13 are provided for each wire.
  • the non-connecting portion 33 is formed so that the end portion of the slit 33a is cut at an acute angle with respect to the boundary 33b with the connecting portion 32, similarly to the non-connecting portion 13 in the optical fiber tape core wire 1 of FIG.
  • the optical fiber tape core wire 3 has 16 core optical fiber core wires 31 (31A to 31P in this example), and the number of optical fiber core wires is the same as that of the optical fiber tape core wire 1 of FIG. is there.
  • Other configurations are the same as those of the optical fiber tape core wire 2 shown in FIG. 4 and the same as the optical fiber tape core wire 1 of FIG.
  • FIG. 6 is a diagram for explaining the catenary amount of the above-mentioned optical fiber tape core wires 1, 2, and 3.
  • the misalignment error of the optical fiber core wire at the time of fusion and specify the appropriate rigidity of the optical fiber tape core wire.
  • the tip F means a tip portion when the optical fiber tape core wire 1 (2, 3) is cut in a direction orthogonal to the longitudinal direction of the optical fiber tape core wire 1 (2, 3).
  • the optical fiber is set so that the catalyst amount H of the tip F of the optical fiber tape core wire 1 (2, 3) is 2 mm or less. It defines the rigidity of the tape core wire 1 (2, 3).
  • FIG. 7 shows the positional relationship between the fusion splicer 50 and the optical fiber tape core wire 1 (2, 3) set in the fiber holder 40 when the optical fiber tape core wire 1 (2, 3) is fused. It is a figure.
  • the fusion splicer 50 has a V-groove 51 in which the optical fiber core wires 11 (21, 31) of the optical fiber tape core wires 1 (2, 3) are housed, and a pair for discharging.
  • a discharge unit 52 having an electrode of the above is provided.
  • Up to is the state of the optical fiber tape core wire 1 (2, 3) containing the tape resin 17.
  • the portion having a length L 0.5 mm to 2 mm from the tip of the optical fiber core wire 11 (21, 31) is in the state of the glass fiber 14 from which the primary resin 15 and the secondary resin 16 have been peeled off.
  • two optical fiber tape core wires set in the two fiber holders 40 are attached to the fusion splicer 50 so that the tips of the glass fibers 14 are abutted between the pair of electrodes of the discharge unit 52. Be placed.
  • each V groove 51 of the fusion splicer 50 accommodates the optical fiber core wire 11 (21, 31) portion from which the tape resin 17 has been peeled off.
  • an arc discharge is performed from the pair of electrodes of the discharge unit 52, and the two optical fiber tape core wires 1 (2, 3) are fused to each other.
  • the catenary amount H at the tip F of the optical fiber tape core wire 1 (2, 3) is set to 0.1 mm or more. It defines the rigidity of the optical fiber tape core wire 1 (2, 3).
  • each of the optical fiber core wires 11 (21, 31) of the optical fiber tape core wire 1 (2, 3) is 160 ⁇ m or more and 220 ⁇ m or less.
  • the optical fiber tape core wire 1 (2, 3) has a catenary at the tip when the optical fiber tape core wire 1 (2, 3) is horizontally gripped from a position of 30 mm to a predetermined position with reference to the tip of the optical fiber tape core wire 1 (2, 3).
  • the amount is configured to be 0.1 mm or more and 2 mm or less.
  • the optical fiber tape core wire 1 (2, 3) Since the amount of the catenary of the optical fiber tape core wire 1 (2, 3) is 2 mm or less, the rigidity is moderately high, and the optical fiber tape core wire 1 (2, 3) is set in the fiber holder 40 at the time of fusion. However, the optical fiber core wire 11 (21, 31) is hard to bend. Therefore, the tips of the optical fiber tape core wires 1 (2, 3) do not spread in the width direction for each core wire when the fusion connection is performed collectively, and the axes of the optical fiber tape core wires to be fused are fused. It is possible to make it difficult for deviation to occur.
  • the optical fiber tape core wire 1 (2, 3) is transported to, for example, the protective sleeve heating portion in the next manufacturing process, the optical fiber tape core wire 1 (2, 3) is locally bent. Can be made less likely to occur. Therefore, in this example, the connection work of the optical fiber tape core wire 1 (2, 3) can be efficiently performed.
  • the catenary amount of the optical fiber tape core wire 1 (2, 3) is 0.1 mm or more, the rigidity is not too large. Therefore, the optical fiber tape core wire 1 (2, 3) can be appropriately deformed with respect to the bending pressure, and can absorb the bending pressure. Therefore, when the optical fiber tape core wires 1 (2, 3) are mounted at high density on the optical fiber cable, macrobend loss due to the extremely small bending radius is unlikely to occur.
  • the secondary resin 16 forming the outer coating layer of the optical fiber core wire 11 (21, 31) has a Young's modulus of 900 MPa or more at 23 ° C., for example. Since the secondary resin 16 is moderately hard, microbend loss is unlikely to occur even when a non-uniform lateral pressure is applied to the optical fiber core wires 11 (21, 31). Therefore, in this example, the lateral pressure characteristic of the optical fiber tape core wire 1 (2, 3) can be improved.
  • the optical fiber tape core wires 1 (2, 3) are configured such that the number of optical fiber core wires is 16 and the width in the arrangement direction thereof is 3.5 mm or less. This width is equivalent to the width of a conventional 12-core optical fiber tape core wire having an outer diameter of 250 ⁇ m. As a result, in this example, the optical fiber tape core wires 1 (2, 3) are collectively fused and connected using the existing 12-core batch fusion splicer even if the number of optical fiber cores is 16. Can be done.
  • the optical fiber tape core wire 1 (2, 3) is configured such that the distance C between the centers of the adjacent optical fiber core wires 11 (21, 31) is 200 ⁇ m ⁇ 30 ⁇ m, this example is an optical fiber.
  • the width of the optical fiber core wire 11 (21, 31) in the tape core wire 1 (2, 3) in the arrangement direction can be reduced.
  • the conventional 12-core optical fiber tape core wire when performing bidirectional transmission for each of the 4 cores, 8 of the 12 cores may be used and the remaining 4 cores may not be used.
  • the optical fiber tape core wires 1 (2, 3) are multiple cores of 8, all the optical fiber core wires 11 (21, 31) are used in both directions every four cores. Easy to transmit. Further, even if the multi-core optical fiber tape core wire 1 (2, 3) is composed of 16 cores or more, the rigidity is not too large, and the optical fiber tape core wire 1 (2, 3) is appropriate for bending pressure. Can be transformed into.
  • the bending loss of the fiber tape core wire 1 (2, 3) can be sufficiently reduced.
  • the non-connecting portion 13 (23, 33) connects the optical fiber tape core wire 1 (2, 3) with respect to the tape resin 17 between the adjacent optical fiber core wires.
  • the ends of the slits 13a (23a, 33a) penetrating the upper and lower surfaces of the above) are formed so as to cut sharply with respect to the boundary 13b (23b, 33b) with the connecting portion 12 (22, 32).
  • the non-connecting portion 13 (23, 33) is formed starting from the boundary 13b (23b, 33b) formed so that the end portion of the slit 13a (23a, 33a) is cut at an acute angle.
  • the tape resin 17 of the connecting portion 12 (22, 32) between the optical fiber core wires can be easily torn. Since the optical fiber tape core wire 3 has non-connecting portions 13 (23, 33) formed for each of the four cores, the optical fiber tape core wire 3 can be easily divided into four cores or multiple cores of four. can do.
  • FIG. 8 is a diagram showing an example of a slotless type optical fiber cable using the optical fiber tape core wire 1 (2, 3) of the present embodiment.
  • FIG. 9 is a diagram showing an example of a slot-type optical fiber cable using the optical fiber tape core wire 1 (2, 3) according to the present embodiment.
  • the slotless optical fiber cable 60 shown in FIG. 8 includes a cylindrical tube 61 and a plurality of optical fiber tape core wires 1 (2, 3) mounted in the tube 61.
  • Each optical fiber tape core wire 1 (2, 3) is assembled so as to be rolled and twisted together.
  • a plurality of interpositions tensile fibers, etc.
  • a jacket 64 is covered around the tube 61 together with the tension member 63.
  • a tear string 65 is provided inside the outer cover 64.
  • the core density of the optical fiber core wires 11 (21, 31) per unit area in the cable cross section is 4.5 cores / mm 2 or more.
  • the core density is calculated by the number of optical fiber core wires / the cross section of the optical fiber cable.
  • the slotless optical fiber cable 60 shown in FIG. 8 has 432 cores, and when the optical fiber cable 60 is manufactured with an outer diameter of 11 mm, the optical fiber core wires 11 (21, 31) are contained in the optical fiber cable 60. Can be mounted with a core density of 4.55 cores / mm 2 .
  • the slot-type optical fiber cable 70 shown in FIG. 9 includes a slot rod 72 having a plurality of slot grooves 71, and a plurality of optical fiber tape core wires 1 (2, 3) housed in the slot grooves 71. ing.
  • the slot rod 72 has a tension member 73 in the center of the optical fiber cable 70, and has a structure in which a plurality of slot grooves 71 are provided radially.
  • Each optical fiber tape core wire 1 (2, 3) is assembled so as to be rolled, twisted with each other, and housed in the slot groove 71.
  • a presser foot tape 74 is wound around the slot rod 72, and an outer cover 75 is formed around the presser foot tape 74.
  • the core density is 4.55 cores / mm 2 or more.
  • the slot-type optical fiber cable 70 shown in FIG. 9 has 3120 cores, and when the optical fiber cable 70 is manufactured with an outer diameter of 28 mm, the optical fiber core wires 11 (21, 31) are provided in the optical fiber cable 70. It can be accommodated at a core density of 5.07 cores / mm 2 .
  • the optical fiber cables 60 and 70 are configured so that the core density of the optical fiber cable is 4.5 cores / mm 2 or more. Therefore, in this example, the optical fiber core wires 11 (21, 31) can be mounted at high density on the optical fiber cables 60 and 70.
  • the rigidity of the optical fiber tape core wires 1 (2, 3) mounted on the optical fiber cables 60 and 70 is configured to be appropriately increased. Therefore, when the optical fiber tape core wires 1 (2, 3) are taken out from the optical fiber cables 60, 70 on which the optical fiber core wires 11 (21, 31) are mounted at high density and fusion-bonded together.
  • the optical fiber core wire 11 (21, 31) is hard to bend and the position of the tip is hard to shift.
  • the optical fiber tape core wires 1 (2, 3) taken out from the optical fiber cables 60 and 70 and fused as described above are locally transferred to the protective sleeve heating unit in the next manufacturing process, for example. It is hard to bend. Further, since the rigidity of the optical fiber tape core wire 1 (2, 3) is not too large, the optical fiber tape core wire 1 (2, 3) can be appropriately deformed with respect to the bending pressure and absorbs the bending pressure. it can. Therefore, when the optical fiber tape core wires 1 (2, 3) are mounted at high density on the optical fiber cables 60 and 70, macro bend loss, which is a bending loss due to an extremely small bending radius, is unlikely to occur. ..
  • FIG. 10 is a diagram showing an example of an optical fiber cord with a connector using the optical fiber tape core wire 1 (2, 3) of the present embodiment.
  • FIG. 11 is a front view of a connector insertion / removal portion in the optical fiber cord with a connector shown in FIG.
  • the optical fiber cord 80 with a connector includes an optical fiber cord 81 containing an optical fiber tape core wire 1 (2, 3) and a connector portion 82 connected to the optical fiber cord 81. , Is equipped.
  • the connector unit 82 is composed of an MPO (Multi-fiber Push-on) connector capable of collectively connecting a plurality of optical fiber core wires. As shown in FIG.
  • the connector portion 82 includes an insertion / extraction portion 83 for inserting / removing into another connector, an adapter, or the like, and the insertion / extraction portion 83 is formed with each optical fiber of the optical fiber tape core wire 1 (2, 3).
  • 32 through holes 84 (16 ⁇ 2 rows) through which the tip ends of the core wires 11 (21, 31) are inserted are provided.
  • the optical fiber tape core wire 1 (2, 3) included in the optical fiber cord 80 with a connector has moderately high rigidity. Therefore, when the optical fiber cord 80 with a connector is manufactured, the optical fiber core wires 11 (21, 31) are separated and set in the connector portion 82, and the respective optical fiber core wires are less likely to bend. Therefore, the optical fiber cord 80 with a connector connects the optical fiber core wires 11 (21, 31) of the multi-core optical fiber tape core wires 1 (2, 3) housed in the connector portion 82 with 16 or more cores. , It can be easily set (wired) in a desired arrangement at a desired arrangement pitch. Therefore, the optical fiber cord 80 with a connector is easy to manufacture.
  • the rigidity of the optical fiber tape core wire 1 (2, 3) is not too large, the optical fiber tape core wire 1 (2, 3) can be appropriately deformed with respect to the bending pressure and can absorb the bending pressure. Therefore, when the optical fiber tape core wires 1 (2, 3) are mounted on the optical fiber cord 81 at a high density, macro bend loss, which is a bending loss due to an extremely small bending radius, is unlikely to occur.
  • connection workability and high density were evaluated for a plurality of samples having different catenary amounts H.
  • the evaluation results are shown in Table 1 together with the evaluation of the non-intermittent optical fiber tape core wire as a comparative example.
  • sample No. All of 1 to 9 are 16-core optical fiber tape core wires, and a resin having a Young's modulus of 900 MPa at 23 ° C. was used as the secondary resin 16 of the optical fiber core wires in each optical fiber tape core wire.
  • the outer diameter of each optical fiber core wire is 200 ⁇ m.
  • Sample No. Reference numerals 1 to 8 are intermittently connected optical fiber tape core wires, and sample Nos. Reference numeral 9 denotes a non-intermittent optical fiber tape core wire as a comparative example.
  • Sample No. In Nos. 1 to 4 the intermittent pattern is for each core, and the intermittent pattern is the same as that of the optical fiber tape core wire 2.
  • Sample No. In 5 to 8 the intermittent pattern is every two cores, and the intermittent pattern is the same as that of the optical fiber tape core wire 1.
  • the connecting portion ratio represents the ratio of the length of the connecting portion to the length of the non-connecting portion in the longitudinal direction of the intermittently connected optical fiber tape core wire.
  • the ratio of the connecting portions is increased, the area occupied by the connecting portion in the intermittently connected optical fiber tape core wire becomes large, and the rigidity of the intermittently connected optical fiber tape core wire increases. Therefore, the intermittently connected optical fiber tape core wire is less likely to bend and the catenary amount H becomes smaller.
  • the ratio of the connecting portions is reduced, the area occupied by the connecting portion in the intermittently connected optical fiber tape core wire becomes small, and the rigidity of the intermittently connected optical fiber tape core wire becomes low. Therefore, the intermittently connected optical fiber tape core wire tends to bend and the catenary amount H becomes large.
  • the catenary amount H changes by changing the connecting portion ratio.
  • connection workability when the optical fiber tape core wire was fused using the fiber holder 40 and the fusion splicer 50 shown in FIG. 7, the sample No. which was a non-intermittent optical fiber tape core wire. It is a relative value with the working time according to 9 as 1.0. Then, those having a connection workability exceeding 1.5 were judged to have poor workability and were evaluated as B. Further, the one having a connection workability of 1.5 or less is judged to have good workability and is evaluated as A, and the one having 1.0 (equivalent to non-intermittent) is judged to have better workability and is evaluated as S. did. That is, the sample of evaluation A or evaluation S is an intermittently connected optical fiber tape core wire having good connection workability.
  • the high density is the maximum that can be mounted so that the wavelength of the signal light is 1.55 ⁇ m and the bending loss is 0.3 dB / km or less when the optical fiber tape core wire of the above sample is mounted on the optical fiber cable 60. It was evaluated by the heart density of.
  • the evaluation standard is the sample No. which is a non-intermittent optical fiber tape core wire. If it is larger than the core density of 9 (4.0 cores / mm 2 ), it is judged that the high density is good, and the core density is 4.5 cores / mm 2 or more and 5.0 cores / mm 2 or less. Was evaluated as A, and those having a core density exceeding 5.0 cores / mm 2 were evaluated as S. Further, those having a core density of 4.0 cores / mm 2 or less were judged to be inferior in high density and evaluated as B. That is, the sample of evaluation A or evaluation S is an intermittently connected optical fiber tape core wire having good high density.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

間欠連結型光ファイバテープ心線は、複数の光ファイバ心線が、複数の光ファイバ心線の長手方向と直交する方向に並列に配置された状態で、複数の光ファイバ心線間の一部、または全部において、隣接する光ファイバ心線間が連結された状態の連結部と、隣接する光ファイバ心線間が連結されていない状態の非連結部とが長手方向に間欠的に設けられている。複数の光ファイバ心線のそれぞれ外径が、160μm以上220μm以下である。間欠連結型光ファイバテープ心線が、間欠連結型光ファイバテープ心線の先端Fを基準に30mmの位置から所定の位置まで水平方向に把持された際に、把持された箇所から突出した間欠連結型光ファイバテープ心線先端のカテナリー量が0.1mm以上2mm以下である。

Description

間欠連結型光ファイバテープ心線、光ファイバケーブルおよびコネクタ付き光ファイバコード
 本開示は、間欠連結型光ファイバテープ心線、光ファイバケーブルおよびコネクタ付き光ファイバコードに関する。
 本出願は、2019年3月20日出願の日本出願第2019-052762号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1には、光ファイバテープ樹脂が光ファイバテープ心線の長手方向に沿って間欠的に設けられた分断部で分断されており、非分断部には、長手方向に連続的に接続された状態で光ファイバテープ樹脂が残留している光ファイバテープ心線が記載されている。
 特許文献2には、3心以上の光ファイバが並列して配置される光ファイバテープ心線が記載されている。互いに隣接する2心の光ファイバ間を連結部で連結し、該連結部を、テープ心線長手方向及びテープ心線幅方向にそれぞれ間欠的に設けた光ファイバテープ心線が記載されている。さらに、特許文献2には、光ファイバテープ心線を構成する光ファイバの外径寸法を220μm以下とし、且つ隣り合う光ファイバの中心間距離を250±30μmとしたことが記載されている。
日本国特開2005-62427号公報 日本国特開2013-88617号公報
 本開示の一態様に係る間欠連結型光ファイバテープ心線は、
 複数の光ファイバ心線が、前記複数の光ファイバ心線の長手方向と直交する方向に並列に配置された状態で、前記複数の光ファイバ心線間の一部、または全てにおいて、隣接する光ファイバ心線間が連結された状態の連結部と、隣接する光ファイバ心線間が連結されていない状態の非連結部とが前記長手方向に間欠的に設けられている、間欠連結型光ファイバテープ心線であって、
 前記複数の光ファイバ心線のそれぞれの外径が、160μm以上220μm以下であり、
 当該間欠連結型光ファイバテープ心線が、前記間欠連結型光ファイバテープ心線の先端を基準に30mmの位置から所定の位置まで水平方向に把持された際に、把持された箇所から突出した前記間欠連結型光ファイバテープ心線の前記先端のカテナリー量が0.1mm以上2mm以下である。
 また、本開示の一態様に係る光ファイバケーブルは、
 上記間欠連結型光ファイバテープ心線が実装された光ファイバケーブルであって、
 心密度が4.5心/mm以上である。
 また、本開示の一態様に係るコネクタ付き光ファイバコードは、
 上記間欠連結型光ファイバテープ心線を含む光ファイバコードと、前記光ファイバコードに接続されたコネクタと、を有する。
図1は、本実施形態に係る間欠連結型光ファイバテープ心線の一例を示す図である。 図2は、図1に示す間欠連結型光ファイバテープ心線のA-A断面図である。 図3は、非連結部を広げていない状態の図1に示す間欠連結型光ファイバテープ心線のA-A断面図である。 図4は、本実施形態に係る間欠連結型光ファイバテープ心線の他の一例を示す図である。 図5は、本実施形態に係る間欠連結型光ファイバテープ心線のさらに他の一例を示す図である。 図6は、間欠連結型光ファイバテープ心線のカテナリー量を説明する図である。 図7は、融着ホルダにセットされた間欠連結型光ファイバテープ心線と融着接続機とを示す図である。 図8は、本実施形態に係る光ファイバケーブルの一例を示す断面図である。 図9は、本実施形態に係る光ファイバケーブルの他の一例を示す断面図である。 図10は、本実施形態に係るコネクタ付き光ファイバコードの一例を示す斜視図である。 図11は、図10に示すコネクタ付き光ファイバコードにおけるコネクタ挿抜部の正面図である。
(発明が解決しようとする課題)
 光ファイバケーブルにおいて光ファイバの高密度化を検討するに際し、従来の径250μmよりも細い光ファイバ心線を用いた間欠連結型の光ファイバテープ心線を実装することが考えられる。
 ところが、特許文献1、2に記載された光ファイバテープ心線などの従来の間欠連結型の光ファイバテープ心線は、上記のような細い光ファイバ心線を用いて分断部や間欠パターン(連結部、非連結)部を形成すると、剛性が低くなり、撓み易い。そのような間欠連結型光ファイバテープ心線は、一括して融着接続を行う際にファイバホルダを用いて正確な融着位置にセットすることが難しい。また、融着した間欠連結型光ファイバテープ心線を保護スリーブ加熱部に搬送する際に、光ファイバ心線が撓んで局所的に曲がりやすい。一方、間欠連結型光ファイバテープ心線の剛性が高すぎる場合は、変形し難くなるので、曲げ圧力が加わった場合に間欠連結型光ファイバテープ心線は曲げ圧力を吸収できない。このため、光ファイバケーブルに光ファイバテープ心線を高密度に実装すると、曲げ半径が極端に小さいことに起因する曲げ損失であるマクロベンドロスが生じやすい。
 本開示は、細径の光ファイバ心線を用いても、一括して融着接続を行う際に光ファイバ心線が撓み難く、且つ高密度化してもマクロベンドロスが生じにくい、間欠連結型光ファイバテープ心線、光ファイバケーブルおよびコネクタ付き光ファイバコードを提供することを目的とする。
(本開示の実施形態の説明)
 最初に本開示の実施態様を列記して説明する。
 本開示の一態様に係る間欠連結型光ファイバテープ心線は、
 (1)複数の光ファイバ心線が、前記複数の光ファイバ心線の長手方向と直交する方向に並列に配置された状態で、前記複数の光ファイバ心線間の一部、または全部において、隣接する光ファイバ心線間が連結された状態の連結部と、隣接する光ファイバ心線間が連結されていない状態の非連結部とが前記長手方向に間欠的に設けられている、間欠連結型光ファイバテープ心線であって、
 前記複数の光ファイバ心線のそれぞれの外径が、160μm以上220μm以下であり、
 当該間欠連結型光ファイバテープ心線が、前記間欠連結型光ファイバテープ心線の先端を基準に30mmの位置から所定の位置まで水平方向に把持された際に、把持された箇所から突出した前記間欠連結型光ファイバテープ心線の前記先端のカテナリー量が0.1mm以上2mm以下である。
 本開示の間欠連結型光ファイバテープ心線は、外径が160μm以上220μm以下である細径の光ファイバ心線であっても、把持された先端のカテナリー量が0.1mm以上2mm以下である。すなわち、上記カテナリー量が2mm以下であるので剛性が適度に大きく、ファイバホルダにセットした光ファイバ心線が撓みにくい。したがって、一括して融着接続を行う際に光ファイバ心線の先端の位置がずれにくい。また、融着した間欠連結型光ファイバテープ心線を保護スリーブ加熱部に搬送する際に、局所的に曲がりにくい。一方、上記カテナリー量が0.1mm以上であるので、間欠連結型光ファイバテープ心線は剛性が大き過ぎず、曲げ圧力に対して適度に変形することができ、曲げ圧力を吸収できる。したがって、光ファイバケーブルに間欠連結型光ファイバテープ心線を高密度に実装した際に、曲げ半径が極端に小さくなることに起因する曲げ損失であるマクロベンドロスが生じにくい。
 (2)前記間欠連結型光ファイバテープ心線は、
 前記複数の光ファイバ心線の数が16心であり、かつ、配列方向の幅が3.5mm以下であってもよい。
 本構成によれば、光ファイバ心線数が16心であっても、間欠連結型光ファイバテープ心線の配列方向の幅が3.5mm以下であるので、既存の12心一括融着接続機を用いて一括融着接続することができる。
 (3)前記隣接する光ファイバ心線の中心間の距離が200μm±30μmであってもよい。
 本構成によれば、隣接する光ファイバ心線の中心間の距離が200μm±30μmであるので、間欠連結型光ファイバテープ心線の配列方向の幅を小さくすることができる。
 (4)前記複数の光ファイバ心線の数は、
 8の倍数であり、かつ、16心以上であってもよい。
 本構成によれば、光ファイバ心線数が、8の倍数であるので、4心毎に双方向伝送を行いやすい。かつ、16心以上であるので、間欠連結型光ファイバテープ心線の剛性を大きくし易い。
 (5)前記複数の光ファイバ心線は、
 曲げ半径R=15mmのとき、曲げ損失が0.25dB/10ターン以下であってもよい。
 本構成によれば、光ファイバ心線の曲げ半径R=15mmのとき、曲げ損失が0.25dB/10ターン以下であるので、曲げ損失を小さくできる。
 (6)前記複数の光ファイバ心線は、ガラスファイバと、前記ガラスファイバの周囲を覆う二層の被覆層と、を有し、
 前記二層の被覆層のうちの内側の被覆層は、プライマリ樹脂で形成され、
 前記二層の被覆層のうちの外側の被覆層は、セカンダリ樹脂で形成されており、
 前記セカンダリ樹脂は、23℃におけるヤング率が900MPa以上であってもよい。
 本構成によれば、セカンダリ樹脂の23℃におけるヤング率が900MPa以上であるので、光ファイバ心線の外側の被覆層が適度に硬い。このため、光ファイバ心線に不均一な側圧がかかった場合に生じるマイクロベンドロスが生じにくい。したがって、間欠連結型光ファイバテープ心線の側圧特性が良くなる。
 (7)前記間欠連結型光ファイバテープ心線は、
 4心毎に前記連結部と前記非連結部とが形成されており、
 前記隣接する光ファイバ心線間で、前記光ファイバ心線を覆うテープ樹脂が連続する前記連結部と、
 前記隣接する光ファイバ心線間で、前記テープ樹脂に対して当該間欠連結型光ファイバテープ心線の上下面を貫通するスリットが形成されている前記非連結部と、
 を有し、
 前記スリットの端部が、前記連結部との境界に対して鋭角に切れ込むように形成されていてもよい。
 本構成によれば、スリットの端部が鋭角に切れ込むように形成された境界を起点として、非連結部が形成されている光ファイバ心線間の連結部のテープ樹脂を容易に引き裂くことができる。そして、4心毎に非連結部が形成されているので、間欠連結型光ファイバテープ心線を4心毎あるいは4の倍数心毎に容易に分割することができる。
 また、本開示の一態様に係る光ファイバケーブルは、
 (8)上記(1)から(7)のいずれか一つに記載の間欠連結型光ファイバテープ心線が実装された光ファイバケーブルであって、
 心密度が4.5心/mm以上である。
 本構成によれば、光ファイバケーブルの心密度が4.5心/mm以上であるので、光ファイバ心線を高密度に実装できる。そして、この光ファイバケーブルに実装された間欠連結型光ファイバテープ心線の剛性が適度に大きいものとされている。したがって、光ファイバ心線が高密度に実装された光ファイバケーブルから取り出した間欠連結型光ファイバテープ心線に対して、一括して融着接続を行う際に光ファイバ心線の先端の位置がずれにくい。また、上記のようにして光ファイバケーブルから取り出して融着された間欠連結型光ファイバテープ心線は、保護スリーブ加熱部に搬送する際に、局所的に曲がりにくい。
 また、間欠連結型光ファイバテープ心線は剛性が大き過ぎず、曲げ圧力に対して適度に変形することができ、曲げ圧力を吸収できる。したがって、光ファイバケーブルに間欠連結型光ファイバテープ心線を高密度に実装した際に、曲げ半径が極端に小さくなることに起因する曲げ損失であるマクロベンドロスが生じにくい。
 また、本開示の一態様に係るコネクタ付き光ファイバコードは、
 (9)上記(1)から(7)のいずれか一つに記載の間欠連結型光ファイバテープ心線を含む光ファイバコードと、前記光ファイバコードに接続されたコネクタと、を有する。
 本構成によれば、光ファイバコードに含まれる間欠連結型光ファイバテープ心線は、剛性が適度に大きいので、コネクタ付き光ファイバコードの製造時に光ファイバ心線にばらしてコネクタ内にセットする際に、それぞれの光ファイバ心線が撓みにくい。このため、コネクタ内の光ファイバ心線を、所望の配列ピッチで所望の配列にセットすることが容易にできるので、製造が容易なコネクタ付き光ファイバコードを提供できる。
 また、間欠連結型光ファイバテープ心線は剛性が大き過ぎず、曲げ圧力に対して適度に変形することが可能であり、曲げ圧力を吸収できる。したがって、光ファイバコードを高密度化しても曲げ半径が極端に小さくなることに起因する曲げ損失であるマクロベンドロスが生じにくい。
(発明の効果)
 本開示によれば、細径の光ファイバ心線を用いても、一括して融着接続を行う際に光ファイバ心線が撓み難く、且つ高密度化してもマクロベンドロスが生じにくい、間欠連結型光ファイバテープ心線、光ファイバケーブルおよびコネクタ付き光ファイバコードを提供することができる。
(本開示の実施形態の詳細)
 本開示の実施形態に係る間欠連結型光ファイバテープ心線、光ファイバケーブルおよびコネクタ付き光ファイバコードの具体例を、以下に図面を参照しつつ説明する。
 なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 図1~図3は、光ファイバテープ心線の一例を示す図である。図1~図3に示すように、本例の光ファイバテープ心線1は、複数(本例では光ファイバ心線の数が16心)の光ファイバ心線11(本例では11A~11P)が、光ファイバ心線11の長手方向と直交する方向に並列に配置されている。16心の光ファイバ心線11A~11Pは、隣接する光ファイバ心線同士が少なくとも一部を互いに接触させて樹脂で連結されている。
 光ファイバテープ心線1には、複数の光ファイバ心線11間の一部、または全てにおいて、2本の光ファイバ心線毎に、光ファイバ心線同士が樹脂で連結された状態の連結部12と、光ファイバ心線同士が樹脂で連結されていない状態の非連結部13とが長手方向に間欠的に設けられている、間欠連結型の光ファイバテープ心線である。光ファイバテープ心線1では、光ファイバ心線11Bと11Cとの心線間、光ファイバ心線11Dと11Eとの心線間、光ファイバ心線11Fと11Gとの心線間、光ファイバ心線11Hと11Iとの心線間、光ファイバ心線11Jと11Kとの心線間、光ファイバ心線11Lと11Mとの心線間、および光ファイバ心線11Nと11Oとの心線間に、連結部12と非連結部13とが設けられている。
 図1には、非連結部13を光ファイバ心線11A~11Pの配列方向に広げた状態の光ファイバテープ心線1が示されている。図2には、図1の光ファイバテープ心線1のA-A断面図が示されている。図3には、非連結部13を広げていない状態の光ファイバテープ心線1のA-A断面図が示されている。
 本例では16心の光ファイバ心線で構成される間欠連結型の光ファイバテープ心線を示しているが、光ファイバ心線の数は16心に限定されない。光ファイバ心線の数は、16心以上であって、かつ、8の倍数であればよい。光ファイバ心線の数は、例えば、24心、32心、・・・、96心などであってもよい。
 光ファイバ心線11は、図2および図3に示すように、例えばコアとクラッドとからなるガラスファイバ14と、ガラスファイバ14の周囲を覆う二層の被覆層と、を有する。二層の被覆層のうちの内側の被覆層は、プライマリ樹脂15で形成されている。二層の被覆層のうちの外側の被覆層は、セカンダリ樹脂16で形成されている。二層の被覆層の外側に着色層等があってもよい。
 ガラスファイバ14と接触するプライマリ樹脂15には、バッファ層として比較的ヤング率が低い軟質の樹脂が用いられている。セカンダリ樹脂16には、保護層として比較的ヤング率が高い硬質の樹脂が用いられている。セカンダリ樹脂16は、例えば23℃におけるヤング率が900Mpa以上であり、好ましくは1000MPa以上、さらに好ましくは1500MPa以上である。
 プライマリ樹脂15およびセカンダリ樹脂16は、例えば紫外線硬化型樹脂、熱硬化型樹脂等で形成されている。光ファイバ心線11は、曲げ半径R=15mmのとき、曲げ損失が0.25dB/10ターン以下である。光ファイバ心線11は、側圧耐性を上げるため、ITU-T G.657.A/Bに規定されている曲げ強化型ファイバを用いてもよい。
 光ファイバ心線11の周囲には、光ファイバ心線11A~11P同士を連結させるテープ樹脂17が設けられている。光ファイバ心線11A~11Pは、接触した状態で並列に配置され、テープ樹脂17により一括的に被覆されて連結されている。一括的に被覆するテープ樹脂17は、隣接する光ファイバ心線の心線間に形成された窪みに応じて、光ファイバ心線の心線間に凹部17aを有する形状となるように設けられている。テープ樹脂17には、連結部12と非連結部13とが上述した通り2本の光ファイバ心線毎に長手方向に間欠的に設けられている。このように、光ファイバテープ心線1における2本の光ファイバ心線毎の心線間は、テープ樹脂17によって光ファイバテープ心線1の長手方向に間欠的に連結されている。
 光ファイバテープ心線1の非連結部13は、図1~図3に示すように、テープ樹脂17に対して光ファイバテープ心線1の上下面を貫通するスリット13aの端部が、連結部12との境界13bに対して鋭角に切れ込むように形成されている。このようなスリット13aは、光ファイバ心線の心線間に設けられる凹部17aのテープ樹脂17を切断することにより形成される。
 光ファイバ心線11A~11Pのそれぞれの外径B(図3参照)は、160μm以上220μm以下である。光ファイバ心線11A~11Pにおける隣接する光ファイバ心線同士の中心間の距離Cは、170μm以上230μm以下である。また、光ファイバテープ心線1の厚さDは、255μm以下である。光ファイバテープ心線1の幅(光ファイバ心線が配列される方向の幅)Eは、光ファイバ心線の数が16心の場合、3.5mm以下である。
 本例の光ファイバテープ心線1は、光ファイバ心線11A~11Pを接触した状態で並列に配置し、その周囲をテープ樹脂17により被覆する構成であるが、この構成に限定されない。例えば、隣接する光ファイバ心線間に僅かな隙間が存在する状態で光ファイバ心線11A~11Pを並列に配置させ、その心線間の隙間にテープ樹脂17が入り込んだ状態で光ファイバ心線11A~11Pを被覆する構成であってもよい。
 図4は、本実施形態に係る光ファイバテープ心線の他の一例を示す図である。図4に示すように、本例の光ファイバテープ心線2は、各光ファイバ心線間に連結部22と非連結部23とが設けられている点で、2本の光ファイバ心線毎に連結部12と非連結部13が設けられている図1の光ファイバテープ心線1と相違する。非連結部23は、図1の光ファイバテープ心線1における非連結部13と同様に、スリット23aの端部が連結部22との境界23bに対して鋭角に切れ込むように形成されている。
 光ファイバテープ心線2は、16心の光ファイバ心線21(本例では21A~21P)を有しており、光ファイバ心線の数については図1の光ファイバテープ心線1と同様である。その他の構成、例えば光ファイバ心線を構成するガラスファイバおよび被覆層、光ファイバ心線の外径Bおよび中心間の距離C、光ファイバ心線の曲げ損失、光ファイバテープ心線の厚さDおよび幅Eなどについても図1の光ファイバテープ心線1と同様である。
 図5は、本実施形態に係る光ファイバテープ心線のさらに他の一例を示す図である。図5に示すように、本例の光ファイバテープ心線3は、4本の光ファイバ心線毎に連結部32と非連結部33とが設けられている点で、2本の光ファイバ心線毎に連結部12と非連結部13が設けられている図1の光ファイバテープ心線1と相違する。非連結部33は、図1の光ファイバテープ心線1における非連結部13と同様に、スリット33aの端部が連結部32との境界33bに対して鋭角に切れ込むように形成されている。
 光ファイバテープ心線3は、16心の光ファイバ心線31(本例では31A~31P)を有しており、光ファイバ心線の数については図1の光ファイバテープ心線1と同様である。その他の構成についても、上記図4に示す光ファイバテープ心線2と同じく、図1の光ファイバテープ心線1と同様である。
 図6は、上述した光ファイバテープ心線1,2,3のカテナリー量を説明する図である。図6に示すように、本例では光ファイバテープ心線1(2,3)を融着用のファイバホルダ40にセットしたときの光ファイバテープ心線1(2,3)の撓み量(カテナリー量)と、融着時の光ファイバ心線の軸ずれエラーとに基づいて、光ファイバテープ心線の適正な剛性を規定する。
 具体的には、ファイバホルダ40は、光ファイバテープ心線1(2,3)を、先端Fを基準に長さG=30mmの位置から所定の位置(例えば先端Fから60mmの位置)まで水平方向に把持する。本例では、把持された部分から突出した長さG=30mmの片持ち状となった光ファイバテープ心線1(2,3)の先端Fのカテナリー量Hを測定する。なお、先端Fは、光ファイバテープ心線1(2,3)を、光ファイバテープ心線1(2,3)の長手方向に直交する方向に切断した際の先端部を意味する。カテナリー量Hが大きい場合、融着時に光ファイバテープ心線1(2,3)の先端が心線毎に幅方向へ拡がり、融着される光ファイバテープ心線同士の軸ずれが発生して作業効率が低下する。そこで本例では、融着時の光ファイバテープ心線の軸ずれを抑制するために、光ファイバテープ心線1(2,3)の先端Fのカテナリー量Hが2mm以下となるように光ファイバテープ心線1(2,3)の剛性を規定する。
 図7は、光ファイバテープ心線1(2,3)の融着時における融着接続機50とファイバホルダ40にセットされた光ファイバテープ心線1(2,3)との位置関係を示す図である。図7に示すように、融着接続機50には、光ファイバテープ心線1(2,3)の光ファイバ心線11(21,31)が収容されるV溝51と、放電を行う一対の電極を有する放電部52とが設けられている。例えば、融着接続機50の側端部から放電部52の中心位置までの距離Iは、I=8mmとなるように構成されている。
 融着時にファイバホルダ40にセットされた光ファイバテープ心線1(2,3)は、例えば、ファイバホルダ40の先端から突出された部分のうち、ファイバホルダ40先端から長さJ=3mmの部分までが、テープ樹脂17を含む光ファイバテープ心線1(2,3)のままの状態とされる。長さJの部分から光ファイバテープ心線1(2,3)の先端に向かう長さK=10mmの部分までがテープ樹脂17が剥がされて光ファイバ心線11(21,31)の状態とされる。当該光ファイバ心線11(21,31)の先端から長さL=0.5mm~2mmの部分がプライマリ樹脂15およびセカンダリ樹脂16が剥がされたガラスファイバ14の状態とされる。そして、ガラスファイバ14の先端同士が放電部52の一対の電極間で突き合わされるように、2つのファイバホルダ40にそれぞれセットされた2つの光ファイバテープ心線が融着接続機50に対して配置される。このとき、融着接続機50の各V溝51には、テープ樹脂17が剥がされた光ファイバ心線11(21,31)部分が収容される。放電部52の一対の電極から例えばアーク放電が行われ、2つの光ファイバテープ心線1(2,3)同士が融着される。
 一方、図6における測定において、光ファイバテープ心線1(2,3)の先端Fのカテナリー量Hが小さい場合は、光ファイバテープ心線1(2,3)の剛性は大きくなる。光ファイバテープ心線1(2,3)の剛性が大きすぎると、光ファイバテープ心線1(2,3)に曲げ圧力が加わったとき光ファイバテープ心線1(2,3)は曲げ圧力を吸収できない。光ファイバケーブルに光ファイバテープ心線1(2,3)を高密度に実装すると、マクロベンドロスが生じやすい。そこで本例では、曲げ圧力が加わったときのマクロベンドロスの発生を抑制するために、光ファイバテープ心線1(2,3)の先端Fのカテナリー量Hが0.1mm以上となるように光ファイバテープ心線1(2,3)の剛性を規定する。
 光ファイバテープ心線1(2,3)は、光ファイバ心線11(21,31)の各外径が160μm以上220μm以下である。上記光ファイバテープ心線1(2,3)は、光ファイバテープ心線1(2,3)の先端を基準に30mmの位置から所定の位置まで水平方向に把持された際に、先端のカテナリー量が0.1mm以上2mm以下となるように構成されている。光ファイバテープ心線1(2,3)は、上記カテナリー量が2mm以下であるので剛性が適度に大きく、融着時にファイバホルダ40に光ファイバテープ心線1(2,3)をセットしても光ファイバ心線11(21,31)が撓みにくい。このため、一括して融着接続を行う際に光ファイバテープ心線1(2,3)の先端が心線毎に幅方向へ拡がらず、融着される光ファイバテープ心線同士の軸ずれを発生し難くすることができる。また、融着した光ファイバテープ心線1(2,3)を例えば次の製造工程である保護スリーブ加熱部に搬送する際に、光ファイバテープ心線1(2,3)の局所的な曲がりを発生し難くすることができる。よって本例は、光ファイバテープ心線1(2,3)の接続作業を効率よく行うことができる。
 光ファイバテープ心線1(2,3)は、上記カテナリー量が0.1mm以上であるので剛性が大き過ぎない。よって、光ファイバテープ心線1(2,3)は、曲げ圧力に対して適度に変形することが可能であり、曲げ圧力を吸収することができる。したがって、光ファイバケーブルに光ファイバテープ心線1(2,3)を高密度に実装した際に、曲げ半径が極端に小さくなることに起因するマクロベンドロスが生じ難くい。
 光ファイバテープ心線1(2,3)は、光ファイバ心線11(21,31)の外側の被覆層を形成するセカンダリ樹脂16は、例えば23℃におけるヤング率が900MPa以上である。セカンダリ樹脂16が適度に硬いので、光ファイバ心線11(21,31)に不均一な側圧が掛かった場合でもマイクロベンドロスが生じにくい。したがって本例は、光ファイバテープ心線1(2,3)の側圧特性を向上させることができる。
 光ファイバテープ心線1(2,3)は、光ファイバ心線の数が16心であり、且つ、その配列方向の幅が3.5mm以下となるように構成されている。この幅は、光ファイバ心線の外径が250μmの従来の12心光ファイバテープ心線の幅と同等である。これにより本例は、光ファイバテープ心線1(2,3)は、光ファイバ心線数が16心であっても、既存の12心一括融着接続機を用いて一括融着接続することができる。
 光ファイバテープ心線1(2,3)は、隣接する光ファイバ心線11(21,31)の中心間の距離Cが200μm±30μmとなるように構成されているので、本例は光ファイバテープ心線1(2,3)における光ファイバ心線11(21,31)の配列方向の幅を小さくすることができる。
 従来の12心光ファイバテープ心線の場合、4心毎の双方向伝送を行う際に、12心のうち8心を使用して残りの4心を使用しないこともあった。これに対して本例は、光ファイバテープ心線1(2,3)は、8の倍数心であるので、全ての光ファイバ心線11(21,31)を用いて4心毎に双方向伝送を行いやすい。また、16心以上からなる多心の光ファイバテープ心線1(2,3)であっても、剛性は大き過ぎず、光ファイバテープ心線1(2,3)は曲げ圧力に対して適度に変形させることができる。
 光ファイバテープ心線1(2,3)は、光ファイバ心線の曲げ半径R=15mmのとき、曲げ損失が0.25dB/10ターン以下となるように構成されているので、本例は光ファイバテープ心線1(2,3)の曲げ損失を十分に小さくすることができる。
 光ファイバテープ心線1(2,3)においては、非連結部13(23,33)は、隣接する光ファイバ心線間で、テープ樹脂17に対して光ファイバテープ心線1(2,3)の上下面を貫通するスリット13a(23a,33a)の端部が、連結部12(22,32)との境界13b(23b,33b)に対して鋭角に切れ込むように形成されている。
 これにより本例は、スリット13a(23a,33a)の端部が鋭角に切れ込むように形成された境界13b(23b,33b)を起点として、非連結部13(23,33)が形成されている光ファイバ心線間の連結部12(22,32)のテープ樹脂17を容易に引き裂くことができる。
 そして、光ファイバテープ心線3は、4心毎に非連結部13(23,33)が形成されているので、光ファイバテープ心線3を4心毎あるいは4の倍数心毎に容易に分割することができる。
 次に、図8および図9を参照して、本実施形態に係る光ファイバケーブルについて説明する。図8は、本実施形態の光ファイバテープ心線1(2,3)を使用したスロットレス型の光ファイバケーブルの一例を示す図である。図9は、本実施形態に係る光ファイバテープ心線1(2,3)を使用したスロット型の光ファイバケーブルの一例を示す図である。
 図8に示すスロットレス型の光ファイバケーブル60は、円筒型のチューブ61と、チューブ61内に実装された複数の光ファイバテープ心線1(2,3)と、を備えている。各光ファイバテープ心線1(2,3)は、丸めるように集合されて、互いに撚り合わせられている。また、チューブ61内には、光ファイバテープ心線1(2,3)同士の隙間を埋めるように、複数本の介在(抗張力繊維等)が収容されている。チューブ61の周囲には、テンションメンバ63と共に外被64が被せられている。また、外被64の内部には引き裂き紐65が設けられている。
 光ファイバケーブル60において、ケーブル断面における単位面積当たりの光ファイバ心線11(21,31)の心密度は4.5心/mm以上である。心密度は、光ファイバ心線の数/光ファイバケーブルの断面積で算出される。例えば図8に示すスロットレス型の光ファイバケーブル60は、432心であり、光ファイバケーブル60の外径を11mmとして作製した場合、光ファイバケーブル60内に光ファイバ心線11(21,31)を心密度4.55心/mmで実装することができる。
 図9に示すスロット型の光ファイバケーブル70は、複数のスロット溝71を有するスロットロッド72と、スロット溝71内に収容された複数の光ファイバテープ心線1(2,3)と、を備えている。スロットロッド72は、光ファイバケーブル70の中央にテンションメンバ73を有し、放射状に複数のスロット溝71が設けられた構造になっている。各光ファイバテープ心線1(2,3)は、丸めるように集合されて、互いに撚り合わされてスロット溝71に収容されている。スロットロッド72の周囲には押さえ巻きテープ74が巻かれ、押さえ巻きテープ74の周囲には外被75が形成されている。
 光ファイバケーブル70において、心密度は4.55心/mm以上である。例えば図9に示すスロット型の光ファイバケーブル70は、3120心であり、光ファイバケーブル70の外径を28mmとして作製した場合、光ファイバケーブル70内に光ファイバ心線11(21,31)を心密度5.07心/mmで収容することができる。
 上記光ファイバケーブル60および70は、光ファイバケーブルの心密度が4.5心/mm以上となるように構成されている。このため本例は、光ファイバケーブル60,70に光ファイバ心線11(21,31)を高密度に実装することができる。そして本例は、この光ファイバケーブル60,70に実装された光ファイバテープ心線1(2,3)の剛性が適度に大きくなるように構成されている。したがって、光ファイバ心線11(21,31)が高密度に実装された光ファイバケーブル60,70から光ファイバテープ心線1(2,3)を取り出して、一括して融着接続を行う際に光ファイバ心線11(21,31)が撓み難く先端の位置がずれにくい。また、上記のようにして光ファイバケーブル60,70から取り出して融着された光ファイバテープ心線1(2,3)は、例えば次の製造工程の保護スリーブ加熱部に搬送する際に、局所的に曲がり生じにくい。
 また、光ファイバテープ心線1(2,3)の剛性は大き過ぎないので、光ファイバテープ心線1(2,3)は曲げ圧力に対して適度に変形することができ、曲げ圧力を吸収できる。
 したがって、光ファイバケーブル60,70に光ファイバテープ心線1(2,3)を高密度に実装した際に、曲げ半径が極端に小さくなることに起因する曲げ損失であるマクロベンドロスが生じにくい。
 次に、図10および図11を参照して、本実施形態に係るコネクタ付き光ファイバコードについて説明する。図10は、本実施形態の光ファイバテープ心線1(2,3)を使用したコネクタ付き光ファイバコードの一例を示す図である。図11は、図10に示すコネクタ付き光ファイバコードにおけるコネクタの挿抜部の正面図である。
 図10に示すように、コネクタ付き光ファイバコード80は、光ファイバテープ心線1(2,3)が収容されている光ファイバコード81と、光ファイバコード81に接続されているコネクタ部82と、を備えている。光ファイバコード81内には、例えば、16心の光ファイバテープ心線が2枚、あるいは32心の光ファイバテープ心線が1枚収容されている。コネクタ部82は、複数の光ファイバ心線を一括して接続することが可能なMPO(Multi-fiber Push-on)コネクタで構成されている。図11に示すように、コネクタ部82は、他のコネクタやアダプタ等に挿抜する挿抜部83を備えており、挿抜部83には、光ファイバテープ心線1(2,3)の各光ファイバ心線11(21,31)の先端部が挿通される貫通孔84が32個(16個×2列)設けられている。
 上記コネクタ付き光ファイバコード80に含まれる光ファイバテープ心線1(2,3)は、剛性が適度に大きい。よって、コネクタ付き光ファイバコード80の製造時に光ファイバ心線11(21,31)にばらしてコネクタ部82内にセットする際に、それぞれの光ファイバ心線が撓みにくい。このため、コネクタ付き光ファイバコード80は、コネクタ部82内に収容された16心以上である多心の光ファイバテープ心線1(2,3)の光ファイバ心線11(21,31)を、所望の配列ピッチで所望の配列にセット(配線)することが容易にできる。よって、コネクタ付き光ファイバコード80は、製造が容易である。
 光ファイバテープ心線1(2,3)の剛性は大き過ぎないので、光ファイバテープ心線1(2,3)は曲げ圧力に対して適度に変形することができ、曲げ圧力を吸収できる。したがって、光ファイバコード81に光ファイバテープ心線1(2,3)を高密度に実装した際に、曲げ半径が極端に小さくなることに起因する曲げ損失であるマクロベンドロスが生じにくい。
(実施例)
 本実施形態に係る間欠連結型の光ファイバテープ心線において、カテナリー量Hが異なる複数のサンプルに対して、接続作業性および高密度性の評価を行った。その評価結果を、比較例として非間欠の光ファイバテープ心線の評価と共に、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、サンプルNo.1~9は全て、16心の光ファイバテープ心線であり、各光ファイバテープ心線における光ファイバ心線のセカンダリ樹脂16には、23℃におけるヤング率が900MPaの樹脂を使用した。各光ファイバ心線の外径は、200μmである。サンプルNo.1~8は、間欠連結型光ファイバテープ心線であり、サンプルNo.9は、比較例として非間欠の光ファイバテープ心線である。サンプルNo.1~4は、間欠パターンが1心毎になっており、間欠パターンは光ファイバテープ心線2と同じである。サンプルNo.5~8は、間欠パターンが2心毎になっており、間欠パターンは光ファイバテープ心線1と同じである。
 連結部比率は、間欠連結型光ファイバテープ心線の長手方向における非連結部の長さに対する連結部の長さの比率を表している。連結部比率を大きくすると、間欠連結型光ファイバテープ心線において連結部が占める領域が大きくなり、間欠連結型光ファイバテープ心線は、剛性が高くなる。このため、間欠連結型光ファイバテープ心線は、撓み難くなりカテナリー量Hが小さくなる。
 一方、連結部比率を小さくすると、間欠連結型光ファイバテープ心線において連結部が占める領域が小さくなり、間欠連結型光ファイバテープ心線は、剛性が低くなる。このため、間欠連結型光ファイバテープ心線は、撓み易くなりカテナリー量Hが大きくなる。
 以上のように、間欠連結型光ファイバテープ心線は、連結部比率を変更することにより、カテナリー量Hが変化する。
 接続作業性は、図7に示すファイバホルダ40と融着接続機50とを使用して光ファイバテープ心線の融着作業を行ったとき、非間欠の光ファイバテープ心線であるサンプルNo.9による作業時間を1.0とした相対値である。そして、接続作業性が1.5を超えるものを作業性が悪いと判断し評価Bとした。また、接続作業性が1.5以下のものを作業性が良いと判断して評価Aとし、さらに、1.0(非間欠と同等)のものを作業性がさらに良いと判断し評価Sとした。すなわち、評価Aまたは評価Sのサンプルが、接続作業性が良好な間欠連結型光ファイバテープ心線である。
 高密度性は、光ファイバケーブル60に上記サンプルの光ファイバテープ心線を実装した場合に、信号光の波長が1.55μmで曲げ損失が0.3dB/km以下を満たすように実装し得る最大の心密度によって評価した。その評価基準は、非間欠の光ファイバテープ心線であるサンプルNo.9の心密度(4.0心/mm)よりも大きければ、高密度性が良好であると判断し、心密度が4.5心/mm以上5.0心/mm以下のものを評価A、心密度が5.0心/mmを超えるものを評価Sとした。また、心密度が4.0心/mm以下のものを高密度性が劣ると判断して評価Bとした。すなわち、評価Aまたは評価Sのサンプルが、高密度性が良好な間欠連結型光ファイバテープ心線である。
 表1の評価結果によれば、接続作業性と高密度性が共に良好なサンプル(評価Aまたは評価Sのサンプル)は、No.2~7であった。これにより、間欠連結型光ファイバテープ心線において、カテナリー量Hが、0.3mm以上2.0mm以下である場合に、接続作業性および高密度性が共に良好であることが分かった。
 なお、さらに心密度を上げるために、光ファイバ心線のセカンダリ樹脂16の高ヤング率化を検討した。その結果、セカンダリ樹脂16に23℃におけるヤング率が1500MPaの樹脂を使用することで、表1の高密度性の欄に示す心密度をそれぞれ0.5心/mm程度向上できることが確認できた。したがって、セカンダリ樹脂16のヤング率を1500MPaとし、間欠連結型光ファイバテープ心線のカテナリー量Hを0.1mm以上2.0mm以下とすることで、接続作業性および高密度性がさらに良好となることがわかった。
 また、サンプルNo.1~9と同じ16心の光ファイバテープ心線を用い、間欠パターンが4心毎の場合も、カテナリー量Hが、0.3mm以上2.0mm以下であれば、接続作業性および高密度性が共に良好であった。
 以上、本開示を詳細にまた特定の実施態様を参照して説明したが、本開示の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本開示を実施する上で好適な数、位置、形状等に変更することができる。
 1,2,3:光ファイバテープ心線
 11,21,31:光ファイバ心線
 12,22,32:連結部
 13,23,33:非連結部
 13a,23a,33a:スリット
 13b,23b,33b:境界
 14:ガラスファイバ
 15:プライマリ樹脂
 16:セカンダリ樹脂
 17:テープ樹脂
 40:ファイバホルダ
 50:融着接続機
 51:V溝
 52:放電部
 60,70:光ファイバケーブル
 61:チューブ
 64:外被
 71:スロット溝
 72:スロットロッド
 75:外被
 80:コネクタ付き光ファイバコード
 81:光ファイバコード
 82:コネクタ部
 83:挿抜部
 84:貫通孔

Claims (9)

  1.  複数の光ファイバ心線が、前記複数の光ファイバ心線の長手方向と直交する方向に並列に配置された状態で、前記複数の光ファイバ心線間の一部、または全てにおいて、隣接する光ファイバ心線間が連結された状態の連結部と、隣接する光ファイバ心線間が連結されていない状態の非連結部とが前記長手方向に間欠的に設けられている、間欠連結型光ファイバテープ心線であって、
     前記複数の光ファイバ心線のそれぞれの外径が、160μm以上220μm以下であり、
     当該間欠連結型光ファイバテープ心線が、前記間欠連結型光ファイバテープ心線の先端を基準に30mmの位置から所定の位置まで水平方向に把持された際に、把持された箇所から突出した前記間欠連結型光ファイバテープ心線の前記先端のカテナリー量が0.1mm以上2mm以下である、
     間欠連結型光ファイバテープ心線。
  2.  前記間欠連結型光ファイバテープ心線は、
     前記複数の光ファイバ心線の数が16心であり、かつ、配列方向の幅が3.5mm以下である、
     請求項1に記載の間欠連結型光ファイバテープ心線。
  3.  前記隣接する光ファイバ心線の中心間の距離が200μm±30μmである、
     請求項1または請求項2に記載の間欠連結型光ファイバテープ心線。
  4.  前記複数の光ファイバ心線の数は、
     8の倍数であり、かつ、16心以上である、
     請求項1または請求項3に記載の間欠連結型光ファイバテープ心線。
  5.  前記複数の光ファイバ心線は、
     曲げ半径R=15mmのとき、曲げ損失が0.25dB/10ターン以下である、
     請求項1から請求項4のいずれか一項に記載の間欠連結型光ファイバテープ心線。
  6.  前記複数の光ファイバ心線は、ガラスファイバと、前記ガラスファイバの周囲を覆う二層の被覆層と、を有し、
     前記二層の被覆層のうちの内側の被覆層は、プライマリ樹脂で形成され、
     前記二層の被覆層のうちの外側の被覆層は、セカンダリ樹脂で形成されており、
     前記セカンダリ樹脂は、23℃におけるヤング率が900MPa以上である、
     請求項1から請求項5のいずれか一項に記載の間欠連結型光ファイバテープ心線。
  7.  前記間欠連結型光ファイバテープ心線は、
     4心毎に前記連結部と前記非連結部とが形成されており、
     前記隣接する光ファイバ心線間で、前記光ファイバ心線を覆うテープ樹脂が連続する前記連結部と、
     前記隣接する光ファイバ心線間で、前記テープ樹脂に対して当該間欠連結型光ファイバテープ心線の上下面を貫通するスリットが形成されている前記非連結部と、
     を有し、
     前記スリットの端部が、前記連結部との境界に対して鋭角に切れ込むように形成されている、
     請求項1から請求項6のいずれか一項に記載の間欠連結型光ファイバテープ心線。
  8.  請求項1から請求項7のいずれか一項に記載の間欠連結型光ファイバテープ心線が実装された光ファイバケーブルであって、
     心密度が4.5心/mm以上である、
     光ファイバケーブル。
  9.  請求項1から請求項7のいずれか一項に記載の間欠連結型光ファイバテープ心線を含む光ファイバコードと、前記光ファイバコードに接続されたコネクタと、を有する、
     コネクタ付き光ファイバコード。
PCT/JP2020/012419 2019-03-20 2020-03-19 間欠連結型光ファイバテープ心線、光ファイバケーブルおよびコネクタ付き光ファイバコード WO2020189772A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20773448.4A EP3943992A4 (en) 2019-03-20 2020-03-19 FIBER OPTIC RIBBON CORE WITH INTERMITTENT JOINT, FIBER OPTIC CABLE AND CONNECTOR FIBER OPTIC CORD
US17/440,594 US20220196945A1 (en) 2019-03-20 2020-03-19 Intermittent connection-type optical fiber tape core, optical fiber cable and connector-equipped optical fiber cord
JP2021507426A JPWO2020189772A1 (ja) 2019-03-20 2020-03-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019052762 2019-03-20
JP2019-052762 2019-03-20

Publications (1)

Publication Number Publication Date
WO2020189772A1 true WO2020189772A1 (ja) 2020-09-24

Family

ID=72520298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012419 WO2020189772A1 (ja) 2019-03-20 2020-03-19 間欠連結型光ファイバテープ心線、光ファイバケーブルおよびコネクタ付き光ファイバコード

Country Status (4)

Country Link
US (1) US20220196945A1 (ja)
EP (1) EP3943992A4 (ja)
JP (1) JPWO2020189772A1 (ja)
WO (1) WO2020189772A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120727A1 (ja) * 2021-12-24 2023-06-29 住友電気工業株式会社 光ケーブル及び光ケーブルの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022183873A (ja) * 2021-05-31 2022-12-13 住友電気工業株式会社 光ファイバリボン

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062427A (ja) 2003-08-11 2005-03-10 Sumitomo Electric Ind Ltd 光ファイバケーブル、光ファイバケーブルの製造方法及び光ファイバケーブルの製造装置
JP2013088617A (ja) 2011-10-18 2013-05-13 Fujikura Ltd 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
JP2015007714A (ja) * 2013-06-25 2015-01-15 住友電気工業株式会社 光ファイバテープ心線、光ケーブル、製造装置、及び製造方法
WO2017145955A1 (ja) * 2016-02-23 2017-08-31 住友電気工業株式会社 間欠連結型光ファイバテープ心線、間欠連結型光ファイバテープ心線の製造方法、光ファイバケーブルおよび光ファイバコード
WO2018182670A1 (en) * 2017-03-31 2018-10-04 Afl Telecommunications Llc Single jacket reduced diameter ruggedized fiber optic distribution cables
JP2019052762A (ja) 2012-09-28 2019-04-04 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation 歯車減速機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6584257B1 (en) * 2000-12-27 2003-06-24 Corning Cable Systems, Llc Fiber optic assembly and method of making same
JP2005114750A (ja) * 2003-10-02 2005-04-28 Fujikura Ltd 分割型テープ心線および前記分割型テープ心線を用いた光ファイバテープコード、光ファイバケーブル並びに前記分割型テープ心線の分割方法
JP4249202B2 (ja) * 2006-03-31 2009-04-02 昭和電線ケーブルシステム株式会社 光ファイバテープおよび光ケーブル
WO2010001663A1 (ja) * 2008-06-30 2010-01-07 日本電信電話株式会社 光ファイバケーブル及び光ファイバテープ
JP5944762B2 (ja) * 2012-07-03 2016-07-05 昭和電線ケーブルシステム株式会社 間欠型光ファイバテープ心線の製造方法および製造装置
US9874684B2 (en) * 2015-11-09 2018-01-23 Sumitomo Electric Industries, Ltd. Optical fiber
EP3385765A4 (en) * 2015-12-01 2019-08-21 Furukawa Electric Co. Ltd. CENTRAL FIBER OPTIC RIBBON WIRE AND OPTICAL FIBER CABLE
US10989888B2 (en) * 2016-02-02 2021-04-27 Ofs Fitel, Llc Flexible ribbon structure and method for making
JP6586925B2 (ja) * 2016-06-13 2019-10-09 住友電気工業株式会社 光ファイバケーブル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062427A (ja) 2003-08-11 2005-03-10 Sumitomo Electric Ind Ltd 光ファイバケーブル、光ファイバケーブルの製造方法及び光ファイバケーブルの製造装置
JP2013088617A (ja) 2011-10-18 2013-05-13 Fujikura Ltd 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
JP2019052762A (ja) 2012-09-28 2019-04-04 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation 歯車減速機
JP2015007714A (ja) * 2013-06-25 2015-01-15 住友電気工業株式会社 光ファイバテープ心線、光ケーブル、製造装置、及び製造方法
WO2017145955A1 (ja) * 2016-02-23 2017-08-31 住友電気工業株式会社 間欠連結型光ファイバテープ心線、間欠連結型光ファイバテープ心線の製造方法、光ファイバケーブルおよび光ファイバコード
WO2018182670A1 (en) * 2017-03-31 2018-10-04 Afl Telecommunications Llc Single jacket reduced diameter ruggedized fiber optic distribution cables

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3943992A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120727A1 (ja) * 2021-12-24 2023-06-29 住友電気工業株式会社 光ケーブル及び光ケーブルの製造方法

Also Published As

Publication number Publication date
EP3943992A1 (en) 2022-01-26
EP3943992A4 (en) 2022-05-04
JPWO2020189772A1 (ja) 2020-09-24
US20220196945A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
CN106932870B (zh) 光纤带芯线及收纳该光纤带芯线的光纤线缆
WO2010001663A1 (ja) 光ファイバケーブル及び光ファイバテープ
JPWO2018105424A1 (ja) 間欠連結型光ファイバテープ心線、その製造方法、光ファイバケーブルおよび光ファイバコード
JP2009163045A (ja) 光ファイバテープ心線およびその分割方法
WO2020189772A1 (ja) 間欠連結型光ファイバテープ心線、光ファイバケーブルおよびコネクタ付き光ファイバコード
WO2017138572A1 (ja) 光ファイバケーブル
JP2006251769A (ja) 光ファイバケーブル、光ファイバ取り出し方法及び光ファイバ取り出し工具
WO2017131117A1 (ja) 光ファイバケーブル
WO2017131118A1 (ja) 光ファイバケーブル
JP2020024257A (ja) 光ファイバテープ心線、光ファイバケーブル、および光ファイバテープ心線の融着接続方法
JP2014157382A (ja) 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
JP2011232733A (ja) 光ファイバテープ心線、光ファイバケーブル、及び光ファイバテープ心線の製造方法
JP2013205501A (ja) 光ファイバテープ心線、及び光ファイバテープ心線を備えた光ファイバケーブル
CN113316733B (zh) 间歇连结型光纤带芯线、光纤线缆及间歇连结型光纤带芯线的制造方法
JP2004206048A (ja) 光ファイバテープ心線及びその製造方法
CN114041075A (zh) 光纤排列方法、光纤熔接方法、带连接器光纤带的制造方法以及间歇连结型的光纤带
JP2014228688A (ja) 光ファイバテープ心線及び光ケーブル
WO2021045201A1 (ja) 光ファイバテープ心線、光ファイバケーブルおよびコネクタ付光ファイバコード
WO2017095544A1 (en) Fiber-bundle assembly for maintaining a select order in an optical fiber cable
JP2006162703A (ja) 光ファイバケーブル
JP2010026196A (ja) 光ファイバユニット
JP2019066889A (ja) 光ファイバケーブル
JP6365459B2 (ja) 光ファイバテープ心線、光ファイバケーブルおよび光ファイバコード
JP2008527451A (ja) 光ケーブル、多数の光導波路を接続するための装置、及び光ケーブルを製造する方法
JP6945688B2 (ja) 光ファイバケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507426

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020773448

Country of ref document: EP

Effective date: 20211020