WO2020188745A1 - Computation device and input device - Google Patents

Computation device and input device Download PDF

Info

Publication number
WO2020188745A1
WO2020188745A1 PCT/JP2019/011465 JP2019011465W WO2020188745A1 WO 2020188745 A1 WO2020188745 A1 WO 2020188745A1 JP 2019011465 W JP2019011465 W JP 2019011465W WO 2020188745 A1 WO2020188745 A1 WO 2020188745A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
imaging data
electronic component
holder
holding
Prior art date
Application number
PCT/JP2019/011465
Other languages
French (fr)
Japanese (ja)
Inventor
秀一郎 鬼頭
恵市 小野
賢志郎 西田
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2021506890A priority Critical patent/JP7185761B2/en
Priority to PCT/JP2019/011465 priority patent/WO2020188745A1/en
Priority to CN201980093874.7A priority patent/CN113614488B/en
Publication of WO2020188745A1 publication Critical patent/WO2020188745A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • the present invention relates to an arithmetic unit that calculates the relative position between the holder and the part and the relative rotation angle between the holder and the part with respect to the part held by the holder.
  • An object of the present invention is to appropriately calculate the positions of parts and the like based on imaging data.
  • the present specification has been imaged when a component composed of at least a first member and a second member different from the first member is held by a holder.
  • the relative position between the holder and the component is calculated based on the imaged data of the first member, and the holder and the holder are calculated based on the imaged data of the second member.
  • An arithmetic unit for calculating a rotation angle relative to the component is disclosed.
  • the present specification captures images when a component composed of at least a first member and a second member different from the first member is held by a holder. It is shown that the relative position between the holder and the component is calculated based on the imaging data of one of the first member and the second member in the captured imaging data, and the first Disclosed is an input device for inputting information indicating that the relative rotation angle between the holder and the component is calculated based on the imaging data of the other member of the member 1 and the second member.
  • the present disclosure is based on the imaging data of the first member among the imaging data captured when the component composed of at least the first member and the second member is held by the holder. Therefore, the relative position between the holder and the component is calculated, and the relative rotation angle between the holder and the component is calculated based on the imaging data of the second member. Thereby, the holding position and the holding angle of the component can be appropriately calculated based on the imaging data.
  • FIG. 1 shows the component mounting machine 10.
  • the component mounting machine 10 is a device for executing component mounting work on the circuit base material 12.
  • the component mounting machine 10 includes an apparatus main body 20, a base material transfer holding device 22, a component mounting device 24, a mark camera 26, a parts camera 28, a component supply device 30, a loose component supply device 32, and a control device (see FIG. 3) 36.
  • Examples of the circuit board 12 include a circuit board and a base material having a three-dimensional structure, and examples of the circuit board include a printed wiring board and a printed circuit board.
  • the device main body 20 is composed of a frame 40 and a beam 42 mounted on the frame 40.
  • the base material transfer holding device 22 is arranged at the center of the frame 40 in the front-rear direction, and has a transfer device 50 and a clamp device 52.
  • the transport device 50 is a device that transports the circuit base material 12
  • the clamp device 52 is a device that holds the circuit base material 12.
  • the base material transfer holding device 22 conveys the circuit base material 12 and holds the circuit base material 12 fixedly at a predetermined position.
  • the transport direction of the circuit base material 12 is referred to as the X direction
  • the horizontal direction perpendicular to that direction is referred to as the Y direction
  • the vertical direction is referred to as the Z direction. That is, the width direction of the component mounting machine 10 is the X direction, and the front-rear direction is the Y direction.
  • the component mounting device 24 is arranged on the beam 42, and has two work heads 56 and 58 and a work head moving device 62.
  • the work head moving device 62 is composed of an X direction moving device 63, a Y direction moving device 64, and a Z direction moving device 65.
  • the X-direction moving device 63 and the Y-direction moving device 64 have electromagnetic motors (see FIG. 3) 66 and 68, respectively, and the operation of the electromagnetic motors 66 and 68 causes the two work heads 56 and 58 to move. , It integrally moves to an arbitrary position on the frame 40.
  • the Z-direction moving device 65 has electromagnetic motors (see FIG.
  • the work heads 56 and 58 are detachably attached to the sliders 74 and 76. As a result, the work heads 56 and 58 are individually moved in the vertical direction by the Z-direction moving device 65.
  • each of the work heads 56 and 58 has a suction nozzle 78, and the suction nozzle 78 leads to a positive / negative pressure supply device (see FIG. 3) 80 via a negative pressure air and a positive pressure air passage. .. Then, the suction nozzle 78 sucks and holds the component by the negative pressure, and releases the held component by the positive pressure.
  • each of the work heads 56 and 58 has a rotation device (see FIG. 3) 82 and an elevating device (see FIG. 3) 84.
  • the rotation device 82 is a device that rotates the suction nozzle 78 around the axis, and changes the posture of the parts held by the suction nozzle 78.
  • the elevating device 84 is a device for elevating and lowering the suction nozzle 78, and elevates and lowers the parts held by the suction nozzle 78.
  • the mark camera 26 is attached to the slider 74 in a state of facing downward, and moves in the X direction, the Y direction, and the Z direction together with the work head 56. As a result, the mark camera 26 moves to an arbitrary position by the operation of the work head moving device 62, and images an arbitrary position on the frame 40.
  • the parts camera 28 is arranged between the base material transport holding device 22 on the frame 40 and the parts supply device 30 in a state of facing upward.
  • the work heads 56 and 58 holding the parts move above the parts camera 28 by the operation of the work head moving device 62, so that the parts camera 28 images the parts held by the suction nozzle 78.
  • the parts supply device 30 is arranged at one end of the frame 40 in the front-rear direction.
  • the parts supply device 30 includes a tray-type parts supply device 90 and a feeder-type parts supply device (see FIG. 3) 92.
  • the tray-type component supply device 90 is a device that supplies components in a state of being placed on the tray.
  • the feeder type component supply device 92 is a device that supplies components by a tape feeder and a stick feeder (not shown).
  • the loose parts supply device 32 is arranged at the other end of the frame 40 in the front-rear direction.
  • the loose parts supply device 32 is a device that aligns a plurality of parts that are scattered apart and supplies the parts in the aligned state. That is, it is a device that aligns a plurality of parts in an arbitrary posture in a predetermined posture and supplies the parts in the predetermined posture.
  • Examples of the parts supplied by the parts supply device 30 and the loose parts supply device 32 include electronic circuit parts, solar cell components, power module components, and the like.
  • electronic circuit parts include parts having leads, parts having no leads, and the like.
  • the control device 36 includes a controller 100, a plurality of drive circuits 102, an image processing device 106, and a memory 108.
  • the plurality of drive circuits 102 include the transfer device 50, the clamp device 52, the electromagnetic motors 66, 68, 70, 72, the positive / negative pressure supply device 80, the rotation device 82, the elevating device 84, the tray type component supply device 90, and the feeder type component. It is connected to the supply device 92 and the loose component supply device 32.
  • the controller 100 includes a CPU, ROM, RAM, etc., and is mainly a computer, and is connected to a plurality of drive circuits 102.
  • the controller 100 is also connected to the image processing device 106.
  • the image processing device 106 processes the image data obtained by the mark camera 26 and the parts camera 28, and the controller 100 acquires various information from the image data.
  • the controller 100 is also connected to the memory 108.
  • the memory 108 stores a table (see FIG. 11) 110 used during the mounting work, and the controller 100 executes the mounting work using the table 110 stored in the memory 108. To do.
  • the memory 108 is connected to the input device 112, a table 110 is created by inputting various information by the input device 112, and the created table 110 is stored in the memory 108.
  • components are mounted on the circuit substrate 12 held by the substrate transfer holding device 22 according to the above configuration.
  • the circuit base material 12 is conveyed to a working position, and is fixedly held by the clamp device 52 at that position.
  • the mark camera 26 moves above the circuit base material 12 and images the circuit base material 12.
  • the imaging data obtained by the imaging of the mark camera 26 is transmitted to the controller 100 via the image processing device 106, and the imaging data is analyzed by the controller 100. As a result, information regarding the holding position of the circuit base material 12 and the like is calculated.
  • the parts supply device 30 or the loose parts supply device 32 supplies electronic parts at a predetermined supply position. Then, one of the work heads 56 and 58 moves above the supply position of the component, and the suction nozzle 78 sucks and holds the component. Next, the work heads 56 and 58 holding the parts move above the parts camera 28, and the parts held by the suction nozzle 78 are imaged by the parts camera 28. Then, the imaging data obtained by the imaging of the parts camera 28 is transmitted to the controller 100 via the image processing device 106, and the imaging data is analyzed by the controller 100. As a result, information regarding the holding position of the component by the suction nozzle 78 and the like is calculated. Then, the work heads 56 and 58 move above the circuit base material 12, and the electronic components are mounted on the circuit base material 12 by utilizing the holding position of the circuit base material 12, the holding position of the parts by the suction nozzle 78, and the like. To do.
  • the component held by the suction nozzle 78 is imaged, and the electronic component is a circuit base material by utilizing the holding position of the component by the suction nozzle 78 calculated based on the imaging data. It is attached to 12. Therefore, in order to improve the mounting accuracy of the component on the circuit base material 12, it is necessary to appropriately calculate the holding position of the component by the suction nozzle 78. However, depending on the shape of the component, the holding position of the component by the suction nozzle 78 cannot be calculated appropriately, and there is a possibility that the mounting operation with high accuracy cannot be performed.
  • the electronic component 120 shown in FIG. 4 is composed of a component body 122 and a camera 124.
  • the component main body 122 generally has a rectangular parallelepiped shape, and a recess 126 is formed on the upper surface thereof.
  • the recess 126 is recessed in a circular shape.
  • the camera 124 has a cylindrical shape and is erected in the central portion of the recess 126. Therefore, in the top view of the electronic component 120, that is, the view from the viewpoint from the side where the camera 124 of the electronic component 120 is arranged, the camera 124 has a circular shape, more specifically, a perfect circular shape.
  • the electronic component 120 is placed on the tray of the tray-type component supply device 90 in the component mounting machine 10 in a state of being inverted in the vertical direction. That is, the camera 124 is placed on the tray with the camera 124 facing downward. Then, the electronic component 120 is held by the suction nozzle 78, and the work heads 56 and 58 move above the parts camera 28, so that the electronic component 120 held by the suction nozzle 78 is imaged by the parts camera 28. Then, the imaging data is analyzed by the controller 100, and the holding information regarding the holding position of the electronic component 120 by the suction nozzle 78 is calculated.
  • the outline of the component body 122 is extracted based on the imaging data.
  • various methods can be adopted as the image processing when the outline of the component main body 122 is extracted.
  • the outline of the component main body 122 is extracted by using a seek line template (Patent No. 3759983) or the like.
  • predetermined coordinates that is, coordinates in the X direction and the Y direction are calculated based on the outline of the component body 122.
  • the memory 108 stores the coordinates in the X direction and the Y direction at the ideal holding position of the electronic component 120 by the suction nozzle 78.
  • the electrons are received.
  • the relative positions of the component 120 and the suction nozzle 78 are calculated.
  • the deviation angle of the electronic component 120 held by the suction nozzle 78 from the ideal holding posture of the electronic component 120 by the suction nozzle 78 is calculated. That is, the relative rotation angle between the electronic component 120 and the suction nozzle 78 is calculated based on the outline of the component body 122.
  • the relative rotation angle between the electronic component 120 and the suction nozzle 78 is 0 degrees, the electronic component 120 is held in an ideal posture by the suction nozzle 78.
  • the relative positions of the electronic component 120 and the suction nozzle 78, and the electronic component 120 and the suction nozzle 78 are used as holding information.
  • the relative rotation angle of is calculated.
  • the positions of the work heads 56 and 58 at the time of mounting in the X direction and the Y direction are corrected by the work head moving device 62, and the suction nozzle 78 is used.
  • the rotation angle of the electronic component 120 is corrected by the rotation device 82, so that the proper mounting work of the electronic component 120 is ensured. That is, for example, when the planned mounting coordinates of the electronic component 120 are (X 1 , Y 1 ), the electronic component 120 is mounted at the scheduled mounting position as shown in FIG. At this time, both the component body 122 and the camera 124 are arranged at the planned mounting coordinates.
  • the mounting position of the camera 124 on the component body 122 may be misaligned as shown in FIG.
  • the component body 122 has the coordinates to be mounted (X 1). , Y 1 ), but the camera 124 is placed at a position deviated from the planned mounting coordinates (X 1 , Y 1 ). This is because the holding information of the electronic component 120, that is, the relative position and rotation angle between the electronic component 120 and the suction nozzle 78 is calculated based on the imaging data of the component body 122.
  • the function as the camera 124 may not be properly exhibited. That is, when mounting the electronic component 120, it is desired to mount the camera 124 with high accuracy instead of mounting the component body 122.
  • the holding information is calculated based on the outline of the camera 124.
  • the outline of the camera 124 is extracted based on the imaging data.
  • the coordinates in the predetermined X and Y directions are calculated based on the outline of the camera 124.
  • the electronic component is based on the coordinates in the X and Y directions at the ideal holding position stored in the memory 108 and the coordinates in the X and Y directions of the camera 124 calculated based on the imaging data.
  • the relative positions of 120 and the suction nozzle 78 are calculated.
  • the camera 124 has a circular shape. That is, the camera 124 has a circular shape when viewed from the image pickup direction by the parts camera 28. Therefore, the rotation angle of the electronic component 120 cannot be calculated from the outline of the camera 124. That is, based on the image pickup data of the camera 124, only the relative position between the electronic component 120 and the suction nozzle 78 can be calculated as the holding information. Then, when the mounting operation of the electronic component 120 is executed using the holding information, the camera 124 is arranged at the planned mounting coordinates (X 1 , Y 1 ) as shown in FIG. 7. As a result, the function as the camera 124 can be appropriately exhibited.
  • the component main body 122 is mounted at a position deviated from the planned mounting position 130. That is, the component main body 122 is mounted in a state of being rotated around the axis of the suction nozzle 78 from the planned mounting position 130. In this way, if the component body 122 is mounted at a position deviated from the planned mounting position 130, interference with other components may occur.
  • the relative position between the electronic component 120 and the suction nozzle 78 is calculated based only on the imaging data of the camera 124 without using the imaging data of the component body 122. Further, the relative rotation angle between the electronic component 120 and the suction nozzle 78 is calculated based only on the imaging data of the component main body 122 without using the imaging data of the camera 124. That is, the outline of the camera 124 is extracted based on the imaging data, and the coordinates in the predetermined X and Y directions are calculated based on the outline of the camera 124.
  • the electronic component 120 The relative position between the suction nozzle 78 and the suction nozzle 78 is calculated.
  • the outline of the component body 122 is extracted based on the imaging data, and the ideal of the electronic component 120 held by the suction nozzle 78 based on the outline of the component body 122 is the electronic component 120 by the suction nozzle 78.
  • the deviation angle from the holding posture is calculated. That is, the relative rotation angle between the electronic component 120 and the suction nozzle 78 is calculated based on the outline of the component body 122.
  • the positions of the work heads 56 and 58 at the time of mounting in the X direction and the Y direction are corrected by the work head moving device 62. ..
  • the rotation angle of the suction nozzle 78 is corrected by the rotation device 82 by using the rotation angle of the electronic component 120 calculated based on the imaging data of the component body 122. Then, after the positions of the work heads 56 and 58 and the rotation angle of the suction nozzle 78 are corrected, the electronic component 120 is mounted on the circuit base material 12. As a result, as shown in FIG. 8, the camera 124 is arranged at the coordinates to be mounted (X 1 , Y 1 ), and the function as the camera 124 can be appropriately exhibited. Further, as can be seen by comparing FIG. 7 and FIG. 8, the component main body 122 is mounted at the planned mounting position 130, and interference of the electronic component 120 with other components can be prevented.
  • the holding position of the electronic component 120 is calculated based only on the imaging data of one of the plurality of members constituting the electronic component 120, and one member of the plurality of members constituting the electronic component 120 is calculated.
  • the holding angle of the electronic component 120 is calculated based on the imaging data of only the members other than the members, the appropriate mounting work of the electronic component 120 is guaranteed.
  • the holding position and holding angle of the component are calculated by the suction nozzle 78 using the same method as that of the electronic component 120, so that the appropriate component mounting work is guaranteed.
  • the electronic component 150 shown in FIG. 9 is composed of a component body 152 and a plurality of leads 154.
  • the component body 152 generally has a rectangular parallelepiped shape, and leads 154 are arranged so as to extend from each of the four side surfaces of the component body 152. Then, while the electronic component 150 is held by the suction nozzle 78, the image is taken by the parts camera 28, and the imaged data is analyzed by the controller 100.
  • the relative position between the electronic component 150 and the suction nozzle 78 is calculated based on the imaging data of the lead 154 without using the imaging data of the component main body 152. Further, the relative rotation angle between the electronic component 150 and the suction nozzle 78 is calculated based only on the imaging data of the component main body 152 without using the imaging data of the lead 154.
  • the outlines of the plurality of leads 154 are extracted based on the imaging data, and the coordinates in the predetermined X and Y directions are calculated based on the outlines of the leads 154. Then, based on the coordinates in the X direction and the Y direction at the ideal holding position stored in the memory 108 and the coordinates in the X direction and the Y direction of the lead 154 calculated based on the imaging data, the electronic component 150 The holding position of is calculated. Further, the outline of the component body 152 is extracted based on the imaging data, and the holding angle of the electronic component 150 by the suction nozzle 78 is calculated based on the outline of the component body 152.
  • the positions of the work heads 56 and 58 at the time of mounting in the X direction and the Y direction are corrected by the work head moving device 62.
  • the rotation angle of the suction nozzle 78 is corrected by the rotation device 82 by utilizing the rotation angle of the electronic component 150 calculated based on the imaging data of the component body 152.
  • the electronic component 150 is mounted on the circuit base material 12.
  • the leads 154 are arranged at the coordinates to be mounted, so that the electrical connection of the leads 154 to the circuit base material 12 is ensured. Further, by correcting the rotation angle of the electronic component 150, it is possible to prevent interference of the electronic component 150 with other components.
  • the electronic component 160 shown in FIG. 10 is composed of a component body 162 and a plurality of bumps 164.
  • the component main body 162 generally has a rectangular parallelepiped shape, and a plurality of bumps 164 are arranged on the lower surface of the component main body 162 in a state of being arranged in 3 rows ⁇ 4 columns. Then, while the electronic component 160 is held by the suction nozzle 78, the image is taken by the parts camera 28, and the imaged data is analyzed by the controller 100. At this time, the relative position between the electronic component 160 and the suction nozzle 78 is calculated based on the imaging data of the bump 164 without using the imaging data of the component body 162.
  • the relative rotation angle between the electronic component 160 and the suction nozzle 78 is calculated based on the imaging data of the component main body 162 without using the imaging data of the bump 164.
  • the method of calculating the holding position and holding angle of the electronic component 160 and the method of correcting the positions of the work heads 56 and 58 and the rotation angle of the suction nozzle 78 at the time of mounting are the same as those of the electronic component 150.
  • the table 110 used for calculating the holding positions and holding angles of the electronic components 120, 150, 160 is stored in the memory 108. Specifically, before the mounting operation is performed, the operator attaches to each of the electronic components 120, 150, 160 and any member of the plurality of members constituting the electronic components 120, 150, 160. Information indicating whether to calculate the holding position of the component based on the imaging data and information indicating whether to calculate the holding angle of the component are input to the input device 112.
  • the holding position of the electronic component 120 is calculated based on the imaging data of the camera 124, and the holding angle of the electronic component 120 is calculated based on the imaging data of the component body 122.
  • the operator inputs the indicated information into the input device 112. Further, the operator also inputs the shape data of the component main body 122 and the camera 124 to the input device 112 for the electronic component 120.
  • the shape data of the component body 122 is, for example, dimensions, tolerances, etc. in the width direction and the length direction of the component body 122
  • the shape data of the camera 124 is the outer diameter, tolerance, etc. of the camera 124.
  • the electronic component 150 information indicating that the holding position of the electronic component 150 is calculated based on the imaging data of the lead 154 and the holding angle of the electronic component 150 is calculated based on the imaging data of the component body 152 is provided.
  • the operator inputs to the input device 112. Further, the operator also inputs the shape data of the component main body 152 and the lead 154 to the input device 112 for the electronic component 150.
  • the shape data of the component body 152 is, for example, dimensions, tolerances, etc. in the width direction and the length direction of the component body 152
  • the shape data of the leads 154 is the number of leads, the arrangement pitch, the length dimension, the width dimension, etc. Tolerance etc.
  • the electronic component 160 information indicating that the holding position of the electronic component 160 is calculated based on the imaging data of the bump 164 and the holding angle of the electronic component 160 is calculated based on the imaging data of the component body 162 is provided.
  • the operator inputs to the input device 112. Further, the operator also inputs the shape data of the component main body 162 and the bump 164 to the input device 112 for the electronic component 160.
  • the shape data of the component body 162 is, for example, dimensions, tolerances, etc. in the width direction and the length direction of the component body 162, and the shape data of the bumps 164 is the number of bumps, the arrangement pitch, the outer diameter, the tolerance, and the like. ..
  • the table 110 shown in FIG. 11 is created, and the table 110 is stored in the memory 108.
  • the holding position of the electronic component 120 is calculated for the electronic component 120 by using the shape data of the camera 124, and the holding angle of the electronic component 120 is calculated by using the shape data of the component body 122.
  • Information indicating is set.
  • the holding position of the electronic component 150 is calculated for the electronic component 150 by using the shape data of the lead 154, and the holding angle of the electronic component 150 is calculated by using the shape data of the component body 152.
  • Information indicating that the operation is to be performed is set.
  • the holding position of the electronic component 160 is calculated by using the shape data of the bump 164 for the electronic component 160, and the holding angle of the electronic component 160 is calculated by using the shape data of the component body 162.
  • Information indicating that the operation is to be performed is set.
  • the holding position and the holding angle according to the electronic components are calculated by using the table 110 stored in the memory 108. Specifically, first, initialization of various data is executed (S100). Next, based on the shape data used for calculating the holding position, the outer line of the member constituting the electronic component (hereinafter, referred to as “holding position outer line”) is specified (S102). That is, when the target of the mounting work is the electronic component 120, the shape data for calculating the holding position of the component is specified by the table 110 as the shape data of the camera 124. Then, the controller 100 extracts an outline corresponding to the shape data of the camera 124 from the imaged data.
  • the outline of the camera 124 is extracted.
  • the table 110 identifies that the shape data for calculating the holding position of the component is the shape data of the lead 154. Then, the controller 100 extracts the outline corresponding to the shape data of the lead 154 from the imaged data. As a result, the outline of the lead 154 is extracted from the imaging data.
  • the table 110 identifies that the shape data for calculating the holding position of the component is the shape data of the bump 164. Then, the controller 100 extracts the outline corresponding to the shape data of the bump 164 from the imaged data. As a result, the outline of the bump 164 is extracted from the imaging data. In this way, the holding position outline is specified based on the shape data used for calculating the holding position.
  • the outer line of the member constituting the electronic component (hereinafter, referred to as "holding angle outer line") is specified (S104). That is, when the target of the mounting work is the electronic component 120, the table 110 identifies the shape data for calculating the holding angle of the component as the shape data of the component body 122. Then, the controller 100 extracts the outline corresponding to the shape data of the component main body 122 from the imaging data. As a result, the outline of the component body 122 is extracted from the imaging data. Further, when the target of the mounting work is the electronic component 150, the shape data for calculating the holding angle of the component is specified by the table 110 as the shape data of the component main body 152.
  • the controller 100 extracts the outline corresponding to the shape data of the component main body 152 from the imaging data. As a result, the outline of the component body 152 is extracted from the imaged data. Further, when the target of the mounting work is the electronic component 160, the table 110 identifies the shape data for calculating the holding angle of the component as the shape data of the component body 162. Then, the controller 100 extracts the outline corresponding to the shape data of the component main body 162 from the imaging data. As a result, the outline of the component body 162 is extracted from the imaging data. In this way, the holding angle outline is specified based on the shape data used to calculate the holding angle.
  • the holding position and holding angle of the component by the suction nozzle 78 are calculated based on the holding position outline and the holding angle outline (S106). Then, the calculated holding position and holding angle of the component by the suction nozzle 78 are set as holding information used at the time of mounting work (S108). As a result, as described above, proper mounting work of the electronic components 120, 150, 160 is ensured. Further, the inspection process is also performed based on the holding position outline and the holding angle outline specified in S102 and S104 (S110).
  • the component bodies 122, 152, 162 are based on the position outline and the holding angle outline, that is, the outlines of the component bodies 122, 152, 162, the camera 124, the lead 154, and the bump 164. , Camera 124, lead 154, bump 164, etc. are inspected to see if they exceed tolerances. That is, the shape data of the component bodies 122, 152, 162 and the like include tolerances as described above. Therefore, it can be determined whether or not the outlines of the specified component bodies 122, 152, 162 and the like exceed the tolerance. Therefore, in this inspection process, when the outlines of the component bodies 122, 152, 162, etc.
  • the component is NG, and the outlines of the component bodies 122, 152, 162, etc. do not exceed the tolerance. In some cases, it is determined to be an OK part. Then, the NG parts are discarded, and only the OK parts are used for the mounting work.
  • the holding position and the holding angle according to the electronic components are calculated by using the table 110 stored in the memory 108. It is also determined whether the component to be mounted is an OK component or an NG component.
  • the control device 36 is an example of an arithmetic unit.
  • the suction nozzle 78 is an example of a holder.
  • the memory 108 is an example of the memory.
  • Table 110 is an example of member information.
  • the input device 112 is an example of an input device.
  • the electronic component 120 is an example of a component.
  • the component body 122 is an example of the second member.
  • the camera 124 is an example of the first member.
  • the electronic component 150 is an example of a component.
  • the component body 152 is an example of the second member.
  • the lead 154 is an example of the first member.
  • the electronic component 160 is an example of a component.
  • the component body 162 is an example of the second member.
  • the bump 164 is an example of the first member.
  • the present invention is not limited to the above-mentioned embodiment, and can be carried out in various modes with various changes and improvements based on the knowledge of those skilled in the art.
  • the holding angle of the component is calculated based on the component bodies 122, 152, 162, but the holding position of the component is calculated based on the component bodies 122, 152, 162. You may. Further, although the holding position of the component is calculated based on the leads 154 and the bump 164, the holding angle of the component may be calculated based on the leads 154 and the bump 164.
  • the holding position or holding angle of the component may be calculated based on various members and the like.
  • the holding position of the component may be calculated based on the shape of a part of the component body 122, specifically, the shape of the recess 126 or the like.
  • the imaging data of the component body 122 is used instead of the imaging data of the camera 124.
  • the camera 124 has a circular shape, more specifically, a perfect circular shape when viewed from the imaging direction. That is, it is possible to calculate the holding angle of the component by using the imaging data of the member having a circular shape, more specifically, a shape other than the perfect circular shape from the viewpoint from the imaging direction. Therefore, it is possible to calculate the holding angle of the component based on the imaging data of the member having a directional shape such as a polygon or an ellipse from the viewpoint from the imaging direction.
  • the present invention is applied to electronic parts, but the present invention can be applied not only to electronic parts but also to various parts. Specifically, the present invention can be specifically applied to, for example, parts having no electrical element, assembled parts, and the like.
  • Control device (arithmetic device) 78: Suction nozzle (holding tool) 108: Memory 110: Table (member information) 112: Input device 120: Electronic component (component) 122: Component body (second component) 124: Camera (First member) 150: Electronic component (part) 152: Part body (second member) 154: Lead (first member) 160: Electronic component (part) 162: Part body (second member) 164 : Bump (first member)

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Operations Research (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

On the basis of the imaging data for a first member from among imaging data imaged during the holding, by a holding tool, of a component at least comprising the first member and a second member different from the first member, this computation device calculates the positional relationship between the holding tool and the component. The computation device calculates the relative rotation angle between the holding tool and the component on the basis of the imaging data for the second member from among the imaging data.

Description

演算装置、および入力装置Arithmetic logic unit and input device
 本発明は、保持具に保持された部品について、保持具と部品との相対的な位置及び、保持具と部品との相対的な回転角度を演算する演算装置などに関する。 The present invention relates to an arithmetic unit that calculates the relative position between the holder and the part and the relative rotation angle between the holder and the part with respect to the part held by the holder.
 下記特許文献に記載されているように、撮像データに基づいて、部品の位置等を演算する技術が開発されている。 As described in the patent document below, a technique for calculating the position of a part or the like based on imaging data has been developed.
特開2000-183404号公報Japanese Unexamined Patent Publication No. 2000-183404
 本発明は、撮像データに基づいて、部品の位置等を適切に演算することを課題とする。 An object of the present invention is to appropriately calculate the positions of parts and the like based on imaging data.
 上記課題を解決するために、本明細書は、少なくとも第1の部材と、前記第1の部材と異なる第2の部材とにより構成される部品が保持具により保持されている際に撮像された撮像データのうちの、前記第1の部材の撮像データに基づいて、前記保持具と前記部品との相対的な位置を演算し、前記第2の部材の撮像データに基づいて、前記保持具と前記部品との相対的な回転角度を演算する演算装置を開示する。 In order to solve the above problems, the present specification has been imaged when a component composed of at least a first member and a second member different from the first member is held by a holder. Of the imaged data, the relative position between the holder and the component is calculated based on the imaged data of the first member, and the holder and the holder are calculated based on the imaged data of the second member. An arithmetic unit for calculating a rotation angle relative to the component is disclosed.
 また、上記課題を解決するために、本明細書は、少なくとも第1の部材と、前記第1の部材と異なる第2の部材とにより構成される部品が保持具により保持されている際に撮像された撮像データのうちの、前記第1の部材と前記第2の部材との一方の撮像データに基づいて前記保持具と前記部品との相対的な位置を演算することを示すとともに、前記第1の部材と前記第2の部材との他方の撮像データに基づいて前記保持具と前記部品との相対的な回転角度を演算することを示す情報を入力するための入力装置を開示する。 Further, in order to solve the above problems, the present specification captures images when a component composed of at least a first member and a second member different from the first member is held by a holder. It is shown that the relative position between the holder and the component is calculated based on the imaging data of one of the first member and the second member in the captured imaging data, and the first Disclosed is an input device for inputting information indicating that the relative rotation angle between the holder and the component is calculated based on the imaging data of the other member of the member 1 and the second member.
 本開示によれば、少なくとも第1の部材と第2の部材とにより構成される部品が保持具により保持されている際に撮像された撮像データのうちの、第1の部材の撮像データに基づいて、保持具と部品との相対的な位置が演算され、第2の部材の撮像データに基づいて、保持具と部品との相対的な回転角度が演算される。これにより、撮像データに基づいて、部品の保持位置及び保持角度を適切に演算することができる。 According to the present disclosure, it is based on the imaging data of the first member among the imaging data captured when the component composed of at least the first member and the second member is held by the holder. Therefore, the relative position between the holder and the component is calculated, and the relative rotation angle between the holder and the component is calculated based on the imaging data of the second member. Thereby, the holding position and the holding angle of the component can be appropriately calculated based on the imaging data.
部品実装機を示す斜視図である。It is a perspective view which shows the component mounting machine. 部品実装機の部品装着装置を示す斜視図である。It is a perspective view which shows the component mounting apparatus of a component mounting machine. 制御装置を示すブロック図である。It is a block diagram which shows the control device. 電子部品を示す側面図及び平面図である。It is a side view and a plan view which show the electronic component. 装着時の電子部品を示す概略図である。It is the schematic which shows the electronic component at the time of mounting. 装着時の電子部品を示す概略図である。It is the schematic which shows the electronic component at the time of mounting. 装着時の電子部品を示す概略図である。It is the schematic which shows the electronic component at the time of mounting. 装着時の電子部品を示す概略図である。It is the schematic which shows the electronic component at the time of mounting. 電子部品を示す平面図である。It is a top view which shows the electronic component. 電子部品を示す平面図である。It is a top view which shows the electronic component. テーブルを示す概念図である。It is a conceptual diagram which shows a table. フローチャートを示す図である。It is a figure which shows the flowchart.
 以下、本発明を実施するための形態として、本発明の実施例を、図を参照しつつ詳しく説明する。 Hereinafter, examples of the present invention will be described in detail with reference to the drawings as a mode for carrying out the present invention.
 図1に、部品実装機10を示す。部品実装機10は、回路基材12に対する部品の実装作業を実行するための装置である。部品実装機10は、装置本体20、基材搬送保持装置22、部品装着装置24、マークカメラ26、パーツカメラ28、部品供給装置30、ばら部品供給装置32、制御装置(図3参照)36を備えている。なお、回路基材12として、回路基板、三次元構造の基材等が挙げられ、回路基板として、プリント配線板、プリント回路板等が挙げられる。 FIG. 1 shows the component mounting machine 10. The component mounting machine 10 is a device for executing component mounting work on the circuit base material 12. The component mounting machine 10 includes an apparatus main body 20, a base material transfer holding device 22, a component mounting device 24, a mark camera 26, a parts camera 28, a component supply device 30, a loose component supply device 32, and a control device (see FIG. 3) 36. I have. Examples of the circuit board 12 include a circuit board and a base material having a three-dimensional structure, and examples of the circuit board include a printed wiring board and a printed circuit board.
 装置本体20は、フレーム40と、そのフレーム40に上架されたビーム42とによって構成されている。基材搬送保持装置22は、フレーム40の前後方向の中央に配設されており、搬送装置50とクランプ装置52とを有している。搬送装置50は、回路基材12を搬送する装置であり、クランプ装置52は、回路基材12を保持する装置である。これにより、基材搬送保持装置22は、回路基材12を搬送するとともに、所定の位置において、回路基材12を固定的に保持する。なお、以下の説明において、回路基材12の搬送方向をX方向と称し、その方向に直角な水平の方向をY方向と称し、鉛直方向をZ方向と称する。つまり、部品実装機10の幅方向は、X方向であり、前後方向は、Y方向である。 The device main body 20 is composed of a frame 40 and a beam 42 mounted on the frame 40. The base material transfer holding device 22 is arranged at the center of the frame 40 in the front-rear direction, and has a transfer device 50 and a clamp device 52. The transport device 50 is a device that transports the circuit base material 12, and the clamp device 52 is a device that holds the circuit base material 12. As a result, the base material transfer holding device 22 conveys the circuit base material 12 and holds the circuit base material 12 fixedly at a predetermined position. In the following description, the transport direction of the circuit base material 12 is referred to as the X direction, the horizontal direction perpendicular to that direction is referred to as the Y direction, and the vertical direction is referred to as the Z direction. That is, the width direction of the component mounting machine 10 is the X direction, and the front-rear direction is the Y direction.
 部品装着装置24は、ビーム42に配設されており、2台の作業ヘッド56,58と作業ヘッド移動装置62とを有している。作業ヘッド移動装置62は、図2に示すように、X方向移動装置63とY方向移動装置64とZ方向移動装置65とによって構成されている。X方向移動装置63及びY方向移動装置64は、それぞれ、電磁モータ(図3参照)66,68を有しており、各電磁モータ66,68の作動により、2台の作業ヘッド56,58が、一体的にフレーム40上の任意の位置に移動する。また、Z方向移動装置65は、電磁モータ(図3参照)70,72を有しており、各電磁モータ70,72の作動により、スライダ74,76が個別に上下方向に移動する。そして、そのスライダ74,76に作業ヘッド56,58が着脱可能に装着されている。これにより、作業ヘッド56,58は、Z方向移動装置65によって、個別に上下方向に移動する。 The component mounting device 24 is arranged on the beam 42, and has two work heads 56 and 58 and a work head moving device 62. As shown in FIG. 2, the work head moving device 62 is composed of an X direction moving device 63, a Y direction moving device 64, and a Z direction moving device 65. The X-direction moving device 63 and the Y-direction moving device 64 have electromagnetic motors (see FIG. 3) 66 and 68, respectively, and the operation of the electromagnetic motors 66 and 68 causes the two work heads 56 and 58 to move. , It integrally moves to an arbitrary position on the frame 40. Further, the Z-direction moving device 65 has electromagnetic motors (see FIG. 3) 70 and 72, and the sliders 74 and 76 individually move in the vertical direction by the operation of the electromagnetic motors 70 and 72. The work heads 56 and 58 are detachably attached to the sliders 74 and 76. As a result, the work heads 56 and 58 are individually moved in the vertical direction by the Z-direction moving device 65.
 また、各作業ヘッド56,58は、吸着ノズル78を有しており、吸着ノズル78は、負圧エア,正圧エア通路を介して、正負圧供給装置(図3参照)80に通じている。そして、吸着ノズル78は、負圧によって部品を吸着保持し、保持した部品を正圧によって離脱する。また、各作業ヘッド56,58は、自転装置(図3参照)82及び昇降装置(図3参照)84を有している。自転装置82は、吸着ノズル78を軸心周りに自転させる装置であり、吸着ノズル78に保持された部品の姿勢を変更する。昇降装置84は、吸着ノズル78を昇降させる装置であり、吸着ノズル78に保持された部品を昇降させる。 Further, each of the work heads 56 and 58 has a suction nozzle 78, and the suction nozzle 78 leads to a positive / negative pressure supply device (see FIG. 3) 80 via a negative pressure air and a positive pressure air passage. .. Then, the suction nozzle 78 sucks and holds the component by the negative pressure, and releases the held component by the positive pressure. Further, each of the work heads 56 and 58 has a rotation device (see FIG. 3) 82 and an elevating device (see FIG. 3) 84. The rotation device 82 is a device that rotates the suction nozzle 78 around the axis, and changes the posture of the parts held by the suction nozzle 78. The elevating device 84 is a device for elevating and lowering the suction nozzle 78, and elevates and lowers the parts held by the suction nozzle 78.
 また、マークカメラ26は、下方を向いた状態でスライダ74に取り付けられており、作業ヘッド56とともに、X方向,Y方向およびZ方向に移動する。これにより、マークカメラ26は、作業ヘッド移動装置62の作動により任意の位置に移動し、フレーム40上の任意の位置を撮像する。 Further, the mark camera 26 is attached to the slider 74 in a state of facing downward, and moves in the X direction, the Y direction, and the Z direction together with the work head 56. As a result, the mark camera 26 moves to an arbitrary position by the operation of the work head moving device 62, and images an arbitrary position on the frame 40.
 また、パーツカメラ28は、図1に示すように、フレーム40上の基材搬送保持装置22と部品供給装置30との間に、上を向いた状態で配設されている。これにより、部品を保持する作業ヘッド56,58が、作業ヘッド移動装置62の作動によりパーツカメラ28の上方に移動することで、パーツカメラ28が、吸着ノズル78に保持された部品を撮像する。 Further, as shown in FIG. 1, the parts camera 28 is arranged between the base material transport holding device 22 on the frame 40 and the parts supply device 30 in a state of facing upward. As a result, the work heads 56 and 58 holding the parts move above the parts camera 28 by the operation of the work head moving device 62, so that the parts camera 28 images the parts held by the suction nozzle 78.
 また、部品供給装置30は、フレーム40の前後方向での一方側の端部に配設されている。部品供給装置30は、トレイ型部品供給装置90とフィーダ型部品供給装置(図3参照)92とを有している。トレイ型部品供給装置90は、トレイ上に載置された状態の部品を供給する装置である。フィーダ型部品供給装置92は、テープフィーダ、スティックフィーダ(図示省略)によって部品を供給する装置である。 Further, the parts supply device 30 is arranged at one end of the frame 40 in the front-rear direction. The parts supply device 30 includes a tray-type parts supply device 90 and a feeder-type parts supply device (see FIG. 3) 92. The tray-type component supply device 90 is a device that supplies components in a state of being placed on the tray. The feeder type component supply device 92 is a device that supplies components by a tape feeder and a stick feeder (not shown).
 ばら部品供給装置32は、フレーム40の前後方向での他方側の端部に配設されている。ばら部品供給装置32は、ばらばらに散在された状態の複数の部品を整列させて、整列させた状態で部品を供給する装置である。つまり、任意の姿勢の複数の部品を、所定の姿勢に整列させて、所定の姿勢の部品を供給する装置である。 The loose parts supply device 32 is arranged at the other end of the frame 40 in the front-rear direction. The loose parts supply device 32 is a device that aligns a plurality of parts that are scattered apart and supplies the parts in the aligned state. That is, it is a device that aligns a plurality of parts in an arbitrary posture in a predetermined posture and supplies the parts in the predetermined posture.
 なお、部品供給装置30および、ばら部品供給装置32によって供給される部品として、電子回路部品,太陽電池の構成部品,パワーモジュールの構成部品等が挙げられる。また、電子回路部品には、リードを有する部品,リードを有さない部品等が有る。 Examples of the parts supplied by the parts supply device 30 and the loose parts supply device 32 include electronic circuit parts, solar cell components, power module components, and the like. In addition, electronic circuit parts include parts having leads, parts having no leads, and the like.
 制御装置36は、図3に示すように、コントローラ100、複数の駆動回路102、画像処理装置106、メモリ108を備えている。複数の駆動回路102は、上記搬送装置50、クランプ装置52、電磁モータ66,68,70,72、正負圧供給装置80、自転装置82、昇降装置84、トレイ型部品供給装置90、フィーダ型部品供給装置92、ばら部品供給装置32に接続されている。コントローラ100は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路102に接続されている。これにより、基材搬送保持装置22、部品装着装置24等の作動が、コントローラ100によって制御される。また、コントローラ100は、画像処理装置106にも接続されている。画像処理装置106は、マークカメラ26およびパーツカメラ28によって得られた画像データを処理するものであり、コントローラ100は、画像データから各種情報を取得する。さらに、コントローラ100は、メモリ108にも接続されている。メモリ108には、後に詳しく説明するが、装着作業時に用いられるテーブル(図11参照)110が記憶されており、コントローラ100は、メモリ108に記憶されているテーブル110を利用して装着作業を実行する。なお、メモリ108は、入力装置112に接続されており、入力装置112による各種情報の入力によりテーブル110が作成され、作成されたテーブル110がメモリ108に記憶される。 As shown in FIG. 3, the control device 36 includes a controller 100, a plurality of drive circuits 102, an image processing device 106, and a memory 108. The plurality of drive circuits 102 include the transfer device 50, the clamp device 52, the electromagnetic motors 66, 68, 70, 72, the positive / negative pressure supply device 80, the rotation device 82, the elevating device 84, the tray type component supply device 90, and the feeder type component. It is connected to the supply device 92 and the loose component supply device 32. The controller 100 includes a CPU, ROM, RAM, etc., and is mainly a computer, and is connected to a plurality of drive circuits 102. As a result, the operation of the base material transfer holding device 22, the component mounting device 24, and the like is controlled by the controller 100. The controller 100 is also connected to the image processing device 106. The image processing device 106 processes the image data obtained by the mark camera 26 and the parts camera 28, and the controller 100 acquires various information from the image data. Further, the controller 100 is also connected to the memory 108. As will be described in detail later, the memory 108 stores a table (see FIG. 11) 110 used during the mounting work, and the controller 100 executes the mounting work using the table 110 stored in the memory 108. To do. The memory 108 is connected to the input device 112, a table 110 is created by inputting various information by the input device 112, and the created table 110 is stored in the memory 108.
 部品実装機10では、上述した構成によって、基材搬送保持装置22に保持された回路基材12に対して部品の装着作業が行われる。具体的には、回路基材12が、作業位置まで搬送され、その位置において、クランプ装置52によって固定的に保持される。次に、マークカメラ26が、回路基材12の上方に移動し、回路基材12を撮像する。この際、マークカメラ26の撮像により得られた撮像データが、画像処理装置106を介してコントローラ100に送信され、コントローラ100により撮像データが分析される。これにより、回路基材12の保持位置等に関する情報が演算される。 In the component mounting machine 10, components are mounted on the circuit substrate 12 held by the substrate transfer holding device 22 according to the above configuration. Specifically, the circuit base material 12 is conveyed to a working position, and is fixedly held by the clamp device 52 at that position. Next, the mark camera 26 moves above the circuit base material 12 and images the circuit base material 12. At this time, the imaging data obtained by the imaging of the mark camera 26 is transmitted to the controller 100 via the image processing device 106, and the imaging data is analyzed by the controller 100. As a result, information regarding the holding position of the circuit base material 12 and the like is calculated.
 また、部品供給装置30若しくは、ばら部品供給装置32が、所定の供給位置において、電子部品を供給する。そして、作業ヘッド56,58の何れかが、部品の供給位置の上方に移動し、吸着ノズル78により部品を吸着保持する。次に、部品を保持した作業ヘッド56,58がパーツカメラ28の上方に移動し、吸着ノズル78により保持された部品が、パーツカメラ28によって撮像される。そして、パーツカメラ28の撮像により得られた撮像データが、画像処理装置106を介してコントローラ100に送信され、コントローラ100により撮像データが分析される。これにより、吸着ノズル78による部品の保持位置等に関する情報が演算される。そして、作業ヘッド56,58が、回路基材12の上方に移動し、回路基材12の保持位置,吸着ノズル78による部品の保持位置等を利用して、電子部品を回路基材12に装着する。 Further, the parts supply device 30 or the loose parts supply device 32 supplies electronic parts at a predetermined supply position. Then, one of the work heads 56 and 58 moves above the supply position of the component, and the suction nozzle 78 sucks and holds the component. Next, the work heads 56 and 58 holding the parts move above the parts camera 28, and the parts held by the suction nozzle 78 are imaged by the parts camera 28. Then, the imaging data obtained by the imaging of the parts camera 28 is transmitted to the controller 100 via the image processing device 106, and the imaging data is analyzed by the controller 100. As a result, information regarding the holding position of the component by the suction nozzle 78 and the like is calculated. Then, the work heads 56 and 58 move above the circuit base material 12, and the electronic components are mounted on the circuit base material 12 by utilizing the holding position of the circuit base material 12, the holding position of the parts by the suction nozzle 78, and the like. To do.
 このように、部品実装機10では、吸着ノズル78により保持された部品が撮像され、撮像データに基づいて演算された吸着ノズル78による部品の保持位置等を利用して、電子部品が回路基材12に装着される。このため、回路基材12への部品の装着精度を高めるべく、吸着ノズル78による部品の保持位置等を適切に演算する必要がある。ただし、部品の形状によっては、吸着ノズル78による部品の保持位置等を適切に演算できず、精度の高い装着作業を実行できない虞がある。 In this way, in the component mounting machine 10, the component held by the suction nozzle 78 is imaged, and the electronic component is a circuit base material by utilizing the holding position of the component by the suction nozzle 78 calculated based on the imaging data. It is attached to 12. Therefore, in order to improve the mounting accuracy of the component on the circuit base material 12, it is necessary to appropriately calculate the holding position of the component by the suction nozzle 78. However, depending on the shape of the component, the holding position of the component by the suction nozzle 78 cannot be calculated appropriately, and there is a possibility that the mounting operation with high accuracy cannot be performed.
 詳しくは、例えば、図4に示す電子部品120は、部品本体122と、カメラ124とにより構成されている。部品本体122は、概して直方体形状をなし、上面に凹部126が形成されている。凹部126は、円形状に凹んでいる。また、カメラ124は、円柱形状をなし、凹部126の中央部に立設されている。このため、電子部品120の上面図、つまり、電子部品120のカメラ124が配設されている側からの視点における図では、カメラ124は円形状、さらに言えば、真円形状をなす。 Specifically, for example, the electronic component 120 shown in FIG. 4 is composed of a component body 122 and a camera 124. The component main body 122 generally has a rectangular parallelepiped shape, and a recess 126 is formed on the upper surface thereof. The recess 126 is recessed in a circular shape. Further, the camera 124 has a cylindrical shape and is erected in the central portion of the recess 126. Therefore, in the top view of the electronic component 120, that is, the view from the viewpoint from the side where the camera 124 of the electronic component 120 is arranged, the camera 124 has a circular shape, more specifically, a perfect circular shape.
 そして、その電子部品120は、部品実装機10において、トレイ型部品供給装置90のトレイに、上下方向に反転した状態で載置されている。つまり、カメラ124を下方に向けた状態でトレイに載置されている。そして、その電子部品120が吸着ノズル78により保持され、作業ヘッド56,58がパーツカメラ28の上方に移動することで、吸着ノズル78に保持された電子部品120がパーツカメラ28により撮像される。そして、コントローラ100により撮像データが分析されことで、吸着ノズル78による電子部品120の保持位置等に関する保持情報が演算される。 Then, the electronic component 120 is placed on the tray of the tray-type component supply device 90 in the component mounting machine 10 in a state of being inverted in the vertical direction. That is, the camera 124 is placed on the tray with the camera 124 facing downward. Then, the electronic component 120 is held by the suction nozzle 78, and the work heads 56 and 58 move above the parts camera 28, so that the electronic component 120 held by the suction nozzle 78 is imaged by the parts camera 28. Then, the imaging data is analyzed by the controller 100, and the holding information regarding the holding position of the electronic component 120 by the suction nozzle 78 is calculated.
 この際、例えば、部品本体122の外形線に基づいて、保持情報を演算することが可能である。具体的には、撮像データに基づいて部品本体122の外形線が抽出される。なお、部品本体122の外形線が抽出される際の画像処理としては、種々の手法を採用することができる。具体的には、例えば、シークラインテンプレート(特許第3759983号公報)等を利用して、部品本体122の外形線が抽出される。そして、部品本体122の外形線に基づいて所定の座標、つまり、X方向及びY方向における座標が演算される。また、メモリ108には、吸着ノズル78による電子部品120の理想の保持位置でのX方向及びY方向における座標が記憶されている。これにより、メモリ108に記憶されている理想の保持位置でのX方向及びY方向における座標と、撮像データに基づいて演算された部品本体122のX方向及びY方向における座標とに基づいて、電子部品120と吸着ノズル78との相対的な位置が演算される。 At this time, for example, it is possible to calculate the holding information based on the outline of the component body 122. Specifically, the outline of the component body 122 is extracted based on the imaging data. In addition, various methods can be adopted as the image processing when the outline of the component main body 122 is extracted. Specifically, for example, the outline of the component main body 122 is extracted by using a seek line template (Patent No. 3759983) or the like. Then, predetermined coordinates, that is, coordinates in the X direction and the Y direction are calculated based on the outline of the component body 122. Further, the memory 108 stores the coordinates in the X direction and the Y direction at the ideal holding position of the electronic component 120 by the suction nozzle 78. As a result, based on the coordinates in the X direction and the Y direction at the ideal holding position stored in the memory 108 and the coordinates in the X direction and the Y direction of the component body 122 calculated based on the imaging data, the electrons are received. The relative positions of the component 120 and the suction nozzle 78 are calculated.
 また、部品本体122の外形線に基づいて、吸着ノズル78により保持されている電子部品120の、吸着ノズル78による電子部品120の理想の保持姿勢からのズレ角度が演算される。つまり、部品本体122の外形線に基づいて、電子部品120と吸着ノズル78との相対的な回転角度が演算される。なお、電子部品120と吸着ノズル78との相対的な回転角度が0度である場合に、電子部品120は、吸着ノズル78により理想の姿勢で保持されていることになる。このように、部品本体122の外形線、つまり、部品本体122の撮像データに基づいて、保持情報として、電子部品120と吸着ノズル78との相対的な位置と、電子部品120と吸着ノズル78との相対的な回転角度とが演算される。 Further, based on the outline of the component body 122, the deviation angle of the electronic component 120 held by the suction nozzle 78 from the ideal holding posture of the electronic component 120 by the suction nozzle 78 is calculated. That is, the relative rotation angle between the electronic component 120 and the suction nozzle 78 is calculated based on the outline of the component body 122. When the relative rotation angle between the electronic component 120 and the suction nozzle 78 is 0 degrees, the electronic component 120 is held in an ideal posture by the suction nozzle 78. In this way, based on the outline of the component body 122, that is, the imaged data of the component body 122, the relative positions of the electronic component 120 and the suction nozzle 78, and the electronic component 120 and the suction nozzle 78 are used as holding information. The relative rotation angle of is calculated.
 そして、その演算された電子部品120の位置と回転角度とを利用して、装着時の作業ヘッド56,58のX方向及びY方向での位置が作業ヘッド移動装置62により補正され、吸着ノズル78の回転角度が自転装置82により補正されることで、電子部品120の適切な装着作業が担保される。つまり、例えば、電子部品120の装着予定座標が(X,Y)である場合に、図5に示すように、電子部品120が装着予定位置に装着される。この際、部品本体122とカメラ124との両方が装着予定座標に配置される。 Then, using the calculated position and rotation angle of the electronic component 120, the positions of the work heads 56 and 58 at the time of mounting in the X direction and the Y direction are corrected by the work head moving device 62, and the suction nozzle 78 is used. The rotation angle of the electronic component 120 is corrected by the rotation device 82, so that the proper mounting work of the electronic component 120 is ensured. That is, for example, when the planned mounting coordinates of the electronic component 120 are (X 1 , Y 1 ), the electronic component 120 is mounted at the scheduled mounting position as shown in FIG. At this time, both the component body 122 and the camera 124 are arranged at the planned mounting coordinates.
 また、電子部品120において、公差内であるが、図6に示すように、カメラ124の部品本体122への取り付け位置がズレている場合がある。このような場合に、部品本体122の撮像データに基づいて演算された電子部品120の位置と回転角度とを利用して、装着作業が実行されると、部品本体122は装着予定座標(X,Y)に配置されるが、カメラ124は装着予定座標(X,Y)とズレた位置に配置される。これは、部品本体122の撮像データに基づいて電子部品120の保持情報、つまり、電子部品120と吸着ノズル78との相対的な位置及び回転角度が演算されているためである。そして、このように、カメラ124が装着予定座標(X,Y)とズレた位置に配置されると、カメラ124としての機能を適切に発揮することができない虞がある。つまり、電子部品120の装着時には、部品本体122でなく、カメラ124を高精度に装着することが望まれている。 Further, in the electronic component 120, although it is within the tolerance, the mounting position of the camera 124 on the component body 122 may be misaligned as shown in FIG. In such a case, when the mounting operation is executed using the position and rotation angle of the electronic component 120 calculated based on the imaging data of the component body 122, the component body 122 has the coordinates to be mounted (X 1). , Y 1 ), but the camera 124 is placed at a position deviated from the planned mounting coordinates (X 1 , Y 1 ). This is because the holding information of the electronic component 120, that is, the relative position and rotation angle between the electronic component 120 and the suction nozzle 78 is calculated based on the imaging data of the component body 122. If the camera 124 is arranged at a position deviated from the planned mounting coordinates (X 1 , Y 1 ) in this way, the function as the camera 124 may not be properly exhibited. That is, when mounting the electronic component 120, it is desired to mount the camera 124 with high accuracy instead of mounting the component body 122.
 このため、カメラ124の外形線に基づいて、保持情報を演算した場合について考えてみる。この場合には、撮像データに基づいてカメラ124の外形線が抽出される。そして、カメラ124の外形線に基づいて所定のX方向及びY方向における座標が演算される。これにより、メモリ108に記憶されている理想の保持位置でのX方向及びY方向における座標と、撮像データに基づいて演算されたカメラ124のX方向及びY方向における座標とに基づいて、電子部品120と吸着ノズル78との相対的な位置が演算される。 Therefore, consider the case where the holding information is calculated based on the outline of the camera 124. In this case, the outline of the camera 124 is extracted based on the imaging data. Then, the coordinates in the predetermined X and Y directions are calculated based on the outline of the camera 124. As a result, the electronic component is based on the coordinates in the X and Y directions at the ideal holding position stored in the memory 108 and the coordinates in the X and Y directions of the camera 124 calculated based on the imaging data. The relative positions of 120 and the suction nozzle 78 are calculated.
 ただし、電子部品120のカメラ124が配設されている側からの視点における図では、カメラ124は円形状をなしている。つまり、カメラ124は、パーツカメラ28による撮像方向からの視点において円形状をなしている。このため、カメラ124の外形線では、電子部品120の回転角度を演算することができない。つまり、カメラ124の撮像データに基づいて、保持情報として、電子部品120と吸着ノズル78との相対的な位置しか演算することができない。そして、その保持情報を利用して、電子部品120の装着作業が実行されると、図7に示すように、カメラ124は装着予定座標(X,Y)に配置される。これにより、カメラ124としての機能を適切に発揮することはできる。ただし、吸着ノズル78による電子部品120の回転角度を用いることなく装着作業が実行されるため、部品本体122が装着予定位置130からズレた位置に装着される。つまり、部品本体122が、装着予定位置130から吸着ノズル78の軸心周りに回転した状態で装着される。このように、部品本体122が装着予定位置130からズレた位置に装着されると、他の部品との干渉などが発生する虞がある。 However, in the view from the viewpoint from the side where the camera 124 of the electronic component 120 is arranged, the camera 124 has a circular shape. That is, the camera 124 has a circular shape when viewed from the image pickup direction by the parts camera 28. Therefore, the rotation angle of the electronic component 120 cannot be calculated from the outline of the camera 124. That is, based on the image pickup data of the camera 124, only the relative position between the electronic component 120 and the suction nozzle 78 can be calculated as the holding information. Then, when the mounting operation of the electronic component 120 is executed using the holding information, the camera 124 is arranged at the planned mounting coordinates (X 1 , Y 1 ) as shown in FIG. 7. As a result, the function as the camera 124 can be appropriately exhibited. However, since the mounting operation is executed without using the rotation angle of the electronic component 120 by the suction nozzle 78, the component main body 122 is mounted at a position deviated from the planned mounting position 130. That is, the component main body 122 is mounted in a state of being rotated around the axis of the suction nozzle 78 from the planned mounting position 130. In this way, if the component body 122 is mounted at a position deviated from the planned mounting position 130, interference with other components may occur.
 そこで、部品実装機10では、部品本体122の撮像データを用いることなく、カメラ124の撮像データのみに基づいて、 電子部品120と吸着ノズル78との相対的な位置が演算される。また、カメラ124の撮像データを用いることなく、部品本体122の撮像データのみに基づいて、 電子部品120と吸着ノズル78との相対的な回転角度が演算される。つまり、撮像データに基づいてカメラ124の外形線が抽出され、カメラ124の外形線に基づいて所定のX方向及びY方向における座標が演算される。そして、メモリ108に記憶されている理想の保持位置でのX方向及びY方向における座標と、撮像データに基づいて演算されたカメラ124のX方向及びY方向における座標とに基づいて、電子部品120と吸着ノズル78との相対的な位置が演算される。 Therefore, in the component mounting machine 10, the relative position between the electronic component 120 and the suction nozzle 78 is calculated based only on the imaging data of the camera 124 without using the imaging data of the component body 122. Further, the relative rotation angle between the electronic component 120 and the suction nozzle 78 is calculated based only on the imaging data of the component main body 122 without using the imaging data of the camera 124. That is, the outline of the camera 124 is extracted based on the imaging data, and the coordinates in the predetermined X and Y directions are calculated based on the outline of the camera 124. Then, based on the coordinates in the X and Y directions at the ideal holding position stored in the memory 108 and the coordinates in the X and Y directions of the camera 124 calculated based on the imaging data, the electronic component 120 The relative position between the suction nozzle 78 and the suction nozzle 78 is calculated.
 また、撮像データに基づいて部品本体122の外形線が抽出され、部品本体122の外形線に基づいて、吸着ノズル78により保持されている電子部品120の、吸着ノズル78による電子部品120の理想の保持姿勢からのズレ角度が演算される。つまり、部品本体122の外形線に基づいて、電子部品120と吸着ノズル78との相対的な回転角度が演算される。そして、カメラ124の撮像データに基づいて演算された電子部品120の位置を利用して、装着時の作業ヘッド56,58のX方向及びY方向での位置が作業ヘッド移動装置62により補正される。また、部品本体122の撮像データに基づいて演算された電子部品120の回転角度を利用して、吸着ノズル78の回転角度が自転装置82により補正される。そして、作業ヘッド56,58の位置及び、吸着ノズル78の回転角度が補正された後に、電子部品120が回路基材12に装着される。これにより、図8に示すように、カメラ124は装着予定座標(X,Y)に配置され、カメラ124としての機能を適切に発揮することができる。また、図7と図8とを比較して判るように、部品本体122が装着予定位置130に装着され、電子部品120の他の部品への干渉などを防止することができる。つまり、電子部品120を構成する複数の部材のうちの1の部材の撮像データのみに基づいて、電子部品120の保持位置が演算され、電子部品120を構成する複数の部材のうちの1の部材以外の部材のみの撮像データに基づいて、電子部品120の保持角度が演算されることで、適切な電子部品120の装着作業が担保される。 Further, the outline of the component body 122 is extracted based on the imaging data, and the ideal of the electronic component 120 held by the suction nozzle 78 based on the outline of the component body 122 is the electronic component 120 by the suction nozzle 78. The deviation angle from the holding posture is calculated. That is, the relative rotation angle between the electronic component 120 and the suction nozzle 78 is calculated based on the outline of the component body 122. Then, using the position of the electronic component 120 calculated based on the image data of the camera 124, the positions of the work heads 56 and 58 at the time of mounting in the X direction and the Y direction are corrected by the work head moving device 62. .. Further, the rotation angle of the suction nozzle 78 is corrected by the rotation device 82 by using the rotation angle of the electronic component 120 calculated based on the imaging data of the component body 122. Then, after the positions of the work heads 56 and 58 and the rotation angle of the suction nozzle 78 are corrected, the electronic component 120 is mounted on the circuit base material 12. As a result, as shown in FIG. 8, the camera 124 is arranged at the coordinates to be mounted (X 1 , Y 1 ), and the function as the camera 124 can be appropriately exhibited. Further, as can be seen by comparing FIG. 7 and FIG. 8, the component main body 122 is mounted at the planned mounting position 130, and interference of the electronic component 120 with other components can be prevented. That is, the holding position of the electronic component 120 is calculated based only on the imaging data of one of the plurality of members constituting the electronic component 120, and one member of the plurality of members constituting the electronic component 120 is calculated. By calculating the holding angle of the electronic component 120 based on the imaging data of only the members other than the members, the appropriate mounting work of the electronic component 120 is guaranteed.
 また、電子部品120と異なる部品においても、電子部品120と同様の手法を用いて、吸着ノズル78による部品の保持位置及び保持角度が演算されることで、適切な部品の装着作業が担保される。例えば、図9に示す電子部品150は、部品本体152と、複数のリード154とにより構成されている。部品本体152は、概して直方体形状をなし、部品本体152の4つの側面の各々から延び出すようにリード154が配設されている。そして、電子部品150が吸着ノズル78により保持された状態で、パーツカメラ28により撮像され、撮像データがコントローラ100において分析される。この際、部品本体152の撮像データを用いることなく、リード154の撮像データに基づいて、 電子部品150と吸着ノズル78との相対的な位置が演算される。また、リード154の撮像データを用いることなく、部品本体152の撮像データのみに基づいて、 電子部品150と吸着ノズル78との相対的な回転角度が演算される。 Further, even for a component different from the electronic component 120, the holding position and holding angle of the component are calculated by the suction nozzle 78 using the same method as that of the electronic component 120, so that the appropriate component mounting work is guaranteed. .. For example, the electronic component 150 shown in FIG. 9 is composed of a component body 152 and a plurality of leads 154. The component body 152 generally has a rectangular parallelepiped shape, and leads 154 are arranged so as to extend from each of the four side surfaces of the component body 152. Then, while the electronic component 150 is held by the suction nozzle 78, the image is taken by the parts camera 28, and the imaged data is analyzed by the controller 100. At this time, the relative position between the electronic component 150 and the suction nozzle 78 is calculated based on the imaging data of the lead 154 without using the imaging data of the component main body 152. Further, the relative rotation angle between the electronic component 150 and the suction nozzle 78 is calculated based only on the imaging data of the component main body 152 without using the imaging data of the lead 154.
 つまり、撮像データに基づいて複数のリード154の外形線が抽出され、リード154の外形線に基づいて所定のX方向及びY方向における座標が演算される。そして、メモリ108に記憶されている理想の保持位置でのX方向及びY方向における座標と、撮像データに基づいて演算されたリード154のX方向及びY方向における座標とに基づいて、電子部品150の保持位置が演算される。また、撮像データに基づいて部品本体152の外形線が抽出され、部品本体152の外形線に基づいて、吸着ノズル78による電子部品150の保持角度が演算される。そして、リード154の撮像データに基づいて演算された電子部品150の保持位置を利用して、装着時の作業ヘッド56,58のX方向及びY方向での位置が作業ヘッド移動装置62により補正される。また、部品本体152の撮像データに基づいて演算された電子部品150の回転角度を利用して、吸着ノズル78の回転角度が自転装置82により補正される。そして、作業ヘッド56,58の位置及び、吸着ノズル78の回転角度が補正された後に、電子部品150が回路基材12に装着される。これにより、リード154が装着予定座標に配置されることで、リード154の回路基材12への電気的な接続が担保される。また、電子部品150の回転角度が補正されることで、電子部品150の他の部品への干渉などを防止することができる。 That is, the outlines of the plurality of leads 154 are extracted based on the imaging data, and the coordinates in the predetermined X and Y directions are calculated based on the outlines of the leads 154. Then, based on the coordinates in the X direction and the Y direction at the ideal holding position stored in the memory 108 and the coordinates in the X direction and the Y direction of the lead 154 calculated based on the imaging data, the electronic component 150 The holding position of is calculated. Further, the outline of the component body 152 is extracted based on the imaging data, and the holding angle of the electronic component 150 by the suction nozzle 78 is calculated based on the outline of the component body 152. Then, using the holding position of the electronic component 150 calculated based on the image pickup data of the lead 154, the positions of the work heads 56 and 58 at the time of mounting in the X direction and the Y direction are corrected by the work head moving device 62. To. Further, the rotation angle of the suction nozzle 78 is corrected by the rotation device 82 by utilizing the rotation angle of the electronic component 150 calculated based on the imaging data of the component body 152. Then, after the positions of the work heads 56 and 58 and the rotation angle of the suction nozzle 78 are corrected, the electronic component 150 is mounted on the circuit base material 12. As a result, the leads 154 are arranged at the coordinates to be mounted, so that the electrical connection of the leads 154 to the circuit base material 12 is ensured. Further, by correcting the rotation angle of the electronic component 150, it is possible to prevent interference of the electronic component 150 with other components.
 また、例えば、図10に示す電子部品160は、部品本体162と、複数のバンプ164とにより構成されている。部品本体162は、概して直方体形状をなし、部品本体162の下面に複数のバンプ164が3行×4列に配列された状態で配設されている。そして、電子部品160が吸着ノズル78により保持された状態で、パーツカメラ28により撮像され、撮像データがコントローラ100において分析される。この際、部品本体162の撮像データを用いることなく、バンプ164の撮像データに基づいて、 電子部品160と吸着ノズル78との相対的な位置が演算される。また、バンプ164の撮像データを用いることなく、部品本体162の撮像データに基づいて、 電子部品160と吸着ノズル78との相対的な回転角度が演算される。なお、電子部品160の保持位置及び保持角度の演算手法と、装着時における作業ヘッド56,58の位置及び吸着ノズル78の回転角度の補正手法は、電子部品150と同じである。 Further, for example, the electronic component 160 shown in FIG. 10 is composed of a component body 162 and a plurality of bumps 164. The component main body 162 generally has a rectangular parallelepiped shape, and a plurality of bumps 164 are arranged on the lower surface of the component main body 162 in a state of being arranged in 3 rows × 4 columns. Then, while the electronic component 160 is held by the suction nozzle 78, the image is taken by the parts camera 28, and the imaged data is analyzed by the controller 100. At this time, the relative position between the electronic component 160 and the suction nozzle 78 is calculated based on the imaging data of the bump 164 without using the imaging data of the component body 162. Further, the relative rotation angle between the electronic component 160 and the suction nozzle 78 is calculated based on the imaging data of the component main body 162 without using the imaging data of the bump 164. The method of calculating the holding position and holding angle of the electronic component 160 and the method of correcting the positions of the work heads 56 and 58 and the rotation angle of the suction nozzle 78 at the time of mounting are the same as those of the electronic component 150.
 また、部品実装機10では、電子部品120,150,160の保持位置及び保持角度を演算する際に用いられるテーブル110が、メモリ108に記憶されている。詳しくは、作業者は、装着作業が実行される前に、電子部品120,150,160の各々に対して、それら電子部品120,150,160を構成する複数の部材のうちの何れの部材の撮像データに基づいて部品の保持位置を演算するかを示す情報及び、部品の保持角度を演算するかを示す情報を、入力装置112に入力する。 Further, in the component mounting machine 10, the table 110 used for calculating the holding positions and holding angles of the electronic components 120, 150, 160 is stored in the memory 108. Specifically, before the mounting operation is performed, the operator attaches to each of the electronic components 120, 150, 160 and any member of the plurality of members constituting the electronic components 120, 150, 160. Information indicating whether to calculate the holding position of the component based on the imaging data and information indicating whether to calculate the holding angle of the component are input to the input device 112.
 具体的には、電子部品120に対して、カメラ124の撮像データに基づいて電子部品120の保持位置を演算し、部品本体122の撮像データに基づいて電子部品120の保持角度を演算することを示す情報を、作業者が入力装置112に入力する。さらに、作業者は、電子部品120に対して、部品本体122及びカメラ124の形状データも入力装置112に入力する。部品本体122の形状データは、例えば、部品本体122の幅方向及び長さ方向の寸法,公差等であり、カメラ124の形状データは、カメラ124の外径,公差などである。また、電子部品150に対して、リード154の撮像データに基づいて電子部品150の保持位置を演算し、部品本体152の撮像データに基づいて電子部品150の保持角度を演算することを示す情報を、作業者が入力装置112に入力する。さらに、作業者は、電子部品150に対して、部品本体152及びリード154の形状データも入力装置112に入力する。部品本体152の形状データは、例えば、部品本体152の幅方向及び長さ方向の寸法,公差等であり、リード154の形状データは、リードの本数,配設ピッチ,長さ寸法,幅寸法,公差などである。また、電子部品160に対して、バンプ164の撮像データに基づいて電子部品160の保持位置を演算し、部品本体162の撮像データに基づいて電子部品160の保持角度を演算することを示す情報を、作業者が入力装置112に入力する。さらに、作業者は、電子部品160に対して、部品本体162及びバンプ164の形状データも入力装置112に入力する。部品本体162の形状データは、例えば、部品本体162の幅方向及び長さ方向の寸法,公差等であり、バンプ164の形状データは、バンプの数,配設ピッチ,外径,公差などである。 Specifically, for the electronic component 120, the holding position of the electronic component 120 is calculated based on the imaging data of the camera 124, and the holding angle of the electronic component 120 is calculated based on the imaging data of the component body 122. The operator inputs the indicated information into the input device 112. Further, the operator also inputs the shape data of the component main body 122 and the camera 124 to the input device 112 for the electronic component 120. The shape data of the component body 122 is, for example, dimensions, tolerances, etc. in the width direction and the length direction of the component body 122, and the shape data of the camera 124 is the outer diameter, tolerance, etc. of the camera 124. Further, for the electronic component 150, information indicating that the holding position of the electronic component 150 is calculated based on the imaging data of the lead 154 and the holding angle of the electronic component 150 is calculated based on the imaging data of the component body 152 is provided. , The operator inputs to the input device 112. Further, the operator also inputs the shape data of the component main body 152 and the lead 154 to the input device 112 for the electronic component 150. The shape data of the component body 152 is, for example, dimensions, tolerances, etc. in the width direction and the length direction of the component body 152, and the shape data of the leads 154 is the number of leads, the arrangement pitch, the length dimension, the width dimension, etc. Tolerance etc. Further, for the electronic component 160, information indicating that the holding position of the electronic component 160 is calculated based on the imaging data of the bump 164 and the holding angle of the electronic component 160 is calculated based on the imaging data of the component body 162 is provided. , The operator inputs to the input device 112. Further, the operator also inputs the shape data of the component main body 162 and the bump 164 to the input device 112 for the electronic component 160. The shape data of the component body 162 is, for example, dimensions, tolerances, etc. in the width direction and the length direction of the component body 162, and the shape data of the bumps 164 is the number of bumps, the arrangement pitch, the outer diameter, the tolerance, and the like. ..
 このように入力された情報に基づいて、図11に示すテーブル110が作成され、そのテーブル110がメモリ108に記憶される。テーブル110では、電子部品120に対して、カメラ124の形状データを利用して電子部品120の保持位置を演算し、部品本体122の形状データを利用して電子部品120の保持角度を演算することを示す情報が設定されている。また、テーブル110では、電子部品150に対して、リード154の形状データを利用して電子部品150の保持位置を演算し、部品本体152の形状データを利用して電子部品150の保持角度を演算することを示す情報が設定されている。さらに、テーブル110では、電子部品160に対して、バンプ164の形状データを利用して電子部品160の保持位置を演算し、部品本体162の形状データを利用して電子部品160の保持角度を演算することを示す情報が設定されている。 Based on the information input in this way, the table 110 shown in FIG. 11 is created, and the table 110 is stored in the memory 108. In the table 110, the holding position of the electronic component 120 is calculated for the electronic component 120 by using the shape data of the camera 124, and the holding angle of the electronic component 120 is calculated by using the shape data of the component body 122. Information indicating is set. Further, in the table 110, the holding position of the electronic component 150 is calculated for the electronic component 150 by using the shape data of the lead 154, and the holding angle of the electronic component 150 is calculated by using the shape data of the component body 152. Information indicating that the operation is to be performed is set. Further, in the table 110, the holding position of the electronic component 160 is calculated by using the shape data of the bump 164 for the electronic component 160, and the holding angle of the electronic component 160 is calculated by using the shape data of the component body 162. Information indicating that the operation is to be performed is set.
 そして、コントローラ100において、図12に示すフローチャートが実行されることで、メモリ108に記憶されたテーブル110を利用して、電子部品に応じた保持位置及び保持角度が演算される。詳しくは、まず、各種データの初期化が実行される(S100)。次に、保持位置を演算するために用いられる形状データに基づいて、電子部品を構成する部材の外形線(以下、「保持位置用外形線」と記載する)が特定される(S102)。つまり、装着作業の対象が電子部品120である場合には、部品の保持位置を演算するための形状データが、テーブル110によって、カメラ124の形状データであることが特定される。そして、コントローラ100は、撮像データのなかから、カメラ124の形状データに応じた外形線を抽出する。これにより、カメラ124の外形線が抽出される。また、装着作業の対象が電子部品150である場合には、部品の保持位置を演算するための形状データが、テーブル110によって、リード154の形状データであることが特定される。そして、コントローラ100は、撮像データのなかから、リード154の形状データに応じた外形線を抽出する。これにより、撮像データからリード154の外形線が抽出される。また、装着作業の対象が電子部品160である場合には、部品の保持位置を演算するための形状データが、テーブル110によって、バンプ164の形状データであることが特定される。そして、コントローラ100は、撮像データのなかから、バンプ164の形状データに応じた外形線を抽出する。これにより、撮像データからバンプ164の外形線が抽出される。このように、保持位置を演算するために用いられる形状データに基づいて、保持位置用外形線が特定される。 Then, when the flowchart shown in FIG. 12 is executed in the controller 100, the holding position and the holding angle according to the electronic components are calculated by using the table 110 stored in the memory 108. Specifically, first, initialization of various data is executed (S100). Next, based on the shape data used for calculating the holding position, the outer line of the member constituting the electronic component (hereinafter, referred to as “holding position outer line”) is specified (S102). That is, when the target of the mounting work is the electronic component 120, the shape data for calculating the holding position of the component is specified by the table 110 as the shape data of the camera 124. Then, the controller 100 extracts an outline corresponding to the shape data of the camera 124 from the imaged data. As a result, the outline of the camera 124 is extracted. Further, when the target of the mounting work is the electronic component 150, the table 110 identifies that the shape data for calculating the holding position of the component is the shape data of the lead 154. Then, the controller 100 extracts the outline corresponding to the shape data of the lead 154 from the imaged data. As a result, the outline of the lead 154 is extracted from the imaging data. Further, when the target of the mounting work is the electronic component 160, the table 110 identifies that the shape data for calculating the holding position of the component is the shape data of the bump 164. Then, the controller 100 extracts the outline corresponding to the shape data of the bump 164 from the imaged data. As a result, the outline of the bump 164 is extracted from the imaging data. In this way, the holding position outline is specified based on the shape data used for calculating the holding position.
 続いて、保持角度を演算するために用いられる形状データに基づいて、電子部品を構成する部材の外形線(以下、「保持角度用外形線」と記載する)が特定される(S104)。つまり、装着作業の対象が電子部品120である場合には、部品の保持角度を演算するための形状データが、テーブル110によって、部品本体122の形状データであることが特定される。そして、コントローラ100は、撮像データのなかから、部品本体122の形状データに応じた外形線を抽出する。これにより、撮像データから部品本体122の外形線が抽出される。また、装着作業の対象が電子部品150である場合には、部品の保持角度を演算するための形状データが、テーブル110によって、部品本体152の形状データであることが特定される。そして、コントローラ100は、撮像データのなかから、部品本体152の形状データに応じた外形線を抽出する。これにより、撮像データから部品本体152の外形線が抽出される。また、装着作業の対象が電子部品160である場合には、部品の保持角度を演算するための形状データが、テーブル110によって、部品本体162の形状データであることが特定される。そして、コントローラ100は、撮像データのなかから、部品本体162の形状データに応じた外形線を抽出する。これにより、撮像データから部品本体162の外形線が抽出される。このように、保持角度を演算するために用いられる形状データに基づいて、保持角度用外形線が特定される。 Subsequently, based on the shape data used for calculating the holding angle, the outer line of the member constituting the electronic component (hereinafter, referred to as "holding angle outer line") is specified (S104). That is, when the target of the mounting work is the electronic component 120, the table 110 identifies the shape data for calculating the holding angle of the component as the shape data of the component body 122. Then, the controller 100 extracts the outline corresponding to the shape data of the component main body 122 from the imaging data. As a result, the outline of the component body 122 is extracted from the imaging data. Further, when the target of the mounting work is the electronic component 150, the shape data for calculating the holding angle of the component is specified by the table 110 as the shape data of the component main body 152. Then, the controller 100 extracts the outline corresponding to the shape data of the component main body 152 from the imaging data. As a result, the outline of the component body 152 is extracted from the imaged data. Further, when the target of the mounting work is the electronic component 160, the table 110 identifies the shape data for calculating the holding angle of the component as the shape data of the component body 162. Then, the controller 100 extracts the outline corresponding to the shape data of the component main body 162 from the imaging data. As a result, the outline of the component body 162 is extracted from the imaging data. In this way, the holding angle outline is specified based on the shape data used to calculate the holding angle.
 そして、保持位置用外形線及び、保持角度用外形線に基づいて、吸着ノズル78による部品の保持位置及び保持角度が演算される(S106)。そして、演算された吸着ノズル78による部品の保持位置及び保持角度が、装着作業時に用いられる保持情報として設定される(S108)。これにより、上述したように、電子部品120,150,160の適切な装着作業が担保される。また、S102及びS104で特定された保持位置用外形線及び、保持角度用外形線に基づいて、検査処理も行われる(S110)。 Then, the holding position and holding angle of the component by the suction nozzle 78 are calculated based on the holding position outline and the holding angle outline (S106). Then, the calculated holding position and holding angle of the component by the suction nozzle 78 are set as holding information used at the time of mounting work (S108). As a result, as described above, proper mounting work of the electronic components 120, 150, 160 is ensured. Further, the inspection process is also performed based on the holding position outline and the holding angle outline specified in S102 and S104 (S110).
 この検査処理では、位置用外形線及び、保持角度用外形線、つまり、部品本体122,152,162、カメラ124、リード154、バンプ164の外形線に基づいて、それら部品本体122,152,162、カメラ124、リード154、バンプ164の寸法等が公差を超えているか否かが検査される。つまり、部品本体122,152,162等の形状データには、上述したように、公差も含まれている。このため、特定された部品本体122,152,162等の外形線が、公差を超えているか否かを判定することができる。そこで、この検査処理において、部品本体122,152,162等の外形線が公差を超えている場合に、NG部品と判断され、部品本体122,152,162等の外形線が公差を超えていない場合に、OK部品と判断される。そして、NG部品は廃棄され、OK部品のみが装着作業に用いられる。このように、図12に示すフローチャートが実行されることで、メモリ108に記憶されたテーブル110を利用して、電子部品に応じた保持位置及び保持角度が演算される。また、装着対象の部品がOK部品であるかNG部品であるかも判断される。 In this inspection process, the component bodies 122, 152, 162 are based on the position outline and the holding angle outline, that is, the outlines of the component bodies 122, 152, 162, the camera 124, the lead 154, and the bump 164. , Camera 124, lead 154, bump 164, etc. are inspected to see if they exceed tolerances. That is, the shape data of the component bodies 122, 152, 162 and the like include tolerances as described above. Therefore, it can be determined whether or not the outlines of the specified component bodies 122, 152, 162 and the like exceed the tolerance. Therefore, in this inspection process, when the outlines of the component bodies 122, 152, 162, etc. exceed the tolerance, it is determined that the component is NG, and the outlines of the component bodies 122, 152, 162, etc. do not exceed the tolerance. In some cases, it is determined to be an OK part. Then, the NG parts are discarded, and only the OK parts are used for the mounting work. By executing the flowchart shown in FIG. 12 in this way, the holding position and the holding angle according to the electronic components are calculated by using the table 110 stored in the memory 108. It is also determined whether the component to be mounted is an OK component or an NG component.
 なお、制御装置36は、演算装置の一例である。吸着ノズル78は、保持具の一例である。メモリ108は、メモリの一例である。テーブル110は、部材情報の一例である。入力装置112は、入力装置の一例である。電子部品120は、部品の一例である。部品本体122は、第2の部材の一例である。カメラ124は、第1の部材の一例である。電子部品150は、部品の一例である。部品本体152は、第2の部材の一例である。リード154は、第1の部材の一例である。電子部品160は、部品の一例である。部品本体162は、第2の部材の一例である。バンプ164は、第1の部材の一例である。 The control device 36 is an example of an arithmetic unit. The suction nozzle 78 is an example of a holder. The memory 108 is an example of the memory. Table 110 is an example of member information. The input device 112 is an example of an input device. The electronic component 120 is an example of a component. The component body 122 is an example of the second member. The camera 124 is an example of the first member. The electronic component 150 is an example of a component. The component body 152 is an example of the second member. The lead 154 is an example of the first member. The electronic component 160 is an example of a component. The component body 162 is an example of the second member. The bump 164 is an example of the first member.
 また、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。具体的には、例えば、上記実施例では、部品本体122,152,162に基づいて部品の保持角度が演算されているが、部品本体122,152,162に基づいて部品の保持位置が演算されてもよい。また、リード154,バンプ164に基づいて部品の保持位置が演算されているが、リード154,バンプ164に基づいて部品の保持角度が演算されてもよい。 Further, the present invention is not limited to the above-mentioned embodiment, and can be carried out in various modes with various changes and improvements based on the knowledge of those skilled in the art. Specifically, for example, in the above embodiment, the holding angle of the component is calculated based on the component bodies 122, 152, 162, but the holding position of the component is calculated based on the component bodies 122, 152, 162. You may. Further, although the holding position of the component is calculated based on the leads 154 and the bump 164, the holding angle of the component may be calculated based on the leads 154 and the bump 164.
 また、部品本体122,152,162、カメラ124、リード154、バンプ164以外にも、種々の部材等に基づいて、部品の保持位置、若しくは保持角度を演算してもよい。例えば、部品本体122の一部の形状、具体的には、凹部126の形状等に基づいて、部品の保持位置等を演算してもよい。 Further, in addition to the component main bodies 122, 152, 162, the camera 124, the lead 154, and the bump 164, the holding position or holding angle of the component may be calculated based on various members and the like. For example, the holding position of the component may be calculated based on the shape of a part of the component body 122, specifically, the shape of the recess 126 or the like.
 また、上記実施例では、部品の保持角度が演算される際に、カメラ124の撮像データでなく、部品本体122の撮像データが用いられている。これは、上述したように、カメラ124が撮像方向からの視点において円形状、さらに言えば、真円形状をなしているためである。つまり、撮像方向からの視点において円形状、さらに言えば、真円形状以外の形状をなす部材の撮像データを用いれば、部品の保持角度を演算することが可能である。このため、撮像方向からの視点において多角形,だ円等の方向性のある形状をなす部材の撮像データに基づいて、部品の保持角度を演算することが可能である。 Further, in the above embodiment, when the holding angle of the component is calculated, the imaging data of the component body 122 is used instead of the imaging data of the camera 124. This is because, as described above, the camera 124 has a circular shape, more specifically, a perfect circular shape when viewed from the imaging direction. That is, it is possible to calculate the holding angle of the component by using the imaging data of the member having a circular shape, more specifically, a shape other than the perfect circular shape from the viewpoint from the imaging direction. Therefore, it is possible to calculate the holding angle of the component based on the imaging data of the member having a directional shape such as a polygon or an ellipse from the viewpoint from the imaging direction.
 また、上記実施例では、電子部品に本発明が適用されているが、電子部品に限られず、種々の部品に本発明を適用することができる。具体的には、例えば、電気的要素を有していない部品,組み立て部品等に、本発明を適用することができる。 Further, in the above embodiment, the present invention is applied to electronic parts, but the present invention can be applied not only to electronic parts but also to various parts. Specifically, the present invention can be specifically applied to, for example, parts having no electrical element, assembled parts, and the like.
 36:制御装置(演算装置)  78:吸着ノズル(保持具)  108:メモリ  110:テーブル(部材情報)  112:入力装置  120:電子部品(部品)  122:部品本体(第2の部材)  124:カメラ(第1の部材)  150:電子部品(部品)  152:部品本体(第2の部材)  154:リード(第1の部材)  160:電子部品(部品)  162:部品本体(第2の部材)  164:バンプ(第1の部材) 36: Control device (arithmetic device) 78: Suction nozzle (holding tool) 108: Memory 110: Table (member information) 112: Input device 120: Electronic component (component) 122: Component body (second component) 124: Camera (First member) 150: Electronic component (part) 152: Part body (second member) 154: Lead (first member) 160: Electronic component (part) 162: Part body (second member) 164 : Bump (first member)

Claims (5)

  1.  少なくとも第1の部材と、前記第1の部材と異なる第2の部材とにより構成される部品が保持具により保持されている際に撮像された撮像データのうちの、前記第1の部材の撮像データに基づいて、前記保持具と前記部品との相対的な位置を演算し、前記第2の部材の撮像データに基づいて、前記保持具と前記部品との相対的な回転角度を演算する演算装置。 Imaging of the first member of the imaging data captured when the component composed of at least the first member and the second member different from the first member is held by the holder. Calculation of the relative position between the holder and the component based on the data, and calculation of the relative rotation angle between the holder and the component based on the imaging data of the second member. apparatus.
  2.  前記第2の部材の撮像データを用いることなく、前記第1の部材の撮像データのみに基づいて、前記保持具と前記部品との相対的な位置を演算し、前記第1の部材の撮像データを用いることなく、前記第2の部材の撮像データのみに基づいて、前記保持具と前記部品との相対的な回転角度を演算する請求項1に記載の演算装置。 The relative position between the holder and the component is calculated based only on the imaging data of the first member without using the imaging data of the second member, and the imaging data of the first member is calculated. The arithmetic unit according to claim 1, wherein the relative rotation angle between the holder and the component is calculated based only on the imaging data of the second member without using.
  3.  前記演算装置は、
     複数種類の部品の各々に対して、当該各々の部品を構成する複数の部材のうちの何れの部材の撮像データに基づいて前記保持具と前記部品との相対的な位置を演算するかを示すとともに、複数の部材のうちの何れの部材の撮像データに基づいて前記保持具と前記部品との相対的な回転角度を演算するかを示す部材情報を記憶するメモリを備え、
     前記メモリに記憶された前記部材情報を利用することで、部品の種類に応じて、前記第1の部材の撮像データに基づいて、前記保持具と前記部品との相対的な位置を演算し、前記第2の部材の撮像データに基づいて、前記保持具と前記部品との相対的な回転角度を演算する請求項1または請求項2に記載の演算装置。
    The arithmetic unit
    For each of the plurality of types of parts, it is shown which of the plurality of members constituting the respective parts is used to calculate the relative position between the holder and the parts. In addition, a memory for storing member information indicating which member among the plurality of members is used to calculate the relative rotation angle between the holder and the component is provided.
    By using the member information stored in the memory, the relative position between the holder and the component is calculated based on the imaging data of the first member according to the type of the component. The arithmetic unit according to claim 1 or 2, wherein the relative rotation angle between the holder and the component is calculated based on the imaging data of the second member.
  4.  前記部品は、撮像方向からの視点において円形状をなす前記第1の部材と、撮像方向からの視点において円形状以外の形状をなす前記第2の部材とから構成されており、
     前記第1の部材の撮像データに基づいて、前記保持具と前記部品との相対的な位置を演算し、前記第2の部材の撮像データに基づいて、前記保持具と前記部品との相対的な回転角度を演算する請求項1ないし請求項3のいずれか1つに記載の演算装置。
    The component is composed of the first member having a circular shape when viewed from the imaging direction and the second member having a shape other than the circular shape when viewed from the imaging direction.
    The relative position between the holder and the component is calculated based on the imaging data of the first member, and the relative position between the holder and the component is calculated based on the imaging data of the second member. The arithmetic unit according to any one of claims 1 to 3, which calculates a different rotation angle.
  5.  少なくとも第1の部材と、前記第1の部材と異なる第2の部材とにより構成される部品が保持具により保持されている際に撮像された撮像データのうちの、前記第1の部材と前記第2の部材との一方の撮像データに基づいて前記保持具と前記部品との相対的な位置を演算することを示すとともに、前記第1の部材と前記第2の部材との他方の撮像データに基づいて前記保持具と前記部品との相対的な回転角度を演算することを示す情報を入力するための入力装置。 Of the imaging data captured when a component composed of at least the first member and a second member different from the first member is held by the holder, the first member and the said It is shown that the relative position between the holder and the component is calculated based on the imaging data of one of the second member, and the imaging data of the other of the first member and the second member. An input device for inputting information indicating that the relative rotation angle between the holder and the component is calculated based on the above.
PCT/JP2019/011465 2019-03-19 2019-03-19 Computation device and input device WO2020188745A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021506890A JP7185761B2 (en) 2019-03-19 2019-03-19 Arithmetic unit
PCT/JP2019/011465 WO2020188745A1 (en) 2019-03-19 2019-03-19 Computation device and input device
CN201980093874.7A CN113614488B (en) 2019-03-19 2019-03-19 Arithmetic device and input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/011465 WO2020188745A1 (en) 2019-03-19 2019-03-19 Computation device and input device

Publications (1)

Publication Number Publication Date
WO2020188745A1 true WO2020188745A1 (en) 2020-09-24

Family

ID=72520674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011465 WO2020188745A1 (en) 2019-03-19 2019-03-19 Computation device and input device

Country Status (3)

Country Link
JP (1) JP7185761B2 (en)
CN (1) CN113614488B (en)
WO (1) WO2020188745A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248717A (en) * 2011-05-30 2012-12-13 Fuji Mach Mfg Co Ltd Position recognition camera and position recognition device
WO2018163385A1 (en) * 2017-03-09 2018-09-13 株式会社Fuji Component recognition device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4087973B2 (en) * 1999-02-26 2008-05-21 名古屋電機工業株式会社 Inter-component inspection method and apparatus for mounted components
JP4380864B2 (en) 1999-12-16 2009-12-09 Juki株式会社 Component detection method and apparatus
JP2002329999A (en) * 2001-05-02 2002-11-15 Matsushita Electric Ind Co Ltd Electronic part mounting device and method therefor, and program for mounting electronic part
JP2007287838A (en) * 2006-04-14 2007-11-01 Yamaha Motor Co Ltd Parts transfer device, mounting machine, and parts transfer device for parts inspection machine
CN101936708B (en) * 2010-08-13 2012-05-23 河海大学常州校区 Method for positioning and detecting QFP (Quad Flat Package) chip
JP5779386B2 (en) * 2011-04-19 2015-09-16 富士機械製造株式会社 Electrical component mounting machine
JP5791408B2 (en) * 2011-07-15 2015-10-07 富士機械製造株式会社 Electronic component mounting equipment
CN102661708B (en) * 2012-04-20 2014-05-07 华南理工大学 High-density packaged element positioning method based on speeded up robust features (SURFs)
JP5988839B2 (en) * 2012-11-15 2016-09-07 富士機械製造株式会社 Component mounter
CN103335609B (en) * 2013-07-05 2016-01-20 中国科学院光电技术研究所 A kind of optical surface profile data rotation center, the anglec of rotation and translational movement defining method
JP6363863B2 (en) * 2014-04-15 2018-07-25 キヤノン株式会社 Information processing apparatus and information processing method
CN104406585B (en) * 2014-11-19 2017-04-05 中国计量学院 Based on the laser tracker target ball alignment system that inertia is detected
EP3267146B1 (en) * 2015-03-06 2021-02-24 FUJI Corporation Recognition device and recognition method
JP6542353B2 (en) * 2015-03-18 2019-07-10 株式会社Fuji Parts supply device
CN105066892B (en) * 2015-08-05 2017-07-28 哈尔滨工业大学 A kind of BGA element testings and localization method based on straight line clustering
WO2017051446A1 (en) * 2015-09-22 2017-03-30 富士機械製造株式会社 Part supply system
CN108709500B (en) * 2018-05-11 2020-08-11 佛山科学技术学院 Circuit board element positioning and matching method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248717A (en) * 2011-05-30 2012-12-13 Fuji Mach Mfg Co Ltd Position recognition camera and position recognition device
WO2018163385A1 (en) * 2017-03-09 2018-09-13 株式会社Fuji Component recognition device

Also Published As

Publication number Publication date
CN113614488B (en) 2023-09-01
JP7185761B2 (en) 2022-12-07
CN113614488A (en) 2021-11-05
JPWO2020188745A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP6442039B2 (en) Parts supply device and mounting machine
JP6908698B2 (en) Mounting order determination device, mounting order inspection device, mounting order determination method, and mounting order inspection method
JP6190229B2 (en) Component mounting equipment
JP2009094283A (en) Method of producing mounting board, surface mounting machine, and mounting board production control device
JP4855347B2 (en) Parts transfer device
WO2014087535A1 (en) Apparatus and method for generating mounting data, and substrate manufacturing system
JP2004281958A (en) Component mounting method and device
JP4597435B2 (en) Component mounting method and component mounting apparatus
WO2020188745A1 (en) Computation device and input device
JPWO2018066091A1 (en) Component mounting machine
JP6666692B2 (en) Component mounting machine, component suction method
US10939597B2 (en) Component mounting device
US20200037478A1 (en) Three-dimensional mounting device and three-dimensional mounting method
JP2007287838A (en) Parts transfer device, mounting machine, and parts transfer device for parts inspection machine
JP6896943B2 (en) Information processing equipment, work system, and decision method
WO2019123517A1 (en) Work device and method for controlling same
JP6654978B2 (en) Board work machine
JP2005197758A (en) Electronic component mounting device and method of mounting the electronic component
US11924976B2 (en) Work machine
JP4119137B2 (en) Parts testing equipment
JP7128362B2 (en) work machine
JP7110318B2 (en) COMPONENT MOUNTING SYSTEM AND COMPONENT HOLDING METHOD
WO2023152984A1 (en) Work machine for substrate and electric circuit substrate production method
JP7047183B2 (en) Information processing equipment
WO2019069438A1 (en) Substrate work system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920452

Country of ref document: EP

Kind code of ref document: A1