WO2020188654A1 - 半導体装置の製造方法、基板処理装置およびプログラム - Google Patents

半導体装置の製造方法、基板処理装置およびプログラム Download PDF

Info

Publication number
WO2020188654A1
WO2020188654A1 PCT/JP2019/010951 JP2019010951W WO2020188654A1 WO 2020188654 A1 WO2020188654 A1 WO 2020188654A1 JP 2019010951 W JP2019010951 W JP 2019010951W WO 2020188654 A1 WO2020188654 A1 WO 2020188654A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
processing chamber
reaction gas
substrate
raw material
Prior art date
Application number
PCT/JP2019/010951
Other languages
English (en)
French (fr)
Inventor
一樹 野々村
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to CN201980094010.7A priority Critical patent/CN113574640B/zh
Priority to PCT/JP2019/010951 priority patent/WO2020188654A1/ja
Priority to KR1020217026946A priority patent/KR20210119489A/ko
Priority to JP2021506817A priority patent/JP7179962B2/ja
Publication of WO2020188654A1 publication Critical patent/WO2020188654A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3

Definitions

  • the present disclosure relates to a semiconductor device manufacturing method, a substrate processing device, and a program.
  • a film forming process for forming a film on a substrate housed in a processing chamber may be performed (see, for example, Patent Document 1).
  • Patent Document 1 a raw material gas containing an element such as aluminum and a reaction gas containing an element such as oxygen are sequentially supplied to the processing chamber, and a film is formed on a substrate housed in the processing chamber. Is required to improve the in-plane film thickness uniformity of the film formed on the substrate.
  • An object of the present disclosure is to provide a technique for improving the in-plane film thickness uniformity of a film formed on a substrate housed in a processing chamber.
  • a step of supplying a raw material gas to a substrate in the processing chamber and a step of supplying a reaction gas having a molecular structure different from that of the raw material gas to the substrate in the processing chamber A step of forming a film on the substrate by performing the above non-simultaneously a predetermined number of times, and in the step of supplying the reaction gas, the substrate in the processing chamber is in a state where the pressure in the processing chamber is not stable.
  • a technique for repeatedly supplying the reaction gas to the product and exhausting the reaction gas from the processing chamber a predetermined number of times is provided.
  • the substrate processing device 10 is configured as an example of a device used in the manufacturing process of a semiconductor device.
  • the substrate processing device 10 includes a processing furnace 202 provided with a heater 207 as a heating means (heating mechanism, heating system).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • an outer tube 203 forming a reaction vessel is arranged concentrically with the heater 207.
  • the outer tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end open.
  • a manifold (inlet flange) 209 is arranged concentrically with the outer tube 203.
  • the manifold 209 is made of a metal such as stainless steel (SUS), and is formed in a cylindrical shape with open upper and lower ends.
  • An O-ring 220a as a sealing member is provided between the upper end portion of the manifold 209 and the outer tube 203.
  • the inner tube 204 constituting the reaction vessel is arranged inside the outer tube 203.
  • the inner tube 204 is made of a heat-resistant material such as quartz or SiC, and is formed in a cylindrical shape with the upper end closed and the lower end open.
  • the processing container (reaction container) is mainly composed of the outer tube 203, the inner tube 204, and the manifold 209.
  • a processing chamber 201 is formed in the hollow portion of the processing container (inside the inner tube 204).
  • the processing chamber 201 is configured to accommodate the wafer 200 as a substrate in a state of being arranged in multiple stages in the vertical direction in a horizontal posture by a boat 217 described later.
  • Nozzles 410 (first nozzle) and 420 (second nozzle) are provided in the processing chamber 201 so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • Gas supply pipes 310 and 320 as gas supply lines are connected to the nozzles 410 and 420, respectively.
  • the substrate processing apparatus 10 is provided with two nozzles 410 and 420 and two gas supply pipes 310 and 320, and can supply a plurality of types of gas into the processing chamber 201. It is configured as follows.
  • the processing furnace 202 of the present embodiment is not limited to the above-described embodiment.
  • the gas supply pipes 310 and 320 are provided with mass flow controllers (MFCs) 312 and 322, which are flow rate controllers (flow control units), in order from the upstream side. Further, the gas supply pipes 310 and 320 are provided with valves 314 and 324, which are on-off valves, respectively. Gas supply pipes 510 and 520 for supplying the inert gas are connected to the downstream sides of the valves 314 and 324 of the gas supply pipes 310 and 320, respectively. The gas supply pipes 510 and 520 are provided with MFCs 512 and 522 and valves 514 and 524, respectively, in this order from the upstream side.
  • MFCs mass flow controllers
  • Nozzles 410 and 420 are connected to the tips of the gas supply pipes 310 and 320, respectively.
  • the nozzles 410 and 420 are configured as L-shaped nozzles, and their horizontal portions are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • the vertical portions of the nozzles 410 and 420 are provided inside the channel-shaped (groove-shaped) spare chamber 201a formed so as to project outward in the radial direction of the inner tube 204 and extend in the vertical direction.
  • In the reserve chamber 201a is provided upward along the inner wall of the inner tube 204 (upward in the arrangement direction of the wafer 200).
  • the nozzles 410 and 420 are provided so as to extend from the lower region of the processing chamber 201 to the upper region of the processing chamber 201, and a plurality of gas supply holes 410a and 420a are provided at positions facing the wafer 200, respectively. There is. As a result, the processing gas is supplied to the wafer 200 from the gas supply holes (openings) 410a and 420a of the nozzles 410 and 420, respectively.
  • a plurality of gas supply holes 410a are provided from the lower part to the upper part of the inner tube 204, each having the same opening area, and further provided with the same opening pitch.
  • the gas supply hole 410a is not limited to the above-mentioned form.
  • the opening area may be gradually increased from the lower part to the upper part of the inner tube 204. This makes it possible to make the flow rate of the gas supplied from the gas supply hole 410a more uniform.
  • a plurality of gas supply holes 420a are provided from the lower part to the upper part of the inner tube 204, each having the same opening area, and further provided with the same opening pitch.
  • the gas supply hole 420a is not limited to the above-mentioned form.
  • the opening area may be gradually increased from the lower part to the upper part of the inner tube 204. This makes it possible to make the flow rate of the gas supplied from the gas supply hole 420a more uniform.
  • a plurality of gas supply holes 410a and 420a of the nozzles 410 and 420 are provided at height positions from the lower part to the upper part of the boat 217, which will be described later. Therefore, the processing gas supplied into the processing chamber 201 from the gas supply holes 410a and 420a of the nozzles 410 and 420 is the wafer 200 accommodated from the lower part to the upper part of the boat 217, that is, the wafer 200 accommodated in the boat 217. It is supplied to the whole area.
  • the nozzles 410 and 420 may be provided so as to extend from the lower region to the upper region of the processing chamber 201, but are preferably provided so as to extend to the vicinity of the ceiling of the boat 217.
  • a raw material gas containing a metal element (metal-containing gas, raw material gas) is supplied into the processing chamber 201 as a processing gas via the MFC 312, the valve 314, and the nozzle 410.
  • the raw material for example, trimethylaluminum (Al (CH 3 ) 3 ) as an aluminum-containing raw material (Al-containing raw material gas, Al-containing gas) which is a metal-containing raw material gas (metal-containing gas) containing aluminum (Al) which is a metal element.
  • TMA is an organic raw material and is an alkylaluminum in which an alkyl group is bonded to aluminum.
  • reaction gas as the processing gas is supplied into the processing chamber 201 via the MFC 322, the valve 324, and the nozzle 420.
  • the reaction gas contains oxygen (O), and an oxygen-containing gas (oxidizing gas, oxidizing agent) as a reaction gas (reactant) that reacts with Al is used.
  • oxygen-containing gas for example, can be used ozone (O 3) gas.
  • the raw material gas which is a metal-containing gas is supplied into the processing chamber 201 from the gas supply hole 410a of the nozzle 410, and the reaction gas which is an oxygen-containing gas is supplied into the processing chamber 201 from the gas supply hole 420a of the nozzle 420.
  • the raw material gas (metal-containing gas) and the reaction gas (oxygen-containing gas) are supplied to the surface of the wafer 200, and a metal oxide film is formed on the surface of the wafer 200.
  • nitrogen (N 2 ) gas as an inert gas is supplied into the processing chamber 201 via the MFC 512 and 522, the valves 514 and 524, and the nozzles 410 and 420, respectively.
  • N 2 gas is used as the inert gas.
  • the inert gas for example, argon (Ar) gas, helium (He) gas, neon (Ne) gas, in addition to N 2 gas, will be described.
  • Xenon (Xe) gas and other rare gases may be used.
  • the processing gas supply system is mainly composed of gas supply pipes 310, 320, MFC 312, 322, valves 314, 324, and nozzles 410, 420, but only nozzles 410, 420 may be considered as the processing gas supply system.
  • the treated gas supply system can also be simply referred to as a gas supply system.
  • the raw material gas supply system is mainly composed of the gas supply pipe 310, the MFC 312, and the valve 314, but the nozzle 410 may be included in the raw material gas supply system.
  • the raw material gas supply system can also be referred to as a raw material supply system.
  • the raw material gas supply system can also be referred to as a metal-containing raw material gas supply system.
  • the reaction gas supply system is mainly composed of the gas supply pipe 320, the MFC 322, and the valve 324, but the nozzle 420 may be included in the reaction gas supply system.
  • an oxygen-containing gas is supplied as a reaction gas from the gas supply pipe 320
  • the reaction gas supply system can also be referred to as an oxygen-containing gas supply system.
  • the inert gas supply system is mainly composed of gas supply pipes 510, 520 and MFC 512,522, and valves 514,524.
  • the inert gas supply system can also be referred to as a purge gas supply system, a dilution gas supply system, or a carrier gas supply system.
  • the method of gas supply in the present embodiment is in the annular vertically long space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200, that is, in the spare chamber 201a in the cylindrical space.
  • Gas is conveyed via the nozzles 410 and 420 arranged in.
  • gas is ejected into the inner tube 204 from a plurality of gas supply holes 410a and 420a provided at positions facing the wafers of the nozzles 410 and 420. More specifically, the gas supply hole 410a of the nozzle 410 and the gas supply hole 420a of the nozzle 420 eject the raw material gas or the like in the direction parallel to the surface of the wafer 200, that is, in the horizontal direction.
  • the exhaust hole (exhaust port) 204a is a through hole formed on the side wall of the inner tube 204 at a position facing the nozzles 410 and 420, that is, at a position 180 degrees opposite to the spare chamber 201a, and is, for example, vertical. It is a slit-shaped through hole that is elongated in the direction. Therefore, the gas supplied into the processing chamber 201 from the gas supply holes 410a and 420a of the nozzles 410 and 420 and flowing on the surface of the wafer 200, that is, the residual gas (residual gas) is inner through the exhaust holes 204a. It flows into the exhaust passage 206 formed by the gap formed between the tube 204 and the outer tube 203. Then, the gas that has flowed into the exhaust passage 206 flows into the exhaust pipe 231 and is discharged to the outside of the processing furnace 202.
  • the exhaust holes 204a are provided at positions facing the plurality of wafers 200 (preferably at positions facing the upper to lower parts of the boat 217), and are located near the wafers 200 in the processing chamber 201 from the gas supply holes 410a and 420a.
  • the supplied gas flows in the horizontal direction, that is, in the direction parallel to the surface of the wafer 200, and then flows into the exhaust passage 206 through the exhaust hole 204a. That is, the gas remaining in the processing chamber 201 is exhausted in parallel with the main surface of the wafer 200 through the exhaust hole 204a.
  • the exhaust hole 204a is not limited to the case where it is configured as a slit-shaped through hole, and may be configured by a plurality of holes.
  • the manifold 209 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201
  • an APC (Auto Pressure Controller) valve 243 and a vacuum pump as a vacuum exhaust device. 246 is connected.
  • the APC valve 243 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 operating, and further, the valve with the vacuum pump 246 operating. By adjusting the opening degree, the pressure in the processing chamber 201 can be adjusted.
  • the exhaust system that is, the exhaust line is mainly composed of the exhaust hole 204a, the exhaust passage 206, the exhaust pipe 2311, the APC valve 243, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209.
  • the seal cap 219 is configured to come into contact with the lower end of the manifold 209 from the lower side in the vertical direction.
  • the seal cap 219 is made of a metal such as SUS and is formed in a disk shape.
  • An O-ring 220b as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the seal cap 219.
  • a rotation mechanism 267 for rotating the boat 217 accommodating the wafer 200 is installed on the opposite side of the processing chamber 201 in the seal cap 219.
  • the rotating shaft 255 of the rotating mechanism 267 penetrates the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be raised and lowered in the vertical direction by a boat elevator 115 as a raising and lowering mechanism vertically installed outside the outer tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by raising and lowering the seal cap 219.
  • the boat elevator 115 is configured as a transport device (transport mechanism) for transporting the boat 217 and the wafer 200 housed in the boat 217 into and out of the processing chamber 201.
  • the boat 217 as a substrate support supports a plurality of wafers, for example, 25 to 200 wafers, in a horizontal position and in a vertically aligned state so as to support them in multiple stages. It is configured to be arranged at intervals.
  • the boat 217 is made of a heat resistant material such as quartz or SiC.
  • a heat insulating plate 218 made of a heat-resistant material such as quartz or SiC is supported in a horizontal posture in multiple stages (not shown). With this configuration, the heat from the heater 207 is less likely to be transferred to the seal cap 219 side.
  • this embodiment is not limited to the above-described embodiment.
  • a heat insulating cylinder configured as a tubular member made of a heat-resistant material such as quartz or SiC may be provided.
  • a temperature sensor 263 as a temperature detector is installed in the inner tube 204, and the amount of electricity supplied to the heater 207 is adjusted based on the temperature information detected by the temperature sensor 263.
  • the temperature in the processing chamber 201 is configured to have a desired temperature distribution.
  • the temperature sensor 263 is L-shaped like the nozzles 410 and 420, and is provided along the inner wall of the inner tube 204.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus.
  • An input / output device 122 configured as, for example, a touch panel is connected to the controller 121.
  • the storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), an SSD (Solid State Drive), or the like.
  • a control program for controlling the operation of the substrate processing device, a process recipe in which procedures and conditions of a method for manufacturing a semiconductor device to be described later are described, and the like are readablely stored.
  • the process recipes are combined so that the controller 121 can execute each step (each step) in the method for manufacturing a semiconductor device described later and obtain a predetermined result, and functions as a program.
  • the process recipe, control program, etc. are collectively referred to as a program.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily held.
  • the I / O port 121d includes the above-mentioned MFC 312,322,512,522, valve 314,324,514,524, pressure sensor 245, APC valve 243, vacuum pump 246, heater 207, temperature sensor 263, rotation mechanism 267, and boat. It is connected to an elevator 115 or the like.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c and read a process recipe or the like from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rate of various gases by the MFC 312, 322, 512, 522, opens and closes the valves 314, 324, 514, 524, opens and closes the APC valve 243, and opens and closes the APC valve so as to follow the contents of the read process recipe.
  • Pressure adjustment operation based on pressure sensor 245 by 243, temperature adjustment operation of heater 207 based on temperature sensor 263, start and stop of vacuum pump 246, rotation and rotation speed adjustment operation of boat 217 by rotation mechanism 267, boat by boat elevator 115 It is configured to control the ascending / descending operation of the 217, the accommodating operation of the wafer 200 in the boat 217, and the like.
  • the controller 121 is stored in an external storage device (for example, magnetic tape, magnetic disk such as flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card) 123.
  • the above-mentioned program can be configured by installing it on a computer.
  • the storage device 121c and the external storage device 123 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium.
  • the recording medium may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • AlO film aluminum oxide film
  • wafer When the word “wafer” is used in the present specification, it may mean the wafer itself or a laminate of a wafer and a predetermined layer or film formed on the surface thereof.
  • wafer surface When the term “wafer surface” is used in the present specification, it may mean the surface of the wafer itself or the surface of a predetermined layer or the like formed on the wafer.
  • a predetermined layer when it is described that "a predetermined layer is formed on a wafer”, it means that a predetermined layer is directly formed on the surface of the wafer itself, or a layer formed on the wafer or the like. It may mean forming a predetermined layer on top of it.
  • board in the present specification is also synonymous with the use of the term "wafer”.
  • the inside of the processing chamber 201 that is, the space where the wafer 200 exists is vacuum exhausted by the vacuum pump 246 so as to have a desired pressure (vacancy).
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment).
  • the vacuum pump 246 is always kept in operation until at least the processing on the wafer 200 is completed.
  • the inside of the processing chamber 201 is heated by the heater 207 so as to have a desired temperature.
  • the amount of electricity supplied to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment).
  • the heating in the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
  • the rotation mechanism 267 starts the rotation of the boat 217 and the wafer 200.
  • the rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is continuously performed at least until the processing on the wafer 200 is completed.
  • the raw material gas supply step step of supplying the raw material gas
  • the residual gas removal step step of removing the residual gas
  • the reaction gas supply step step of supplying the reaction gas
  • the residual gas removal step residual gas
  • residual gas removal step residual gas
  • TMA gas supply step (step S10)
  • the valve 314 is opened and TMA gas, which is a raw material gas, flows into the gas supply pipe 310.
  • the flow rate of the TMA gas is adjusted by the MFC 312, the gas is supplied into the processing chamber 201 through the gas supply hole 410a of the nozzle 410, and is exhausted from the exhaust pipe 231.
  • TMA gas is supplied to the wafer 200.
  • the valve 514 may be opened at the same time, and an inert gas such as N 2 gas may flow into the gas supply pipe 510.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 510 is adjusted by the MFC 512, is supplied into the processing chamber 201 together with the TMA gas, and is exhausted from the exhaust pipe 231.
  • the valve 524 may be opened and the N 2 gas may flow into the gas supply pipe 520.
  • the N 2 gas is supplied into the processing chamber 201 via the gas supply pipe 320 and the nozzle 420, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, 1 to 1000 Pa, preferably 1 to 100 Pa, and more preferably 10 to 50 Pa.
  • the pressure in the processing chamber 201 is, for example, 1 to 1000 Pa, preferably 1 to 100 Pa, and more preferably 10 to 50 Pa.
  • the pressure in the processing chamber 201 is 1 to 1000 Pa or less, the residual gas described later can be suitably removed, and the TMA gas is autolyzed in the nozzle 410 and accumulated on the inner wall of the nozzle 410. It can be suppressed.
  • the pressure in the processing chamber 201 to 1 Pa or more, the reaction rate of the TMA gas on the surface of the wafer 200 can be increased, and a practical film forming rate can be obtained.
  • the supply flow rate of the TMA gas controlled by the MFC 312 is, for example, a flow rate within the range of 10 to 2000 sccm, preferably 50 to 1000 sccm, and more preferably 100 to 500 sccm.
  • a flow rate within the range of 10 to 2000 sccm, preferably 50 to 1000 sccm, and more preferably 100 to 500 sccm.
  • the supply flow rate of the N 2 gas controlled by the MFC 512 is, for example, a flow rate within the range of 1 to 30 slm, preferably 1 to 20 slm, and more preferably 1 to 10 slm.
  • the time for supplying the TMA gas to the wafer 200 is, for example, in the range of 1 to 60 seconds, preferably 1 to 20 seconds, and more preferably 2 to 15 seconds.
  • the heater 207 heats the wafer 200 so that the temperature of the wafer 200 is, for example, in the range of 200 to 600 ° C, preferably 400 to 550 ° C, and more preferably 450 to 550 ° C.
  • the temperature By setting the temperature to 600 ° C. or lower, it is possible to obtain an appropriate film formation rate while suppressing excessive thermal decomposition of the TMA gas, and it is possible to prevent impurities from being taken into the film and increasing the resistivity. .. Since the thermal decomposition of TMA gas starts at about 450 ° C. under conditions close to the treatment, it is more effective to use the present disclosure in the treatment chamber 201 heated to a temperature of 550 ° C. or lower. On the other hand, when the temperature is 400 ° C. or higher, the reactivity is high and efficient film formation is possible.
  • an Al-containing layer is formed on the outermost surface of the wafer 200.
  • the Al-containing layer may contain C and H in addition to the Al layer.
  • the Al-containing layer is formed by physically adsorbing TMA on the outermost surface of the wafer 200, chemically adsorbing a substance obtained by partially decomposing TMA, or depositing Al by thermally decomposing TMA. Will be done. That is, the Al-containing layer may be an adsorption layer (physisorption layer or chemisorption layer) of TMA or a substance in which a part of TMA is decomposed, or may be an Al deposition layer (Al layer).
  • step S11 residual gas removal step (step S11))
  • the valve 314 is closed and the supply of TMA gas is stopped.
  • the APC valve 243 is left open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the unreacted TMA gas remaining in the processing chamber 201 or after contributing to the formation of the Al-containing layer is discharged into the processing chamber 201. Exclude from within. Valve 514 and 524 to maintain the supply of the N 2 gas into the process chamber 201 in a state where the open.
  • the N 2 gas acts as a purge gas, and can enhance the effect of removing the unreacted TMA gas remaining in the treatment chamber 201 or after contributing to the formation of the Al-containing layer from the treatment chamber 201.
  • the N 2 gas from the valves 514 and 524 may be continuously flowed during the residual gas removal step, or may be supplied intermittently (pulse-like).
  • the flow rate of the inert gas supplied into the processing chamber 201 does not need to be large, and for example, supplying an amount equivalent to the volume of the reaction tube 203 (processing chamber 201) adversely affects the subsequent steps. It is possible to perform purging to the extent that it hardly occurs. By not completely purging the inside of the processing chamber 201 in this way, the purging time can be shortened and the throughput can be improved. In addition, the consumption of the inert gas can be minimized.
  • reaction gas supply step the reaction gas supply sub-step (step S12) and the residual gas removal sub-step (step S13) are repeated.
  • reaction gas supply sub-step (step S12) After removal of the residual gas in the processing chamber 201, opening the valve 324, flow the O 3 gas is a reaction gas into the gas supply pipe 320.
  • O 3 gas is the flow rate adjusted by MFC322 is supplied to the wafer 200 in the process chamber 201 through the gas supply holes 420a of the nozzle 420, is exhausted from the exhaust pipe 231. That wafer 200 is exposed to the O 3 gas.
  • opening the valve 524 it may be flowed N 2 gas into the gas supply pipe 520.
  • the flow rate of the N 2 gas is adjusted by the MFC 522, is supplied into the processing chamber 201 together with the O 3 gas, and is exhausted from the exhaust pipe 231.
  • opening the valve 514 it may be flowed N 2 gas to the gas supply pipe 510.
  • the N 2 gas is supplied into the processing chamber 201 via the gas supply pipe 510 and the nozzle 410, and is exhausted from the exhaust pipe 231.
  • the time for supplying the O 3 gas to the wafer 200 (O 3 gas supply time) is, for example, preferably 0.01 to 5 seconds, more preferably 0.01 to 3 seconds. If the O 3 gas supply time is less than 0.01 seconds, the O 3 gas wraps around the edge of the wafer 200, and the supply amount of the O 3 gas to the center of the wafer 200 becomes insufficient. Further, if the O 3 gas supply time exceeds 5 seconds, the O 3 gas supply time becomes long, and it takes time to reduce the pressure in the processing chamber 201 to a predetermined pressure, resulting in a decrease in throughput.
  • the time for supplying the O 3 gas to the wafer 200 By setting the time for supplying the O 3 gas to the wafer 200 to 0.01 seconds or more and 5 seconds or less, the O 3 gas can be suppressed from wrapping around the edge of the wafer 200, and the pressure in the processing chamber 201 can be increased. Since the residual gas removal substep of the next step can be performed before the stabilization, the time until the pressure in the processing chamber 201 is lowered can be shortened, and the throughput can be improved.
  • Other treatment conditions are the same as those in the raw material gas supply step described above.
  • AlO layer aluminum oxide layer containing Al and O as a metal oxide layer. That is, the Al-containing layer is modified into an AlO layer.
  • step S13 Before it is determined that the reaction gas supply substep conducted a predetermined number of times (m times) in turn closes the valve 324 to stop the supply of the O 3 gas.
  • APC step while valve 243 is opened, and vacuum evacuating the processing chamber 201 by the vacuum pump 246, the processing chamber processing chamber O 3 gas after contributing to unreacted or Al-containing layer formed remaining in the 201 It is removed from the inside of 201, and the inside of the processing chamber 201 is depressurized. At this time, the point that the gas or the like remaining in the processing chamber 201 does not have to be completely removed is the same as in the residual gas removing step after the raw material gas supply step.
  • the time for vacuum exhausting the inside of the processing chamber 201 by the vacuum pump 246 is, for example, preferably 0.05 to 9 seconds, more preferably 0.5 to 5 seconds. If the vacuum exhaust time is less than 0.05, the pressure in the processing chamber 201 cannot be sufficiently reduced to a predetermined pressure, and if it exceeds 9 seconds, the vacuum exhaust time becomes too long and the throughput Will decrease.
  • the vacuum exhaust time is set to 0.05 to 9 seconds, more preferably 0.5 to 5 seconds, the pressure in the processing chamber 201 can be sufficiently lowered in a short time, and the vacuum exhaust time is long. It is possible to suppress a decrease in throughput without becoming too much.
  • a time for supplying the above-mentioned O 3 gas to the wafer 200 (supply time), the time to evacuate the inside of the process chamber 201 by the vacuum pump 246 (exhaust time) ratio of the (supply time: evacuation time), 1 : It is preferably in the range of 2 to 1: 5.
  • Supply time When the exhaust time is 1: 5 or less, the exhaust time does not become too long, and a decrease in throughput can be suppressed.
  • reaction gas supply step reaction gas supply step
  • residual gas removal substep reaction gas exhaust step
  • the treatment is performed in a state where the pressure in the processing chamber 201 is not stabilized and rises. supplying the O 3 gas into the chamber 201, the pressure in the processing chamber 201 to stop the supply of the O 3 gas into the processing chamber 201 prior to a certain reduction.
  • the two-dot chain line in FIG. 5 shows the pressure when the pressure in the processing chamber 201 to supply the O 3 gas in the even processing chamber 201 after the stabilized ..
  • the pressure in the processing chamber 201 to supply the O 3 gas in a state where no stabilized the pressure in the processing chamber 201 into the process chamber 201 before a predetermined reduction stopping the supply of the O 3 gas.
  • a predetermined reduction stopping the supply of the O 3 gas.
  • the reaction gas supply sub-step and the residual gas removal sub-step described above are repeated.
  • the pressure in the processing chamber 201 to supply the O 3 gas is also into the processing chamber 201 after a certain reduction, O 3 into the processing chamber 201 after a predetermined time has elapsed Stop the gas supply.
  • the central portion of the contained wafer 200 surface in the processing chamber 201 many O 3 gas reaches.
  • the difference in film thickness between the edge portion and the center portion of the surface of the wafer 200 can be made smaller, so that the in-plane film thickness uniformity of the AlO film formed on the wafer 200 can be improved.
  • Step S14 residual gas removal step (step S14)) After the AlO layer is formed, by closing the valve 324 to stop the supply of the O 3 gas. Then, by the same procedure as residual gas removal step after the raw material gas supply step, O 3 gas after contributing to the formation of unreacted or AlO layer remaining in the process chamber 201 and reaction byproducts processing chamber 201 Exclude from within. At this time, the point that the gas or the like remaining in the processing chamber 201 does not have to be completely removed is the same as in the residual gas removing step after the raw material gas supply step.
  • An AlO film is formed on the wafer 200 by performing the cycle of sequentially performing the above-mentioned raw material gas supply step, residual gas removal step, reaction gas supply step, and residual gas supply step one or more times (predetermined number of times: n times). ..
  • the number of this cycle is appropriately selected according to the film thickness required for the AlO film to be finally formed, but this cycle is preferably repeated a plurality of times.
  • the thickness (film thickness) of the AlO film is, for example, 3 to 150 nm, preferably 40 to 100 nm, and more preferably 60 to 80 nm. When it is 150 nm or less, the surface roughness can be reduced, and when it is 3 nm or more, the occurrence of film peeling due to the stress difference with the underlying film can be suppressed.
  • N 2 gas is supplied into the processing chamber 201 from each of the gas supply pipes 310 and 320, and the gas is exhausted from the exhaust pipe 231.
  • the N 2 gas acts as a purge gas, and the gas and by-products remaining in the treatment chamber 201 are removed from the treatment chamber 201 (after-purge).
  • the atmosphere in the process chamber 201 is replaced with N 2 gas (N 2 gas replacement), the pressure in the processing chamber 201 is returned to normal pressure (atmospheric pressure return).
  • the reaction gas exhaust sub-step for exhausting the gas is repeated a predetermined number of times.
  • the average flow velocity of the reaction gas per cycle can be increased as compared with the conventional method for manufacturing a semiconductor device, so that more reaction gas reaches the central portion of the substrate surface in the processing chamber.
  • the difference in film thickness between the edge portion and the center portion of the substrate surface can be made smaller, so that the in-plane film thickness uniformity of the film formed on the substrate can be improved.
  • TMA gas is used as the Al-containing gas
  • AlCl 3 aluminum chloride
  • oxygen (O 2 ) oxygen
  • H 2 O water
  • H 2 plasma hydrogen peroxide and hydrogen (H 2 ) plasma
  • the example in which the N 2 gas is used has been described as the inert gas, but the present invention is not limited to this, and a rare gas such as Ar gas, He gas, Ne gas, or Xe gas may be used.
  • an example of forming an AlO film on the substrate has been described.
  • the present disclosure is not limited to this aspect.
  • it is effective for film types having adhesion such that they self-decompose in the nozzle at the processing temperature and adhere to the inner wall of the nozzle as deposits, and the deposits are peeled off in the film formation cycle.
  • It is also used for film types that form a film using a raw material gas that is simultaneously diluted with an inert gas or the like when supplying the raw material gas.
  • nitride films containing at least one of the elements, oxide films, acid carbide films, acid nitride films, acid carbon nitride films, molybdenum nitride films, molybdenum nitride films, metal element single films, etc. is there.
  • the recipe (program that describes the treatment procedure, treatment conditions, etc.) used for the film formation treatment is the treatment content (type, composition ratio, film quality, film thickness, treatment procedure, treatment conditions, etc. of the film to be formed or removed). It is preferable to prepare them individually and store them in the storage device 121c via a telecommunication line or an external storage device 123. Then, when starting the process, it is preferable that the CPU 121a appropriately selects an appropriate recipe from the plurality of recipes stored in the storage device 121c according to the processing content. As a result, it becomes possible to form films of various film types, composition ratios, film qualities, and film thicknesses with good reproducibility with one substrate processing apparatus, and appropriate processing can be performed in each case. Will be. In addition, the burden on the operator (input burden on processing procedures, processing conditions, etc.) can be reduced, and processing can be started quickly while avoiding operation mistakes.
  • the above recipe is not limited to the case of newly creating, for example, it may be prepared by changing an existing recipe already installed in the board processing apparatus.
  • the changed recipe may be installed on the substrate processing apparatus via a telecommunication line or a recording medium on which the recipe is recorded.
  • the input / output device 122 included in the existing board processing device may be operated to directly change the existing recipe already installed in the board processing device.
  • processing procedure and processing conditions at this time can be the same as the processing procedures and processing conditions of the above-described embodiments and modifications.
  • Substrate processing device 121 Controller 200: Wafer (board) 201: Processing chamber 410: Nozzle (first nozzle) 420: Nozzle (second nozzle)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

処理室内の基板に対して原料ガスを供給する工程と、処理室内の基板に対して原料ガスとは分子構造が異なる反応ガスを供給する工程と、を非同時に所定回数行うことで、基板上に膜を形成する工程を有し、反応ガスを供給する工程では、処理室内の圧力が安定していない状態で、処理室内の基板に対しての反応ガスの供給と、処理室内からの反応ガスの排気と、を所定回数繰り返して行う技術を提供する。

Description

半導体装置の製造方法、基板処理装置およびプログラム
 本開示は、半導体装置の製造方法、基板処理装置およびプログラムに関する。
 半導体装置(デバイス)の製造工程の一工程として、処理室内に収容された基板上に膜を形成する成膜処理が行われることがある(例えば特許文献1を参照)。
特開2014-67877号公報
 特許文献1に示されているように、アルミニウム等の元素を含む原料ガスと、酸素等の元素を含む反応ガスとを処理室内に順番に供給して、処理室内に収容された基板上に膜を形成する際、基板上に形成される膜の面内膜厚均一性を高めることが求められている。
 本開示は、処理室内に収容された基板上に形成される膜の面内膜厚均一性を向上させる技術を提供することを目的とする。
 本開示の一態様によれば、処理室内の基板に対して原料ガスを供給する工程と、前記処理室内の前記基板に対して前記原料ガスとは分子構造が異なる反応ガスを供給する工程と、を非同時に所定回数行うことで、前記基板上に膜を形成する工程を有し、前記反応ガスを供給する工程では、前記処理室内の圧力が安定していない状態で、前記処理室内の前記基板に対しての前記反応ガスの供給と、前記処理室内からの前記反応ガスの排気と、を所定回数繰り返して行う技術が提供される。
 本開示によれば、処理室内に収容された基板上に形成される膜の面内膜厚均一性を向上させることが可能である。
本開示の一実施形態における基板処理装置の縦型処理炉の概略を示す縦断面図である。 図1におけるA-A線概略横断面図である。 本開示の一実施形態における基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 本開示の一実施形態における基板処理装置の動作を示すフロー図である。 本開示の一実施形態におけるAlO膜形成工程の1サイクルを示す図である。 処理室内圧力、ノズル内圧力および処理室内の反応ガスの流速と、処理室内に反応ガスを供給する時間との関係を示すグラフである。
 以下、本開示の第1の実施形態について、図1~図6を参照しながら説明する。基板処理装置10は半導体装置の製造工程において使用される装置の一例として構成されている。
 (1)基板処理装置の構成
 基板処理装置10は、加熱手段(加熱機構、加熱系)としてのヒータ207が設けられた処理炉202を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
 ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成するアウタチューブ203が配設されている。アウタチューブ203は、例えば石英(SiO)、炭化シリコン(SiC)などの耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。アウタチューブ203の下方には、アウタチューブ203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)などの金属により構成され、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部と、アウタチューブ203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、アウタチューブ203は垂直に据え付けられた状態となる。
 アウタチューブ203の内側には、反応容器を構成するインナチューブ204が配設されている。インナチューブ204は、例えば石英、SiCなどの耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。主に、アウタチューブ203と、インナチューブ204と、マニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部(インナチューブ204の内側)には処理室201が形成されている。
 処理室201は、基板としてのウエハ200を後述するボート217によって水平姿勢で鉛直方向に多段に配列した状態で収容可能に構成されている。処理室201内には、ノズル410(第1のノズル),420(第2のノズル)がマニホールド209の側壁およびインナチューブ204を貫通するように設けられている。ノズル410,420には、ガス供給ラインとしてのガス供給管310,320が、それぞれ接続されている。このように、基板処理装置10には2本のノズル410,420と、2本のガス供給管310,320とが設けられており、処理室201内へ複数種類のガスを供給することができるように構成されている。ただし、本実施形態の処理炉202は上述の形態に限定されない。
 ガス供給管310,320には上流側から順に流量制御器(流量制御部)であるマスフローコントローラ(MFC)312,322がそれぞれ設けられている。また、ガス供給管310,320には、開閉弁であるバルブ314,324がそれぞれ設けられている。ガス供給管310,320のバルブ314,324の下流側には、不活性ガスを供給するガス供給管510,520がそれぞれ接続されている。ガス供給管510,520には、上流側から順に、MFC512,522およびバルブ514,524がそれぞれ設けられている。
 ガス供給管310,320の先端部にはノズル410,420がそれぞれ連結接続されている。ノズル410,420は、L字型のノズルとして構成されており、その水平部はマニホールド209の側壁およびインナチューブ204を貫通するように設けられている。ノズル410,420の垂直部は、インナチューブ204の径方向外向きに突出し、かつ鉛直方向に延在するように形成されているチャンネル形状(溝形状)の予備室201aの内部に設けられており、予備室201a内にてインナチューブ204の内壁に沿って上方(ウエハ200の配列方向上方)に向かって設けられている。
 ノズル410,420は、処理室201の下部領域から処理室201の上部領域まで延在するように設けられており、ウエハ200と対向する位置にそれぞれ複数のガス供給孔410a,420aが設けられている。これにより、ノズル410,420のガス供給孔(開口部)410a,420aからそれぞれウエハ200に処理ガスを供給する。
 ガス供給孔410aは、インナチューブ204の下部から上部にわたって複数設けられ、それぞれ同一の開口面積を有し、さらに同一の開口ピッチで設けられている。ただし、ガス供給孔410aは上述の形態に限定されない。例えば、インナチューブ204の下部から上部に向かって開口面積を徐々に大きくしてもよい。これにより、ガス供給孔410aから供給されるガスの流量をより均一化することが可能となる。
 ガス供給孔420aは、インナチューブ204の下部から上部にわたって複数設けられ、それぞれ同一の開口面積を有し、さらに同一の開口ピッチで設けられている。ただし、ガス供給孔420aは上述の形態に限定されない。例えば、インナチューブ204の下部から上部に向かって開口面積を徐々に大きくしてもよい。これにより、ガス供給孔420aから供給されるガスの流量をより均一化することが可能となる。
 ノズル410,420のガス供給孔410a,420aは、後述するボート217の下部から上部までの高さの位置に複数設けられている。そのため、ノズル410,420のガス供給孔410a,420aから処理室201内に供給された処理ガスは、ボート217の下部から上部までに収容されたウエハ200、すなわちボート217に収容されたウエハ200の全域に供給される。ノズル410,420は、処理室201の下部領域から上部領域まで延在するように設けられていればよいが、ボート217の天井付近まで延在するように設けられていることが好ましい。
 ガス供給管310からは、処理ガスとして、金属元素を含む原料ガス(金属含有ガス、原料ガス)が、MFC312、バルブ314、ノズル410を介して処理室201内に供給される。原料としては、例えば金属元素であるアルミニウム(Al)を含む金属含有原料ガス(金属含有ガス)であるアルミニウム含有原料(Al含有原料ガス、Al含有ガス)としてのトリメチルアルミニウム(Al(CH、略称:TMA)が用いられる。TMAは有機系原料であり、アルミニウムにアルキル基が結合したアルキルアルミニウムである。
 ガス供給管320からは、処理ガスとして、反応ガスが、MFC322、バルブ324、ノズル420を介して処理室201内に供給される。反応ガス(原料ガスとは化学構造(分子構造)が異なる反応ガス)としては、酸素(O)を含み、Alと反応する反応ガス(リアクタント)としての酸素含有ガス(酸化ガス、酸化剤)を用いることができる。酸素含有ガスとしては、例えば、オゾン(O)ガスを用いることができる。
 本実施形態において、金属含有ガスである原料ガスがノズル410のガス供給孔410aから処理室201内に供給され、酸素含有ガスである反応ガスがノズル420のガス供給孔420aから処理室201内に供給されることで、ウエハ200の表面に原料ガス(金属含有ガス)および反応ガス(酸素含有ガス)が供給され、ウエハ200の表面上に金属酸化膜が形成される。
 ガス供給管510,520からは、不活性ガスとして、例えば窒素(N)ガスが、それぞれMFC512,522、バルブ514,524、ノズル410,420を介して処理室201内に供給される。なお、以下、不活性ガスとしてNガスを用いる例について説明するが、不活性ガスとしては、Nガス以外に、例えば、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いてもよい。
 主に、ガス供給管310,320、MFC312,322、バルブ314,324、ノズル410,420により処理ガス供給系が構成されるが、ノズル410,420のみを処理ガス供給系と考えてもよい。処理ガス供給系を、単に、ガス供給系と称することもできる。ガス供給管310から原料ガスを流す場合、主に、ガス供給管310、MFC312、バルブ314により原料ガス供給系が構成されるが、ノズル410を原料ガス供給系に含めて考えてもよい。また、原料ガス供給系を原料供給系と称することもできる。原料ガスとして金属含有原料ガスを用いる場合、原料ガス供給系を金属含有原料ガス供給系と称することもできる。ガス供給管320から反応ガスを流す場合、主に、ガス供給管320、MFC322、バルブ324により反応ガス供給系が構成されるが、ノズル420を反応ガス供給系に含めて考えてもよい。ガス供給管320から反応ガスとして酸素含有ガスを供給する場合、反応ガス供給系を酸素含有ガス供給系と称することもできる。また、主に、ガス供給管510,520、MFC512,522,バルブ514,524により不活性ガス供給系が構成される。不活性ガス供給系を、パージガス供給系、希釈ガス供給系、或いは、キャリアガス供給系と称することもできる。
 本実施形態におけるガス供給の方法は、インナチューブ204の内壁と、複数枚のウエハ200の端部とで定義される円環状の縦長の空間内、すなわち、円筒状の空間内の予備室201a内に配置したノズル410,420を経由してガスを搬送している。そして、ノズル410,420のウエハと対向する位置に設けられた複数のガス供給孔410a,420aからインナチューブ204内にガスを噴出させている。より詳細には、ノズル410のガス供給孔410a、ノズル420のガス供給孔420aにより、ウエハ200の表面と平行方向、すなわち水平方向に向かって原料ガス等を噴出させている。
 排気孔(排気口)204aは、インナチューブ204の側壁であってノズル410,420に対向した位置、すなわち予備室201aとは180度反対側の位置に形成された貫通孔であり、例えば、鉛直方向に細長く開設されたスリット状の貫通孔である。そのため、ノズル410,420のガス供給孔410a,420aから処理室201内に供給され、ウエハ200の表面上を流れたガス、すなわち、残留するガス(残ガス)は、排気孔204aを介してインナチューブ204とアウタチューブ203との間に形成された隙間からなる排気路206内に流れる。そして、排気路206内へと流れたガスは、排気管231内に流れ、処理炉202外へと排出される。
 排気孔204aは、複数のウエハ200と対向する位置(好ましくはボート217の上部から下部と対向する位置)に設けられており、ガス供給孔410a、420aから処理室201内のウエハ200の近傍に供給されたガスは、水平方向、すなわちウエハ200の表面と平行方向に向かって流れた後、排気孔204aを介して排気路206内へと流れる。すなわち、処理室201に残留するガスは、排気孔204aを介してウエハ200の主面に対して平行に排気される。なお、排気孔204aはスリット状の貫通孔として構成される場合に限らず、複数個の孔により構成されていてもよい。
 マニホールド209には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、上流側から順に、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245,APC(Auto Pressure Controller)バルブ243,真空排気装置としての真空ポンプ246が接続されている。APCバルブ243は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で弁開度を調節することで、処理室201内の圧力を調整することができる。主に、排気孔204a,排気路206,排気管231,APCバルブ243および圧力センサ245により、排気系すなわち排気ラインが構成される。なお、真空ポンプ246を排気系に含めて考えてもよい。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に鉛直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属により構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219における処理室201の反対側には、ウエハ200を収容するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、アウタチューブ203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって鉛直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。ボートエレベータ115は、ボート217およびボート217に収容されたウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で鉛直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱板218が水平姿勢で多段(図示せず)に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。ただし、本実施形態は上述の形態に限定されない。例えば、ボート217の下部に断熱板218を設けずに、石英やSiC等の耐熱性材料により構成される筒状の部材として構成された断熱筒を設けてもよい。
 図2に示すように、インナチューブ204内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電量を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル410および420と同様にL字型に構成されており、インナチューブ204の内壁に沿って設けられている。
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a,RAM(Random Access Memory)121b,記憶装置121c,I/Oポート121dを備えたコンピュータとして構成されている。RAM121b,記憶装置121c,I/Oポート121dは、内部バスを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラム、後述する半導体装置の製造方法の手順や条件などが記載されたプロセスレシピなどが、読み出し可能に格納されている。プロセスレシピは、後述する半導体装置の製造方法における各工程(各ステップ)をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピ、制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、プロセスレシピおよび制御プログラムの組み合わせを含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC312,322,512,522,バルブ314,324,514,524、圧力センサ245、APCバルブ243、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからプロセスレシピ等を読み出すように構成されている。CPU121aは、読み出したプロセスレシピの内容に沿うように、MFC312,322,512,522による各種ガスの流量調整動作、バルブ314,324,514,524の開閉動作、APCバルブ243の開閉動作およびAPCバルブ243による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動および停止、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、ボート217へのウエハ200の収容動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)成膜処理
 半導体装置(デバイス)の製造工程の一工程として、ウエハ上200に膜を形成する工程の一例について、図4を用いて説明する。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。
 本実施形態では、基板としての複数のウエハ200が積載された状態で収容された処理室201を所定温度で加熱しつつ、処理室201内のウエハ200に対してノズル410の開口する複数のガス供給孔410aから原料ガスとしてTMAガスを供給する工程と、処理室201内のウエハ200に対してノズル420の開口する複数のガス供給孔420aから反応ガスとしてOガスを供給する工程と、を非同時に所定回数行うことで、ウエハ200上に、AlおよびOを含む膜としてアルミニウム酸化膜(AlO膜)を形成する工程を有し、Oガスを供給する工程では、処理室201内の圧力が安定していない状態で、処理室201内にOガスの供給(反応ガス供給サブ工程)と、処理室201内からのOガスの排気(反応ガス排気サブ工程)と、を所定回数繰り返して行う。
 本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」をいう言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(ウエハチャージ・ボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示すように、複数枚のウエハ200が収容されたボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
(圧力・温度調整)
 処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。続いて、回転機構267によりボート217およびウエハ200の回転を開始する。回転機構267によるボート217およびウエハ200の回転は、少なくとも、ウエハ200に対する処理が完了するまでの間は継続して行われる。
[AlO膜形成工程]
 続いて、原料ガス供給ステップ(原料ガスを供給する工程)、残留ガス除去ステップ(残留ガスを除去する工程)、反応ガス供給ステップ(反応ガスを供給する工程)、残留ガス除去ステップ(残量ガスを除去する工程)をこの順で非同時に所定回数(n回)行うことで、AlO膜を形成するステップ(AlO膜を形成する工程)が行われる。反応ガス供給ステップでは、反応ガス供給サブステップ(反応ガス供給サブ工程)および残留ガス除去サブステップ(反応ガス排気サブ工程)をこの順で繰り返し所定回数(m回)行う。
 AlO膜形成工程の1サイクルを図5に示す。
 (TMAガス供給ステップ(ステップS10))
 バルブ314を開き、ガス供給管310内に原料ガスであるTMAガスを流す。TMAガスは、MFC312により流量調整され、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してTMAガスが供給されることとなる。このとき同時にバルブ514を開き、ガス供給管510内にNガス等の不活性ガスを流してもよい。ガス供給管510内を流れたNガスは、MFC512により流量調整され、TMAガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル420内へのTMAガスの侵入を防止するために、バルブ524を開き、ガス供給管520内にNガスを流してもよい。Nガスは、ガス供給管320、ノズル420を介して処理室201内に供給され、排気管231から排気される。
 このとき、APCバルブ243を適正に調整して、処理室201内の圧力を、例えば1~1000Pa、好ましくは1~100Pa、より好ましくは10~50Paの範囲内の圧力とする。処理室201内の圧力を1000Pa以下とすることで、後述する残留ガス除去を好適に行うことができると共に、ノズル410内でTMAガスが自己分解してノズル410の内壁に堆積してしまうことを抑制することができる。処理室201内の圧力を1Pa以上とすることで、ウエハ200表面でのTMAガスの反応速度を高めることができ、実用的な成膜速度を得ることが可能となる。なお、本明細書では、数値の範囲として、例えば1~1000Paと記載した場合は、1Pa以上1000Pa以下を意味する。すなわち、数値の範囲内には1Paおよび1000Paが含まれる。圧力のみならず、流量、時間、温度等、本明細書に記載される全ての数値について同様である。
 MFC312で制御するTMAガスの供給流量は、例えば、10~2000sccm、好ましくは50~1000sccm、より好ましくは100~500sccmの範囲内の流量とする。流量を2000sccm以下とすることで、後述する残留ガス除去を好適に行うことができると共に、ノズル410内でTMAガスが自己分解してノズル410の内壁に堆積してしまうことを抑制することができる。流量を10sccm以上とすることで、ウエハ200表面でのTMAガスの反応速度を高めることができる、実用的な成膜速度を得ることが可能となる。
 MFC512で制御するNガスの供給流量は、例えば、1~30slm、好ましくは1~20slm、より好ましくは1~10slmの範囲内の流量とする。
 TMAガスをウエハ200に対して供給する時間は、例えば、1~60秒、好ましく1~20秒、より好ましくは2~15秒の範囲内とする。
 ヒータ207は、ウエハ200の温度が、例えば、200~600℃、好ましくは400~550℃、より好ましくは450~550℃の範囲内となるように加熱する。温度を600℃以下とすることで、TMAガスの過剰な熱分解を抑制しつつ成膜速度を適切に得ることができ、不純物が膜内に取り込まれて抵抗率が高くなることが抑制される。なお、TMAガスの熱分解は、当該処理に近い条件下においては450℃程度で開始するため、550℃以下の温度に加熱された処理室201内において本開示を用いるとより有効である。一方、温度が400℃以上であることにより、反応性が高く、効率的な膜形成が可能である。
 上述の条件下で処理室201内のウエハ200に対してTMAガスを供給することにより、ウエハ200の最表面に、Al含有層が形成される。Al含有層は、Al層の他、CおよびHを含み得る。Al含有層は、ウエハ200の最表面に、TMAが物理吸着したり、TMAの一部が分解した物質が化学吸着したり、TMAが熱分解することでAlが堆積したりすること等により形成される。すなわち、Al含有層は、TMAやTMAの一部が分解した物質の吸着層(物理吸着層や化学吸着層)であってもよく、Alの堆積層(Al層)であってもよい。
(残留ガス除去ステップ(ステップS11))
 Al含有層が形成された後、バルブ314を閉じ、TMAガスの供給を停止する。このとき、APCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応またはAl含有層形成に寄与した後のTMAガスを処理室201内から排除する。バルブ514,524は開いた状態でNガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、処理室201内に残留する未反応またはAl含有層形成に寄与した後のTMAガスを処理室201内から排除する効果を高めることができる。なお、バルブ514,524からのNガスは残留ガス除去ステップの間、常に流し続けてもよいし、断続的(パルス的)に供給してもよい。
 このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップにおいて悪影響はほとんど生じない。処理室201内に供給する不活性ガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量を供給することで、その後のステップにおいて悪影響がほとんど生じない程度のパージを行うことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、不活性ガスの消費も必要最小限に抑えることが可能となる。
 次に、反応ガスを供給する工程(反応ガス供給ステップ)にて、反応ガス供給サブステップ(ステップS12)および残留ガス除去サブステップ(ステップS13)を繰り返し行う。
(反応ガス供給サブステップ(ステップS12))
 処理室201内の残留ガスを除去した後、バルブ324を開き、ガス供給管320内に反応ガスであるOガスを流す。Oガスは、MFC322により流量調整され、ノズル420のガス供給孔420aから処理室201内のウエハ200に対して供給され、排気管231から排気される。すなわちウエハ200はOガスに暴露される。このとき、バルブ524を開き、ガス供給管520内にNガスを流してもよい。Nガスは、MFC522により流量調整され、Oガスと共に処理室201内に供給されて、排気管231から排気される。このとき、ノズル410内へのOガスの侵入を防止(逆流を防止)するために、バルブ514を開き、ガス供給管510内へNガスを流してもよい。Nガスは、ガス供給管510、ノズル410を介して処理室201内に供給され、排気管231から排気される。
 このとき、処理室201内の圧力が安定化していない状態で処理室201内のウエハ200に対してOガスを供給する。Oガスをウエハ200に対して供給する時間(Oガス供給時間)は、例えば、0.01~5秒が好ましく、0.01~3秒がより好ましい。Oガス供給時間が0.01秒未満であると、Oガスがウエハ200のエッジへ回り込んでしまい、ウエハ200中央までのOガスの供給量が不足してしまう。また、Oガス供給時間が5秒を超えると、Oガスの供給時間が長くなるとともに、処理室201内の圧力を所定の圧力まで下げるのに時間がかかりスループットが低下してしまう。Oガスをウエハ200に対して供給する時間を0.01秒以上5秒以下とすることにより、Oガスがウエハ200のエッジへの回り込みを抑制でき、かつ、処理室201内の圧力が安定化する前に次工程の残留ガス除去サブステップを行うことができるため、処理室201内の圧力を低くするまでの時間を短縮することができ、スループットの向上を図ることができる。MFC322で制御するOガスの供給流量は、例えば、5~40slm、好ましくは5~30slm、より好ましくは10~20slmの範囲内の流量とする。その他の処理条件は、上述の原料ガス供給ステップと同様の処理条件とする。
 Oガスは、原料ガス供給ステップでウエハ200上に形成されたAl含有層の少なくとも一部と反応する。Al含有層は酸化され、金属酸化層としてAlとOとを含むアルミニウム酸化層(AlO層)が形成される。すなわちAl含有層はAlO層へと改質される。
(残留ガス除去サブステップ(ステップS13))
 反応ガス供給サブステップを所定回数(m回)行ったと判断される前は、次にバルブ324を閉じて、Oガスの供給を停止する。このとき、APCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応またはAl含有層形成に寄与した後のOガスを処理室201内から排除し、処理室201内を減圧する。このとき、処理室201内に残留するガス等を完全に排除しなくてもよい点は、原料ガス供給ステップ後の残留ガス除去ステップと同様である。
 真空ポンプ246により処理室201内を真空排気する時間(真空排気時間)は、例えば、0.05~9秒が好ましく、0.5~5秒がより好ましい。真空排気時間が、0.05未満であると、処理室201内の圧力を所定の圧力まで十分に下げることができず、また、9秒を超えると、真空排気する時間が長くなりすぎてスループットが低下しまう。なお、真空排気時間を0.05~9秒、より好ましくは0.5~5秒とすることにより、短時間で処理室内201の圧力を十分に下げることが可能となり、真空排気する時間が長くなりすぎずスループットの低下を抑制することができる。
 前述のOガスをウエハ200に対して供給する時間(供給時間)と、真空ポンプ246により処理室201内を真空排気する時間(排気時間)との割合(供給時間:排気時間)は、1:2~1:5の範囲内であることが好ましい。供給時間:排気時間が1:5以下であることにより、排気時間が長くなりすぎず、スループットの低下を抑制することができる。
 前述した反応ガス供給サブステップ(反応ガス供給工程)および残留ガス除去サブステップ(反応ガス排気工程)をこの順で繰り返し、反応ガス供給サブステップを所定回数(m回)行ったと判断された後は、次の残留ガス除去ステップ(ステップS14)が行われる。
 また、所定回数(m回、図5中では6回)行われる反応ガス供給サブステップでは、図5に示すように、処理室201内の圧力が安定化せずに上昇している状態で処理室201内にOガスを供給し、処理室201内の圧力が一定化する前に処理室201内へのOガスの供給を停止する。なお、図5中の二点鎖線は、従来の半導体装置の製造方法のように、処理室201内の圧力が安定化した後にも処理室201内にOガスを供給した場合の圧力を示す。
 次に、処理室201内にOガスを供給した場合における、処理室201内の圧力(Fumace Pressure)、ノズル420内の圧力(Nozzle Inside Pressure)および処理室201内のOガスの流速(Gas Velocity)と、処理室201内にOガスを供給する時間との関係を図6に示す。図6に示すように、処理室201内にOガスを供給し始めた直後では、ノズル420内の圧力と処理室201内の圧力差が大きく、処理室201内のOガスの流速も大きくなる。Oガスを供給する時間の経過とともに、処理室201内のOガスの流速も低下していき、処理室201内の圧力が一定となることにより、処理室201内のOガスの流速が一定となる。
 本実施形態では、反応ガス供給サブステップにて、処理室201内の圧力が安定化していない状態でOガスを供給し、処理室201内の圧力が一定化する前に処理室201内へのOガスの供給を停止する。例えば、図6に示すAの範囲にてOガスの供給および停止を行う。そして、前述の反応ガス供給サブステップと、残留ガス除去サブステップとをそれぞれ繰り返し行っている。一方、従来の半導体装置の製造方法では、処理室201内の圧力が一定化した後も処理室201内へOガスを供給し、所定の時間が経過した後に処理室201内へのOガスの供給を停止する。例えば、図6に示すBの範囲にてOガスの供給および停止を行う。したがって、本実施形態では、従来の半導体装置の製造方法と比較して1サイクルあたりのOガスの平均流速を高めることができるため、処理室201内に収容されたウエハ200表面の中央部により多くのOガスが到達する。これにより、ウエハ200表面の端部と中央部との膜厚の差をより小さくできるため、ウエハ200上に形成されるAlO膜の面内膜厚均一性を高めることができる。
(残留ガス除去ステップ(ステップS14))
 AlO層が形成された後、バルブ324を閉じて、Oガスの供給を停止する。そして、原料ガス供給ステップ後の残留ガス除去ステップと同様の処理手順により、処理室201内に残留する未反応もしくはAlO層の形成に寄与した後のOガスや反応副生成物を処理室201内から排除する。このとき、処理室201内に残留するガス等を完全に排除しなくてもよい点は、原料ガス供給ステップ後の残留ガス除去ステップと同様である。
〔所定回数実施〕
 上述の原料ガス供給ステップ、残留ガス除去ステップ、反応ガス供給ステップおよび残留ガス供給ステップを順に行うサイクルを1回以上(所定回数:n回)行うことにより、ウエハ200上にAlO膜が形成される。このサイクルの回数は、最終的に形成するAlO膜において必要とされる膜厚に応じて適宜選択されるが、このサイクルは、複数回繰り返すことが好ましい。AlO膜の厚さ(膜厚)は、例えば、3~150nm、好ましくは40~100nm、より好ましくは60~80nmとする。150nm以下とすることで表面粗さを小さくすることができ、3nm以上とすることで下地膜との応力差に起因する膜剥がれの発生を抑制することができる。
(アフターパージ・大気圧復帰)
 成膜ステップが終了したら、バルブ514,524を開き、ガス供給管310,320のそれぞれからNガスを処理室201内へ供給し、排気管231から排気する。Nガスはパージガスとして作用し、処理室201内に残留するガスや副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気がNガスに置換され(Nガス置換)、処理室201内の圧力は常圧に復帰される(大気圧復帰)。
(ボートアンロード・ウエハディスチャージ)
 その後、ボートエレベータ115によりシールキャップ219が下降され、マニホールド209の下端が開口されるとともに、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出される(ウエハディスチャージ)。
 上述の実施形態では、反応ガスを供給するステップにて、処理室内の圧力が安定化していない状態で処理室内の基板に対して反応ガスを供給する反応ガス供給サブステップと、処理室内の反応ガスを排気する反応ガス排気サブステップと、を所定回数繰り返して行う。これにより、処理室内の圧力が安定した平衡状態でないため、流速が大きい反応ガスを処理室内の基板に供給できる。さらに、処理室内の圧力が安定化していない状態で、反応ガスの供給を分割し、かつ繰り返し行っている。その結果、従来の半導体装置の製造方法と比較して、1サイクルあたりの反応ガスの平均流速を大きくすることができるため、処理室内の基板表面の中央部により多くの反応ガスが到達する。これにより、基板表面の端部と中央部との膜厚の差をより小さくできるため、基板上に形成される膜の面内膜厚均一性を高めることができる。
 例えば、上述の実施形態では、Al含有ガスとしてTMAガスを用いる例について説明したが、これに限らず、例えば、塩化アルミニウム(AlCl)等を用いてもよい。O含有ガスとしては、Oガスを用いる例について説明したが、これに限らず、例えば、酸素(O)、水(HO)、過酸化水素(H)、Oプラズマと水素(H)プラズマの組合せ等も適用可能である。不活性ガスとしては、Nガスを用いる例について説明したが、これに限らず、例えば、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いてもよい。
 また、上述の実施形態では、基板上にAlO膜を形成する例について説明した。しかし、本開示はこの態様に限定されない。例えば、処理温度でノズル内にて自己分解してノズル内壁に堆積物として付着し、かつ堆積物が成膜サイクル内で剥がれてしまうような密着性を有する膜種に対して、有効である。また、原料ガスを供給する際に、同時に不活性ガス等で希釈する原料ガスを用いて膜を形成する膜種に対しても用いられ、例えば、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)、モリブデン(Mo)、タングステン(W)、イットリウム(Y)、La(ランタン)、ストロンチウム(Sr)、シリコン(Si)を含む膜であって、これらの元素の少なくとも1つを含む窒化膜、炭窒化膜、酸化膜、酸炭化膜、酸窒化膜、酸炭窒化膜、硼窒化膜、硼炭窒化膜、金属元素単体膜等にも適用可能である。
 成膜処理に用いられるレシピ(処理手順や処理条件等が記載されたプログラム)は、処理内容(形成、或いは、除去する膜の種類、組成比、膜質、膜厚、処理手順、処理条件等)に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することができるようになり、それぞれの場合に適正な処理を行うことができるようになる。また、オペレータの負担(処理手順や処理条件等の入力負担等)を低減でき、操作ミスを回避しつつ、処理を迅速に開始できるようになる。
 上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。
 また、上述の実施形態や変形例等は、適宜組み合わせて用いることができる。また、このときの処理手順、処理条件は、上述の実施形態や変形例等の処理手順、処理条件と同様とすることができる。
 また、本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
10:基板処理装置
121:コントローラ
200:ウエハ(基板)
201:処理室
410:ノズル(第1のノズル)
420:ノズル(第2のノズル)

Claims (12)

  1.  処理室内の基板に対して原料ガスを供給する工程と、
     前記処理室内の前記基板に対して前記原料ガスとは分子構造が異なる反応ガスを供給する工程と、
     を非同時に所定回数行うことで、前記基板上に膜を形成する工程を有し、
     前記反応ガスを供給する工程では、前記処理室内の圧力が安定していない状態で、前記処理室内の前記基板に対しての前記反応ガスの供給と、前記処理室内からの前記反応ガスの排気と、を所定回数繰り返して行う半導体装置の製造方法。
  2.  前記反応ガスの供給では、前記処理室内に前記反応ガスを0.01秒以上5秒以下の範囲内で供給する請求項1に記載の半導体装置の製造方法。
  3.  前記反応ガスの排気では、前記処理室内を0.05秒以上9秒以下の範囲内で排気する請求項1に記載の半導体装置の製造方法。
  4.  前記原料ガスがアルミニウムを含む金属含有ガスであり、前記反応ガスが酸素含有ガスである請求項1に記載の半導体装置の製造方法。
  5.  基板を処理する処理室と、
     前記処理室内の前記基板に対して原料ガスを供給する原料ガス供給系と、
     前記処理室内の前記基板に対して前記原料ガスとは分子構造が異なる反応ガスを供給する反応ガス供給系と、
     前記処理室内を排気する排気系と、
     前記処理室内の前記基板に対して前記原料ガスを供給する処理と、前記処理室内の前記基板に対して前記反応ガスを供給する処理と、を非同時に所定回数行うことで、前記基板上に膜を形成する処理を行わせ、前記反応ガスを供給する処理において、前記処理室内の圧力が安定していない状態で、前記処理室内の前記基板に対しての前記反応ガスの供給と、前記処理室内からの前記反応ガスの排気と、を所定回数繰り返し行わせるように、前記原料ガス供給系、前記反応ガス供給系、および前記排気系を制御することが可能なよう構成される制御部と、
     を有する基板処理装置。
  6.  前記制御部が、
     前記反応ガスの供給では、前記処理室内に前記反応ガスを0.01秒以上5秒以下の範囲で供給するように前記反応ガス供給系に制御信号を出力することが可能な請求項5に記載の基板処理装置。
  7.  前記制御部が、
     前記反応ガスの排気では、前記処理室内を0.05秒以上9秒以下の範囲内で排気するように前記排気系に制御信号を出力することが可能な請求項5に記載の基板処理装置。
  8.  前記原料ガスがアルミニウムを含む金属含有ガスであり、前記反応ガスが酸素含有ガスである請求項5に記載の基板処理装置。
  9.  基板処理装置の処理室内の基板に対して原料ガスを供給する手順と、
     前記処理室内の前記基板に対して前記原料ガスとは分子構造が異なる反応ガスを供給する手順と、
     を非同時に所定回数行うことで、前記基板上に膜を形成する手順と、
     前記反応ガスを供給する手順において、前記処理室内の圧力が安定していない状態で、前記処理室内の基板に対しての前記反応ガスの供給と、前記処理室内からの前記反応ガスの排気と、を所定回数繰り返して行う手順と、
     をコンピュータによって前記基板処理装置に実行させるプログラム。
  10.  前記反応ガスの供給では、前記処理室内に前記反応ガスを0.01秒以上5秒以下の範囲内で供給する請求項9に記載のプログラム。
  11.  前記反応ガスの排気では、前記処理室内を0.05秒以上9秒以下の範囲内で排気する請求項9に記載のプログラム。
  12.  前記原料ガスがアルミニウムを含む金属含有ガスであり、前記反応ガスが酸素含有ガスである請求項9に記載のプログラム。
PCT/JP2019/010951 2019-03-15 2019-03-15 半導体装置の製造方法、基板処理装置およびプログラム WO2020188654A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980094010.7A CN113574640B (zh) 2019-03-15 2019-03-15 半导体装置的制造方法、基板处理装置和记录介质
PCT/JP2019/010951 WO2020188654A1 (ja) 2019-03-15 2019-03-15 半導体装置の製造方法、基板処理装置およびプログラム
KR1020217026946A KR20210119489A (ko) 2019-03-15 2019-03-15 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치 및 프로그램
JP2021506817A JP7179962B2 (ja) 2019-03-15 2019-03-15 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010951 WO2020188654A1 (ja) 2019-03-15 2019-03-15 半導体装置の製造方法、基板処理装置およびプログラム

Publications (1)

Publication Number Publication Date
WO2020188654A1 true WO2020188654A1 (ja) 2020-09-24

Family

ID=72520588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010951 WO2020188654A1 (ja) 2019-03-15 2019-03-15 半導体装置の製造方法、基板処理装置およびプログラム

Country Status (4)

Country Link
JP (1) JP7179962B2 (ja)
KR (1) KR20210119489A (ja)
CN (1) CN113574640B (ja)
WO (1) WO2020188654A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143024A1 (ja) * 2007-05-23 2008-11-27 Canon Anelva Corporation 薄膜成膜装置
JP2010084192A (ja) * 2008-09-30 2010-04-15 Tokyo Electron Ltd 成膜装置
JP2014208883A (ja) * 2013-03-28 2014-11-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP2016072260A (ja) * 2014-09-26 2016-05-09 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6101113B2 (ja) * 2012-03-30 2017-03-22 株式会社日立国際電気 半導体装置の製造方法、クリーニング方法および基板処理装置並びにプログラム
JP6147480B2 (ja) 2012-09-26 2017-06-14 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
WO2014080785A1 (ja) * 2012-11-26 2014-05-30 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及び記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143024A1 (ja) * 2007-05-23 2008-11-27 Canon Anelva Corporation 薄膜成膜装置
JP2010084192A (ja) * 2008-09-30 2010-04-15 Tokyo Electron Ltd 成膜装置
JP2014208883A (ja) * 2013-03-28 2014-11-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP2016072260A (ja) * 2014-09-26 2016-05-09 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム

Also Published As

Publication number Publication date
KR20210119489A (ko) 2021-10-05
CN113574640B (zh) 2024-04-12
JP7179962B2 (ja) 2022-11-29
CN113574640A (zh) 2021-10-29
JPWO2020188654A1 (ja) 2020-09-24

Similar Documents

Publication Publication Date Title
JP6538582B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP6647260B2 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
JP6994483B2 (ja) 半導体装置の製造方法、プログラム、及び基板処理装置
WO2020189205A1 (ja) 基板処理装置、半導体装置の製造方法およびノズル
JP7033622B2 (ja) 気化装置、基板処理装置、クリーニング方法および半導体装置の製造方法
JP7064577B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
WO2020188857A1 (ja) 基板処理装置、反応容器、半導体装置の製造方法および記録媒体
JP7016920B2 (ja) 基板処理装置、基板支持具、半導体装置の製造方法および基板処理方法
US20200411330A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
WO2022064549A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
JP7179806B2 (ja) 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
JP7079340B2 (ja) 半導体装置の製造方法、基板処理装置、及びプログラム
WO2020188654A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP2021048233A (ja) 原料貯留システム、基板処理装置、クリーニング方法およびプログラム
WO2020066701A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP7175375B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム。
JP7184857B2 (ja) 気化装置、基板処理装置、クリーニング方法、半導体装置の製造方法、プログラム、および基板処理方法
US20220165565A1 (en) Method of processing substrate, recording medium, and substrate processing apparatus
WO2023042386A1 (ja) 半導体装置の製造方法、基板処理装置、プログラム及びコーティング方法
WO2021053761A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
CN115706001A (zh) 衬底处理方法、衬底处理装置、记录介质及半导体器件的制造方法
WO2019058554A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217026946

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021506817

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920151

Country of ref document: EP

Kind code of ref document: A1