WO2020187241A1 - 空调器自清洁控制方法 - Google Patents

空调器自清洁控制方法 Download PDF

Info

Publication number
WO2020187241A1
WO2020187241A1 PCT/CN2020/079938 CN2020079938W WO2020187241A1 WO 2020187241 A1 WO2020187241 A1 WO 2020187241A1 CN 2020079938 W CN2020079938 W CN 2020079938W WO 2020187241 A1 WO2020187241 A1 WO 2020187241A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
fan
control method
self
heat exchanger
Prior art date
Application number
PCT/CN2020/079938
Other languages
English (en)
French (fr)
Inventor
于洋
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2020187241A1 publication Critical patent/WO2020187241A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits

Definitions

  • the invention belongs to the technical field of air conditioners, and specifically provides a self-cleaning control method for an air conditioner.
  • the air conditioner is a device that can cool/heat the room. As time goes by, the dust accumulation on the indoor unit of the air conditioner will gradually increase. When the dust accumulation reaches a certain level, a large number of bacteria will breed, especially when the indoor air flows through the room. The air conditioner needs to be cleaned in time because it will carry a lot of dust and bacteria when it is running.
  • air conditioners mostly adopt a self-cleaning method, that is, by controlling the operation of the indoor unit, the evaporator is frosted first and then defrosted, and the evaporator is cleaned by defrosting. Sometimes, self-cleaning by simply relying on frosting first and then defrosting will not completely clean up the indoor heat exchanger, especially when there are some larger dirty spider webs, it is difficult to be taken away by the defrosting water.
  • the present invention proposes a self-cleaning control method for an air conditioner to solve the above-mentioned problems.
  • the present invention proposes a self-cleaning control method for an air conditioner.
  • the air conditioner includes an indoor unit and an exhaust provided on the indoor unit.
  • step S140 specifically includes: when the heat exchanger is in the condensation state and ⁇ I ⁇ the first preset value, not starting the exhaust fan and the Blower fan.
  • step S140 specifically further includes: when the heat exchanger is in a condensation state and ⁇ I>the first preset value, restart the air conditioner when the air conditioner is started next time The exhaust fan and the blower fan.
  • step S140 specifically further includes: when the heat exchanger is not in a condensation state and ⁇ I ⁇ the first preset value, not starting the exhaust fan and The blowing fan.
  • step S140 specifically further includes: when the heat exchanger is not in a condensation state and ⁇ I>the first preset value, starting the exhaust fan and the exhaust fan The air supply fan.
  • the air conditioner self-cleaning control method further includes: when the exhaust fan and the blower fan are activated, when ⁇ I ⁇ second preset Value, the rotation speed of the exhaust fan is controlled to a first rotation speed, and the rotation speed of the air supply fan is controlled to a second rotation speed; wherein, the second preset value>the first preset value.
  • the air conditioner self-cleaning control method further includes: when the exhaust fan and the blower fan are activated, when ⁇ I>the second preset Value, the speed of the exhaust fan is controlled to be the third speed, and the speed of the air supply fan is controlled to be the fourth speed; wherein, the third speed>the first speed, the fourth speed>the The second speed.
  • the air inlet of the indoor unit is provided with a cover, and the cover can open or close the air inlet of the indoor unit; the air conditioner self-cleaning control method It also includes: when the blowing fan and the exhaust fan are activated, controlling the cover to close the air inlet.
  • the air conditioner further includes a water storage cavity and a humidification module arranged in the indoor unit, and the water in the water storage cavity can be stored in the humidification module. Under the action, it is atomized into water vapor and diffused to the heat exchanger; the air conditioner self-cleaning control method further includes: starting the humidification module after the air conditioner is cleaned by dust.
  • the current value of the fan of the indoor unit at the same rotation speed is smaller, the indoor heat exchanger is dirty. Therefore, the current value of the fan of the indoor unit at the current rotation speed is compared with the fan when the heat exchanger of the indoor unit is in a clean state.
  • the standard current value at the current speed is compared, and on this basis, the present invention also comprehensively judges whether to start the exhaust fan and the air supply fan in combination with the condensation state of the heat exchanger to vacuum and clean the heat exchanger. In this way, the double judgment method can more accurately determine the time to clean the heat exchanger. Further, the turbidity of the heat exchanger is judged according to the comparison result, and then the rotation speed of the blowing fan and the exhaust fan are judged according to the turbidity, so as to save energy while ensuring the dust collection effect.
  • Fig. 1 is a main flow chart of the air conditioner self-cleaning control method of the present invention.
  • the air conditioner of the present invention includes an indoor unit and an exhaust fan and a blower fan arranged on the indoor machine; the exhaust fan is used to suck out dust on the heat exchanger of the indoor unit to the outside, and the blower fan is used to remove the heat exchanger The dust on the heat exchanger is blown up to assist the exhaust fan to suck out the dust on the heat exchanger to the outside.
  • Fig. 1 is a main flowchart of the self-cleaning control method of an air conditioner of the present invention.
  • the air conditioner of the present invention is self cleaning control method comprising the following steps: S110, a current value detected indoor fan speed at the current I and the current indoor coil temperature and indoor dew point temperature; S120, comparison I current and I standard ; S130, judge whether the heat exchanger of the indoor unit is in condensation state according to the coil temperature and dew point temperature; S130, judge whether to start the exhaust fan based on the condensation state and the comparison result of I current and I standard And the air supply fan; among them, the I standard is the standard current value of the fan at the current speed when the heat exchanger of the indoor unit is in a clean state.
  • the present invention also combines the condensation state of the heat exchanger to comprehensively judge whether to start the exhaust fan and the blower fan to vacuum and clean the heat exchanger. In this way, the double judgment method can more accurately determine the time to clean the heat exchanger.
  • ⁇ I I -I ago when the standard, the heat exchanger in a condensation state and ⁇ I ⁇ a first predetermined value, the exhaust does not start Fan and air supply fan; when the heat exchanger is in the condensation state and ⁇ I>the first preset value, the exhaust fan and air supply fan will be restarted when the air conditioner is started next time.
  • the heat exchanger can be vacuumed and cleaned when the heat exchanger is started next time (the condensation on the heat exchanger is usually dissipated when the heat exchanger is started next time); if I current ⁇ I standard value does not exceed
  • the first preset value indicates that the heat exchanger is not severely clogged and there is no need to vacuum and clean the heat exchanger.
  • the first preset value can be determined by those skilled in the art according to experiments. For example, the functional relationship between the difference between the current I and the I standard and the turbidity of the heat exchanger can be obtained through an experiment, and then a reasonable first The preset value is used as the critical value for self-cleaning the heat exchanger.
  • the speed of the exhaust fan is controlled to be the first speed
  • the speed of the supply fan is controlled to be the second speed
  • the current value of the fan is not very reduced compared to the standard current value, indicating that the dirty block of the heat exchanger is not very serious, so the speed of the exhaust fan can be set to the first speed, and the speed of the air supply fan is the second speed .
  • the first rotation speed and the second rotation speed may be set by those skilled in the art according to actual needs.
  • the first rotation speed may also be a first speed speed of the exhaust fan
  • the second speed may also be a first speed speed of the air supply fan.
  • the speed of the exhaust fan is controlled to be the third speed
  • the speed of the air supply fan is controlled to be the fourth speed
  • the current value of the fan is greatly reduced compared to the standard current value, indicating that the heat exchanger is very dirty and clogged. Therefore, the speed of the exhaust fan can be set to the third speed, and the speed of the air supply fan can be set to the fourth speed.
  • the third speed and the fourth speed can be set by those skilled in the art according to actual needs.
  • the third speed can also be the second speed of the exhaust fan (or other speeds higher than the first speed), and the fourth speed is also It can be the second speed (or the other first speed) of the blower fan.
  • the above-mentioned second preset value can also be determined by a person skilled in the art according to the actual situation to a reasonable value.
  • the air inlet of the indoor unit is provided with a cover, and the cover can open or close the air inlet of the indoor unit.
  • the control cover closes the air inlet, so that the heat exchanger can be cleaned in a closed environment, which can further improve the dust collection efficiency of the heat exchanger.
  • the air conditioner further includes a water storage cavity and a humidification module arranged in the indoor unit, and the water in the water storage cavity can be atomized into water vapor under the action of the humidification module and diffused to the heat exchange Device.
  • the self-cleaning control method of the air conditioner of the present invention further includes: starting the humidification module after the air conditioner is cleaned by dust to diffuse the clean water vapor on the heat exchanger of the indoor unit, which is beneficial to improve the cleanliness of the heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明属于空调器技术领域,具体提供一种空调器自清洁控制方法。为了提高空调器的自清洁效果,本发明空调器包括室内机和设置于室内机上的排风风扇和送风风扇;排风风扇用于将室内机的换热器上的灰尘吸出到室外,送风风扇用于将换热器上的灰尘吹起以辅助排风风扇将灰尘吸出到室外;空调器自清洁控制方法包括:检测室内机的风机在当前转速下的电流值I 当前以及室内机的盘管温度和室内露点温度;比较I 当前与I ;根据盘管温度和露点温度判断室内机的换热器是否为凝露状态;基于凝露状态并根据I 当前与I 标准的比较结果判断是否启动排风风扇和送风风扇。本发明通过双重判断的方式能够更准确地确定对换热器进行吸尘清洁的时机。

Description

空调器自清洁控制方法 技术领域
本发明属于空调器技术领域,具体提供一种空调器自清洁控制方法。
背景技术
空调器是能够为室内制冷/制热的设备,随着时间的推移,空调器室内机上的积灰会逐渐增多,积灰累积到一定程度后会滋生大量的细菌,尤其在室内空气流经室内机时,会携带大量的灰尘和细菌,因此需要对空调器及时进行清洁。现在空调器多采用自清洁的方式,即通过控制室内机的运行,使得蒸发器先结霜、后化霜,利用化霜对蒸发器进行清洁。有时,单纯依靠先结霜、后化霜的方式进行自清洁并不会将室内换热器完全清理干净,尤其是有些较大的污浊蛛网时,很难被化霜的水带走。
因此,本发明提出了一种空调器自清洁控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了提高空调器的自清洁效果,本发明提出了一种空调器自清洁控制方法,所述空调器包括室内机和设置于所述室内机上的排风风扇和送风风扇;所述排风风扇用于将所述室内机的换热器上的灰尘吸出到室外,所述送风风扇用于将所述换热器上的灰尘吹起以辅助所述排风风扇将所述灰尘吸出到室外;所述空调器自清洁控制方法包括下列步骤:S110、检测所述室内机的风机在当前转速下的电流值I 当前以及所述室内机的盘管温度和室内露点温度;S120、比较I 当前与I 标准;S130、根据所述盘管温度和所述露点温度判断所述室内机的换热器是否为凝露状态;S140、基于所述凝露状态并根据I 与I 标准的比较结果判断是否启动所述排风风扇和所述送风风扇;其中,I 标准为所述室内机的换热器处于清洁状态时所述风机在当前转速下的标准电流值。
在上述空调器自清洁控制方法的优选实施方式中,步骤S120具体包括:计算I 当前与I 标准的差值△I;其中,△I=I 标准-I 当前
在上述空调器自清洁控制方法的优选实施方式中,步骤S140具体包括:当所述换热器处于凝露状态且△I≤第一预设值时,不启动所述排风风扇和所述送风扇。
在上述空调器自清洁控制方法的优选实施方式中,步骤S140具体还包括:当所述换热器处于凝露状态且△I>第一预设值时,在空调下次启动时,再启动所述排风风扇和所述送风风扇。
在上述空调器自清洁控制方法的优选实施方式中,步骤S140具体还包括:当所述换热器未处于凝露状态且△I≤第一预设值时,不启动所述排风风扇和所述送风风扇。
在上述空调器自清洁控制方法的优选实施方式中,步骤S140具体还包括:当所述换热器未处于凝露状态且△I>第一预设值时,启动所述排风风扇和所述送风风扇。
在上述空调器自清洁控制方法的优选实施方式中,所述空调器自清洁控制方法还包括:在所述排风风扇和所述送风风扇启动的情形下,当△I≤第二预设值时,控制所述排风风扇的转速为第一转速,控制所述送风风扇的转速为第二转速;其中,所述第二预设值>所述第一预设值。
在上述空调器自清洁控制方法的优选实施方式中,所述空调器自清洁控制方法还包括:在所述排风风扇和所述送风风扇启动的情形下,当△I>第二预设值时,控制所述排风风扇的转速为第三转速,控制所述送风风扇的转速为第四转速;其中,所述第三转速>所述第一转速,所述第四转速>所述第二转速。
在上述空调器自清洁控制方法的优选实施方式中,所述室内机的进风口设置有盖板,所述盖板能够打开或关闭所述室内机的进风口;所述空调器自清洁控制方法还包括:当启动所述送风风扇和所述排风风扇时,控制所述盖板关闭所述进风口。
在上述空调器自清洁控制方法的优选实施方式中,所述空调器还包括设置于所述室内机中的储水腔和加湿模块,所述储水腔内的水能够在所述加湿模块的作用下雾化为水蒸气并扩散至所述换热器;所述 空调器自清洁控制方法还包括:在所述空调器吸尘清洁结束之后,启动所述加湿模块。
由于室内机的风机在相同转速下的电流值越小说明室内换热器越脏,因此本发明根据室内机的风机在当前转速下的电流值与室内机的换热器处于清洁状态时的风机在当前转速下的标准电流值进行比较,在此基础上,本发明还结合换热器的凝露状态综合判断是否启动排风风扇和送风风扇以换热器进行吸尘清洁。这样一来,通过双重判断的方式能够更准确地确定对换热器进行吸尘清洁的时机。进一步,根据比较结果判断换热器的污浊度,然后根据该污浊度判断送风风扇和排风风扇的转速,在保证吸尘效果的前提下节约能源。
附图说明
图1是本发明的空调器自清洁控制方法的主要流程图。
具体实施方式
为使本发明的实施例、技术方案和优点更加明显,下面将结合附图对本发明的技术方案进行清楚、完整的描述,显然,所述的实施例是本发明的一部分实施例,而不是全部实施例。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
本发明的空调器包括室内机和设置于室内机上的排风风扇和送风风扇;排风风扇用于将室内机的换热器上的灰尘吸出到室外,送风风扇用于将换热器上的灰尘吹起以辅助排风风扇将换热器上的灰尘吸出到室外。
参照图1,图1是本发明的空调器自清洁控制方法的主要流程图。如图1所示,本发明的空调器自清洁控制方法包括下列步骤:S110、检测室内机的风机在当前转速下的电流值I 当前以及室内机的盘管温度和室内露点温度;S120、比较I 当前与I 标准;S130、根据盘管温度和露点温度判断室内机的换热器是否为凝露状态;S130、基于凝露状态并根据I 当前与I 标准的比较结果判断是否启动排风风扇和送风风扇;其中,I 标准为室内机的换热器处于清洁状态时的风机在当前转速下的标准电流值。
本领域技术人员可以理解的是,室内机的风机在相同转速下的电流值越小说明室内换热器越脏。在此基础上,本发明还结合换热器的凝露状态综合判断是否启动排风风扇和送风风扇以换热器进行吸尘清洁。这样一来,通过双重判断的方式能够更准确地确定对换热器进行吸尘清洁的时机。
具体而言,计算I 当前与I 标准的差值△I;其中,△I=I 标准-I ,换热器处于凝露状态且△I≤第一预设值时,不启动排风风扇和送风风扇;当换热器处于凝露状态且△I>第一预设值时,在空调下次启动时,再启动排风风扇和送风风扇。本领域技术人员可以理解的是,由于室内机的风机在相同转速下的电流值越小说明室内换热器越脏,因此,当I <I 标准时,说明换热器存在脏堵,随着I 当前的减小,直至I 当前<I 标准的值超过第一预设值时,说明换热器的脏堵比较严重需要启动排风风扇和送风风扇对换热器进行吸尘清洁。但是,如果换热器存在凝露状态,则会导致换热器上的灰尘粘附在换热器表面,即使启动排风风扇和送风风扇也不容易将换热器上的灰尘吸出到室外。因此,当I 当前<I 标准的值超过第一预设值时,虽然需要启动排风风扇和送风风扇对换热器进行吸尘清洁,但是为了保证将换热器上的灰尘吸出到室外,可以在下次启动换热器的时候再对换热器进行吸尘清洁(下次启动的时候,换热器上的凝露通常已经散去了);如果I 当前<I 标准的值未超过第一预设值,说明换热器的脏堵不严重,此时不需要对换热器进行吸尘清洁。其中,该第一预设值可以由本领域技术人员根据试验确定,例如通过试验方式获取I 当前与I 标准的差值与换热器的污浊度之间的函数关系,进而确定一个合理的第一预设值作为是否对换热器进行自清洁的临界值。
当换热器未处于凝露状态且△I≤第一预设值时,不启动排风风扇和送风风扇;当换热器未处于凝露状态且△I>第一预设值时,启动排风风扇和送风风扇。同上所述,此时由于换热器未处于凝露状态,当I 当前<I 标准的值超过第一预设值时,说明换热器的脏堵比较严重需要启动排风风扇和送风风扇对换热器进行吸尘清洁,此时可以直接启动排风风扇和送风风扇。
优选地,在排风风扇和送风风扇启动的情形下,当△I≤第二预设值时,控制排风风扇的转速为第一转速,控制送风风扇的转速为第二转速;其中,第二预设值>第一预设值。此时风机的电流值相对于 标准电流值的减少不是特别多,说明换热器的脏堵不是非常严重,因此可以使排风风扇的转速为第一转速,送风风扇的转速为第二转速。该第一转速和第二转速可以由本领域技术人员根据实际需要设定,作为示例,第一转速也可以是排风风扇的一档转速,第二转速也可以是送风风扇的一档转速。
进一步,在排风风扇和送风风扇启动的情形下,当△I>第二预设值时,控制排风风扇的转速为第三转速,控制送风风扇的转速为第四转速;其中,第三转速>第一转速,第四转速>第二转速。此时风机的电流值相对于标准电流值的减少很多,说明换热器的脏堵非常严重,因此可以使排风风扇的转速为第三转速,送风风扇的转速为第四转速。该第三转速和第四转速可以由本领域技术人员根据实际需要设定,作为示例,第三转速也可以是排风风扇的二档转速(或者其他高于一档的转速),第四转速也可以是送风风扇的二档转速(或者其他一档的转速)。上述的第二预设值也由本领域技术人员根据实际情况确定一个合理的值即可。
在一种具体的实施方式中,室内机的进风口设置有盖板,盖板能够打开或关闭室内机的进风口。这样一来,当启动送风风扇和排风风扇时,控制盖板关闭进风口,使换热器在封闭的环境中进行吸尘清洁,能够进一步提高对换热器的吸尘效率。
在一种更具体的实施方式中,空调器还包括设置于室内机中的储水腔和加湿模块,储水腔内的水能够在加湿模块的作用下雾化为水蒸气并扩散至换热器。本发明的空调器自清洁控制方法还包括:在空调器吸尘清洁结束之后,启动加湿模块,使干净的水蒸气扩散的室内机的换热器上,有利于提升换热器的洁净度。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调器自清洁控制方法,其特征在于,所述空调器包括室内机和设置于所述室内机上的排风风扇和送风风扇;所述排风风扇用于将所述室内机的换热器上的灰尘吸出到室外,所述送风风扇用于将所述换热器上的灰尘吹起以辅助所述排风风扇将所述灰尘吸出到室外;
    所述空调器自清洁控制方法包括下列步骤:
    S110、检测所述室内机的风机在当前转速下的电流值I 当前以及所述室内机的盘管温度和室内露点温度;
    S120、比较I 当前与I 标准
    S130、根据所述盘管温度和所述露点温度判断所述室内机的换热器是否为凝露状态;
    S140、基于所述凝露状态并根据I 当前与I 标准的比较结果判断是否启动所述排风风扇和所述送风风扇;
    其中,I 标准为所述室内机的换热器处于清洁状态时所述风机在当前转速下的标准电流值。
  2. 根据权利要求1所述的空调器自清洁控制方法,其特征在于,步骤S120具体包括:
    计算I 当前与I 标准的差值△I;
    其中,△I=I 标准-I 当前
  3. 根据权利要求2所述的空调器自清洁控制方法,其特征在于,步骤S140具体包括:
    当所述换热器处于凝露状态且△I≤第一预设值时,不启动所述排风风扇和所述送风扇。
  4. 根据权利要求3所述的空调器自清洁控制方法,其特征在于,步骤S140具体还包括:
    当所述换热器处于凝露状态且△I>第一预设值时,在空调下次启动时,再启动所述排风风扇和所述送风风扇。
  5. 根据权利要求4所述的空调器自清洁控制方法,其特征在于,步骤S140具体还包括:
    当所述换热器未处于凝露状态且△I≤第一预设值时,不启动所述排风风扇和所述送风风扇。
  6. 根据权利要求5所述的空调器自清洁控制方法,其特征在于,步骤S140具体还包括:
    当所述换热器未处于凝露状态且△I>第一预设值时,启动所述排风风扇和所述送风风扇。
  7. 根据权利要求6所述的空调器自清洁控制方法,其特征在于,所述空调器自清洁控制方法还包括:
    在所述排风风扇和所述送风风扇启动的情形下,当△I≤第二预设值时,控制所述排风风扇的转速为第一转速,控制所述送风风扇的转速为第二转速;
    其中,所述第二预设值>所述第一预设值。
  8. 根据权利要求7所述的空调器自清洁控制方法,其特征在于,所述空调器自清洁控制方法还包括:
    在所述排风风扇和所述送风风扇启动的情形下,当△I>第二预设值时,控制所述排风风扇的转速为第三转速,控制所述送风风扇的转速为第四转速;
    其中,所述第三转速>所述第一转速,所述第四转速>所述第二转速。
  9. 根据权利要求1至8中任一项所述的空调器自清洁控制方法,其特征在于,所述室内机的进风口设置有盖板,所述盖板能够打开或关闭所述室内机的进风口;
    所述空调器自清洁控制方法还包括:
    当启动所述送风风扇和所述排风风扇时,控制所述盖板关闭所述进风口。
  10. 根据权利要求9所述的空调器自清洁控制方法,其特征在于,所述空调器还包括设置于所述室内机中的储水腔和加湿模块,所述储水腔内的水能够在所述加湿模块的作用下雾化为水蒸气并扩散至所述换热器;
    所述空调器自清洁控制方法还包括:
    在所述空调器吸尘清洁结束之后,启动所述加湿模块。
PCT/CN2020/079938 2019-03-21 2020-03-18 空调器自清洁控制方法 WO2020187241A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910218149.XA CN109916058B (zh) 2019-03-21 2019-03-21 空调器自清洁控制方法
CN201910218149.X 2019-03-21

Publications (1)

Publication Number Publication Date
WO2020187241A1 true WO2020187241A1 (zh) 2020-09-24

Family

ID=66966183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079938 WO2020187241A1 (zh) 2019-03-21 2020-03-18 空调器自清洁控制方法

Country Status (2)

Country Link
CN (1) CN109916058B (zh)
WO (1) WO2020187241A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916058B (zh) * 2019-03-21 2021-01-29 青岛海尔空调器有限总公司 空调器自清洁控制方法
CN113654214B (zh) * 2021-08-24 2022-08-02 美的集团武汉制冷设备有限公司 空调器自清洁的控制方法、空调器及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106871710A (zh) * 2017-03-31 2017-06-20 深圳沃海森科技有限公司 自清洁四恒大楼空调室内机换热装置
CN108131802A (zh) * 2018-02-14 2018-06-08 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN108444044A (zh) * 2018-02-14 2018-08-24 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN109916058A (zh) * 2019-03-21 2019-06-21 青岛海尔空调器有限总公司 空调器自清洁控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2937906Y (zh) * 2006-08-23 2007-08-22 广东科龙电器股份有限公司 一种可自动清洗室外机的空调器
CN101270902B (zh) * 2007-03-22 2010-06-30 海尔集团公司 空调滤尘网自清洁装置
CN104374044A (zh) * 2014-10-22 2015-02-25 珠海格力电器股份有限公司 空调器及其控制方法
JP6351825B2 (ja) * 2015-03-06 2018-07-04 三菱電機株式会社 空気調和機
CN107514683B (zh) * 2017-07-31 2020-11-03 青岛海尔空调器有限总公司 空调器及其室内机自清洁控制方法
JP6387200B1 (ja) * 2018-02-19 2018-09-05 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN208588035U (zh) * 2018-06-26 2019-03-08 安徽应力环保科技有限公司 一种自清洁新风空调一体机
CN109237638B (zh) * 2018-08-20 2019-12-17 珠海格力电器股份有限公司 一种能够清除换热器脏堵的室外机和控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106871710A (zh) * 2017-03-31 2017-06-20 深圳沃海森科技有限公司 自清洁四恒大楼空调室内机换热装置
CN108131802A (zh) * 2018-02-14 2018-06-08 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN108444044A (zh) * 2018-02-14 2018-08-24 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN109916058A (zh) * 2019-03-21 2019-06-21 青岛海尔空调器有限总公司 空调器自清洁控制方法

Also Published As

Publication number Publication date
CN109916058A (zh) 2019-06-21
CN109916058B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2020187242A1 (zh) 空调器自清洁控制方法
AU2016409529B2 (en) Method for cleaning air conditioner indoor unit and outdoor unit
CN109916034B (zh) 空调器自清洁控制方法
WO2020187245A1 (zh) 空调器自清洁加湿控制方法
WO2020187243A1 (zh) 空调器自清洁加湿控制方法
WO2020187228A1 (zh) 空调器自清洁控制方法和空调器
JP2023088102A (ja) 空気調和機
CN109915939B (zh) 空调器及其自清洁控制方法
WO2020187244A1 (zh) 空调器自清洁加湿控制方法
WO2020187241A1 (zh) 空调器自清洁控制方法
WO2020187230A1 (zh) 空调器自清洁控制方法和空调器
CN109990441B (zh) 空调器自清洁控制方法
CN109916049B (zh) 空调器自清洁控制方法
JPWO2020070892A1 (ja) 空気調和機、空気調和機の制御方法およびプログラム
WO2020187249A1 (zh) 空调器自清洁控制方法和空调器
WO2020057222A1 (zh) 一种移动空调自动清洗装置、方法及空调器
CN112665097B (zh) 一种空调自清洁控制方法
CN109916032A (zh) 空调器自清洁控制方法
CN111380166A (zh) 空调器及其清洁控制方法
JP7094061B2 (ja) 環境試験装置及びその運転方法
CN109916036B (zh) 空调器自清洁控制方法
JP2009287811A (ja) 空気調和機
CN109916042A (zh) 空调器自清洁控制方法
JP6698221B1 (ja) 空気調和機
WO2020187250A1 (zh) 空调器自清洁加湿控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772589

Country of ref document: EP

Kind code of ref document: A1