WO2020186968A1 - 发光显示面板及其制造方法、显示装置 - Google Patents

发光显示面板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2020186968A1
WO2020186968A1 PCT/CN2020/076378 CN2020076378W WO2020186968A1 WO 2020186968 A1 WO2020186968 A1 WO 2020186968A1 CN 2020076378 W CN2020076378 W CN 2020076378W WO 2020186968 A1 WO2020186968 A1 WO 2020186968A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
display panel
pixel defining
emitting
Prior art date
Application number
PCT/CN2020/076378
Other languages
English (en)
French (fr)
Inventor
谢江容
夏曾强
聂汉
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020186968A1 publication Critical patent/WO2020186968A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a light-emitting display panel, a manufacturing method thereof, and a display device.
  • the display When the ambient light irradiated to the display is strong, the display will reflect the ambient light irradiated on the display, and the reflected light generated by the display of the ambient light will interfere with the display when it is displayed. Of light. When the intensity of the reflected light generated by the display screen reflecting the ambient light is greater than the intensity of the light emitted by the display screen during display, the contrast of the display screen will be low, and the display effect will decrease. Therefore, reducing the interference of ambient light on the display of the display will greatly improve the display effect of the display.
  • the display screens are equipped with polarizers and quarter-wave plates to reduce the interference caused by external ambient light. For example, it can reduce the reflection of the display screen to ambient light.
  • the polarizers will cause the transmittance of the display to be low, and then Affect the power consumption and life of the display.
  • the embodiment of the present disclosure provides a light-emitting display panel having a non-display area and a display area, including: a flat layer; a pixel defining layer arranged on the flat layer; a portion of the pixel defining layer located in the display area A first recess that is recessed in the direction of the flat layer; the first electrode layer and the light-emitting layer arranged in the first recess are sequentially stacked along the direction away from the pixel defining layer, and the first electrode layer and the light-emitting layer share the first recess A second electrode layer disposed above the pixel defining layer and the light-emitting layer, the portion of the second electrode layer in the display area is conformal to the light-emitting layer; an encapsulation layer disposed on the second electrode layer, the encapsulation layer is located The portion of the display area is conformal to the portion of the second electrode layer located in the display area, forming a second recess that is recessed in the direction toward the second electrode layer; a conve
  • the ambient light consuming layer is provided with a light-transmitting hole, which is arranged at the focal point of the convex lens, so that the light emitted by the light-emitting layer is condensed by the convex lens and then passes through the light-transmitting hole to the light-emitting display panel External launch.
  • the pixel defining layer includes a first pixel defining layer and a second pixel defining layer, the first pixel defining layer is disposed on the flat layer, and the display area of the first pixel defining layer is disposed There is the first recess, and the second pixel defining layer is disposed on the non-display area of the first pixel defining layer.
  • the second pixel defining layer is made of black light-absorbing material.
  • the convex lens is a hemispherical lens
  • the spherical part of the hemispherical lens is disposed toward the encapsulation layer and conforms to the second recess
  • the flat part of the hemispherical lens faces the encapsulation layer.
  • the ambient light consuming layer includes a honeycomb structure including stacked hexagonal prisms, and the side edges of the hexagonal prisms are parallel to the display surface of the light-emitting display panel.
  • the ambient light consuming layer is made of transparent materials and/or light-absorbing materials.
  • the ambient light consuming layer includes a black light absorbing layer.
  • the ambient light consuming layer includes a black light absorbing layer and a honeycomb structure
  • the honeycomb structure includes stacked hexagonal prisms, the side edges of the hexagonal prisms are parallel to the display surface of the light emitting display panel, the black light absorbing layer and The honeycomb structure is sequentially arranged on the encapsulation layer.
  • the first electrode layer is an anode layer
  • the second electrode layer is a cathode layer
  • the organic light emitting display panel further includes an anti-reflection film layer, the anti-reflection film layer is disposed on the ambient light consuming layer, and the anti-reflection film layer includes a multilayer anti-reflection film.
  • Embodiments of the present disclosure also provide a method for manufacturing a light-emitting display panel, including: forming a pixel defining layer with a first recess on a flat layer, the first recess being located in a display area; forming a first electrode layer in the first recess, The first electrode layer is conformal to the first recess; a light-emitting layer is formed on the first electrode layer, and the light-emitting layer is conformal to the first electrode layer; a second electrode layer is formed above the pixel defining layer and the light-emitting layer, and the second electrode layer The portion of the encapsulation layer located in the display area is conformal to the light emitting layer; an encapsulation layer is formed above the second electrode layer, and the portion of the encapsulation layer located in the display area conforms to the portion of the second electrode layer located in the display area to form a second recess; A convex lens is formed in the second recess; an ambient light consuming layer is formed above the en
  • forming the pixel defining layer includes forming a first pixel defining layer having the first recess by an isotropic etching method, and forming a second pixel defining layer on the first pixel defining layer by patterning.
  • the pixel defining layer, the second pixel defining layer is located in the non-display area, and the second pixel defining layer is made of black light-absorbing material.
  • forming the ambient light consuming layer includes forming a honeycomb structure including stacked hexagonal prisms, the side edges of the hexagonal prisms being parallel to the display surface of the light-emitting display panel.
  • forming the ambient light consuming layer includes forming a black light absorbing layer and a honeycomb structure.
  • the honeycomb structure includes stacked hexagonal prisms, the side edges of the hexagonal prisms being parallel to the display surface of the light emitting display panel, the black light absorbing layer and The honeycomb structure is sequentially formed above the encapsulation layer and the convex lens.
  • the method for manufacturing the light-emitting display panel further includes: forming an anti-reflection film layer on the ambient light consuming layer, the anti-reflection film layer including a multilayer anti-reflection film.
  • the embodiment of the present disclosure also provides a display device including the light-emitting display panel of the embodiment of the present disclosure.
  • FIG. 1 shows an exemplary schematic diagram of a cross-section of a light-emitting display panel according to an embodiment of the present disclosure
  • Fig. 2 shows an exemplary perspective view of a honeycomb structure according to an embodiment of the present disclosure
  • Fig. 3 shows an exemplary cross-sectional view of a honeycomb structure according to an embodiment of the present disclosure
  • Fig. 4 shows an exemplary side view of a honeycomb structure according to an embodiment of the present disclosure
  • Fig. 5 shows an exemplary light path schematic diagram of ambient light in a honeycomb structure according to an embodiment of the present disclosure
  • FIG. 6 shows an exemplary flowchart of a method of manufacturing a light emitting display panel according to an embodiment of the present disclosure.
  • FIG. 1 shows an exemplary schematic diagram of a cross-section of a light emitting display panel according to an embodiment of the present disclosure.
  • the light-emitting display panel has a non-display area D1 and a display area D2, including: a flat layer 11; a pixel defining layer disposed on the flat layer 11, and a portion of the pixel defining layer located in the display area D2
  • a first recess recessed in the direction of the flat layer 11; the first electrode layer 21 and the light-emitting layer 22 arranged in the first recess of the pixel-defining layer are sequentially stacked along the direction away from the pixel-defining layer, the first electrode layer 21 and the light-emitting
  • the layer 22 is conformal to the first recess; the second electrode layer 23 disposed above the pixel defining layer and the light-emitting layer 22, the portion of the second electrode layer 23 located in the display area D2 is conformal to the light-emitting layer 22; disposed on the second electrode
  • the convex lens 31 may include a micro lens.
  • each sub-pixel may have a micro-lens, so that the entire light-emitting display panel includes a micro-lens array, which has the focusing function of a traditional lens, and has the characteristics of small size and high integration.
  • the microlens can focus the light emitted by the light-emitting layer 22, and the focused light can exit through the light-transmitting hole 19, as shown in FIG. 1.
  • the focal points of the microlenses of the microlens array are in the same plane.
  • the light-emitting layer 22 is conformal to the first recess of the pixel defining layer, that is, the light-emitting layer 22 is a curved light-emitting layer, and the curved light-emitting layer and the convex lens are combined to prevent the light emitted by the display panel during display.
  • the light emitted by the light-emitting layer is focused by the convex lens, and the focused light is emitted through the light transmission hole of the ambient light consuming layer, and most of the external ambient light is consumed by the ambient light consuming layer, thereby reducing
  • the external ambient light interferes with the display of the display panel, while also ensuring the transmittance of the display panel.
  • the first electrode layer 21 and the second electrode layer 23 are located in the display area D2
  • the part is conformal to the light-emitting layer 22, and both adopt a curved structure.
  • FIG. 1 shows an exemplary schematic diagram of a cross-section of a light-emitting display panel.
  • the light-emitting layer 22 is shown as an arc.
  • the light-emitting layer 22 is a curved surface in terms of three-dimensional effect, and the curvature of the curved surface can be determined according to
  • the structure of the convex lens 31 is set so that the light emitted by the light-emitting layer 22 can be focused by the convex lens 31 and emitted through the light transmission hole 19.
  • the pixel defining layer includes a first pixel defining layer 13 and a second pixel defining layer 14.
  • the first pixel defining layer 13 is disposed on the flat layer 11, and a portion of the first pixel defining layer 13 located in the display area D2 A first recess is provided, and the second pixel defining layer 14 is located on the first pixel defining layer 13 and located in the non-display area D1.
  • the dotted lines are used for division in FIG. 1.
  • the pixel defining layer includes the first pixel defining layer 13 and the second pixel defining layer 14, the second pixel defining layer 14 can be made of black light-absorbing material, which is beneficial to absorbing external ambient light.
  • the second recess of the encapsulation layer 15 is used to accommodate the convex lens 31.
  • the convex lens 31 may be a biconvex lens or a plano-convex lens, and the plano-convex lens may be a hemispherical lens, for example.
  • the convex lens 31 is a hemispherical lens
  • the spherical part of the hemispherical lens can be set toward the encapsulation layer 15 and can be conformal to the second recess of the encapsulation layer 15, and the flat part of the hemispherical lens can be set toward the ambient light consuming layer. Set the ambient light consumption layer.
  • the convex lens 31 can be made of BK7 glass or resin material.
  • the refractive index of the convex lens 31 can be about 1.517.
  • the ambient light consuming layer may be formed of transparent materials and/or light-absorbing materials.
  • the ambient light consuming layer may include a perforated microlens array, and the perforated microlens array may be formed by a light-transmitting hole and a lens with a micron-level relief depth. After the ambient light enters the ambient light consuming layer, multiple reflections, refractions and transmissions can occur inside the ambient light consuming layer, and most of it is eventually consumed.
  • the ambient light consuming layer may include a honeycomb structure 17 as shown in FIG. 2.
  • FIG. 3 shows an exemplary cross-sectional view of a honeycomb structure according to an embodiment of the present disclosure
  • FIG. 4 shows an exemplary side view of a honeycomb structure according to an embodiment of the present disclosure.
  • the honeycomb structure 17 may include stacked hexagonal prisms, and the side edges 171 of the hexagonal prisms are parallel to the display surface of the light-emitting display panel.
  • the honeycomb structure 17 can adopt nanotechnology, which has good adhesion.
  • the thickness of the honeycomb structure 17 (that is, the number of layers of hexagonal prisms in a direction perpendicular to the display surface of the light-emitting display panel) can be adjusted according to requirements to effectively consume ambient light, thereby avoiding the interference of ambient light on the display of the light-emitting display panel.
  • the side edges 171 of the hexagonal prism may extend in the horizontal or vertical direction parallel to the display surface of the light-emitting display panel.
  • Fig. 5 shows an exemplary optical path diagram of ambient light in a honeycomb structure according to an embodiment of the present disclosure.
  • the ambient light enters the interior of the honeycomb structure 17 after being refracted by the surface of the honeycomb structure 17, where reflection, refraction and transmission occur repeatedly in the interior of the honeycomb structure 17, and most of it is finally consumed.
  • some ambient light may propagate in a direction parallel to the side edges 171 of the hexagonal prism of the honeycomb structure 17.
  • the honeycomb structure 17 may be formed with a light-transmitting hole 19 for the light emitted by the light-emitting layer 22 to be focused by the convex lens 31 and then emitted.
  • the ambient light consuming layer includes a black light-absorbing layer 16, and a light-transmitting hole 19 is formed on the black light-absorbing layer 16 for the light emitted by the light-emitting layer 22 to be focused by the convex lens 31 and then emitted.
  • the ambient light consuming layer includes a black light absorbing layer 16 and a honeycomb structure 17, and the black light absorbing layer 16 and the honeycomb structure 17 are sequentially stacked on the encapsulation layer 15 and the convex lens 31. At this time, a small part of the ambient light passing through the honeycomb structure 17 is absorbed by the black light-absorbing layer 16, which is beneficial to further reducing the interference of ambient light on the display of the light-emitting display panel.
  • the stacking sequence of the black light absorption layer 16 and the honeycomb structure 17 above the encapsulation layer 15 and the convex lens 31 can be interchanged, that is, the honeycomb structure and the black light absorption layer can be sequentially arranged on the encapsulation layer 15 and the convex lens 31. At this time, part of the ambient light passing through the black light-absorbing layer is consumed by the honeycomb structure, which further reduces the interference of ambient light on the display of the light-emitting display panel.
  • an anti-reflection film layer 18 may also be provided above the ambient light consumption layer, and the anti-reflection film layer 18 may include multiple anti-reflection films.
  • the anti-reflection film layer 18 facilitates the ambient light to enter the ambient light consumption layer, and reduces the reflection of the ambient light by the light-emitting display panel. Since natural light has seven colors and a certain bandwidth, a single-layer antireflection coating only has antireflection effect on a certain wavelength of monochromatic light. Therefore, setting up multi-layer antireflection coatings for multiple colors in natural light can improve the performance of natural light.
  • the transmittance is more conducive to the ambient light entering the ambient light consuming layer, and further reduces the reflection of the ambient light by the light-emitting display panel.
  • An embodiment of the present disclosure also provides a method for manufacturing a light emitting display panel, including the following steps S10 to S80.
  • Step S10 forming a pixel defining layer with a first recess on the flat layer, the first recess being formed in the display area.
  • Step S20 forming a first electrode layer in the first recess, for example, through exposure and development, and the first electrode layer is conformal to the first recess.
  • Step S30 forming a light-emitting layer on the first electrode layer, for example, by evaporation, and the light-emitting layer is conformal to the first electrode layer.
  • Step S40 A second electrode layer is formed above the pixel defining layer and the light-emitting layer, for example, by evaporation, and a portion of the second electrode layer located in the display area is conformal to the light-emitting layer.
  • Step S50 forming an encapsulation layer above the second electrode layer, and a portion of the encapsulation layer located in the display area is conformal to a portion of the second electrode layer located in the display area to form a second recess.
  • Step S60 forming a convex lens in the second recess.
  • Step S70 An ambient light consuming layer is formed above the encapsulation layer and the convex lens.
  • the ambient light consuming layer is provided with a light-transmitting hole, and the light-transmitting hole is arranged at the focal point of the convex lens.
  • Step S80 forming an anti-reflection film layer on the ambient light consumption layer.
  • forming the pixel defining layer includes forming a first pixel defining layer and a second pixel defining layer.
  • the first pixel defining layer with the first recess can be formed by an isotropic etching method, and the second pixel defining layer can be formed on the first pixel defining layer by patterning, and the second pixel defining layer is located in the non-display area.
  • the second pixel defining layer can be made of black light-absorbing material
  • a flat layer can be fabricated, and the first pixel defining layer (PDL) with the first recess can be obtained by isotropic etching (the same etching in all directions) on the flat layer.
  • a chemical vapor deposition (CVD) method can be used to form a thin film on the first pixel defining layer, and a positive photoresist can be applied to areas of the thin film that do not need to be etched, or the thin film needs to be etched
  • the removed area is coated with negative photoresist, and the first electrode layer formed in the first recess is obtained through exposure and development.
  • the first electrode layer is conformal to the first recess.
  • the second pixel defining layer having a light-absorbing effect can be formed on the non-display area of the first pixel defining layer by patterning.
  • the light-emitting layer can be formed on the first electrode layer by evaporation, and conformal to the first electrode layer.
  • the order of forming the first electrode layer and the second pixel defining layer may not be limited, and the order of forming the second pixel defining layer and the light emitting layer may also not be limited.
  • the first pixel defining layer can be formed before or after forming the first electrode layer, or the first pixel defining layer can be formed before or after forming the light-emitting layer, which can be selected according to process requirements.
  • the second electrode layer can be formed on the second pixel defining layer and the light-emitting layer by evaporation.
  • the second electrode layer, the pixel defining layer and the flat layer are projected in a direction perpendicular to the display surface of the light-emitting display panel (ie , Orthographic projection) can overlap.
  • a portion of the second electrode layer located above the light-emitting layer is conformal to the light-emitting layer.
  • An encapsulation layer is formed on the second electrode to isolate water vapor and oxygen and play a protective role.
  • the portion of the encapsulation layer located above the light-emitting layer conforms to the portion of the second electrode layer located above the light-emitting layer (ie, located in the display area) to form a second recess in the second recess
  • a convex lens with converging effect is formed. It should be noted that since the encapsulation layer can prevent water and oxygen from being corroded, the light-transmitting holes on the ambient light consuming layer can be filled with or not filled with materials as needed.
  • the ambient light consuming layer may include a honeycomb structure, and a plurality of hexagonal prisms may be bonded together by an adhesive method to form the honeycomb structure.
  • the ambient light consumption layer may also include a black light absorption layer, and the black light absorption layer may be formed by a deposition method, or formed by pasting a black light absorption film.
  • the ambient light consuming layer may include a black light absorbing layer and a honeycomb structure at the same time, and the black light absorbing layer may be formed on or under the honeycomb structure.
  • the embodiment of the present disclosure also provides a display device, which includes the light-emitting display panel provided by the embodiment of the present disclosure.
  • the light emitting display panel of the embodiment of the present disclosure may be an organic light emitting display panel.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

本公开的实施例公开了一种发光显示面板及其制造方法、和一种显示装置。所述发光显示面板具有非显示区和显示区,包括:平坦层;设置在平坦层上的像素界定层,所述像素界定层的位于显示区的部分设置有在朝向平坦层的方向上凹进的第一凹陷;沿远离像素界定层的方向依次层叠设置于所述第一凹陷内的第一电极层与发光层,第一电极层和发光层与第一凹陷共形;设置于像素界定层和发光层上方的第二电极层,第二电极层的位于显示区的部分与发光层共形;设置于第二电极层上的封装层,所述封装层的位于显示区的部分与第二电极层的位于显示区的部分共形,形成在朝向第二电极层的方向上凹进的第二凹陷;设置于所述第二凹陷内的凸透镜;以及设置于封装层和凸透镜上方的环境光消耗层,环境光消耗层设置有透光孔,透光孔设置于凸透镜的焦点处,使得发光层发射的光经凸透镜聚光后通过透光孔向发光显示面板的外部发射。

Description

发光显示面板及其制造方法、显示装置
相关申请的交叉引用
本申请要求于2019年3月19日提交的中国专利申请No.201910211743.6的优先权,该中国专利申请的全部内容通过引用的方式合并于此。
技术领域
本公开涉及显示技术领域,具体地,涉及发光显示面板及其制造方法、显示装置。
背景技术
在照射到显示屏的环境光较强烈的情况下,显示屏会对照射到该显示屏上的环境光进行反射,显示屏对环境光进行反射所产生的反射光会干扰显示屏进行显示时发出的光。当显示屏对环境光进行反射所产生的反射光的强度大于显示屏进行显示时发出的光的强度时,会造成显示屏的对比度低下,显示效果下降。因此,降低环境光对显示屏的显示的干扰将大大改善显示屏的显示效果。
目前,显示屏通过设置偏光片和1/4波片来降低外界环境光产生的干扰,例如,可以减少显示屏对环境光的反射,但是,偏光片将造成显示屏的透过率低下,进而影响显示屏的功耗和寿命。
发明内容
本公开的实施例提供一种发光显示面板,具有非显示区和显示区,包括:平坦层;设置在平坦层上的像素界定层,所述像素界定层的位于显示区的部分设置有在朝向平坦层的方向上凹进的第一凹陷;沿远离像素界定层的方向依次层叠设置于所述第一凹陷内的第一电极层与发光层,第一电极层和发光层与第一凹陷共形;设置于像素界 定层和发光层上方的第二电极层,第二电极层的位于显示区的部分与发光层共形;设置于第二电极层上的封装层,所述封装层的位于显示区的部分与第二电极层的位于显示区的部分共形,形成在朝向第二电极层的方向上凹进的第二凹陷;设置于所述第二凹陷内的凸透镜;以及设置于封装层和凸透镜上方的环境光消耗层,环境光消耗层设置有透光孔,透光孔设置于凸透镜的焦点处,使得发光层发射的光经凸透镜聚光后通过透光孔向发光显示面板的外部发射。
在一些实施方式中,所述像素界定层包括第一像素界定层和第二像素界定层,所述第一像素界定层设置在所述平坦层上,所述第一像素界定层的显示区设置有所述第一凹陷,所述第二像素界定层设置于所述第一像素界定层的非显示区上。
在一些实施方式中,所述第二像素界定层采用黑色吸光材料。
在一些实施方式中,所述凸透镜为半球形透镜,所述半球形透镜的球面部分朝向所述封装层设置,且与所述第二凹陷共形,所述半球形透镜的平面部分朝向所述环境光消耗层设置。
在一些实施方式中,所述环境光消耗层包括蜂窝结构,所述蜂窝结构包括堆叠的六棱柱,六棱柱的侧棱平行于发光显示面板的显示面。
在一些实施方式中,所述环境光消耗层采用透明材料和/或吸光材料。
在一些实施方式中,所述环境光消耗层包括黑色吸光层。
在一些实施方式中,所述环境光消耗层包括黑色吸光层和蜂窝结构,所述蜂窝结构包括堆叠的六棱柱,六棱柱的侧棱平行于发光显示面板的显示面,所述黑色吸光层和所述蜂窝结构依次设置在所述封装层上。
在一些实施方式中,所述第一电极层为阳极层,所述第二电极层为阴极层。
在一些实施方式中,所述机发光显示面板还包括增透膜层,所述增透膜层设置在所述环境光消耗层上,所述增透膜层包括多层增透膜。
本公开的实施例还提供一种发光显示面板的制造方法,包括:在平坦层上形成具有第一凹陷的像素界定层,第一凹陷位于显示区;在第一凹陷内形成第一电极层,第一电极层与第一凹陷共形;在第一电极层上形成发光层,发光层与第一电极层共形;在像素限定层和发光层上方,形成第二电极层,第二电极层的位于显示区的部分与发光层共形;在第二电极层上方形成封装层,封装层的位于显示区的部分与第二电极层的位于显示区的部分共形,形成第二凹陷;在第二凹陷内形成凸透镜;在封装层、凸透镜上方形成环境光消耗层,环境光消耗层设置有透光孔,透光孔设置于凸透镜的焦点处。
在一些实施方式中,形成所述像素界定层包括通过各向同性刻蚀法形成具有所述第一凹陷的第一像素界定层、以及通过图案化在所述第一像素界定层上形成第二像素界定层,所述第二像素界定层位于非显示区,所述第二像素界定层采用黑色吸光材料。
在一些实施方式中,形成环境光消耗层包括形成蜂窝结构,所述蜂窝结构包括堆叠的六棱柱,六棱柱的侧棱平行于发光显示面板的显示面。
在一些实施方式中,形成环境光消耗层包括形成黑色吸光层和蜂窝结构,所述蜂窝结构包括堆叠的六棱柱,六棱柱的侧棱平行于发光显示面板的显示面,所述黑色吸光层和所述有蜂窝结构依次形成在所述封装层和所述凸透镜上方。
在一些实施方式中,所述发光显示面板的制造方法还包括:在环境光消耗层上形成增透膜层,所述增透膜层包括多层增透膜。
本公开的实施例还提供一种显示装置,包括本公开的实施例的发光显示面板。
附图说明
通过阅读参照附图对非限制性实施例所作的详细描述,本公开的技术方案的特征、目的和优点将会变得明显,附图中:
图1示出了根据本公开实施例的发光显示面板的截面的示例性示意图;
图2示出了根据本公开实施例的蜂窝结构的示例性立体图;
图3示出了根据本公开实施例的蜂窝结构的示例性剖视图;
图4示出了根据本公开实施例的蜂窝结构的示例性侧视图;
图5示出了环境光在根据本公开实施例的蜂窝结构中的示例性光路示意图;
图6示出了根据本公开实施例的发光显示面板的制造方法的示例性流程图。
具体实施方式
下面结合附图和实施例对本公开的技术方案作进一步的详细说明。可以理解的是,此处所描述的实施例仅仅用于解释本公开的技术方案,而非对本公开的技术方案的限定。另外,还需要说明的是,为了便于描述,附图中仅示出了与本公开的技术方案的构思相关的部分。
需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开的技术方案。
图1示出了根据本公开实施例的发光显示面板的截面的示例性示意图。如图1所示,发光显示面板具有非显示区D1和显示区D2,包括:平坦层11;设置在平坦层11上的像素界定层,像素界定层的位于显示区D2的部分设置有在朝向平坦层11的方向上凹进的第一凹陷;沿远离像素界定层的方向依次层叠设置于像素界定层的第一凹陷内的第一电极层21和发光层22,第一电极层21和发光层22与第一凹陷共形;设置于像素界定层和发光层22上方的第二电极层23,第二电极层23的位于显示区D2的部分与发光层22共形;设置于第二电极层23上的封装层15,封装层15的位于显示区D2的部分与第二电极层23的位于显示区D2的部分共形,形成在朝向第二电极层23的方向上凹进的第二凹陷;设置于第二凹陷内的凸透镜31;设置于封装层15和凸透镜31上方的环境光消耗层,环境光消耗层设置有透光孔19,透光孔19设置于凸透镜31的焦点处,使得发光层22发射的光经凸透镜31聚光后通过透光孔19向发光显示面板的外部发射。
本公开的实施例中,凸透镜31可以包括微透镜。作为示例,每个亚像素可具有一个微透镜,从而整个发光显示面板包括微透镜阵列,该微透镜阵列具有传统透镜的聚焦功能,而且具有尺寸小、集成度高的特点,每个亚像素的微透镜可将发光层22发出的光聚焦,聚焦的光可通过透光孔19出射,如图1中所示。在一些实施方式中,该微透镜阵列的各微透镜的焦点处于同一平面内。
本公开的实施例中,发光层22与像素界定层的第一凹陷共形,即,发光层22为曲面发光层,曲面发光层和凸透镜相结合,使显示面板进行显示时发出的光能够避开绝大多数外界环境光的光路传播,发光层发出的光被凸透镜聚焦,聚焦的光通过环境光消耗层的透光孔射出,而外界环境光的大部分被环境光消耗层消耗,从而减少了外界环境光对显示面板的显示的干扰,同时也能保证显示面板的透过率。
为了第一电极层21、发光层22与第二电极层23之间的结构紧凑且有利于对发光层22发出光的进行聚焦,第一电极层21、第二电极层23的位于显示区D2的部分与发光层22共形,均采用曲面结构。
需要说明的是,图1示出的是发光显示面板的截面的示例性示意图,发光层22被示出为弧形,实际上,发光层22在立体效果上为曲面,其曲面的曲率可根据凸透镜31的结构来设定,以使得发光层22发出的光可被凸透镜31聚焦而通过透光孔19出射。
在一些实施方式中,像素界定层包括第一像素界定层13和第二像素界定层14,第一像素界定层13设置在平坦层11上,第一像素界定层13的位于显示区D2的部分设置有第一凹陷,第二像素界定层14位于第一像素界定层13上,并位于非显示区D1。
为了区分发光显示面板的显示区D2和非显示区D1,图1中用虚线进行划分。像素界定层包括第一像素界定层13和第二像素界定层14的情况下,第二像素界定层14可采用黑色吸光材料,有利于吸收外界环境光。
封装层15的第二凹陷用于容纳凸透镜31。在一些实施方式中,凸透镜31可以是双凸透镜或平凸透镜,平凸透镜例如可以是半球形透镜。当凸透镜31为半球形透镜时,半球形透镜的球面部分可朝向 封装层15设置,且可与封装层15的第二凹陷共形,半球形透镜的平面部分可朝向环境光消耗层设置,上方设置环境光消耗层。材质上,凸透镜31可采用BK7玻璃或树脂材料制成,当采用BK7玻璃制备半球形透镜作为凸透镜31时,凸透镜31的折射率可以为1.517左右。
本公开的实施例中,环境光消耗层可采用透明材料和/或吸光材料形成。
在一些实施方式中,环境光消耗层可包括带孔微透镜阵列,该带孔微透镜阵列可由透光孔及浮雕深度为微米级的透镜形成。环境光进入环境光消耗层内后,可在环境光消耗层内部发生多次反射、折射和透射,最终大部分被消耗。
在一些实施方式中,环境光消耗层可包括蜂窝结构17,蜂窝结构17如图2所示。图3示出了根据本公开实施例的蜂窝结构的示例性剖视图;图4示出了根据本公开实施例的蜂窝结构的示例性侧视图。
如图2至图4所示,蜂窝结构17可包括堆叠的六棱柱,六棱柱的侧棱171平行于发光显示面板的显示面。蜂窝结构17可采用纳米技术,该结构的粘合度好。可根据需求调整蜂窝结构17的厚度(即,在垂直于发光显示面板的显示面的方向上六棱柱的层数),以有效消耗环境光,从而避免环境光对发光显示面板的显示的干扰。
本公开的实施例中,六棱柱的侧棱171可沿平行于发光显示面板的显示面的横向或纵向延伸。
图5示出了环境光在根据本公开实施例的蜂窝结构中的示例性光路示意图。如图5所示,环境光经过蜂窝结构17的表面折射后进入蜂窝结构17的内部,在蜂窝结构17的内部反复发生反射、折射和透射,最终大部分被消耗。另外,还有部分环境光可能沿平行于蜂窝结构17的六棱柱的侧棱171的方向传播。
需要说明的是,蜂窝结构17上可形成透光孔19,以供发光层22发出的光经凸透镜31聚焦后射出。
在一些实施方式中,环境光消耗层包括黑色吸光层16,黑色吸光层16上形成透光孔19,以供发光层22发出的光经凸透镜31聚焦后射出。
在一些实施方式中,环境光消耗层包括黑色吸光层16和蜂窝结构17,黑色吸光层16和蜂窝结构17依次层叠设置在封装层15和凸透镜31上方。此时,少部分透过蜂窝结构17的环境光被黑色吸光层16吸收,有利于进一步减少环境光对发光显示面板的显示的干扰。
需要说明的是,黑色吸光层16和蜂窝结构17在封装层15和凸透镜31上方的层叠顺序可以互换,即,可在封装层15和凸透镜31上方依次设置蜂窝结构和黑色吸光层。此时,部分透过黑色吸光层的环境光被蜂窝结构消耗掉,进一步减少了环境光对发光显示面板的显示的干扰。
本公开的实施例中,还可在环境光消耗层上方设置增透膜层18,增透膜层18可包括多层增透膜。
增透膜层18有利于环境光射入到环境光消耗层内,减少了发光显示面板对环境光的反射。由于自然光有七种颜色且有一定的频宽,单层增透膜只对某一波长的单色光有增透作用,因此针对自然光中的多种颜色设置多层增透膜能够提高自然光的透过率,更有利于环境光射入到环境光消耗层内,进一步减少了发光显示面板对环境光的反射。
本公开的实施例还提供一种发光显示面板的制造方法,包括以下步骤S10至S80。
步骤S10:在平坦层上形成具有第一凹陷的像素界定层,第一凹陷形成在显示区。
步骤S20:在第一凹陷内,例如通过曝光显影的方式,形成第一电极层,第一电极层与第一凹陷共形。
步骤S30:在第一电极层上,例如通过蒸镀的方式,形成发光层,发光层与第一电极层共形。
步骤S40:在像素限定层和发光层上方,例如通过蒸镀的方式,形成第二电极层,第二电极层的位于显示区的部分与发光层共形。
步骤S50:在第二电极层上方形成封装层,封装层的位于显示区的部分与第二电极层的位于显示区的部分共形,形成第二凹陷。
步骤S60:在第二凹陷内形成凸透镜。
步骤S70:在封装层、凸透镜上方形成环境光消耗层,环境光消耗层设置有透光孔,透光孔设置于凸透镜的焦点处。
步骤S80:在环境光消耗层上形成增透膜层。
在一些实施方式中,形成像素界定层包括形成第一像素界定层和第二像素界定层。
例如,可通过各向同性刻蚀法形成具有第一凹陷的第一像素界定层,通过图案化在第一像素界定层上形成第二像素界定层,第二像素界定层位于非显示区。第二像素界定层可采用黑色吸光材料
具体地,可制作一层平坦层,在平坦层上通过各向同性刻蚀(在各个方向上同样的刻蚀)得到具有第一凹陷的第一层像素界定层(PDL)。然后,可在第一像素界定层上采用化学气相沉积法(Chemical Vapor Deposition,CVD)形成一层薄膜,在薄膜的不需要蚀刻掉的区域涂布正性光刻胶,或者在薄膜的需要蚀刻掉的区域涂布负性光刻胶,通过曝光显影,得到形成在第一凹陷内的第一电极层,第一电极层与第一凹陷共形。具有吸光作用的第二像素界定层可通过图案化形成在第一像素界定层的非显示区上。发光层可通过蒸镀的方式形成在第一电极层上,与第一电极层共形。
本公开的实施例中,第一电极层和第二像素界定层的形成顺序可不受限制,而且,第二像素界定层和发光层的形成顺序也可不受限制。
也就是说,可以在形成第一电极层之前或之后形成第一像素界定层,也可以在形成发光层之前或之后形成第一像素界定层,可根据工艺需求进行选择。
第二电极层可通过蒸镀的方式形成在第二像素界定层和发光层之上,第二电极层、像素界定层和平坦层沿垂直于发光显示面板的显示面的方向投射的投影(即,正投影)可重叠。
第二电极层的位于发光层之上(即,位于显示区)的部分与发光层共形。在第二电极上形成封装层,用于隔绝水汽和氧气,起到保护作用。封装层的位于发光层之上(即,位于显示区)的部分与第二电极层的位于发光层之上(即,位于显示区)的部分共形,形成第二 凹陷,该第二凹陷内形成具有会聚作用的凸透镜。需要说明的是,由于封装层可以防止水、氧侵蚀,因此根据需要,可对环境光消耗层上的透光孔进行材料填充或者不填充材料。
环境光消耗层的结构及材料可参照以上关于图1至图4的描述,此处不再赘述。相应地,本领域技术人员可根据需要选择形成环境光消耗层的方式。
例如,环境光消耗层可包括蜂窝结构,可采用胶粘方式,将多个六棱柱贴合,以形成该蜂窝结构。
环境光消耗层还可以包括黑色吸光层,该黑色吸光层可通过沉积法形成,或采用粘贴黑色吸光膜的方式形成。
环境光消耗层可以同时包括黑色吸光层和蜂窝结构,黑色吸光层可形成在蜂窝结构之上或之下。
本公开的实施例还提供一种显示装置,该显示装置包括本公开的实施例所提供的发光显示面板。
本公开的实施例的发光显示面板可以为有机发光显示面板。
所描述的实施例仅为本公开的示例实施例,本领域技术人员应当理解,本公开的范围并不限于上述实施例,在不脱离本公开的构思的情况下,上述实施例的各特征可进行任意组合,且可对上述实施例进行各种变型和修改,这些变型和修改均应视为落入本公开的范围。

Claims (16)

  1. 一种发光显示面板,具有非显示区和显示区,包括:
    平坦层;
    设置在平坦层上的像素界定层,所述像素界定层的位于显示区的部分设置有在朝向平坦层的方向上凹进的第一凹陷;
    沿远离像素界定层的方向依次层叠设置于所述第一凹陷内的第一电极层与发光层,第一电极层和发光层与第一凹陷共形;
    设置于像素界定层和发光层上方的第二电极层,第二电极层的位于显示区的部分与发光层共形;
    设置于第二电极层上的封装层,所述封装层的位于显示区的部分与第二电极层的位于显示区的部分共形,形成在朝向第二电极层的方向上凹进的第二凹陷;
    设置于所述第二凹陷内的凸透镜;以及
    设置于封装层和凸透镜上方的环境光消耗层,环境光消耗层设置有透光孔,透光孔设置于凸透镜的焦点处,使得发光层发射的光经凸透镜聚光后通过透光孔向发光显示面板的外部发射。
  2. 根据权利要求1所述的发光显示面板,其中,
    所述像素界定层包括第一像素界定层和第二像素界定层,所述第一像素界定层设置在所述平坦层上,所述第一像素界定层的显示区设置有所述第一凹陷,所述第二像素界定层设置于所述第一像素界定层的非显示区上。
  3. 根据权利要求2所述的发光显示面板,其中,
    所述第二像素界定层采用黑色吸光材料。
  4. 根据权利要求1所述的发光显示面板,其中,
    所述凸透镜为半球形透镜,所述半球形透镜的球面部分朝向所述封装层设置,且与所述第二凹陷共形,所述半球形透镜的平面部分 朝向所述环境光消耗层设置。
  5. 根据权利要求1所述的发光显示面板,其中,
    所述环境光消耗层包括蜂窝结构,所述蜂窝结构包括堆叠的六棱柱,六棱柱的侧棱平行于发光显示面板的显示面。
  6. 根据权利要求1所述的发光显示面板,其中,
    所述环境光消耗层采用透明材料和/或吸光材料。
  7. 根据权利要求1所述的发光显示面板,其中,
    所述环境光消耗层包括黑色吸光层。
  8. 根据权利要求1所述的发光显示面板,其中,
    所述环境光消耗层包括黑色吸光层和蜂窝结构,所述蜂窝结构包括堆叠的六棱柱,六棱柱的侧棱平行于发光显示面板的显示面,所述黑色吸光层和所述蜂窝结构依次设置在所述封装层上。
  9. 根据权利要求1所述的发光显示面板,其中,所述第一电极层为阳极层,所述第二电极层为阴极层。
  10. 根据权利要求1至9中任一项所述机发光显示面板,还包括增透膜层,所述增透膜层设置在所述环境光消耗层上,所述增透膜层包括多层增透膜。
  11. 一种发光显示面板的制造方法,包括:
    在平坦层上形成具有第一凹陷的像素界定层,第一凹陷位于显示区;
    在第一凹陷内形成第一电极层,第一电极层与第一凹陷共形;
    在第一电极层上形成发光层,发光层与第一电极层共形;
    在像素限定层和发光层上方,形成第二电极层,第二电极层的 位于显示区的部分与发光层共形;
    在第二电极层上方形成封装层,封装层的位于显示区的部分与第二电极层的位于显示区的部分共形,形成第二凹陷;
    在第二凹陷内形成凸透镜;
    在封装层、凸透镜上方形成环境光消耗层,环境光消耗层设置有透光孔,透光孔设置于凸透镜的焦点处。
  12. 根据权利要求11所述的发光显示面板的制造方法,其中,
    形成所述像素界定层包括通过各向同性刻蚀法形成具有所述第一凹陷的第一像素界定层、以及通过图案化在所述第一像素界定层上形成第二像素界定层,所述第二像素界定层位于非显示区,所述第二像素界定层采用黑色吸光材料。
  13. 根据权利要求11所述的发光显示面板的制造方法,其中,
    形成环境光消耗层包括形成蜂窝结构,所述蜂窝结构包括堆叠的六棱柱,六棱柱的侧棱平行于发光显示面板的显示面。
  14. 根据权利要求11所述的发光显示面板的制造方法,其中,
    形成环境光消耗层包括形成黑色吸光层和蜂窝结构,所述蜂窝结构包括堆叠的六棱柱,六棱柱的侧棱平行于发光显示面板的显示面,所述黑色吸光层和所述有蜂窝结构依次形成在所述封装层和所述凸透镜上方。
  15. 根据权利要求11所述的发光显示面板的制造方法,还包括:
    在环境光消耗层上形成增透膜层,所述增透膜层包括多层增透膜。
  16. 一种显示装置,包括权利要求1至10中任一项所述的发光显示面板。
PCT/CN2020/076378 2019-03-19 2020-02-24 发光显示面板及其制造方法、显示装置 WO2020186968A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910211743.6A CN109935726B (zh) 2019-03-19 2019-03-19 有机发光显示面板、其制造方法及显示装置
CN201910211743.6 2019-03-19

Publications (1)

Publication Number Publication Date
WO2020186968A1 true WO2020186968A1 (zh) 2020-09-24

Family

ID=66987774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076378 WO2020186968A1 (zh) 2019-03-19 2020-02-24 发光显示面板及其制造方法、显示装置

Country Status (2)

Country Link
CN (1) CN109935726B (zh)
WO (1) WO2020186968A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571563A (zh) * 2021-07-23 2021-10-29 云谷(固安)科技有限公司 显示面板、显示面板制备方法及显示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935726B (zh) * 2019-03-19 2020-12-08 京东方科技集团股份有限公司 有机发光显示面板、其制造方法及显示装置
CN111769211B (zh) 2020-07-01 2023-06-16 视涯科技股份有限公司 一种有机发光显示面板和显示装置
CN113437238B (zh) * 2021-06-24 2023-04-11 京东方科技集团股份有限公司 一种显示基板、显示装置及制作方法
CN113690386A (zh) * 2021-08-16 2021-11-23 深圳市芯视佳半导体科技有限公司 一种微镜阵列、oled显示屏及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211077A (zh) * 2006-12-28 2008-07-02 中芯国际集成电路制造(上海)有限公司 硅基液晶微显示器及其形成方法
CN101681997A (zh) * 2008-02-28 2010-03-24 松下电器产业株式会社 有机电致发光显示屏
CN103688209A (zh) * 2011-01-31 2014-03-26 怀西普斯公司 改进亮度的带有集成光电池的显示装置
CN104617227A (zh) * 2013-11-05 2015-05-13 昆山国显光电有限公司 一种有机发光显示装置
US20160087018A1 (en) * 2014-09-19 2016-03-24 Samsung Display Co., Ltd. Organic light emitting diode device
CN109935726A (zh) * 2019-03-19 2019-06-25 京东方科技集团股份有限公司 有机发光显示面板、其制造方法及显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493021B1 (ko) * 2008-08-19 2015-02-12 삼성디스플레이 주식회사 유기 발광 표시 장치
CN206147215U (zh) * 2016-11-16 2017-05-03 京东方科技集团股份有限公司 一种显示装置用防眩光结构、彩膜基板及显示装置
CN108231841A (zh) * 2017-12-29 2018-06-29 深圳市华星光电技术有限公司 Oled显示器件及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211077A (zh) * 2006-12-28 2008-07-02 中芯国际集成电路制造(上海)有限公司 硅基液晶微显示器及其形成方法
CN101681997A (zh) * 2008-02-28 2010-03-24 松下电器产业株式会社 有机电致发光显示屏
CN103688209A (zh) * 2011-01-31 2014-03-26 怀西普斯公司 改进亮度的带有集成光电池的显示装置
CN104617227A (zh) * 2013-11-05 2015-05-13 昆山国显光电有限公司 一种有机发光显示装置
US20160087018A1 (en) * 2014-09-19 2016-03-24 Samsung Display Co., Ltd. Organic light emitting diode device
CN109935726A (zh) * 2019-03-19 2019-06-25 京东方科技集团股份有限公司 有机发光显示面板、其制造方法及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571563A (zh) * 2021-07-23 2021-10-29 云谷(固安)科技有限公司 显示面板、显示面板制备方法及显示装置

Also Published As

Publication number Publication date
CN109935726A (zh) 2019-06-25
CN109935726B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2020186968A1 (zh) 发光显示面板及其制造方法、显示装置
US11394013B2 (en) Display panel with light-emitting layer, display device and manufacturing method of display panel
JP5971903B2 (ja) 表示装置およびそれを用いた映像情報処理装置
US10693103B2 (en) Light-emitting device and manufacturing method thereof, electronic apparatus
US10367171B2 (en) Low reflective display device
CN107577084B (zh) 背光设备及其制作方法
JP2007329099A (ja) 面光源装置および液晶表示装置
WO2012172858A1 (ja) 光学素子、光源装置及び投射型表示装置
US20160178965A1 (en) Display device and manufacturing method of the same
WO2020238397A1 (zh) 显示面板及其制造方法、显示装置
JP6430048B1 (ja) 拡散板及び光学機器
JP7320080B2 (ja) スクリーン指紋コンポーネント及び端末機器
CN112130236B (zh) 低反射结构、显示面板、显示装置及显示面板的制作方法
US20230369546A1 (en) Light source device and manufacturing method of light source device
KR20180078142A (ko) 저반사 디스플레이 장치
TWI438498B (zh) 複合光學膜
US20140077195A1 (en) Organic light-emitting diode package structure and method of manufacturing concavity on substrate
US11917890B2 (en) Display panel and display device
JP2006337846A (ja) 明所コントラスト向上部材
CN111965932A (zh) 掩膜板及显示面板制备方法
TWI666478B (zh) 直下式背光裝置
US11862761B2 (en) Light-emitting module and display apparatus
US20240145641A1 (en) Color conversion panel and display device
CN114335387B (zh) 显示面板以及显示装置
CN113764494B (zh) 一种彩膜结构及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774684

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20774684

Country of ref document: EP

Kind code of ref document: A1