WO2020186967A1 - 空调控制方法、控制装置及空调 - Google Patents

空调控制方法、控制装置及空调 Download PDF

Info

Publication number
WO2020186967A1
WO2020186967A1 PCT/CN2020/076350 CN2020076350W WO2020186967A1 WO 2020186967 A1 WO2020186967 A1 WO 2020186967A1 CN 2020076350 W CN2020076350 W CN 2020076350W WO 2020186967 A1 WO2020186967 A1 WO 2020186967A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
target
coil temperature
air conditioner
air
Prior art date
Application number
PCT/CN2020/076350
Other languages
English (en)
French (fr)
Inventor
宋威
徐贝贝
王立朋
李书佳
张乃伟
张飞
黄罡
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2020186967A1 publication Critical patent/WO2020186967A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • This application relates to the field of air conditioning control technology, such as an air conditioning control method, control device, and air conditioner.
  • the existing air conditioner control method sets the ambient temperature for the user, and performs corresponding control by setting the difference between the ambient temperature and the return air temperature.
  • the air conditioner stops running.
  • the related technology has at least the following problems: the real air outlet temperature cannot be controlled, and the user cannot set the required air outlet temperature.
  • an air conditioning control method there is provided an air conditioning control method.
  • the air conditioning control method includes:
  • the operation of the air conditioner is controlled according to the target coil temperature.
  • an air conditioner control device According to another aspect of the embodiments of the present disclosure, there is provided an air conditioner control device.
  • the air conditioning control device includes:
  • the first obtaining module is configured to obtain the target outlet air temperature
  • a first determining module configured to determine a target coil temperature of the air conditioner evaporator coil according to the target outlet air temperature
  • the control module is configured to control the operation of the air conditioner according to the target coil temperature.
  • an electronic device is provided.
  • the electronic device includes:
  • At least one processor At least one processor
  • a memory communicatively connected with the at least one processor; wherein,
  • the memory stores instructions that can be executed by the at least one processor, and when the instructions are executed by the at least one processor, the at least one processor executes the above-mentioned air conditioning control method.
  • an air conditioner including the air conditioner control device as described above.
  • a computer-readable storage medium is provided.
  • the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are configured to execute the aforementioned air conditioning control method.
  • a computer program product is provided.
  • the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the computer executes the foregoing Air conditioning control method.
  • the target coil temperature is determined, and then the operating parameters of the air conditioner are controlled to make
  • the real-time coil temperature reaches the target coil temperature, which indirectly makes the real-time outlet temperature reach the target outlet temperature set by the user, and realizes the outlet temperature control without the outlet temperature detection device.
  • FIG. 1 is a schematic flowchart of an air conditioning control method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of an air conditioning control method provided by another embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of an air conditioning control method provided by another embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • 100 processor; 101: memory; 102: communication interface; 103: bus.
  • an air conditioning control method including:
  • Step S1 Obtain the target air outlet temperature
  • Step S2 Determine the target coil temperature of the air conditioner evaporator coil according to the target outlet air temperature
  • Step S3 Control the operation of the air conditioner according to the target coil temperature.
  • the target air outlet temperature and the target coil temperature of the air-conditioning evaporator coil since there is a certain relationship between the target air outlet temperature and the target coil temperature of the air-conditioning evaporator coil, first according to the target air temperature set by the user, based on the target air temperature and the target air temperature The quantitative relationship between the target coil temperatures is determined, the target coil temperature of the air conditioner evaporator coil is determined, and then the operating parameters of the air conditioner are controlled so that the real-time coil temperature reaches the target coil temperature, indirectly making the real-time The outlet air temperature reaches the target outlet air temperature set by the user, which realizes the outlet air temperature control without the outlet air temperature detection device.
  • step S1 obtain the target outlet air temperature.
  • the target outlet air temperature can be set by the user operating the remote control.
  • step S2 the determining the target coil temperature of the air conditioner evaporator coil according to the target outlet temperature includes: according to the target outlet temperature and the target The relationship between the outlet air temperature and the target coil temperature determines the target coil temperature of the air conditioner evaporator coil.
  • determining the target coil temperature of the air conditioner evaporator coil according to the target outlet temperature and the relationship between the target outlet temperature and the target coil temperature includes : Determine the target coil temperature of the air conditioner evaporator coil according to the target air outlet temperature and the linear relationship between the target air outlet temperature and the target coil temperature.
  • the real-time coil temperature is controlled at the target coil temperature value, correspondingly, the real-time outlet temperature is also controlled at The target air outlet temperature value, so that the real-time air outlet temperature reaches the target air outlet temperature set by the user, and realizes the air outlet temperature control without the air outlet temperature detection device.
  • step S3: controlling the operation of the air conditioner according to the target coil temperature includes:
  • the operating parameter value of the air conditioner is determined, and the air conditioner is controlled to operate at the operating parameter value.
  • determining the operating parameter value of the air conditioner according to the target coil temperature so that the real-time coil temperature reaches the target coil temperature includes:
  • Step S31 Obtain the real-time coil temperature
  • Step S32 Determine the real-time coil temperature difference according to the target coil temperature and the real-time coil temperature
  • Step S33 Determine the real-time compressor frequency according to the real-time coil temperature difference.
  • Step S34 Control the air conditioner to operate at the real-time compressor frequency.
  • the frequency of the real-time compressor is determined according to the real-time coil temperature difference, thereby reducing the real-time coil temperature difference. For example, if the coil temperature difference is positive, that is, the real-time coil temperature is greater than the target coil temperature, reduce the compressor frequency; for example, if the coil temperature difference is negative, that is, the real-time coil temperature is lower than the target coil temperature, and the compressor is increased frequency.
  • step S33 determine the actual
  • Hour compressor frequency including:
  • the initial frequency of the compressor is determined.
  • step S33 determine the actual
  • Hour compressor frequency including:
  • the real-time compressor frequency is determined.
  • the real-time compressor frequency is the sum of the change in the compressor frequency and the current compressor frequency.
  • the determining the amount of change in the compressor frequency based on the real-time coil temperature difference includes: performing a PID calculation based on the real-time coil temperature difference to determine the amount of change in the compressor frequency.
  • the performing PID calculation based on the real-time coil temperature difference to determine the change in compressor frequency includes:
  • the difference between the current real-time coil temperature and the previous real-time coil temperature is normalized and calculated.
  • the amount of change in the compressor frequency is the sum of the multiplication calculation value, the first normalization calculation value, and the second normalization calculation value.
  • the air conditioning control method further includes:
  • Step S4 Update the target coil temperature.
  • the air conditioning operation is controlled according to the set target coil temperature, so that the real-time coil temperature is close to or equal to the target coil temperature, thereby achieving the purpose of setting the outlet air temperature.
  • the outlet air temperature will also be affected by other factors.
  • the target coil temperature will also be affected by corresponding factors. Therefore, by updating the target coil temperature, the influence of corresponding factors on the target coil temperature is offset. Indirectly offset the influence of corresponding factors on the outlet air temperature. Then control the operating parameters of the air conditioner according to the updated target coil temperature, so that the real-time coil temperature reaches the updated target coil temperature, which makes the control of the coil temperature more accurate, and thus makes the control of the outlet air temperature more accurate.
  • the real-time air outlet temperature reaches the target air outlet temperature set by the user, which more accurately realizes the air outlet temperature control without the air outlet temperature detection device.
  • updating the target coil temperature includes: updating the target coil temperature according to at least one of the room temperature and the rotation speed of the indoor fan.
  • the amount of change in room temperature is caused by the change in compressor frequency.
  • the outlet air temperature will be affected by the room temperature. For example, when the room temperature rises, the outlet air temperature will also increase. Therefore, the target coil temperature is updated according to the room temperature, so as to offset the influence of the room temperature on the target coil temperature and indirectly offset the influence of the room temperature on the outlet air temperature. Then control the operating parameters of the air conditioner according to the updated target coil temperature, so that the real-time coil temperature reaches the updated target coil temperature, so that the coil temperature control is more accurate, and the outlet air temperature control is more accurate.
  • the real-time air outlet temperature reaches the target air outlet temperature set by the user, which more accurately realizes the air outlet temperature control without the air outlet temperature detection device.
  • the change in the speed of the indoor fan may be set by the user during the use of the air conditioner.
  • the outlet air temperature will be affected by the speed of the indoor fan. For example, when the speed of the indoor fan increases, the outlet temperature will decrease. Therefore, the target coil temperature is updated according to the rotation speed of the indoor fan, so as to offset the influence of the rotation speed of the indoor fan on the target coil temperature, and indirectly offset the influence of the rotation speed of the indoor fan on the outlet air temperature. Then control the operating parameters of the air conditioner according to the updated target coil temperature, so that the real-time coil temperature reaches the updated target coil temperature, which makes the control of the coil temperature more accurate, and thus makes the control of the outlet air temperature more accurate.
  • the real-time air outlet temperature reaches the target air outlet temperature set by the user, which more accurately realizes the air outlet temperature control without the air outlet temperature detection device.
  • updating the target coil temperature according to at least one of the room temperature and the rotation speed of the indoor fan includes:
  • the target coil temperature is updated.
  • determining the first amount of change in the target coil temperature according to the amount of change in room temperature includes:
  • determining the first change amount of the target coil temperature according to the room temperature change amount and the relationship between the room temperature change amount and the coil temperature change amount includes:
  • updating the target coil temperature according to at least one of the room temperature and the rotation speed of the indoor fan further includes:
  • the target coil temperature is updated.
  • the determining the second variation of the target coil temperature according to the variation of the rotation speed of the indoor fan includes:
  • the second variation of the target coil temperature is determined according to the change in the rotation speed of the indoor fan and the relationship between the change in the rotation speed of the indoor fan and the change in the coil temperature.
  • the determination of the second change in the target coil temperature according to the change in the rotation speed of the indoor fan and the relationship between the change in the rotation speed of the indoor fan and the change in the coil temperature includes :
  • the second variation of the target coil temperature is determined according to the variation of the rotation speed of the indoor fan and the linear relationship between the variation of the rotation speed of the indoor fan and the variation of the coil temperature.
  • updating the target coil temperature according to at least one of the room temperature and the rotation speed of the indoor fan further includes:
  • the target coil temperature is updated according to the first change amount and the second change amount.
  • the influence of the room temperature and the rotation speed of the indoor fan on the target coil temperature is considered at the same time, so that the control of the target coil temperature and the outlet air temperature is more accurate.
  • the embodiment of the present disclosure also provides an air conditioning control device, including:
  • the first obtaining module is configured to obtain the target outlet air temperature
  • a first determining module configured to determine a target coil temperature of the air conditioner evaporator coil according to the target outlet air temperature
  • the control module is configured to control the operation of the air conditioner according to the target coil temperature.
  • the first determining module includes a target coil temperature determining module, configured to determine the temperature between the target air outlet temperature and the target coil temperature according to the target air outlet temperature. Relationship to determine the target coil temperature.
  • the target coil temperature determination module includes a target coil temperature determination unit configured to determine the target coil temperature according to the target outlet air temperature and the difference between the target outlet air temperature and the target coil temperature. To determine the target coil temperature of the air-conditioning evaporator coil.
  • control module includes:
  • the second determining module is configured to determine the operating parameter value of the air conditioner according to the target coil temperature, and control the air conditioner to operate at the operating parameter value.
  • the second determining module includes:
  • the second acquisition module is configured to acquire the real-time coil temperature; the second acquisition module may be a temperature sensing device;
  • the third determining module is configured to determine the real-time coil temperature difference according to the target coil temperature and the real-time coil temperature;
  • the fourth determining module is configured to determine the real-time compressor frequency according to the real-time coil temperature difference
  • the compressor frequency control module is configured to control the air conditioner to operate at the real-time compressor frequency.
  • the fourth determining module includes:
  • the initial frequency determining module is configured to determine the initial frequency of the compressor according to the real-time coil temperature difference.
  • the fourth determining module further includes:
  • a frequency change determination module configured to determine the change of compressor frequency according to the real-time coil temperature difference
  • the frequency determination module is configured to determine the real-time compressor frequency according to the change amount of the compressor frequency and the current compressor frequency.
  • the frequency change determination module includes a PID calculation module configured to perform PID calculations based on the real-time coil temperature difference to determine the compressor frequency change.
  • the PID calculation module includes:
  • the multiplication calculation module is configured to perform multiplication calculation on the real-time coil temperature difference to obtain a multiplication calculation value
  • the first normalization calculation module is configured to perform normalization calculation and integer calculation on the difference between the current real-time coil temperature and the previous real-time coil temperature to obtain the first normalized calculation value;
  • the second normalization calculation module is configured to perform normalization calculations and integer calculations on the difference between the current real-time coil temperature and the previous two (for example, last and last) real-time coil temperatures to obtain the second normal Calculated value;
  • the summation module is configured to sum the multiplication calculation value, the first normalization calculation value, and the second normalization calculation value to obtain the change amount of the compressor frequency.
  • the air conditioning control device further includes an update module configured to update the target coil temperature.
  • the update module includes an update unit configured to update the target coil temperature according to at least one of room temperature and indoor fan rotation speed.
  • the update unit includes:
  • the fifth determining module is configured to determine the amount of room temperature change
  • a sixth determining module configured to determine the first amount of change in the target coil temperature according to the amount of change in room temperature
  • the first update subunit is configured to update the target coil temperature according to the first change amount.
  • the sixth determining module includes a first variation determining module configured to determine according to the room temperature variation and the relationship between the room temperature variation and the coil temperature variation The first amount of change in the target coil temperature.
  • the first change amount determining module includes a first change amount determining unit configured to determine the amount of change in the room temperature and the linearity between the amount of change in room temperature and the temperature of the coil. Relationship, determine the first change of the target coil temperature.
  • the update unit further includes:
  • the seventh determining module is configured to determine the amount of change in the rotational speed of the indoor fan
  • An eighth determining module configured to determine a second change in the target coil temperature according to the change in the rotational speed of the indoor fan
  • the second update subunit is configured to update the target coil temperature according to the second change amount.
  • the eighth determining unit includes a second variation determining module configured to determine the amount of change in the rotation speed of the indoor fan and the difference between the variation in the rotation speed of the indoor fan and the temperature of the coil. To determine the second change of the target coil temperature.
  • the second variation determining module includes a second variation determining unit configured to change the rotational speed of the indoor fan and the rotational speed of the indoor fan and the temperature of the coil The linear relationship between the two determines the second change of the target coil temperature.
  • the embodiments of the present disclosure also provide an air conditioner, including the above-mentioned air conditioner control device.
  • the embodiment of the present disclosure also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute the aforementioned air conditioning control method.
  • the embodiments of the present disclosure also provide a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, when the program instructions are executed by a computer, The computer executes the above air conditioning control method.
  • the aforementioned computer-readable storage medium may be a transitory computer-readable storage medium or a non-transitory computer-readable storage medium.
  • the embodiment of the present disclosure also provides an electronic device, the structure of which is shown in FIG. 4, and the electronic device includes:
  • At least one processor (processor) 100 one processor 100 is taken as an example in FIG. 4; and a memory (memory) 101 may also include a communication interface (Communication Interface) 102 and a bus 103. Among them, the processor 100, the communication interface 102, and the memory 101 can communicate with each other through the bus 103. The communication interface 102 can be used for information transmission.
  • the processor 100 can call the logic instructions in the memory 101 to execute the air conditioning control method of the foregoing embodiment.
  • logic instructions in the memory 101 can be implemented in the form of software functional units and when sold or used as independent products, they can be stored in a computer readable storage medium.
  • the memory 101 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 100 executes functional applications and data processing by running software programs, instructions, and modules stored in the memory 101, that is, realizes the air conditioning control method in the foregoing method embodiment.
  • the memory 101 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal device, etc.
  • the memory 101 may include a high-speed random access memory, and may also include a non-volatile memory.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes one or more instructions to enable a computer device (which can be a personal computer, a server, or a network). Equipment, etc.) execute all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium may be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
  • the first element can be called the second element, and similarly, the second element can be called the first element, as long as all occurrences of the "first element” are renamed consistently and all occurrences "Second component” can be renamed consistently.
  • the first element and the second element are both elements, but they may not be the same element.
  • the terms used in this application are only used to describe the embodiments and are not used to limit the claims. As used in the description of the embodiments and claims, unless the context clearly indicates otherwise, the singular forms of "a” (a), “one” (an) and “the” (the) are intended to also include plural forms .
  • the term “and/or” as used in this application refers to any and all possible combinations of one or more of the associated lists.
  • the term “comprise” (comprise) and its variants “comprises” and/or including (comprising) and the like refer to the stated features, wholes, steps, operations, elements, and/or The existence of components does not exclude the existence or addition of one or more other features, wholes, steps, operations, elements, components and/or groups of these. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other same elements in the process, method, or device that includes the element.
  • each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments can be referred to each other.
  • the methods, products, etc. disclosed in the embodiments if they correspond to the method parts disclosed in the embodiments, see the descriptions in the method parts for relevant points.
  • the disclosed methods and products may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units may only be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection between devices or units through some interfaces, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units can be selected to implement this embodiment according to actual needs.
  • the functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of the code, and the module, program segment, or part of the code contains one or more functions for realizing the specified logical function.
  • Executable instructions may also occur in a different order from the order marked in the drawings. For example, two consecutive blocks can actually be executed in parallel, and they can sometimes be executed in the reverse order, depending on the functions involved.
  • Each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart, can be implemented by a dedicated hardware-based system that performs the specified functions or actions, or can be implemented by dedicated hardware Realized in combination with computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调控制方法,包括:获取目标出风温度;根据目标出风温度,确定空调蒸发器盘管的目标盘管温度;根据目标盘管温度,控制空调运行。一种空调,其包括空调控制装置,空调控制装置包括:第一获取模块,被配置为获取目标出风温度;第一确定模块,被配置为根据目标出风温度,确定空调蒸发器盘管的目标盘管温度;控制模块,被配置为根据目标盘管温度,控制空调运行。

Description

空调控制方法、控制装置及空调
本申请基于申请号为201910204068.4、申请日为2019年3月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调控制技术领域,例如涉及一种空调控制方法、控制装置及空调。
背景技术
目前,现有的空调控制方式为用户设定环境温度,通过设定环境温度和回风温度差值进行相应的控制,当回风温度达到设定环境温度后空调停止运行。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:真正的出风温度无法控制,用户无法设定需要的出风口温度。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
根据本公开实施例的一个方面,提供了一种空调控制方法。
在一些可选实施例中,所述空调控制方法包括:
获取目标出风温度;
根据所述目标出风温度,确定所述空调蒸发器盘管的目标盘管温度;
根据所述目标盘管温度,控制所述空调运行。
根据本公开实施例的另一个方面,提供了一种空调控制装置。
在一些可选实施例中,所述空调控制装置包括:
第一获取模块,被配置为获取目标出风温度;
第一确定模块,被配置为根据所述目标出风温度,确定所述空调蒸发器盘管的目标盘管温度;
控制模块,被配置为根据所述目标盘管温度,控制所述空调运行。
根据本公开实施例的另一个方面,提供了一种电子设备。
在一些可选实施例中,所述电子设备包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处 理器执行时,使所述至少一个处理器执行上述的空调控制方法。
根据本公开实施例的另一个方面,提供了一种空调,所述空调包括如前所述的空调控制装置。
根据本公开实施例的另一个方面,提供了一种计算机可读存储介质。
在一些可选实施例中,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令设置为执行上述的空调控制方法。
根据本公开实施例的另一个方面,提供了一种计算机程序产品。
在一些可选实施例中,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述的空调控制方法。
本公开实施例提供的一些技术方案可以实现以下技术效果:
根据用户设定的目标出风温度,基于目标出风温度与所述空调蒸发器盘管的目标盘管温度之间存在的关系,确定所述目标盘管温度,然后控制空调的运行参数,使实时盘管温度达到所述目标盘管温度,间接地使实时出风温度达到用户设定的目标出风温度,实现了无出风温度检测设备情况下的出风温度控制。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开一实施例提供的空调控制方法的流程示意图;
图2是本公开另一实施例提供的空调控制方法的流程示意图;
图3是本公开另一实施例提供的空调控制方法的流程示意图;
图4是本公开本公开实施例提供的电子设备的结构示意图。
附图标记:
100:处理器;101:存储器;102:通信接口;103:总线。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
如图1所示,本公开实施例提供了一种空调控制方法,包括:
步骤S1:获取目标出风温度;
步骤S2:根据所述目标出风温度,确定所述空调蒸发器盘管的目标盘管温度;
步骤S3:根据所述目标盘管温度,控制所述空调运行。
采用本实施例,由于目标出风温度与所述空调蒸发器盘管的目标盘管温度之间存在一定的关系,因此,先根据用户设定的目标出风温度,基于目标出风温度与所述目标盘管温度之间存在的定量关系,确定所述空调蒸发器盘管的目标盘管温度,然后控制空调的运行参数,使实时盘管温度达到所述目标盘管温度,间接地使实时出风温度达到用户设定的目标出风温度,实现了无出风温度检测设备情况下的出风温度控制。
在一些可选实施例中,步骤S1中:获取目标出风温度。目标出风温度可以通过用户操作遥控器设定而产生。
在一些可选实施例中,步骤S2中:所述根据所述目标出风温度,确定所述空调蒸发器盘管的目标盘管温度,包括:根据所述目标出风温度、以及所述目标出风温度与所述目标盘管温度之间的关系,确定所述空调蒸发器盘管的目标盘管温度。
在一些可选实施例中,根据所述目标出风温度、以及所述目标出风温度与所述目标盘管温度之间的关系,确定所述空调蒸发器盘管的目标盘管温度,包括:根据所述目标出风温度、以及所述目标出风温度与所述目标盘管温度之间的线性关系,确定所述空调蒸发器盘管的目标盘管温度。
由于目标出风温度与所述目标盘管温度之间成线性关系,因此,若将实时盘管温度控制在所述的目标盘管温度值,则对应的,实时出风温度也就被控制在目标出风温度值,从而使实时出风温度达到用户设定的目标出风温度,实现了无出风温度检测设备情况下的出风温度控制。
在一些可选实施例中,步骤S3中:根据所述目标盘管温度,控制所述空调运行,包括:
根据所述目标盘管温度,确定所述空调的运行参数值,并控制所述空调以所述运行参数值运行。
在一些可选实施例中,如图2所示,根据所述目标盘管温度,确定所述空调的运行参数值,以使实时盘管温度达到所述目标盘管温度,包括:
步骤S31:获取实时盘管温度;
步骤S32:根据所述目标盘管温度和所述实时盘管温度,确定实时盘管温差;
步骤S33:根据所述实时盘管温差,确定实时压缩机频率。
步骤S34:控制空调以所述实时压缩机频率运行。
由于盘管温度与压缩机频率的大小有关,因此,根据实时盘管温差,确定实时压缩机的频率,从而缩小所述实时盘管温差。例如盘管温差为正值,即实时盘管温度大于目标盘管温度,则降低压缩机频率;例如盘管温差为负值,即实时盘管温度低于目标盘管温度,则增大压缩机频率。
在一些可选实施例中,步骤S33中:根据所述实时盘管温差,确定实
时压缩机频率,包括:
根据所述实时盘管温差,确定压缩机初始频率。
在一些可选实施例中,步骤S33中:根据所述实时盘管温差,确定实
时压缩机频率,包括:
根据所述实时盘管温差,确定压缩机频率的变化量;
根据所述压缩机频率的变化量和当前压缩机频率,确定实时压缩机频率。
在一些可选实施例中,实时压缩机频率为压缩机频率的变化量和当前压缩机频率之和。
在一些可选实施例中,所述根据所述实时盘管温差,确定压缩机频率的变化量,包括:基于所述实时盘管温差,进行PID运算,确定压缩机频率的变化量。
在一些可选实施例中,所述基于所述实时盘管温差,进行PID运算,确定压缩机频率的变化量,包括:
对所述实时盘管温差作乘法计算,获得乘法计算值;
对本次实时盘管温度与前一次实时盘管温度的差值进行正规化计算和
整数化计算,获得第一正规化计算值;
对本次实时盘管温度与前两次(例如上次、上上次)实时盘管温度的
差值进行正规化计算和整数化计算,获得第二正规化计算值;
所述压缩机频率的变化量为所述乘法计算值、所述第一正规化计算值和所述第二正规化计算值之和。
在一些可选实施例中,如图3所示,所述空调控制方法还包括:
步骤S4:更新所述目标盘管温度。
由于出风温度与盘管温度有关,因此根据设定的目标盘管温度控制空调运行,以使实时盘管温度接近或等于目标盘管温度,从而达到设定出风温度的目的。但是出风温度还会受到其他因素的影响,对应的,目标盘管温度也会受到相应因素的影响,因此,通过更新所述目标盘管温度,从而抵消相应因素对目标盘管温度的影响,间接地抵消相应因素对出风温度的影响。再根据更新后的目标盘管温度控制空调的运行参数,使实时盘管温度达到更新后的目标盘管温度,使得盘管温度的控制更加精确,进而使出风温度的控制更加精确,从而使实时出风温度达到用户设定的目标出风温度,更精确地实现了无出风温度检测设备情况下的出风温度控制。
在一些可选实施例中,更新所述目标盘管温度,包括:根据室温和室内风机转速中的至少一个,更新所述目标盘管温度。
室温变化量是由于压缩机频率发生变化而引起的。出风温度会受到室温的影响,例如,室温升高时,出风温度也会升高。因此,根据室温,更新所述目标盘管温度,从而抵消室温对目标盘管温度的影响,间接地抵消室温对出风温度的影响。再根据更新后的目标盘管 温度控制空调的运行参数,使实时盘管温度达到更新后的目标盘管温度,使得盘管温度的控制更加精确,进而使出风温度的控制更加精确,从而使实时出风温度达到用户设定的目标出风温度,更精确地实现了无出风温度检测设备情况下的出风温度控制。
室内风机转速变化量可能由用户在使用空调的过程中设定而产生。出风温度会受到室内风机转速的影响,例如,室内风机转速升高时,出风温度会降低。因此,根据室内风机转速,更新所述目标盘管温度,从而抵消室内风机转速对目标盘管温度的影响,间接地抵消室内风机转速对出风温度的影响。再根据更新后的目标盘管温度控制空调的运行参数,使实时盘管温度达到更新后的目标盘管温度,使得盘管温度的控制更加精确,进而使出风温度的控制更加精确,从而使实时出风温度达到用户设定的目标出风温度,更精确地实现了无出风温度检测设备情况下的出风温度控制。
在一些可选实施例中,根据室温和室内风机转速中的至少一个,更新所述目标盘管温度,包括:
确定室温变化量;
根据所述室温变化量,确定所述目标盘管温度的第一变化量;
根据所述第一变化量,更新所述目标盘管温度。
在一些可选实施例中,根据所述室温变化量,确定所述目标盘管温度的第一变化量,包括:
根据所述室温变化量、以及所述室温变化量与盘管温度变化量之间的关系,确定所述目标盘管温度的第一变化量。
在一些可选实施例中,根据所述室温变化量、以及所述室温变化量与盘管温度变化量之间的关系,确定所述目标盘管温度的第一变化量,包括:
根据所述室温变化量、以及所述室温变化量与盘管温度变化量之间的线性关系,确定所述目标盘管温度的第一变化量。
在一些可选实施例中,根据室温和室内风机转速中的至少一个,更新所述目标盘管温度,还包括:
确定室内风机转速变化量;
根据所述室内风机转速变化量,确定所述目标盘管温度的第二变化量;
根据所述第二变化量,更新所述目标盘管温度。
在一些可选实施例中,所述根据所述室内风机转速变化量,确定所述目标盘管温度的第二变化量,包括:
根据所述室内风机转速变化量、以及所述室内风机转速变化量与盘管温度变化量之间的关系,确定所述目标盘管温度的第二变化量。
在一些可选实施例中,根据所述室内风机转速变化量、以及所述室内风机转速变化量与盘管温度变化量之间的关系,确定所述目标盘管温度的第二变化量,包括:
根据所述室内风机转速变化量、以及所述室内风机转速变化量与盘管温度变化量之间 的线性关系,确定所述目标盘管温度的第二变化量。
在一些可选实施例中,根据室温和室内风机转速中的至少一个,更新所述目标盘管温度,还包括:
确定室温变化量和室内风机转速变化量;
根据所述室温变化量和所述室内风机转速变化量,确定所述目标盘管温度的第一变化量和第二变化量;
根据所述第一变化量和所述第二变化量,更新所述目标盘管温度。
在本实施例中,同时考虑室温和室内风机转速对目标盘管温度的影响,使得目标盘管温度和出风温度的控制更加精确。
本公开实施例还提供了一种空调控制装置,包括:
第一获取模块,被配置为获取目标出风温度;
第一确定模块,被配置为根据所述目标出风温度,确定所述空调蒸发器盘管的目标盘管温度;
控制模块,被配置为根据所述目标盘管温度,控制所述空调运行。
在一些可选实施例中,所述第一确定模块包括目标盘管温度确定模块,被配置为根据所述目标出风温度、以及所述目标出风温度与所述目标盘管温度之间的关系,确定所述目标盘管温度。
在一些可选实施例中,所述目标盘管温度确定模块包括目标盘管温度确定单元,被配置为根据所述目标出风温度、以及所述目标出风温度与所述目标盘管温度之间的线性关系,确定所述空调蒸发器盘管的目标盘管温度。
在一些可选实施例中,所述控制模块包括:
第二确定模块,被配置为根据所述目标盘管温度,确定所述空调的运行参数值,并控制所述空调以所述运行参数值运行。
在一些可选实施例中,所述第二确定模块包括:
第二获取模块,被配置为获取实时盘管温度;第二获取模块可以是温度传感装置;
第三确定模块,被配置为根据所述目标盘管温度和所述实时盘管温度,确定实时盘管温差;
第四确定模块,被配置为根据所述实时盘管温差,确定实时压缩机频率;
压缩机频率控制模块,被配置为控制空调以所述实时压缩机频率运行。
在一些可选实施例中,所述第四确定模块包括:
初始频率确定模块,被配置为根据所述实时盘管温差,确定压缩机初始频率。
在一些可选实施例中,所述第四确定模块还包括:
频率变化量确定模块,被配置为根据所述实时盘管温差,确定压缩机频率的变化量;
频率确定模块,被配置为根据所述压缩机频率的变化量和当前压缩机频率,确定实时压缩机频率。
在一些可选实施例中,所述频率变化量确定模块包括PID运算模块,被配置为基于所述实时盘管温差,进行PID运算,确定压缩机频率的变化量。
在一些可选实施例中,所述PID运算模块包括:
乘法计算模块,被配置为对所述实时盘管温差作乘法计算,获得乘法计算值;
第一正规化计算模块,被配置为对本次实时盘管温度与前一次实时盘管温度的差值进行正规化计算和整数化计算,获得第一正规化计算值;
第二正规化计算模块,被配置为对本次实时盘管温度与前两次(例如上次和上上次)实时盘管温度的差值进行正规化计算和整数化计算,获得第二正规化计算值;
求和模块,被配置为对所述乘法计算值、所述第一正规化计算值和所述第二正规化计算值求和,获得所述压缩机频率的变化量。
在一些可选实施例中,所述空调控制装置还包括更新模块,被配置为更新所述目标盘管温度。
在一些可选实施例中,所述更新模块包括更新单元,被配置为根据室温和室内风机转速中的至少一个,更新所述目标盘管温度。
在一些可选实施例中,所述更新单元包括:
第五确定模块,被配置为确定室温变化量;
第六确定模块,被配置为根据所述室温变化量,确定所述目标盘管温度的第一变化量;
第一更新子单元,被配置为根据所述第一变化量,更新所述目标盘管温度。
在一些可选实施例中,所述第六确定模块包括第一变化量确定模块,被配置为根据所述室温变化量、以及所述室温变化量与盘管温度变化量之间的关系,确定所述目标盘管温度的第一变化量。
在一些可选实施例中,所述第一变化量确定模块包括第一变化量确定单元,被配置为根据所述室温变化量、以及所述室温变化量与盘管温度变化量之间的线性关系,确定所述目标盘管温度的第一变化量。
在一些可选实施例中,所述更新单元还包括:
第七确定模块,被配置为确定室内风机转速变化量;
第八确定模块,被配置为根据所述室内风机转速变化量,确定所述目标盘管温度的第二变化量;
第二更新子单元,被配置为根据所述第二变化量,更新所述目标盘管温度。
在一些可选实施例中,所述第八确定单元包括第二变化量确定模块,被配置为根据所述室内风机转速变化量、以及所述室内风机转速变化量与盘管温度变化量之间的关系,确定所述目标盘管温度的第二变化量。
在一些可选实施例中,所述第二变化量确定模块包括第二变化量确定单元,被配置为根据所述室内风机转速变化量、以及所述室内风机转速变化量与盘管温度变化量之间的线性关系,确定所述目标盘管温度的第二变化量。
本公开实施例还提供了一种空调,包含上述的空调控制装置。
本公开实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述空调控制方法。
本公开实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述空调控制方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例还提供了一种电子设备,其结构如图4所示,该电子设备包括:
至少一个处理器(processor)100,图4中以一个处理器100为例;和存储器(memory)101,还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述实施例的空调控制方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的软件程序、指令以及模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的空调控制方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些 元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样地,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的***、方法和计算机程序产品的可 能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的***来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (11)

  1. 一种空调控制方法,其特征在于,包括:
    获取目标出风温度;
    根据所述目标出风温度,确定所述空调蒸发器盘管的目标盘管温度;
    根据所述目标盘管温度,控制所述空调运行。
  2. 根据权利要求1所述的空调控制方法,其特征在于,根据所述目标出风温度,确定所述空调蒸发器盘管的目标盘管温度,包括:
    根据所述目标出风温度、以及,所述目标出风温度与所述目标盘管温度之间的关系,确定所述目标盘管温度。
  3. 根据权利要求2所述的空调控制方法,其特征在于,根据所述目标出风温度、以及,所述目标出风温度与所述目标盘管温度之间的关系,确定所述目标盘管温度,包括:
    根据所述目标出风温度、以及,所述目标出风温度与所述目标盘管温度之间的线性关系,确定所述目标盘管温度。
  4. 根据权利要求1至3任一项所述的空调控制方法,其特征在于,还包括:更新所述目标盘管温度。
  5. 根据权利要求4所述的空调控制方法,其特征在于,更新所述目标盘管温度,包括:根据室温和室内风机转速中的至少一个,更新所述目标盘管温度。
  6. 一种空调控制装置,其特征在于,包括:
    第一获取模块,被配置为获取目标出风温度;
    第一确定模块,被配置为根据所述目标出风温度,确定所述空调蒸发器盘管的目标盘管温度;和,
    控制模块,被配置为根据所述目标盘管温度,控制所述空调运行。
  7. 根据权利要求6所述的空调控制装置,其特征在于,所述第一确定模块包括目标盘管温度确定模块,被配置为根据所述目标出风温度、以及,所述目标出风温度与所述目标盘管温度之间的关系,确定所述目标盘管温度。
  8. 根据权利要求6所述的空调控制装置,其特征在于,所述目标盘管温度确定模块包括目标盘管温度确定单元,被配置为根据所述目标出风温度、以及,所述目标出风温度与所述目标盘管温度之间的线性关系,确定所述目标盘管温度。
  9. 根据权利要求6至8任一项所述的空调控制装置,其特征在于,还包括更新模块,被配置为更新所述目标盘管温度。
  10. 根据权利要求9所述的空调控制装置,其特征在于,所述更新模块包括:更新单元,被配置为根据室温和室内风机转速中的至少一个,更新所述目标盘管温度。
  11. 一种空调,其特征在于,包括如权利要求6至10任一项所述的空调控制装置。
PCT/CN2020/076350 2019-03-18 2020-02-24 空调控制方法、控制装置及空调 WO2020186967A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910204068.4 2019-03-18
CN201910204068.4A CN110030681A (zh) 2019-03-18 2019-03-18 空调控制方法、控制装置及空调

Publications (1)

Publication Number Publication Date
WO2020186967A1 true WO2020186967A1 (zh) 2020-09-24

Family

ID=67236103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076350 WO2020186967A1 (zh) 2019-03-18 2020-02-24 空调控制方法、控制装置及空调

Country Status (2)

Country Link
CN (1) CN110030681A (zh)
WO (1) WO2020186967A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110030681A (zh) * 2019-03-18 2019-07-19 青岛海尔空调器有限总公司 空调控制方法、控制装置及空调
CN110030682A (zh) * 2019-03-18 2019-07-19 青岛海尔空调器有限总公司 空调控制方法、控制装置及空调
CN110736248B (zh) * 2019-10-29 2020-09-25 珠海格力电器股份有限公司 空调出风温度的控制方法和装置
CN111750501B (zh) * 2020-05-15 2022-02-01 海信(山东)空调有限公司 一种空调器和控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106871332A (zh) * 2017-01-04 2017-06-20 青岛海尔空调器有限总公司 一拖二分体式空调器控制方法和一拖二分体式空调器
CN106949596A (zh) * 2017-03-13 2017-07-14 广东美的暖通设备有限公司 空调器及其能需修正方法
CN109114763A (zh) * 2018-10-26 2019-01-01 广东美的制冷设备有限公司 空调器的控制装置、空调器及其控制方法和可读存储介质
CN109297152A (zh) * 2018-10-26 2019-02-01 广东美的制冷设备有限公司 空调器控制装置、空调器及其控制方法和可读存储介质
CN110030681A (zh) * 2019-03-18 2019-07-19 青岛海尔空调器有限总公司 空调控制方法、控制装置及空调

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988852A1 (en) * 2016-08-25 2022-04-27 Mitsubishi Electric Corporation Air conditioning device, air conditioning method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106871332A (zh) * 2017-01-04 2017-06-20 青岛海尔空调器有限总公司 一拖二分体式空调器控制方法和一拖二分体式空调器
CN106949596A (zh) * 2017-03-13 2017-07-14 广东美的暖通设备有限公司 空调器及其能需修正方法
CN109114763A (zh) * 2018-10-26 2019-01-01 广东美的制冷设备有限公司 空调器的控制装置、空调器及其控制方法和可读存储介质
CN109297152A (zh) * 2018-10-26 2019-02-01 广东美的制冷设备有限公司 空调器控制装置、空调器及其控制方法和可读存储介质
CN110030681A (zh) * 2019-03-18 2019-07-19 青岛海尔空调器有限总公司 空调控制方法、控制装置及空调

Also Published As

Publication number Publication date
CN110030681A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
WO2020186967A1 (zh) 空调控制方法、控制装置及空调
EP3348924A1 (en) Air conditioner and air-conditioning system
WO2016202704A1 (en) Method and thermostat controller for determining a temperature set point
WO2020244366A1 (zh) 一种用于实现除霜的方法、装置和空调室外机
WO2020186966A1 (zh) 空调控制方法、控制装置及空调
WO2021185011A1 (zh) 一种恒温控制方法、装置、电子设备和存储介质
CN109059226B (zh) 电子膨胀阀的控制方法、空调器及计算机可读存储介质
US20090276096A1 (en) Device and method for controlling a display using a virtual display buffer
US10353369B2 (en) HVAC system detecting user discomfort
US20200124307A1 (en) Control apparatus and computer readable medium
WO2019024682A1 (zh) 一种设备控制的方法及装置
CN112283893A (zh) 用于控制空调的方法、装置和空调
WO2019113103A1 (en) Thermostat with energy modeling
WO2021190095A1 (zh) 空调选型方法、***及装置
WO2018214003A1 (zh) 信息显示方法、终端及服务器
WO2021022675A1 (zh) 用于控制空调的方法、可穿戴设备和空调
WO2021128645A1 (zh) 用于膨胀阀控制的方法及装置、空调器
US20140088945A1 (en) System and method for an energy management system
WO2021103959A1 (zh) 窗户控制方法、装置及窗户
JP2016056973A (ja) 空調制御装置、空調制御方法および空調制御プログラム
CN108826572A (zh) 一种空调状态确定方法及装置
WO2024021670A1 (zh) 用于控制膨胀阀开度的方法及装置、空调、存储介质
CN116182369A (zh) 用于控制空调出风温度的方法及装置、空调、存储介质
JP6880864B2 (ja) エネルギー管理システムおよびエネルギー管理方法
JP7431535B2 (ja) サーバおよび制御システム、並びに制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774602

Country of ref document: EP

Kind code of ref document: A1